1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 155 } else { 156 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 157 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 158 } 159 } 160 161 // Match BITREVERSE to customized fast code sequence in the td file. 162 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 163 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 164 165 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 166 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 167 168 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 169 for (MVT VT : MVT::integer_valuetypes()) { 170 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 172 } 173 174 if (Subtarget.isISA3_0()) { 175 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 176 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 177 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 178 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 179 } else { 180 // No extending loads from f16 or HW conversions back and forth. 181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 182 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 183 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 185 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 186 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 187 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 188 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 189 } 190 191 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 192 193 // PowerPC has pre-inc load and store's. 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 200 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 204 if (!Subtarget.hasSPE()) { 205 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 206 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 207 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 209 } 210 211 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 212 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 213 for (MVT VT : ScalarIntVTs) { 214 setOperationAction(ISD::ADDC, VT, Legal); 215 setOperationAction(ISD::ADDE, VT, Legal); 216 setOperationAction(ISD::SUBC, VT, Legal); 217 setOperationAction(ISD::SUBE, VT, Legal); 218 } 219 220 if (Subtarget.useCRBits()) { 221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 222 223 if (isPPC64 || Subtarget.hasFPCVT()) { 224 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 225 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 226 isPPC64 ? MVT::i64 : MVT::i32); 227 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 228 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 229 isPPC64 ? MVT::i64 : MVT::i32); 230 231 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 232 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 233 isPPC64 ? MVT::i64 : MVT::i32); 234 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 235 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 236 isPPC64 ? MVT::i64 : MVT::i32); 237 } else { 238 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 240 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 242 } 243 244 // PowerPC does not support direct load/store of condition registers. 245 setOperationAction(ISD::LOAD, MVT::i1, Custom); 246 setOperationAction(ISD::STORE, MVT::i1, Custom); 247 248 // FIXME: Remove this once the ANDI glue bug is fixed: 249 if (ANDIGlueBug) 250 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 251 252 for (MVT VT : MVT::integer_valuetypes()) { 253 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 254 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 255 setTruncStoreAction(VT, MVT::i1, Expand); 256 } 257 258 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 259 } 260 261 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 262 // PPC (the libcall is not available). 263 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 264 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 265 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 266 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 267 268 // We do not currently implement these libm ops for PowerPC. 269 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 270 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 271 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 272 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 273 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 274 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 275 276 // PowerPC has no SREM/UREM instructions unless we are on P9 277 // On P9 we may use a hardware instruction to compute the remainder. 278 // When the result of both the remainder and the division is required it is 279 // more efficient to compute the remainder from the result of the division 280 // rather than use the remainder instruction. The instructions are legalized 281 // directly because the DivRemPairsPass performs the transformation at the IR 282 // level. 283 if (Subtarget.isISA3_0()) { 284 setOperationAction(ISD::SREM, MVT::i32, Legal); 285 setOperationAction(ISD::UREM, MVT::i32, Legal); 286 setOperationAction(ISD::SREM, MVT::i64, Legal); 287 setOperationAction(ISD::UREM, MVT::i64, Legal); 288 } else { 289 setOperationAction(ISD::SREM, MVT::i32, Expand); 290 setOperationAction(ISD::UREM, MVT::i32, Expand); 291 setOperationAction(ISD::SREM, MVT::i64, Expand); 292 setOperationAction(ISD::UREM, MVT::i64, Expand); 293 } 294 295 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 296 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 297 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 298 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 299 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 300 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 301 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 302 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 303 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 304 305 // Handle constrained floating-point operations of scalar. 306 // TODO: Handle SPE specific operation. 307 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 309 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 310 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 311 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 312 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 313 314 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 315 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 316 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 317 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 319 if (Subtarget.hasVSX()) { 320 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 321 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 322 } 323 324 if (Subtarget.hasFSQRT()) { 325 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 327 } 328 329 if (Subtarget.hasFPRND()) { 330 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 334 335 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 336 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 337 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 338 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 339 } 340 341 // We don't support sin/cos/sqrt/fmod/pow 342 setOperationAction(ISD::FSIN , MVT::f64, Expand); 343 setOperationAction(ISD::FCOS , MVT::f64, Expand); 344 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 345 setOperationAction(ISD::FREM , MVT::f64, Expand); 346 setOperationAction(ISD::FPOW , MVT::f64, Expand); 347 setOperationAction(ISD::FSIN , MVT::f32, Expand); 348 setOperationAction(ISD::FCOS , MVT::f32, Expand); 349 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 350 setOperationAction(ISD::FREM , MVT::f32, Expand); 351 setOperationAction(ISD::FPOW , MVT::f32, Expand); 352 if (Subtarget.hasSPE()) { 353 setOperationAction(ISD::FMA , MVT::f64, Expand); 354 setOperationAction(ISD::FMA , MVT::f32, Expand); 355 } else { 356 setOperationAction(ISD::FMA , MVT::f64, Legal); 357 setOperationAction(ISD::FMA , MVT::f32, Legal); 358 } 359 360 if (Subtarget.hasSPE()) 361 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 362 363 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 364 365 // If we're enabling GP optimizations, use hardware square root 366 if (!Subtarget.hasFSQRT() && 367 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 368 Subtarget.hasFRE())) 369 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 370 371 if (!Subtarget.hasFSQRT() && 372 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 373 Subtarget.hasFRES())) 374 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 375 376 if (Subtarget.hasFCPSGN()) { 377 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 378 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 379 } else { 380 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 381 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 382 } 383 384 if (Subtarget.hasFPRND()) { 385 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 386 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 387 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 388 setOperationAction(ISD::FROUND, MVT::f64, Legal); 389 390 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 391 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 392 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 393 setOperationAction(ISD::FROUND, MVT::f32, Legal); 394 } 395 396 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 397 // to speed up scalar BSWAP64. 398 // CTPOP or CTTZ were introduced in P8/P9 respectively 399 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 400 if (Subtarget.hasP9Vector()) 401 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 402 else 403 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 404 if (Subtarget.isISA3_0()) { 405 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 406 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 407 } else { 408 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 409 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 410 } 411 412 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 413 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 414 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 415 } else { 416 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 417 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 418 } 419 420 // PowerPC does not have ROTR 421 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 422 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 423 424 if (!Subtarget.useCRBits()) { 425 // PowerPC does not have Select 426 setOperationAction(ISD::SELECT, MVT::i32, Expand); 427 setOperationAction(ISD::SELECT, MVT::i64, Expand); 428 setOperationAction(ISD::SELECT, MVT::f32, Expand); 429 setOperationAction(ISD::SELECT, MVT::f64, Expand); 430 } 431 432 // PowerPC wants to turn select_cc of FP into fsel when possible. 433 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 434 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 435 436 // PowerPC wants to optimize integer setcc a bit 437 if (!Subtarget.useCRBits()) 438 setOperationAction(ISD::SETCC, MVT::i32, Custom); 439 440 if (Subtarget.hasFPU()) { 441 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 442 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 443 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 444 445 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 446 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 447 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 448 } 449 450 // PowerPC does not have BRCOND which requires SetCC 451 if (!Subtarget.useCRBits()) 452 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 453 454 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 455 456 if (Subtarget.hasSPE()) { 457 // SPE has built-in conversions 458 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 459 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 460 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 461 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 462 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 464 } else { 465 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 467 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 468 469 // PowerPC does not have [U|S]INT_TO_FP 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 472 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 473 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 474 } 475 476 if (Subtarget.hasDirectMove() && isPPC64) { 477 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 478 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 479 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 480 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 481 if (TM.Options.UnsafeFPMath) { 482 setOperationAction(ISD::LRINT, MVT::f64, Legal); 483 setOperationAction(ISD::LRINT, MVT::f32, Legal); 484 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 485 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 486 setOperationAction(ISD::LROUND, MVT::f64, Legal); 487 setOperationAction(ISD::LROUND, MVT::f32, Legal); 488 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 489 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 490 } 491 } else { 492 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 493 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 494 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 495 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 496 } 497 498 // We cannot sextinreg(i1). Expand to shifts. 499 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 500 501 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 502 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 503 // support continuation, user-level threading, and etc.. As a result, no 504 // other SjLj exception interfaces are implemented and please don't build 505 // your own exception handling based on them. 506 // LLVM/Clang supports zero-cost DWARF exception handling. 507 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 508 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 509 510 // We want to legalize GlobalAddress and ConstantPool nodes into the 511 // appropriate instructions to materialize the address. 512 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 513 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 514 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 515 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 516 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 517 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 518 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 519 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 520 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 521 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 522 523 // TRAP is legal. 524 setOperationAction(ISD::TRAP, MVT::Other, Legal); 525 526 // TRAMPOLINE is custom lowered. 527 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 528 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 529 530 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 531 setOperationAction(ISD::VASTART , MVT::Other, Custom); 532 533 if (Subtarget.is64BitELFABI()) { 534 // VAARG always uses double-word chunks, so promote anything smaller. 535 setOperationAction(ISD::VAARG, MVT::i1, Promote); 536 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 537 setOperationAction(ISD::VAARG, MVT::i8, Promote); 538 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 539 setOperationAction(ISD::VAARG, MVT::i16, Promote); 540 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 541 setOperationAction(ISD::VAARG, MVT::i32, Promote); 542 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 543 setOperationAction(ISD::VAARG, MVT::Other, Expand); 544 } else if (Subtarget.is32BitELFABI()) { 545 // VAARG is custom lowered with the 32-bit SVR4 ABI. 546 setOperationAction(ISD::VAARG, MVT::Other, Custom); 547 setOperationAction(ISD::VAARG, MVT::i64, Custom); 548 } else 549 setOperationAction(ISD::VAARG, MVT::Other, Expand); 550 551 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 552 if (Subtarget.is32BitELFABI()) 553 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 554 else 555 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 556 557 // Use the default implementation. 558 setOperationAction(ISD::VAEND , MVT::Other, Expand); 559 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 560 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 561 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 562 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 563 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 564 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 565 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 566 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 567 568 // We want to custom lower some of our intrinsics. 569 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 570 571 // To handle counter-based loop conditions. 572 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 573 574 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 575 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 576 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 577 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 578 579 // Comparisons that require checking two conditions. 580 if (Subtarget.hasSPE()) { 581 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 582 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 583 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 584 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 585 } 586 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 587 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 588 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 589 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 590 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 591 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 592 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 593 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 594 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 595 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 596 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 597 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 598 599 if (Subtarget.has64BitSupport()) { 600 // They also have instructions for converting between i64 and fp. 601 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 602 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 603 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 604 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 605 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 606 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 607 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 608 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 609 // This is just the low 32 bits of a (signed) fp->i64 conversion. 610 // We cannot do this with Promote because i64 is not a legal type. 611 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 612 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 613 614 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 615 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 616 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 617 } 618 } else { 619 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 620 if (Subtarget.hasSPE()) { 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 622 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 623 } else { 624 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 626 } 627 } 628 629 // With the instructions enabled under FPCVT, we can do everything. 630 if (Subtarget.hasFPCVT()) { 631 if (Subtarget.has64BitSupport()) { 632 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 633 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 634 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 635 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 636 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 637 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 638 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 639 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 640 } 641 642 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 644 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 645 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 646 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 647 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 648 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 649 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 650 } 651 652 if (Subtarget.use64BitRegs()) { 653 // 64-bit PowerPC implementations can support i64 types directly 654 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 655 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 656 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 657 // 64-bit PowerPC wants to expand i128 shifts itself. 658 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 659 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 660 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 661 } else { 662 // 32-bit PowerPC wants to expand i64 shifts itself. 663 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 664 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 665 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 666 } 667 668 // PowerPC has better expansions for funnel shifts than the generic 669 // TargetLowering::expandFunnelShift. 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::FSHL, MVT::i64, Custom); 672 setOperationAction(ISD::FSHR, MVT::i64, Custom); 673 } 674 setOperationAction(ISD::FSHL, MVT::i32, Custom); 675 setOperationAction(ISD::FSHR, MVT::i32, Custom); 676 677 if (Subtarget.hasVSX()) { 678 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 679 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 680 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 681 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 682 } 683 684 if (Subtarget.hasAltivec()) { 685 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 686 setOperationAction(ISD::SADDSAT, VT, Legal); 687 setOperationAction(ISD::SSUBSAT, VT, Legal); 688 setOperationAction(ISD::UADDSAT, VT, Legal); 689 setOperationAction(ISD::USUBSAT, VT, Legal); 690 } 691 // First set operation action for all vector types to expand. Then we 692 // will selectively turn on ones that can be effectively codegen'd. 693 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 694 // add/sub are legal for all supported vector VT's. 695 setOperationAction(ISD::ADD, VT, Legal); 696 setOperationAction(ISD::SUB, VT, Legal); 697 698 // For v2i64, these are only valid with P8Vector. This is corrected after 699 // the loop. 700 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 701 setOperationAction(ISD::SMAX, VT, Legal); 702 setOperationAction(ISD::SMIN, VT, Legal); 703 setOperationAction(ISD::UMAX, VT, Legal); 704 setOperationAction(ISD::UMIN, VT, Legal); 705 } 706 else { 707 setOperationAction(ISD::SMAX, VT, Expand); 708 setOperationAction(ISD::SMIN, VT, Expand); 709 setOperationAction(ISD::UMAX, VT, Expand); 710 setOperationAction(ISD::UMIN, VT, Expand); 711 } 712 713 if (Subtarget.hasVSX()) { 714 setOperationAction(ISD::FMAXNUM, VT, Legal); 715 setOperationAction(ISD::FMINNUM, VT, Legal); 716 } 717 718 // Vector instructions introduced in P8 719 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 720 setOperationAction(ISD::CTPOP, VT, Legal); 721 setOperationAction(ISD::CTLZ, VT, Legal); 722 } 723 else { 724 setOperationAction(ISD::CTPOP, VT, Expand); 725 setOperationAction(ISD::CTLZ, VT, Expand); 726 } 727 728 // Vector instructions introduced in P9 729 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 730 setOperationAction(ISD::CTTZ, VT, Legal); 731 else 732 setOperationAction(ISD::CTTZ, VT, Expand); 733 734 // We promote all shuffles to v16i8. 735 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 736 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 737 738 // We promote all non-typed operations to v4i32. 739 setOperationAction(ISD::AND , VT, Promote); 740 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 741 setOperationAction(ISD::OR , VT, Promote); 742 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 743 setOperationAction(ISD::XOR , VT, Promote); 744 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 745 setOperationAction(ISD::LOAD , VT, Promote); 746 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 747 setOperationAction(ISD::SELECT, VT, Promote); 748 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 749 setOperationAction(ISD::VSELECT, VT, Legal); 750 setOperationAction(ISD::SELECT_CC, VT, Promote); 751 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 752 setOperationAction(ISD::STORE, VT, Promote); 753 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 754 755 // No other operations are legal. 756 setOperationAction(ISD::MUL , VT, Expand); 757 setOperationAction(ISD::SDIV, VT, Expand); 758 setOperationAction(ISD::SREM, VT, Expand); 759 setOperationAction(ISD::UDIV, VT, Expand); 760 setOperationAction(ISD::UREM, VT, Expand); 761 setOperationAction(ISD::FDIV, VT, Expand); 762 setOperationAction(ISD::FREM, VT, Expand); 763 setOperationAction(ISD::FNEG, VT, Expand); 764 setOperationAction(ISD::FSQRT, VT, Expand); 765 setOperationAction(ISD::FLOG, VT, Expand); 766 setOperationAction(ISD::FLOG10, VT, Expand); 767 setOperationAction(ISD::FLOG2, VT, Expand); 768 setOperationAction(ISD::FEXP, VT, Expand); 769 setOperationAction(ISD::FEXP2, VT, Expand); 770 setOperationAction(ISD::FSIN, VT, Expand); 771 setOperationAction(ISD::FCOS, VT, Expand); 772 setOperationAction(ISD::FABS, VT, Expand); 773 setOperationAction(ISD::FFLOOR, VT, Expand); 774 setOperationAction(ISD::FCEIL, VT, Expand); 775 setOperationAction(ISD::FTRUNC, VT, Expand); 776 setOperationAction(ISD::FRINT, VT, Expand); 777 setOperationAction(ISD::FNEARBYINT, VT, Expand); 778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 779 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 780 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 781 setOperationAction(ISD::MULHU, VT, Expand); 782 setOperationAction(ISD::MULHS, VT, Expand); 783 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 784 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 785 setOperationAction(ISD::UDIVREM, VT, Expand); 786 setOperationAction(ISD::SDIVREM, VT, Expand); 787 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 788 setOperationAction(ISD::FPOW, VT, Expand); 789 setOperationAction(ISD::BSWAP, VT, Expand); 790 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 791 setOperationAction(ISD::ROTL, VT, Expand); 792 setOperationAction(ISD::ROTR, VT, Expand); 793 794 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 795 setTruncStoreAction(VT, InnerVT, Expand); 796 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 797 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 798 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 799 } 800 } 801 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 802 if (!Subtarget.hasP8Vector()) { 803 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 804 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 805 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 806 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 807 } 808 809 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 810 // with merges, splats, etc. 811 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 812 813 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 814 // are cheap, so handle them before they get expanded to scalar. 815 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 816 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 817 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 818 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 819 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 820 821 setOperationAction(ISD::AND , MVT::v4i32, Legal); 822 setOperationAction(ISD::OR , MVT::v4i32, Legal); 823 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 824 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 825 setOperationAction(ISD::SELECT, MVT::v4i32, 826 Subtarget.useCRBits() ? Legal : Expand); 827 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 828 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 829 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 830 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 831 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 832 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 833 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 834 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 835 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 836 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 837 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 838 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 839 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 840 841 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 842 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 843 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 844 if (Subtarget.hasAltivec()) 845 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 846 setOperationAction(ISD::ROTL, VT, Legal); 847 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 848 if (Subtarget.hasP8Altivec()) 849 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 850 851 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 852 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 853 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 854 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 855 856 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 858 859 if (Subtarget.hasVSX()) { 860 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 861 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 862 } 863 864 if (Subtarget.hasP8Altivec()) 865 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 866 else 867 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 868 869 if (Subtarget.isISA3_1()) { 870 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 871 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 872 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 873 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 874 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 875 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 876 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 877 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 878 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 879 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 880 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 881 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 882 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 883 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 884 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 885 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 886 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 887 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 888 } 889 890 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 891 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 892 893 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 894 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 895 896 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 897 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 898 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 899 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 900 901 // Altivec does not contain unordered floating-point compare instructions 902 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 903 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 904 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 905 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 906 907 if (Subtarget.hasVSX()) { 908 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 909 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 910 if (Subtarget.hasP8Vector()) { 911 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 912 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 913 } 914 if (Subtarget.hasDirectMove() && isPPC64) { 915 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 916 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 917 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 918 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 919 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 920 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 921 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 922 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 923 } 924 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 925 926 // The nearbyint variants are not allowed to raise the inexact exception 927 // so we can only code-gen them with unsafe math. 928 if (TM.Options.UnsafeFPMath) { 929 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 930 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 931 } 932 933 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 934 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 935 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 936 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 937 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 938 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 939 setOperationAction(ISD::FROUND, MVT::f64, Legal); 940 setOperationAction(ISD::FRINT, MVT::f64, Legal); 941 942 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 943 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 944 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 945 setOperationAction(ISD::FROUND, MVT::f32, Legal); 946 setOperationAction(ISD::FRINT, MVT::f32, Legal); 947 948 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 949 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 950 951 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 952 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 953 954 // Share the Altivec comparison restrictions. 955 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 956 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 957 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 958 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 959 960 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 961 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 962 963 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 964 965 if (Subtarget.hasP8Vector()) 966 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 967 968 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 969 970 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 971 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 972 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 973 974 if (Subtarget.hasP8Altivec()) { 975 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 976 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 977 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 978 979 // 128 bit shifts can be accomplished via 3 instructions for SHL and 980 // SRL, but not for SRA because of the instructions available: 981 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 982 // doing 983 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 984 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 985 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 986 987 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 988 } 989 else { 990 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 991 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 992 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 993 994 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 995 996 // VSX v2i64 only supports non-arithmetic operations. 997 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 998 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 999 } 1000 1001 if (Subtarget.isISA3_1()) 1002 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1003 else 1004 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1007 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1008 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1009 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1010 1011 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1012 1013 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1014 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1015 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1016 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1017 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1018 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1019 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1020 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1021 1022 // Custom handling for partial vectors of integers converted to 1023 // floating point. We already have optimal handling for v2i32 through 1024 // the DAG combine, so those aren't necessary. 1025 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1026 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1027 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1028 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1029 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1030 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1031 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1033 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1034 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1035 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1036 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1037 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1038 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1039 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1040 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1041 1042 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1043 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1044 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1045 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1046 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1047 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1048 1049 if (Subtarget.hasDirectMove()) 1050 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1051 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1052 1053 // Handle constrained floating-point operations of vector. 1054 // The predictor is `hasVSX` because altivec instruction has 1055 // no exception but VSX vector instruction has. 1056 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1057 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1058 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1059 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1060 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1061 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1062 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1063 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1064 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1065 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1066 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1067 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1068 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1069 1070 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1071 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1072 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1073 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1074 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1075 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1076 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1077 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1078 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1079 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1080 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1081 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1082 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1083 1084 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1085 } 1086 1087 if (Subtarget.hasP8Altivec()) { 1088 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1089 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1090 } 1091 1092 if (Subtarget.hasP9Vector()) { 1093 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1094 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1095 1096 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1097 // SRL, but not for SRA because of the instructions available: 1098 // VS{RL} and VS{RL}O. 1099 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1100 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1101 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1102 1103 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1104 setOperationAction(ISD::FADD, MVT::f128, Legal); 1105 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1106 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1107 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1108 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1109 // No extending loads to f128 on PPC. 1110 for (MVT FPT : MVT::fp_valuetypes()) 1111 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1112 setOperationAction(ISD::FMA, MVT::f128, Legal); 1113 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1114 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1115 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1116 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1117 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1118 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1119 1120 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1121 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1122 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1123 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1124 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1125 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1126 1127 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1128 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1129 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 1140 // Handle constrained floating-point operations of fp128 1141 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1142 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1143 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1144 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1145 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1146 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1147 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1148 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1149 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1150 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1151 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1152 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1153 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1154 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1155 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1156 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1157 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1158 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1159 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1160 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1161 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1162 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1163 1164 for (MVT FPT : MVT::fp_valuetypes()) 1165 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1166 1167 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1168 setOperationAction(ISD::STORE, MVT::f128, Promote); 1169 1170 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1171 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1172 1173 setOperationAction(ISD::FADD, MVT::f128, Expand); 1174 setOperationAction(ISD::FSUB, MVT::f128, Expand); 1175 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1176 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1177 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1178 setOperationAction(ISD::FABS, MVT::f128, Expand); 1179 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1180 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1181 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1182 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1183 setOperationAction(ISD::FREM, MVT::f128, Expand); 1184 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1185 setOperationAction(ISD::FMA, MVT::f128, Expand); 1186 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1187 } 1188 1189 if (Subtarget.hasP9Altivec()) { 1190 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1191 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1192 1193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1200 } 1201 } 1202 1203 if (Subtarget.pairedVectorMemops()) { 1204 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1205 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1206 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1207 } 1208 if (Subtarget.hasMMA()) { 1209 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1210 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1211 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1212 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1213 } 1214 1215 if (Subtarget.has64BitSupport()) 1216 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1217 1218 if (Subtarget.isISA3_1()) 1219 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1220 1221 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1222 1223 if (!isPPC64) { 1224 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1225 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1226 } 1227 1228 setBooleanContents(ZeroOrOneBooleanContent); 1229 1230 if (Subtarget.hasAltivec()) { 1231 // Altivec instructions set fields to all zeros or all ones. 1232 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1233 } 1234 1235 if (!isPPC64) { 1236 // These libcalls are not available in 32-bit. 1237 setLibcallName(RTLIB::SHL_I128, nullptr); 1238 setLibcallName(RTLIB::SRL_I128, nullptr); 1239 setLibcallName(RTLIB::SRA_I128, nullptr); 1240 } 1241 1242 if (!isPPC64) 1243 setMaxAtomicSizeInBitsSupported(32); 1244 1245 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1246 1247 // We have target-specific dag combine patterns for the following nodes: 1248 setTargetDAGCombine(ISD::ADD); 1249 setTargetDAGCombine(ISD::SHL); 1250 setTargetDAGCombine(ISD::SRA); 1251 setTargetDAGCombine(ISD::SRL); 1252 setTargetDAGCombine(ISD::MUL); 1253 setTargetDAGCombine(ISD::FMA); 1254 setTargetDAGCombine(ISD::SINT_TO_FP); 1255 setTargetDAGCombine(ISD::BUILD_VECTOR); 1256 if (Subtarget.hasFPCVT()) 1257 setTargetDAGCombine(ISD::UINT_TO_FP); 1258 setTargetDAGCombine(ISD::LOAD); 1259 setTargetDAGCombine(ISD::STORE); 1260 setTargetDAGCombine(ISD::BR_CC); 1261 if (Subtarget.useCRBits()) 1262 setTargetDAGCombine(ISD::BRCOND); 1263 setTargetDAGCombine(ISD::BSWAP); 1264 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1265 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1266 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1267 1268 setTargetDAGCombine(ISD::SIGN_EXTEND); 1269 setTargetDAGCombine(ISD::ZERO_EXTEND); 1270 setTargetDAGCombine(ISD::ANY_EXTEND); 1271 1272 setTargetDAGCombine(ISD::TRUNCATE); 1273 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1274 1275 1276 if (Subtarget.useCRBits()) { 1277 setTargetDAGCombine(ISD::TRUNCATE); 1278 setTargetDAGCombine(ISD::SETCC); 1279 setTargetDAGCombine(ISD::SELECT_CC); 1280 } 1281 1282 if (Subtarget.hasP9Altivec()) { 1283 setTargetDAGCombine(ISD::ABS); 1284 setTargetDAGCombine(ISD::VSELECT); 1285 } 1286 1287 setLibcallName(RTLIB::LOG_F128, "logf128"); 1288 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1289 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1290 setLibcallName(RTLIB::EXP_F128, "expf128"); 1291 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1292 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1293 setLibcallName(RTLIB::COS_F128, "cosf128"); 1294 setLibcallName(RTLIB::POW_F128, "powf128"); 1295 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1296 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1297 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1298 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1299 1300 // With 32 condition bits, we don't need to sink (and duplicate) compares 1301 // aggressively in CodeGenPrep. 1302 if (Subtarget.useCRBits()) { 1303 setHasMultipleConditionRegisters(); 1304 setJumpIsExpensive(); 1305 } 1306 1307 setMinFunctionAlignment(Align(4)); 1308 1309 switch (Subtarget.getCPUDirective()) { 1310 default: break; 1311 case PPC::DIR_970: 1312 case PPC::DIR_A2: 1313 case PPC::DIR_E500: 1314 case PPC::DIR_E500mc: 1315 case PPC::DIR_E5500: 1316 case PPC::DIR_PWR4: 1317 case PPC::DIR_PWR5: 1318 case PPC::DIR_PWR5X: 1319 case PPC::DIR_PWR6: 1320 case PPC::DIR_PWR6X: 1321 case PPC::DIR_PWR7: 1322 case PPC::DIR_PWR8: 1323 case PPC::DIR_PWR9: 1324 case PPC::DIR_PWR10: 1325 case PPC::DIR_PWR_FUTURE: 1326 setPrefLoopAlignment(Align(16)); 1327 setPrefFunctionAlignment(Align(16)); 1328 break; 1329 } 1330 1331 if (Subtarget.enableMachineScheduler()) 1332 setSchedulingPreference(Sched::Source); 1333 else 1334 setSchedulingPreference(Sched::Hybrid); 1335 1336 computeRegisterProperties(STI.getRegisterInfo()); 1337 1338 // The Freescale cores do better with aggressive inlining of memcpy and 1339 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1340 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1341 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1342 MaxStoresPerMemset = 32; 1343 MaxStoresPerMemsetOptSize = 16; 1344 MaxStoresPerMemcpy = 32; 1345 MaxStoresPerMemcpyOptSize = 8; 1346 MaxStoresPerMemmove = 32; 1347 MaxStoresPerMemmoveOptSize = 8; 1348 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1349 // The A2 also benefits from (very) aggressive inlining of memcpy and 1350 // friends. The overhead of a the function call, even when warm, can be 1351 // over one hundred cycles. 1352 MaxStoresPerMemset = 128; 1353 MaxStoresPerMemcpy = 128; 1354 MaxStoresPerMemmove = 128; 1355 MaxLoadsPerMemcmp = 128; 1356 } else { 1357 MaxLoadsPerMemcmp = 8; 1358 MaxLoadsPerMemcmpOptSize = 4; 1359 } 1360 1361 IsStrictFPEnabled = true; 1362 1363 // Let the subtarget (CPU) decide if a predictable select is more expensive 1364 // than the corresponding branch. This information is used in CGP to decide 1365 // when to convert selects into branches. 1366 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1367 } 1368 1369 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1370 /// the desired ByVal argument alignment. 1371 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1372 if (MaxAlign == MaxMaxAlign) 1373 return; 1374 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1375 if (MaxMaxAlign >= 32 && 1376 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1377 MaxAlign = Align(32); 1378 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1379 MaxAlign < 16) 1380 MaxAlign = Align(16); 1381 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1382 Align EltAlign; 1383 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1384 if (EltAlign > MaxAlign) 1385 MaxAlign = EltAlign; 1386 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1387 for (auto *EltTy : STy->elements()) { 1388 Align EltAlign; 1389 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1390 if (EltAlign > MaxAlign) 1391 MaxAlign = EltAlign; 1392 if (MaxAlign == MaxMaxAlign) 1393 break; 1394 } 1395 } 1396 } 1397 1398 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1399 /// function arguments in the caller parameter area. 1400 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1401 const DataLayout &DL) const { 1402 // 16byte and wider vectors are passed on 16byte boundary. 1403 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1404 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1405 if (Subtarget.hasAltivec()) 1406 getMaxByValAlign(Ty, Alignment, Align(16)); 1407 return Alignment.value(); 1408 } 1409 1410 bool PPCTargetLowering::useSoftFloat() const { 1411 return Subtarget.useSoftFloat(); 1412 } 1413 1414 bool PPCTargetLowering::hasSPE() const { 1415 return Subtarget.hasSPE(); 1416 } 1417 1418 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1419 return VT.isScalarInteger(); 1420 } 1421 1422 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1423 switch ((PPCISD::NodeType)Opcode) { 1424 case PPCISD::FIRST_NUMBER: break; 1425 case PPCISD::FSEL: return "PPCISD::FSEL"; 1426 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1427 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1428 case PPCISD::FCFID: return "PPCISD::FCFID"; 1429 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1430 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1431 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1432 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1433 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1434 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1435 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1436 case PPCISD::FP_TO_UINT_IN_VSR: 1437 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1438 case PPCISD::FP_TO_SINT_IN_VSR: 1439 return "PPCISD::FP_TO_SINT_IN_VSR"; 1440 case PPCISD::FRE: return "PPCISD::FRE"; 1441 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1442 case PPCISD::FTSQRT: 1443 return "PPCISD::FTSQRT"; 1444 case PPCISD::FSQRT: 1445 return "PPCISD::FSQRT"; 1446 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1447 case PPCISD::VPERM: return "PPCISD::VPERM"; 1448 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1449 case PPCISD::XXSPLTI_SP_TO_DP: 1450 return "PPCISD::XXSPLTI_SP_TO_DP"; 1451 case PPCISD::XXSPLTI32DX: 1452 return "PPCISD::XXSPLTI32DX"; 1453 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1454 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1455 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1456 case PPCISD::CMPB: return "PPCISD::CMPB"; 1457 case PPCISD::Hi: return "PPCISD::Hi"; 1458 case PPCISD::Lo: return "PPCISD::Lo"; 1459 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1460 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1461 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1462 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1463 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1464 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1465 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1466 case PPCISD::SRL: return "PPCISD::SRL"; 1467 case PPCISD::SRA: return "PPCISD::SRA"; 1468 case PPCISD::SHL: return "PPCISD::SHL"; 1469 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1470 case PPCISD::CALL: return "PPCISD::CALL"; 1471 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1472 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1473 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1474 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1475 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1476 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1477 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1478 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1479 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1480 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1481 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1482 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1483 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1484 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1485 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1486 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1487 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1488 case PPCISD::ANDI_rec_1_EQ_BIT: 1489 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1490 case PPCISD::ANDI_rec_1_GT_BIT: 1491 return "PPCISD::ANDI_rec_1_GT_BIT"; 1492 case PPCISD::VCMP: return "PPCISD::VCMP"; 1493 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1494 case PPCISD::LBRX: return "PPCISD::LBRX"; 1495 case PPCISD::STBRX: return "PPCISD::STBRX"; 1496 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1497 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1498 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1499 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1500 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1501 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1502 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1503 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1504 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1505 case PPCISD::ST_VSR_SCAL_INT: 1506 return "PPCISD::ST_VSR_SCAL_INT"; 1507 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1508 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1509 case PPCISD::BDZ: return "PPCISD::BDZ"; 1510 case PPCISD::MFFS: return "PPCISD::MFFS"; 1511 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1512 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1513 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1514 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1515 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1516 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1517 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1518 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1519 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1520 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1521 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1522 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1523 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1524 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1525 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1526 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1527 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1528 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1529 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1530 case PPCISD::PADDI_DTPREL: 1531 return "PPCISD::PADDI_DTPREL"; 1532 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1533 case PPCISD::SC: return "PPCISD::SC"; 1534 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1535 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1536 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1537 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1538 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1539 case PPCISD::VABSD: return "PPCISD::VABSD"; 1540 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1541 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1542 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1543 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1544 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1545 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1546 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1547 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1548 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1549 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1550 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1551 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1552 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1553 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1554 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1555 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1556 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1557 case PPCISD::STRICT_FADDRTZ: 1558 return "PPCISD::STRICT_FADDRTZ"; 1559 case PPCISD::STRICT_FCTIDZ: 1560 return "PPCISD::STRICT_FCTIDZ"; 1561 case PPCISD::STRICT_FCTIWZ: 1562 return "PPCISD::STRICT_FCTIWZ"; 1563 case PPCISD::STRICT_FCTIDUZ: 1564 return "PPCISD::STRICT_FCTIDUZ"; 1565 case PPCISD::STRICT_FCTIWUZ: 1566 return "PPCISD::STRICT_FCTIWUZ"; 1567 case PPCISD::STRICT_FCFID: 1568 return "PPCISD::STRICT_FCFID"; 1569 case PPCISD::STRICT_FCFIDU: 1570 return "PPCISD::STRICT_FCFIDU"; 1571 case PPCISD::STRICT_FCFIDS: 1572 return "PPCISD::STRICT_FCFIDS"; 1573 case PPCISD::STRICT_FCFIDUS: 1574 return "PPCISD::STRICT_FCFIDUS"; 1575 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1576 } 1577 return nullptr; 1578 } 1579 1580 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1581 EVT VT) const { 1582 if (!VT.isVector()) 1583 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1584 1585 return VT.changeVectorElementTypeToInteger(); 1586 } 1587 1588 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1589 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1590 return true; 1591 } 1592 1593 //===----------------------------------------------------------------------===// 1594 // Node matching predicates, for use by the tblgen matching code. 1595 //===----------------------------------------------------------------------===// 1596 1597 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1598 static bool isFloatingPointZero(SDValue Op) { 1599 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1600 return CFP->getValueAPF().isZero(); 1601 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1602 // Maybe this has already been legalized into the constant pool? 1603 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1604 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1605 return CFP->getValueAPF().isZero(); 1606 } 1607 return false; 1608 } 1609 1610 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1611 /// true if Op is undef or if it matches the specified value. 1612 static bool isConstantOrUndef(int Op, int Val) { 1613 return Op < 0 || Op == Val; 1614 } 1615 1616 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1617 /// VPKUHUM instruction. 1618 /// The ShuffleKind distinguishes between big-endian operations with 1619 /// two different inputs (0), either-endian operations with two identical 1620 /// inputs (1), and little-endian operations with two different inputs (2). 1621 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1622 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1623 SelectionDAG &DAG) { 1624 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1625 if (ShuffleKind == 0) { 1626 if (IsLE) 1627 return false; 1628 for (unsigned i = 0; i != 16; ++i) 1629 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1630 return false; 1631 } else if (ShuffleKind == 2) { 1632 if (!IsLE) 1633 return false; 1634 for (unsigned i = 0; i != 16; ++i) 1635 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1636 return false; 1637 } else if (ShuffleKind == 1) { 1638 unsigned j = IsLE ? 0 : 1; 1639 for (unsigned i = 0; i != 8; ++i) 1640 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1641 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1642 return false; 1643 } 1644 return true; 1645 } 1646 1647 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1648 /// VPKUWUM instruction. 1649 /// The ShuffleKind distinguishes between big-endian operations with 1650 /// two different inputs (0), either-endian operations with two identical 1651 /// inputs (1), and little-endian operations with two different inputs (2). 1652 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1653 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1654 SelectionDAG &DAG) { 1655 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1656 if (ShuffleKind == 0) { 1657 if (IsLE) 1658 return false; 1659 for (unsigned i = 0; i != 16; i += 2) 1660 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1661 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1662 return false; 1663 } else if (ShuffleKind == 2) { 1664 if (!IsLE) 1665 return false; 1666 for (unsigned i = 0; i != 16; i += 2) 1667 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1668 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1669 return false; 1670 } else if (ShuffleKind == 1) { 1671 unsigned j = IsLE ? 0 : 2; 1672 for (unsigned i = 0; i != 8; i += 2) 1673 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1674 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1675 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1676 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1677 return false; 1678 } 1679 return true; 1680 } 1681 1682 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1683 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1684 /// current subtarget. 1685 /// 1686 /// The ShuffleKind distinguishes between big-endian operations with 1687 /// two different inputs (0), either-endian operations with two identical 1688 /// inputs (1), and little-endian operations with two different inputs (2). 1689 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1690 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1691 SelectionDAG &DAG) { 1692 const PPCSubtarget& Subtarget = 1693 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1694 if (!Subtarget.hasP8Vector()) 1695 return false; 1696 1697 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1698 if (ShuffleKind == 0) { 1699 if (IsLE) 1700 return false; 1701 for (unsigned i = 0; i != 16; i += 4) 1702 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1703 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1704 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1705 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1706 return false; 1707 } else if (ShuffleKind == 2) { 1708 if (!IsLE) 1709 return false; 1710 for (unsigned i = 0; i != 16; i += 4) 1711 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1712 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1713 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1714 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1715 return false; 1716 } else if (ShuffleKind == 1) { 1717 unsigned j = IsLE ? 0 : 4; 1718 for (unsigned i = 0; i != 8; i += 4) 1719 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1720 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1721 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1722 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1723 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1724 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1725 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1726 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1727 return false; 1728 } 1729 return true; 1730 } 1731 1732 /// isVMerge - Common function, used to match vmrg* shuffles. 1733 /// 1734 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1735 unsigned LHSStart, unsigned RHSStart) { 1736 if (N->getValueType(0) != MVT::v16i8) 1737 return false; 1738 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1739 "Unsupported merge size!"); 1740 1741 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1742 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1743 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1744 LHSStart+j+i*UnitSize) || 1745 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1746 RHSStart+j+i*UnitSize)) 1747 return false; 1748 } 1749 return true; 1750 } 1751 1752 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1753 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1754 /// The ShuffleKind distinguishes between big-endian merges with two 1755 /// different inputs (0), either-endian merges with two identical inputs (1), 1756 /// and little-endian merges with two different inputs (2). For the latter, 1757 /// the input operands are swapped (see PPCInstrAltivec.td). 1758 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1759 unsigned ShuffleKind, SelectionDAG &DAG) { 1760 if (DAG.getDataLayout().isLittleEndian()) { 1761 if (ShuffleKind == 1) // unary 1762 return isVMerge(N, UnitSize, 0, 0); 1763 else if (ShuffleKind == 2) // swapped 1764 return isVMerge(N, UnitSize, 0, 16); 1765 else 1766 return false; 1767 } else { 1768 if (ShuffleKind == 1) // unary 1769 return isVMerge(N, UnitSize, 8, 8); 1770 else if (ShuffleKind == 0) // normal 1771 return isVMerge(N, UnitSize, 8, 24); 1772 else 1773 return false; 1774 } 1775 } 1776 1777 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1778 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1779 /// The ShuffleKind distinguishes between big-endian merges with two 1780 /// different inputs (0), either-endian merges with two identical inputs (1), 1781 /// and little-endian merges with two different inputs (2). For the latter, 1782 /// the input operands are swapped (see PPCInstrAltivec.td). 1783 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1784 unsigned ShuffleKind, SelectionDAG &DAG) { 1785 if (DAG.getDataLayout().isLittleEndian()) { 1786 if (ShuffleKind == 1) // unary 1787 return isVMerge(N, UnitSize, 8, 8); 1788 else if (ShuffleKind == 2) // swapped 1789 return isVMerge(N, UnitSize, 8, 24); 1790 else 1791 return false; 1792 } else { 1793 if (ShuffleKind == 1) // unary 1794 return isVMerge(N, UnitSize, 0, 0); 1795 else if (ShuffleKind == 0) // normal 1796 return isVMerge(N, UnitSize, 0, 16); 1797 else 1798 return false; 1799 } 1800 } 1801 1802 /** 1803 * Common function used to match vmrgew and vmrgow shuffles 1804 * 1805 * The indexOffset determines whether to look for even or odd words in 1806 * the shuffle mask. This is based on the of the endianness of the target 1807 * machine. 1808 * - Little Endian: 1809 * - Use offset of 0 to check for odd elements 1810 * - Use offset of 4 to check for even elements 1811 * - Big Endian: 1812 * - Use offset of 0 to check for even elements 1813 * - Use offset of 4 to check for odd elements 1814 * A detailed description of the vector element ordering for little endian and 1815 * big endian can be found at 1816 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1817 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1818 * compiler differences mean to you 1819 * 1820 * The mask to the shuffle vector instruction specifies the indices of the 1821 * elements from the two input vectors to place in the result. The elements are 1822 * numbered in array-access order, starting with the first vector. These vectors 1823 * are always of type v16i8, thus each vector will contain 16 elements of size 1824 * 8. More info on the shuffle vector can be found in the 1825 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1826 * Language Reference. 1827 * 1828 * The RHSStartValue indicates whether the same input vectors are used (unary) 1829 * or two different input vectors are used, based on the following: 1830 * - If the instruction uses the same vector for both inputs, the range of the 1831 * indices will be 0 to 15. In this case, the RHSStart value passed should 1832 * be 0. 1833 * - If the instruction has two different vectors then the range of the 1834 * indices will be 0 to 31. In this case, the RHSStart value passed should 1835 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1836 * to 31 specify elements in the second vector). 1837 * 1838 * \param[in] N The shuffle vector SD Node to analyze 1839 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1840 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1841 * vector to the shuffle_vector instruction 1842 * \return true iff this shuffle vector represents an even or odd word merge 1843 */ 1844 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1845 unsigned RHSStartValue) { 1846 if (N->getValueType(0) != MVT::v16i8) 1847 return false; 1848 1849 for (unsigned i = 0; i < 2; ++i) 1850 for (unsigned j = 0; j < 4; ++j) 1851 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1852 i*RHSStartValue+j+IndexOffset) || 1853 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1854 i*RHSStartValue+j+IndexOffset+8)) 1855 return false; 1856 return true; 1857 } 1858 1859 /** 1860 * Determine if the specified shuffle mask is suitable for the vmrgew or 1861 * vmrgow instructions. 1862 * 1863 * \param[in] N The shuffle vector SD Node to analyze 1864 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1865 * \param[in] ShuffleKind Identify the type of merge: 1866 * - 0 = big-endian merge with two different inputs; 1867 * - 1 = either-endian merge with two identical inputs; 1868 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1869 * little-endian merges). 1870 * \param[in] DAG The current SelectionDAG 1871 * \return true iff this shuffle mask 1872 */ 1873 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1874 unsigned ShuffleKind, SelectionDAG &DAG) { 1875 if (DAG.getDataLayout().isLittleEndian()) { 1876 unsigned indexOffset = CheckEven ? 4 : 0; 1877 if (ShuffleKind == 1) // Unary 1878 return isVMerge(N, indexOffset, 0); 1879 else if (ShuffleKind == 2) // swapped 1880 return isVMerge(N, indexOffset, 16); 1881 else 1882 return false; 1883 } 1884 else { 1885 unsigned indexOffset = CheckEven ? 0 : 4; 1886 if (ShuffleKind == 1) // Unary 1887 return isVMerge(N, indexOffset, 0); 1888 else if (ShuffleKind == 0) // Normal 1889 return isVMerge(N, indexOffset, 16); 1890 else 1891 return false; 1892 } 1893 return false; 1894 } 1895 1896 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1897 /// amount, otherwise return -1. 1898 /// The ShuffleKind distinguishes between big-endian operations with two 1899 /// different inputs (0), either-endian operations with two identical inputs 1900 /// (1), and little-endian operations with two different inputs (2). For the 1901 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1902 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1903 SelectionDAG &DAG) { 1904 if (N->getValueType(0) != MVT::v16i8) 1905 return -1; 1906 1907 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1908 1909 // Find the first non-undef value in the shuffle mask. 1910 unsigned i; 1911 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1912 /*search*/; 1913 1914 if (i == 16) return -1; // all undef. 1915 1916 // Otherwise, check to see if the rest of the elements are consecutively 1917 // numbered from this value. 1918 unsigned ShiftAmt = SVOp->getMaskElt(i); 1919 if (ShiftAmt < i) return -1; 1920 1921 ShiftAmt -= i; 1922 bool isLE = DAG.getDataLayout().isLittleEndian(); 1923 1924 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1925 // Check the rest of the elements to see if they are consecutive. 1926 for (++i; i != 16; ++i) 1927 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1928 return -1; 1929 } else if (ShuffleKind == 1) { 1930 // Check the rest of the elements to see if they are consecutive. 1931 for (++i; i != 16; ++i) 1932 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1933 return -1; 1934 } else 1935 return -1; 1936 1937 if (isLE) 1938 ShiftAmt = 16 - ShiftAmt; 1939 1940 return ShiftAmt; 1941 } 1942 1943 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1944 /// specifies a splat of a single element that is suitable for input to 1945 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1946 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1947 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1948 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1949 1950 // The consecutive indices need to specify an element, not part of two 1951 // different elements. So abandon ship early if this isn't the case. 1952 if (N->getMaskElt(0) % EltSize != 0) 1953 return false; 1954 1955 // This is a splat operation if each element of the permute is the same, and 1956 // if the value doesn't reference the second vector. 1957 unsigned ElementBase = N->getMaskElt(0); 1958 1959 // FIXME: Handle UNDEF elements too! 1960 if (ElementBase >= 16) 1961 return false; 1962 1963 // Check that the indices are consecutive, in the case of a multi-byte element 1964 // splatted with a v16i8 mask. 1965 for (unsigned i = 1; i != EltSize; ++i) 1966 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1967 return false; 1968 1969 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1970 if (N->getMaskElt(i) < 0) continue; 1971 for (unsigned j = 0; j != EltSize; ++j) 1972 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1973 return false; 1974 } 1975 return true; 1976 } 1977 1978 /// Check that the mask is shuffling N byte elements. Within each N byte 1979 /// element of the mask, the indices could be either in increasing or 1980 /// decreasing order as long as they are consecutive. 1981 /// \param[in] N the shuffle vector SD Node to analyze 1982 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1983 /// Word/DoubleWord/QuadWord). 1984 /// \param[in] StepLen the delta indices number among the N byte element, if 1985 /// the mask is in increasing/decreasing order then it is 1/-1. 1986 /// \return true iff the mask is shuffling N byte elements. 1987 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1988 int StepLen) { 1989 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1990 "Unexpected element width."); 1991 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1992 1993 unsigned NumOfElem = 16 / Width; 1994 unsigned MaskVal[16]; // Width is never greater than 16 1995 for (unsigned i = 0; i < NumOfElem; ++i) { 1996 MaskVal[0] = N->getMaskElt(i * Width); 1997 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1998 return false; 1999 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2000 return false; 2001 } 2002 2003 for (unsigned int j = 1; j < Width; ++j) { 2004 MaskVal[j] = N->getMaskElt(i * Width + j); 2005 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2006 return false; 2007 } 2008 } 2009 } 2010 2011 return true; 2012 } 2013 2014 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2015 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2016 if (!isNByteElemShuffleMask(N, 4, 1)) 2017 return false; 2018 2019 // Now we look at mask elements 0,4,8,12 2020 unsigned M0 = N->getMaskElt(0) / 4; 2021 unsigned M1 = N->getMaskElt(4) / 4; 2022 unsigned M2 = N->getMaskElt(8) / 4; 2023 unsigned M3 = N->getMaskElt(12) / 4; 2024 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2025 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2026 2027 // Below, let H and L be arbitrary elements of the shuffle mask 2028 // where H is in the range [4,7] and L is in the range [0,3]. 2029 // H, 1, 2, 3 or L, 5, 6, 7 2030 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2031 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2032 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2033 InsertAtByte = IsLE ? 12 : 0; 2034 Swap = M0 < 4; 2035 return true; 2036 } 2037 // 0, H, 2, 3 or 4, L, 6, 7 2038 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2039 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2040 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2041 InsertAtByte = IsLE ? 8 : 4; 2042 Swap = M1 < 4; 2043 return true; 2044 } 2045 // 0, 1, H, 3 or 4, 5, L, 7 2046 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2047 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2048 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2049 InsertAtByte = IsLE ? 4 : 8; 2050 Swap = M2 < 4; 2051 return true; 2052 } 2053 // 0, 1, 2, H or 4, 5, 6, L 2054 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2055 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2056 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2057 InsertAtByte = IsLE ? 0 : 12; 2058 Swap = M3 < 4; 2059 return true; 2060 } 2061 2062 // If both vector operands for the shuffle are the same vector, the mask will 2063 // contain only elements from the first one and the second one will be undef. 2064 if (N->getOperand(1).isUndef()) { 2065 ShiftElts = 0; 2066 Swap = true; 2067 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2068 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2069 InsertAtByte = IsLE ? 12 : 0; 2070 return true; 2071 } 2072 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2073 InsertAtByte = IsLE ? 8 : 4; 2074 return true; 2075 } 2076 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2077 InsertAtByte = IsLE ? 4 : 8; 2078 return true; 2079 } 2080 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2081 InsertAtByte = IsLE ? 0 : 12; 2082 return true; 2083 } 2084 } 2085 2086 return false; 2087 } 2088 2089 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2090 bool &Swap, bool IsLE) { 2091 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2092 // Ensure each byte index of the word is consecutive. 2093 if (!isNByteElemShuffleMask(N, 4, 1)) 2094 return false; 2095 2096 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2097 unsigned M0 = N->getMaskElt(0) / 4; 2098 unsigned M1 = N->getMaskElt(4) / 4; 2099 unsigned M2 = N->getMaskElt(8) / 4; 2100 unsigned M3 = N->getMaskElt(12) / 4; 2101 2102 // If both vector operands for the shuffle are the same vector, the mask will 2103 // contain only elements from the first one and the second one will be undef. 2104 if (N->getOperand(1).isUndef()) { 2105 assert(M0 < 4 && "Indexing into an undef vector?"); 2106 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2107 return false; 2108 2109 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2110 Swap = false; 2111 return true; 2112 } 2113 2114 // Ensure each word index of the ShuffleVector Mask is consecutive. 2115 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2116 return false; 2117 2118 if (IsLE) { 2119 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2120 // Input vectors don't need to be swapped if the leading element 2121 // of the result is one of the 3 left elements of the second vector 2122 // (or if there is no shift to be done at all). 2123 Swap = false; 2124 ShiftElts = (8 - M0) % 8; 2125 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2126 // Input vectors need to be swapped if the leading element 2127 // of the result is one of the 3 left elements of the first vector 2128 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2129 Swap = true; 2130 ShiftElts = (4 - M0) % 4; 2131 } 2132 2133 return true; 2134 } else { // BE 2135 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2136 // Input vectors don't need to be swapped if the leading element 2137 // of the result is one of the 4 elements of the first vector. 2138 Swap = false; 2139 ShiftElts = M0; 2140 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2141 // Input vectors need to be swapped if the leading element 2142 // of the result is one of the 4 elements of the right vector. 2143 Swap = true; 2144 ShiftElts = M0 - 4; 2145 } 2146 2147 return true; 2148 } 2149 } 2150 2151 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2152 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2153 2154 if (!isNByteElemShuffleMask(N, Width, -1)) 2155 return false; 2156 2157 for (int i = 0; i < 16; i += Width) 2158 if (N->getMaskElt(i) != i + Width - 1) 2159 return false; 2160 2161 return true; 2162 } 2163 2164 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2165 return isXXBRShuffleMaskHelper(N, 2); 2166 } 2167 2168 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2169 return isXXBRShuffleMaskHelper(N, 4); 2170 } 2171 2172 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2173 return isXXBRShuffleMaskHelper(N, 8); 2174 } 2175 2176 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2177 return isXXBRShuffleMaskHelper(N, 16); 2178 } 2179 2180 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2181 /// if the inputs to the instruction should be swapped and set \p DM to the 2182 /// value for the immediate. 2183 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2184 /// AND element 0 of the result comes from the first input (LE) or second input 2185 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2186 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2187 /// mask. 2188 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2189 bool &Swap, bool IsLE) { 2190 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2191 2192 // Ensure each byte index of the double word is consecutive. 2193 if (!isNByteElemShuffleMask(N, 8, 1)) 2194 return false; 2195 2196 unsigned M0 = N->getMaskElt(0) / 8; 2197 unsigned M1 = N->getMaskElt(8) / 8; 2198 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2199 2200 // If both vector operands for the shuffle are the same vector, the mask will 2201 // contain only elements from the first one and the second one will be undef. 2202 if (N->getOperand(1).isUndef()) { 2203 if ((M0 | M1) < 2) { 2204 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2205 Swap = false; 2206 return true; 2207 } else 2208 return false; 2209 } 2210 2211 if (IsLE) { 2212 if (M0 > 1 && M1 < 2) { 2213 Swap = false; 2214 } else if (M0 < 2 && M1 > 1) { 2215 M0 = (M0 + 2) % 4; 2216 M1 = (M1 + 2) % 4; 2217 Swap = true; 2218 } else 2219 return false; 2220 2221 // Note: if control flow comes here that means Swap is already set above 2222 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2223 return true; 2224 } else { // BE 2225 if (M0 < 2 && M1 > 1) { 2226 Swap = false; 2227 } else if (M0 > 1 && M1 < 2) { 2228 M0 = (M0 + 2) % 4; 2229 M1 = (M1 + 2) % 4; 2230 Swap = true; 2231 } else 2232 return false; 2233 2234 // Note: if control flow comes here that means Swap is already set above 2235 DM = (M0 << 1) + (M1 & 1); 2236 return true; 2237 } 2238 } 2239 2240 2241 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2242 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2243 /// elements are counted from the left of the vector register). 2244 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2245 SelectionDAG &DAG) { 2246 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2247 assert(isSplatShuffleMask(SVOp, EltSize)); 2248 if (DAG.getDataLayout().isLittleEndian()) 2249 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2250 else 2251 return SVOp->getMaskElt(0) / EltSize; 2252 } 2253 2254 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2255 /// by using a vspltis[bhw] instruction of the specified element size, return 2256 /// the constant being splatted. The ByteSize field indicates the number of 2257 /// bytes of each element [124] -> [bhw]. 2258 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2259 SDValue OpVal(nullptr, 0); 2260 2261 // If ByteSize of the splat is bigger than the element size of the 2262 // build_vector, then we have a case where we are checking for a splat where 2263 // multiple elements of the buildvector are folded together into a single 2264 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2265 unsigned EltSize = 16/N->getNumOperands(); 2266 if (EltSize < ByteSize) { 2267 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2268 SDValue UniquedVals[4]; 2269 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2270 2271 // See if all of the elements in the buildvector agree across. 2272 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2273 if (N->getOperand(i).isUndef()) continue; 2274 // If the element isn't a constant, bail fully out. 2275 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2276 2277 if (!UniquedVals[i&(Multiple-1)].getNode()) 2278 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2279 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2280 return SDValue(); // no match. 2281 } 2282 2283 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2284 // either constant or undef values that are identical for each chunk. See 2285 // if these chunks can form into a larger vspltis*. 2286 2287 // Check to see if all of the leading entries are either 0 or -1. If 2288 // neither, then this won't fit into the immediate field. 2289 bool LeadingZero = true; 2290 bool LeadingOnes = true; 2291 for (unsigned i = 0; i != Multiple-1; ++i) { 2292 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2293 2294 LeadingZero &= isNullConstant(UniquedVals[i]); 2295 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2296 } 2297 // Finally, check the least significant entry. 2298 if (LeadingZero) { 2299 if (!UniquedVals[Multiple-1].getNode()) 2300 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2301 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2302 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2303 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2304 } 2305 if (LeadingOnes) { 2306 if (!UniquedVals[Multiple-1].getNode()) 2307 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2308 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2309 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2310 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2311 } 2312 2313 return SDValue(); 2314 } 2315 2316 // Check to see if this buildvec has a single non-undef value in its elements. 2317 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2318 if (N->getOperand(i).isUndef()) continue; 2319 if (!OpVal.getNode()) 2320 OpVal = N->getOperand(i); 2321 else if (OpVal != N->getOperand(i)) 2322 return SDValue(); 2323 } 2324 2325 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2326 2327 unsigned ValSizeInBytes = EltSize; 2328 uint64_t Value = 0; 2329 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2330 Value = CN->getZExtValue(); 2331 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2332 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2333 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2334 } 2335 2336 // If the splat value is larger than the element value, then we can never do 2337 // this splat. The only case that we could fit the replicated bits into our 2338 // immediate field for would be zero, and we prefer to use vxor for it. 2339 if (ValSizeInBytes < ByteSize) return SDValue(); 2340 2341 // If the element value is larger than the splat value, check if it consists 2342 // of a repeated bit pattern of size ByteSize. 2343 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2344 return SDValue(); 2345 2346 // Properly sign extend the value. 2347 int MaskVal = SignExtend32(Value, ByteSize * 8); 2348 2349 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2350 if (MaskVal == 0) return SDValue(); 2351 2352 // Finally, if this value fits in a 5 bit sext field, return it 2353 if (SignExtend32<5>(MaskVal) == MaskVal) 2354 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2355 return SDValue(); 2356 } 2357 2358 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2359 /// amount, otherwise return -1. 2360 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2361 EVT VT = N->getValueType(0); 2362 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2363 return -1; 2364 2365 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2366 2367 // Find the first non-undef value in the shuffle mask. 2368 unsigned i; 2369 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2370 /*search*/; 2371 2372 if (i == 4) return -1; // all undef. 2373 2374 // Otherwise, check to see if the rest of the elements are consecutively 2375 // numbered from this value. 2376 unsigned ShiftAmt = SVOp->getMaskElt(i); 2377 if (ShiftAmt < i) return -1; 2378 ShiftAmt -= i; 2379 2380 // Check the rest of the elements to see if they are consecutive. 2381 for (++i; i != 4; ++i) 2382 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2383 return -1; 2384 2385 return ShiftAmt; 2386 } 2387 2388 //===----------------------------------------------------------------------===// 2389 // Addressing Mode Selection 2390 //===----------------------------------------------------------------------===// 2391 2392 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2393 /// or 64-bit immediate, and if the value can be accurately represented as a 2394 /// sign extension from a 16-bit value. If so, this returns true and the 2395 /// immediate. 2396 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2397 if (!isa<ConstantSDNode>(N)) 2398 return false; 2399 2400 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2401 if (N->getValueType(0) == MVT::i32) 2402 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2403 else 2404 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2405 } 2406 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2407 return isIntS16Immediate(Op.getNode(), Imm); 2408 } 2409 2410 2411 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2412 /// be represented as an indexed [r+r] operation. 2413 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2414 SDValue &Index, 2415 SelectionDAG &DAG) const { 2416 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2417 UI != E; ++UI) { 2418 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2419 if (Memop->getMemoryVT() == MVT::f64) { 2420 Base = N.getOperand(0); 2421 Index = N.getOperand(1); 2422 return true; 2423 } 2424 } 2425 } 2426 return false; 2427 } 2428 2429 /// isIntS34Immediate - This method tests if value of node given can be 2430 /// accurately represented as a sign extension from a 34-bit value. If so, 2431 /// this returns true and the immediate. 2432 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2433 if (!isa<ConstantSDNode>(N)) 2434 return false; 2435 2436 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2437 return isInt<34>(Imm); 2438 } 2439 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2440 return isIntS34Immediate(Op.getNode(), Imm); 2441 } 2442 2443 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2444 /// can be represented as an indexed [r+r] operation. Returns false if it 2445 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2446 /// non-zero and N can be represented by a base register plus a signed 16-bit 2447 /// displacement, make a more precise judgement by checking (displacement % \p 2448 /// EncodingAlignment). 2449 bool PPCTargetLowering::SelectAddressRegReg( 2450 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2451 MaybeAlign EncodingAlignment) const { 2452 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2453 // a [pc+imm]. 2454 if (SelectAddressPCRel(N, Base)) 2455 return false; 2456 2457 int16_t Imm = 0; 2458 if (N.getOpcode() == ISD::ADD) { 2459 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2460 // SPE load/store can only handle 8-bit offsets. 2461 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2462 return true; 2463 if (isIntS16Immediate(N.getOperand(1), Imm) && 2464 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2465 return false; // r+i 2466 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2467 return false; // r+i 2468 2469 Base = N.getOperand(0); 2470 Index = N.getOperand(1); 2471 return true; 2472 } else if (N.getOpcode() == ISD::OR) { 2473 if (isIntS16Immediate(N.getOperand(1), Imm) && 2474 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2475 return false; // r+i can fold it if we can. 2476 2477 // If this is an or of disjoint bitfields, we can codegen this as an add 2478 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2479 // disjoint. 2480 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2481 2482 if (LHSKnown.Zero.getBoolValue()) { 2483 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2484 // If all of the bits are known zero on the LHS or RHS, the add won't 2485 // carry. 2486 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2487 Base = N.getOperand(0); 2488 Index = N.getOperand(1); 2489 return true; 2490 } 2491 } 2492 } 2493 2494 return false; 2495 } 2496 2497 // If we happen to be doing an i64 load or store into a stack slot that has 2498 // less than a 4-byte alignment, then the frame-index elimination may need to 2499 // use an indexed load or store instruction (because the offset may not be a 2500 // multiple of 4). The extra register needed to hold the offset comes from the 2501 // register scavenger, and it is possible that the scavenger will need to use 2502 // an emergency spill slot. As a result, we need to make sure that a spill slot 2503 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2504 // stack slot. 2505 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2506 // FIXME: This does not handle the LWA case. 2507 if (VT != MVT::i64) 2508 return; 2509 2510 // NOTE: We'll exclude negative FIs here, which come from argument 2511 // lowering, because there are no known test cases triggering this problem 2512 // using packed structures (or similar). We can remove this exclusion if 2513 // we find such a test case. The reason why this is so test-case driven is 2514 // because this entire 'fixup' is only to prevent crashes (from the 2515 // register scavenger) on not-really-valid inputs. For example, if we have: 2516 // %a = alloca i1 2517 // %b = bitcast i1* %a to i64* 2518 // store i64* a, i64 b 2519 // then the store should really be marked as 'align 1', but is not. If it 2520 // were marked as 'align 1' then the indexed form would have been 2521 // instruction-selected initially, and the problem this 'fixup' is preventing 2522 // won't happen regardless. 2523 if (FrameIdx < 0) 2524 return; 2525 2526 MachineFunction &MF = DAG.getMachineFunction(); 2527 MachineFrameInfo &MFI = MF.getFrameInfo(); 2528 2529 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2530 return; 2531 2532 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2533 FuncInfo->setHasNonRISpills(); 2534 } 2535 2536 /// Returns true if the address N can be represented by a base register plus 2537 /// a signed 16-bit displacement [r+imm], and if it is not better 2538 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2539 /// displacements that are multiples of that value. 2540 bool PPCTargetLowering::SelectAddressRegImm( 2541 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2542 MaybeAlign EncodingAlignment) const { 2543 // FIXME dl should come from parent load or store, not from address 2544 SDLoc dl(N); 2545 2546 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2547 // a [pc+imm]. 2548 if (SelectAddressPCRel(N, Base)) 2549 return false; 2550 2551 // If this can be more profitably realized as r+r, fail. 2552 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2553 return false; 2554 2555 if (N.getOpcode() == ISD::ADD) { 2556 int16_t imm = 0; 2557 if (isIntS16Immediate(N.getOperand(1), imm) && 2558 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2559 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2560 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2561 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2562 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2563 } else { 2564 Base = N.getOperand(0); 2565 } 2566 return true; // [r+i] 2567 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2568 // Match LOAD (ADD (X, Lo(G))). 2569 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2570 && "Cannot handle constant offsets yet!"); 2571 Disp = N.getOperand(1).getOperand(0); // The global address. 2572 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2573 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2574 Disp.getOpcode() == ISD::TargetConstantPool || 2575 Disp.getOpcode() == ISD::TargetJumpTable); 2576 Base = N.getOperand(0); 2577 return true; // [&g+r] 2578 } 2579 } else if (N.getOpcode() == ISD::OR) { 2580 int16_t imm = 0; 2581 if (isIntS16Immediate(N.getOperand(1), imm) && 2582 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2583 // If this is an or of disjoint bitfields, we can codegen this as an add 2584 // (for better address arithmetic) if the LHS and RHS of the OR are 2585 // provably disjoint. 2586 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2587 2588 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2589 // If all of the bits are known zero on the LHS or RHS, the add won't 2590 // carry. 2591 if (FrameIndexSDNode *FI = 2592 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2593 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2594 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2595 } else { 2596 Base = N.getOperand(0); 2597 } 2598 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2599 return true; 2600 } 2601 } 2602 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2603 // Loading from a constant address. 2604 2605 // If this address fits entirely in a 16-bit sext immediate field, codegen 2606 // this as "d, 0" 2607 int16_t Imm; 2608 if (isIntS16Immediate(CN, Imm) && 2609 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2610 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2611 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2612 CN->getValueType(0)); 2613 return true; 2614 } 2615 2616 // Handle 32-bit sext immediates with LIS + addr mode. 2617 if ((CN->getValueType(0) == MVT::i32 || 2618 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2619 (!EncodingAlignment || 2620 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2621 int Addr = (int)CN->getZExtValue(); 2622 2623 // Otherwise, break this down into an LIS + disp. 2624 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2625 2626 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2627 MVT::i32); 2628 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2629 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2630 return true; 2631 } 2632 } 2633 2634 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2635 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2636 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2637 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2638 } else 2639 Base = N; 2640 return true; // [r+0] 2641 } 2642 2643 /// Similar to the 16-bit case but for instructions that take a 34-bit 2644 /// displacement field (prefixed loads/stores). 2645 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2646 SDValue &Base, 2647 SelectionDAG &DAG) const { 2648 // Only on 64-bit targets. 2649 if (N.getValueType() != MVT::i64) 2650 return false; 2651 2652 SDLoc dl(N); 2653 int64_t Imm = 0; 2654 2655 if (N.getOpcode() == ISD::ADD) { 2656 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2657 return false; 2658 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2659 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2660 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2661 else 2662 Base = N.getOperand(0); 2663 return true; 2664 } 2665 2666 if (N.getOpcode() == ISD::OR) { 2667 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2668 return false; 2669 // If this is an or of disjoint bitfields, we can codegen this as an add 2670 // (for better address arithmetic) if the LHS and RHS of the OR are 2671 // provably disjoint. 2672 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2673 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2674 return false; 2675 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2676 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2677 else 2678 Base = N.getOperand(0); 2679 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2680 return true; 2681 } 2682 2683 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2684 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2685 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2686 return true; 2687 } 2688 2689 return false; 2690 } 2691 2692 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2693 /// represented as an indexed [r+r] operation. 2694 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2695 SDValue &Index, 2696 SelectionDAG &DAG) const { 2697 // Check to see if we can easily represent this as an [r+r] address. This 2698 // will fail if it thinks that the address is more profitably represented as 2699 // reg+imm, e.g. where imm = 0. 2700 if (SelectAddressRegReg(N, Base, Index, DAG)) 2701 return true; 2702 2703 // If the address is the result of an add, we will utilize the fact that the 2704 // address calculation includes an implicit add. However, we can reduce 2705 // register pressure if we do not materialize a constant just for use as the 2706 // index register. We only get rid of the add if it is not an add of a 2707 // value and a 16-bit signed constant and both have a single use. 2708 int16_t imm = 0; 2709 if (N.getOpcode() == ISD::ADD && 2710 (!isIntS16Immediate(N.getOperand(1), imm) || 2711 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2712 Base = N.getOperand(0); 2713 Index = N.getOperand(1); 2714 return true; 2715 } 2716 2717 // Otherwise, do it the hard way, using R0 as the base register. 2718 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2719 N.getValueType()); 2720 Index = N; 2721 return true; 2722 } 2723 2724 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2725 Ty *PCRelCand = dyn_cast<Ty>(N); 2726 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2727 } 2728 2729 /// Returns true if this address is a PC Relative address. 2730 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2731 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2732 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2733 // This is a materialize PC Relative node. Always select this as PC Relative. 2734 Base = N; 2735 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2736 return true; 2737 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2738 isValidPCRelNode<GlobalAddressSDNode>(N) || 2739 isValidPCRelNode<JumpTableSDNode>(N) || 2740 isValidPCRelNode<BlockAddressSDNode>(N)) 2741 return true; 2742 return false; 2743 } 2744 2745 /// Returns true if we should use a direct load into vector instruction 2746 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2747 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2748 2749 // If there are any other uses other than scalar to vector, then we should 2750 // keep it as a scalar load -> direct move pattern to prevent multiple 2751 // loads. 2752 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2753 if (!LD) 2754 return false; 2755 2756 EVT MemVT = LD->getMemoryVT(); 2757 if (!MemVT.isSimple()) 2758 return false; 2759 switch(MemVT.getSimpleVT().SimpleTy) { 2760 case MVT::i64: 2761 break; 2762 case MVT::i32: 2763 if (!ST.hasP8Vector()) 2764 return false; 2765 break; 2766 case MVT::i16: 2767 case MVT::i8: 2768 if (!ST.hasP9Vector()) 2769 return false; 2770 break; 2771 default: 2772 return false; 2773 } 2774 2775 SDValue LoadedVal(N, 0); 2776 if (!LoadedVal.hasOneUse()) 2777 return false; 2778 2779 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2780 UI != UE; ++UI) 2781 if (UI.getUse().get().getResNo() == 0 && 2782 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2783 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2784 return false; 2785 2786 return true; 2787 } 2788 2789 /// getPreIndexedAddressParts - returns true by value, base pointer and 2790 /// offset pointer and addressing mode by reference if the node's address 2791 /// can be legally represented as pre-indexed load / store address. 2792 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2793 SDValue &Offset, 2794 ISD::MemIndexedMode &AM, 2795 SelectionDAG &DAG) const { 2796 if (DisablePPCPreinc) return false; 2797 2798 bool isLoad = true; 2799 SDValue Ptr; 2800 EVT VT; 2801 unsigned Alignment; 2802 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2803 Ptr = LD->getBasePtr(); 2804 VT = LD->getMemoryVT(); 2805 Alignment = LD->getAlignment(); 2806 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2807 Ptr = ST->getBasePtr(); 2808 VT = ST->getMemoryVT(); 2809 Alignment = ST->getAlignment(); 2810 isLoad = false; 2811 } else 2812 return false; 2813 2814 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2815 // instructions because we can fold these into a more efficient instruction 2816 // instead, (such as LXSD). 2817 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2818 return false; 2819 } 2820 2821 // PowerPC doesn't have preinc load/store instructions for vectors 2822 if (VT.isVector()) 2823 return false; 2824 2825 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2826 // Common code will reject creating a pre-inc form if the base pointer 2827 // is a frame index, or if N is a store and the base pointer is either 2828 // the same as or a predecessor of the value being stored. Check for 2829 // those situations here, and try with swapped Base/Offset instead. 2830 bool Swap = false; 2831 2832 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2833 Swap = true; 2834 else if (!isLoad) { 2835 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2836 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2837 Swap = true; 2838 } 2839 2840 if (Swap) 2841 std::swap(Base, Offset); 2842 2843 AM = ISD::PRE_INC; 2844 return true; 2845 } 2846 2847 // LDU/STU can only handle immediates that are a multiple of 4. 2848 if (VT != MVT::i64) { 2849 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2850 return false; 2851 } else { 2852 // LDU/STU need an address with at least 4-byte alignment. 2853 if (Alignment < 4) 2854 return false; 2855 2856 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2857 return false; 2858 } 2859 2860 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2861 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2862 // sext i32 to i64 when addr mode is r+i. 2863 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2864 LD->getExtensionType() == ISD::SEXTLOAD && 2865 isa<ConstantSDNode>(Offset)) 2866 return false; 2867 } 2868 2869 AM = ISD::PRE_INC; 2870 return true; 2871 } 2872 2873 //===----------------------------------------------------------------------===// 2874 // LowerOperation implementation 2875 //===----------------------------------------------------------------------===// 2876 2877 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2878 /// and LoOpFlags to the target MO flags. 2879 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2880 unsigned &HiOpFlags, unsigned &LoOpFlags, 2881 const GlobalValue *GV = nullptr) { 2882 HiOpFlags = PPCII::MO_HA; 2883 LoOpFlags = PPCII::MO_LO; 2884 2885 // Don't use the pic base if not in PIC relocation model. 2886 if (IsPIC) { 2887 HiOpFlags |= PPCII::MO_PIC_FLAG; 2888 LoOpFlags |= PPCII::MO_PIC_FLAG; 2889 } 2890 } 2891 2892 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2893 SelectionDAG &DAG) { 2894 SDLoc DL(HiPart); 2895 EVT PtrVT = HiPart.getValueType(); 2896 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2897 2898 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2899 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2900 2901 // With PIC, the first instruction is actually "GR+hi(&G)". 2902 if (isPIC) 2903 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2904 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2905 2906 // Generate non-pic code that has direct accesses to the constant pool. 2907 // The address of the global is just (hi(&g)+lo(&g)). 2908 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2909 } 2910 2911 static void setUsesTOCBasePtr(MachineFunction &MF) { 2912 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2913 FuncInfo->setUsesTOCBasePtr(); 2914 } 2915 2916 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2917 setUsesTOCBasePtr(DAG.getMachineFunction()); 2918 } 2919 2920 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2921 SDValue GA) const { 2922 const bool Is64Bit = Subtarget.isPPC64(); 2923 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2924 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2925 : Subtarget.isAIXABI() 2926 ? DAG.getRegister(PPC::R2, VT) 2927 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2928 SDValue Ops[] = { GA, Reg }; 2929 return DAG.getMemIntrinsicNode( 2930 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2931 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2932 MachineMemOperand::MOLoad); 2933 } 2934 2935 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2936 SelectionDAG &DAG) const { 2937 EVT PtrVT = Op.getValueType(); 2938 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2939 const Constant *C = CP->getConstVal(); 2940 2941 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2942 // The actual address of the GlobalValue is stored in the TOC. 2943 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2944 if (Subtarget.isUsingPCRelativeCalls()) { 2945 SDLoc DL(CP); 2946 EVT Ty = getPointerTy(DAG.getDataLayout()); 2947 SDValue ConstPool = DAG.getTargetConstantPool( 2948 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2949 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2950 } 2951 setUsesTOCBasePtr(DAG); 2952 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2953 return getTOCEntry(DAG, SDLoc(CP), GA); 2954 } 2955 2956 unsigned MOHiFlag, MOLoFlag; 2957 bool IsPIC = isPositionIndependent(); 2958 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2959 2960 if (IsPIC && Subtarget.isSVR4ABI()) { 2961 SDValue GA = 2962 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2963 return getTOCEntry(DAG, SDLoc(CP), GA); 2964 } 2965 2966 SDValue CPIHi = 2967 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2968 SDValue CPILo = 2969 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2970 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2971 } 2972 2973 // For 64-bit PowerPC, prefer the more compact relative encodings. 2974 // This trades 32 bits per jump table entry for one or two instructions 2975 // on the jump site. 2976 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2977 if (isJumpTableRelative()) 2978 return MachineJumpTableInfo::EK_LabelDifference32; 2979 2980 return TargetLowering::getJumpTableEncoding(); 2981 } 2982 2983 bool PPCTargetLowering::isJumpTableRelative() const { 2984 if (UseAbsoluteJumpTables) 2985 return false; 2986 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2987 return true; 2988 return TargetLowering::isJumpTableRelative(); 2989 } 2990 2991 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2992 SelectionDAG &DAG) const { 2993 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2994 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2995 2996 switch (getTargetMachine().getCodeModel()) { 2997 case CodeModel::Small: 2998 case CodeModel::Medium: 2999 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3000 default: 3001 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3002 getPointerTy(DAG.getDataLayout())); 3003 } 3004 } 3005 3006 const MCExpr * 3007 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3008 unsigned JTI, 3009 MCContext &Ctx) const { 3010 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3011 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3012 3013 switch (getTargetMachine().getCodeModel()) { 3014 case CodeModel::Small: 3015 case CodeModel::Medium: 3016 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3017 default: 3018 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3019 } 3020 } 3021 3022 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3023 EVT PtrVT = Op.getValueType(); 3024 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3025 3026 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3027 if (Subtarget.isUsingPCRelativeCalls()) { 3028 SDLoc DL(JT); 3029 EVT Ty = getPointerTy(DAG.getDataLayout()); 3030 SDValue GA = 3031 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3032 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3033 return MatAddr; 3034 } 3035 3036 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3037 // The actual address of the GlobalValue is stored in the TOC. 3038 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3039 setUsesTOCBasePtr(DAG); 3040 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3041 return getTOCEntry(DAG, SDLoc(JT), GA); 3042 } 3043 3044 unsigned MOHiFlag, MOLoFlag; 3045 bool IsPIC = isPositionIndependent(); 3046 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3047 3048 if (IsPIC && Subtarget.isSVR4ABI()) { 3049 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3050 PPCII::MO_PIC_FLAG); 3051 return getTOCEntry(DAG, SDLoc(GA), GA); 3052 } 3053 3054 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3055 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3056 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3057 } 3058 3059 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3060 SelectionDAG &DAG) const { 3061 EVT PtrVT = Op.getValueType(); 3062 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3063 const BlockAddress *BA = BASDN->getBlockAddress(); 3064 3065 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3066 if (Subtarget.isUsingPCRelativeCalls()) { 3067 SDLoc DL(BASDN); 3068 EVT Ty = getPointerTy(DAG.getDataLayout()); 3069 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3070 PPCII::MO_PCREL_FLAG); 3071 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3072 return MatAddr; 3073 } 3074 3075 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3076 // The actual BlockAddress is stored in the TOC. 3077 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3078 setUsesTOCBasePtr(DAG); 3079 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3080 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3081 } 3082 3083 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3084 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3085 return getTOCEntry( 3086 DAG, SDLoc(BASDN), 3087 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3088 3089 unsigned MOHiFlag, MOLoFlag; 3090 bool IsPIC = isPositionIndependent(); 3091 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3092 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3093 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3094 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3095 } 3096 3097 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3098 SelectionDAG &DAG) const { 3099 // FIXME: TLS addresses currently use medium model code sequences, 3100 // which is the most useful form. Eventually support for small and 3101 // large models could be added if users need it, at the cost of 3102 // additional complexity. 3103 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3104 if (DAG.getTarget().useEmulatedTLS()) 3105 return LowerToTLSEmulatedModel(GA, DAG); 3106 3107 SDLoc dl(GA); 3108 const GlobalValue *GV = GA->getGlobal(); 3109 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3110 bool is64bit = Subtarget.isPPC64(); 3111 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3112 PICLevel::Level picLevel = M->getPICLevel(); 3113 3114 const TargetMachine &TM = getTargetMachine(); 3115 TLSModel::Model Model = TM.getTLSModel(GV); 3116 3117 if (Model == TLSModel::LocalExec) { 3118 if (Subtarget.isUsingPCRelativeCalls()) { 3119 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3120 SDValue TGA = DAG.getTargetGlobalAddress( 3121 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3122 SDValue MatAddr = 3123 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3124 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3125 } 3126 3127 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3128 PPCII::MO_TPREL_HA); 3129 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3130 PPCII::MO_TPREL_LO); 3131 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3132 : DAG.getRegister(PPC::R2, MVT::i32); 3133 3134 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3135 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3136 } 3137 3138 if (Model == TLSModel::InitialExec) { 3139 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3140 SDValue TGA = DAG.getTargetGlobalAddress( 3141 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3142 SDValue TGATLS = DAG.getTargetGlobalAddress( 3143 GV, dl, PtrVT, 0, 3144 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3145 SDValue TPOffset; 3146 if (IsPCRel) { 3147 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3148 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3149 MachinePointerInfo()); 3150 } else { 3151 SDValue GOTPtr; 3152 if (is64bit) { 3153 setUsesTOCBasePtr(DAG); 3154 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3155 GOTPtr = 3156 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3157 } else { 3158 if (!TM.isPositionIndependent()) 3159 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3160 else if (picLevel == PICLevel::SmallPIC) 3161 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3162 else 3163 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3164 } 3165 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3166 } 3167 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3168 } 3169 3170 if (Model == TLSModel::GeneralDynamic) { 3171 if (Subtarget.isUsingPCRelativeCalls()) { 3172 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3173 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3174 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3175 } 3176 3177 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3178 SDValue GOTPtr; 3179 if (is64bit) { 3180 setUsesTOCBasePtr(DAG); 3181 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3182 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3183 GOTReg, TGA); 3184 } else { 3185 if (picLevel == PICLevel::SmallPIC) 3186 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3187 else 3188 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3189 } 3190 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3191 GOTPtr, TGA, TGA); 3192 } 3193 3194 if (Model == TLSModel::LocalDynamic) { 3195 if (Subtarget.isUsingPCRelativeCalls()) { 3196 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3197 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3198 SDValue MatPCRel = 3199 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3200 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3201 } 3202 3203 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3204 SDValue GOTPtr; 3205 if (is64bit) { 3206 setUsesTOCBasePtr(DAG); 3207 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3208 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3209 GOTReg, TGA); 3210 } else { 3211 if (picLevel == PICLevel::SmallPIC) 3212 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3213 else 3214 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3215 } 3216 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3217 PtrVT, GOTPtr, TGA, TGA); 3218 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3219 PtrVT, TLSAddr, TGA); 3220 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3221 } 3222 3223 llvm_unreachable("Unknown TLS model!"); 3224 } 3225 3226 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3227 SelectionDAG &DAG) const { 3228 EVT PtrVT = Op.getValueType(); 3229 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3230 SDLoc DL(GSDN); 3231 const GlobalValue *GV = GSDN->getGlobal(); 3232 3233 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3234 // The actual address of the GlobalValue is stored in the TOC. 3235 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3236 if (Subtarget.isUsingPCRelativeCalls()) { 3237 EVT Ty = getPointerTy(DAG.getDataLayout()); 3238 if (isAccessedAsGotIndirect(Op)) { 3239 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3240 PPCII::MO_PCREL_FLAG | 3241 PPCII::MO_GOT_FLAG); 3242 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3243 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3244 MachinePointerInfo()); 3245 return Load; 3246 } else { 3247 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3248 PPCII::MO_PCREL_FLAG); 3249 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3250 } 3251 } 3252 setUsesTOCBasePtr(DAG); 3253 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3254 return getTOCEntry(DAG, DL, GA); 3255 } 3256 3257 unsigned MOHiFlag, MOLoFlag; 3258 bool IsPIC = isPositionIndependent(); 3259 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3260 3261 if (IsPIC && Subtarget.isSVR4ABI()) { 3262 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3263 GSDN->getOffset(), 3264 PPCII::MO_PIC_FLAG); 3265 return getTOCEntry(DAG, DL, GA); 3266 } 3267 3268 SDValue GAHi = 3269 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3270 SDValue GALo = 3271 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3272 3273 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3274 } 3275 3276 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3277 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3278 SDLoc dl(Op); 3279 3280 if (Op.getValueType() == MVT::v2i64) { 3281 // When the operands themselves are v2i64 values, we need to do something 3282 // special because VSX has no underlying comparison operations for these. 3283 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3284 // Equality can be handled by casting to the legal type for Altivec 3285 // comparisons, everything else needs to be expanded. 3286 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3287 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3288 DAG.getSetCC(dl, MVT::v4i32, 3289 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3290 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3291 CC)); 3292 } 3293 3294 return SDValue(); 3295 } 3296 3297 // We handle most of these in the usual way. 3298 return Op; 3299 } 3300 3301 // If we're comparing for equality to zero, expose the fact that this is 3302 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3303 // fold the new nodes. 3304 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3305 return V; 3306 3307 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3308 // Leave comparisons against 0 and -1 alone for now, since they're usually 3309 // optimized. FIXME: revisit this when we can custom lower all setcc 3310 // optimizations. 3311 if (C->isAllOnesValue() || C->isNullValue()) 3312 return SDValue(); 3313 } 3314 3315 // If we have an integer seteq/setne, turn it into a compare against zero 3316 // by xor'ing the rhs with the lhs, which is faster than setting a 3317 // condition register, reading it back out, and masking the correct bit. The 3318 // normal approach here uses sub to do this instead of xor. Using xor exposes 3319 // the result to other bit-twiddling opportunities. 3320 EVT LHSVT = Op.getOperand(0).getValueType(); 3321 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3322 EVT VT = Op.getValueType(); 3323 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3324 Op.getOperand(1)); 3325 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3326 } 3327 return SDValue(); 3328 } 3329 3330 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3331 SDNode *Node = Op.getNode(); 3332 EVT VT = Node->getValueType(0); 3333 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3334 SDValue InChain = Node->getOperand(0); 3335 SDValue VAListPtr = Node->getOperand(1); 3336 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3337 SDLoc dl(Node); 3338 3339 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3340 3341 // gpr_index 3342 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3343 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3344 InChain = GprIndex.getValue(1); 3345 3346 if (VT == MVT::i64) { 3347 // Check if GprIndex is even 3348 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3349 DAG.getConstant(1, dl, MVT::i32)); 3350 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3351 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3352 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3353 DAG.getConstant(1, dl, MVT::i32)); 3354 // Align GprIndex to be even if it isn't 3355 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3356 GprIndex); 3357 } 3358 3359 // fpr index is 1 byte after gpr 3360 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3361 DAG.getConstant(1, dl, MVT::i32)); 3362 3363 // fpr 3364 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3365 FprPtr, MachinePointerInfo(SV), MVT::i8); 3366 InChain = FprIndex.getValue(1); 3367 3368 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3369 DAG.getConstant(8, dl, MVT::i32)); 3370 3371 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3372 DAG.getConstant(4, dl, MVT::i32)); 3373 3374 // areas 3375 SDValue OverflowArea = 3376 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3377 InChain = OverflowArea.getValue(1); 3378 3379 SDValue RegSaveArea = 3380 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3381 InChain = RegSaveArea.getValue(1); 3382 3383 // select overflow_area if index > 8 3384 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3385 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3386 3387 // adjustment constant gpr_index * 4/8 3388 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3389 VT.isInteger() ? GprIndex : FprIndex, 3390 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3391 MVT::i32)); 3392 3393 // OurReg = RegSaveArea + RegConstant 3394 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3395 RegConstant); 3396 3397 // Floating types are 32 bytes into RegSaveArea 3398 if (VT.isFloatingPoint()) 3399 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3400 DAG.getConstant(32, dl, MVT::i32)); 3401 3402 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3403 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3404 VT.isInteger() ? GprIndex : FprIndex, 3405 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3406 MVT::i32)); 3407 3408 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3409 VT.isInteger() ? VAListPtr : FprPtr, 3410 MachinePointerInfo(SV), MVT::i8); 3411 3412 // determine if we should load from reg_save_area or overflow_area 3413 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3414 3415 // increase overflow_area by 4/8 if gpr/fpr > 8 3416 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3417 DAG.getConstant(VT.isInteger() ? 4 : 8, 3418 dl, MVT::i32)); 3419 3420 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3421 OverflowAreaPlusN); 3422 3423 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3424 MachinePointerInfo(), MVT::i32); 3425 3426 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3427 } 3428 3429 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3430 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3431 3432 // We have to copy the entire va_list struct: 3433 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3434 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3435 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3436 false, true, false, MachinePointerInfo(), 3437 MachinePointerInfo()); 3438 } 3439 3440 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3441 SelectionDAG &DAG) const { 3442 if (Subtarget.isAIXABI()) 3443 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3444 3445 return Op.getOperand(0); 3446 } 3447 3448 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3449 SelectionDAG &DAG) const { 3450 if (Subtarget.isAIXABI()) 3451 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3452 3453 SDValue Chain = Op.getOperand(0); 3454 SDValue Trmp = Op.getOperand(1); // trampoline 3455 SDValue FPtr = Op.getOperand(2); // nested function 3456 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3457 SDLoc dl(Op); 3458 3459 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3460 bool isPPC64 = (PtrVT == MVT::i64); 3461 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3462 3463 TargetLowering::ArgListTy Args; 3464 TargetLowering::ArgListEntry Entry; 3465 3466 Entry.Ty = IntPtrTy; 3467 Entry.Node = Trmp; Args.push_back(Entry); 3468 3469 // TrampSize == (isPPC64 ? 48 : 40); 3470 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3471 isPPC64 ? MVT::i64 : MVT::i32); 3472 Args.push_back(Entry); 3473 3474 Entry.Node = FPtr; Args.push_back(Entry); 3475 Entry.Node = Nest; Args.push_back(Entry); 3476 3477 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3478 TargetLowering::CallLoweringInfo CLI(DAG); 3479 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3480 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3481 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3482 3483 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3484 return CallResult.second; 3485 } 3486 3487 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3488 MachineFunction &MF = DAG.getMachineFunction(); 3489 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3490 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3491 3492 SDLoc dl(Op); 3493 3494 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3495 // vastart just stores the address of the VarArgsFrameIndex slot into the 3496 // memory location argument. 3497 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3498 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3499 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3500 MachinePointerInfo(SV)); 3501 } 3502 3503 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3504 // We suppose the given va_list is already allocated. 3505 // 3506 // typedef struct { 3507 // char gpr; /* index into the array of 8 GPRs 3508 // * stored in the register save area 3509 // * gpr=0 corresponds to r3, 3510 // * gpr=1 to r4, etc. 3511 // */ 3512 // char fpr; /* index into the array of 8 FPRs 3513 // * stored in the register save area 3514 // * fpr=0 corresponds to f1, 3515 // * fpr=1 to f2, etc. 3516 // */ 3517 // char *overflow_arg_area; 3518 // /* location on stack that holds 3519 // * the next overflow argument 3520 // */ 3521 // char *reg_save_area; 3522 // /* where r3:r10 and f1:f8 (if saved) 3523 // * are stored 3524 // */ 3525 // } va_list[1]; 3526 3527 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3528 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3529 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3530 PtrVT); 3531 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3532 PtrVT); 3533 3534 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3535 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3536 3537 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3538 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3539 3540 uint64_t FPROffset = 1; 3541 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3542 3543 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3544 3545 // Store first byte : number of int regs 3546 SDValue firstStore = 3547 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3548 MachinePointerInfo(SV), MVT::i8); 3549 uint64_t nextOffset = FPROffset; 3550 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3551 ConstFPROffset); 3552 3553 // Store second byte : number of float regs 3554 SDValue secondStore = 3555 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3556 MachinePointerInfo(SV, nextOffset), MVT::i8); 3557 nextOffset += StackOffset; 3558 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3559 3560 // Store second word : arguments given on stack 3561 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3562 MachinePointerInfo(SV, nextOffset)); 3563 nextOffset += FrameOffset; 3564 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3565 3566 // Store third word : arguments given in registers 3567 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3568 MachinePointerInfo(SV, nextOffset)); 3569 } 3570 3571 /// FPR - The set of FP registers that should be allocated for arguments 3572 /// on Darwin and AIX. 3573 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3574 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3575 PPC::F11, PPC::F12, PPC::F13}; 3576 3577 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3578 /// the stack. 3579 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3580 unsigned PtrByteSize) { 3581 unsigned ArgSize = ArgVT.getStoreSize(); 3582 if (Flags.isByVal()) 3583 ArgSize = Flags.getByValSize(); 3584 3585 // Round up to multiples of the pointer size, except for array members, 3586 // which are always packed. 3587 if (!Flags.isInConsecutiveRegs()) 3588 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3589 3590 return ArgSize; 3591 } 3592 3593 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3594 /// on the stack. 3595 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3596 ISD::ArgFlagsTy Flags, 3597 unsigned PtrByteSize) { 3598 Align Alignment(PtrByteSize); 3599 3600 // Altivec parameters are padded to a 16 byte boundary. 3601 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3602 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3603 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3604 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3605 Alignment = Align(16); 3606 3607 // ByVal parameters are aligned as requested. 3608 if (Flags.isByVal()) { 3609 auto BVAlign = Flags.getNonZeroByValAlign(); 3610 if (BVAlign > PtrByteSize) { 3611 if (BVAlign.value() % PtrByteSize != 0) 3612 llvm_unreachable( 3613 "ByVal alignment is not a multiple of the pointer size"); 3614 3615 Alignment = BVAlign; 3616 } 3617 } 3618 3619 // Array members are always packed to their original alignment. 3620 if (Flags.isInConsecutiveRegs()) { 3621 // If the array member was split into multiple registers, the first 3622 // needs to be aligned to the size of the full type. (Except for 3623 // ppcf128, which is only aligned as its f64 components.) 3624 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3625 Alignment = Align(OrigVT.getStoreSize()); 3626 else 3627 Alignment = Align(ArgVT.getStoreSize()); 3628 } 3629 3630 return Alignment; 3631 } 3632 3633 /// CalculateStackSlotUsed - Return whether this argument will use its 3634 /// stack slot (instead of being passed in registers). ArgOffset, 3635 /// AvailableFPRs, and AvailableVRs must hold the current argument 3636 /// position, and will be updated to account for this argument. 3637 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3638 unsigned PtrByteSize, unsigned LinkageSize, 3639 unsigned ParamAreaSize, unsigned &ArgOffset, 3640 unsigned &AvailableFPRs, 3641 unsigned &AvailableVRs) { 3642 bool UseMemory = false; 3643 3644 // Respect alignment of argument on the stack. 3645 Align Alignment = 3646 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3647 ArgOffset = alignTo(ArgOffset, Alignment); 3648 // If there's no space left in the argument save area, we must 3649 // use memory (this check also catches zero-sized arguments). 3650 if (ArgOffset >= LinkageSize + ParamAreaSize) 3651 UseMemory = true; 3652 3653 // Allocate argument on the stack. 3654 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3655 if (Flags.isInConsecutiveRegsLast()) 3656 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3657 // If we overran the argument save area, we must use memory 3658 // (this check catches arguments passed partially in memory) 3659 if (ArgOffset > LinkageSize + ParamAreaSize) 3660 UseMemory = true; 3661 3662 // However, if the argument is actually passed in an FPR or a VR, 3663 // we don't use memory after all. 3664 if (!Flags.isByVal()) { 3665 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3666 if (AvailableFPRs > 0) { 3667 --AvailableFPRs; 3668 return false; 3669 } 3670 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3671 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3672 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3673 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3674 if (AvailableVRs > 0) { 3675 --AvailableVRs; 3676 return false; 3677 } 3678 } 3679 3680 return UseMemory; 3681 } 3682 3683 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3684 /// ensure minimum alignment required for target. 3685 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3686 unsigned NumBytes) { 3687 return alignTo(NumBytes, Lowering->getStackAlign()); 3688 } 3689 3690 SDValue PPCTargetLowering::LowerFormalArguments( 3691 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3692 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3693 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3694 if (Subtarget.isAIXABI()) 3695 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3696 InVals); 3697 if (Subtarget.is64BitELFABI()) 3698 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3699 InVals); 3700 if (Subtarget.is32BitELFABI()) 3701 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3702 InVals); 3703 3704 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3705 InVals); 3706 } 3707 3708 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3709 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3710 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3711 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3712 3713 // 32-bit SVR4 ABI Stack Frame Layout: 3714 // +-----------------------------------+ 3715 // +--> | Back chain | 3716 // | +-----------------------------------+ 3717 // | | Floating-point register save area | 3718 // | +-----------------------------------+ 3719 // | | General register save area | 3720 // | +-----------------------------------+ 3721 // | | CR save word | 3722 // | +-----------------------------------+ 3723 // | | VRSAVE save word | 3724 // | +-----------------------------------+ 3725 // | | Alignment padding | 3726 // | +-----------------------------------+ 3727 // | | Vector register save area | 3728 // | +-----------------------------------+ 3729 // | | Local variable space | 3730 // | +-----------------------------------+ 3731 // | | Parameter list area | 3732 // | +-----------------------------------+ 3733 // | | LR save word | 3734 // | +-----------------------------------+ 3735 // SP--> +--- | Back chain | 3736 // +-----------------------------------+ 3737 // 3738 // Specifications: 3739 // System V Application Binary Interface PowerPC Processor Supplement 3740 // AltiVec Technology Programming Interface Manual 3741 3742 MachineFunction &MF = DAG.getMachineFunction(); 3743 MachineFrameInfo &MFI = MF.getFrameInfo(); 3744 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3745 3746 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3747 // Potential tail calls could cause overwriting of argument stack slots. 3748 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3749 (CallConv == CallingConv::Fast)); 3750 const Align PtrAlign(4); 3751 3752 // Assign locations to all of the incoming arguments. 3753 SmallVector<CCValAssign, 16> ArgLocs; 3754 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3755 *DAG.getContext()); 3756 3757 // Reserve space for the linkage area on the stack. 3758 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3759 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3760 if (useSoftFloat()) 3761 CCInfo.PreAnalyzeFormalArguments(Ins); 3762 3763 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3764 CCInfo.clearWasPPCF128(); 3765 3766 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3767 CCValAssign &VA = ArgLocs[i]; 3768 3769 // Arguments stored in registers. 3770 if (VA.isRegLoc()) { 3771 const TargetRegisterClass *RC; 3772 EVT ValVT = VA.getValVT(); 3773 3774 switch (ValVT.getSimpleVT().SimpleTy) { 3775 default: 3776 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3777 case MVT::i1: 3778 case MVT::i32: 3779 RC = &PPC::GPRCRegClass; 3780 break; 3781 case MVT::f32: 3782 if (Subtarget.hasP8Vector()) 3783 RC = &PPC::VSSRCRegClass; 3784 else if (Subtarget.hasSPE()) 3785 RC = &PPC::GPRCRegClass; 3786 else 3787 RC = &PPC::F4RCRegClass; 3788 break; 3789 case MVT::f64: 3790 if (Subtarget.hasVSX()) 3791 RC = &PPC::VSFRCRegClass; 3792 else if (Subtarget.hasSPE()) 3793 // SPE passes doubles in GPR pairs. 3794 RC = &PPC::GPRCRegClass; 3795 else 3796 RC = &PPC::F8RCRegClass; 3797 break; 3798 case MVT::v16i8: 3799 case MVT::v8i16: 3800 case MVT::v4i32: 3801 RC = &PPC::VRRCRegClass; 3802 break; 3803 case MVT::v4f32: 3804 RC = &PPC::VRRCRegClass; 3805 break; 3806 case MVT::v2f64: 3807 case MVT::v2i64: 3808 RC = &PPC::VRRCRegClass; 3809 break; 3810 } 3811 3812 SDValue ArgValue; 3813 // Transform the arguments stored in physical registers into 3814 // virtual ones. 3815 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3816 assert(i + 1 < e && "No second half of double precision argument"); 3817 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3818 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3819 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3820 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3821 if (!Subtarget.isLittleEndian()) 3822 std::swap (ArgValueLo, ArgValueHi); 3823 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3824 ArgValueHi); 3825 } else { 3826 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3827 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3828 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3829 if (ValVT == MVT::i1) 3830 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3831 } 3832 3833 InVals.push_back(ArgValue); 3834 } else { 3835 // Argument stored in memory. 3836 assert(VA.isMemLoc()); 3837 3838 // Get the extended size of the argument type in stack 3839 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3840 // Get the actual size of the argument type 3841 unsigned ObjSize = VA.getValVT().getStoreSize(); 3842 unsigned ArgOffset = VA.getLocMemOffset(); 3843 // Stack objects in PPC32 are right justified. 3844 ArgOffset += ArgSize - ObjSize; 3845 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3846 3847 // Create load nodes to retrieve arguments from the stack. 3848 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3849 InVals.push_back( 3850 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3851 } 3852 } 3853 3854 // Assign locations to all of the incoming aggregate by value arguments. 3855 // Aggregates passed by value are stored in the local variable space of the 3856 // caller's stack frame, right above the parameter list area. 3857 SmallVector<CCValAssign, 16> ByValArgLocs; 3858 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3859 ByValArgLocs, *DAG.getContext()); 3860 3861 // Reserve stack space for the allocations in CCInfo. 3862 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3863 3864 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3865 3866 // Area that is at least reserved in the caller of this function. 3867 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3868 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3869 3870 // Set the size that is at least reserved in caller of this function. Tail 3871 // call optimized function's reserved stack space needs to be aligned so that 3872 // taking the difference between two stack areas will result in an aligned 3873 // stack. 3874 MinReservedArea = 3875 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3876 FuncInfo->setMinReservedArea(MinReservedArea); 3877 3878 SmallVector<SDValue, 8> MemOps; 3879 3880 // If the function takes variable number of arguments, make a frame index for 3881 // the start of the first vararg value... for expansion of llvm.va_start. 3882 if (isVarArg) { 3883 static const MCPhysReg GPArgRegs[] = { 3884 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3885 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3886 }; 3887 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3888 3889 static const MCPhysReg FPArgRegs[] = { 3890 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3891 PPC::F8 3892 }; 3893 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3894 3895 if (useSoftFloat() || hasSPE()) 3896 NumFPArgRegs = 0; 3897 3898 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3899 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3900 3901 // Make room for NumGPArgRegs and NumFPArgRegs. 3902 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3903 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3904 3905 FuncInfo->setVarArgsStackOffset( 3906 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3907 CCInfo.getNextStackOffset(), true)); 3908 3909 FuncInfo->setVarArgsFrameIndex( 3910 MFI.CreateStackObject(Depth, Align(8), false)); 3911 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3912 3913 // The fixed integer arguments of a variadic function are stored to the 3914 // VarArgsFrameIndex on the stack so that they may be loaded by 3915 // dereferencing the result of va_next. 3916 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3917 // Get an existing live-in vreg, or add a new one. 3918 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3919 if (!VReg) 3920 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3921 3922 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3923 SDValue Store = 3924 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3925 MemOps.push_back(Store); 3926 // Increment the address by four for the next argument to store 3927 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3928 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3929 } 3930 3931 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3932 // is set. 3933 // The double arguments are stored to the VarArgsFrameIndex 3934 // on the stack. 3935 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3936 // Get an existing live-in vreg, or add a new one. 3937 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3938 if (!VReg) 3939 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3940 3941 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3942 SDValue Store = 3943 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3944 MemOps.push_back(Store); 3945 // Increment the address by eight for the next argument to store 3946 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3947 PtrVT); 3948 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3949 } 3950 } 3951 3952 if (!MemOps.empty()) 3953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3954 3955 return Chain; 3956 } 3957 3958 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3959 // value to MVT::i64 and then truncate to the correct register size. 3960 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3961 EVT ObjectVT, SelectionDAG &DAG, 3962 SDValue ArgVal, 3963 const SDLoc &dl) const { 3964 if (Flags.isSExt()) 3965 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3966 DAG.getValueType(ObjectVT)); 3967 else if (Flags.isZExt()) 3968 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3969 DAG.getValueType(ObjectVT)); 3970 3971 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3972 } 3973 3974 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3975 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3976 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3977 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3978 // TODO: add description of PPC stack frame format, or at least some docs. 3979 // 3980 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3981 bool isLittleEndian = Subtarget.isLittleEndian(); 3982 MachineFunction &MF = DAG.getMachineFunction(); 3983 MachineFrameInfo &MFI = MF.getFrameInfo(); 3984 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3985 3986 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3987 "fastcc not supported on varargs functions"); 3988 3989 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3990 // Potential tail calls could cause overwriting of argument stack slots. 3991 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3992 (CallConv == CallingConv::Fast)); 3993 unsigned PtrByteSize = 8; 3994 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3995 3996 static const MCPhysReg GPR[] = { 3997 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3998 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3999 }; 4000 static const MCPhysReg VR[] = { 4001 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4002 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4003 }; 4004 4005 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4006 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4007 const unsigned Num_VR_Regs = array_lengthof(VR); 4008 4009 // Do a first pass over the arguments to determine whether the ABI 4010 // guarantees that our caller has allocated the parameter save area 4011 // on its stack frame. In the ELFv1 ABI, this is always the case; 4012 // in the ELFv2 ABI, it is true if this is a vararg function or if 4013 // any parameter is located in a stack slot. 4014 4015 bool HasParameterArea = !isELFv2ABI || isVarArg; 4016 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4017 unsigned NumBytes = LinkageSize; 4018 unsigned AvailableFPRs = Num_FPR_Regs; 4019 unsigned AvailableVRs = Num_VR_Regs; 4020 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4021 if (Ins[i].Flags.isNest()) 4022 continue; 4023 4024 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4025 PtrByteSize, LinkageSize, ParamAreaSize, 4026 NumBytes, AvailableFPRs, AvailableVRs)) 4027 HasParameterArea = true; 4028 } 4029 4030 // Add DAG nodes to load the arguments or copy them out of registers. On 4031 // entry to a function on PPC, the arguments start after the linkage area, 4032 // although the first ones are often in registers. 4033 4034 unsigned ArgOffset = LinkageSize; 4035 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4036 SmallVector<SDValue, 8> MemOps; 4037 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4038 unsigned CurArgIdx = 0; 4039 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4040 SDValue ArgVal; 4041 bool needsLoad = false; 4042 EVT ObjectVT = Ins[ArgNo].VT; 4043 EVT OrigVT = Ins[ArgNo].ArgVT; 4044 unsigned ObjSize = ObjectVT.getStoreSize(); 4045 unsigned ArgSize = ObjSize; 4046 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4047 if (Ins[ArgNo].isOrigArg()) { 4048 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4049 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4050 } 4051 // We re-align the argument offset for each argument, except when using the 4052 // fast calling convention, when we need to make sure we do that only when 4053 // we'll actually use a stack slot. 4054 unsigned CurArgOffset; 4055 Align Alignment; 4056 auto ComputeArgOffset = [&]() { 4057 /* Respect alignment of argument on the stack. */ 4058 Alignment = 4059 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4060 ArgOffset = alignTo(ArgOffset, Alignment); 4061 CurArgOffset = ArgOffset; 4062 }; 4063 4064 if (CallConv != CallingConv::Fast) { 4065 ComputeArgOffset(); 4066 4067 /* Compute GPR index associated with argument offset. */ 4068 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4069 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4070 } 4071 4072 // FIXME the codegen can be much improved in some cases. 4073 // We do not have to keep everything in memory. 4074 if (Flags.isByVal()) { 4075 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4076 4077 if (CallConv == CallingConv::Fast) 4078 ComputeArgOffset(); 4079 4080 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4081 ObjSize = Flags.getByValSize(); 4082 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4083 // Empty aggregate parameters do not take up registers. Examples: 4084 // struct { } a; 4085 // union { } b; 4086 // int c[0]; 4087 // etc. However, we have to provide a place-holder in InVals, so 4088 // pretend we have an 8-byte item at the current address for that 4089 // purpose. 4090 if (!ObjSize) { 4091 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4092 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4093 InVals.push_back(FIN); 4094 continue; 4095 } 4096 4097 // Create a stack object covering all stack doublewords occupied 4098 // by the argument. If the argument is (fully or partially) on 4099 // the stack, or if the argument is fully in registers but the 4100 // caller has allocated the parameter save anyway, we can refer 4101 // directly to the caller's stack frame. Otherwise, create a 4102 // local copy in our own frame. 4103 int FI; 4104 if (HasParameterArea || 4105 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4106 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4107 else 4108 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4109 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4110 4111 // Handle aggregates smaller than 8 bytes. 4112 if (ObjSize < PtrByteSize) { 4113 // The value of the object is its address, which differs from the 4114 // address of the enclosing doubleword on big-endian systems. 4115 SDValue Arg = FIN; 4116 if (!isLittleEndian) { 4117 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4118 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4119 } 4120 InVals.push_back(Arg); 4121 4122 if (GPR_idx != Num_GPR_Regs) { 4123 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4124 FuncInfo->addLiveInAttr(VReg, Flags); 4125 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4126 SDValue Store; 4127 4128 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4129 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4130 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4131 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4132 MachinePointerInfo(&*FuncArg), ObjType); 4133 } else { 4134 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4135 // store the whole register as-is to the parameter save area 4136 // slot. 4137 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4138 MachinePointerInfo(&*FuncArg)); 4139 } 4140 4141 MemOps.push_back(Store); 4142 } 4143 // Whether we copied from a register or not, advance the offset 4144 // into the parameter save area by a full doubleword. 4145 ArgOffset += PtrByteSize; 4146 continue; 4147 } 4148 4149 // The value of the object is its address, which is the address of 4150 // its first stack doubleword. 4151 InVals.push_back(FIN); 4152 4153 // Store whatever pieces of the object are in registers to memory. 4154 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4155 if (GPR_idx == Num_GPR_Regs) 4156 break; 4157 4158 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4159 FuncInfo->addLiveInAttr(VReg, Flags); 4160 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4161 SDValue Addr = FIN; 4162 if (j) { 4163 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4164 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4165 } 4166 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4167 MachinePointerInfo(&*FuncArg, j)); 4168 MemOps.push_back(Store); 4169 ++GPR_idx; 4170 } 4171 ArgOffset += ArgSize; 4172 continue; 4173 } 4174 4175 switch (ObjectVT.getSimpleVT().SimpleTy) { 4176 default: llvm_unreachable("Unhandled argument type!"); 4177 case MVT::i1: 4178 case MVT::i32: 4179 case MVT::i64: 4180 if (Flags.isNest()) { 4181 // The 'nest' parameter, if any, is passed in R11. 4182 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4183 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4184 4185 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4186 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4187 4188 break; 4189 } 4190 4191 // These can be scalar arguments or elements of an integer array type 4192 // passed directly. Clang may use those instead of "byval" aggregate 4193 // types to avoid forcing arguments to memory unnecessarily. 4194 if (GPR_idx != Num_GPR_Regs) { 4195 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4196 FuncInfo->addLiveInAttr(VReg, Flags); 4197 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4198 4199 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4200 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4201 // value to MVT::i64 and then truncate to the correct register size. 4202 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4203 } else { 4204 if (CallConv == CallingConv::Fast) 4205 ComputeArgOffset(); 4206 4207 needsLoad = true; 4208 ArgSize = PtrByteSize; 4209 } 4210 if (CallConv != CallingConv::Fast || needsLoad) 4211 ArgOffset += 8; 4212 break; 4213 4214 case MVT::f32: 4215 case MVT::f64: 4216 // These can be scalar arguments or elements of a float array type 4217 // passed directly. The latter are used to implement ELFv2 homogenous 4218 // float aggregates. 4219 if (FPR_idx != Num_FPR_Regs) { 4220 unsigned VReg; 4221 4222 if (ObjectVT == MVT::f32) 4223 VReg = MF.addLiveIn(FPR[FPR_idx], 4224 Subtarget.hasP8Vector() 4225 ? &PPC::VSSRCRegClass 4226 : &PPC::F4RCRegClass); 4227 else 4228 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4229 ? &PPC::VSFRCRegClass 4230 : &PPC::F8RCRegClass); 4231 4232 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4233 ++FPR_idx; 4234 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4235 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4236 // once we support fp <-> gpr moves. 4237 4238 // This can only ever happen in the presence of f32 array types, 4239 // since otherwise we never run out of FPRs before running out 4240 // of GPRs. 4241 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4242 FuncInfo->addLiveInAttr(VReg, Flags); 4243 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4244 4245 if (ObjectVT == MVT::f32) { 4246 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4247 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4248 DAG.getConstant(32, dl, MVT::i32)); 4249 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4250 } 4251 4252 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4253 } else { 4254 if (CallConv == CallingConv::Fast) 4255 ComputeArgOffset(); 4256 4257 needsLoad = true; 4258 } 4259 4260 // When passing an array of floats, the array occupies consecutive 4261 // space in the argument area; only round up to the next doubleword 4262 // at the end of the array. Otherwise, each float takes 8 bytes. 4263 if (CallConv != CallingConv::Fast || needsLoad) { 4264 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4265 ArgOffset += ArgSize; 4266 if (Flags.isInConsecutiveRegsLast()) 4267 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4268 } 4269 break; 4270 case MVT::v4f32: 4271 case MVT::v4i32: 4272 case MVT::v8i16: 4273 case MVT::v16i8: 4274 case MVT::v2f64: 4275 case MVT::v2i64: 4276 case MVT::v1i128: 4277 case MVT::f128: 4278 // These can be scalar arguments or elements of a vector array type 4279 // passed directly. The latter are used to implement ELFv2 homogenous 4280 // vector aggregates. 4281 if (VR_idx != Num_VR_Regs) { 4282 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4283 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4284 ++VR_idx; 4285 } else { 4286 if (CallConv == CallingConv::Fast) 4287 ComputeArgOffset(); 4288 needsLoad = true; 4289 } 4290 if (CallConv != CallingConv::Fast || needsLoad) 4291 ArgOffset += 16; 4292 break; 4293 } 4294 4295 // We need to load the argument to a virtual register if we determined 4296 // above that we ran out of physical registers of the appropriate type. 4297 if (needsLoad) { 4298 if (ObjSize < ArgSize && !isLittleEndian) 4299 CurArgOffset += ArgSize - ObjSize; 4300 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4301 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4302 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4303 } 4304 4305 InVals.push_back(ArgVal); 4306 } 4307 4308 // Area that is at least reserved in the caller of this function. 4309 unsigned MinReservedArea; 4310 if (HasParameterArea) 4311 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4312 else 4313 MinReservedArea = LinkageSize; 4314 4315 // Set the size that is at least reserved in caller of this function. Tail 4316 // call optimized functions' reserved stack space needs to be aligned so that 4317 // taking the difference between two stack areas will result in an aligned 4318 // stack. 4319 MinReservedArea = 4320 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4321 FuncInfo->setMinReservedArea(MinReservedArea); 4322 4323 // If the function takes variable number of arguments, make a frame index for 4324 // the start of the first vararg value... for expansion of llvm.va_start. 4325 // On ELFv2ABI spec, it writes: 4326 // C programs that are intended to be *portable* across different compilers 4327 // and architectures must use the header file <stdarg.h> to deal with variable 4328 // argument lists. 4329 if (isVarArg && MFI.hasVAStart()) { 4330 int Depth = ArgOffset; 4331 4332 FuncInfo->setVarArgsFrameIndex( 4333 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4334 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4335 4336 // If this function is vararg, store any remaining integer argument regs 4337 // to their spots on the stack so that they may be loaded by dereferencing 4338 // the result of va_next. 4339 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4340 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4341 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4342 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4343 SDValue Store = 4344 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4345 MemOps.push_back(Store); 4346 // Increment the address by four for the next argument to store 4347 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4348 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4349 } 4350 } 4351 4352 if (!MemOps.empty()) 4353 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4354 4355 return Chain; 4356 } 4357 4358 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4359 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4360 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4361 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4362 // TODO: add description of PPC stack frame format, or at least some docs. 4363 // 4364 MachineFunction &MF = DAG.getMachineFunction(); 4365 MachineFrameInfo &MFI = MF.getFrameInfo(); 4366 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4367 4368 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4369 bool isPPC64 = PtrVT == MVT::i64; 4370 // Potential tail calls could cause overwriting of argument stack slots. 4371 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4372 (CallConv == CallingConv::Fast)); 4373 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4374 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4375 unsigned ArgOffset = LinkageSize; 4376 // Area that is at least reserved in caller of this function. 4377 unsigned MinReservedArea = ArgOffset; 4378 4379 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4380 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4381 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4382 }; 4383 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4384 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4385 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4386 }; 4387 static const MCPhysReg VR[] = { 4388 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4389 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4390 }; 4391 4392 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4393 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4394 const unsigned Num_VR_Regs = array_lengthof( VR); 4395 4396 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4397 4398 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4399 4400 // In 32-bit non-varargs functions, the stack space for vectors is after the 4401 // stack space for non-vectors. We do not use this space unless we have 4402 // too many vectors to fit in registers, something that only occurs in 4403 // constructed examples:), but we have to walk the arglist to figure 4404 // that out...for the pathological case, compute VecArgOffset as the 4405 // start of the vector parameter area. Computing VecArgOffset is the 4406 // entire point of the following loop. 4407 unsigned VecArgOffset = ArgOffset; 4408 if (!isVarArg && !isPPC64) { 4409 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4410 ++ArgNo) { 4411 EVT ObjectVT = Ins[ArgNo].VT; 4412 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4413 4414 if (Flags.isByVal()) { 4415 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4416 unsigned ObjSize = Flags.getByValSize(); 4417 unsigned ArgSize = 4418 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4419 VecArgOffset += ArgSize; 4420 continue; 4421 } 4422 4423 switch(ObjectVT.getSimpleVT().SimpleTy) { 4424 default: llvm_unreachable("Unhandled argument type!"); 4425 case MVT::i1: 4426 case MVT::i32: 4427 case MVT::f32: 4428 VecArgOffset += 4; 4429 break; 4430 case MVT::i64: // PPC64 4431 case MVT::f64: 4432 // FIXME: We are guaranteed to be !isPPC64 at this point. 4433 // Does MVT::i64 apply? 4434 VecArgOffset += 8; 4435 break; 4436 case MVT::v4f32: 4437 case MVT::v4i32: 4438 case MVT::v8i16: 4439 case MVT::v16i8: 4440 // Nothing to do, we're only looking at Nonvector args here. 4441 break; 4442 } 4443 } 4444 } 4445 // We've found where the vector parameter area in memory is. Skip the 4446 // first 12 parameters; these don't use that memory. 4447 VecArgOffset = ((VecArgOffset+15)/16)*16; 4448 VecArgOffset += 12*16; 4449 4450 // Add DAG nodes to load the arguments or copy them out of registers. On 4451 // entry to a function on PPC, the arguments start after the linkage area, 4452 // although the first ones are often in registers. 4453 4454 SmallVector<SDValue, 8> MemOps; 4455 unsigned nAltivecParamsAtEnd = 0; 4456 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4457 unsigned CurArgIdx = 0; 4458 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4459 SDValue ArgVal; 4460 bool needsLoad = false; 4461 EVT ObjectVT = Ins[ArgNo].VT; 4462 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4463 unsigned ArgSize = ObjSize; 4464 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4465 if (Ins[ArgNo].isOrigArg()) { 4466 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4467 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4468 } 4469 unsigned CurArgOffset = ArgOffset; 4470 4471 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4472 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4473 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4474 if (isVarArg || isPPC64) { 4475 MinReservedArea = ((MinReservedArea+15)/16)*16; 4476 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4477 Flags, 4478 PtrByteSize); 4479 } else nAltivecParamsAtEnd++; 4480 } else 4481 // Calculate min reserved area. 4482 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4483 Flags, 4484 PtrByteSize); 4485 4486 // FIXME the codegen can be much improved in some cases. 4487 // We do not have to keep everything in memory. 4488 if (Flags.isByVal()) { 4489 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4490 4491 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4492 ObjSize = Flags.getByValSize(); 4493 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4494 // Objects of size 1 and 2 are right justified, everything else is 4495 // left justified. This means the memory address is adjusted forwards. 4496 if (ObjSize==1 || ObjSize==2) { 4497 CurArgOffset = CurArgOffset + (4 - ObjSize); 4498 } 4499 // The value of the object is its address. 4500 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4501 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4502 InVals.push_back(FIN); 4503 if (ObjSize==1 || ObjSize==2) { 4504 if (GPR_idx != Num_GPR_Regs) { 4505 unsigned VReg; 4506 if (isPPC64) 4507 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4508 else 4509 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4510 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4511 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4512 SDValue Store = 4513 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4514 MachinePointerInfo(&*FuncArg), ObjType); 4515 MemOps.push_back(Store); 4516 ++GPR_idx; 4517 } 4518 4519 ArgOffset += PtrByteSize; 4520 4521 continue; 4522 } 4523 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4524 // Store whatever pieces of the object are in registers 4525 // to memory. ArgOffset will be the address of the beginning 4526 // of the object. 4527 if (GPR_idx != Num_GPR_Regs) { 4528 unsigned VReg; 4529 if (isPPC64) 4530 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4531 else 4532 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4533 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4534 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4535 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4536 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4537 MachinePointerInfo(&*FuncArg, j)); 4538 MemOps.push_back(Store); 4539 ++GPR_idx; 4540 ArgOffset += PtrByteSize; 4541 } else { 4542 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4543 break; 4544 } 4545 } 4546 continue; 4547 } 4548 4549 switch (ObjectVT.getSimpleVT().SimpleTy) { 4550 default: llvm_unreachable("Unhandled argument type!"); 4551 case MVT::i1: 4552 case MVT::i32: 4553 if (!isPPC64) { 4554 if (GPR_idx != Num_GPR_Regs) { 4555 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4556 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4557 4558 if (ObjectVT == MVT::i1) 4559 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4560 4561 ++GPR_idx; 4562 } else { 4563 needsLoad = true; 4564 ArgSize = PtrByteSize; 4565 } 4566 // All int arguments reserve stack space in the Darwin ABI. 4567 ArgOffset += PtrByteSize; 4568 break; 4569 } 4570 LLVM_FALLTHROUGH; 4571 case MVT::i64: // PPC64 4572 if (GPR_idx != Num_GPR_Regs) { 4573 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4574 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4575 4576 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4577 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4578 // value to MVT::i64 and then truncate to the correct register size. 4579 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4580 4581 ++GPR_idx; 4582 } else { 4583 needsLoad = true; 4584 ArgSize = PtrByteSize; 4585 } 4586 // All int arguments reserve stack space in the Darwin ABI. 4587 ArgOffset += 8; 4588 break; 4589 4590 case MVT::f32: 4591 case MVT::f64: 4592 // Every 4 bytes of argument space consumes one of the GPRs available for 4593 // argument passing. 4594 if (GPR_idx != Num_GPR_Regs) { 4595 ++GPR_idx; 4596 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4597 ++GPR_idx; 4598 } 4599 if (FPR_idx != Num_FPR_Regs) { 4600 unsigned VReg; 4601 4602 if (ObjectVT == MVT::f32) 4603 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4604 else 4605 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4606 4607 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4608 ++FPR_idx; 4609 } else { 4610 needsLoad = true; 4611 } 4612 4613 // All FP arguments reserve stack space in the Darwin ABI. 4614 ArgOffset += isPPC64 ? 8 : ObjSize; 4615 break; 4616 case MVT::v4f32: 4617 case MVT::v4i32: 4618 case MVT::v8i16: 4619 case MVT::v16i8: 4620 // Note that vector arguments in registers don't reserve stack space, 4621 // except in varargs functions. 4622 if (VR_idx != Num_VR_Regs) { 4623 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4624 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4625 if (isVarArg) { 4626 while ((ArgOffset % 16) != 0) { 4627 ArgOffset += PtrByteSize; 4628 if (GPR_idx != Num_GPR_Regs) 4629 GPR_idx++; 4630 } 4631 ArgOffset += 16; 4632 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4633 } 4634 ++VR_idx; 4635 } else { 4636 if (!isVarArg && !isPPC64) { 4637 // Vectors go after all the nonvectors. 4638 CurArgOffset = VecArgOffset; 4639 VecArgOffset += 16; 4640 } else { 4641 // Vectors are aligned. 4642 ArgOffset = ((ArgOffset+15)/16)*16; 4643 CurArgOffset = ArgOffset; 4644 ArgOffset += 16; 4645 } 4646 needsLoad = true; 4647 } 4648 break; 4649 } 4650 4651 // We need to load the argument to a virtual register if we determined above 4652 // that we ran out of physical registers of the appropriate type. 4653 if (needsLoad) { 4654 int FI = MFI.CreateFixedObject(ObjSize, 4655 CurArgOffset + (ArgSize - ObjSize), 4656 isImmutable); 4657 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4658 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4659 } 4660 4661 InVals.push_back(ArgVal); 4662 } 4663 4664 // Allow for Altivec parameters at the end, if needed. 4665 if (nAltivecParamsAtEnd) { 4666 MinReservedArea = ((MinReservedArea+15)/16)*16; 4667 MinReservedArea += 16*nAltivecParamsAtEnd; 4668 } 4669 4670 // Area that is at least reserved in the caller of this function. 4671 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4672 4673 // Set the size that is at least reserved in caller of this function. Tail 4674 // call optimized functions' reserved stack space needs to be aligned so that 4675 // taking the difference between two stack areas will result in an aligned 4676 // stack. 4677 MinReservedArea = 4678 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4679 FuncInfo->setMinReservedArea(MinReservedArea); 4680 4681 // If the function takes variable number of arguments, make a frame index for 4682 // the start of the first vararg value... for expansion of llvm.va_start. 4683 if (isVarArg) { 4684 int Depth = ArgOffset; 4685 4686 FuncInfo->setVarArgsFrameIndex( 4687 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4688 Depth, true)); 4689 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4690 4691 // If this function is vararg, store any remaining integer argument regs 4692 // to their spots on the stack so that they may be loaded by dereferencing 4693 // the result of va_next. 4694 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4695 unsigned VReg; 4696 4697 if (isPPC64) 4698 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4699 else 4700 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4701 4702 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4703 SDValue Store = 4704 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4705 MemOps.push_back(Store); 4706 // Increment the address by four for the next argument to store 4707 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4708 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4709 } 4710 } 4711 4712 if (!MemOps.empty()) 4713 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4714 4715 return Chain; 4716 } 4717 4718 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4719 /// adjusted to accommodate the arguments for the tailcall. 4720 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4721 unsigned ParamSize) { 4722 4723 if (!isTailCall) return 0; 4724 4725 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4726 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4727 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4728 // Remember only if the new adjustment is bigger. 4729 if (SPDiff < FI->getTailCallSPDelta()) 4730 FI->setTailCallSPDelta(SPDiff); 4731 4732 return SPDiff; 4733 } 4734 4735 static bool isFunctionGlobalAddress(SDValue Callee); 4736 4737 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4738 const TargetMachine &TM) { 4739 // It does not make sense to call callsShareTOCBase() with a caller that 4740 // is PC Relative since PC Relative callers do not have a TOC. 4741 #ifndef NDEBUG 4742 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4743 assert(!STICaller->isUsingPCRelativeCalls() && 4744 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4745 #endif 4746 4747 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4748 // don't have enough information to determine if the caller and callee share 4749 // the same TOC base, so we have to pessimistically assume they don't for 4750 // correctness. 4751 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4752 if (!G) 4753 return false; 4754 4755 const GlobalValue *GV = G->getGlobal(); 4756 4757 // If the callee is preemptable, then the static linker will use a plt-stub 4758 // which saves the toc to the stack, and needs a nop after the call 4759 // instruction to convert to a toc-restore. 4760 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4761 return false; 4762 4763 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4764 // We may need a TOC restore in the situation where the caller requires a 4765 // valid TOC but the callee is PC Relative and does not. 4766 const Function *F = dyn_cast<Function>(GV); 4767 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4768 4769 // If we have an Alias we can try to get the function from there. 4770 if (Alias) { 4771 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4772 F = dyn_cast<Function>(GlobalObj); 4773 } 4774 4775 // If we still have no valid function pointer we do not have enough 4776 // information to determine if the callee uses PC Relative calls so we must 4777 // assume that it does. 4778 if (!F) 4779 return false; 4780 4781 // If the callee uses PC Relative we cannot guarantee that the callee won't 4782 // clobber the TOC of the caller and so we must assume that the two 4783 // functions do not share a TOC base. 4784 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4785 if (STICallee->isUsingPCRelativeCalls()) 4786 return false; 4787 4788 // The medium and large code models are expected to provide a sufficiently 4789 // large TOC to provide all data addressing needs of a module with a 4790 // single TOC. 4791 if (CodeModel::Medium == TM.getCodeModel() || 4792 CodeModel::Large == TM.getCodeModel()) 4793 return true; 4794 4795 // Otherwise we need to ensure callee and caller are in the same section, 4796 // since the linker may allocate multiple TOCs, and we don't know which 4797 // sections will belong to the same TOC base. 4798 if (!GV->isStrongDefinitionForLinker()) 4799 return false; 4800 4801 // Any explicitly-specified sections and section prefixes must also match. 4802 // Also, if we're using -ffunction-sections, then each function is always in 4803 // a different section (the same is true for COMDAT functions). 4804 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4805 GV->getSection() != Caller->getSection()) 4806 return false; 4807 if (const auto *F = dyn_cast<Function>(GV)) { 4808 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4809 return false; 4810 } 4811 4812 return true; 4813 } 4814 4815 static bool 4816 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4817 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4818 assert(Subtarget.is64BitELFABI()); 4819 4820 const unsigned PtrByteSize = 8; 4821 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4822 4823 static const MCPhysReg GPR[] = { 4824 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4825 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4826 }; 4827 static const MCPhysReg VR[] = { 4828 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4829 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4830 }; 4831 4832 const unsigned NumGPRs = array_lengthof(GPR); 4833 const unsigned NumFPRs = 13; 4834 const unsigned NumVRs = array_lengthof(VR); 4835 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4836 4837 unsigned NumBytes = LinkageSize; 4838 unsigned AvailableFPRs = NumFPRs; 4839 unsigned AvailableVRs = NumVRs; 4840 4841 for (const ISD::OutputArg& Param : Outs) { 4842 if (Param.Flags.isNest()) continue; 4843 4844 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4845 LinkageSize, ParamAreaSize, NumBytes, 4846 AvailableFPRs, AvailableVRs)) 4847 return true; 4848 } 4849 return false; 4850 } 4851 4852 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4853 if (CB.arg_size() != CallerFn->arg_size()) 4854 return false; 4855 4856 auto CalleeArgIter = CB.arg_begin(); 4857 auto CalleeArgEnd = CB.arg_end(); 4858 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4859 4860 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4861 const Value* CalleeArg = *CalleeArgIter; 4862 const Value* CallerArg = &(*CallerArgIter); 4863 if (CalleeArg == CallerArg) 4864 continue; 4865 4866 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4867 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4868 // } 4869 // 1st argument of callee is undef and has the same type as caller. 4870 if (CalleeArg->getType() == CallerArg->getType() && 4871 isa<UndefValue>(CalleeArg)) 4872 continue; 4873 4874 return false; 4875 } 4876 4877 return true; 4878 } 4879 4880 // Returns true if TCO is possible between the callers and callees 4881 // calling conventions. 4882 static bool 4883 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4884 CallingConv::ID CalleeCC) { 4885 // Tail calls are possible with fastcc and ccc. 4886 auto isTailCallableCC = [] (CallingConv::ID CC){ 4887 return CC == CallingConv::C || CC == CallingConv::Fast; 4888 }; 4889 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4890 return false; 4891 4892 // We can safely tail call both fastcc and ccc callees from a c calling 4893 // convention caller. If the caller is fastcc, we may have less stack space 4894 // than a non-fastcc caller with the same signature so disable tail-calls in 4895 // that case. 4896 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4897 } 4898 4899 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4900 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4901 const SmallVectorImpl<ISD::OutputArg> &Outs, 4902 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4903 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4904 4905 if (DisableSCO && !TailCallOpt) return false; 4906 4907 // Variadic argument functions are not supported. 4908 if (isVarArg) return false; 4909 4910 auto &Caller = DAG.getMachineFunction().getFunction(); 4911 // Check that the calling conventions are compatible for tco. 4912 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4913 return false; 4914 4915 // Caller contains any byval parameter is not supported. 4916 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4917 return false; 4918 4919 // Callee contains any byval parameter is not supported, too. 4920 // Note: This is a quick work around, because in some cases, e.g. 4921 // caller's stack size > callee's stack size, we are still able to apply 4922 // sibling call optimization. For example, gcc is able to do SCO for caller1 4923 // in the following example, but not for caller2. 4924 // struct test { 4925 // long int a; 4926 // char ary[56]; 4927 // } gTest; 4928 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4929 // b->a = v.a; 4930 // return 0; 4931 // } 4932 // void caller1(struct test a, struct test c, struct test *b) { 4933 // callee(gTest, b); } 4934 // void caller2(struct test *b) { callee(gTest, b); } 4935 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4936 return false; 4937 4938 // If callee and caller use different calling conventions, we cannot pass 4939 // parameters on stack since offsets for the parameter area may be different. 4940 if (Caller.getCallingConv() != CalleeCC && 4941 needStackSlotPassParameters(Subtarget, Outs)) 4942 return false; 4943 4944 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4945 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4946 // callee potentially have different TOC bases then we cannot tail call since 4947 // we need to restore the TOC pointer after the call. 4948 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4949 // We cannot guarantee this for indirect calls or calls to external functions. 4950 // When PC-Relative addressing is used, the concept of the TOC is no longer 4951 // applicable so this check is not required. 4952 // Check first for indirect calls. 4953 if (!Subtarget.isUsingPCRelativeCalls() && 4954 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4955 return false; 4956 4957 // Check if we share the TOC base. 4958 if (!Subtarget.isUsingPCRelativeCalls() && 4959 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4960 return false; 4961 4962 // TCO allows altering callee ABI, so we don't have to check further. 4963 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4964 return true; 4965 4966 if (DisableSCO) return false; 4967 4968 // If callee use the same argument list that caller is using, then we can 4969 // apply SCO on this case. If it is not, then we need to check if callee needs 4970 // stack for passing arguments. 4971 // PC Relative tail calls may not have a CallBase. 4972 // If there is no CallBase we cannot verify if we have the same argument 4973 // list so assume that we don't have the same argument list. 4974 if (CB && !hasSameArgumentList(&Caller, *CB) && 4975 needStackSlotPassParameters(Subtarget, Outs)) 4976 return false; 4977 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4978 return false; 4979 4980 return true; 4981 } 4982 4983 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4984 /// for tail call optimization. Targets which want to do tail call 4985 /// optimization should implement this function. 4986 bool 4987 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4988 CallingConv::ID CalleeCC, 4989 bool isVarArg, 4990 const SmallVectorImpl<ISD::InputArg> &Ins, 4991 SelectionDAG& DAG) const { 4992 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4993 return false; 4994 4995 // Variable argument functions are not supported. 4996 if (isVarArg) 4997 return false; 4998 4999 MachineFunction &MF = DAG.getMachineFunction(); 5000 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 5001 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 5002 // Functions containing by val parameters are not supported. 5003 for (unsigned i = 0; i != Ins.size(); i++) { 5004 ISD::ArgFlagsTy Flags = Ins[i].Flags; 5005 if (Flags.isByVal()) return false; 5006 } 5007 5008 // Non-PIC/GOT tail calls are supported. 5009 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 5010 return true; 5011 5012 // At the moment we can only do local tail calls (in same module, hidden 5013 // or protected) if we are generating PIC. 5014 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 5015 return G->getGlobal()->hasHiddenVisibility() 5016 || G->getGlobal()->hasProtectedVisibility(); 5017 } 5018 5019 return false; 5020 } 5021 5022 /// isCallCompatibleAddress - Return the immediate to use if the specified 5023 /// 32-bit value is representable in the immediate field of a BxA instruction. 5024 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 5025 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 5026 if (!C) return nullptr; 5027 5028 int Addr = C->getZExtValue(); 5029 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 5030 SignExtend32<26>(Addr) != Addr) 5031 return nullptr; // Top 6 bits have to be sext of immediate. 5032 5033 return DAG 5034 .getConstant( 5035 (int)C->getZExtValue() >> 2, SDLoc(Op), 5036 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5037 .getNode(); 5038 } 5039 5040 namespace { 5041 5042 struct TailCallArgumentInfo { 5043 SDValue Arg; 5044 SDValue FrameIdxOp; 5045 int FrameIdx = 0; 5046 5047 TailCallArgumentInfo() = default; 5048 }; 5049 5050 } // end anonymous namespace 5051 5052 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5053 static void StoreTailCallArgumentsToStackSlot( 5054 SelectionDAG &DAG, SDValue Chain, 5055 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5056 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5057 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5058 SDValue Arg = TailCallArgs[i].Arg; 5059 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5060 int FI = TailCallArgs[i].FrameIdx; 5061 // Store relative to framepointer. 5062 MemOpChains.push_back(DAG.getStore( 5063 Chain, dl, Arg, FIN, 5064 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5065 } 5066 } 5067 5068 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5069 /// the appropriate stack slot for the tail call optimized function call. 5070 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5071 SDValue OldRetAddr, SDValue OldFP, 5072 int SPDiff, const SDLoc &dl) { 5073 if (SPDiff) { 5074 // Calculate the new stack slot for the return address. 5075 MachineFunction &MF = DAG.getMachineFunction(); 5076 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5077 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5078 bool isPPC64 = Subtarget.isPPC64(); 5079 int SlotSize = isPPC64 ? 8 : 4; 5080 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5081 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5082 NewRetAddrLoc, true); 5083 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5084 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5085 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5086 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5087 } 5088 return Chain; 5089 } 5090 5091 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5092 /// the position of the argument. 5093 static void 5094 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5095 SDValue Arg, int SPDiff, unsigned ArgOffset, 5096 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5097 int Offset = ArgOffset + SPDiff; 5098 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5099 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5100 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5101 SDValue FIN = DAG.getFrameIndex(FI, VT); 5102 TailCallArgumentInfo Info; 5103 Info.Arg = Arg; 5104 Info.FrameIdxOp = FIN; 5105 Info.FrameIdx = FI; 5106 TailCallArguments.push_back(Info); 5107 } 5108 5109 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5110 /// stack slot. Returns the chain as result and the loaded frame pointers in 5111 /// LROpOut/FPOpout. Used when tail calling. 5112 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5113 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5114 SDValue &FPOpOut, const SDLoc &dl) const { 5115 if (SPDiff) { 5116 // Load the LR and FP stack slot for later adjusting. 5117 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5118 LROpOut = getReturnAddrFrameIndex(DAG); 5119 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5120 Chain = SDValue(LROpOut.getNode(), 1); 5121 } 5122 return Chain; 5123 } 5124 5125 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5126 /// by "Src" to address "Dst" of size "Size". Alignment information is 5127 /// specified by the specific parameter attribute. The copy will be passed as 5128 /// a byval function parameter. 5129 /// Sometimes what we are copying is the end of a larger object, the part that 5130 /// does not fit in registers. 5131 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5132 SDValue Chain, ISD::ArgFlagsTy Flags, 5133 SelectionDAG &DAG, const SDLoc &dl) { 5134 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5135 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5136 Flags.getNonZeroByValAlign(), false, false, false, 5137 MachinePointerInfo(), MachinePointerInfo()); 5138 } 5139 5140 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5141 /// tail calls. 5142 static void LowerMemOpCallTo( 5143 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5144 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5145 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5146 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5147 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5148 if (!isTailCall) { 5149 if (isVector) { 5150 SDValue StackPtr; 5151 if (isPPC64) 5152 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5153 else 5154 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5155 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5156 DAG.getConstant(ArgOffset, dl, PtrVT)); 5157 } 5158 MemOpChains.push_back( 5159 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5160 // Calculate and remember argument location. 5161 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5162 TailCallArguments); 5163 } 5164 5165 static void 5166 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5167 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5168 SDValue FPOp, 5169 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5170 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5171 // might overwrite each other in case of tail call optimization. 5172 SmallVector<SDValue, 8> MemOpChains2; 5173 // Do not flag preceding copytoreg stuff together with the following stuff. 5174 InFlag = SDValue(); 5175 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5176 MemOpChains2, dl); 5177 if (!MemOpChains2.empty()) 5178 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5179 5180 // Store the return address to the appropriate stack slot. 5181 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5182 5183 // Emit callseq_end just before tailcall node. 5184 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5185 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5186 InFlag = Chain.getValue(1); 5187 } 5188 5189 // Is this global address that of a function that can be called by name? (as 5190 // opposed to something that must hold a descriptor for an indirect call). 5191 static bool isFunctionGlobalAddress(SDValue Callee) { 5192 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5193 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5194 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5195 return false; 5196 5197 return G->getGlobal()->getValueType()->isFunctionTy(); 5198 } 5199 5200 return false; 5201 } 5202 5203 SDValue PPCTargetLowering::LowerCallResult( 5204 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5205 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5206 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5207 SmallVector<CCValAssign, 16> RVLocs; 5208 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5209 *DAG.getContext()); 5210 5211 CCRetInfo.AnalyzeCallResult( 5212 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5213 ? RetCC_PPC_Cold 5214 : RetCC_PPC); 5215 5216 // Copy all of the result registers out of their specified physreg. 5217 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5218 CCValAssign &VA = RVLocs[i]; 5219 assert(VA.isRegLoc() && "Can only return in registers!"); 5220 5221 SDValue Val; 5222 5223 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5224 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5225 InFlag); 5226 Chain = Lo.getValue(1); 5227 InFlag = Lo.getValue(2); 5228 VA = RVLocs[++i]; // skip ahead to next loc 5229 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5230 InFlag); 5231 Chain = Hi.getValue(1); 5232 InFlag = Hi.getValue(2); 5233 if (!Subtarget.isLittleEndian()) 5234 std::swap (Lo, Hi); 5235 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5236 } else { 5237 Val = DAG.getCopyFromReg(Chain, dl, 5238 VA.getLocReg(), VA.getLocVT(), InFlag); 5239 Chain = Val.getValue(1); 5240 InFlag = Val.getValue(2); 5241 } 5242 5243 switch (VA.getLocInfo()) { 5244 default: llvm_unreachable("Unknown loc info!"); 5245 case CCValAssign::Full: break; 5246 case CCValAssign::AExt: 5247 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5248 break; 5249 case CCValAssign::ZExt: 5250 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5251 DAG.getValueType(VA.getValVT())); 5252 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5253 break; 5254 case CCValAssign::SExt: 5255 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5256 DAG.getValueType(VA.getValVT())); 5257 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5258 break; 5259 } 5260 5261 InVals.push_back(Val); 5262 } 5263 5264 return Chain; 5265 } 5266 5267 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5268 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5269 // PatchPoint calls are not indirect. 5270 if (isPatchPoint) 5271 return false; 5272 5273 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5274 return false; 5275 5276 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5277 // becuase the immediate function pointer points to a descriptor instead of 5278 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5279 // pointer immediate points to the global entry point, while the BLA would 5280 // need to jump to the local entry point (see rL211174). 5281 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5282 isBLACompatibleAddress(Callee, DAG)) 5283 return false; 5284 5285 return true; 5286 } 5287 5288 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5289 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5290 return Subtarget.isAIXABI() || 5291 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5292 } 5293 5294 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5295 const Function &Caller, 5296 const SDValue &Callee, 5297 const PPCSubtarget &Subtarget, 5298 const TargetMachine &TM) { 5299 if (CFlags.IsTailCall) 5300 return PPCISD::TC_RETURN; 5301 5302 // This is a call through a function pointer. 5303 if (CFlags.IsIndirect) { 5304 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5305 // indirect calls. The save of the caller's TOC pointer to the stack will be 5306 // inserted into the DAG as part of call lowering. The restore of the TOC 5307 // pointer is modeled by using a pseudo instruction for the call opcode that 5308 // represents the 2 instruction sequence of an indirect branch and link, 5309 // immediately followed by a load of the TOC pointer from the the stack save 5310 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5311 // as it is not saved or used. 5312 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5313 : PPCISD::BCTRL; 5314 } 5315 5316 if (Subtarget.isUsingPCRelativeCalls()) { 5317 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5318 return PPCISD::CALL_NOTOC; 5319 } 5320 5321 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5322 // immediately following the call instruction if the caller and callee may 5323 // have different TOC bases. At link time if the linker determines the calls 5324 // may not share a TOC base, the call is redirected to a trampoline inserted 5325 // by the linker. The trampoline will (among other things) save the callers 5326 // TOC pointer at an ABI designated offset in the linkage area and the linker 5327 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5328 // into gpr2. 5329 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5330 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5331 : PPCISD::CALL_NOP; 5332 5333 return PPCISD::CALL; 5334 } 5335 5336 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5337 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5338 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5339 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5340 return SDValue(Dest, 0); 5341 5342 // Returns true if the callee is local, and false otherwise. 5343 auto isLocalCallee = [&]() { 5344 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5345 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5346 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5347 5348 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5349 !dyn_cast_or_null<GlobalIFunc>(GV); 5350 }; 5351 5352 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5353 // a static relocation model causes some versions of GNU LD (2.17.50, at 5354 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5355 // built with secure-PLT. 5356 bool UsePlt = 5357 Subtarget.is32BitELFABI() && !isLocalCallee() && 5358 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5359 5360 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5361 const TargetMachine &TM = Subtarget.getTargetMachine(); 5362 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5363 MCSymbolXCOFF *S = 5364 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5365 5366 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5367 return DAG.getMCSymbol(S, PtrVT); 5368 }; 5369 5370 if (isFunctionGlobalAddress(Callee)) { 5371 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5372 5373 if (Subtarget.isAIXABI()) { 5374 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5375 return getAIXFuncEntryPointSymbolSDNode(GV); 5376 } 5377 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5378 UsePlt ? PPCII::MO_PLT : 0); 5379 } 5380 5381 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5382 const char *SymName = S->getSymbol(); 5383 if (Subtarget.isAIXABI()) { 5384 // If there exists a user-declared function whose name is the same as the 5385 // ExternalSymbol's, then we pick up the user-declared version. 5386 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5387 if (const Function *F = 5388 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5389 return getAIXFuncEntryPointSymbolSDNode(F); 5390 5391 // On AIX, direct function calls reference the symbol for the function's 5392 // entry point, which is named by prepending a "." before the function's 5393 // C-linkage name. A Qualname is returned here because an external 5394 // function entry point is a csect with XTY_ER property. 5395 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5396 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5397 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5398 (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER, 5399 SectionKind::getMetadata()); 5400 return Sec->getQualNameSymbol(); 5401 }; 5402 5403 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5404 } 5405 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5406 UsePlt ? PPCII::MO_PLT : 0); 5407 } 5408 5409 // No transformation needed. 5410 assert(Callee.getNode() && "What no callee?"); 5411 return Callee; 5412 } 5413 5414 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5415 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5416 "Expected a CALLSEQ_STARTSDNode."); 5417 5418 // The last operand is the chain, except when the node has glue. If the node 5419 // has glue, then the last operand is the glue, and the chain is the second 5420 // last operand. 5421 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5422 if (LastValue.getValueType() != MVT::Glue) 5423 return LastValue; 5424 5425 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5426 } 5427 5428 // Creates the node that moves a functions address into the count register 5429 // to prepare for an indirect call instruction. 5430 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5431 SDValue &Glue, SDValue &Chain, 5432 const SDLoc &dl) { 5433 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5434 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5435 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5436 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5437 // The glue is the second value produced. 5438 Glue = Chain.getValue(1); 5439 } 5440 5441 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5442 SDValue &Glue, SDValue &Chain, 5443 SDValue CallSeqStart, 5444 const CallBase *CB, const SDLoc &dl, 5445 bool hasNest, 5446 const PPCSubtarget &Subtarget) { 5447 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5448 // entry point, but to the function descriptor (the function entry point 5449 // address is part of the function descriptor though). 5450 // The function descriptor is a three doubleword structure with the 5451 // following fields: function entry point, TOC base address and 5452 // environment pointer. 5453 // Thus for a call through a function pointer, the following actions need 5454 // to be performed: 5455 // 1. Save the TOC of the caller in the TOC save area of its stack 5456 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5457 // 2. Load the address of the function entry point from the function 5458 // descriptor. 5459 // 3. Load the TOC of the callee from the function descriptor into r2. 5460 // 4. Load the environment pointer from the function descriptor into 5461 // r11. 5462 // 5. Branch to the function entry point address. 5463 // 6. On return of the callee, the TOC of the caller needs to be 5464 // restored (this is done in FinishCall()). 5465 // 5466 // The loads are scheduled at the beginning of the call sequence, and the 5467 // register copies are flagged together to ensure that no other 5468 // operations can be scheduled in between. E.g. without flagging the 5469 // copies together, a TOC access in the caller could be scheduled between 5470 // the assignment of the callee TOC and the branch to the callee, which leads 5471 // to incorrect code. 5472 5473 // Start by loading the function address from the descriptor. 5474 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5475 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5476 ? (MachineMemOperand::MODereferenceable | 5477 MachineMemOperand::MOInvariant) 5478 : MachineMemOperand::MONone; 5479 5480 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5481 5482 // Registers used in building the DAG. 5483 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5484 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5485 5486 // Offsets of descriptor members. 5487 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5488 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5489 5490 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5491 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5492 5493 // One load for the functions entry point address. 5494 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5495 Alignment, MMOFlags); 5496 5497 // One for loading the TOC anchor for the module that contains the called 5498 // function. 5499 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5500 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5501 SDValue TOCPtr = 5502 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5503 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5504 5505 // One for loading the environment pointer. 5506 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5507 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5508 SDValue LoadEnvPtr = 5509 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5510 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5511 5512 5513 // Then copy the newly loaded TOC anchor to the TOC pointer. 5514 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5515 Chain = TOCVal.getValue(0); 5516 Glue = TOCVal.getValue(1); 5517 5518 // If the function call has an explicit 'nest' parameter, it takes the 5519 // place of the environment pointer. 5520 assert((!hasNest || !Subtarget.isAIXABI()) && 5521 "Nest parameter is not supported on AIX."); 5522 if (!hasNest) { 5523 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5524 Chain = EnvVal.getValue(0); 5525 Glue = EnvVal.getValue(1); 5526 } 5527 5528 // The rest of the indirect call sequence is the same as the non-descriptor 5529 // DAG. 5530 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5531 } 5532 5533 static void 5534 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5535 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5536 SelectionDAG &DAG, 5537 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5538 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5539 const PPCSubtarget &Subtarget) { 5540 const bool IsPPC64 = Subtarget.isPPC64(); 5541 // MVT for a general purpose register. 5542 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5543 5544 // First operand is always the chain. 5545 Ops.push_back(Chain); 5546 5547 // If it's a direct call pass the callee as the second operand. 5548 if (!CFlags.IsIndirect) 5549 Ops.push_back(Callee); 5550 else { 5551 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5552 5553 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5554 // on the stack (this would have been done in `LowerCall_64SVR4` or 5555 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5556 // represents both the indirect branch and a load that restores the TOC 5557 // pointer from the linkage area. The operand for the TOC restore is an add 5558 // of the TOC save offset to the stack pointer. This must be the second 5559 // operand: after the chain input but before any other variadic arguments. 5560 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5561 // saved or used. 5562 if (isTOCSaveRestoreRequired(Subtarget)) { 5563 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5564 5565 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5566 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5567 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5568 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5569 Ops.push_back(AddTOC); 5570 } 5571 5572 // Add the register used for the environment pointer. 5573 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5574 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5575 RegVT)); 5576 5577 5578 // Add CTR register as callee so a bctr can be emitted later. 5579 if (CFlags.IsTailCall) 5580 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5581 } 5582 5583 // If this is a tail call add stack pointer delta. 5584 if (CFlags.IsTailCall) 5585 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5586 5587 // Add argument registers to the end of the list so that they are known live 5588 // into the call. 5589 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5590 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5591 RegsToPass[i].second.getValueType())); 5592 5593 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5594 // no way to mark dependencies as implicit here. 5595 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5596 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5597 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5598 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5599 5600 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5601 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5602 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5603 5604 // Add a register mask operand representing the call-preserved registers. 5605 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5606 const uint32_t *Mask = 5607 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5608 assert(Mask && "Missing call preserved mask for calling convention"); 5609 Ops.push_back(DAG.getRegisterMask(Mask)); 5610 5611 // If the glue is valid, it is the last operand. 5612 if (Glue.getNode()) 5613 Ops.push_back(Glue); 5614 } 5615 5616 SDValue PPCTargetLowering::FinishCall( 5617 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5618 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5619 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5620 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5621 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5622 5623 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5624 Subtarget.isAIXABI()) 5625 setUsesTOCBasePtr(DAG); 5626 5627 unsigned CallOpc = 5628 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5629 Subtarget, DAG.getTarget()); 5630 5631 if (!CFlags.IsIndirect) 5632 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5633 else if (Subtarget.usesFunctionDescriptors()) 5634 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5635 dl, CFlags.HasNest, Subtarget); 5636 else 5637 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5638 5639 // Build the operand list for the call instruction. 5640 SmallVector<SDValue, 8> Ops; 5641 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5642 SPDiff, Subtarget); 5643 5644 // Emit tail call. 5645 if (CFlags.IsTailCall) { 5646 // Indirect tail call when using PC Relative calls do not have the same 5647 // constraints. 5648 assert(((Callee.getOpcode() == ISD::Register && 5649 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5650 Callee.getOpcode() == ISD::TargetExternalSymbol || 5651 Callee.getOpcode() == ISD::TargetGlobalAddress || 5652 isa<ConstantSDNode>(Callee) || 5653 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5654 "Expecting a global address, external symbol, absolute value, " 5655 "register or an indirect tail call when PC Relative calls are " 5656 "used."); 5657 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5658 assert(CallOpc == PPCISD::TC_RETURN && 5659 "Unexpected call opcode for a tail call."); 5660 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5661 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5662 } 5663 5664 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5665 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5666 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5667 Glue = Chain.getValue(1); 5668 5669 // When performing tail call optimization the callee pops its arguments off 5670 // the stack. Account for this here so these bytes can be pushed back on in 5671 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5672 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5673 getTargetMachine().Options.GuaranteedTailCallOpt) 5674 ? NumBytes 5675 : 0; 5676 5677 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5678 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5679 Glue, dl); 5680 Glue = Chain.getValue(1); 5681 5682 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5683 DAG, InVals); 5684 } 5685 5686 SDValue 5687 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5688 SmallVectorImpl<SDValue> &InVals) const { 5689 SelectionDAG &DAG = CLI.DAG; 5690 SDLoc &dl = CLI.DL; 5691 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5692 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5693 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5694 SDValue Chain = CLI.Chain; 5695 SDValue Callee = CLI.Callee; 5696 bool &isTailCall = CLI.IsTailCall; 5697 CallingConv::ID CallConv = CLI.CallConv; 5698 bool isVarArg = CLI.IsVarArg; 5699 bool isPatchPoint = CLI.IsPatchPoint; 5700 const CallBase *CB = CLI.CB; 5701 5702 if (isTailCall) { 5703 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5704 isTailCall = false; 5705 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5706 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5707 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5708 else 5709 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5710 Ins, DAG); 5711 if (isTailCall) { 5712 ++NumTailCalls; 5713 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5714 ++NumSiblingCalls; 5715 5716 // PC Relative calls no longer guarantee that the callee is a Global 5717 // Address Node. The callee could be an indirect tail call in which 5718 // case the SDValue for the callee could be a load (to load the address 5719 // of a function pointer) or it may be a register copy (to move the 5720 // address of the callee from a function parameter into a virtual 5721 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5722 assert((Subtarget.isUsingPCRelativeCalls() || 5723 isa<GlobalAddressSDNode>(Callee)) && 5724 "Callee should be an llvm::Function object."); 5725 5726 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5727 << "\nTCO callee: "); 5728 LLVM_DEBUG(Callee.dump()); 5729 } 5730 } 5731 5732 if (!isTailCall && CB && CB->isMustTailCall()) 5733 report_fatal_error("failed to perform tail call elimination on a call " 5734 "site marked musttail"); 5735 5736 // When long calls (i.e. indirect calls) are always used, calls are always 5737 // made via function pointer. If we have a function name, first translate it 5738 // into a pointer. 5739 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5740 !isTailCall) 5741 Callee = LowerGlobalAddress(Callee, DAG); 5742 5743 CallFlags CFlags( 5744 CallConv, isTailCall, isVarArg, isPatchPoint, 5745 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5746 // hasNest 5747 Subtarget.is64BitELFABI() && 5748 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5749 CLI.NoMerge); 5750 5751 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5752 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5753 InVals, CB); 5754 5755 if (Subtarget.isSVR4ABI()) 5756 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5757 InVals, CB); 5758 5759 if (Subtarget.isAIXABI()) 5760 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5761 InVals, CB); 5762 5763 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5764 InVals, CB); 5765 } 5766 5767 SDValue PPCTargetLowering::LowerCall_32SVR4( 5768 SDValue Chain, SDValue Callee, CallFlags CFlags, 5769 const SmallVectorImpl<ISD::OutputArg> &Outs, 5770 const SmallVectorImpl<SDValue> &OutVals, 5771 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5772 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5773 const CallBase *CB) const { 5774 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5775 // of the 32-bit SVR4 ABI stack frame layout. 5776 5777 const CallingConv::ID CallConv = CFlags.CallConv; 5778 const bool IsVarArg = CFlags.IsVarArg; 5779 const bool IsTailCall = CFlags.IsTailCall; 5780 5781 assert((CallConv == CallingConv::C || 5782 CallConv == CallingConv::Cold || 5783 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5784 5785 const Align PtrAlign(4); 5786 5787 MachineFunction &MF = DAG.getMachineFunction(); 5788 5789 // Mark this function as potentially containing a function that contains a 5790 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5791 // and restoring the callers stack pointer in this functions epilog. This is 5792 // done because by tail calling the called function might overwrite the value 5793 // in this function's (MF) stack pointer stack slot 0(SP). 5794 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5795 CallConv == CallingConv::Fast) 5796 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5797 5798 // Count how many bytes are to be pushed on the stack, including the linkage 5799 // area, parameter list area and the part of the local variable space which 5800 // contains copies of aggregates which are passed by value. 5801 5802 // Assign locations to all of the outgoing arguments. 5803 SmallVector<CCValAssign, 16> ArgLocs; 5804 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5805 5806 // Reserve space for the linkage area on the stack. 5807 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5808 PtrAlign); 5809 if (useSoftFloat()) 5810 CCInfo.PreAnalyzeCallOperands(Outs); 5811 5812 if (IsVarArg) { 5813 // Handle fixed and variable vector arguments differently. 5814 // Fixed vector arguments go into registers as long as registers are 5815 // available. Variable vector arguments always go into memory. 5816 unsigned NumArgs = Outs.size(); 5817 5818 for (unsigned i = 0; i != NumArgs; ++i) { 5819 MVT ArgVT = Outs[i].VT; 5820 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5821 bool Result; 5822 5823 if (Outs[i].IsFixed) { 5824 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5825 CCInfo); 5826 } else { 5827 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5828 ArgFlags, CCInfo); 5829 } 5830 5831 if (Result) { 5832 #ifndef NDEBUG 5833 errs() << "Call operand #" << i << " has unhandled type " 5834 << EVT(ArgVT).getEVTString() << "\n"; 5835 #endif 5836 llvm_unreachable(nullptr); 5837 } 5838 } 5839 } else { 5840 // All arguments are treated the same. 5841 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5842 } 5843 CCInfo.clearWasPPCF128(); 5844 5845 // Assign locations to all of the outgoing aggregate by value arguments. 5846 SmallVector<CCValAssign, 16> ByValArgLocs; 5847 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5848 5849 // Reserve stack space for the allocations in CCInfo. 5850 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5851 5852 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5853 5854 // Size of the linkage area, parameter list area and the part of the local 5855 // space variable where copies of aggregates which are passed by value are 5856 // stored. 5857 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5858 5859 // Calculate by how many bytes the stack has to be adjusted in case of tail 5860 // call optimization. 5861 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5862 5863 // Adjust the stack pointer for the new arguments... 5864 // These operations are automatically eliminated by the prolog/epilog pass 5865 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5866 SDValue CallSeqStart = Chain; 5867 5868 // Load the return address and frame pointer so it can be moved somewhere else 5869 // later. 5870 SDValue LROp, FPOp; 5871 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5872 5873 // Set up a copy of the stack pointer for use loading and storing any 5874 // arguments that may not fit in the registers available for argument 5875 // passing. 5876 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5877 5878 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5879 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5880 SmallVector<SDValue, 8> MemOpChains; 5881 5882 bool seenFloatArg = false; 5883 // Walk the register/memloc assignments, inserting copies/loads. 5884 // i - Tracks the index into the list of registers allocated for the call 5885 // RealArgIdx - Tracks the index into the list of actual function arguments 5886 // j - Tracks the index into the list of byval arguments 5887 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5888 i != e; 5889 ++i, ++RealArgIdx) { 5890 CCValAssign &VA = ArgLocs[i]; 5891 SDValue Arg = OutVals[RealArgIdx]; 5892 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5893 5894 if (Flags.isByVal()) { 5895 // Argument is an aggregate which is passed by value, thus we need to 5896 // create a copy of it in the local variable space of the current stack 5897 // frame (which is the stack frame of the caller) and pass the address of 5898 // this copy to the callee. 5899 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5900 CCValAssign &ByValVA = ByValArgLocs[j++]; 5901 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5902 5903 // Memory reserved in the local variable space of the callers stack frame. 5904 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5905 5906 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5907 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5908 StackPtr, PtrOff); 5909 5910 // Create a copy of the argument in the local area of the current 5911 // stack frame. 5912 SDValue MemcpyCall = 5913 CreateCopyOfByValArgument(Arg, PtrOff, 5914 CallSeqStart.getNode()->getOperand(0), 5915 Flags, DAG, dl); 5916 5917 // This must go outside the CALLSEQ_START..END. 5918 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5919 SDLoc(MemcpyCall)); 5920 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5921 NewCallSeqStart.getNode()); 5922 Chain = CallSeqStart = NewCallSeqStart; 5923 5924 // Pass the address of the aggregate copy on the stack either in a 5925 // physical register or in the parameter list area of the current stack 5926 // frame to the callee. 5927 Arg = PtrOff; 5928 } 5929 5930 // When useCRBits() is true, there can be i1 arguments. 5931 // It is because getRegisterType(MVT::i1) => MVT::i1, 5932 // and for other integer types getRegisterType() => MVT::i32. 5933 // Extend i1 and ensure callee will get i32. 5934 if (Arg.getValueType() == MVT::i1) 5935 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5936 dl, MVT::i32, Arg); 5937 5938 if (VA.isRegLoc()) { 5939 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5940 // Put argument in a physical register. 5941 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5942 bool IsLE = Subtarget.isLittleEndian(); 5943 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5944 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5945 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5946 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5947 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5948 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5949 SVal.getValue(0))); 5950 } else 5951 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5952 } else { 5953 // Put argument in the parameter list area of the current stack frame. 5954 assert(VA.isMemLoc()); 5955 unsigned LocMemOffset = VA.getLocMemOffset(); 5956 5957 if (!IsTailCall) { 5958 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5959 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5960 StackPtr, PtrOff); 5961 5962 MemOpChains.push_back( 5963 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5964 } else { 5965 // Calculate and remember argument location. 5966 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5967 TailCallArguments); 5968 } 5969 } 5970 } 5971 5972 if (!MemOpChains.empty()) 5973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5974 5975 // Build a sequence of copy-to-reg nodes chained together with token chain 5976 // and flag operands which copy the outgoing args into the appropriate regs. 5977 SDValue InFlag; 5978 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5979 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5980 RegsToPass[i].second, InFlag); 5981 InFlag = Chain.getValue(1); 5982 } 5983 5984 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5985 // registers. 5986 if (IsVarArg) { 5987 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5988 SDValue Ops[] = { Chain, InFlag }; 5989 5990 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5991 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5992 5993 InFlag = Chain.getValue(1); 5994 } 5995 5996 if (IsTailCall) 5997 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5998 TailCallArguments); 5999 6000 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6001 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6002 } 6003 6004 // Copy an argument into memory, being careful to do this outside the 6005 // call sequence for the call to which the argument belongs. 6006 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 6007 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 6008 SelectionDAG &DAG, const SDLoc &dl) const { 6009 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 6010 CallSeqStart.getNode()->getOperand(0), 6011 Flags, DAG, dl); 6012 // The MEMCPY must go outside the CALLSEQ_START..END. 6013 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 6014 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 6015 SDLoc(MemcpyCall)); 6016 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 6017 NewCallSeqStart.getNode()); 6018 return NewCallSeqStart; 6019 } 6020 6021 SDValue PPCTargetLowering::LowerCall_64SVR4( 6022 SDValue Chain, SDValue Callee, CallFlags CFlags, 6023 const SmallVectorImpl<ISD::OutputArg> &Outs, 6024 const SmallVectorImpl<SDValue> &OutVals, 6025 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6026 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6027 const CallBase *CB) const { 6028 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6029 bool isLittleEndian = Subtarget.isLittleEndian(); 6030 unsigned NumOps = Outs.size(); 6031 bool IsSibCall = false; 6032 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6033 6034 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6035 unsigned PtrByteSize = 8; 6036 6037 MachineFunction &MF = DAG.getMachineFunction(); 6038 6039 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6040 IsSibCall = true; 6041 6042 // Mark this function as potentially containing a function that contains a 6043 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6044 // and restoring the callers stack pointer in this functions epilog. This is 6045 // done because by tail calling the called function might overwrite the value 6046 // in this function's (MF) stack pointer stack slot 0(SP). 6047 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6048 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6049 6050 assert(!(IsFastCall && CFlags.IsVarArg) && 6051 "fastcc not supported on varargs functions"); 6052 6053 // Count how many bytes are to be pushed on the stack, including the linkage 6054 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6055 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6056 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6057 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6058 unsigned NumBytes = LinkageSize; 6059 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6060 6061 static const MCPhysReg GPR[] = { 6062 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6063 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6064 }; 6065 static const MCPhysReg VR[] = { 6066 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6067 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6068 }; 6069 6070 const unsigned NumGPRs = array_lengthof(GPR); 6071 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6072 const unsigned NumVRs = array_lengthof(VR); 6073 6074 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6075 // can be passed to the callee in registers. 6076 // For the fast calling convention, there is another check below. 6077 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6078 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6079 if (!HasParameterArea) { 6080 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6081 unsigned AvailableFPRs = NumFPRs; 6082 unsigned AvailableVRs = NumVRs; 6083 unsigned NumBytesTmp = NumBytes; 6084 for (unsigned i = 0; i != NumOps; ++i) { 6085 if (Outs[i].Flags.isNest()) continue; 6086 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6087 PtrByteSize, LinkageSize, ParamAreaSize, 6088 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6089 HasParameterArea = true; 6090 } 6091 } 6092 6093 // When using the fast calling convention, we don't provide backing for 6094 // arguments that will be in registers. 6095 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6096 6097 // Avoid allocating parameter area for fastcc functions if all the arguments 6098 // can be passed in the registers. 6099 if (IsFastCall) 6100 HasParameterArea = false; 6101 6102 // Add up all the space actually used. 6103 for (unsigned i = 0; i != NumOps; ++i) { 6104 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6105 EVT ArgVT = Outs[i].VT; 6106 EVT OrigVT = Outs[i].ArgVT; 6107 6108 if (Flags.isNest()) 6109 continue; 6110 6111 if (IsFastCall) { 6112 if (Flags.isByVal()) { 6113 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6114 if (NumGPRsUsed > NumGPRs) 6115 HasParameterArea = true; 6116 } else { 6117 switch (ArgVT.getSimpleVT().SimpleTy) { 6118 default: llvm_unreachable("Unexpected ValueType for argument!"); 6119 case MVT::i1: 6120 case MVT::i32: 6121 case MVT::i64: 6122 if (++NumGPRsUsed <= NumGPRs) 6123 continue; 6124 break; 6125 case MVT::v4i32: 6126 case MVT::v8i16: 6127 case MVT::v16i8: 6128 case MVT::v2f64: 6129 case MVT::v2i64: 6130 case MVT::v1i128: 6131 case MVT::f128: 6132 if (++NumVRsUsed <= NumVRs) 6133 continue; 6134 break; 6135 case MVT::v4f32: 6136 if (++NumVRsUsed <= NumVRs) 6137 continue; 6138 break; 6139 case MVT::f32: 6140 case MVT::f64: 6141 if (++NumFPRsUsed <= NumFPRs) 6142 continue; 6143 break; 6144 } 6145 HasParameterArea = true; 6146 } 6147 } 6148 6149 /* Respect alignment of argument on the stack. */ 6150 auto Alignement = 6151 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6152 NumBytes = alignTo(NumBytes, Alignement); 6153 6154 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6155 if (Flags.isInConsecutiveRegsLast()) 6156 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6157 } 6158 6159 unsigned NumBytesActuallyUsed = NumBytes; 6160 6161 // In the old ELFv1 ABI, 6162 // the prolog code of the callee may store up to 8 GPR argument registers to 6163 // the stack, allowing va_start to index over them in memory if its varargs. 6164 // Because we cannot tell if this is needed on the caller side, we have to 6165 // conservatively assume that it is needed. As such, make sure we have at 6166 // least enough stack space for the caller to store the 8 GPRs. 6167 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6168 // really requires memory operands, e.g. a vararg function. 6169 if (HasParameterArea) 6170 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6171 else 6172 NumBytes = LinkageSize; 6173 6174 // Tail call needs the stack to be aligned. 6175 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6176 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6177 6178 int SPDiff = 0; 6179 6180 // Calculate by how many bytes the stack has to be adjusted in case of tail 6181 // call optimization. 6182 if (!IsSibCall) 6183 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6184 6185 // To protect arguments on the stack from being clobbered in a tail call, 6186 // force all the loads to happen before doing any other lowering. 6187 if (CFlags.IsTailCall) 6188 Chain = DAG.getStackArgumentTokenFactor(Chain); 6189 6190 // Adjust the stack pointer for the new arguments... 6191 // These operations are automatically eliminated by the prolog/epilog pass 6192 if (!IsSibCall) 6193 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6194 SDValue CallSeqStart = Chain; 6195 6196 // Load the return address and frame pointer so it can be move somewhere else 6197 // later. 6198 SDValue LROp, FPOp; 6199 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6200 6201 // Set up a copy of the stack pointer for use loading and storing any 6202 // arguments that may not fit in the registers available for argument 6203 // passing. 6204 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6205 6206 // Figure out which arguments are going to go in registers, and which in 6207 // memory. Also, if this is a vararg function, floating point operations 6208 // must be stored to our stack, and loaded into integer regs as well, if 6209 // any integer regs are available for argument passing. 6210 unsigned ArgOffset = LinkageSize; 6211 6212 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6213 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6214 6215 SmallVector<SDValue, 8> MemOpChains; 6216 for (unsigned i = 0; i != NumOps; ++i) { 6217 SDValue Arg = OutVals[i]; 6218 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6219 EVT ArgVT = Outs[i].VT; 6220 EVT OrigVT = Outs[i].ArgVT; 6221 6222 // PtrOff will be used to store the current argument to the stack if a 6223 // register cannot be found for it. 6224 SDValue PtrOff; 6225 6226 // We re-align the argument offset for each argument, except when using the 6227 // fast calling convention, when we need to make sure we do that only when 6228 // we'll actually use a stack slot. 6229 auto ComputePtrOff = [&]() { 6230 /* Respect alignment of argument on the stack. */ 6231 auto Alignment = 6232 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6233 ArgOffset = alignTo(ArgOffset, Alignment); 6234 6235 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6236 6237 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6238 }; 6239 6240 if (!IsFastCall) { 6241 ComputePtrOff(); 6242 6243 /* Compute GPR index associated with argument offset. */ 6244 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6245 GPR_idx = std::min(GPR_idx, NumGPRs); 6246 } 6247 6248 // Promote integers to 64-bit values. 6249 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6250 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6251 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6252 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6253 } 6254 6255 // FIXME memcpy is used way more than necessary. Correctness first. 6256 // Note: "by value" is code for passing a structure by value, not 6257 // basic types. 6258 if (Flags.isByVal()) { 6259 // Note: Size includes alignment padding, so 6260 // struct x { short a; char b; } 6261 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6262 // These are the proper values we need for right-justifying the 6263 // aggregate in a parameter register. 6264 unsigned Size = Flags.getByValSize(); 6265 6266 // An empty aggregate parameter takes up no storage and no 6267 // registers. 6268 if (Size == 0) 6269 continue; 6270 6271 if (IsFastCall) 6272 ComputePtrOff(); 6273 6274 // All aggregates smaller than 8 bytes must be passed right-justified. 6275 if (Size==1 || Size==2 || Size==4) { 6276 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6277 if (GPR_idx != NumGPRs) { 6278 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6279 MachinePointerInfo(), VT); 6280 MemOpChains.push_back(Load.getValue(1)); 6281 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6282 6283 ArgOffset += PtrByteSize; 6284 continue; 6285 } 6286 } 6287 6288 if (GPR_idx == NumGPRs && Size < 8) { 6289 SDValue AddPtr = PtrOff; 6290 if (!isLittleEndian) { 6291 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6292 PtrOff.getValueType()); 6293 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6294 } 6295 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6296 CallSeqStart, 6297 Flags, DAG, dl); 6298 ArgOffset += PtrByteSize; 6299 continue; 6300 } 6301 // Copy entire object into memory. There are cases where gcc-generated 6302 // code assumes it is there, even if it could be put entirely into 6303 // registers. (This is not what the doc says.) 6304 6305 // FIXME: The above statement is likely due to a misunderstanding of the 6306 // documents. All arguments must be copied into the parameter area BY 6307 // THE CALLEE in the event that the callee takes the address of any 6308 // formal argument. That has not yet been implemented. However, it is 6309 // reasonable to use the stack area as a staging area for the register 6310 // load. 6311 6312 // Skip this for small aggregates, as we will use the same slot for a 6313 // right-justified copy, below. 6314 if (Size >= 8) 6315 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6316 CallSeqStart, 6317 Flags, DAG, dl); 6318 6319 // When a register is available, pass a small aggregate right-justified. 6320 if (Size < 8 && GPR_idx != NumGPRs) { 6321 // The easiest way to get this right-justified in a register 6322 // is to copy the structure into the rightmost portion of a 6323 // local variable slot, then load the whole slot into the 6324 // register. 6325 // FIXME: The memcpy seems to produce pretty awful code for 6326 // small aggregates, particularly for packed ones. 6327 // FIXME: It would be preferable to use the slot in the 6328 // parameter save area instead of a new local variable. 6329 SDValue AddPtr = PtrOff; 6330 if (!isLittleEndian) { 6331 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6332 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6333 } 6334 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6335 CallSeqStart, 6336 Flags, DAG, dl); 6337 6338 // Load the slot into the register. 6339 SDValue Load = 6340 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6341 MemOpChains.push_back(Load.getValue(1)); 6342 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6343 6344 // Done with this argument. 6345 ArgOffset += PtrByteSize; 6346 continue; 6347 } 6348 6349 // For aggregates larger than PtrByteSize, copy the pieces of the 6350 // object that fit into registers from the parameter save area. 6351 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6352 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6353 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6354 if (GPR_idx != NumGPRs) { 6355 SDValue Load = 6356 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6357 MemOpChains.push_back(Load.getValue(1)); 6358 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6359 ArgOffset += PtrByteSize; 6360 } else { 6361 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6362 break; 6363 } 6364 } 6365 continue; 6366 } 6367 6368 switch (Arg.getSimpleValueType().SimpleTy) { 6369 default: llvm_unreachable("Unexpected ValueType for argument!"); 6370 case MVT::i1: 6371 case MVT::i32: 6372 case MVT::i64: 6373 if (Flags.isNest()) { 6374 // The 'nest' parameter, if any, is passed in R11. 6375 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6376 break; 6377 } 6378 6379 // These can be scalar arguments or elements of an integer array type 6380 // passed directly. Clang may use those instead of "byval" aggregate 6381 // types to avoid forcing arguments to memory unnecessarily. 6382 if (GPR_idx != NumGPRs) { 6383 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6384 } else { 6385 if (IsFastCall) 6386 ComputePtrOff(); 6387 6388 assert(HasParameterArea && 6389 "Parameter area must exist to pass an argument in memory."); 6390 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6391 true, CFlags.IsTailCall, false, MemOpChains, 6392 TailCallArguments, dl); 6393 if (IsFastCall) 6394 ArgOffset += PtrByteSize; 6395 } 6396 if (!IsFastCall) 6397 ArgOffset += PtrByteSize; 6398 break; 6399 case MVT::f32: 6400 case MVT::f64: { 6401 // These can be scalar arguments or elements of a float array type 6402 // passed directly. The latter are used to implement ELFv2 homogenous 6403 // float aggregates. 6404 6405 // Named arguments go into FPRs first, and once they overflow, the 6406 // remaining arguments go into GPRs and then the parameter save area. 6407 // Unnamed arguments for vararg functions always go to GPRs and 6408 // then the parameter save area. For now, put all arguments to vararg 6409 // routines always in both locations (FPR *and* GPR or stack slot). 6410 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6411 bool NeededLoad = false; 6412 6413 // First load the argument into the next available FPR. 6414 if (FPR_idx != NumFPRs) 6415 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6416 6417 // Next, load the argument into GPR or stack slot if needed. 6418 if (!NeedGPROrStack) 6419 ; 6420 else if (GPR_idx != NumGPRs && !IsFastCall) { 6421 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6422 // once we support fp <-> gpr moves. 6423 6424 // In the non-vararg case, this can only ever happen in the 6425 // presence of f32 array types, since otherwise we never run 6426 // out of FPRs before running out of GPRs. 6427 SDValue ArgVal; 6428 6429 // Double values are always passed in a single GPR. 6430 if (Arg.getValueType() != MVT::f32) { 6431 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6432 6433 // Non-array float values are extended and passed in a GPR. 6434 } else if (!Flags.isInConsecutiveRegs()) { 6435 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6436 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6437 6438 // If we have an array of floats, we collect every odd element 6439 // together with its predecessor into one GPR. 6440 } else if (ArgOffset % PtrByteSize != 0) { 6441 SDValue Lo, Hi; 6442 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6443 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6444 if (!isLittleEndian) 6445 std::swap(Lo, Hi); 6446 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6447 6448 // The final element, if even, goes into the first half of a GPR. 6449 } else if (Flags.isInConsecutiveRegsLast()) { 6450 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6451 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6452 if (!isLittleEndian) 6453 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6454 DAG.getConstant(32, dl, MVT::i32)); 6455 6456 // Non-final even elements are skipped; they will be handled 6457 // together the with subsequent argument on the next go-around. 6458 } else 6459 ArgVal = SDValue(); 6460 6461 if (ArgVal.getNode()) 6462 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6463 } else { 6464 if (IsFastCall) 6465 ComputePtrOff(); 6466 6467 // Single-precision floating-point values are mapped to the 6468 // second (rightmost) word of the stack doubleword. 6469 if (Arg.getValueType() == MVT::f32 && 6470 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6471 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6472 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6473 } 6474 6475 assert(HasParameterArea && 6476 "Parameter area must exist to pass an argument in memory."); 6477 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6478 true, CFlags.IsTailCall, false, MemOpChains, 6479 TailCallArguments, dl); 6480 6481 NeededLoad = true; 6482 } 6483 // When passing an array of floats, the array occupies consecutive 6484 // space in the argument area; only round up to the next doubleword 6485 // at the end of the array. Otherwise, each float takes 8 bytes. 6486 if (!IsFastCall || NeededLoad) { 6487 ArgOffset += (Arg.getValueType() == MVT::f32 && 6488 Flags.isInConsecutiveRegs()) ? 4 : 8; 6489 if (Flags.isInConsecutiveRegsLast()) 6490 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6491 } 6492 break; 6493 } 6494 case MVT::v4f32: 6495 case MVT::v4i32: 6496 case MVT::v8i16: 6497 case MVT::v16i8: 6498 case MVT::v2f64: 6499 case MVT::v2i64: 6500 case MVT::v1i128: 6501 case MVT::f128: 6502 // These can be scalar arguments or elements of a vector array type 6503 // passed directly. The latter are used to implement ELFv2 homogenous 6504 // vector aggregates. 6505 6506 // For a varargs call, named arguments go into VRs or on the stack as 6507 // usual; unnamed arguments always go to the stack or the corresponding 6508 // GPRs when within range. For now, we always put the value in both 6509 // locations (or even all three). 6510 if (CFlags.IsVarArg) { 6511 assert(HasParameterArea && 6512 "Parameter area must exist if we have a varargs call."); 6513 // We could elide this store in the case where the object fits 6514 // entirely in R registers. Maybe later. 6515 SDValue Store = 6516 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6517 MemOpChains.push_back(Store); 6518 if (VR_idx != NumVRs) { 6519 SDValue Load = 6520 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6521 MemOpChains.push_back(Load.getValue(1)); 6522 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6523 } 6524 ArgOffset += 16; 6525 for (unsigned i=0; i<16; i+=PtrByteSize) { 6526 if (GPR_idx == NumGPRs) 6527 break; 6528 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6529 DAG.getConstant(i, dl, PtrVT)); 6530 SDValue Load = 6531 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6532 MemOpChains.push_back(Load.getValue(1)); 6533 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6534 } 6535 break; 6536 } 6537 6538 // Non-varargs Altivec params go into VRs or on the stack. 6539 if (VR_idx != NumVRs) { 6540 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6541 } else { 6542 if (IsFastCall) 6543 ComputePtrOff(); 6544 6545 assert(HasParameterArea && 6546 "Parameter area must exist to pass an argument in memory."); 6547 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6548 true, CFlags.IsTailCall, true, MemOpChains, 6549 TailCallArguments, dl); 6550 if (IsFastCall) 6551 ArgOffset += 16; 6552 } 6553 6554 if (!IsFastCall) 6555 ArgOffset += 16; 6556 break; 6557 } 6558 } 6559 6560 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6561 "mismatch in size of parameter area"); 6562 (void)NumBytesActuallyUsed; 6563 6564 if (!MemOpChains.empty()) 6565 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6566 6567 // Check if this is an indirect call (MTCTR/BCTRL). 6568 // See prepareDescriptorIndirectCall and buildCallOperands for more 6569 // information about calls through function pointers in the 64-bit SVR4 ABI. 6570 if (CFlags.IsIndirect) { 6571 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6572 // caller in the TOC save area. 6573 if (isTOCSaveRestoreRequired(Subtarget)) { 6574 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6575 // Load r2 into a virtual register and store it to the TOC save area. 6576 setUsesTOCBasePtr(DAG); 6577 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6578 // TOC save area offset. 6579 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6580 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6581 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6582 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6583 MachinePointerInfo::getStack( 6584 DAG.getMachineFunction(), TOCSaveOffset)); 6585 } 6586 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6587 // This does not mean the MTCTR instruction must use R12; it's easier 6588 // to model this as an extra parameter, so do that. 6589 if (isELFv2ABI && !CFlags.IsPatchPoint) 6590 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6591 } 6592 6593 // Build a sequence of copy-to-reg nodes chained together with token chain 6594 // and flag operands which copy the outgoing args into the appropriate regs. 6595 SDValue InFlag; 6596 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6597 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6598 RegsToPass[i].second, InFlag); 6599 InFlag = Chain.getValue(1); 6600 } 6601 6602 if (CFlags.IsTailCall && !IsSibCall) 6603 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6604 TailCallArguments); 6605 6606 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6607 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6608 } 6609 6610 SDValue PPCTargetLowering::LowerCall_Darwin( 6611 SDValue Chain, SDValue Callee, CallFlags CFlags, 6612 const SmallVectorImpl<ISD::OutputArg> &Outs, 6613 const SmallVectorImpl<SDValue> &OutVals, 6614 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6615 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6616 const CallBase *CB) const { 6617 unsigned NumOps = Outs.size(); 6618 6619 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6620 bool isPPC64 = PtrVT == MVT::i64; 6621 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6622 6623 MachineFunction &MF = DAG.getMachineFunction(); 6624 6625 // Mark this function as potentially containing a function that contains a 6626 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6627 // and restoring the callers stack pointer in this functions epilog. This is 6628 // done because by tail calling the called function might overwrite the value 6629 // in this function's (MF) stack pointer stack slot 0(SP). 6630 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6631 CFlags.CallConv == CallingConv::Fast) 6632 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6633 6634 // Count how many bytes are to be pushed on the stack, including the linkage 6635 // area, and parameter passing area. We start with 24/48 bytes, which is 6636 // prereserved space for [SP][CR][LR][3 x unused]. 6637 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6638 unsigned NumBytes = LinkageSize; 6639 6640 // Add up all the space actually used. 6641 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6642 // they all go in registers, but we must reserve stack space for them for 6643 // possible use by the caller. In varargs or 64-bit calls, parameters are 6644 // assigned stack space in order, with padding so Altivec parameters are 6645 // 16-byte aligned. 6646 unsigned nAltivecParamsAtEnd = 0; 6647 for (unsigned i = 0; i != NumOps; ++i) { 6648 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6649 EVT ArgVT = Outs[i].VT; 6650 // Varargs Altivec parameters are padded to a 16 byte boundary. 6651 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6652 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6653 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6654 if (!CFlags.IsVarArg && !isPPC64) { 6655 // Non-varargs Altivec parameters go after all the non-Altivec 6656 // parameters; handle those later so we know how much padding we need. 6657 nAltivecParamsAtEnd++; 6658 continue; 6659 } 6660 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6661 NumBytes = ((NumBytes+15)/16)*16; 6662 } 6663 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6664 } 6665 6666 // Allow for Altivec parameters at the end, if needed. 6667 if (nAltivecParamsAtEnd) { 6668 NumBytes = ((NumBytes+15)/16)*16; 6669 NumBytes += 16*nAltivecParamsAtEnd; 6670 } 6671 6672 // The prolog code of the callee may store up to 8 GPR argument registers to 6673 // the stack, allowing va_start to index over them in memory if its varargs. 6674 // Because we cannot tell if this is needed on the caller side, we have to 6675 // conservatively assume that it is needed. As such, make sure we have at 6676 // least enough stack space for the caller to store the 8 GPRs. 6677 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6678 6679 // Tail call needs the stack to be aligned. 6680 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6681 CFlags.CallConv == CallingConv::Fast) 6682 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6683 6684 // Calculate by how many bytes the stack has to be adjusted in case of tail 6685 // call optimization. 6686 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6687 6688 // To protect arguments on the stack from being clobbered in a tail call, 6689 // force all the loads to happen before doing any other lowering. 6690 if (CFlags.IsTailCall) 6691 Chain = DAG.getStackArgumentTokenFactor(Chain); 6692 6693 // Adjust the stack pointer for the new arguments... 6694 // These operations are automatically eliminated by the prolog/epilog pass 6695 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6696 SDValue CallSeqStart = Chain; 6697 6698 // Load the return address and frame pointer so it can be move somewhere else 6699 // later. 6700 SDValue LROp, FPOp; 6701 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6702 6703 // Set up a copy of the stack pointer for use loading and storing any 6704 // arguments that may not fit in the registers available for argument 6705 // passing. 6706 SDValue StackPtr; 6707 if (isPPC64) 6708 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6709 else 6710 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6711 6712 // Figure out which arguments are going to go in registers, and which in 6713 // memory. Also, if this is a vararg function, floating point operations 6714 // must be stored to our stack, and loaded into integer regs as well, if 6715 // any integer regs are available for argument passing. 6716 unsigned ArgOffset = LinkageSize; 6717 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6718 6719 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6720 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6721 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6722 }; 6723 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6724 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6725 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6726 }; 6727 static const MCPhysReg VR[] = { 6728 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6729 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6730 }; 6731 const unsigned NumGPRs = array_lengthof(GPR_32); 6732 const unsigned NumFPRs = 13; 6733 const unsigned NumVRs = array_lengthof(VR); 6734 6735 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6736 6737 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6738 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6739 6740 SmallVector<SDValue, 8> MemOpChains; 6741 for (unsigned i = 0; i != NumOps; ++i) { 6742 SDValue Arg = OutVals[i]; 6743 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6744 6745 // PtrOff will be used to store the current argument to the stack if a 6746 // register cannot be found for it. 6747 SDValue PtrOff; 6748 6749 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6750 6751 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6752 6753 // On PPC64, promote integers to 64-bit values. 6754 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6755 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6756 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6757 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6758 } 6759 6760 // FIXME memcpy is used way more than necessary. Correctness first. 6761 // Note: "by value" is code for passing a structure by value, not 6762 // basic types. 6763 if (Flags.isByVal()) { 6764 unsigned Size = Flags.getByValSize(); 6765 // Very small objects are passed right-justified. Everything else is 6766 // passed left-justified. 6767 if (Size==1 || Size==2) { 6768 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6769 if (GPR_idx != NumGPRs) { 6770 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6771 MachinePointerInfo(), VT); 6772 MemOpChains.push_back(Load.getValue(1)); 6773 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6774 6775 ArgOffset += PtrByteSize; 6776 } else { 6777 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6778 PtrOff.getValueType()); 6779 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6780 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6781 CallSeqStart, 6782 Flags, DAG, dl); 6783 ArgOffset += PtrByteSize; 6784 } 6785 continue; 6786 } 6787 // Copy entire object into memory. There are cases where gcc-generated 6788 // code assumes it is there, even if it could be put entirely into 6789 // registers. (This is not what the doc says.) 6790 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6791 CallSeqStart, 6792 Flags, DAG, dl); 6793 6794 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6795 // copy the pieces of the object that fit into registers from the 6796 // parameter save area. 6797 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6798 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6799 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6800 if (GPR_idx != NumGPRs) { 6801 SDValue Load = 6802 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6803 MemOpChains.push_back(Load.getValue(1)); 6804 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6805 ArgOffset += PtrByteSize; 6806 } else { 6807 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6808 break; 6809 } 6810 } 6811 continue; 6812 } 6813 6814 switch (Arg.getSimpleValueType().SimpleTy) { 6815 default: llvm_unreachable("Unexpected ValueType for argument!"); 6816 case MVT::i1: 6817 case MVT::i32: 6818 case MVT::i64: 6819 if (GPR_idx != NumGPRs) { 6820 if (Arg.getValueType() == MVT::i1) 6821 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6822 6823 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6824 } else { 6825 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6826 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6827 TailCallArguments, dl); 6828 } 6829 ArgOffset += PtrByteSize; 6830 break; 6831 case MVT::f32: 6832 case MVT::f64: 6833 if (FPR_idx != NumFPRs) { 6834 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6835 6836 if (CFlags.IsVarArg) { 6837 SDValue Store = 6838 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6839 MemOpChains.push_back(Store); 6840 6841 // Float varargs are always shadowed in available integer registers 6842 if (GPR_idx != NumGPRs) { 6843 SDValue Load = 6844 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6845 MemOpChains.push_back(Load.getValue(1)); 6846 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6847 } 6848 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6849 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6850 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6851 SDValue Load = 6852 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6853 MemOpChains.push_back(Load.getValue(1)); 6854 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6855 } 6856 } else { 6857 // If we have any FPRs remaining, we may also have GPRs remaining. 6858 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6859 // GPRs. 6860 if (GPR_idx != NumGPRs) 6861 ++GPR_idx; 6862 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6863 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6864 ++GPR_idx; 6865 } 6866 } else 6867 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6868 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6869 TailCallArguments, dl); 6870 if (isPPC64) 6871 ArgOffset += 8; 6872 else 6873 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6874 break; 6875 case MVT::v4f32: 6876 case MVT::v4i32: 6877 case MVT::v8i16: 6878 case MVT::v16i8: 6879 if (CFlags.IsVarArg) { 6880 // These go aligned on the stack, or in the corresponding R registers 6881 // when within range. The Darwin PPC ABI doc claims they also go in 6882 // V registers; in fact gcc does this only for arguments that are 6883 // prototyped, not for those that match the ... We do it for all 6884 // arguments, seems to work. 6885 while (ArgOffset % 16 !=0) { 6886 ArgOffset += PtrByteSize; 6887 if (GPR_idx != NumGPRs) 6888 GPR_idx++; 6889 } 6890 // We could elide this store in the case where the object fits 6891 // entirely in R registers. Maybe later. 6892 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6893 DAG.getConstant(ArgOffset, dl, PtrVT)); 6894 SDValue Store = 6895 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6896 MemOpChains.push_back(Store); 6897 if (VR_idx != NumVRs) { 6898 SDValue Load = 6899 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6900 MemOpChains.push_back(Load.getValue(1)); 6901 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6902 } 6903 ArgOffset += 16; 6904 for (unsigned i=0; i<16; i+=PtrByteSize) { 6905 if (GPR_idx == NumGPRs) 6906 break; 6907 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6908 DAG.getConstant(i, dl, PtrVT)); 6909 SDValue Load = 6910 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6911 MemOpChains.push_back(Load.getValue(1)); 6912 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6913 } 6914 break; 6915 } 6916 6917 // Non-varargs Altivec params generally go in registers, but have 6918 // stack space allocated at the end. 6919 if (VR_idx != NumVRs) { 6920 // Doesn't have GPR space allocated. 6921 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6922 } else if (nAltivecParamsAtEnd==0) { 6923 // We are emitting Altivec params in order. 6924 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6925 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6926 TailCallArguments, dl); 6927 ArgOffset += 16; 6928 } 6929 break; 6930 } 6931 } 6932 // If all Altivec parameters fit in registers, as they usually do, 6933 // they get stack space following the non-Altivec parameters. We 6934 // don't track this here because nobody below needs it. 6935 // If there are more Altivec parameters than fit in registers emit 6936 // the stores here. 6937 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6938 unsigned j = 0; 6939 // Offset is aligned; skip 1st 12 params which go in V registers. 6940 ArgOffset = ((ArgOffset+15)/16)*16; 6941 ArgOffset += 12*16; 6942 for (unsigned i = 0; i != NumOps; ++i) { 6943 SDValue Arg = OutVals[i]; 6944 EVT ArgType = Outs[i].VT; 6945 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6946 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6947 if (++j > NumVRs) { 6948 SDValue PtrOff; 6949 // We are emitting Altivec params in order. 6950 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6951 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6952 TailCallArguments, dl); 6953 ArgOffset += 16; 6954 } 6955 } 6956 } 6957 } 6958 6959 if (!MemOpChains.empty()) 6960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6961 6962 // On Darwin, R12 must contain the address of an indirect callee. This does 6963 // not mean the MTCTR instruction must use R12; it's easier to model this as 6964 // an extra parameter, so do that. 6965 if (CFlags.IsIndirect) { 6966 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6967 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6968 PPC::R12), Callee)); 6969 } 6970 6971 // Build a sequence of copy-to-reg nodes chained together with token chain 6972 // and flag operands which copy the outgoing args into the appropriate regs. 6973 SDValue InFlag; 6974 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6975 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6976 RegsToPass[i].second, InFlag); 6977 InFlag = Chain.getValue(1); 6978 } 6979 6980 if (CFlags.IsTailCall) 6981 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6982 TailCallArguments); 6983 6984 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6985 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6986 } 6987 6988 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6989 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6990 CCState &State) { 6991 6992 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6993 State.getMachineFunction().getSubtarget()); 6994 const bool IsPPC64 = Subtarget.isPPC64(); 6995 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6996 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6997 6998 if (ValVT.isVector() && !State.getMachineFunction() 6999 .getTarget() 7000 .Options.EnableAIXExtendedAltivecABI) 7001 report_fatal_error("the default Altivec AIX ABI is not yet supported"); 7002 7003 if (ValVT == MVT::f128) 7004 report_fatal_error("f128 is unimplemented on AIX."); 7005 7006 if (ArgFlags.isNest()) 7007 report_fatal_error("Nest arguments are unimplemented."); 7008 7009 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7010 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7011 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7012 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7013 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7014 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7015 7016 static const MCPhysReg VR[] = {// Vector registers. 7017 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 7018 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 7019 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 7020 7021 if (ArgFlags.isByVal()) { 7022 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7023 report_fatal_error("Pass-by-value arguments with alignment greater than " 7024 "register width are not supported."); 7025 7026 const unsigned ByValSize = ArgFlags.getByValSize(); 7027 7028 // An empty aggregate parameter takes up no storage and no registers, 7029 // but needs a MemLoc for a stack slot for the formal arguments side. 7030 if (ByValSize == 0) { 7031 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7032 State.getNextStackOffset(), RegVT, 7033 LocInfo)); 7034 return false; 7035 } 7036 7037 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7038 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7039 for (const unsigned E = Offset + StackSize; Offset < E; 7040 Offset += PtrAlign.value()) { 7041 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7042 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7043 else { 7044 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7045 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7046 LocInfo)); 7047 break; 7048 } 7049 } 7050 return false; 7051 } 7052 7053 // Arguments always reserve parameter save area. 7054 switch (ValVT.SimpleTy) { 7055 default: 7056 report_fatal_error("Unhandled value type for argument."); 7057 case MVT::i64: 7058 // i64 arguments should have been split to i32 for PPC32. 7059 assert(IsPPC64 && "PPC32 should have split i64 values."); 7060 LLVM_FALLTHROUGH; 7061 case MVT::i1: 7062 case MVT::i32: { 7063 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7064 // AIX integer arguments are always passed in register width. 7065 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 7066 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7067 : CCValAssign::LocInfo::ZExt; 7068 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7069 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7070 else 7071 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7072 7073 return false; 7074 } 7075 case MVT::f32: 7076 case MVT::f64: { 7077 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7078 const unsigned StoreSize = LocVT.getStoreSize(); 7079 // Floats are always 4-byte aligned in the PSA on AIX. 7080 // This includes f64 in 64-bit mode for ABI compatibility. 7081 const unsigned Offset = 7082 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7083 unsigned FReg = State.AllocateReg(FPR); 7084 if (FReg) 7085 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7086 7087 // Reserve and initialize GPRs or initialize the PSA as required. 7088 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7089 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7090 assert(FReg && "An FPR should be available when a GPR is reserved."); 7091 if (State.isVarArg()) { 7092 // Successfully reserved GPRs are only initialized for vararg calls. 7093 // Custom handling is required for: 7094 // f64 in PPC32 needs to be split into 2 GPRs. 7095 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7096 State.addLoc( 7097 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7098 } 7099 } else { 7100 // If there are insufficient GPRs, the PSA needs to be initialized. 7101 // Initialization occurs even if an FPR was initialized for 7102 // compatibility with the AIX XL compiler. The full memory for the 7103 // argument will be initialized even if a prior word is saved in GPR. 7104 // A custom memLoc is used when the argument also passes in FPR so 7105 // that the callee handling can skip over it easily. 7106 State.addLoc( 7107 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7108 LocInfo) 7109 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7110 break; 7111 } 7112 } 7113 7114 return false; 7115 } 7116 case MVT::v4f32: 7117 case MVT::v4i32: 7118 case MVT::v8i16: 7119 case MVT::v16i8: 7120 case MVT::v2i64: 7121 case MVT::v2f64: 7122 case MVT::v1i128: { 7123 if (State.isVarArg()) 7124 report_fatal_error( 7125 "variadic arguments for vector types are unimplemented for AIX"); 7126 7127 if (unsigned VReg = State.AllocateReg(VR)) 7128 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 7129 else { 7130 report_fatal_error( 7131 "passing vector parameters to the stack is unimplemented for AIX"); 7132 } 7133 return false; 7134 } 7135 } 7136 return true; 7137 } 7138 7139 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7140 bool IsPPC64) { 7141 assert((IsPPC64 || SVT != MVT::i64) && 7142 "i64 should have been split for 32-bit codegen."); 7143 7144 switch (SVT) { 7145 default: 7146 report_fatal_error("Unexpected value type for formal argument"); 7147 case MVT::i1: 7148 case MVT::i32: 7149 case MVT::i64: 7150 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7151 case MVT::f32: 7152 return &PPC::F4RCRegClass; 7153 case MVT::f64: 7154 return &PPC::F8RCRegClass; 7155 case MVT::v4f32: 7156 case MVT::v4i32: 7157 case MVT::v8i16: 7158 case MVT::v16i8: 7159 case MVT::v2i64: 7160 case MVT::v2f64: 7161 case MVT::v1i128: 7162 return &PPC::VRRCRegClass; 7163 } 7164 } 7165 7166 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7167 SelectionDAG &DAG, SDValue ArgValue, 7168 MVT LocVT, const SDLoc &dl) { 7169 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7170 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 7171 7172 if (Flags.isSExt()) 7173 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7174 DAG.getValueType(ValVT)); 7175 else if (Flags.isZExt()) 7176 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7177 DAG.getValueType(ValVT)); 7178 7179 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7180 } 7181 7182 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7183 const unsigned LASize = FL->getLinkageSize(); 7184 7185 if (PPC::GPRCRegClass.contains(Reg)) { 7186 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7187 "Reg must be a valid argument register!"); 7188 return LASize + 4 * (Reg - PPC::R3); 7189 } 7190 7191 if (PPC::G8RCRegClass.contains(Reg)) { 7192 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7193 "Reg must be a valid argument register!"); 7194 return LASize + 8 * (Reg - PPC::X3); 7195 } 7196 7197 llvm_unreachable("Only general purpose registers expected."); 7198 } 7199 7200 // AIX ABI Stack Frame Layout: 7201 // 7202 // Low Memory +--------------------------------------------+ 7203 // SP +---> | Back chain | ---+ 7204 // | +--------------------------------------------+ | 7205 // | | Saved Condition Register | | 7206 // | +--------------------------------------------+ | 7207 // | | Saved Linkage Register | | 7208 // | +--------------------------------------------+ | Linkage Area 7209 // | | Reserved for compilers | | 7210 // | +--------------------------------------------+ | 7211 // | | Reserved for binders | | 7212 // | +--------------------------------------------+ | 7213 // | | Saved TOC pointer | ---+ 7214 // | +--------------------------------------------+ 7215 // | | Parameter save area | 7216 // | +--------------------------------------------+ 7217 // | | Alloca space | 7218 // | +--------------------------------------------+ 7219 // | | Local variable space | 7220 // | +--------------------------------------------+ 7221 // | | Float/int conversion temporary | 7222 // | +--------------------------------------------+ 7223 // | | Save area for AltiVec registers | 7224 // | +--------------------------------------------+ 7225 // | | AltiVec alignment padding | 7226 // | +--------------------------------------------+ 7227 // | | Save area for VRSAVE register | 7228 // | +--------------------------------------------+ 7229 // | | Save area for General Purpose registers | 7230 // | +--------------------------------------------+ 7231 // | | Save area for Floating Point registers | 7232 // | +--------------------------------------------+ 7233 // +---- | Back chain | 7234 // High Memory +--------------------------------------------+ 7235 // 7236 // Specifications: 7237 // AIX 7.2 Assembler Language Reference 7238 // Subroutine linkage convention 7239 7240 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7241 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7242 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7243 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7244 7245 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7246 CallConv == CallingConv::Fast) && 7247 "Unexpected calling convention!"); 7248 7249 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7250 report_fatal_error("Tail call support is unimplemented on AIX."); 7251 7252 if (useSoftFloat()) 7253 report_fatal_error("Soft float support is unimplemented on AIX."); 7254 7255 const PPCSubtarget &Subtarget = 7256 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7257 7258 const bool IsPPC64 = Subtarget.isPPC64(); 7259 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7260 7261 // Assign locations to all of the incoming arguments. 7262 SmallVector<CCValAssign, 16> ArgLocs; 7263 MachineFunction &MF = DAG.getMachineFunction(); 7264 MachineFrameInfo &MFI = MF.getFrameInfo(); 7265 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7266 7267 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7268 // Reserve space for the linkage area on the stack. 7269 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7270 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7271 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7272 7273 SmallVector<SDValue, 8> MemOps; 7274 7275 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7276 CCValAssign &VA = ArgLocs[I++]; 7277 MVT LocVT = VA.getLocVT(); 7278 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7279 if (VA.isMemLoc() && VA.getValVT().isVector()) 7280 report_fatal_error( 7281 "passing vector parameters to the stack is unimplemented for AIX"); 7282 7283 // For compatibility with the AIX XL compiler, the float args in the 7284 // parameter save area are initialized even if the argument is available 7285 // in register. The caller is required to initialize both the register 7286 // and memory, however, the callee can choose to expect it in either. 7287 // The memloc is dismissed here because the argument is retrieved from 7288 // the register. 7289 if (VA.isMemLoc() && VA.needsCustom()) 7290 continue; 7291 7292 if (Flags.isByVal() && VA.isMemLoc()) { 7293 const unsigned Size = 7294 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7295 PtrByteSize); 7296 const int FI = MF.getFrameInfo().CreateFixedObject( 7297 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7298 /* IsAliased */ true); 7299 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7300 InVals.push_back(FIN); 7301 7302 continue; 7303 } 7304 7305 if (Flags.isByVal()) { 7306 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7307 7308 const MCPhysReg ArgReg = VA.getLocReg(); 7309 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7310 7311 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7312 report_fatal_error("Over aligned byvals not supported yet."); 7313 7314 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7315 const int FI = MF.getFrameInfo().CreateFixedObject( 7316 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7317 /* IsAliased */ true); 7318 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7319 InVals.push_back(FIN); 7320 7321 // Add live ins for all the RegLocs for the same ByVal. 7322 const TargetRegisterClass *RegClass = 7323 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7324 7325 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7326 unsigned Offset) { 7327 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7328 // Since the callers side has left justified the aggregate in the 7329 // register, we can simply store the entire register into the stack 7330 // slot. 7331 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7332 // The store to the fixedstack object is needed becuase accessing a 7333 // field of the ByVal will use a gep and load. Ideally we will optimize 7334 // to extracting the value from the register directly, and elide the 7335 // stores when the arguments address is not taken, but that will need to 7336 // be future work. 7337 SDValue Store = DAG.getStore( 7338 CopyFrom.getValue(1), dl, CopyFrom, 7339 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7340 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7341 7342 MemOps.push_back(Store); 7343 }; 7344 7345 unsigned Offset = 0; 7346 HandleRegLoc(VA.getLocReg(), Offset); 7347 Offset += PtrByteSize; 7348 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7349 Offset += PtrByteSize) { 7350 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7351 "RegLocs should be for ByVal argument."); 7352 7353 const CCValAssign RL = ArgLocs[I++]; 7354 HandleRegLoc(RL.getLocReg(), Offset); 7355 } 7356 7357 if (Offset != StackSize) { 7358 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7359 "Expected MemLoc for remaining bytes."); 7360 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7361 // Consume the MemLoc.The InVal has already been emitted, so nothing 7362 // more needs to be done. 7363 ++I; 7364 } 7365 7366 continue; 7367 } 7368 7369 EVT ValVT = VA.getValVT(); 7370 if (VA.isRegLoc() && !VA.needsCustom()) { 7371 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7372 unsigned VReg = 7373 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7374 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7375 if (ValVT.isScalarInteger() && 7376 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7377 ArgValue = 7378 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7379 } 7380 InVals.push_back(ArgValue); 7381 continue; 7382 } 7383 if (VA.isMemLoc()) { 7384 const unsigned LocSize = LocVT.getStoreSize(); 7385 const unsigned ValSize = ValVT.getStoreSize(); 7386 assert((ValSize <= LocSize) && 7387 "Object size is larger than size of MemLoc"); 7388 int CurArgOffset = VA.getLocMemOffset(); 7389 // Objects are right-justified because AIX is big-endian. 7390 if (LocSize > ValSize) 7391 CurArgOffset += LocSize - ValSize; 7392 // Potential tail calls could cause overwriting of argument stack slots. 7393 const bool IsImmutable = 7394 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7395 (CallConv == CallingConv::Fast)); 7396 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7397 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7398 SDValue ArgValue = 7399 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7400 InVals.push_back(ArgValue); 7401 continue; 7402 } 7403 } 7404 7405 // On AIX a minimum of 8 words is saved to the parameter save area. 7406 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7407 // Area that is at least reserved in the caller of this function. 7408 unsigned CallerReservedArea = 7409 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7410 7411 // Set the size that is at least reserved in caller of this function. Tail 7412 // call optimized function's reserved stack space needs to be aligned so 7413 // that taking the difference between two stack areas will result in an 7414 // aligned stack. 7415 CallerReservedArea = 7416 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7417 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7418 FuncInfo->setMinReservedArea(CallerReservedArea); 7419 7420 if (isVarArg) { 7421 FuncInfo->setVarArgsFrameIndex( 7422 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7423 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7424 7425 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7426 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7427 7428 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7429 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7430 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7431 7432 // The fixed integer arguments of a variadic function are stored to the 7433 // VarArgsFrameIndex on the stack so that they may be loaded by 7434 // dereferencing the result of va_next. 7435 for (unsigned GPRIndex = 7436 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7437 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7438 7439 const unsigned VReg = 7440 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7441 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7442 7443 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7444 SDValue Store = 7445 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7446 MemOps.push_back(Store); 7447 // Increment the address for the next argument to store. 7448 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7449 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7450 } 7451 } 7452 7453 if (!MemOps.empty()) 7454 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7455 7456 return Chain; 7457 } 7458 7459 SDValue PPCTargetLowering::LowerCall_AIX( 7460 SDValue Chain, SDValue Callee, CallFlags CFlags, 7461 const SmallVectorImpl<ISD::OutputArg> &Outs, 7462 const SmallVectorImpl<SDValue> &OutVals, 7463 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7464 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7465 const CallBase *CB) const { 7466 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7467 // AIX ABI stack frame layout. 7468 7469 assert((CFlags.CallConv == CallingConv::C || 7470 CFlags.CallConv == CallingConv::Cold || 7471 CFlags.CallConv == CallingConv::Fast) && 7472 "Unexpected calling convention!"); 7473 7474 if (CFlags.IsPatchPoint) 7475 report_fatal_error("This call type is unimplemented on AIX."); 7476 7477 const PPCSubtarget& Subtarget = 7478 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7479 7480 MachineFunction &MF = DAG.getMachineFunction(); 7481 SmallVector<CCValAssign, 16> ArgLocs; 7482 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7483 *DAG.getContext()); 7484 7485 // Reserve space for the linkage save area (LSA) on the stack. 7486 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7487 // [SP][CR][LR][2 x reserved][TOC]. 7488 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7489 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7490 const bool IsPPC64 = Subtarget.isPPC64(); 7491 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7492 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7493 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7494 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7495 7496 // The prolog code of the callee may store up to 8 GPR argument registers to 7497 // the stack, allowing va_start to index over them in memory if the callee 7498 // is variadic. 7499 // Because we cannot tell if this is needed on the caller side, we have to 7500 // conservatively assume that it is needed. As such, make sure we have at 7501 // least enough stack space for the caller to store the 8 GPRs. 7502 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7503 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7504 CCInfo.getNextStackOffset()); 7505 7506 // Adjust the stack pointer for the new arguments... 7507 // These operations are automatically eliminated by the prolog/epilog pass. 7508 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7509 SDValue CallSeqStart = Chain; 7510 7511 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7512 SmallVector<SDValue, 8> MemOpChains; 7513 7514 // Set up a copy of the stack pointer for loading and storing any 7515 // arguments that may not fit in the registers available for argument 7516 // passing. 7517 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7518 : DAG.getRegister(PPC::R1, MVT::i32); 7519 7520 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7521 const unsigned ValNo = ArgLocs[I].getValNo(); 7522 SDValue Arg = OutVals[ValNo]; 7523 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7524 7525 if (Flags.isByVal()) { 7526 const unsigned ByValSize = Flags.getByValSize(); 7527 7528 // Nothing to do for zero-sized ByVals on the caller side. 7529 if (!ByValSize) { 7530 ++I; 7531 continue; 7532 } 7533 7534 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7535 return DAG.getExtLoad( 7536 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7537 (LoadOffset != 0) 7538 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7539 : Arg, 7540 MachinePointerInfo(), VT); 7541 }; 7542 7543 unsigned LoadOffset = 0; 7544 7545 // Initialize registers, which are fully occupied by the by-val argument. 7546 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7547 SDValue Load = GetLoad(PtrVT, LoadOffset); 7548 MemOpChains.push_back(Load.getValue(1)); 7549 LoadOffset += PtrByteSize; 7550 const CCValAssign &ByValVA = ArgLocs[I++]; 7551 assert(ByValVA.getValNo() == ValNo && 7552 "Unexpected location for pass-by-value argument."); 7553 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7554 } 7555 7556 if (LoadOffset == ByValSize) 7557 continue; 7558 7559 // There must be one more loc to handle the remainder. 7560 assert(ArgLocs[I].getValNo() == ValNo && 7561 "Expected additional location for by-value argument."); 7562 7563 if (ArgLocs[I].isMemLoc()) { 7564 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7565 const CCValAssign &ByValVA = ArgLocs[I++]; 7566 ISD::ArgFlagsTy MemcpyFlags = Flags; 7567 // Only memcpy the bytes that don't pass in register. 7568 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7569 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7570 (LoadOffset != 0) 7571 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7572 : Arg, 7573 DAG.getObjectPtrOffset(dl, StackPtr, 7574 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7575 CallSeqStart, MemcpyFlags, DAG, dl); 7576 continue; 7577 } 7578 7579 // Initialize the final register residue. 7580 // Any residue that occupies the final by-val arg register must be 7581 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7582 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7583 // 2 and 1 byte loads. 7584 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7585 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7586 "Unexpected register residue for by-value argument."); 7587 SDValue ResidueVal; 7588 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7589 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7590 const MVT VT = 7591 N == 1 ? MVT::i8 7592 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7593 SDValue Load = GetLoad(VT, LoadOffset); 7594 MemOpChains.push_back(Load.getValue(1)); 7595 LoadOffset += N; 7596 Bytes += N; 7597 7598 // By-val arguments are passed left-justfied in register. 7599 // Every load here needs to be shifted, otherwise a full register load 7600 // should have been used. 7601 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7602 "Unexpected load emitted during handling of pass-by-value " 7603 "argument."); 7604 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7605 EVT ShiftAmountTy = 7606 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7607 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7608 SDValue ShiftedLoad = 7609 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7610 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7611 ShiftedLoad) 7612 : ShiftedLoad; 7613 } 7614 7615 const CCValAssign &ByValVA = ArgLocs[I++]; 7616 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7617 continue; 7618 } 7619 7620 CCValAssign &VA = ArgLocs[I++]; 7621 const MVT LocVT = VA.getLocVT(); 7622 const MVT ValVT = VA.getValVT(); 7623 7624 if (VA.isMemLoc() && VA.getValVT().isVector()) 7625 report_fatal_error( 7626 "passing vector parameters to the stack is unimplemented for AIX"); 7627 7628 switch (VA.getLocInfo()) { 7629 default: 7630 report_fatal_error("Unexpected argument extension type."); 7631 case CCValAssign::Full: 7632 break; 7633 case CCValAssign::ZExt: 7634 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7635 break; 7636 case CCValAssign::SExt: 7637 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7638 break; 7639 } 7640 7641 if (VA.isRegLoc() && !VA.needsCustom()) { 7642 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7643 continue; 7644 } 7645 7646 if (VA.isMemLoc()) { 7647 SDValue PtrOff = 7648 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7649 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7650 MemOpChains.push_back( 7651 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7652 7653 continue; 7654 } 7655 7656 // Custom handling is used for GPR initializations for vararg float 7657 // arguments. 7658 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7659 ValVT.isFloatingPoint() && LocVT.isInteger() && 7660 "Unexpected register handling for calling convention."); 7661 7662 SDValue ArgAsInt = 7663 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7664 7665 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7666 // f32 in 32-bit GPR 7667 // f64 in 64-bit GPR 7668 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7669 else if (Arg.getValueType().getFixedSizeInBits() < 7670 LocVT.getFixedSizeInBits()) 7671 // f32 in 64-bit GPR. 7672 RegsToPass.push_back(std::make_pair( 7673 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7674 else { 7675 // f64 in two 32-bit GPRs 7676 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7677 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7678 "Unexpected custom register for argument!"); 7679 CCValAssign &GPR1 = VA; 7680 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7681 DAG.getConstant(32, dl, MVT::i8)); 7682 RegsToPass.push_back(std::make_pair( 7683 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7684 7685 if (I != E) { 7686 // If only 1 GPR was available, there will only be one custom GPR and 7687 // the argument will also pass in memory. 7688 CCValAssign &PeekArg = ArgLocs[I]; 7689 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7690 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7691 CCValAssign &GPR2 = ArgLocs[I++]; 7692 RegsToPass.push_back(std::make_pair( 7693 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7694 } 7695 } 7696 } 7697 } 7698 7699 if (!MemOpChains.empty()) 7700 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7701 7702 // For indirect calls, we need to save the TOC base to the stack for 7703 // restoration after the call. 7704 if (CFlags.IsIndirect) { 7705 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7706 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7707 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7708 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7709 const unsigned TOCSaveOffset = 7710 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7711 7712 setUsesTOCBasePtr(DAG); 7713 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7714 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7715 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7716 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7717 Chain = DAG.getStore( 7718 Val.getValue(1), dl, Val, AddPtr, 7719 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7720 } 7721 7722 // Build a sequence of copy-to-reg nodes chained together with token chain 7723 // and flag operands which copy the outgoing args into the appropriate regs. 7724 SDValue InFlag; 7725 for (auto Reg : RegsToPass) { 7726 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7727 InFlag = Chain.getValue(1); 7728 } 7729 7730 const int SPDiff = 0; 7731 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7732 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7733 } 7734 7735 bool 7736 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7737 MachineFunction &MF, bool isVarArg, 7738 const SmallVectorImpl<ISD::OutputArg> &Outs, 7739 LLVMContext &Context) const { 7740 SmallVector<CCValAssign, 16> RVLocs; 7741 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7742 return CCInfo.CheckReturn( 7743 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7744 ? RetCC_PPC_Cold 7745 : RetCC_PPC); 7746 } 7747 7748 SDValue 7749 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7750 bool isVarArg, 7751 const SmallVectorImpl<ISD::OutputArg> &Outs, 7752 const SmallVectorImpl<SDValue> &OutVals, 7753 const SDLoc &dl, SelectionDAG &DAG) const { 7754 SmallVector<CCValAssign, 16> RVLocs; 7755 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7756 *DAG.getContext()); 7757 CCInfo.AnalyzeReturn(Outs, 7758 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7759 ? RetCC_PPC_Cold 7760 : RetCC_PPC); 7761 7762 SDValue Flag; 7763 SmallVector<SDValue, 4> RetOps(1, Chain); 7764 7765 // Copy the result values into the output registers. 7766 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7767 CCValAssign &VA = RVLocs[i]; 7768 assert(VA.isRegLoc() && "Can only return in registers!"); 7769 7770 SDValue Arg = OutVals[RealResIdx]; 7771 7772 switch (VA.getLocInfo()) { 7773 default: llvm_unreachable("Unknown loc info!"); 7774 case CCValAssign::Full: break; 7775 case CCValAssign::AExt: 7776 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7777 break; 7778 case CCValAssign::ZExt: 7779 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7780 break; 7781 case CCValAssign::SExt: 7782 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7783 break; 7784 } 7785 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7786 bool isLittleEndian = Subtarget.isLittleEndian(); 7787 // Legalize ret f64 -> ret 2 x i32. 7788 SDValue SVal = 7789 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7790 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7791 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7792 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7793 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7794 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7795 Flag = Chain.getValue(1); 7796 VA = RVLocs[++i]; // skip ahead to next loc 7797 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7798 } else 7799 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7800 Flag = Chain.getValue(1); 7801 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7802 } 7803 7804 RetOps[0] = Chain; // Update chain. 7805 7806 // Add the flag if we have it. 7807 if (Flag.getNode()) 7808 RetOps.push_back(Flag); 7809 7810 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7811 } 7812 7813 SDValue 7814 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7815 SelectionDAG &DAG) const { 7816 SDLoc dl(Op); 7817 7818 // Get the correct type for integers. 7819 EVT IntVT = Op.getValueType(); 7820 7821 // Get the inputs. 7822 SDValue Chain = Op.getOperand(0); 7823 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7824 // Build a DYNAREAOFFSET node. 7825 SDValue Ops[2] = {Chain, FPSIdx}; 7826 SDVTList VTs = DAG.getVTList(IntVT); 7827 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7828 } 7829 7830 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7831 SelectionDAG &DAG) const { 7832 // When we pop the dynamic allocation we need to restore the SP link. 7833 SDLoc dl(Op); 7834 7835 // Get the correct type for pointers. 7836 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7837 7838 // Construct the stack pointer operand. 7839 bool isPPC64 = Subtarget.isPPC64(); 7840 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7841 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7842 7843 // Get the operands for the STACKRESTORE. 7844 SDValue Chain = Op.getOperand(0); 7845 SDValue SaveSP = Op.getOperand(1); 7846 7847 // Load the old link SP. 7848 SDValue LoadLinkSP = 7849 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7850 7851 // Restore the stack pointer. 7852 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7853 7854 // Store the old link SP. 7855 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7856 } 7857 7858 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7859 MachineFunction &MF = DAG.getMachineFunction(); 7860 bool isPPC64 = Subtarget.isPPC64(); 7861 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7862 7863 // Get current frame pointer save index. The users of this index will be 7864 // primarily DYNALLOC instructions. 7865 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7866 int RASI = FI->getReturnAddrSaveIndex(); 7867 7868 // If the frame pointer save index hasn't been defined yet. 7869 if (!RASI) { 7870 // Find out what the fix offset of the frame pointer save area. 7871 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7872 // Allocate the frame index for frame pointer save area. 7873 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7874 // Save the result. 7875 FI->setReturnAddrSaveIndex(RASI); 7876 } 7877 return DAG.getFrameIndex(RASI, PtrVT); 7878 } 7879 7880 SDValue 7881 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7882 MachineFunction &MF = DAG.getMachineFunction(); 7883 bool isPPC64 = Subtarget.isPPC64(); 7884 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7885 7886 // Get current frame pointer save index. The users of this index will be 7887 // primarily DYNALLOC instructions. 7888 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7889 int FPSI = FI->getFramePointerSaveIndex(); 7890 7891 // If the frame pointer save index hasn't been defined yet. 7892 if (!FPSI) { 7893 // Find out what the fix offset of the frame pointer save area. 7894 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7895 // Allocate the frame index for frame pointer save area. 7896 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7897 // Save the result. 7898 FI->setFramePointerSaveIndex(FPSI); 7899 } 7900 return DAG.getFrameIndex(FPSI, PtrVT); 7901 } 7902 7903 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7904 SelectionDAG &DAG) const { 7905 MachineFunction &MF = DAG.getMachineFunction(); 7906 // Get the inputs. 7907 SDValue Chain = Op.getOperand(0); 7908 SDValue Size = Op.getOperand(1); 7909 SDLoc dl(Op); 7910 7911 // Get the correct type for pointers. 7912 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7913 // Negate the size. 7914 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7915 DAG.getConstant(0, dl, PtrVT), Size); 7916 // Construct a node for the frame pointer save index. 7917 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7918 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7919 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7920 if (hasInlineStackProbe(MF)) 7921 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7922 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7923 } 7924 7925 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7926 SelectionDAG &DAG) const { 7927 MachineFunction &MF = DAG.getMachineFunction(); 7928 7929 bool isPPC64 = Subtarget.isPPC64(); 7930 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7931 7932 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7933 return DAG.getFrameIndex(FI, PtrVT); 7934 } 7935 7936 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7937 SelectionDAG &DAG) const { 7938 SDLoc DL(Op); 7939 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7940 DAG.getVTList(MVT::i32, MVT::Other), 7941 Op.getOperand(0), Op.getOperand(1)); 7942 } 7943 7944 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7945 SelectionDAG &DAG) const { 7946 SDLoc DL(Op); 7947 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7948 Op.getOperand(0), Op.getOperand(1)); 7949 } 7950 7951 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7952 if (Op.getValueType().isVector()) 7953 return LowerVectorLoad(Op, DAG); 7954 7955 assert(Op.getValueType() == MVT::i1 && 7956 "Custom lowering only for i1 loads"); 7957 7958 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7959 7960 SDLoc dl(Op); 7961 LoadSDNode *LD = cast<LoadSDNode>(Op); 7962 7963 SDValue Chain = LD->getChain(); 7964 SDValue BasePtr = LD->getBasePtr(); 7965 MachineMemOperand *MMO = LD->getMemOperand(); 7966 7967 SDValue NewLD = 7968 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7969 BasePtr, MVT::i8, MMO); 7970 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7971 7972 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7973 return DAG.getMergeValues(Ops, dl); 7974 } 7975 7976 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7977 if (Op.getOperand(1).getValueType().isVector()) 7978 return LowerVectorStore(Op, DAG); 7979 7980 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7981 "Custom lowering only for i1 stores"); 7982 7983 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7984 7985 SDLoc dl(Op); 7986 StoreSDNode *ST = cast<StoreSDNode>(Op); 7987 7988 SDValue Chain = ST->getChain(); 7989 SDValue BasePtr = ST->getBasePtr(); 7990 SDValue Value = ST->getValue(); 7991 MachineMemOperand *MMO = ST->getMemOperand(); 7992 7993 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7994 Value); 7995 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7996 } 7997 7998 // FIXME: Remove this once the ANDI glue bug is fixed: 7999 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8000 assert(Op.getValueType() == MVT::i1 && 8001 "Custom lowering only for i1 results"); 8002 8003 SDLoc DL(Op); 8004 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8005 } 8006 8007 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8008 SelectionDAG &DAG) const { 8009 8010 // Implements a vector truncate that fits in a vector register as a shuffle. 8011 // We want to legalize vector truncates down to where the source fits in 8012 // a vector register (and target is therefore smaller than vector register 8013 // size). At that point legalization will try to custom lower the sub-legal 8014 // result and get here - where we can contain the truncate as a single target 8015 // operation. 8016 8017 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8018 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8019 // 8020 // We will implement it for big-endian ordering as this (where x denotes 8021 // undefined): 8022 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8023 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8024 // 8025 // The same operation in little-endian ordering will be: 8026 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8027 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8028 8029 EVT TrgVT = Op.getValueType(); 8030 assert(TrgVT.isVector() && "Vector type expected."); 8031 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8032 EVT EltVT = TrgVT.getVectorElementType(); 8033 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 8034 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 8035 !isPowerOf2_32(EltVT.getSizeInBits())) 8036 return SDValue(); 8037 8038 SDValue N1 = Op.getOperand(0); 8039 EVT SrcVT = N1.getValueType(); 8040 unsigned SrcSize = SrcVT.getSizeInBits(); 8041 if (SrcSize > 256 || 8042 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 8043 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 8044 return SDValue(); 8045 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 8046 return SDValue(); 8047 8048 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8049 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8050 8051 SDLoc DL(Op); 8052 SDValue Op1, Op2; 8053 if (SrcSize == 256) { 8054 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 8055 EVT SplitVT = 8056 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 8057 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 8058 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8059 DAG.getConstant(0, DL, VecIdxTy)); 8060 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 8061 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 8062 } 8063 else { 8064 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8065 Op2 = DAG.getUNDEF(WideVT); 8066 } 8067 8068 // First list the elements we want to keep. 8069 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8070 SmallVector<int, 16> ShuffV; 8071 if (Subtarget.isLittleEndian()) 8072 for (unsigned i = 0; i < TrgNumElts; ++i) 8073 ShuffV.push_back(i * SizeMult); 8074 else 8075 for (unsigned i = 1; i <= TrgNumElts; ++i) 8076 ShuffV.push_back(i * SizeMult - 1); 8077 8078 // Populate the remaining elements with undefs. 8079 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8080 // ShuffV.push_back(i + WideNumElts); 8081 ShuffV.push_back(WideNumElts + 1); 8082 8083 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 8084 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 8085 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 8086 } 8087 8088 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8089 /// possible. 8090 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8091 // Not FP, or using SPE? Not a fsel. 8092 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8093 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 8094 return Op; 8095 8096 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8097 8098 EVT ResVT = Op.getValueType(); 8099 EVT CmpVT = Op.getOperand(0).getValueType(); 8100 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8101 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8102 SDLoc dl(Op); 8103 SDNodeFlags Flags = Op.getNode()->getFlags(); 8104 8105 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8106 // presence of infinities. 8107 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8108 switch (CC) { 8109 default: 8110 break; 8111 case ISD::SETOGT: 8112 case ISD::SETGT: 8113 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8114 case ISD::SETOLT: 8115 case ISD::SETLT: 8116 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8117 } 8118 } 8119 8120 // We might be able to do better than this under some circumstances, but in 8121 // general, fsel-based lowering of select is a finite-math-only optimization. 8122 // For more information, see section F.3 of the 2.06 ISA specification. 8123 // With ISA 3.0 8124 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8125 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8126 return Op; 8127 8128 // If the RHS of the comparison is a 0.0, we don't need to do the 8129 // subtraction at all. 8130 SDValue Sel1; 8131 if (isFloatingPointZero(RHS)) 8132 switch (CC) { 8133 default: break; // SETUO etc aren't handled by fsel. 8134 case ISD::SETNE: 8135 std::swap(TV, FV); 8136 LLVM_FALLTHROUGH; 8137 case ISD::SETEQ: 8138 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8139 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8140 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8141 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8142 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8143 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8144 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8145 case ISD::SETULT: 8146 case ISD::SETLT: 8147 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8148 LLVM_FALLTHROUGH; 8149 case ISD::SETOGE: 8150 case ISD::SETGE: 8151 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8152 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8153 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8154 case ISD::SETUGT: 8155 case ISD::SETGT: 8156 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8157 LLVM_FALLTHROUGH; 8158 case ISD::SETOLE: 8159 case ISD::SETLE: 8160 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8161 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8162 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8163 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8164 } 8165 8166 SDValue Cmp; 8167 switch (CC) { 8168 default: break; // SETUO etc aren't handled by fsel. 8169 case ISD::SETNE: 8170 std::swap(TV, FV); 8171 LLVM_FALLTHROUGH; 8172 case ISD::SETEQ: 8173 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8174 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8175 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8176 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8177 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8178 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8179 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8180 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8181 case ISD::SETULT: 8182 case ISD::SETLT: 8183 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8184 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8185 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8186 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8187 case ISD::SETOGE: 8188 case ISD::SETGE: 8189 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8190 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8191 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8192 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8193 case ISD::SETUGT: 8194 case ISD::SETGT: 8195 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8196 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8197 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8198 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8199 case ISD::SETOLE: 8200 case ISD::SETLE: 8201 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8202 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8203 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8204 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8205 } 8206 return Op; 8207 } 8208 8209 static unsigned getPPCStrictOpcode(unsigned Opc) { 8210 switch (Opc) { 8211 default: 8212 llvm_unreachable("No strict version of this opcode!"); 8213 case PPCISD::FCTIDZ: 8214 return PPCISD::STRICT_FCTIDZ; 8215 case PPCISD::FCTIWZ: 8216 return PPCISD::STRICT_FCTIWZ; 8217 case PPCISD::FCTIDUZ: 8218 return PPCISD::STRICT_FCTIDUZ; 8219 case PPCISD::FCTIWUZ: 8220 return PPCISD::STRICT_FCTIWUZ; 8221 case PPCISD::FCFID: 8222 return PPCISD::STRICT_FCFID; 8223 case PPCISD::FCFIDU: 8224 return PPCISD::STRICT_FCFIDU; 8225 case PPCISD::FCFIDS: 8226 return PPCISD::STRICT_FCFIDS; 8227 case PPCISD::FCFIDUS: 8228 return PPCISD::STRICT_FCFIDUS; 8229 } 8230 } 8231 8232 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8233 const PPCSubtarget &Subtarget) { 8234 SDLoc dl(Op); 8235 bool IsStrict = Op->isStrictFPOpcode(); 8236 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8237 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8238 8239 // TODO: Any other flags to propagate? 8240 SDNodeFlags Flags; 8241 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8242 8243 // For strict nodes, source is the second operand. 8244 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8245 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8246 assert(Src.getValueType().isFloatingPoint()); 8247 if (Src.getValueType() == MVT::f32) { 8248 if (IsStrict) { 8249 Src = 8250 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8251 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8252 Chain = Src.getValue(1); 8253 } else 8254 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8255 } 8256 SDValue Conv; 8257 unsigned Opc = ISD::DELETED_NODE; 8258 switch (Op.getSimpleValueType().SimpleTy) { 8259 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8260 case MVT::i32: 8261 Opc = IsSigned ? PPCISD::FCTIWZ 8262 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8263 break; 8264 case MVT::i64: 8265 assert((IsSigned || Subtarget.hasFPCVT()) && 8266 "i64 FP_TO_UINT is supported only with FPCVT"); 8267 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8268 } 8269 if (IsStrict) { 8270 Opc = getPPCStrictOpcode(Opc); 8271 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8272 {Chain, Src}, Flags); 8273 } else { 8274 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8275 } 8276 return Conv; 8277 } 8278 8279 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8280 SelectionDAG &DAG, 8281 const SDLoc &dl) const { 8282 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8283 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8284 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8285 bool IsStrict = Op->isStrictFPOpcode(); 8286 8287 // Convert the FP value to an int value through memory. 8288 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8289 (IsSigned || Subtarget.hasFPCVT()); 8290 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8291 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8292 MachinePointerInfo MPI = 8293 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8294 8295 // Emit a store to the stack slot. 8296 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8297 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8298 if (i32Stack) { 8299 MachineFunction &MF = DAG.getMachineFunction(); 8300 Alignment = Align(4); 8301 MachineMemOperand *MMO = 8302 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8303 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8304 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8305 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8306 } else 8307 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8308 8309 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8310 // add in a bias on big endian. 8311 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8312 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8313 DAG.getConstant(4, dl, FIPtr.getValueType())); 8314 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8315 } 8316 8317 RLI.Chain = Chain; 8318 RLI.Ptr = FIPtr; 8319 RLI.MPI = MPI; 8320 RLI.Alignment = Alignment; 8321 } 8322 8323 /// Custom lowers floating point to integer conversions to use 8324 /// the direct move instructions available in ISA 2.07 to avoid the 8325 /// need for load/store combinations. 8326 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8327 SelectionDAG &DAG, 8328 const SDLoc &dl) const { 8329 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8330 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8331 if (Op->isStrictFPOpcode()) 8332 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8333 else 8334 return Mov; 8335 } 8336 8337 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8338 const SDLoc &dl) const { 8339 bool IsStrict = Op->isStrictFPOpcode(); 8340 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8341 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8342 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8343 EVT SrcVT = Src.getValueType(); 8344 EVT DstVT = Op.getValueType(); 8345 8346 // FP to INT conversions are legal for f128. 8347 if (SrcVT == MVT::f128) 8348 return Op; 8349 8350 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8351 // PPC (the libcall is not available). 8352 if (SrcVT == MVT::ppcf128) { 8353 if (DstVT == MVT::i32) { 8354 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8355 // set other fast-math flags to FP operations in both strict and 8356 // non-strict cases. (FP_TO_SINT, FSUB) 8357 SDNodeFlags Flags; 8358 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8359 8360 if (IsSigned) { 8361 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8362 DAG.getIntPtrConstant(0, dl)); 8363 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8364 DAG.getIntPtrConstant(1, dl)); 8365 8366 // Add the two halves of the long double in round-to-zero mode, and use 8367 // a smaller FP_TO_SINT. 8368 if (IsStrict) { 8369 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8370 DAG.getVTList(MVT::f64, MVT::Other), 8371 {Op.getOperand(0), Lo, Hi}, Flags); 8372 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8373 DAG.getVTList(MVT::i32, MVT::Other), 8374 {Res.getValue(1), Res}, Flags); 8375 } else { 8376 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8377 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8378 } 8379 } else { 8380 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8381 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8382 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8383 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8384 if (IsStrict) { 8385 // Sel = Src < 0x80000000 8386 // FltOfs = select Sel, 0.0, 0x80000000 8387 // IntOfs = select Sel, 0, 0x80000000 8388 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8389 SDValue Chain = Op.getOperand(0); 8390 EVT SetCCVT = 8391 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8392 EVT DstSetCCVT = 8393 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8394 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8395 Chain, true); 8396 Chain = Sel.getValue(1); 8397 8398 SDValue FltOfs = DAG.getSelect( 8399 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8400 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8401 8402 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8403 DAG.getVTList(SrcVT, MVT::Other), 8404 {Chain, Src, FltOfs}, Flags); 8405 Chain = Val.getValue(1); 8406 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8407 DAG.getVTList(DstVT, MVT::Other), 8408 {Chain, Val}, Flags); 8409 Chain = SInt.getValue(1); 8410 SDValue IntOfs = DAG.getSelect( 8411 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8412 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8413 return DAG.getMergeValues({Result, Chain}, dl); 8414 } else { 8415 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8416 // FIXME: generated code sucks. 8417 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8418 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8419 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8420 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8421 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8422 } 8423 } 8424 } 8425 8426 return SDValue(); 8427 } 8428 8429 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8430 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8431 8432 ReuseLoadInfo RLI; 8433 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8434 8435 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8436 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8437 } 8438 8439 // We're trying to insert a regular store, S, and then a load, L. If the 8440 // incoming value, O, is a load, we might just be able to have our load use the 8441 // address used by O. However, we don't know if anything else will store to 8442 // that address before we can load from it. To prevent this situation, we need 8443 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8444 // the same chain operand as O, we create a token factor from the chain results 8445 // of O and L, and we replace all uses of O's chain result with that token 8446 // factor (see spliceIntoChain below for this last part). 8447 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8448 ReuseLoadInfo &RLI, 8449 SelectionDAG &DAG, 8450 ISD::LoadExtType ET) const { 8451 // Conservatively skip reusing for constrained FP nodes. 8452 if (Op->isStrictFPOpcode()) 8453 return false; 8454 8455 SDLoc dl(Op); 8456 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8457 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8458 if (ET == ISD::NON_EXTLOAD && 8459 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8460 isOperationLegalOrCustom(Op.getOpcode(), 8461 Op.getOperand(0).getValueType())) { 8462 8463 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8464 return true; 8465 } 8466 8467 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8468 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8469 LD->isNonTemporal()) 8470 return false; 8471 if (LD->getMemoryVT() != MemVT) 8472 return false; 8473 8474 // If the result of the load is an illegal type, then we can't build a 8475 // valid chain for reuse since the legalised loads and token factor node that 8476 // ties the legalised loads together uses a different output chain then the 8477 // illegal load. 8478 if (!isTypeLegal(LD->getValueType(0))) 8479 return false; 8480 8481 RLI.Ptr = LD->getBasePtr(); 8482 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8483 assert(LD->getAddressingMode() == ISD::PRE_INC && 8484 "Non-pre-inc AM on PPC?"); 8485 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8486 LD->getOffset()); 8487 } 8488 8489 RLI.Chain = LD->getChain(); 8490 RLI.MPI = LD->getPointerInfo(); 8491 RLI.IsDereferenceable = LD->isDereferenceable(); 8492 RLI.IsInvariant = LD->isInvariant(); 8493 RLI.Alignment = LD->getAlign(); 8494 RLI.AAInfo = LD->getAAInfo(); 8495 RLI.Ranges = LD->getRanges(); 8496 8497 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8498 return true; 8499 } 8500 8501 // Given the head of the old chain, ResChain, insert a token factor containing 8502 // it and NewResChain, and make users of ResChain now be users of that token 8503 // factor. 8504 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8505 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8506 SDValue NewResChain, 8507 SelectionDAG &DAG) const { 8508 if (!ResChain) 8509 return; 8510 8511 SDLoc dl(NewResChain); 8512 8513 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8514 NewResChain, DAG.getUNDEF(MVT::Other)); 8515 assert(TF.getNode() != NewResChain.getNode() && 8516 "A new TF really is required here"); 8517 8518 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8519 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8520 } 8521 8522 /// Analyze profitability of direct move 8523 /// prefer float load to int load plus direct move 8524 /// when there is no integer use of int load 8525 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8526 SDNode *Origin = Op.getOperand(0).getNode(); 8527 if (Origin->getOpcode() != ISD::LOAD) 8528 return true; 8529 8530 // If there is no LXSIBZX/LXSIHZX, like Power8, 8531 // prefer direct move if the memory size is 1 or 2 bytes. 8532 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8533 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8534 return true; 8535 8536 for (SDNode::use_iterator UI = Origin->use_begin(), 8537 UE = Origin->use_end(); 8538 UI != UE; ++UI) { 8539 8540 // Only look at the users of the loaded value. 8541 if (UI.getUse().get().getResNo() != 0) 8542 continue; 8543 8544 if (UI->getOpcode() != ISD::SINT_TO_FP && 8545 UI->getOpcode() != ISD::UINT_TO_FP && 8546 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8547 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8548 return true; 8549 } 8550 8551 return false; 8552 } 8553 8554 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8555 const PPCSubtarget &Subtarget, 8556 SDValue Chain = SDValue()) { 8557 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8558 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8559 SDLoc dl(Op); 8560 8561 // TODO: Any other flags to propagate? 8562 SDNodeFlags Flags; 8563 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8564 8565 // If we have FCFIDS, then use it when converting to single-precision. 8566 // Otherwise, convert to double-precision and then round. 8567 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8568 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8569 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8570 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8571 if (Op->isStrictFPOpcode()) { 8572 if (!Chain) 8573 Chain = Op.getOperand(0); 8574 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8575 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8576 } else 8577 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8578 } 8579 8580 /// Custom lowers integer to floating point conversions to use 8581 /// the direct move instructions available in ISA 2.07 to avoid the 8582 /// need for load/store combinations. 8583 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8584 SelectionDAG &DAG, 8585 const SDLoc &dl) const { 8586 assert((Op.getValueType() == MVT::f32 || 8587 Op.getValueType() == MVT::f64) && 8588 "Invalid floating point type as target of conversion"); 8589 assert(Subtarget.hasFPCVT() && 8590 "Int to FP conversions with direct moves require FPCVT"); 8591 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8592 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8593 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8594 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8595 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8596 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8597 return convertIntToFP(Op, Mov, DAG, Subtarget); 8598 } 8599 8600 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8601 8602 EVT VecVT = Vec.getValueType(); 8603 assert(VecVT.isVector() && "Expected a vector type."); 8604 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8605 8606 EVT EltVT = VecVT.getVectorElementType(); 8607 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8608 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8609 8610 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8611 SmallVector<SDValue, 16> Ops(NumConcat); 8612 Ops[0] = Vec; 8613 SDValue UndefVec = DAG.getUNDEF(VecVT); 8614 for (unsigned i = 1; i < NumConcat; ++i) 8615 Ops[i] = UndefVec; 8616 8617 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8618 } 8619 8620 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8621 const SDLoc &dl) const { 8622 bool IsStrict = Op->isStrictFPOpcode(); 8623 unsigned Opc = Op.getOpcode(); 8624 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8625 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8626 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8627 "Unexpected conversion type"); 8628 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8629 "Supports conversions to v2f64/v4f32 only."); 8630 8631 // TODO: Any other flags to propagate? 8632 SDNodeFlags Flags; 8633 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8634 8635 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8636 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8637 8638 SDValue Wide = widenVec(DAG, Src, dl); 8639 EVT WideVT = Wide.getValueType(); 8640 unsigned WideNumElts = WideVT.getVectorNumElements(); 8641 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8642 8643 SmallVector<int, 16> ShuffV; 8644 for (unsigned i = 0; i < WideNumElts; ++i) 8645 ShuffV.push_back(i + WideNumElts); 8646 8647 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8648 int SaveElts = FourEltRes ? 4 : 2; 8649 if (Subtarget.isLittleEndian()) 8650 for (int i = 0; i < SaveElts; i++) 8651 ShuffV[i * Stride] = i; 8652 else 8653 for (int i = 1; i <= SaveElts; i++) 8654 ShuffV[i * Stride - 1] = i - 1; 8655 8656 SDValue ShuffleSrc2 = 8657 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8658 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8659 8660 SDValue Extend; 8661 if (SignedConv) { 8662 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8663 EVT ExtVT = Src.getValueType(); 8664 if (Subtarget.hasP9Altivec()) 8665 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8666 IntermediateVT.getVectorNumElements()); 8667 8668 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8669 DAG.getValueType(ExtVT)); 8670 } else 8671 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8672 8673 if (IsStrict) 8674 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8675 {Op.getOperand(0), Extend}, Flags); 8676 8677 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8678 } 8679 8680 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8681 SelectionDAG &DAG) const { 8682 SDLoc dl(Op); 8683 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8684 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8685 bool IsStrict = Op->isStrictFPOpcode(); 8686 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8687 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8688 8689 // TODO: Any other flags to propagate? 8690 SDNodeFlags Flags; 8691 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8692 8693 EVT InVT = Src.getValueType(); 8694 EVT OutVT = Op.getValueType(); 8695 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8696 isOperationCustom(Op.getOpcode(), InVT)) 8697 return LowerINT_TO_FPVector(Op, DAG, dl); 8698 8699 // Conversions to f128 are legal. 8700 if (Op.getValueType() == MVT::f128) 8701 return Op; 8702 8703 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8704 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8705 return SDValue(); 8706 8707 if (Src.getValueType() == MVT::i1) 8708 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8709 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8710 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8711 8712 // If we have direct moves, we can do all the conversion, skip the store/load 8713 // however, without FPCVT we can't do most conversions. 8714 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8715 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8716 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8717 8718 assert((IsSigned || Subtarget.hasFPCVT()) && 8719 "UINT_TO_FP is supported only with FPCVT"); 8720 8721 if (Src.getValueType() == MVT::i64) { 8722 SDValue SINT = Src; 8723 // When converting to single-precision, we actually need to convert 8724 // to double-precision first and then round to single-precision. 8725 // To avoid double-rounding effects during that operation, we have 8726 // to prepare the input operand. Bits that might be truncated when 8727 // converting to double-precision are replaced by a bit that won't 8728 // be lost at this stage, but is below the single-precision rounding 8729 // position. 8730 // 8731 // However, if -enable-unsafe-fp-math is in effect, accept double 8732 // rounding to avoid the extra overhead. 8733 if (Op.getValueType() == MVT::f32 && 8734 !Subtarget.hasFPCVT() && 8735 !DAG.getTarget().Options.UnsafeFPMath) { 8736 8737 // Twiddle input to make sure the low 11 bits are zero. (If this 8738 // is the case, we are guaranteed the value will fit into the 53 bit 8739 // mantissa of an IEEE double-precision value without rounding.) 8740 // If any of those low 11 bits were not zero originally, make sure 8741 // bit 12 (value 2048) is set instead, so that the final rounding 8742 // to single-precision gets the correct result. 8743 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8744 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8745 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8746 Round, DAG.getConstant(2047, dl, MVT::i64)); 8747 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8748 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8749 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8750 8751 // However, we cannot use that value unconditionally: if the magnitude 8752 // of the input value is small, the bit-twiddling we did above might 8753 // end up visibly changing the output. Fortunately, in that case, we 8754 // don't need to twiddle bits since the original input will convert 8755 // exactly to double-precision floating-point already. Therefore, 8756 // construct a conditional to use the original value if the top 11 8757 // bits are all sign-bit copies, and use the rounded value computed 8758 // above otherwise. 8759 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8760 SINT, DAG.getConstant(53, dl, MVT::i32)); 8761 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8762 Cond, DAG.getConstant(1, dl, MVT::i64)); 8763 Cond = DAG.getSetCC( 8764 dl, 8765 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8766 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8767 8768 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8769 } 8770 8771 ReuseLoadInfo RLI; 8772 SDValue Bits; 8773 8774 MachineFunction &MF = DAG.getMachineFunction(); 8775 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8776 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8777 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8778 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8779 } else if (Subtarget.hasLFIWAX() && 8780 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8781 MachineMemOperand *MMO = 8782 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8783 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8784 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8785 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8786 DAG.getVTList(MVT::f64, MVT::Other), 8787 Ops, MVT::i32, MMO); 8788 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8789 } else if (Subtarget.hasFPCVT() && 8790 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8791 MachineMemOperand *MMO = 8792 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8793 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8794 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8795 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8796 DAG.getVTList(MVT::f64, MVT::Other), 8797 Ops, MVT::i32, MMO); 8798 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8799 } else if (((Subtarget.hasLFIWAX() && 8800 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8801 (Subtarget.hasFPCVT() && 8802 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8803 SINT.getOperand(0).getValueType() == MVT::i32) { 8804 MachineFrameInfo &MFI = MF.getFrameInfo(); 8805 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8806 8807 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8808 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8809 8810 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8811 MachinePointerInfo::getFixedStack( 8812 DAG.getMachineFunction(), FrameIdx)); 8813 Chain = Store; 8814 8815 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8816 "Expected an i32 store"); 8817 8818 RLI.Ptr = FIdx; 8819 RLI.Chain = Chain; 8820 RLI.MPI = 8821 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8822 RLI.Alignment = Align(4); 8823 8824 MachineMemOperand *MMO = 8825 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8826 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8827 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8828 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8829 PPCISD::LFIWZX : PPCISD::LFIWAX, 8830 dl, DAG.getVTList(MVT::f64, MVT::Other), 8831 Ops, MVT::i32, MMO); 8832 Chain = Bits.getValue(1); 8833 } else 8834 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8835 8836 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8837 if (IsStrict) 8838 Chain = FP.getValue(1); 8839 8840 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8841 if (IsStrict) 8842 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8843 DAG.getVTList(MVT::f32, MVT::Other), 8844 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8845 else 8846 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8847 DAG.getIntPtrConstant(0, dl)); 8848 } 8849 return FP; 8850 } 8851 8852 assert(Src.getValueType() == MVT::i32 && 8853 "Unhandled INT_TO_FP type in custom expander!"); 8854 // Since we only generate this in 64-bit mode, we can take advantage of 8855 // 64-bit registers. In particular, sign extend the input value into the 8856 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8857 // then lfd it and fcfid it. 8858 MachineFunction &MF = DAG.getMachineFunction(); 8859 MachineFrameInfo &MFI = MF.getFrameInfo(); 8860 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8861 8862 SDValue Ld; 8863 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8864 ReuseLoadInfo RLI; 8865 bool ReusingLoad; 8866 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8867 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8868 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8869 8870 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8871 MachinePointerInfo::getFixedStack( 8872 DAG.getMachineFunction(), FrameIdx)); 8873 Chain = Store; 8874 8875 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8876 "Expected an i32 store"); 8877 8878 RLI.Ptr = FIdx; 8879 RLI.Chain = Chain; 8880 RLI.MPI = 8881 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8882 RLI.Alignment = Align(4); 8883 } 8884 8885 MachineMemOperand *MMO = 8886 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8887 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8888 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8889 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8890 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8891 MVT::i32, MMO); 8892 Chain = Ld.getValue(1); 8893 if (ReusingLoad) 8894 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8895 } else { 8896 assert(Subtarget.isPPC64() && 8897 "i32->FP without LFIWAX supported only on PPC64"); 8898 8899 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8900 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8901 8902 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8903 8904 // STD the extended value into the stack slot. 8905 SDValue Store = DAG.getStore( 8906 Chain, dl, Ext64, FIdx, 8907 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8908 Chain = Store; 8909 8910 // Load the value as a double. 8911 Ld = DAG.getLoad( 8912 MVT::f64, dl, Chain, FIdx, 8913 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8914 Chain = Ld.getValue(1); 8915 } 8916 8917 // FCFID it and return it. 8918 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8919 if (IsStrict) 8920 Chain = FP.getValue(1); 8921 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8922 if (IsStrict) 8923 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8924 DAG.getVTList(MVT::f32, MVT::Other), 8925 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8926 else 8927 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8928 DAG.getIntPtrConstant(0, dl)); 8929 } 8930 return FP; 8931 } 8932 8933 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8934 SelectionDAG &DAG) const { 8935 SDLoc dl(Op); 8936 /* 8937 The rounding mode is in bits 30:31 of FPSR, and has the following 8938 settings: 8939 00 Round to nearest 8940 01 Round to 0 8941 10 Round to +inf 8942 11 Round to -inf 8943 8944 FLT_ROUNDS, on the other hand, expects the following: 8945 -1 Undefined 8946 0 Round to 0 8947 1 Round to nearest 8948 2 Round to +inf 8949 3 Round to -inf 8950 8951 To perform the conversion, we do: 8952 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8953 */ 8954 8955 MachineFunction &MF = DAG.getMachineFunction(); 8956 EVT VT = Op.getValueType(); 8957 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8958 8959 // Save FP Control Word to register 8960 SDValue Chain = Op.getOperand(0); 8961 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8962 Chain = MFFS.getValue(1); 8963 8964 // Save FP register to stack slot 8965 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8966 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8967 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8968 8969 // Load FP Control Word from low 32 bits of stack slot. 8970 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8971 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8972 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8973 Chain = CWD.getValue(1); 8974 8975 // Transform as necessary 8976 SDValue CWD1 = 8977 DAG.getNode(ISD::AND, dl, MVT::i32, 8978 CWD, DAG.getConstant(3, dl, MVT::i32)); 8979 SDValue CWD2 = 8980 DAG.getNode(ISD::SRL, dl, MVT::i32, 8981 DAG.getNode(ISD::AND, dl, MVT::i32, 8982 DAG.getNode(ISD::XOR, dl, MVT::i32, 8983 CWD, DAG.getConstant(3, dl, MVT::i32)), 8984 DAG.getConstant(3, dl, MVT::i32)), 8985 DAG.getConstant(1, dl, MVT::i32)); 8986 8987 SDValue RetVal = 8988 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8989 8990 RetVal = 8991 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8992 dl, VT, RetVal); 8993 8994 return DAG.getMergeValues({RetVal, Chain}, dl); 8995 } 8996 8997 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8998 EVT VT = Op.getValueType(); 8999 unsigned BitWidth = VT.getSizeInBits(); 9000 SDLoc dl(Op); 9001 assert(Op.getNumOperands() == 3 && 9002 VT == Op.getOperand(1).getValueType() && 9003 "Unexpected SHL!"); 9004 9005 // Expand into a bunch of logical ops. Note that these ops 9006 // depend on the PPC behavior for oversized shift amounts. 9007 SDValue Lo = Op.getOperand(0); 9008 SDValue Hi = Op.getOperand(1); 9009 SDValue Amt = Op.getOperand(2); 9010 EVT AmtVT = Amt.getValueType(); 9011 9012 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9013 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9014 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 9015 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 9016 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 9017 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9018 DAG.getConstant(-BitWidth, dl, AmtVT)); 9019 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 9020 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9021 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 9022 SDValue OutOps[] = { OutLo, OutHi }; 9023 return DAG.getMergeValues(OutOps, dl); 9024 } 9025 9026 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 9027 EVT VT = Op.getValueType(); 9028 SDLoc dl(Op); 9029 unsigned BitWidth = VT.getSizeInBits(); 9030 assert(Op.getNumOperands() == 3 && 9031 VT == Op.getOperand(1).getValueType() && 9032 "Unexpected SRL!"); 9033 9034 // Expand into a bunch of logical ops. Note that these ops 9035 // depend on the PPC behavior for oversized shift amounts. 9036 SDValue Lo = Op.getOperand(0); 9037 SDValue Hi = Op.getOperand(1); 9038 SDValue Amt = Op.getOperand(2); 9039 EVT AmtVT = Amt.getValueType(); 9040 9041 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9042 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9043 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9044 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9045 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9046 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9047 DAG.getConstant(-BitWidth, dl, AmtVT)); 9048 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 9049 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 9050 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 9051 SDValue OutOps[] = { OutLo, OutHi }; 9052 return DAG.getMergeValues(OutOps, dl); 9053 } 9054 9055 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 9056 SDLoc dl(Op); 9057 EVT VT = Op.getValueType(); 9058 unsigned BitWidth = VT.getSizeInBits(); 9059 assert(Op.getNumOperands() == 3 && 9060 VT == Op.getOperand(1).getValueType() && 9061 "Unexpected SRA!"); 9062 9063 // Expand into a bunch of logical ops, followed by a select_cc. 9064 SDValue Lo = Op.getOperand(0); 9065 SDValue Hi = Op.getOperand(1); 9066 SDValue Amt = Op.getOperand(2); 9067 EVT AmtVT = Amt.getValueType(); 9068 9069 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 9070 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 9071 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 9072 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 9073 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9074 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 9075 DAG.getConstant(-BitWidth, dl, AmtVT)); 9076 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 9077 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 9078 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 9079 Tmp4, Tmp6, ISD::SETLE); 9080 SDValue OutOps[] = { OutLo, OutHi }; 9081 return DAG.getMergeValues(OutOps, dl); 9082 } 9083 9084 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 9085 SelectionDAG &DAG) const { 9086 SDLoc dl(Op); 9087 EVT VT = Op.getValueType(); 9088 unsigned BitWidth = VT.getSizeInBits(); 9089 9090 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 9091 SDValue X = Op.getOperand(0); 9092 SDValue Y = Op.getOperand(1); 9093 SDValue Z = Op.getOperand(2); 9094 EVT AmtVT = Z.getValueType(); 9095 9096 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 9097 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 9098 // This is simpler than TargetLowering::expandFunnelShift because we can rely 9099 // on PowerPC shift by BW being well defined. 9100 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 9101 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 9102 SDValue SubZ = 9103 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 9104 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 9105 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 9106 return DAG.getNode(ISD::OR, dl, VT, X, Y); 9107 } 9108 9109 //===----------------------------------------------------------------------===// 9110 // Vector related lowering. 9111 // 9112 9113 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 9114 /// element size of SplatSize. Cast the result to VT. 9115 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 9116 SelectionDAG &DAG, const SDLoc &dl) { 9117 static const MVT VTys[] = { // canonical VT to use for each size. 9118 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 9119 }; 9120 9121 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 9122 9123 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 9124 if (Val == ((1LU << (SplatSize * 8)) - 1)) { 9125 SplatSize = 1; 9126 Val = 0xFF; 9127 } 9128 9129 EVT CanonicalVT = VTys[SplatSize-1]; 9130 9131 // Build a canonical splat for this value. 9132 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 9133 } 9134 9135 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 9136 /// specified intrinsic ID. 9137 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 9138 const SDLoc &dl, EVT DestVT = MVT::Other) { 9139 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 9140 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9141 DAG.getConstant(IID, dl, MVT::i32), Op); 9142 } 9143 9144 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 9145 /// specified intrinsic ID. 9146 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9147 SelectionDAG &DAG, const SDLoc &dl, 9148 EVT DestVT = MVT::Other) { 9149 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9150 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9151 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9152 } 9153 9154 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9155 /// specified intrinsic ID. 9156 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9157 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9158 EVT DestVT = MVT::Other) { 9159 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9160 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9161 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9162 } 9163 9164 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9165 /// amount. The result has the specified value type. 9166 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9167 SelectionDAG &DAG, const SDLoc &dl) { 9168 // Force LHS/RHS to be the right type. 9169 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9170 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9171 9172 int Ops[16]; 9173 for (unsigned i = 0; i != 16; ++i) 9174 Ops[i] = i + Amt; 9175 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9176 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9177 } 9178 9179 /// Do we have an efficient pattern in a .td file for this node? 9180 /// 9181 /// \param V - pointer to the BuildVectorSDNode being matched 9182 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9183 /// 9184 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9185 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9186 /// the opposite is true (expansion is beneficial) are: 9187 /// - The node builds a vector out of integers that are not 32 or 64-bits 9188 /// - The node builds a vector out of constants 9189 /// - The node is a "load-and-splat" 9190 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9191 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9192 bool HasDirectMove, 9193 bool HasP8Vector) { 9194 EVT VecVT = V->getValueType(0); 9195 bool RightType = VecVT == MVT::v2f64 || 9196 (HasP8Vector && VecVT == MVT::v4f32) || 9197 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9198 if (!RightType) 9199 return false; 9200 9201 bool IsSplat = true; 9202 bool IsLoad = false; 9203 SDValue Op0 = V->getOperand(0); 9204 9205 // This function is called in a block that confirms the node is not a constant 9206 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9207 // different constants. 9208 if (V->isConstant()) 9209 return false; 9210 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9211 if (V->getOperand(i).isUndef()) 9212 return false; 9213 // We want to expand nodes that represent load-and-splat even if the 9214 // loaded value is a floating point truncation or conversion to int. 9215 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9216 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9217 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9218 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9219 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9220 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9221 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9222 IsLoad = true; 9223 // If the operands are different or the input is not a load and has more 9224 // uses than just this BV node, then it isn't a splat. 9225 if (V->getOperand(i) != Op0 || 9226 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9227 IsSplat = false; 9228 } 9229 return !(IsSplat && IsLoad); 9230 } 9231 9232 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9233 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9234 9235 SDLoc dl(Op); 9236 SDValue Op0 = Op->getOperand(0); 9237 9238 if ((Op.getValueType() != MVT::f128) || 9239 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9240 (Op0.getOperand(0).getValueType() != MVT::i64) || 9241 (Op0.getOperand(1).getValueType() != MVT::i64)) 9242 return SDValue(); 9243 9244 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9245 Op0.getOperand(1)); 9246 } 9247 9248 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9249 const SDValue *InputLoad = &Op; 9250 if (InputLoad->getOpcode() == ISD::BITCAST) 9251 InputLoad = &InputLoad->getOperand(0); 9252 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9253 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9254 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9255 InputLoad = &InputLoad->getOperand(0); 9256 } 9257 if (InputLoad->getOpcode() != ISD::LOAD) 9258 return nullptr; 9259 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9260 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9261 } 9262 9263 // Convert the argument APFloat to a single precision APFloat if there is no 9264 // loss in information during the conversion to single precision APFloat and the 9265 // resulting number is not a denormal number. Return true if successful. 9266 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9267 APFloat APFloatToConvert = ArgAPFloat; 9268 bool LosesInfo = true; 9269 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9270 &LosesInfo); 9271 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9272 if (Success) 9273 ArgAPFloat = APFloatToConvert; 9274 return Success; 9275 } 9276 9277 // Bitcast the argument APInt to a double and convert it to a single precision 9278 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9279 // argument if there is no loss in information during the conversion from 9280 // double to single precision APFloat and the resulting number is not a denormal 9281 // number. Return true if successful. 9282 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9283 double DpValue = ArgAPInt.bitsToDouble(); 9284 APFloat APFloatDp(DpValue); 9285 bool Success = convertToNonDenormSingle(APFloatDp); 9286 if (Success) 9287 ArgAPInt = APFloatDp.bitcastToAPInt(); 9288 return Success; 9289 } 9290 9291 // If this is a case we can't handle, return null and let the default 9292 // expansion code take care of it. If we CAN select this case, and if it 9293 // selects to a single instruction, return Op. Otherwise, if we can codegen 9294 // this case more efficiently than a constant pool load, lower it to the 9295 // sequence of ops that should be used. 9296 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9297 SelectionDAG &DAG) const { 9298 SDLoc dl(Op); 9299 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9300 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9301 9302 // Check if this is a splat of a constant value. 9303 APInt APSplatBits, APSplatUndef; 9304 unsigned SplatBitSize; 9305 bool HasAnyUndefs; 9306 bool BVNIsConstantSplat = 9307 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9308 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9309 9310 // If it is a splat of a double, check if we can shrink it to a 32 bit 9311 // non-denormal float which when converted back to double gives us the same 9312 // double. This is to exploit the XXSPLTIDP instruction. 9313 if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() && 9314 (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) && 9315 convertToNonDenormSingle(APSplatBits)) { 9316 SDValue SplatNode = DAG.getNode( 9317 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9318 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9319 return DAG.getBitcast(Op.getValueType(), SplatNode); 9320 } 9321 9322 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9323 9324 bool IsPermutedLoad = false; 9325 const SDValue *InputLoad = 9326 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9327 // Handle load-and-splat patterns as we have instructions that will do this 9328 // in one go. 9329 if (InputLoad && DAG.isSplatValue(Op, true)) { 9330 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9331 9332 // We have handling for 4 and 8 byte elements. 9333 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9334 9335 // Checking for a single use of this load, we have to check for vector 9336 // width (128 bits) / ElementSize uses (since each operand of the 9337 // BUILD_VECTOR is a separate use of the value. 9338 unsigned NumUsesOfInputLD = 128 / ElementSize; 9339 for (SDValue BVInOp : Op->ops()) 9340 if (BVInOp.isUndef()) 9341 NumUsesOfInputLD--; 9342 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9343 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9344 ((Subtarget.hasVSX() && ElementSize == 64) || 9345 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9346 SDValue Ops[] = { 9347 LD->getChain(), // Chain 9348 LD->getBasePtr(), // Ptr 9349 DAG.getValueType(Op.getValueType()) // VT 9350 }; 9351 SDValue LdSplt = DAG.getMemIntrinsicNode( 9352 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9353 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9354 // Replace all uses of the output chain of the original load with the 9355 // output chain of the new load. 9356 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9357 LdSplt.getValue(1)); 9358 return LdSplt; 9359 } 9360 } 9361 9362 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9363 // lowered to VSX instructions under certain conditions. 9364 // Without VSX, there is no pattern more efficient than expanding the node. 9365 if (Subtarget.hasVSX() && 9366 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9367 Subtarget.hasP8Vector())) 9368 return Op; 9369 return SDValue(); 9370 } 9371 9372 uint64_t SplatBits = APSplatBits.getZExtValue(); 9373 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9374 unsigned SplatSize = SplatBitSize / 8; 9375 9376 // First, handle single instruction cases. 9377 9378 // All zeros? 9379 if (SplatBits == 0) { 9380 // Canonicalize all zero vectors to be v4i32. 9381 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9382 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9383 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9384 } 9385 return Op; 9386 } 9387 9388 // We have XXSPLTIW for constant splats four bytes wide. 9389 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9390 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9391 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9392 // turned into a 4-byte splat of 0xABABABAB. 9393 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9394 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9395 Op.getValueType(), DAG, dl); 9396 9397 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9398 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9399 dl); 9400 9401 // We have XXSPLTIB for constant splats one byte wide. 9402 if (Subtarget.hasP9Vector() && SplatSize == 1) 9403 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9404 dl); 9405 9406 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9407 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9408 (32-SplatBitSize)); 9409 if (SextVal >= -16 && SextVal <= 15) 9410 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9411 dl); 9412 9413 // Two instruction sequences. 9414 9415 // If this value is in the range [-32,30] and is even, use: 9416 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9417 // If this value is in the range [17,31] and is odd, use: 9418 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9419 // If this value is in the range [-31,-17] and is odd, use: 9420 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9421 // Note the last two are three-instruction sequences. 9422 if (SextVal >= -32 && SextVal <= 31) { 9423 // To avoid having these optimizations undone by constant folding, 9424 // we convert to a pseudo that will be expanded later into one of 9425 // the above forms. 9426 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9427 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9428 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9429 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9430 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9431 if (VT == Op.getValueType()) 9432 return RetVal; 9433 else 9434 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9435 } 9436 9437 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9438 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9439 // for fneg/fabs. 9440 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9441 // Make -1 and vspltisw -1: 9442 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9443 9444 // Make the VSLW intrinsic, computing 0x8000_0000. 9445 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9446 OnesV, DAG, dl); 9447 9448 // xor by OnesV to invert it. 9449 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9450 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9451 } 9452 9453 // Check to see if this is a wide variety of vsplti*, binop self cases. 9454 static const signed char SplatCsts[] = { 9455 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9456 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9457 }; 9458 9459 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9460 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9461 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9462 int i = SplatCsts[idx]; 9463 9464 // Figure out what shift amount will be used by altivec if shifted by i in 9465 // this splat size. 9466 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9467 9468 // vsplti + shl self. 9469 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9470 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9471 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9472 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9473 Intrinsic::ppc_altivec_vslw 9474 }; 9475 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9476 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9477 } 9478 9479 // vsplti + srl self. 9480 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9481 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9482 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9483 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9484 Intrinsic::ppc_altivec_vsrw 9485 }; 9486 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9487 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9488 } 9489 9490 // vsplti + sra self. 9491 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9492 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9493 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9494 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9495 Intrinsic::ppc_altivec_vsraw 9496 }; 9497 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9498 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9499 } 9500 9501 // vsplti + rol self. 9502 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9503 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9504 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9505 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9506 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9507 Intrinsic::ppc_altivec_vrlw 9508 }; 9509 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9510 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9511 } 9512 9513 // t = vsplti c, result = vsldoi t, t, 1 9514 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9515 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9516 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9517 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9518 } 9519 // t = vsplti c, result = vsldoi t, t, 2 9520 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9521 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9522 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9523 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9524 } 9525 // t = vsplti c, result = vsldoi t, t, 3 9526 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9527 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9528 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9529 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9530 } 9531 } 9532 9533 return SDValue(); 9534 } 9535 9536 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9537 /// the specified operations to build the shuffle. 9538 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9539 SDValue RHS, SelectionDAG &DAG, 9540 const SDLoc &dl) { 9541 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9542 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9543 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9544 9545 enum { 9546 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9547 OP_VMRGHW, 9548 OP_VMRGLW, 9549 OP_VSPLTISW0, 9550 OP_VSPLTISW1, 9551 OP_VSPLTISW2, 9552 OP_VSPLTISW3, 9553 OP_VSLDOI4, 9554 OP_VSLDOI8, 9555 OP_VSLDOI12 9556 }; 9557 9558 if (OpNum == OP_COPY) { 9559 if (LHSID == (1*9+2)*9+3) return LHS; 9560 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9561 return RHS; 9562 } 9563 9564 SDValue OpLHS, OpRHS; 9565 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9566 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9567 9568 int ShufIdxs[16]; 9569 switch (OpNum) { 9570 default: llvm_unreachable("Unknown i32 permute!"); 9571 case OP_VMRGHW: 9572 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9573 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9574 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9575 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9576 break; 9577 case OP_VMRGLW: 9578 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9579 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9580 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9581 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9582 break; 9583 case OP_VSPLTISW0: 9584 for (unsigned i = 0; i != 16; ++i) 9585 ShufIdxs[i] = (i&3)+0; 9586 break; 9587 case OP_VSPLTISW1: 9588 for (unsigned i = 0; i != 16; ++i) 9589 ShufIdxs[i] = (i&3)+4; 9590 break; 9591 case OP_VSPLTISW2: 9592 for (unsigned i = 0; i != 16; ++i) 9593 ShufIdxs[i] = (i&3)+8; 9594 break; 9595 case OP_VSPLTISW3: 9596 for (unsigned i = 0; i != 16; ++i) 9597 ShufIdxs[i] = (i&3)+12; 9598 break; 9599 case OP_VSLDOI4: 9600 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9601 case OP_VSLDOI8: 9602 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9603 case OP_VSLDOI12: 9604 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9605 } 9606 EVT VT = OpLHS.getValueType(); 9607 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9608 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9609 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9610 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9611 } 9612 9613 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9614 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9615 /// SDValue. 9616 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9617 SelectionDAG &DAG) const { 9618 const unsigned BytesInVector = 16; 9619 bool IsLE = Subtarget.isLittleEndian(); 9620 SDLoc dl(N); 9621 SDValue V1 = N->getOperand(0); 9622 SDValue V2 = N->getOperand(1); 9623 unsigned ShiftElts = 0, InsertAtByte = 0; 9624 bool Swap = false; 9625 9626 // Shifts required to get the byte we want at element 7. 9627 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9628 0, 15, 14, 13, 12, 11, 10, 9}; 9629 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9630 1, 2, 3, 4, 5, 6, 7, 8}; 9631 9632 ArrayRef<int> Mask = N->getMask(); 9633 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9634 9635 // For each mask element, find out if we're just inserting something 9636 // from V2 into V1 or vice versa. 9637 // Possible permutations inserting an element from V2 into V1: 9638 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9639 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9640 // ... 9641 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9642 // Inserting from V1 into V2 will be similar, except mask range will be 9643 // [16,31]. 9644 9645 bool FoundCandidate = false; 9646 // If both vector operands for the shuffle are the same vector, the mask 9647 // will contain only elements from the first one and the second one will be 9648 // undef. 9649 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9650 // Go through the mask of half-words to find an element that's being moved 9651 // from one vector to the other. 9652 for (unsigned i = 0; i < BytesInVector; ++i) { 9653 unsigned CurrentElement = Mask[i]; 9654 // If 2nd operand is undefined, we should only look for element 7 in the 9655 // Mask. 9656 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9657 continue; 9658 9659 bool OtherElementsInOrder = true; 9660 // Examine the other elements in the Mask to see if they're in original 9661 // order. 9662 for (unsigned j = 0; j < BytesInVector; ++j) { 9663 if (j == i) 9664 continue; 9665 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9666 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9667 // in which we always assume we're always picking from the 1st operand. 9668 int MaskOffset = 9669 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9670 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9671 OtherElementsInOrder = false; 9672 break; 9673 } 9674 } 9675 // If other elements are in original order, we record the number of shifts 9676 // we need to get the element we want into element 7. Also record which byte 9677 // in the vector we should insert into. 9678 if (OtherElementsInOrder) { 9679 // If 2nd operand is undefined, we assume no shifts and no swapping. 9680 if (V2.isUndef()) { 9681 ShiftElts = 0; 9682 Swap = false; 9683 } else { 9684 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9685 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9686 : BigEndianShifts[CurrentElement & 0xF]; 9687 Swap = CurrentElement < BytesInVector; 9688 } 9689 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9690 FoundCandidate = true; 9691 break; 9692 } 9693 } 9694 9695 if (!FoundCandidate) 9696 return SDValue(); 9697 9698 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9699 // optionally with VECSHL if shift is required. 9700 if (Swap) 9701 std::swap(V1, V2); 9702 if (V2.isUndef()) 9703 V2 = V1; 9704 if (ShiftElts) { 9705 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9706 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9707 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9708 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9709 } 9710 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9711 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9712 } 9713 9714 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9715 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9716 /// SDValue. 9717 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9718 SelectionDAG &DAG) const { 9719 const unsigned NumHalfWords = 8; 9720 const unsigned BytesInVector = NumHalfWords * 2; 9721 // Check that the shuffle is on half-words. 9722 if (!isNByteElemShuffleMask(N, 2, 1)) 9723 return SDValue(); 9724 9725 bool IsLE = Subtarget.isLittleEndian(); 9726 SDLoc dl(N); 9727 SDValue V1 = N->getOperand(0); 9728 SDValue V2 = N->getOperand(1); 9729 unsigned ShiftElts = 0, InsertAtByte = 0; 9730 bool Swap = false; 9731 9732 // Shifts required to get the half-word we want at element 3. 9733 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9734 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9735 9736 uint32_t Mask = 0; 9737 uint32_t OriginalOrderLow = 0x1234567; 9738 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9739 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9740 // 32-bit space, only need 4-bit nibbles per element. 9741 for (unsigned i = 0; i < NumHalfWords; ++i) { 9742 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9743 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9744 } 9745 9746 // For each mask element, find out if we're just inserting something 9747 // from V2 into V1 or vice versa. Possible permutations inserting an element 9748 // from V2 into V1: 9749 // X, 1, 2, 3, 4, 5, 6, 7 9750 // 0, X, 2, 3, 4, 5, 6, 7 9751 // 0, 1, X, 3, 4, 5, 6, 7 9752 // 0, 1, 2, X, 4, 5, 6, 7 9753 // 0, 1, 2, 3, X, 5, 6, 7 9754 // 0, 1, 2, 3, 4, X, 6, 7 9755 // 0, 1, 2, 3, 4, 5, X, 7 9756 // 0, 1, 2, 3, 4, 5, 6, X 9757 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9758 9759 bool FoundCandidate = false; 9760 // Go through the mask of half-words to find an element that's being moved 9761 // from one vector to the other. 9762 for (unsigned i = 0; i < NumHalfWords; ++i) { 9763 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9764 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9765 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9766 uint32_t TargetOrder = 0x0; 9767 9768 // If both vector operands for the shuffle are the same vector, the mask 9769 // will contain only elements from the first one and the second one will be 9770 // undef. 9771 if (V2.isUndef()) { 9772 ShiftElts = 0; 9773 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9774 TargetOrder = OriginalOrderLow; 9775 Swap = false; 9776 // Skip if not the correct element or mask of other elements don't equal 9777 // to our expected order. 9778 if (MaskOneElt == VINSERTHSrcElem && 9779 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9780 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9781 FoundCandidate = true; 9782 break; 9783 } 9784 } else { // If both operands are defined. 9785 // Target order is [8,15] if the current mask is between [0,7]. 9786 TargetOrder = 9787 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9788 // Skip if mask of other elements don't equal our expected order. 9789 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9790 // We only need the last 3 bits for the number of shifts. 9791 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9792 : BigEndianShifts[MaskOneElt & 0x7]; 9793 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9794 Swap = MaskOneElt < NumHalfWords; 9795 FoundCandidate = true; 9796 break; 9797 } 9798 } 9799 } 9800 9801 if (!FoundCandidate) 9802 return SDValue(); 9803 9804 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9805 // optionally with VECSHL if shift is required. 9806 if (Swap) 9807 std::swap(V1, V2); 9808 if (V2.isUndef()) 9809 V2 = V1; 9810 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9811 if (ShiftElts) { 9812 // Double ShiftElts because we're left shifting on v16i8 type. 9813 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9814 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9815 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9816 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9817 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9818 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9819 } 9820 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9821 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9822 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9823 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9824 } 9825 9826 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9827 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9828 /// return the default SDValue. 9829 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9830 SelectionDAG &DAG) const { 9831 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9832 // to v16i8. Peek through the bitcasts to get the actual operands. 9833 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9834 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9835 9836 auto ShuffleMask = SVN->getMask(); 9837 SDValue VecShuffle(SVN, 0); 9838 SDLoc DL(SVN); 9839 9840 // Check that we have a four byte shuffle. 9841 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9842 return SDValue(); 9843 9844 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9845 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9846 std::swap(LHS, RHS); 9847 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9848 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9849 } 9850 9851 // Ensure that the RHS is a vector of constants. 9852 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9853 if (!BVN) 9854 return SDValue(); 9855 9856 // Check if RHS is a splat of 4-bytes (or smaller). 9857 APInt APSplatValue, APSplatUndef; 9858 unsigned SplatBitSize; 9859 bool HasAnyUndefs; 9860 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9861 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9862 SplatBitSize > 32) 9863 return SDValue(); 9864 9865 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9866 // The instruction splats a constant C into two words of the source vector 9867 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9868 // Thus we check that the shuffle mask is the equivalent of 9869 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9870 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9871 // within each word are consecutive, so we only need to check the first byte. 9872 SDValue Index; 9873 bool IsLE = Subtarget.isLittleEndian(); 9874 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9875 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9876 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9877 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9878 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9879 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9880 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9881 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9882 else 9883 return SDValue(); 9884 9885 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9886 // for XXSPLTI32DX. 9887 unsigned SplatVal = APSplatValue.getZExtValue(); 9888 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9889 SplatVal |= (SplatVal << SplatBitSize); 9890 9891 SDValue SplatNode = DAG.getNode( 9892 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9893 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9894 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9895 } 9896 9897 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9898 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9899 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9900 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9901 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9902 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9903 assert(Op.getValueType() == MVT::v1i128 && 9904 "Only set v1i128 as custom, other type shouldn't reach here!"); 9905 SDLoc dl(Op); 9906 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9907 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9908 unsigned SHLAmt = N1.getConstantOperandVal(0); 9909 if (SHLAmt % 8 == 0) { 9910 SmallVector<int, 16> Mask(16, 0); 9911 std::iota(Mask.begin(), Mask.end(), 0); 9912 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9913 if (SDValue Shuffle = 9914 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9915 DAG.getUNDEF(MVT::v16i8), Mask)) 9916 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9917 } 9918 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9919 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9920 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9921 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9922 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9923 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9924 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9925 } 9926 9927 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9928 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9929 /// return the code it can be lowered into. Worst case, it can always be 9930 /// lowered into a vperm. 9931 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9932 SelectionDAG &DAG) const { 9933 SDLoc dl(Op); 9934 SDValue V1 = Op.getOperand(0); 9935 SDValue V2 = Op.getOperand(1); 9936 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9937 9938 // Any nodes that were combined in the target-independent combiner prior 9939 // to vector legalization will not be sent to the target combine. Try to 9940 // combine it here. 9941 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9942 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9943 return NewShuffle; 9944 Op = NewShuffle; 9945 SVOp = cast<ShuffleVectorSDNode>(Op); 9946 V1 = Op.getOperand(0); 9947 V2 = Op.getOperand(1); 9948 } 9949 EVT VT = Op.getValueType(); 9950 bool isLittleEndian = Subtarget.isLittleEndian(); 9951 9952 unsigned ShiftElts, InsertAtByte; 9953 bool Swap = false; 9954 9955 // If this is a load-and-splat, we can do that with a single instruction 9956 // in some cases. However if the load has multiple uses, we don't want to 9957 // combine it because that will just produce multiple loads. 9958 bool IsPermutedLoad = false; 9959 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9960 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9961 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9962 InputLoad->hasOneUse()) { 9963 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9964 int SplatIdx = 9965 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9966 9967 // The splat index for permuted loads will be in the left half of the vector 9968 // which is strictly wider than the loaded value by 8 bytes. So we need to 9969 // adjust the splat index to point to the correct address in memory. 9970 if (IsPermutedLoad) { 9971 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9972 SplatIdx += IsFourByte ? 2 : 1; 9973 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9974 "Splat of a value outside of the loaded memory"); 9975 } 9976 9977 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9978 // For 4-byte load-and-splat, we need Power9. 9979 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9980 uint64_t Offset = 0; 9981 if (IsFourByte) 9982 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9983 else 9984 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9985 9986 SDValue BasePtr = LD->getBasePtr(); 9987 if (Offset != 0) 9988 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9989 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9990 SDValue Ops[] = { 9991 LD->getChain(), // Chain 9992 BasePtr, // BasePtr 9993 DAG.getValueType(Op.getValueType()) // VT 9994 }; 9995 SDVTList VTL = 9996 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9997 SDValue LdSplt = 9998 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9999 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10000 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 10001 if (LdSplt.getValueType() != SVOp->getValueType(0)) 10002 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 10003 return LdSplt; 10004 } 10005 } 10006 if (Subtarget.hasP9Vector() && 10007 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 10008 isLittleEndian)) { 10009 if (Swap) 10010 std::swap(V1, V2); 10011 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10012 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 10013 if (ShiftElts) { 10014 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 10015 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10016 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 10017 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10018 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10019 } 10020 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 10021 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10022 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 10023 } 10024 10025 if (Subtarget.hasPrefixInstrs()) { 10026 SDValue SplatInsertNode; 10027 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 10028 return SplatInsertNode; 10029 } 10030 10031 if (Subtarget.hasP9Altivec()) { 10032 SDValue NewISDNode; 10033 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 10034 return NewISDNode; 10035 10036 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 10037 return NewISDNode; 10038 } 10039 10040 if (Subtarget.hasVSX() && 10041 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10042 if (Swap) 10043 std::swap(V1, V2); 10044 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10045 SDValue Conv2 = 10046 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 10047 10048 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 10049 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10050 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 10051 } 10052 10053 if (Subtarget.hasVSX() && 10054 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 10055 if (Swap) 10056 std::swap(V1, V2); 10057 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10058 SDValue Conv2 = 10059 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 10060 10061 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 10062 DAG.getConstant(ShiftElts, dl, MVT::i32)); 10063 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 10064 } 10065 10066 if (Subtarget.hasP9Vector()) { 10067 if (PPC::isXXBRHShuffleMask(SVOp)) { 10068 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 10069 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10070 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10071 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10072 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10073 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10074 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10075 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10076 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10077 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10078 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10079 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10080 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10081 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10082 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10083 } 10084 } 10085 10086 if (Subtarget.hasVSX()) { 10087 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10088 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10089 10090 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10091 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10092 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10093 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10094 } 10095 10096 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10097 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10098 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10099 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10100 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10101 } 10102 } 10103 10104 // Cases that are handled by instructions that take permute immediates 10105 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10106 // selected by the instruction selector. 10107 if (V2.isUndef()) { 10108 if (PPC::isSplatShuffleMask(SVOp, 1) || 10109 PPC::isSplatShuffleMask(SVOp, 2) || 10110 PPC::isSplatShuffleMask(SVOp, 4) || 10111 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10112 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10113 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10114 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10115 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10116 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10117 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10118 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10119 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10120 (Subtarget.hasP8Altivec() && ( 10121 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10122 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10123 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10124 return Op; 10125 } 10126 } 10127 10128 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10129 // and produce a fixed permutation. If any of these match, do not lower to 10130 // VPERM. 10131 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10132 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10133 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10134 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10135 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10136 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10137 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10138 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10139 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10140 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10141 (Subtarget.hasP8Altivec() && ( 10142 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10143 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10144 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10145 return Op; 10146 10147 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10148 // perfect shuffle table to emit an optimal matching sequence. 10149 ArrayRef<int> PermMask = SVOp->getMask(); 10150 10151 unsigned PFIndexes[4]; 10152 bool isFourElementShuffle = true; 10153 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10154 unsigned EltNo = 8; // Start out undef. 10155 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10156 if (PermMask[i*4+j] < 0) 10157 continue; // Undef, ignore it. 10158 10159 unsigned ByteSource = PermMask[i*4+j]; 10160 if ((ByteSource & 3) != j) { 10161 isFourElementShuffle = false; 10162 break; 10163 } 10164 10165 if (EltNo == 8) { 10166 EltNo = ByteSource/4; 10167 } else if (EltNo != ByteSource/4) { 10168 isFourElementShuffle = false; 10169 break; 10170 } 10171 } 10172 PFIndexes[i] = EltNo; 10173 } 10174 10175 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10176 // perfect shuffle vector to determine if it is cost effective to do this as 10177 // discrete instructions, or whether we should use a vperm. 10178 // For now, we skip this for little endian until such time as we have a 10179 // little-endian perfect shuffle table. 10180 if (isFourElementShuffle && !isLittleEndian) { 10181 // Compute the index in the perfect shuffle table. 10182 unsigned PFTableIndex = 10183 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10184 10185 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10186 unsigned Cost = (PFEntry >> 30); 10187 10188 // Determining when to avoid vperm is tricky. Many things affect the cost 10189 // of vperm, particularly how many times the perm mask needs to be computed. 10190 // For example, if the perm mask can be hoisted out of a loop or is already 10191 // used (perhaps because there are multiple permutes with the same shuffle 10192 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10193 // the loop requires an extra register. 10194 // 10195 // As a compromise, we only emit discrete instructions if the shuffle can be 10196 // generated in 3 or fewer operations. When we have loop information 10197 // available, if this block is within a loop, we should avoid using vperm 10198 // for 3-operation perms and use a constant pool load instead. 10199 if (Cost < 3) 10200 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10201 } 10202 10203 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10204 // vector that will get spilled to the constant pool. 10205 if (V2.isUndef()) V2 = V1; 10206 10207 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10208 // that it is in input element units, not in bytes. Convert now. 10209 10210 // For little endian, the order of the input vectors is reversed, and 10211 // the permutation mask is complemented with respect to 31. This is 10212 // necessary to produce proper semantics with the big-endian-biased vperm 10213 // instruction. 10214 EVT EltVT = V1.getValueType().getVectorElementType(); 10215 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10216 10217 SmallVector<SDValue, 16> ResultMask; 10218 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10219 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10220 10221 for (unsigned j = 0; j != BytesPerElement; ++j) 10222 if (isLittleEndian) 10223 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10224 dl, MVT::i32)); 10225 else 10226 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10227 MVT::i32)); 10228 } 10229 10230 ShufflesHandledWithVPERM++; 10231 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10232 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10233 LLVM_DEBUG(SVOp->dump()); 10234 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10235 LLVM_DEBUG(VPermMask.dump()); 10236 10237 if (isLittleEndian) 10238 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10239 V2, V1, VPermMask); 10240 else 10241 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10242 V1, V2, VPermMask); 10243 } 10244 10245 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10246 /// vector comparison. If it is, return true and fill in Opc/isDot with 10247 /// information about the intrinsic. 10248 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10249 bool &isDot, const PPCSubtarget &Subtarget) { 10250 unsigned IntrinsicID = 10251 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10252 CompareOpc = -1; 10253 isDot = false; 10254 switch (IntrinsicID) { 10255 default: 10256 return false; 10257 // Comparison predicates. 10258 case Intrinsic::ppc_altivec_vcmpbfp_p: 10259 CompareOpc = 966; 10260 isDot = true; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10263 CompareOpc = 198; 10264 isDot = true; 10265 break; 10266 case Intrinsic::ppc_altivec_vcmpequb_p: 10267 CompareOpc = 6; 10268 isDot = true; 10269 break; 10270 case Intrinsic::ppc_altivec_vcmpequh_p: 10271 CompareOpc = 70; 10272 isDot = true; 10273 break; 10274 case Intrinsic::ppc_altivec_vcmpequw_p: 10275 CompareOpc = 134; 10276 isDot = true; 10277 break; 10278 case Intrinsic::ppc_altivec_vcmpequd_p: 10279 if (Subtarget.hasP8Altivec()) { 10280 CompareOpc = 199; 10281 isDot = true; 10282 } else 10283 return false; 10284 break; 10285 case Intrinsic::ppc_altivec_vcmpneb_p: 10286 case Intrinsic::ppc_altivec_vcmpneh_p: 10287 case Intrinsic::ppc_altivec_vcmpnew_p: 10288 case Intrinsic::ppc_altivec_vcmpnezb_p: 10289 case Intrinsic::ppc_altivec_vcmpnezh_p: 10290 case Intrinsic::ppc_altivec_vcmpnezw_p: 10291 if (Subtarget.hasP9Altivec()) { 10292 switch (IntrinsicID) { 10293 default: 10294 llvm_unreachable("Unknown comparison intrinsic."); 10295 case Intrinsic::ppc_altivec_vcmpneb_p: 10296 CompareOpc = 7; 10297 break; 10298 case Intrinsic::ppc_altivec_vcmpneh_p: 10299 CompareOpc = 71; 10300 break; 10301 case Intrinsic::ppc_altivec_vcmpnew_p: 10302 CompareOpc = 135; 10303 break; 10304 case Intrinsic::ppc_altivec_vcmpnezb_p: 10305 CompareOpc = 263; 10306 break; 10307 case Intrinsic::ppc_altivec_vcmpnezh_p: 10308 CompareOpc = 327; 10309 break; 10310 case Intrinsic::ppc_altivec_vcmpnezw_p: 10311 CompareOpc = 391; 10312 break; 10313 } 10314 isDot = true; 10315 } else 10316 return false; 10317 break; 10318 case Intrinsic::ppc_altivec_vcmpgefp_p: 10319 CompareOpc = 454; 10320 isDot = true; 10321 break; 10322 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10323 CompareOpc = 710; 10324 isDot = true; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10327 CompareOpc = 774; 10328 isDot = true; 10329 break; 10330 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10331 CompareOpc = 838; 10332 isDot = true; 10333 break; 10334 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10335 CompareOpc = 902; 10336 isDot = true; 10337 break; 10338 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10339 if (Subtarget.hasP8Altivec()) { 10340 CompareOpc = 967; 10341 isDot = true; 10342 } else 10343 return false; 10344 break; 10345 case Intrinsic::ppc_altivec_vcmpgtub_p: 10346 CompareOpc = 518; 10347 isDot = true; 10348 break; 10349 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10350 CompareOpc = 582; 10351 isDot = true; 10352 break; 10353 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10354 CompareOpc = 646; 10355 isDot = true; 10356 break; 10357 case Intrinsic::ppc_altivec_vcmpgtud_p: 10358 if (Subtarget.hasP8Altivec()) { 10359 CompareOpc = 711; 10360 isDot = true; 10361 } else 10362 return false; 10363 break; 10364 10365 case Intrinsic::ppc_altivec_vcmpequq: 10366 case Intrinsic::ppc_altivec_vcmpgtsq: 10367 case Intrinsic::ppc_altivec_vcmpgtuq: 10368 if (!Subtarget.isISA3_1()) 10369 return false; 10370 switch (IntrinsicID) { 10371 default: 10372 llvm_unreachable("Unknown comparison intrinsic."); 10373 case Intrinsic::ppc_altivec_vcmpequq: 10374 CompareOpc = 455; 10375 break; 10376 case Intrinsic::ppc_altivec_vcmpgtsq: 10377 CompareOpc = 903; 10378 break; 10379 case Intrinsic::ppc_altivec_vcmpgtuq: 10380 CompareOpc = 647; 10381 break; 10382 } 10383 break; 10384 10385 // VSX predicate comparisons use the same infrastructure 10386 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10387 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10388 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10389 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10390 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10391 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10392 if (Subtarget.hasVSX()) { 10393 switch (IntrinsicID) { 10394 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10395 CompareOpc = 99; 10396 break; 10397 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10398 CompareOpc = 115; 10399 break; 10400 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10401 CompareOpc = 107; 10402 break; 10403 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10404 CompareOpc = 67; 10405 break; 10406 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10407 CompareOpc = 83; 10408 break; 10409 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10410 CompareOpc = 75; 10411 break; 10412 } 10413 isDot = true; 10414 } else 10415 return false; 10416 break; 10417 10418 // Normal Comparisons. 10419 case Intrinsic::ppc_altivec_vcmpbfp: 10420 CompareOpc = 966; 10421 break; 10422 case Intrinsic::ppc_altivec_vcmpeqfp: 10423 CompareOpc = 198; 10424 break; 10425 case Intrinsic::ppc_altivec_vcmpequb: 10426 CompareOpc = 6; 10427 break; 10428 case Intrinsic::ppc_altivec_vcmpequh: 10429 CompareOpc = 70; 10430 break; 10431 case Intrinsic::ppc_altivec_vcmpequw: 10432 CompareOpc = 134; 10433 break; 10434 case Intrinsic::ppc_altivec_vcmpequd: 10435 if (Subtarget.hasP8Altivec()) 10436 CompareOpc = 199; 10437 else 10438 return false; 10439 break; 10440 case Intrinsic::ppc_altivec_vcmpneb: 10441 case Intrinsic::ppc_altivec_vcmpneh: 10442 case Intrinsic::ppc_altivec_vcmpnew: 10443 case Intrinsic::ppc_altivec_vcmpnezb: 10444 case Intrinsic::ppc_altivec_vcmpnezh: 10445 case Intrinsic::ppc_altivec_vcmpnezw: 10446 if (Subtarget.hasP9Altivec()) 10447 switch (IntrinsicID) { 10448 default: 10449 llvm_unreachable("Unknown comparison intrinsic."); 10450 case Intrinsic::ppc_altivec_vcmpneb: 10451 CompareOpc = 7; 10452 break; 10453 case Intrinsic::ppc_altivec_vcmpneh: 10454 CompareOpc = 71; 10455 break; 10456 case Intrinsic::ppc_altivec_vcmpnew: 10457 CompareOpc = 135; 10458 break; 10459 case Intrinsic::ppc_altivec_vcmpnezb: 10460 CompareOpc = 263; 10461 break; 10462 case Intrinsic::ppc_altivec_vcmpnezh: 10463 CompareOpc = 327; 10464 break; 10465 case Intrinsic::ppc_altivec_vcmpnezw: 10466 CompareOpc = 391; 10467 break; 10468 } 10469 else 10470 return false; 10471 break; 10472 case Intrinsic::ppc_altivec_vcmpgefp: 10473 CompareOpc = 454; 10474 break; 10475 case Intrinsic::ppc_altivec_vcmpgtfp: 10476 CompareOpc = 710; 10477 break; 10478 case Intrinsic::ppc_altivec_vcmpgtsb: 10479 CompareOpc = 774; 10480 break; 10481 case Intrinsic::ppc_altivec_vcmpgtsh: 10482 CompareOpc = 838; 10483 break; 10484 case Intrinsic::ppc_altivec_vcmpgtsw: 10485 CompareOpc = 902; 10486 break; 10487 case Intrinsic::ppc_altivec_vcmpgtsd: 10488 if (Subtarget.hasP8Altivec()) 10489 CompareOpc = 967; 10490 else 10491 return false; 10492 break; 10493 case Intrinsic::ppc_altivec_vcmpgtub: 10494 CompareOpc = 518; 10495 break; 10496 case Intrinsic::ppc_altivec_vcmpgtuh: 10497 CompareOpc = 582; 10498 break; 10499 case Intrinsic::ppc_altivec_vcmpgtuw: 10500 CompareOpc = 646; 10501 break; 10502 case Intrinsic::ppc_altivec_vcmpgtud: 10503 if (Subtarget.hasP8Altivec()) 10504 CompareOpc = 711; 10505 else 10506 return false; 10507 break; 10508 case Intrinsic::ppc_altivec_vcmpequq_p: 10509 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10510 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10511 if (!Subtarget.isISA3_1()) 10512 return false; 10513 switch (IntrinsicID) { 10514 default: 10515 llvm_unreachable("Unknown comparison intrinsic."); 10516 case Intrinsic::ppc_altivec_vcmpequq_p: 10517 CompareOpc = 455; 10518 break; 10519 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10520 CompareOpc = 903; 10521 break; 10522 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10523 CompareOpc = 647; 10524 break; 10525 } 10526 isDot = true; 10527 break; 10528 } 10529 return true; 10530 } 10531 10532 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10533 /// lower, do it, otherwise return null. 10534 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10535 SelectionDAG &DAG) const { 10536 unsigned IntrinsicID = 10537 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10538 10539 SDLoc dl(Op); 10540 10541 switch (IntrinsicID) { 10542 case Intrinsic::thread_pointer: 10543 // Reads the thread pointer register, used for __builtin_thread_pointer. 10544 if (Subtarget.isPPC64()) 10545 return DAG.getRegister(PPC::X13, MVT::i64); 10546 return DAG.getRegister(PPC::R2, MVT::i32); 10547 10548 case Intrinsic::ppc_mma_disassemble_acc: 10549 case Intrinsic::ppc_mma_disassemble_pair: { 10550 int NumVecs = 2; 10551 SDValue WideVec = Op.getOperand(1); 10552 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10553 NumVecs = 4; 10554 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10555 } 10556 SmallVector<SDValue, 4> RetOps; 10557 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10558 SDValue Extract = DAG.getNode( 10559 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10560 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10561 : VecNo, 10562 dl, MVT::i64)); 10563 RetOps.push_back(Extract); 10564 } 10565 return DAG.getMergeValues(RetOps, dl); 10566 } 10567 } 10568 10569 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10570 // opcode number of the comparison. 10571 int CompareOpc; 10572 bool isDot; 10573 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10574 return SDValue(); // Don't custom lower most intrinsics. 10575 10576 // If this is a non-dot comparison, make the VCMP node and we are done. 10577 if (!isDot) { 10578 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10579 Op.getOperand(1), Op.getOperand(2), 10580 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10581 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10582 } 10583 10584 // Create the PPCISD altivec 'dot' comparison node. 10585 SDValue Ops[] = { 10586 Op.getOperand(2), // LHS 10587 Op.getOperand(3), // RHS 10588 DAG.getConstant(CompareOpc, dl, MVT::i32) 10589 }; 10590 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10591 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10592 10593 // Now that we have the comparison, emit a copy from the CR to a GPR. 10594 // This is flagged to the above dot comparison. 10595 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10596 DAG.getRegister(PPC::CR6, MVT::i32), 10597 CompNode.getValue(1)); 10598 10599 // Unpack the result based on how the target uses it. 10600 unsigned BitNo; // Bit # of CR6. 10601 bool InvertBit; // Invert result? 10602 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10603 default: // Can't happen, don't crash on invalid number though. 10604 case 0: // Return the value of the EQ bit of CR6. 10605 BitNo = 0; InvertBit = false; 10606 break; 10607 case 1: // Return the inverted value of the EQ bit of CR6. 10608 BitNo = 0; InvertBit = true; 10609 break; 10610 case 2: // Return the value of the LT bit of CR6. 10611 BitNo = 2; InvertBit = false; 10612 break; 10613 case 3: // Return the inverted value of the LT bit of CR6. 10614 BitNo = 2; InvertBit = true; 10615 break; 10616 } 10617 10618 // Shift the bit into the low position. 10619 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10620 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10621 // Isolate the bit. 10622 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10623 DAG.getConstant(1, dl, MVT::i32)); 10624 10625 // If we are supposed to, toggle the bit. 10626 if (InvertBit) 10627 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10628 DAG.getConstant(1, dl, MVT::i32)); 10629 return Flags; 10630 } 10631 10632 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10633 SelectionDAG &DAG) const { 10634 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10635 // the beginning of the argument list. 10636 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10637 SDLoc DL(Op); 10638 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10639 case Intrinsic::ppc_cfence: { 10640 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10641 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10642 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10643 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10644 Op.getOperand(ArgStart + 1)), 10645 Op.getOperand(0)), 10646 0); 10647 } 10648 default: 10649 break; 10650 } 10651 return SDValue(); 10652 } 10653 10654 // Lower scalar BSWAP64 to xxbrd. 10655 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10656 SDLoc dl(Op); 10657 // MTVSRDD 10658 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10659 Op.getOperand(0)); 10660 // XXBRD 10661 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10662 // MFVSRD 10663 int VectorIndex = 0; 10664 if (Subtarget.isLittleEndian()) 10665 VectorIndex = 1; 10666 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10667 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10668 return Op; 10669 } 10670 10671 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10672 // compared to a value that is atomically loaded (atomic loads zero-extend). 10673 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10674 SelectionDAG &DAG) const { 10675 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10676 "Expecting an atomic compare-and-swap here."); 10677 SDLoc dl(Op); 10678 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10679 EVT MemVT = AtomicNode->getMemoryVT(); 10680 if (MemVT.getSizeInBits() >= 32) 10681 return Op; 10682 10683 SDValue CmpOp = Op.getOperand(2); 10684 // If this is already correctly zero-extended, leave it alone. 10685 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10686 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10687 return Op; 10688 10689 // Clear the high bits of the compare operand. 10690 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10691 SDValue NewCmpOp = 10692 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10693 DAG.getConstant(MaskVal, dl, MVT::i32)); 10694 10695 // Replace the existing compare operand with the properly zero-extended one. 10696 SmallVector<SDValue, 4> Ops; 10697 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10698 Ops.push_back(AtomicNode->getOperand(i)); 10699 Ops[2] = NewCmpOp; 10700 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10701 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10702 auto NodeTy = 10703 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10704 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10705 } 10706 10707 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10708 SelectionDAG &DAG) const { 10709 SDLoc dl(Op); 10710 // Create a stack slot that is 16-byte aligned. 10711 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10712 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10714 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10715 10716 // Store the input value into Value#0 of the stack slot. 10717 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10718 MachinePointerInfo()); 10719 // Load it out. 10720 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10721 } 10722 10723 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10724 SelectionDAG &DAG) const { 10725 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10726 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10727 10728 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10729 // We have legal lowering for constant indices but not for variable ones. 10730 if (!C) 10731 return SDValue(); 10732 10733 EVT VT = Op.getValueType(); 10734 SDLoc dl(Op); 10735 SDValue V1 = Op.getOperand(0); 10736 SDValue V2 = Op.getOperand(1); 10737 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10738 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10739 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10740 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10741 unsigned InsertAtElement = C->getZExtValue(); 10742 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10743 if (Subtarget.isLittleEndian()) { 10744 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10745 } 10746 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10747 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10748 } 10749 return Op; 10750 } 10751 10752 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10753 SelectionDAG &DAG) const { 10754 SDLoc dl(Op); 10755 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10756 SDValue LoadChain = LN->getChain(); 10757 SDValue BasePtr = LN->getBasePtr(); 10758 EVT VT = Op.getValueType(); 10759 10760 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10761 return Op; 10762 10763 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10764 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10765 // 2 or 4 vsx registers. 10766 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10767 "Type unsupported without MMA"); 10768 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10769 "Type unsupported without paired vector support"); 10770 Align Alignment = LN->getAlign(); 10771 SmallVector<SDValue, 4> Loads; 10772 SmallVector<SDValue, 4> LoadChains; 10773 unsigned NumVecs = VT.getSizeInBits() / 128; 10774 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10775 SDValue Load = 10776 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10777 LN->getPointerInfo().getWithOffset(Idx * 16), 10778 commonAlignment(Alignment, Idx * 16), 10779 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10780 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10781 DAG.getConstant(16, dl, BasePtr.getValueType())); 10782 Loads.push_back(Load); 10783 LoadChains.push_back(Load.getValue(1)); 10784 } 10785 if (Subtarget.isLittleEndian()) { 10786 std::reverse(Loads.begin(), Loads.end()); 10787 std::reverse(LoadChains.begin(), LoadChains.end()); 10788 } 10789 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10790 SDValue Value = 10791 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10792 dl, VT, Loads); 10793 SDValue RetOps[] = {Value, TF}; 10794 return DAG.getMergeValues(RetOps, dl); 10795 } 10796 10797 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10798 SelectionDAG &DAG) const { 10799 SDLoc dl(Op); 10800 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10801 SDValue StoreChain = SN->getChain(); 10802 SDValue BasePtr = SN->getBasePtr(); 10803 SDValue Value = SN->getValue(); 10804 EVT StoreVT = Value.getValueType(); 10805 10806 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10807 return Op; 10808 10809 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10810 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10811 // underlying registers individually. 10812 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10813 "Type unsupported without MMA"); 10814 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10815 "Type unsupported without paired vector support"); 10816 Align Alignment = SN->getAlign(); 10817 SmallVector<SDValue, 4> Stores; 10818 unsigned NumVecs = 2; 10819 if (StoreVT == MVT::v512i1) { 10820 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10821 NumVecs = 4; 10822 } 10823 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10824 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10825 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10826 DAG.getConstant(VecNum, dl, MVT::i64)); 10827 SDValue Store = 10828 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10829 SN->getPointerInfo().getWithOffset(Idx * 16), 10830 commonAlignment(Alignment, Idx * 16), 10831 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10832 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10833 DAG.getConstant(16, dl, BasePtr.getValueType())); 10834 Stores.push_back(Store); 10835 } 10836 SDValue TF = DAG.getTokenFactor(dl, Stores); 10837 return TF; 10838 } 10839 10840 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10841 SDLoc dl(Op); 10842 if (Op.getValueType() == MVT::v4i32) { 10843 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10844 10845 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10846 // +16 as shift amt. 10847 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10848 SDValue RHSSwap = // = vrlw RHS, 16 10849 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10850 10851 // Shrinkify inputs to v8i16. 10852 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10853 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10854 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10855 10856 // Low parts multiplied together, generating 32-bit results (we ignore the 10857 // top parts). 10858 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10859 LHS, RHS, DAG, dl, MVT::v4i32); 10860 10861 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10862 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10863 // Shift the high parts up 16 bits. 10864 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10865 Neg16, DAG, dl); 10866 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10867 } else if (Op.getValueType() == MVT::v16i8) { 10868 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10869 bool isLittleEndian = Subtarget.isLittleEndian(); 10870 10871 // Multiply the even 8-bit parts, producing 16-bit sums. 10872 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10873 LHS, RHS, DAG, dl, MVT::v8i16); 10874 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10875 10876 // Multiply the odd 8-bit parts, producing 16-bit sums. 10877 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10878 LHS, RHS, DAG, dl, MVT::v8i16); 10879 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10880 10881 // Merge the results together. Because vmuleub and vmuloub are 10882 // instructions with a big-endian bias, we must reverse the 10883 // element numbering and reverse the meaning of "odd" and "even" 10884 // when generating little endian code. 10885 int Ops[16]; 10886 for (unsigned i = 0; i != 8; ++i) { 10887 if (isLittleEndian) { 10888 Ops[i*2 ] = 2*i; 10889 Ops[i*2+1] = 2*i+16; 10890 } else { 10891 Ops[i*2 ] = 2*i+1; 10892 Ops[i*2+1] = 2*i+1+16; 10893 } 10894 } 10895 if (isLittleEndian) 10896 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10897 else 10898 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10899 } else { 10900 llvm_unreachable("Unknown mul to lower!"); 10901 } 10902 } 10903 10904 // Custom lowering for fpext vf32 to v2f64 10905 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10906 10907 assert(Op.getOpcode() == ISD::FP_EXTEND && 10908 "Should only be called for ISD::FP_EXTEND"); 10909 10910 // FIXME: handle extends from half precision float vectors on P9. 10911 // We only want to custom lower an extend from v2f32 to v2f64. 10912 if (Op.getValueType() != MVT::v2f64 || 10913 Op.getOperand(0).getValueType() != MVT::v2f32) 10914 return SDValue(); 10915 10916 SDLoc dl(Op); 10917 SDValue Op0 = Op.getOperand(0); 10918 10919 switch (Op0.getOpcode()) { 10920 default: 10921 return SDValue(); 10922 case ISD::EXTRACT_SUBVECTOR: { 10923 assert(Op0.getNumOperands() == 2 && 10924 isa<ConstantSDNode>(Op0->getOperand(1)) && 10925 "Node should have 2 operands with second one being a constant!"); 10926 10927 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10928 return SDValue(); 10929 10930 // Custom lower is only done for high or low doubleword. 10931 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10932 if (Idx % 2 != 0) 10933 return SDValue(); 10934 10935 // Since input is v4f32, at this point Idx is either 0 or 2. 10936 // Shift to get the doubleword position we want. 10937 int DWord = Idx >> 1; 10938 10939 // High and low word positions are different on little endian. 10940 if (Subtarget.isLittleEndian()) 10941 DWord ^= 0x1; 10942 10943 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10944 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10945 } 10946 case ISD::FADD: 10947 case ISD::FMUL: 10948 case ISD::FSUB: { 10949 SDValue NewLoad[2]; 10950 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10951 // Ensure both input are loads. 10952 SDValue LdOp = Op0.getOperand(i); 10953 if (LdOp.getOpcode() != ISD::LOAD) 10954 return SDValue(); 10955 // Generate new load node. 10956 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10957 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10958 NewLoad[i] = DAG.getMemIntrinsicNode( 10959 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10960 LD->getMemoryVT(), LD->getMemOperand()); 10961 } 10962 SDValue NewOp = 10963 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10964 NewLoad[1], Op0.getNode()->getFlags()); 10965 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10966 DAG.getConstant(0, dl, MVT::i32)); 10967 } 10968 case ISD::LOAD: { 10969 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10970 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10971 SDValue NewLd = DAG.getMemIntrinsicNode( 10972 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10973 LD->getMemoryVT(), LD->getMemOperand()); 10974 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10975 DAG.getConstant(0, dl, MVT::i32)); 10976 } 10977 } 10978 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10979 } 10980 10981 /// LowerOperation - Provide custom lowering hooks for some operations. 10982 /// 10983 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10984 switch (Op.getOpcode()) { 10985 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10986 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10987 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10988 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10989 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10990 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10991 case ISD::SETCC: return LowerSETCC(Op, DAG); 10992 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10993 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10994 10995 // Variable argument lowering. 10996 case ISD::VASTART: return LowerVASTART(Op, DAG); 10997 case ISD::VAARG: return LowerVAARG(Op, DAG); 10998 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10999 11000 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11001 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11002 case ISD::GET_DYNAMIC_AREA_OFFSET: 11003 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11004 11005 // Exception handling lowering. 11006 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11007 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11008 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11009 11010 case ISD::LOAD: return LowerLOAD(Op, DAG); 11011 case ISD::STORE: return LowerSTORE(Op, DAG); 11012 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11013 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11014 case ISD::STRICT_FP_TO_UINT: 11015 case ISD::STRICT_FP_TO_SINT: 11016 case ISD::FP_TO_UINT: 11017 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11018 case ISD::STRICT_UINT_TO_FP: 11019 case ISD::STRICT_SINT_TO_FP: 11020 case ISD::UINT_TO_FP: 11021 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11022 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11023 11024 // Lower 64-bit shifts. 11025 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11026 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11027 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11028 11029 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11030 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11031 11032 // Vector-related lowering. 11033 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11034 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11035 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11036 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11037 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11038 case ISD::MUL: return LowerMUL(Op, DAG); 11039 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11040 case ISD::ROTL: return LowerROTL(Op, DAG); 11041 11042 // For counter-based loop handling. 11043 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11044 11045 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11046 11047 // Frame & Return address. 11048 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11049 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11050 11051 case ISD::INTRINSIC_VOID: 11052 return LowerINTRINSIC_VOID(Op, DAG); 11053 case ISD::BSWAP: 11054 return LowerBSWAP(Op, DAG); 11055 case ISD::ATOMIC_CMP_SWAP: 11056 return LowerATOMIC_CMP_SWAP(Op, DAG); 11057 } 11058 } 11059 11060 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11061 SmallVectorImpl<SDValue>&Results, 11062 SelectionDAG &DAG) const { 11063 SDLoc dl(N); 11064 switch (N->getOpcode()) { 11065 default: 11066 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11067 case ISD::READCYCLECOUNTER: { 11068 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11069 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11070 11071 Results.push_back( 11072 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11073 Results.push_back(RTB.getValue(2)); 11074 break; 11075 } 11076 case ISD::INTRINSIC_W_CHAIN: { 11077 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11078 Intrinsic::loop_decrement) 11079 break; 11080 11081 assert(N->getValueType(0) == MVT::i1 && 11082 "Unexpected result type for CTR decrement intrinsic"); 11083 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11084 N->getValueType(0)); 11085 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11086 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11087 N->getOperand(1)); 11088 11089 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11090 Results.push_back(NewInt.getValue(1)); 11091 break; 11092 } 11093 case ISD::VAARG: { 11094 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11095 return; 11096 11097 EVT VT = N->getValueType(0); 11098 11099 if (VT == MVT::i64) { 11100 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11101 11102 Results.push_back(NewNode); 11103 Results.push_back(NewNode.getValue(1)); 11104 } 11105 return; 11106 } 11107 case ISD::STRICT_FP_TO_SINT: 11108 case ISD::STRICT_FP_TO_UINT: 11109 case ISD::FP_TO_SINT: 11110 case ISD::FP_TO_UINT: 11111 // LowerFP_TO_INT() can only handle f32 and f64. 11112 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11113 MVT::ppcf128) 11114 return; 11115 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11116 return; 11117 case ISD::TRUNCATE: { 11118 if (!N->getValueType(0).isVector()) 11119 return; 11120 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11121 if (Lowered) 11122 Results.push_back(Lowered); 11123 return; 11124 } 11125 case ISD::FSHL: 11126 case ISD::FSHR: 11127 // Don't handle funnel shifts here. 11128 return; 11129 case ISD::BITCAST: 11130 // Don't handle bitcast here. 11131 return; 11132 case ISD::FP_EXTEND: 11133 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11134 if (Lowered) 11135 Results.push_back(Lowered); 11136 return; 11137 } 11138 } 11139 11140 //===----------------------------------------------------------------------===// 11141 // Other Lowering Code 11142 //===----------------------------------------------------------------------===// 11143 11144 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11145 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11146 Function *Func = Intrinsic::getDeclaration(M, Id); 11147 return Builder.CreateCall(Func, {}); 11148 } 11149 11150 // The mappings for emitLeading/TrailingFence is taken from 11151 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11152 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11153 Instruction *Inst, 11154 AtomicOrdering Ord) const { 11155 if (Ord == AtomicOrdering::SequentiallyConsistent) 11156 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11157 if (isReleaseOrStronger(Ord)) 11158 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11159 return nullptr; 11160 } 11161 11162 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11163 Instruction *Inst, 11164 AtomicOrdering Ord) const { 11165 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11166 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11167 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11168 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11169 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11170 return Builder.CreateCall( 11171 Intrinsic::getDeclaration( 11172 Builder.GetInsertBlock()->getParent()->getParent(), 11173 Intrinsic::ppc_cfence, {Inst->getType()}), 11174 {Inst}); 11175 // FIXME: Can use isync for rmw operation. 11176 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11177 } 11178 return nullptr; 11179 } 11180 11181 MachineBasicBlock * 11182 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11183 unsigned AtomicSize, 11184 unsigned BinOpcode, 11185 unsigned CmpOpcode, 11186 unsigned CmpPred) const { 11187 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11188 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11189 11190 auto LoadMnemonic = PPC::LDARX; 11191 auto StoreMnemonic = PPC::STDCX; 11192 switch (AtomicSize) { 11193 default: 11194 llvm_unreachable("Unexpected size of atomic entity"); 11195 case 1: 11196 LoadMnemonic = PPC::LBARX; 11197 StoreMnemonic = PPC::STBCX; 11198 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11199 break; 11200 case 2: 11201 LoadMnemonic = PPC::LHARX; 11202 StoreMnemonic = PPC::STHCX; 11203 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11204 break; 11205 case 4: 11206 LoadMnemonic = PPC::LWARX; 11207 StoreMnemonic = PPC::STWCX; 11208 break; 11209 case 8: 11210 LoadMnemonic = PPC::LDARX; 11211 StoreMnemonic = PPC::STDCX; 11212 break; 11213 } 11214 11215 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11216 MachineFunction *F = BB->getParent(); 11217 MachineFunction::iterator It = ++BB->getIterator(); 11218 11219 Register dest = MI.getOperand(0).getReg(); 11220 Register ptrA = MI.getOperand(1).getReg(); 11221 Register ptrB = MI.getOperand(2).getReg(); 11222 Register incr = MI.getOperand(3).getReg(); 11223 DebugLoc dl = MI.getDebugLoc(); 11224 11225 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11226 MachineBasicBlock *loop2MBB = 11227 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11228 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11229 F->insert(It, loopMBB); 11230 if (CmpOpcode) 11231 F->insert(It, loop2MBB); 11232 F->insert(It, exitMBB); 11233 exitMBB->splice(exitMBB->begin(), BB, 11234 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11235 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11236 11237 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11238 Register TmpReg = (!BinOpcode) ? incr : 11239 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11240 : &PPC::GPRCRegClass); 11241 11242 // thisMBB: 11243 // ... 11244 // fallthrough --> loopMBB 11245 BB->addSuccessor(loopMBB); 11246 11247 // loopMBB: 11248 // l[wd]arx dest, ptr 11249 // add r0, dest, incr 11250 // st[wd]cx. r0, ptr 11251 // bne- loopMBB 11252 // fallthrough --> exitMBB 11253 11254 // For max/min... 11255 // loopMBB: 11256 // l[wd]arx dest, ptr 11257 // cmpl?[wd] incr, dest 11258 // bgt exitMBB 11259 // loop2MBB: 11260 // st[wd]cx. dest, ptr 11261 // bne- loopMBB 11262 // fallthrough --> exitMBB 11263 11264 BB = loopMBB; 11265 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11266 .addReg(ptrA).addReg(ptrB); 11267 if (BinOpcode) 11268 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11269 if (CmpOpcode) { 11270 // Signed comparisons of byte or halfword values must be sign-extended. 11271 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11272 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11273 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11274 ExtReg).addReg(dest); 11275 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11276 .addReg(incr).addReg(ExtReg); 11277 } else 11278 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11279 .addReg(incr).addReg(dest); 11280 11281 BuildMI(BB, dl, TII->get(PPC::BCC)) 11282 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11283 BB->addSuccessor(loop2MBB); 11284 BB->addSuccessor(exitMBB); 11285 BB = loop2MBB; 11286 } 11287 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11288 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11289 BuildMI(BB, dl, TII->get(PPC::BCC)) 11290 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11291 BB->addSuccessor(loopMBB); 11292 BB->addSuccessor(exitMBB); 11293 11294 // exitMBB: 11295 // ... 11296 BB = exitMBB; 11297 return BB; 11298 } 11299 11300 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11301 MachineInstr &MI, MachineBasicBlock *BB, 11302 bool is8bit, // operation 11303 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11304 // If we support part-word atomic mnemonics, just use them 11305 if (Subtarget.hasPartwordAtomics()) 11306 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11307 CmpPred); 11308 11309 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11310 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11311 // In 64 bit mode we have to use 64 bits for addresses, even though the 11312 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11313 // registers without caring whether they're 32 or 64, but here we're 11314 // doing actual arithmetic on the addresses. 11315 bool is64bit = Subtarget.isPPC64(); 11316 bool isLittleEndian = Subtarget.isLittleEndian(); 11317 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11318 11319 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11320 MachineFunction *F = BB->getParent(); 11321 MachineFunction::iterator It = ++BB->getIterator(); 11322 11323 Register dest = MI.getOperand(0).getReg(); 11324 Register ptrA = MI.getOperand(1).getReg(); 11325 Register ptrB = MI.getOperand(2).getReg(); 11326 Register incr = MI.getOperand(3).getReg(); 11327 DebugLoc dl = MI.getDebugLoc(); 11328 11329 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11330 MachineBasicBlock *loop2MBB = 11331 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11332 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11333 F->insert(It, loopMBB); 11334 if (CmpOpcode) 11335 F->insert(It, loop2MBB); 11336 F->insert(It, exitMBB); 11337 exitMBB->splice(exitMBB->begin(), BB, 11338 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11339 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11340 11341 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11342 const TargetRegisterClass *RC = 11343 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11344 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11345 11346 Register PtrReg = RegInfo.createVirtualRegister(RC); 11347 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11348 Register ShiftReg = 11349 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11350 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11351 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11352 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11353 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11354 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11355 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11356 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11357 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11358 Register Ptr1Reg; 11359 Register TmpReg = 11360 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11361 11362 // thisMBB: 11363 // ... 11364 // fallthrough --> loopMBB 11365 BB->addSuccessor(loopMBB); 11366 11367 // The 4-byte load must be aligned, while a char or short may be 11368 // anywhere in the word. Hence all this nasty bookkeeping code. 11369 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11370 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11371 // xori shift, shift1, 24 [16] 11372 // rlwinm ptr, ptr1, 0, 0, 29 11373 // slw incr2, incr, shift 11374 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11375 // slw mask, mask2, shift 11376 // loopMBB: 11377 // lwarx tmpDest, ptr 11378 // add tmp, tmpDest, incr2 11379 // andc tmp2, tmpDest, mask 11380 // and tmp3, tmp, mask 11381 // or tmp4, tmp3, tmp2 11382 // stwcx. tmp4, ptr 11383 // bne- loopMBB 11384 // fallthrough --> exitMBB 11385 // srw dest, tmpDest, shift 11386 if (ptrA != ZeroReg) { 11387 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11388 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11389 .addReg(ptrA) 11390 .addReg(ptrB); 11391 } else { 11392 Ptr1Reg = ptrB; 11393 } 11394 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11395 // mode. 11396 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11397 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11398 .addImm(3) 11399 .addImm(27) 11400 .addImm(is8bit ? 28 : 27); 11401 if (!isLittleEndian) 11402 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11403 .addReg(Shift1Reg) 11404 .addImm(is8bit ? 24 : 16); 11405 if (is64bit) 11406 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11407 .addReg(Ptr1Reg) 11408 .addImm(0) 11409 .addImm(61); 11410 else 11411 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11412 .addReg(Ptr1Reg) 11413 .addImm(0) 11414 .addImm(0) 11415 .addImm(29); 11416 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11417 if (is8bit) 11418 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11419 else { 11420 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11421 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11422 .addReg(Mask3Reg) 11423 .addImm(65535); 11424 } 11425 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11426 .addReg(Mask2Reg) 11427 .addReg(ShiftReg); 11428 11429 BB = loopMBB; 11430 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11431 .addReg(ZeroReg) 11432 .addReg(PtrReg); 11433 if (BinOpcode) 11434 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11435 .addReg(Incr2Reg) 11436 .addReg(TmpDestReg); 11437 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11438 .addReg(TmpDestReg) 11439 .addReg(MaskReg); 11440 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11441 if (CmpOpcode) { 11442 // For unsigned comparisons, we can directly compare the shifted values. 11443 // For signed comparisons we shift and sign extend. 11444 Register SReg = RegInfo.createVirtualRegister(GPRC); 11445 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11446 .addReg(TmpDestReg) 11447 .addReg(MaskReg); 11448 unsigned ValueReg = SReg; 11449 unsigned CmpReg = Incr2Reg; 11450 if (CmpOpcode == PPC::CMPW) { 11451 ValueReg = RegInfo.createVirtualRegister(GPRC); 11452 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11453 .addReg(SReg) 11454 .addReg(ShiftReg); 11455 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11456 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11457 .addReg(ValueReg); 11458 ValueReg = ValueSReg; 11459 CmpReg = incr; 11460 } 11461 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11462 .addReg(CmpReg) 11463 .addReg(ValueReg); 11464 BuildMI(BB, dl, TII->get(PPC::BCC)) 11465 .addImm(CmpPred) 11466 .addReg(PPC::CR0) 11467 .addMBB(exitMBB); 11468 BB->addSuccessor(loop2MBB); 11469 BB->addSuccessor(exitMBB); 11470 BB = loop2MBB; 11471 } 11472 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11473 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11474 .addReg(Tmp4Reg) 11475 .addReg(ZeroReg) 11476 .addReg(PtrReg); 11477 BuildMI(BB, dl, TII->get(PPC::BCC)) 11478 .addImm(PPC::PRED_NE) 11479 .addReg(PPC::CR0) 11480 .addMBB(loopMBB); 11481 BB->addSuccessor(loopMBB); 11482 BB->addSuccessor(exitMBB); 11483 11484 // exitMBB: 11485 // ... 11486 BB = exitMBB; 11487 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11488 .addReg(TmpDestReg) 11489 .addReg(ShiftReg); 11490 return BB; 11491 } 11492 11493 llvm::MachineBasicBlock * 11494 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11495 MachineBasicBlock *MBB) const { 11496 DebugLoc DL = MI.getDebugLoc(); 11497 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11498 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11499 11500 MachineFunction *MF = MBB->getParent(); 11501 MachineRegisterInfo &MRI = MF->getRegInfo(); 11502 11503 const BasicBlock *BB = MBB->getBasicBlock(); 11504 MachineFunction::iterator I = ++MBB->getIterator(); 11505 11506 Register DstReg = MI.getOperand(0).getReg(); 11507 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11508 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11509 Register mainDstReg = MRI.createVirtualRegister(RC); 11510 Register restoreDstReg = MRI.createVirtualRegister(RC); 11511 11512 MVT PVT = getPointerTy(MF->getDataLayout()); 11513 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11514 "Invalid Pointer Size!"); 11515 // For v = setjmp(buf), we generate 11516 // 11517 // thisMBB: 11518 // SjLjSetup mainMBB 11519 // bl mainMBB 11520 // v_restore = 1 11521 // b sinkMBB 11522 // 11523 // mainMBB: 11524 // buf[LabelOffset] = LR 11525 // v_main = 0 11526 // 11527 // sinkMBB: 11528 // v = phi(main, restore) 11529 // 11530 11531 MachineBasicBlock *thisMBB = MBB; 11532 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11533 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11534 MF->insert(I, mainMBB); 11535 MF->insert(I, sinkMBB); 11536 11537 MachineInstrBuilder MIB; 11538 11539 // Transfer the remainder of BB and its successor edges to sinkMBB. 11540 sinkMBB->splice(sinkMBB->begin(), MBB, 11541 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11542 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11543 11544 // Note that the structure of the jmp_buf used here is not compatible 11545 // with that used by libc, and is not designed to be. Specifically, it 11546 // stores only those 'reserved' registers that LLVM does not otherwise 11547 // understand how to spill. Also, by convention, by the time this 11548 // intrinsic is called, Clang has already stored the frame address in the 11549 // first slot of the buffer and stack address in the third. Following the 11550 // X86 target code, we'll store the jump address in the second slot. We also 11551 // need to save the TOC pointer (R2) to handle jumps between shared 11552 // libraries, and that will be stored in the fourth slot. The thread 11553 // identifier (R13) is not affected. 11554 11555 // thisMBB: 11556 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11557 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11558 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11559 11560 // Prepare IP either in reg. 11561 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11562 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11563 Register BufReg = MI.getOperand(1).getReg(); 11564 11565 if (Subtarget.is64BitELFABI()) { 11566 setUsesTOCBasePtr(*MBB->getParent()); 11567 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11568 .addReg(PPC::X2) 11569 .addImm(TOCOffset) 11570 .addReg(BufReg) 11571 .cloneMemRefs(MI); 11572 } 11573 11574 // Naked functions never have a base pointer, and so we use r1. For all 11575 // other functions, this decision must be delayed until during PEI. 11576 unsigned BaseReg; 11577 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11578 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11579 else 11580 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11581 11582 MIB = BuildMI(*thisMBB, MI, DL, 11583 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11584 .addReg(BaseReg) 11585 .addImm(BPOffset) 11586 .addReg(BufReg) 11587 .cloneMemRefs(MI); 11588 11589 // Setup 11590 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11591 MIB.addRegMask(TRI->getNoPreservedMask()); 11592 11593 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11594 11595 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11596 .addMBB(mainMBB); 11597 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11598 11599 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11600 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11601 11602 // mainMBB: 11603 // mainDstReg = 0 11604 MIB = 11605 BuildMI(mainMBB, DL, 11606 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11607 11608 // Store IP 11609 if (Subtarget.isPPC64()) { 11610 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11611 .addReg(LabelReg) 11612 .addImm(LabelOffset) 11613 .addReg(BufReg); 11614 } else { 11615 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11616 .addReg(LabelReg) 11617 .addImm(LabelOffset) 11618 .addReg(BufReg); 11619 } 11620 MIB.cloneMemRefs(MI); 11621 11622 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11623 mainMBB->addSuccessor(sinkMBB); 11624 11625 // sinkMBB: 11626 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11627 TII->get(PPC::PHI), DstReg) 11628 .addReg(mainDstReg).addMBB(mainMBB) 11629 .addReg(restoreDstReg).addMBB(thisMBB); 11630 11631 MI.eraseFromParent(); 11632 return sinkMBB; 11633 } 11634 11635 MachineBasicBlock * 11636 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11637 MachineBasicBlock *MBB) const { 11638 DebugLoc DL = MI.getDebugLoc(); 11639 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11640 11641 MachineFunction *MF = MBB->getParent(); 11642 MachineRegisterInfo &MRI = MF->getRegInfo(); 11643 11644 MVT PVT = getPointerTy(MF->getDataLayout()); 11645 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11646 "Invalid Pointer Size!"); 11647 11648 const TargetRegisterClass *RC = 11649 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11650 Register Tmp = MRI.createVirtualRegister(RC); 11651 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11652 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11653 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11654 unsigned BP = 11655 (PVT == MVT::i64) 11656 ? PPC::X30 11657 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11658 : PPC::R30); 11659 11660 MachineInstrBuilder MIB; 11661 11662 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11663 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11664 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11665 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11666 11667 Register BufReg = MI.getOperand(0).getReg(); 11668 11669 // Reload FP (the jumped-to function may not have had a 11670 // frame pointer, and if so, then its r31 will be restored 11671 // as necessary). 11672 if (PVT == MVT::i64) { 11673 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11674 .addImm(0) 11675 .addReg(BufReg); 11676 } else { 11677 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11678 .addImm(0) 11679 .addReg(BufReg); 11680 } 11681 MIB.cloneMemRefs(MI); 11682 11683 // Reload IP 11684 if (PVT == MVT::i64) { 11685 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11686 .addImm(LabelOffset) 11687 .addReg(BufReg); 11688 } else { 11689 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11690 .addImm(LabelOffset) 11691 .addReg(BufReg); 11692 } 11693 MIB.cloneMemRefs(MI); 11694 11695 // Reload SP 11696 if (PVT == MVT::i64) { 11697 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11698 .addImm(SPOffset) 11699 .addReg(BufReg); 11700 } else { 11701 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11702 .addImm(SPOffset) 11703 .addReg(BufReg); 11704 } 11705 MIB.cloneMemRefs(MI); 11706 11707 // Reload BP 11708 if (PVT == MVT::i64) { 11709 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11710 .addImm(BPOffset) 11711 .addReg(BufReg); 11712 } else { 11713 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11714 .addImm(BPOffset) 11715 .addReg(BufReg); 11716 } 11717 MIB.cloneMemRefs(MI); 11718 11719 // Reload TOC 11720 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11721 setUsesTOCBasePtr(*MBB->getParent()); 11722 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11723 .addImm(TOCOffset) 11724 .addReg(BufReg) 11725 .cloneMemRefs(MI); 11726 } 11727 11728 // Jump 11729 BuildMI(*MBB, MI, DL, 11730 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11731 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11732 11733 MI.eraseFromParent(); 11734 return MBB; 11735 } 11736 11737 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11738 // If the function specifically requests inline stack probes, emit them. 11739 if (MF.getFunction().hasFnAttribute("probe-stack")) 11740 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11741 "inline-asm"; 11742 return false; 11743 } 11744 11745 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11746 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11747 unsigned StackAlign = TFI->getStackAlignment(); 11748 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11749 "Unexpected stack alignment"); 11750 // The default stack probe size is 4096 if the function has no 11751 // stack-probe-size attribute. 11752 unsigned StackProbeSize = 4096; 11753 const Function &Fn = MF.getFunction(); 11754 if (Fn.hasFnAttribute("stack-probe-size")) 11755 Fn.getFnAttribute("stack-probe-size") 11756 .getValueAsString() 11757 .getAsInteger(0, StackProbeSize); 11758 // Round down to the stack alignment. 11759 StackProbeSize &= ~(StackAlign - 1); 11760 return StackProbeSize ? StackProbeSize : StackAlign; 11761 } 11762 11763 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11764 // into three phases. In the first phase, it uses pseudo instruction 11765 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11766 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11767 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11768 // MaxCallFrameSize so that it can calculate correct data area pointer. 11769 MachineBasicBlock * 11770 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11771 MachineBasicBlock *MBB) const { 11772 const bool isPPC64 = Subtarget.isPPC64(); 11773 MachineFunction *MF = MBB->getParent(); 11774 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11775 DebugLoc DL = MI.getDebugLoc(); 11776 const unsigned ProbeSize = getStackProbeSize(*MF); 11777 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11778 MachineRegisterInfo &MRI = MF->getRegInfo(); 11779 // The CFG of probing stack looks as 11780 // +-----+ 11781 // | MBB | 11782 // +--+--+ 11783 // | 11784 // +----v----+ 11785 // +--->+ TestMBB +---+ 11786 // | +----+----+ | 11787 // | | | 11788 // | +-----v----+ | 11789 // +---+ BlockMBB | | 11790 // +----------+ | 11791 // | 11792 // +---------+ | 11793 // | TailMBB +<--+ 11794 // +---------+ 11795 // In MBB, calculate previous frame pointer and final stack pointer. 11796 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11797 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11798 // TailMBB is spliced via \p MI. 11799 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11800 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11801 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11802 11803 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11804 MF->insert(MBBIter, TestMBB); 11805 MF->insert(MBBIter, BlockMBB); 11806 MF->insert(MBBIter, TailMBB); 11807 11808 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11809 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11810 11811 Register DstReg = MI.getOperand(0).getReg(); 11812 Register NegSizeReg = MI.getOperand(1).getReg(); 11813 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11814 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11815 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11816 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11817 11818 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11819 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11820 // NegSize. 11821 unsigned ProbeOpc; 11822 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11823 ProbeOpc = 11824 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11825 else 11826 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11827 // and NegSizeReg will be allocated in the same phyreg to avoid 11828 // redundant copy when NegSizeReg has only one use which is current MI and 11829 // will be replaced by PREPARE_PROBED_ALLOCA then. 11830 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11831 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11832 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11833 .addDef(ActualNegSizeReg) 11834 .addReg(NegSizeReg) 11835 .add(MI.getOperand(2)) 11836 .add(MI.getOperand(3)); 11837 11838 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11839 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11840 FinalStackPtr) 11841 .addReg(SPReg) 11842 .addReg(ActualNegSizeReg); 11843 11844 // Materialize a scratch register for update. 11845 int64_t NegProbeSize = -(int64_t)ProbeSize; 11846 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11847 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11848 if (!isInt<16>(NegProbeSize)) { 11849 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11850 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11851 .addImm(NegProbeSize >> 16); 11852 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11853 ScratchReg) 11854 .addReg(TempReg) 11855 .addImm(NegProbeSize & 0xFFFF); 11856 } else 11857 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11858 .addImm(NegProbeSize); 11859 11860 { 11861 // Probing leading residual part. 11862 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11863 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11864 .addReg(ActualNegSizeReg) 11865 .addReg(ScratchReg); 11866 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11867 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11868 .addReg(Div) 11869 .addReg(ScratchReg); 11870 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11871 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11872 .addReg(Mul) 11873 .addReg(ActualNegSizeReg); 11874 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11875 .addReg(FramePointer) 11876 .addReg(SPReg) 11877 .addReg(NegMod); 11878 } 11879 11880 { 11881 // Remaining part should be multiple of ProbeSize. 11882 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11883 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11884 .addReg(SPReg) 11885 .addReg(FinalStackPtr); 11886 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11887 .addImm(PPC::PRED_EQ) 11888 .addReg(CmpResult) 11889 .addMBB(TailMBB); 11890 TestMBB->addSuccessor(BlockMBB); 11891 TestMBB->addSuccessor(TailMBB); 11892 } 11893 11894 { 11895 // Touch the block. 11896 // |P...|P...|P... 11897 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11898 .addReg(FramePointer) 11899 .addReg(SPReg) 11900 .addReg(ScratchReg); 11901 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11902 BlockMBB->addSuccessor(TestMBB); 11903 } 11904 11905 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11906 // DYNAREAOFFSET pseudo instruction to get the future result. 11907 Register MaxCallFrameSizeReg = 11908 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11909 BuildMI(TailMBB, DL, 11910 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11911 MaxCallFrameSizeReg) 11912 .add(MI.getOperand(2)) 11913 .add(MI.getOperand(3)); 11914 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11915 .addReg(SPReg) 11916 .addReg(MaxCallFrameSizeReg); 11917 11918 // Splice instructions after MI to TailMBB. 11919 TailMBB->splice(TailMBB->end(), MBB, 11920 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11921 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11922 MBB->addSuccessor(TestMBB); 11923 11924 // Delete the pseudo instruction. 11925 MI.eraseFromParent(); 11926 11927 ++NumDynamicAllocaProbed; 11928 return TailMBB; 11929 } 11930 11931 MachineBasicBlock * 11932 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11933 MachineBasicBlock *BB) const { 11934 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11935 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11936 if (Subtarget.is64BitELFABI() && 11937 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11938 !Subtarget.isUsingPCRelativeCalls()) { 11939 // Call lowering should have added an r2 operand to indicate a dependence 11940 // on the TOC base pointer value. It can't however, because there is no 11941 // way to mark the dependence as implicit there, and so the stackmap code 11942 // will confuse it with a regular operand. Instead, add the dependence 11943 // here. 11944 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11945 } 11946 11947 return emitPatchPoint(MI, BB); 11948 } 11949 11950 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11951 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11952 return emitEHSjLjSetJmp(MI, BB); 11953 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11954 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11955 return emitEHSjLjLongJmp(MI, BB); 11956 } 11957 11958 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11959 11960 // To "insert" these instructions we actually have to insert their 11961 // control-flow patterns. 11962 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11963 MachineFunction::iterator It = ++BB->getIterator(); 11964 11965 MachineFunction *F = BB->getParent(); 11966 11967 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11968 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11969 MI.getOpcode() == PPC::SELECT_I8) { 11970 SmallVector<MachineOperand, 2> Cond; 11971 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11972 MI.getOpcode() == PPC::SELECT_CC_I8) 11973 Cond.push_back(MI.getOperand(4)); 11974 else 11975 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11976 Cond.push_back(MI.getOperand(1)); 11977 11978 DebugLoc dl = MI.getDebugLoc(); 11979 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11980 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11981 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11982 MI.getOpcode() == PPC::SELECT_CC_F8 || 11983 MI.getOpcode() == PPC::SELECT_CC_F16 || 11984 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11985 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11986 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11987 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11988 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11989 MI.getOpcode() == PPC::SELECT_CC_SPE || 11990 MI.getOpcode() == PPC::SELECT_F4 || 11991 MI.getOpcode() == PPC::SELECT_F8 || 11992 MI.getOpcode() == PPC::SELECT_F16 || 11993 MI.getOpcode() == PPC::SELECT_SPE || 11994 MI.getOpcode() == PPC::SELECT_SPE4 || 11995 MI.getOpcode() == PPC::SELECT_VRRC || 11996 MI.getOpcode() == PPC::SELECT_VSFRC || 11997 MI.getOpcode() == PPC::SELECT_VSSRC || 11998 MI.getOpcode() == PPC::SELECT_VSRC) { 11999 // The incoming instruction knows the destination vreg to set, the 12000 // condition code register to branch on, the true/false values to 12001 // select between, and a branch opcode to use. 12002 12003 // thisMBB: 12004 // ... 12005 // TrueVal = ... 12006 // cmpTY ccX, r1, r2 12007 // bCC copy1MBB 12008 // fallthrough --> copy0MBB 12009 MachineBasicBlock *thisMBB = BB; 12010 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12011 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12012 DebugLoc dl = MI.getDebugLoc(); 12013 F->insert(It, copy0MBB); 12014 F->insert(It, sinkMBB); 12015 12016 // Transfer the remainder of BB and its successor edges to sinkMBB. 12017 sinkMBB->splice(sinkMBB->begin(), BB, 12018 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12019 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12020 12021 // Next, add the true and fallthrough blocks as its successors. 12022 BB->addSuccessor(copy0MBB); 12023 BB->addSuccessor(sinkMBB); 12024 12025 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12026 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12027 MI.getOpcode() == PPC::SELECT_F16 || 12028 MI.getOpcode() == PPC::SELECT_SPE4 || 12029 MI.getOpcode() == PPC::SELECT_SPE || 12030 MI.getOpcode() == PPC::SELECT_VRRC || 12031 MI.getOpcode() == PPC::SELECT_VSFRC || 12032 MI.getOpcode() == PPC::SELECT_VSSRC || 12033 MI.getOpcode() == PPC::SELECT_VSRC) { 12034 BuildMI(BB, dl, TII->get(PPC::BC)) 12035 .addReg(MI.getOperand(1).getReg()) 12036 .addMBB(sinkMBB); 12037 } else { 12038 unsigned SelectPred = MI.getOperand(4).getImm(); 12039 BuildMI(BB, dl, TII->get(PPC::BCC)) 12040 .addImm(SelectPred) 12041 .addReg(MI.getOperand(1).getReg()) 12042 .addMBB(sinkMBB); 12043 } 12044 12045 // copy0MBB: 12046 // %FalseValue = ... 12047 // # fallthrough to sinkMBB 12048 BB = copy0MBB; 12049 12050 // Update machine-CFG edges 12051 BB->addSuccessor(sinkMBB); 12052 12053 // sinkMBB: 12054 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12055 // ... 12056 BB = sinkMBB; 12057 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12058 .addReg(MI.getOperand(3).getReg()) 12059 .addMBB(copy0MBB) 12060 .addReg(MI.getOperand(2).getReg()) 12061 .addMBB(thisMBB); 12062 } else if (MI.getOpcode() == PPC::ReadTB) { 12063 // To read the 64-bit time-base register on a 32-bit target, we read the 12064 // two halves. Should the counter have wrapped while it was being read, we 12065 // need to try again. 12066 // ... 12067 // readLoop: 12068 // mfspr Rx,TBU # load from TBU 12069 // mfspr Ry,TB # load from TB 12070 // mfspr Rz,TBU # load from TBU 12071 // cmpw crX,Rx,Rz # check if 'old'='new' 12072 // bne readLoop # branch if they're not equal 12073 // ... 12074 12075 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12076 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12077 DebugLoc dl = MI.getDebugLoc(); 12078 F->insert(It, readMBB); 12079 F->insert(It, sinkMBB); 12080 12081 // Transfer the remainder of BB and its successor edges to sinkMBB. 12082 sinkMBB->splice(sinkMBB->begin(), BB, 12083 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12084 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12085 12086 BB->addSuccessor(readMBB); 12087 BB = readMBB; 12088 12089 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12090 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12091 Register LoReg = MI.getOperand(0).getReg(); 12092 Register HiReg = MI.getOperand(1).getReg(); 12093 12094 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12095 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12096 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12097 12098 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12099 12100 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12101 .addReg(HiReg) 12102 .addReg(ReadAgainReg); 12103 BuildMI(BB, dl, TII->get(PPC::BCC)) 12104 .addImm(PPC::PRED_NE) 12105 .addReg(CmpReg) 12106 .addMBB(readMBB); 12107 12108 BB->addSuccessor(readMBB); 12109 BB->addSuccessor(sinkMBB); 12110 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12111 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12112 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12113 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12115 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12117 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12118 12119 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12120 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12121 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12122 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12123 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12124 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12125 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12126 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12127 12128 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12129 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12130 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12131 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12132 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12133 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12134 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12135 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12136 12137 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12138 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12139 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12140 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12141 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12142 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12143 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12144 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12145 12146 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12147 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12148 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12149 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12150 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12151 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12152 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12153 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12154 12155 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12156 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12157 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12158 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12159 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12160 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12161 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12162 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12163 12164 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12165 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12166 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12167 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12168 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12169 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12170 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12171 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12172 12173 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12174 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12175 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12176 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12177 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12178 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12179 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12180 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12181 12182 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12183 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12184 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12185 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12186 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12187 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12188 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12189 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12190 12191 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12192 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12193 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12194 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12195 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12196 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12197 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12198 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12199 12200 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12201 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12202 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12203 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12204 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12205 BB = EmitAtomicBinary(MI, BB, 4, 0); 12206 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12207 BB = EmitAtomicBinary(MI, BB, 8, 0); 12208 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12209 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12210 (Subtarget.hasPartwordAtomics() && 12211 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12212 (Subtarget.hasPartwordAtomics() && 12213 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12214 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12215 12216 auto LoadMnemonic = PPC::LDARX; 12217 auto StoreMnemonic = PPC::STDCX; 12218 switch (MI.getOpcode()) { 12219 default: 12220 llvm_unreachable("Compare and swap of unknown size"); 12221 case PPC::ATOMIC_CMP_SWAP_I8: 12222 LoadMnemonic = PPC::LBARX; 12223 StoreMnemonic = PPC::STBCX; 12224 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12225 break; 12226 case PPC::ATOMIC_CMP_SWAP_I16: 12227 LoadMnemonic = PPC::LHARX; 12228 StoreMnemonic = PPC::STHCX; 12229 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12230 break; 12231 case PPC::ATOMIC_CMP_SWAP_I32: 12232 LoadMnemonic = PPC::LWARX; 12233 StoreMnemonic = PPC::STWCX; 12234 break; 12235 case PPC::ATOMIC_CMP_SWAP_I64: 12236 LoadMnemonic = PPC::LDARX; 12237 StoreMnemonic = PPC::STDCX; 12238 break; 12239 } 12240 Register dest = MI.getOperand(0).getReg(); 12241 Register ptrA = MI.getOperand(1).getReg(); 12242 Register ptrB = MI.getOperand(2).getReg(); 12243 Register oldval = MI.getOperand(3).getReg(); 12244 Register newval = MI.getOperand(4).getReg(); 12245 DebugLoc dl = MI.getDebugLoc(); 12246 12247 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12248 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12249 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12250 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12251 F->insert(It, loop1MBB); 12252 F->insert(It, loop2MBB); 12253 F->insert(It, midMBB); 12254 F->insert(It, exitMBB); 12255 exitMBB->splice(exitMBB->begin(), BB, 12256 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12257 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12258 12259 // thisMBB: 12260 // ... 12261 // fallthrough --> loopMBB 12262 BB->addSuccessor(loop1MBB); 12263 12264 // loop1MBB: 12265 // l[bhwd]arx dest, ptr 12266 // cmp[wd] dest, oldval 12267 // bne- midMBB 12268 // loop2MBB: 12269 // st[bhwd]cx. newval, ptr 12270 // bne- loopMBB 12271 // b exitBB 12272 // midMBB: 12273 // st[bhwd]cx. dest, ptr 12274 // exitBB: 12275 BB = loop1MBB; 12276 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12277 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12278 .addReg(oldval) 12279 .addReg(dest); 12280 BuildMI(BB, dl, TII->get(PPC::BCC)) 12281 .addImm(PPC::PRED_NE) 12282 .addReg(PPC::CR0) 12283 .addMBB(midMBB); 12284 BB->addSuccessor(loop2MBB); 12285 BB->addSuccessor(midMBB); 12286 12287 BB = loop2MBB; 12288 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12289 .addReg(newval) 12290 .addReg(ptrA) 12291 .addReg(ptrB); 12292 BuildMI(BB, dl, TII->get(PPC::BCC)) 12293 .addImm(PPC::PRED_NE) 12294 .addReg(PPC::CR0) 12295 .addMBB(loop1MBB); 12296 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12297 BB->addSuccessor(loop1MBB); 12298 BB->addSuccessor(exitMBB); 12299 12300 BB = midMBB; 12301 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12302 .addReg(dest) 12303 .addReg(ptrA) 12304 .addReg(ptrB); 12305 BB->addSuccessor(exitMBB); 12306 12307 // exitMBB: 12308 // ... 12309 BB = exitMBB; 12310 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12311 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12312 // We must use 64-bit registers for addresses when targeting 64-bit, 12313 // since we're actually doing arithmetic on them. Other registers 12314 // can be 32-bit. 12315 bool is64bit = Subtarget.isPPC64(); 12316 bool isLittleEndian = Subtarget.isLittleEndian(); 12317 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12318 12319 Register dest = MI.getOperand(0).getReg(); 12320 Register ptrA = MI.getOperand(1).getReg(); 12321 Register ptrB = MI.getOperand(2).getReg(); 12322 Register oldval = MI.getOperand(3).getReg(); 12323 Register newval = MI.getOperand(4).getReg(); 12324 DebugLoc dl = MI.getDebugLoc(); 12325 12326 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12327 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12328 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12329 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12330 F->insert(It, loop1MBB); 12331 F->insert(It, loop2MBB); 12332 F->insert(It, midMBB); 12333 F->insert(It, exitMBB); 12334 exitMBB->splice(exitMBB->begin(), BB, 12335 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12336 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12337 12338 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12339 const TargetRegisterClass *RC = 12340 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12341 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12342 12343 Register PtrReg = RegInfo.createVirtualRegister(RC); 12344 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12345 Register ShiftReg = 12346 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12347 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12348 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12349 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12350 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12351 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12352 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12353 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12354 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12355 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12356 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12357 Register Ptr1Reg; 12358 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12359 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12360 // thisMBB: 12361 // ... 12362 // fallthrough --> loopMBB 12363 BB->addSuccessor(loop1MBB); 12364 12365 // The 4-byte load must be aligned, while a char or short may be 12366 // anywhere in the word. Hence all this nasty bookkeeping code. 12367 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12368 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12369 // xori shift, shift1, 24 [16] 12370 // rlwinm ptr, ptr1, 0, 0, 29 12371 // slw newval2, newval, shift 12372 // slw oldval2, oldval,shift 12373 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12374 // slw mask, mask2, shift 12375 // and newval3, newval2, mask 12376 // and oldval3, oldval2, mask 12377 // loop1MBB: 12378 // lwarx tmpDest, ptr 12379 // and tmp, tmpDest, mask 12380 // cmpw tmp, oldval3 12381 // bne- midMBB 12382 // loop2MBB: 12383 // andc tmp2, tmpDest, mask 12384 // or tmp4, tmp2, newval3 12385 // stwcx. tmp4, ptr 12386 // bne- loop1MBB 12387 // b exitBB 12388 // midMBB: 12389 // stwcx. tmpDest, ptr 12390 // exitBB: 12391 // srw dest, tmpDest, shift 12392 if (ptrA != ZeroReg) { 12393 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12394 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12395 .addReg(ptrA) 12396 .addReg(ptrB); 12397 } else { 12398 Ptr1Reg = ptrB; 12399 } 12400 12401 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12402 // mode. 12403 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12404 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12405 .addImm(3) 12406 .addImm(27) 12407 .addImm(is8bit ? 28 : 27); 12408 if (!isLittleEndian) 12409 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12410 .addReg(Shift1Reg) 12411 .addImm(is8bit ? 24 : 16); 12412 if (is64bit) 12413 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12414 .addReg(Ptr1Reg) 12415 .addImm(0) 12416 .addImm(61); 12417 else 12418 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12419 .addReg(Ptr1Reg) 12420 .addImm(0) 12421 .addImm(0) 12422 .addImm(29); 12423 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12424 .addReg(newval) 12425 .addReg(ShiftReg); 12426 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12427 .addReg(oldval) 12428 .addReg(ShiftReg); 12429 if (is8bit) 12430 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12431 else { 12432 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12433 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12434 .addReg(Mask3Reg) 12435 .addImm(65535); 12436 } 12437 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12438 .addReg(Mask2Reg) 12439 .addReg(ShiftReg); 12440 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12441 .addReg(NewVal2Reg) 12442 .addReg(MaskReg); 12443 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12444 .addReg(OldVal2Reg) 12445 .addReg(MaskReg); 12446 12447 BB = loop1MBB; 12448 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12449 .addReg(ZeroReg) 12450 .addReg(PtrReg); 12451 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12452 .addReg(TmpDestReg) 12453 .addReg(MaskReg); 12454 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12455 .addReg(TmpReg) 12456 .addReg(OldVal3Reg); 12457 BuildMI(BB, dl, TII->get(PPC::BCC)) 12458 .addImm(PPC::PRED_NE) 12459 .addReg(PPC::CR0) 12460 .addMBB(midMBB); 12461 BB->addSuccessor(loop2MBB); 12462 BB->addSuccessor(midMBB); 12463 12464 BB = loop2MBB; 12465 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12466 .addReg(TmpDestReg) 12467 .addReg(MaskReg); 12468 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12469 .addReg(Tmp2Reg) 12470 .addReg(NewVal3Reg); 12471 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12472 .addReg(Tmp4Reg) 12473 .addReg(ZeroReg) 12474 .addReg(PtrReg); 12475 BuildMI(BB, dl, TII->get(PPC::BCC)) 12476 .addImm(PPC::PRED_NE) 12477 .addReg(PPC::CR0) 12478 .addMBB(loop1MBB); 12479 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12480 BB->addSuccessor(loop1MBB); 12481 BB->addSuccessor(exitMBB); 12482 12483 BB = midMBB; 12484 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12485 .addReg(TmpDestReg) 12486 .addReg(ZeroReg) 12487 .addReg(PtrReg); 12488 BB->addSuccessor(exitMBB); 12489 12490 // exitMBB: 12491 // ... 12492 BB = exitMBB; 12493 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12494 .addReg(TmpReg) 12495 .addReg(ShiftReg); 12496 } else if (MI.getOpcode() == PPC::FADDrtz) { 12497 // This pseudo performs an FADD with rounding mode temporarily forced 12498 // to round-to-zero. We emit this via custom inserter since the FPSCR 12499 // is not modeled at the SelectionDAG level. 12500 Register Dest = MI.getOperand(0).getReg(); 12501 Register Src1 = MI.getOperand(1).getReg(); 12502 Register Src2 = MI.getOperand(2).getReg(); 12503 DebugLoc dl = MI.getDebugLoc(); 12504 12505 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12506 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12507 12508 // Save FPSCR value. 12509 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12510 12511 // Set rounding mode to round-to-zero. 12512 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12513 .addImm(31) 12514 .addReg(PPC::RM, RegState::ImplicitDefine); 12515 12516 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12517 .addImm(30) 12518 .addReg(PPC::RM, RegState::ImplicitDefine); 12519 12520 // Perform addition. 12521 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12522 .addReg(Src1) 12523 .addReg(Src2); 12524 if (MI.getFlag(MachineInstr::NoFPExcept)) 12525 MIB.setMIFlag(MachineInstr::NoFPExcept); 12526 12527 // Restore FPSCR value. 12528 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12529 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12530 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12531 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12532 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12533 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12534 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12535 ? PPC::ANDI8_rec 12536 : PPC::ANDI_rec; 12537 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12538 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12539 12540 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12541 Register Dest = RegInfo.createVirtualRegister( 12542 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12543 12544 DebugLoc Dl = MI.getDebugLoc(); 12545 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12546 .addReg(MI.getOperand(1).getReg()) 12547 .addImm(1); 12548 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12549 MI.getOperand(0).getReg()) 12550 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12551 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12552 DebugLoc Dl = MI.getDebugLoc(); 12553 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12554 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12555 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12556 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12557 MI.getOperand(0).getReg()) 12558 .addReg(CRReg); 12559 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12560 DebugLoc Dl = MI.getDebugLoc(); 12561 unsigned Imm = MI.getOperand(1).getImm(); 12562 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12563 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12564 MI.getOperand(0).getReg()) 12565 .addReg(PPC::CR0EQ); 12566 } else if (MI.getOpcode() == PPC::SETRNDi) { 12567 DebugLoc dl = MI.getDebugLoc(); 12568 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12569 12570 // Save FPSCR value. 12571 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12572 12573 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12574 // the following settings: 12575 // 00 Round to nearest 12576 // 01 Round to 0 12577 // 10 Round to +inf 12578 // 11 Round to -inf 12579 12580 // When the operand is immediate, using the two least significant bits of 12581 // the immediate to set the bits 62:63 of FPSCR. 12582 unsigned Mode = MI.getOperand(1).getImm(); 12583 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12584 .addImm(31) 12585 .addReg(PPC::RM, RegState::ImplicitDefine); 12586 12587 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12588 .addImm(30) 12589 .addReg(PPC::RM, RegState::ImplicitDefine); 12590 } else if (MI.getOpcode() == PPC::SETRND) { 12591 DebugLoc dl = MI.getDebugLoc(); 12592 12593 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12594 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12595 // If the target doesn't have DirectMove, we should use stack to do the 12596 // conversion, because the target doesn't have the instructions like mtvsrd 12597 // or mfvsrd to do this conversion directly. 12598 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12599 if (Subtarget.hasDirectMove()) { 12600 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12601 .addReg(SrcReg); 12602 } else { 12603 // Use stack to do the register copy. 12604 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12605 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12606 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12607 if (RC == &PPC::F8RCRegClass) { 12608 // Copy register from F8RCRegClass to G8RCRegclass. 12609 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12610 "Unsupported RegClass."); 12611 12612 StoreOp = PPC::STFD; 12613 LoadOp = PPC::LD; 12614 } else { 12615 // Copy register from G8RCRegClass to F8RCRegclass. 12616 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12617 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12618 "Unsupported RegClass."); 12619 } 12620 12621 MachineFrameInfo &MFI = F->getFrameInfo(); 12622 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12623 12624 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12625 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12626 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12627 MFI.getObjectAlign(FrameIdx)); 12628 12629 // Store the SrcReg into the stack. 12630 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12631 .addReg(SrcReg) 12632 .addImm(0) 12633 .addFrameIndex(FrameIdx) 12634 .addMemOperand(MMOStore); 12635 12636 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12637 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12638 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12639 MFI.getObjectAlign(FrameIdx)); 12640 12641 // Load from the stack where SrcReg is stored, and save to DestReg, 12642 // so we have done the RegClass conversion from RegClass::SrcReg to 12643 // RegClass::DestReg. 12644 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12645 .addImm(0) 12646 .addFrameIndex(FrameIdx) 12647 .addMemOperand(MMOLoad); 12648 } 12649 }; 12650 12651 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12652 12653 // Save FPSCR value. 12654 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12655 12656 // When the operand is gprc register, use two least significant bits of the 12657 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12658 // 12659 // copy OldFPSCRTmpReg, OldFPSCRReg 12660 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12661 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12662 // copy NewFPSCRReg, NewFPSCRTmpReg 12663 // mtfsf 255, NewFPSCRReg 12664 MachineOperand SrcOp = MI.getOperand(1); 12665 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12666 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12667 12668 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12669 12670 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12671 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12672 12673 // The first operand of INSERT_SUBREG should be a register which has 12674 // subregisters, we only care about its RegClass, so we should use an 12675 // IMPLICIT_DEF register. 12676 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12677 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12678 .addReg(ImDefReg) 12679 .add(SrcOp) 12680 .addImm(1); 12681 12682 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12683 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12684 .addReg(OldFPSCRTmpReg) 12685 .addReg(ExtSrcReg) 12686 .addImm(0) 12687 .addImm(62); 12688 12689 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12690 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12691 12692 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12693 // bits of FPSCR. 12694 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12695 .addImm(255) 12696 .addReg(NewFPSCRReg) 12697 .addImm(0) 12698 .addImm(0); 12699 } else if (MI.getOpcode() == PPC::SETFLM) { 12700 DebugLoc Dl = MI.getDebugLoc(); 12701 12702 // Result of setflm is previous FPSCR content, so we need to save it first. 12703 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12704 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12705 12706 // Put bits in 32:63 to FPSCR. 12707 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12708 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12709 .addImm(255) 12710 .addReg(NewFPSCRReg) 12711 .addImm(0) 12712 .addImm(0); 12713 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12714 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12715 return emitProbedAlloca(MI, BB); 12716 } else { 12717 llvm_unreachable("Unexpected instr type to insert"); 12718 } 12719 12720 MI.eraseFromParent(); // The pseudo instruction is gone now. 12721 return BB; 12722 } 12723 12724 //===----------------------------------------------------------------------===// 12725 // Target Optimization Hooks 12726 //===----------------------------------------------------------------------===// 12727 12728 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12729 // For the estimates, convergence is quadratic, so we essentially double the 12730 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12731 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12732 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12733 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12734 if (VT.getScalarType() == MVT::f64) 12735 RefinementSteps++; 12736 return RefinementSteps; 12737 } 12738 12739 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12740 const DenormalMode &Mode) const { 12741 // TODO - add support for v2f64/v4f32 12742 EVT VT = Op.getValueType(); 12743 if (VT != MVT::f64) 12744 return SDValue(); 12745 12746 SDLoc DL(Op); 12747 // The output register of FTSQRT is CR field. 12748 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12749 // ftsqrt BF,FRB 12750 // Let e_b be the unbiased exponent of the double-precision 12751 // floating-point operand in register FRB. 12752 // fe_flag is set to 1 if either of the following conditions occurs. 12753 // - The double-precision floating-point operand in register FRB is a zero, 12754 // a NaN, or an infinity, or a negative value. 12755 // - e_b is less than or equal to -970. 12756 // Otherwise fe_flag is set to 0. 12757 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12758 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12759 // exponent is less than -970) 12760 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12761 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12762 FTSQRT, SRIdxVal), 12763 0); 12764 } 12765 12766 SDValue 12767 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12768 SelectionDAG &DAG) const { 12769 // TODO - add support for v2f64/v4f32 12770 EVT VT = Op.getValueType(); 12771 if (VT != MVT::f64) 12772 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12773 12774 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12775 } 12776 12777 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12778 int Enabled, int &RefinementSteps, 12779 bool &UseOneConstNR, 12780 bool Reciprocal) const { 12781 EVT VT = Operand.getValueType(); 12782 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12783 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12784 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12785 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12786 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12787 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12788 12789 // The Newton-Raphson computation with a single constant does not provide 12790 // enough accuracy on some CPUs. 12791 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12792 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12793 } 12794 return SDValue(); 12795 } 12796 12797 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12798 int Enabled, 12799 int &RefinementSteps) const { 12800 EVT VT = Operand.getValueType(); 12801 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12802 (VT == MVT::f64 && Subtarget.hasFRE()) || 12803 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12804 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12805 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12806 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12807 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12808 } 12809 return SDValue(); 12810 } 12811 12812 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12813 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12814 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12815 // enabled for division), this functionality is redundant with the default 12816 // combiner logic (once the division -> reciprocal/multiply transformation 12817 // has taken place). As a result, this matters more for older cores than for 12818 // newer ones. 12819 12820 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12821 // reciprocal if there are two or more FDIVs (for embedded cores with only 12822 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12823 switch (Subtarget.getCPUDirective()) { 12824 default: 12825 return 3; 12826 case PPC::DIR_440: 12827 case PPC::DIR_A2: 12828 case PPC::DIR_E500: 12829 case PPC::DIR_E500mc: 12830 case PPC::DIR_E5500: 12831 return 2; 12832 } 12833 } 12834 12835 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12836 // collapsed, and so we need to look through chains of them. 12837 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12838 int64_t& Offset, SelectionDAG &DAG) { 12839 if (DAG.isBaseWithConstantOffset(Loc)) { 12840 Base = Loc.getOperand(0); 12841 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12842 12843 // The base might itself be a base plus an offset, and if so, accumulate 12844 // that as well. 12845 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12846 } 12847 } 12848 12849 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12850 unsigned Bytes, int Dist, 12851 SelectionDAG &DAG) { 12852 if (VT.getSizeInBits() / 8 != Bytes) 12853 return false; 12854 12855 SDValue BaseLoc = Base->getBasePtr(); 12856 if (Loc.getOpcode() == ISD::FrameIndex) { 12857 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12858 return false; 12859 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12860 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12861 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12862 int FS = MFI.getObjectSize(FI); 12863 int BFS = MFI.getObjectSize(BFI); 12864 if (FS != BFS || FS != (int)Bytes) return false; 12865 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12866 } 12867 12868 SDValue Base1 = Loc, Base2 = BaseLoc; 12869 int64_t Offset1 = 0, Offset2 = 0; 12870 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12871 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12872 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12873 return true; 12874 12875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12876 const GlobalValue *GV1 = nullptr; 12877 const GlobalValue *GV2 = nullptr; 12878 Offset1 = 0; 12879 Offset2 = 0; 12880 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12881 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12882 if (isGA1 && isGA2 && GV1 == GV2) 12883 return Offset1 == (Offset2 + Dist*Bytes); 12884 return false; 12885 } 12886 12887 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12888 // not enforce equality of the chain operands. 12889 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12890 unsigned Bytes, int Dist, 12891 SelectionDAG &DAG) { 12892 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12893 EVT VT = LS->getMemoryVT(); 12894 SDValue Loc = LS->getBasePtr(); 12895 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12896 } 12897 12898 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12899 EVT VT; 12900 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12901 default: return false; 12902 case Intrinsic::ppc_altivec_lvx: 12903 case Intrinsic::ppc_altivec_lvxl: 12904 case Intrinsic::ppc_vsx_lxvw4x: 12905 case Intrinsic::ppc_vsx_lxvw4x_be: 12906 VT = MVT::v4i32; 12907 break; 12908 case Intrinsic::ppc_vsx_lxvd2x: 12909 case Intrinsic::ppc_vsx_lxvd2x_be: 12910 VT = MVT::v2f64; 12911 break; 12912 case Intrinsic::ppc_altivec_lvebx: 12913 VT = MVT::i8; 12914 break; 12915 case Intrinsic::ppc_altivec_lvehx: 12916 VT = MVT::i16; 12917 break; 12918 case Intrinsic::ppc_altivec_lvewx: 12919 VT = MVT::i32; 12920 break; 12921 } 12922 12923 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12924 } 12925 12926 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12927 EVT VT; 12928 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12929 default: return false; 12930 case Intrinsic::ppc_altivec_stvx: 12931 case Intrinsic::ppc_altivec_stvxl: 12932 case Intrinsic::ppc_vsx_stxvw4x: 12933 VT = MVT::v4i32; 12934 break; 12935 case Intrinsic::ppc_vsx_stxvd2x: 12936 VT = MVT::v2f64; 12937 break; 12938 case Intrinsic::ppc_vsx_stxvw4x_be: 12939 VT = MVT::v4i32; 12940 break; 12941 case Intrinsic::ppc_vsx_stxvd2x_be: 12942 VT = MVT::v2f64; 12943 break; 12944 case Intrinsic::ppc_altivec_stvebx: 12945 VT = MVT::i8; 12946 break; 12947 case Intrinsic::ppc_altivec_stvehx: 12948 VT = MVT::i16; 12949 break; 12950 case Intrinsic::ppc_altivec_stvewx: 12951 VT = MVT::i32; 12952 break; 12953 } 12954 12955 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12956 } 12957 12958 return false; 12959 } 12960 12961 // Return true is there is a nearyby consecutive load to the one provided 12962 // (regardless of alignment). We search up and down the chain, looking though 12963 // token factors and other loads (but nothing else). As a result, a true result 12964 // indicates that it is safe to create a new consecutive load adjacent to the 12965 // load provided. 12966 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12967 SDValue Chain = LD->getChain(); 12968 EVT VT = LD->getMemoryVT(); 12969 12970 SmallSet<SDNode *, 16> LoadRoots; 12971 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12972 SmallSet<SDNode *, 16> Visited; 12973 12974 // First, search up the chain, branching to follow all token-factor operands. 12975 // If we find a consecutive load, then we're done, otherwise, record all 12976 // nodes just above the top-level loads and token factors. 12977 while (!Queue.empty()) { 12978 SDNode *ChainNext = Queue.pop_back_val(); 12979 if (!Visited.insert(ChainNext).second) 12980 continue; 12981 12982 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12983 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12984 return true; 12985 12986 if (!Visited.count(ChainLD->getChain().getNode())) 12987 Queue.push_back(ChainLD->getChain().getNode()); 12988 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12989 for (const SDUse &O : ChainNext->ops()) 12990 if (!Visited.count(O.getNode())) 12991 Queue.push_back(O.getNode()); 12992 } else 12993 LoadRoots.insert(ChainNext); 12994 } 12995 12996 // Second, search down the chain, starting from the top-level nodes recorded 12997 // in the first phase. These top-level nodes are the nodes just above all 12998 // loads and token factors. Starting with their uses, recursively look though 12999 // all loads (just the chain uses) and token factors to find a consecutive 13000 // load. 13001 Visited.clear(); 13002 Queue.clear(); 13003 13004 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13005 IE = LoadRoots.end(); I != IE; ++I) { 13006 Queue.push_back(*I); 13007 13008 while (!Queue.empty()) { 13009 SDNode *LoadRoot = Queue.pop_back_val(); 13010 if (!Visited.insert(LoadRoot).second) 13011 continue; 13012 13013 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13014 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13015 return true; 13016 13017 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13018 UE = LoadRoot->use_end(); UI != UE; ++UI) 13019 if (((isa<MemSDNode>(*UI) && 13020 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13021 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13022 Queue.push_back(*UI); 13023 } 13024 } 13025 13026 return false; 13027 } 13028 13029 /// This function is called when we have proved that a SETCC node can be replaced 13030 /// by subtraction (and other supporting instructions) so that the result of 13031 /// comparison is kept in a GPR instead of CR. This function is purely for 13032 /// codegen purposes and has some flags to guide the codegen process. 13033 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13034 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13035 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13036 13037 // Zero extend the operands to the largest legal integer. Originally, they 13038 // must be of a strictly smaller size. 13039 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13040 DAG.getConstant(Size, DL, MVT::i32)); 13041 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13042 DAG.getConstant(Size, DL, MVT::i32)); 13043 13044 // Swap if needed. Depends on the condition code. 13045 if (Swap) 13046 std::swap(Op0, Op1); 13047 13048 // Subtract extended integers. 13049 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13050 13051 // Move the sign bit to the least significant position and zero out the rest. 13052 // Now the least significant bit carries the result of original comparison. 13053 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13054 DAG.getConstant(Size - 1, DL, MVT::i32)); 13055 auto Final = Shifted; 13056 13057 // Complement the result if needed. Based on the condition code. 13058 if (Complement) 13059 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13060 DAG.getConstant(1, DL, MVT::i64)); 13061 13062 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13063 } 13064 13065 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13066 DAGCombinerInfo &DCI) const { 13067 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13068 13069 SelectionDAG &DAG = DCI.DAG; 13070 SDLoc DL(N); 13071 13072 // Size of integers being compared has a critical role in the following 13073 // analysis, so we prefer to do this when all types are legal. 13074 if (!DCI.isAfterLegalizeDAG()) 13075 return SDValue(); 13076 13077 // If all users of SETCC extend its value to a legal integer type 13078 // then we replace SETCC with a subtraction 13079 for (SDNode::use_iterator UI = N->use_begin(), 13080 UE = N->use_end(); UI != UE; ++UI) { 13081 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13082 return SDValue(); 13083 } 13084 13085 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13086 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13087 13088 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13089 13090 if (OpSize < Size) { 13091 switch (CC) { 13092 default: break; 13093 case ISD::SETULT: 13094 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13095 case ISD::SETULE: 13096 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13097 case ISD::SETUGT: 13098 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13099 case ISD::SETUGE: 13100 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13101 } 13102 } 13103 13104 return SDValue(); 13105 } 13106 13107 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13108 DAGCombinerInfo &DCI) const { 13109 SelectionDAG &DAG = DCI.DAG; 13110 SDLoc dl(N); 13111 13112 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13113 // If we're tracking CR bits, we need to be careful that we don't have: 13114 // trunc(binary-ops(zext(x), zext(y))) 13115 // or 13116 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13117 // such that we're unnecessarily moving things into GPRs when it would be 13118 // better to keep them in CR bits. 13119 13120 // Note that trunc here can be an actual i1 trunc, or can be the effective 13121 // truncation that comes from a setcc or select_cc. 13122 if (N->getOpcode() == ISD::TRUNCATE && 13123 N->getValueType(0) != MVT::i1) 13124 return SDValue(); 13125 13126 if (N->getOperand(0).getValueType() != MVT::i32 && 13127 N->getOperand(0).getValueType() != MVT::i64) 13128 return SDValue(); 13129 13130 if (N->getOpcode() == ISD::SETCC || 13131 N->getOpcode() == ISD::SELECT_CC) { 13132 // If we're looking at a comparison, then we need to make sure that the 13133 // high bits (all except for the first) don't matter the result. 13134 ISD::CondCode CC = 13135 cast<CondCodeSDNode>(N->getOperand( 13136 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13137 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13138 13139 if (ISD::isSignedIntSetCC(CC)) { 13140 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13141 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13142 return SDValue(); 13143 } else if (ISD::isUnsignedIntSetCC(CC)) { 13144 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13145 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13146 !DAG.MaskedValueIsZero(N->getOperand(1), 13147 APInt::getHighBitsSet(OpBits, OpBits-1))) 13148 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13149 : SDValue()); 13150 } else { 13151 // This is neither a signed nor an unsigned comparison, just make sure 13152 // that the high bits are equal. 13153 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13154 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13155 13156 // We don't really care about what is known about the first bit (if 13157 // anything), so clear it in all masks prior to comparing them. 13158 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 13159 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 13160 13161 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 13162 return SDValue(); 13163 } 13164 } 13165 13166 // We now know that the higher-order bits are irrelevant, we just need to 13167 // make sure that all of the intermediate operations are bit operations, and 13168 // all inputs are extensions. 13169 if (N->getOperand(0).getOpcode() != ISD::AND && 13170 N->getOperand(0).getOpcode() != ISD::OR && 13171 N->getOperand(0).getOpcode() != ISD::XOR && 13172 N->getOperand(0).getOpcode() != ISD::SELECT && 13173 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13174 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13175 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13176 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13177 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13178 return SDValue(); 13179 13180 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13181 N->getOperand(1).getOpcode() != ISD::AND && 13182 N->getOperand(1).getOpcode() != ISD::OR && 13183 N->getOperand(1).getOpcode() != ISD::XOR && 13184 N->getOperand(1).getOpcode() != ISD::SELECT && 13185 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13186 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13187 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13188 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13189 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13190 return SDValue(); 13191 13192 SmallVector<SDValue, 4> Inputs; 13193 SmallVector<SDValue, 8> BinOps, PromOps; 13194 SmallPtrSet<SDNode *, 16> Visited; 13195 13196 for (unsigned i = 0; i < 2; ++i) { 13197 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13198 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13199 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13200 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13201 isa<ConstantSDNode>(N->getOperand(i))) 13202 Inputs.push_back(N->getOperand(i)); 13203 else 13204 BinOps.push_back(N->getOperand(i)); 13205 13206 if (N->getOpcode() == ISD::TRUNCATE) 13207 break; 13208 } 13209 13210 // Visit all inputs, collect all binary operations (and, or, xor and 13211 // select) that are all fed by extensions. 13212 while (!BinOps.empty()) { 13213 SDValue BinOp = BinOps.back(); 13214 BinOps.pop_back(); 13215 13216 if (!Visited.insert(BinOp.getNode()).second) 13217 continue; 13218 13219 PromOps.push_back(BinOp); 13220 13221 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13222 // The condition of the select is not promoted. 13223 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13224 continue; 13225 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13226 continue; 13227 13228 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13229 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13230 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13231 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13232 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13233 Inputs.push_back(BinOp.getOperand(i)); 13234 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13235 BinOp.getOperand(i).getOpcode() == ISD::OR || 13236 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13237 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13238 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13239 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13240 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13241 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13242 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13243 BinOps.push_back(BinOp.getOperand(i)); 13244 } else { 13245 // We have an input that is not an extension or another binary 13246 // operation; we'll abort this transformation. 13247 return SDValue(); 13248 } 13249 } 13250 } 13251 13252 // Make sure that this is a self-contained cluster of operations (which 13253 // is not quite the same thing as saying that everything has only one 13254 // use). 13255 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13256 if (isa<ConstantSDNode>(Inputs[i])) 13257 continue; 13258 13259 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13260 UE = Inputs[i].getNode()->use_end(); 13261 UI != UE; ++UI) { 13262 SDNode *User = *UI; 13263 if (User != N && !Visited.count(User)) 13264 return SDValue(); 13265 13266 // Make sure that we're not going to promote the non-output-value 13267 // operand(s) or SELECT or SELECT_CC. 13268 // FIXME: Although we could sometimes handle this, and it does occur in 13269 // practice that one of the condition inputs to the select is also one of 13270 // the outputs, we currently can't deal with this. 13271 if (User->getOpcode() == ISD::SELECT) { 13272 if (User->getOperand(0) == Inputs[i]) 13273 return SDValue(); 13274 } else if (User->getOpcode() == ISD::SELECT_CC) { 13275 if (User->getOperand(0) == Inputs[i] || 13276 User->getOperand(1) == Inputs[i]) 13277 return SDValue(); 13278 } 13279 } 13280 } 13281 13282 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13283 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13284 UE = PromOps[i].getNode()->use_end(); 13285 UI != UE; ++UI) { 13286 SDNode *User = *UI; 13287 if (User != N && !Visited.count(User)) 13288 return SDValue(); 13289 13290 // Make sure that we're not going to promote the non-output-value 13291 // operand(s) or SELECT or SELECT_CC. 13292 // FIXME: Although we could sometimes handle this, and it does occur in 13293 // practice that one of the condition inputs to the select is also one of 13294 // the outputs, we currently can't deal with this. 13295 if (User->getOpcode() == ISD::SELECT) { 13296 if (User->getOperand(0) == PromOps[i]) 13297 return SDValue(); 13298 } else if (User->getOpcode() == ISD::SELECT_CC) { 13299 if (User->getOperand(0) == PromOps[i] || 13300 User->getOperand(1) == PromOps[i]) 13301 return SDValue(); 13302 } 13303 } 13304 } 13305 13306 // Replace all inputs with the extension operand. 13307 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13308 // Constants may have users outside the cluster of to-be-promoted nodes, 13309 // and so we need to replace those as we do the promotions. 13310 if (isa<ConstantSDNode>(Inputs[i])) 13311 continue; 13312 else 13313 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13314 } 13315 13316 std::list<HandleSDNode> PromOpHandles; 13317 for (auto &PromOp : PromOps) 13318 PromOpHandles.emplace_back(PromOp); 13319 13320 // Replace all operations (these are all the same, but have a different 13321 // (i1) return type). DAG.getNode will validate that the types of 13322 // a binary operator match, so go through the list in reverse so that 13323 // we've likely promoted both operands first. Any intermediate truncations or 13324 // extensions disappear. 13325 while (!PromOpHandles.empty()) { 13326 SDValue PromOp = PromOpHandles.back().getValue(); 13327 PromOpHandles.pop_back(); 13328 13329 if (PromOp.getOpcode() == ISD::TRUNCATE || 13330 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13331 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13332 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13333 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13334 PromOp.getOperand(0).getValueType() != MVT::i1) { 13335 // The operand is not yet ready (see comment below). 13336 PromOpHandles.emplace_front(PromOp); 13337 continue; 13338 } 13339 13340 SDValue RepValue = PromOp.getOperand(0); 13341 if (isa<ConstantSDNode>(RepValue)) 13342 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13343 13344 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13345 continue; 13346 } 13347 13348 unsigned C; 13349 switch (PromOp.getOpcode()) { 13350 default: C = 0; break; 13351 case ISD::SELECT: C = 1; break; 13352 case ISD::SELECT_CC: C = 2; break; 13353 } 13354 13355 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13356 PromOp.getOperand(C).getValueType() != MVT::i1) || 13357 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13358 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13359 // The to-be-promoted operands of this node have not yet been 13360 // promoted (this should be rare because we're going through the 13361 // list backward, but if one of the operands has several users in 13362 // this cluster of to-be-promoted nodes, it is possible). 13363 PromOpHandles.emplace_front(PromOp); 13364 continue; 13365 } 13366 13367 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13368 PromOp.getNode()->op_end()); 13369 13370 // If there are any constant inputs, make sure they're replaced now. 13371 for (unsigned i = 0; i < 2; ++i) 13372 if (isa<ConstantSDNode>(Ops[C+i])) 13373 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13374 13375 DAG.ReplaceAllUsesOfValueWith(PromOp, 13376 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13377 } 13378 13379 // Now we're left with the initial truncation itself. 13380 if (N->getOpcode() == ISD::TRUNCATE) 13381 return N->getOperand(0); 13382 13383 // Otherwise, this is a comparison. The operands to be compared have just 13384 // changed type (to i1), but everything else is the same. 13385 return SDValue(N, 0); 13386 } 13387 13388 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13389 DAGCombinerInfo &DCI) const { 13390 SelectionDAG &DAG = DCI.DAG; 13391 SDLoc dl(N); 13392 13393 // If we're tracking CR bits, we need to be careful that we don't have: 13394 // zext(binary-ops(trunc(x), trunc(y))) 13395 // or 13396 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13397 // such that we're unnecessarily moving things into CR bits that can more 13398 // efficiently stay in GPRs. Note that if we're not certain that the high 13399 // bits are set as required by the final extension, we still may need to do 13400 // some masking to get the proper behavior. 13401 13402 // This same functionality is important on PPC64 when dealing with 13403 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13404 // the return values of functions. Because it is so similar, it is handled 13405 // here as well. 13406 13407 if (N->getValueType(0) != MVT::i32 && 13408 N->getValueType(0) != MVT::i64) 13409 return SDValue(); 13410 13411 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13412 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13413 return SDValue(); 13414 13415 if (N->getOperand(0).getOpcode() != ISD::AND && 13416 N->getOperand(0).getOpcode() != ISD::OR && 13417 N->getOperand(0).getOpcode() != ISD::XOR && 13418 N->getOperand(0).getOpcode() != ISD::SELECT && 13419 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13420 return SDValue(); 13421 13422 SmallVector<SDValue, 4> Inputs; 13423 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13424 SmallPtrSet<SDNode *, 16> Visited; 13425 13426 // Visit all inputs, collect all binary operations (and, or, xor and 13427 // select) that are all fed by truncations. 13428 while (!BinOps.empty()) { 13429 SDValue BinOp = BinOps.back(); 13430 BinOps.pop_back(); 13431 13432 if (!Visited.insert(BinOp.getNode()).second) 13433 continue; 13434 13435 PromOps.push_back(BinOp); 13436 13437 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13438 // The condition of the select is not promoted. 13439 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13440 continue; 13441 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13442 continue; 13443 13444 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13445 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13446 Inputs.push_back(BinOp.getOperand(i)); 13447 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13448 BinOp.getOperand(i).getOpcode() == ISD::OR || 13449 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13450 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13451 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13452 BinOps.push_back(BinOp.getOperand(i)); 13453 } else { 13454 // We have an input that is not a truncation or another binary 13455 // operation; we'll abort this transformation. 13456 return SDValue(); 13457 } 13458 } 13459 } 13460 13461 // The operands of a select that must be truncated when the select is 13462 // promoted because the operand is actually part of the to-be-promoted set. 13463 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13464 13465 // Make sure that this is a self-contained cluster of operations (which 13466 // is not quite the same thing as saying that everything has only one 13467 // use). 13468 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13469 if (isa<ConstantSDNode>(Inputs[i])) 13470 continue; 13471 13472 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13473 UE = Inputs[i].getNode()->use_end(); 13474 UI != UE; ++UI) { 13475 SDNode *User = *UI; 13476 if (User != N && !Visited.count(User)) 13477 return SDValue(); 13478 13479 // If we're going to promote the non-output-value operand(s) or SELECT or 13480 // SELECT_CC, record them for truncation. 13481 if (User->getOpcode() == ISD::SELECT) { 13482 if (User->getOperand(0) == Inputs[i]) 13483 SelectTruncOp[0].insert(std::make_pair(User, 13484 User->getOperand(0).getValueType())); 13485 } else if (User->getOpcode() == ISD::SELECT_CC) { 13486 if (User->getOperand(0) == Inputs[i]) 13487 SelectTruncOp[0].insert(std::make_pair(User, 13488 User->getOperand(0).getValueType())); 13489 if (User->getOperand(1) == Inputs[i]) 13490 SelectTruncOp[1].insert(std::make_pair(User, 13491 User->getOperand(1).getValueType())); 13492 } 13493 } 13494 } 13495 13496 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13497 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13498 UE = PromOps[i].getNode()->use_end(); 13499 UI != UE; ++UI) { 13500 SDNode *User = *UI; 13501 if (User != N && !Visited.count(User)) 13502 return SDValue(); 13503 13504 // If we're going to promote the non-output-value operand(s) or SELECT or 13505 // SELECT_CC, record them for truncation. 13506 if (User->getOpcode() == ISD::SELECT) { 13507 if (User->getOperand(0) == PromOps[i]) 13508 SelectTruncOp[0].insert(std::make_pair(User, 13509 User->getOperand(0).getValueType())); 13510 } else if (User->getOpcode() == ISD::SELECT_CC) { 13511 if (User->getOperand(0) == PromOps[i]) 13512 SelectTruncOp[0].insert(std::make_pair(User, 13513 User->getOperand(0).getValueType())); 13514 if (User->getOperand(1) == PromOps[i]) 13515 SelectTruncOp[1].insert(std::make_pair(User, 13516 User->getOperand(1).getValueType())); 13517 } 13518 } 13519 } 13520 13521 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13522 bool ReallyNeedsExt = false; 13523 if (N->getOpcode() != ISD::ANY_EXTEND) { 13524 // If all of the inputs are not already sign/zero extended, then 13525 // we'll still need to do that at the end. 13526 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13527 if (isa<ConstantSDNode>(Inputs[i])) 13528 continue; 13529 13530 unsigned OpBits = 13531 Inputs[i].getOperand(0).getValueSizeInBits(); 13532 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13533 13534 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13535 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13536 APInt::getHighBitsSet(OpBits, 13537 OpBits-PromBits))) || 13538 (N->getOpcode() == ISD::SIGN_EXTEND && 13539 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13540 (OpBits-(PromBits-1)))) { 13541 ReallyNeedsExt = true; 13542 break; 13543 } 13544 } 13545 } 13546 13547 // Replace all inputs, either with the truncation operand, or a 13548 // truncation or extension to the final output type. 13549 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13550 // Constant inputs need to be replaced with the to-be-promoted nodes that 13551 // use them because they might have users outside of the cluster of 13552 // promoted nodes. 13553 if (isa<ConstantSDNode>(Inputs[i])) 13554 continue; 13555 13556 SDValue InSrc = Inputs[i].getOperand(0); 13557 if (Inputs[i].getValueType() == N->getValueType(0)) 13558 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13559 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13560 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13561 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13562 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13563 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13564 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13565 else 13566 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13567 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13568 } 13569 13570 std::list<HandleSDNode> PromOpHandles; 13571 for (auto &PromOp : PromOps) 13572 PromOpHandles.emplace_back(PromOp); 13573 13574 // Replace all operations (these are all the same, but have a different 13575 // (promoted) return type). DAG.getNode will validate that the types of 13576 // a binary operator match, so go through the list in reverse so that 13577 // we've likely promoted both operands first. 13578 while (!PromOpHandles.empty()) { 13579 SDValue PromOp = PromOpHandles.back().getValue(); 13580 PromOpHandles.pop_back(); 13581 13582 unsigned C; 13583 switch (PromOp.getOpcode()) { 13584 default: C = 0; break; 13585 case ISD::SELECT: C = 1; break; 13586 case ISD::SELECT_CC: C = 2; break; 13587 } 13588 13589 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13590 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13591 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13592 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13593 // The to-be-promoted operands of this node have not yet been 13594 // promoted (this should be rare because we're going through the 13595 // list backward, but if one of the operands has several users in 13596 // this cluster of to-be-promoted nodes, it is possible). 13597 PromOpHandles.emplace_front(PromOp); 13598 continue; 13599 } 13600 13601 // For SELECT and SELECT_CC nodes, we do a similar check for any 13602 // to-be-promoted comparison inputs. 13603 if (PromOp.getOpcode() == ISD::SELECT || 13604 PromOp.getOpcode() == ISD::SELECT_CC) { 13605 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13606 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13607 (SelectTruncOp[1].count(PromOp.getNode()) && 13608 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13609 PromOpHandles.emplace_front(PromOp); 13610 continue; 13611 } 13612 } 13613 13614 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13615 PromOp.getNode()->op_end()); 13616 13617 // If this node has constant inputs, then they'll need to be promoted here. 13618 for (unsigned i = 0; i < 2; ++i) { 13619 if (!isa<ConstantSDNode>(Ops[C+i])) 13620 continue; 13621 if (Ops[C+i].getValueType() == N->getValueType(0)) 13622 continue; 13623 13624 if (N->getOpcode() == ISD::SIGN_EXTEND) 13625 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13626 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13627 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13628 else 13629 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13630 } 13631 13632 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13633 // truncate them again to the original value type. 13634 if (PromOp.getOpcode() == ISD::SELECT || 13635 PromOp.getOpcode() == ISD::SELECT_CC) { 13636 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13637 if (SI0 != SelectTruncOp[0].end()) 13638 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13639 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13640 if (SI1 != SelectTruncOp[1].end()) 13641 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13642 } 13643 13644 DAG.ReplaceAllUsesOfValueWith(PromOp, 13645 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13646 } 13647 13648 // Now we're left with the initial extension itself. 13649 if (!ReallyNeedsExt) 13650 return N->getOperand(0); 13651 13652 // To zero extend, just mask off everything except for the first bit (in the 13653 // i1 case). 13654 if (N->getOpcode() == ISD::ZERO_EXTEND) 13655 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13656 DAG.getConstant(APInt::getLowBitsSet( 13657 N->getValueSizeInBits(0), PromBits), 13658 dl, N->getValueType(0))); 13659 13660 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13661 "Invalid extension type"); 13662 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13663 SDValue ShiftCst = 13664 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13665 return DAG.getNode( 13666 ISD::SRA, dl, N->getValueType(0), 13667 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13668 ShiftCst); 13669 } 13670 13671 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13672 DAGCombinerInfo &DCI) const { 13673 assert(N->getOpcode() == ISD::SETCC && 13674 "Should be called with a SETCC node"); 13675 13676 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13677 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13678 SDValue LHS = N->getOperand(0); 13679 SDValue RHS = N->getOperand(1); 13680 13681 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13682 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13683 LHS.hasOneUse()) 13684 std::swap(LHS, RHS); 13685 13686 // x == 0-y --> x+y == 0 13687 // x != 0-y --> x+y != 0 13688 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13689 RHS.hasOneUse()) { 13690 SDLoc DL(N); 13691 SelectionDAG &DAG = DCI.DAG; 13692 EVT VT = N->getValueType(0); 13693 EVT OpVT = LHS.getValueType(); 13694 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13695 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13696 } 13697 } 13698 13699 return DAGCombineTruncBoolExt(N, DCI); 13700 } 13701 13702 // Is this an extending load from an f32 to an f64? 13703 static bool isFPExtLoad(SDValue Op) { 13704 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13705 return LD->getExtensionType() == ISD::EXTLOAD && 13706 Op.getValueType() == MVT::f64; 13707 return false; 13708 } 13709 13710 /// Reduces the number of fp-to-int conversion when building a vector. 13711 /// 13712 /// If this vector is built out of floating to integer conversions, 13713 /// transform it to a vector built out of floating point values followed by a 13714 /// single floating to integer conversion of the vector. 13715 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13716 /// becomes (fptosi (build_vector ($A, $B, ...))) 13717 SDValue PPCTargetLowering:: 13718 combineElementTruncationToVectorTruncation(SDNode *N, 13719 DAGCombinerInfo &DCI) const { 13720 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13721 "Should be called with a BUILD_VECTOR node"); 13722 13723 SelectionDAG &DAG = DCI.DAG; 13724 SDLoc dl(N); 13725 13726 SDValue FirstInput = N->getOperand(0); 13727 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13728 "The input operand must be an fp-to-int conversion."); 13729 13730 // This combine happens after legalization so the fp_to_[su]i nodes are 13731 // already converted to PPCSISD nodes. 13732 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13733 if (FirstConversion == PPCISD::FCTIDZ || 13734 FirstConversion == PPCISD::FCTIDUZ || 13735 FirstConversion == PPCISD::FCTIWZ || 13736 FirstConversion == PPCISD::FCTIWUZ) { 13737 bool IsSplat = true; 13738 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13739 FirstConversion == PPCISD::FCTIWUZ; 13740 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13741 SmallVector<SDValue, 4> Ops; 13742 EVT TargetVT = N->getValueType(0); 13743 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13744 SDValue NextOp = N->getOperand(i); 13745 if (NextOp.getOpcode() != PPCISD::MFVSR) 13746 return SDValue(); 13747 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13748 if (NextConversion != FirstConversion) 13749 return SDValue(); 13750 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13751 // This is not valid if the input was originally double precision. It is 13752 // also not profitable to do unless this is an extending load in which 13753 // case doing this combine will allow us to combine consecutive loads. 13754 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13755 return SDValue(); 13756 if (N->getOperand(i) != FirstInput) 13757 IsSplat = false; 13758 } 13759 13760 // If this is a splat, we leave it as-is since there will be only a single 13761 // fp-to-int conversion followed by a splat of the integer. This is better 13762 // for 32-bit and smaller ints and neutral for 64-bit ints. 13763 if (IsSplat) 13764 return SDValue(); 13765 13766 // Now that we know we have the right type of node, get its operands 13767 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13768 SDValue In = N->getOperand(i).getOperand(0); 13769 if (Is32Bit) { 13770 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13771 // here, we know that all inputs are extending loads so this is safe). 13772 if (In.isUndef()) 13773 Ops.push_back(DAG.getUNDEF(SrcVT)); 13774 else { 13775 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13776 MVT::f32, In.getOperand(0), 13777 DAG.getIntPtrConstant(1, dl)); 13778 Ops.push_back(Trunc); 13779 } 13780 } else 13781 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13782 } 13783 13784 unsigned Opcode; 13785 if (FirstConversion == PPCISD::FCTIDZ || 13786 FirstConversion == PPCISD::FCTIWZ) 13787 Opcode = ISD::FP_TO_SINT; 13788 else 13789 Opcode = ISD::FP_TO_UINT; 13790 13791 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13792 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13793 return DAG.getNode(Opcode, dl, TargetVT, BV); 13794 } 13795 return SDValue(); 13796 } 13797 13798 /// Reduce the number of loads when building a vector. 13799 /// 13800 /// Building a vector out of multiple loads can be converted to a load 13801 /// of the vector type if the loads are consecutive. If the loads are 13802 /// consecutive but in descending order, a shuffle is added at the end 13803 /// to reorder the vector. 13804 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13805 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13806 "Should be called with a BUILD_VECTOR node"); 13807 13808 SDLoc dl(N); 13809 13810 // Return early for non byte-sized type, as they can't be consecutive. 13811 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13812 return SDValue(); 13813 13814 bool InputsAreConsecutiveLoads = true; 13815 bool InputsAreReverseConsecutive = true; 13816 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13817 SDValue FirstInput = N->getOperand(0); 13818 bool IsRoundOfExtLoad = false; 13819 13820 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13821 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13822 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13823 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13824 } 13825 // Not a build vector of (possibly fp_rounded) loads. 13826 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13827 N->getNumOperands() == 1) 13828 return SDValue(); 13829 13830 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13831 // If any inputs are fp_round(extload), they all must be. 13832 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13833 return SDValue(); 13834 13835 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13836 N->getOperand(i); 13837 if (NextInput.getOpcode() != ISD::LOAD) 13838 return SDValue(); 13839 13840 SDValue PreviousInput = 13841 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13842 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13843 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13844 13845 // If any inputs are fp_round(extload), they all must be. 13846 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13847 return SDValue(); 13848 13849 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13850 InputsAreConsecutiveLoads = false; 13851 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13852 InputsAreReverseConsecutive = false; 13853 13854 // Exit early if the loads are neither consecutive nor reverse consecutive. 13855 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13856 return SDValue(); 13857 } 13858 13859 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13860 "The loads cannot be both consecutive and reverse consecutive."); 13861 13862 SDValue FirstLoadOp = 13863 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13864 SDValue LastLoadOp = 13865 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13866 N->getOperand(N->getNumOperands()-1); 13867 13868 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13869 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13870 if (InputsAreConsecutiveLoads) { 13871 assert(LD1 && "Input needs to be a LoadSDNode."); 13872 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13873 LD1->getBasePtr(), LD1->getPointerInfo(), 13874 LD1->getAlignment()); 13875 } 13876 if (InputsAreReverseConsecutive) { 13877 assert(LDL && "Input needs to be a LoadSDNode."); 13878 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13879 LDL->getBasePtr(), LDL->getPointerInfo(), 13880 LDL->getAlignment()); 13881 SmallVector<int, 16> Ops; 13882 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13883 Ops.push_back(i); 13884 13885 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13886 DAG.getUNDEF(N->getValueType(0)), Ops); 13887 } 13888 return SDValue(); 13889 } 13890 13891 // This function adds the required vector_shuffle needed to get 13892 // the elements of the vector extract in the correct position 13893 // as specified by the CorrectElems encoding. 13894 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13895 SDValue Input, uint64_t Elems, 13896 uint64_t CorrectElems) { 13897 SDLoc dl(N); 13898 13899 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13900 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13901 13902 // Knowing the element indices being extracted from the original 13903 // vector and the order in which they're being inserted, just put 13904 // them at element indices required for the instruction. 13905 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13906 if (DAG.getDataLayout().isLittleEndian()) 13907 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13908 else 13909 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13910 CorrectElems = CorrectElems >> 8; 13911 Elems = Elems >> 8; 13912 } 13913 13914 SDValue Shuffle = 13915 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13916 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13917 13918 EVT VT = N->getValueType(0); 13919 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13920 13921 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13922 Input.getValueType().getVectorElementType(), 13923 VT.getVectorNumElements()); 13924 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13925 DAG.getValueType(ExtVT)); 13926 } 13927 13928 // Look for build vector patterns where input operands come from sign 13929 // extended vector_extract elements of specific indices. If the correct indices 13930 // aren't used, add a vector shuffle to fix up the indices and create 13931 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13932 // during instruction selection. 13933 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13934 // This array encodes the indices that the vector sign extend instructions 13935 // extract from when extending from one type to another for both BE and LE. 13936 // The right nibble of each byte corresponds to the LE incides. 13937 // and the left nibble of each byte corresponds to the BE incides. 13938 // For example: 0x3074B8FC byte->word 13939 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13940 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13941 // For example: 0x000070F8 byte->double word 13942 // For LE: the allowed indices are: 0x0,0x8 13943 // For BE: the allowed indices are: 0x7,0xF 13944 uint64_t TargetElems[] = { 13945 0x3074B8FC, // b->w 13946 0x000070F8, // b->d 13947 0x10325476, // h->w 13948 0x00003074, // h->d 13949 0x00001032, // w->d 13950 }; 13951 13952 uint64_t Elems = 0; 13953 int Index; 13954 SDValue Input; 13955 13956 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13957 if (!Op) 13958 return false; 13959 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13960 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13961 return false; 13962 13963 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13964 // of the right width. 13965 SDValue Extract = Op.getOperand(0); 13966 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13967 Extract = Extract.getOperand(0); 13968 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13969 return false; 13970 13971 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13972 if (!ExtOp) 13973 return false; 13974 13975 Index = ExtOp->getZExtValue(); 13976 if (Input && Input != Extract.getOperand(0)) 13977 return false; 13978 13979 if (!Input) 13980 Input = Extract.getOperand(0); 13981 13982 Elems = Elems << 8; 13983 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13984 Elems |= Index; 13985 13986 return true; 13987 }; 13988 13989 // If the build vector operands aren't sign extended vector extracts, 13990 // of the same input vector, then return. 13991 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13992 if (!isSExtOfVecExtract(N->getOperand(i))) { 13993 return SDValue(); 13994 } 13995 } 13996 13997 // If the vector extract indicies are not correct, add the appropriate 13998 // vector_shuffle. 13999 int TgtElemArrayIdx; 14000 int InputSize = Input.getValueType().getScalarSizeInBits(); 14001 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14002 if (InputSize + OutputSize == 40) 14003 TgtElemArrayIdx = 0; 14004 else if (InputSize + OutputSize == 72) 14005 TgtElemArrayIdx = 1; 14006 else if (InputSize + OutputSize == 48) 14007 TgtElemArrayIdx = 2; 14008 else if (InputSize + OutputSize == 80) 14009 TgtElemArrayIdx = 3; 14010 else if (InputSize + OutputSize == 96) 14011 TgtElemArrayIdx = 4; 14012 else 14013 return SDValue(); 14014 14015 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14016 CorrectElems = DAG.getDataLayout().isLittleEndian() 14017 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14018 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14019 if (Elems != CorrectElems) { 14020 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14021 } 14022 14023 // Regular lowering will catch cases where a shuffle is not needed. 14024 return SDValue(); 14025 } 14026 14027 // Look for the pattern of a load from a narrow width to i128, feeding 14028 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14029 // (LXVRZX). This node represents a zero extending load that will be matched 14030 // to the Load VSX Vector Rightmost instructions. 14031 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14032 SDLoc DL(N); 14033 14034 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14035 if (N->getValueType(0) != MVT::v1i128) 14036 return SDValue(); 14037 14038 SDValue Operand = N->getOperand(0); 14039 // Proceed with the transformation if the operand to the BUILD_VECTOR 14040 // is a load instruction. 14041 if (Operand.getOpcode() != ISD::LOAD) 14042 return SDValue(); 14043 14044 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 14045 EVT MemoryType = LD->getMemoryVT(); 14046 14047 // This transformation is only valid if the we are loading either a byte, 14048 // halfword, word, or doubleword. 14049 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14050 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14051 14052 // Ensure that the load from the narrow width is being zero extended to i128. 14053 if (!ValidLDType || 14054 (LD->getExtensionType() != ISD::ZEXTLOAD && 14055 LD->getExtensionType() != ISD::EXTLOAD)) 14056 return SDValue(); 14057 14058 SDValue LoadOps[] = { 14059 LD->getChain(), LD->getBasePtr(), 14060 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14061 14062 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14063 DAG.getVTList(MVT::v1i128, MVT::Other), 14064 LoadOps, MemoryType, LD->getMemOperand()); 14065 } 14066 14067 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14068 DAGCombinerInfo &DCI) const { 14069 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14070 "Should be called with a BUILD_VECTOR node"); 14071 14072 SelectionDAG &DAG = DCI.DAG; 14073 SDLoc dl(N); 14074 14075 if (!Subtarget.hasVSX()) 14076 return SDValue(); 14077 14078 // The target independent DAG combiner will leave a build_vector of 14079 // float-to-int conversions intact. We can generate MUCH better code for 14080 // a float-to-int conversion of a vector of floats. 14081 SDValue FirstInput = N->getOperand(0); 14082 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14083 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14084 if (Reduced) 14085 return Reduced; 14086 } 14087 14088 // If we're building a vector out of consecutive loads, just load that 14089 // vector type. 14090 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14091 if (Reduced) 14092 return Reduced; 14093 14094 // If we're building a vector out of extended elements from another vector 14095 // we have P9 vector integer extend instructions. The code assumes legal 14096 // input types (i.e. it can't handle things like v4i16) so do not run before 14097 // legalization. 14098 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14099 Reduced = combineBVOfVecSExt(N, DAG); 14100 if (Reduced) 14101 return Reduced; 14102 } 14103 14104 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14105 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14106 // is a load from <valid narrow width> to i128. 14107 if (Subtarget.isISA3_1()) { 14108 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14109 if (BVOfZLoad) 14110 return BVOfZLoad; 14111 } 14112 14113 if (N->getValueType(0) != MVT::v2f64) 14114 return SDValue(); 14115 14116 // Looking for: 14117 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14118 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14119 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14120 return SDValue(); 14121 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14122 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14123 return SDValue(); 14124 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14125 return SDValue(); 14126 14127 SDValue Ext1 = FirstInput.getOperand(0); 14128 SDValue Ext2 = N->getOperand(1).getOperand(0); 14129 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14130 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14131 return SDValue(); 14132 14133 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14134 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14135 if (!Ext1Op || !Ext2Op) 14136 return SDValue(); 14137 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14138 Ext1.getOperand(0) != Ext2.getOperand(0)) 14139 return SDValue(); 14140 14141 int FirstElem = Ext1Op->getZExtValue(); 14142 int SecondElem = Ext2Op->getZExtValue(); 14143 int SubvecIdx; 14144 if (FirstElem == 0 && SecondElem == 1) 14145 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14146 else if (FirstElem == 2 && SecondElem == 3) 14147 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14148 else 14149 return SDValue(); 14150 14151 SDValue SrcVec = Ext1.getOperand(0); 14152 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14153 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14154 return DAG.getNode(NodeType, dl, MVT::v2f64, 14155 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14156 } 14157 14158 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14159 DAGCombinerInfo &DCI) const { 14160 assert((N->getOpcode() == ISD::SINT_TO_FP || 14161 N->getOpcode() == ISD::UINT_TO_FP) && 14162 "Need an int -> FP conversion node here"); 14163 14164 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14165 return SDValue(); 14166 14167 SelectionDAG &DAG = DCI.DAG; 14168 SDLoc dl(N); 14169 SDValue Op(N, 0); 14170 14171 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14172 // from the hardware. 14173 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14174 return SDValue(); 14175 if (!Op.getOperand(0).getValueType().isSimple()) 14176 return SDValue(); 14177 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14178 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14179 return SDValue(); 14180 14181 SDValue FirstOperand(Op.getOperand(0)); 14182 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14183 (FirstOperand.getValueType() == MVT::i8 || 14184 FirstOperand.getValueType() == MVT::i16); 14185 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14186 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14187 bool DstDouble = Op.getValueType() == MVT::f64; 14188 unsigned ConvOp = Signed ? 14189 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14190 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14191 SDValue WidthConst = 14192 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14193 dl, false); 14194 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14195 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14196 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14197 DAG.getVTList(MVT::f64, MVT::Other), 14198 Ops, MVT::i8, LDN->getMemOperand()); 14199 14200 // For signed conversion, we need to sign-extend the value in the VSR 14201 if (Signed) { 14202 SDValue ExtOps[] = { Ld, WidthConst }; 14203 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14204 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14205 } else 14206 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14207 } 14208 14209 14210 // For i32 intermediate values, unfortunately, the conversion functions 14211 // leave the upper 32 bits of the value are undefined. Within the set of 14212 // scalar instructions, we have no method for zero- or sign-extending the 14213 // value. Thus, we cannot handle i32 intermediate values here. 14214 if (Op.getOperand(0).getValueType() == MVT::i32) 14215 return SDValue(); 14216 14217 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14218 "UINT_TO_FP is supported only with FPCVT"); 14219 14220 // If we have FCFIDS, then use it when converting to single-precision. 14221 // Otherwise, convert to double-precision and then round. 14222 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14223 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14224 : PPCISD::FCFIDS) 14225 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14226 : PPCISD::FCFID); 14227 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14228 ? MVT::f32 14229 : MVT::f64; 14230 14231 // If we're converting from a float, to an int, and back to a float again, 14232 // then we don't need the store/load pair at all. 14233 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14234 Subtarget.hasFPCVT()) || 14235 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14236 SDValue Src = Op.getOperand(0).getOperand(0); 14237 if (Src.getValueType() == MVT::f32) { 14238 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14239 DCI.AddToWorklist(Src.getNode()); 14240 } else if (Src.getValueType() != MVT::f64) { 14241 // Make sure that we don't pick up a ppc_fp128 source value. 14242 return SDValue(); 14243 } 14244 14245 unsigned FCTOp = 14246 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14247 PPCISD::FCTIDUZ; 14248 14249 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14250 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14251 14252 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14253 FP = DAG.getNode(ISD::FP_ROUND, dl, 14254 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14255 DCI.AddToWorklist(FP.getNode()); 14256 } 14257 14258 return FP; 14259 } 14260 14261 return SDValue(); 14262 } 14263 14264 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14265 // builtins) into loads with swaps. 14266 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14267 DAGCombinerInfo &DCI) const { 14268 SelectionDAG &DAG = DCI.DAG; 14269 SDLoc dl(N); 14270 SDValue Chain; 14271 SDValue Base; 14272 MachineMemOperand *MMO; 14273 14274 switch (N->getOpcode()) { 14275 default: 14276 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14277 case ISD::LOAD: { 14278 LoadSDNode *LD = cast<LoadSDNode>(N); 14279 Chain = LD->getChain(); 14280 Base = LD->getBasePtr(); 14281 MMO = LD->getMemOperand(); 14282 // If the MMO suggests this isn't a load of a full vector, leave 14283 // things alone. For a built-in, we have to make the change for 14284 // correctness, so if there is a size problem that will be a bug. 14285 if (MMO->getSize() < 16) 14286 return SDValue(); 14287 break; 14288 } 14289 case ISD::INTRINSIC_W_CHAIN: { 14290 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14291 Chain = Intrin->getChain(); 14292 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14293 // us what we want. Get operand 2 instead. 14294 Base = Intrin->getOperand(2); 14295 MMO = Intrin->getMemOperand(); 14296 break; 14297 } 14298 } 14299 14300 MVT VecTy = N->getValueType(0).getSimpleVT(); 14301 14302 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14303 // aligned and the type is a vector with elements up to 4 bytes 14304 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14305 VecTy.getScalarSizeInBits() <= 32) { 14306 return SDValue(); 14307 } 14308 14309 SDValue LoadOps[] = { Chain, Base }; 14310 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14311 DAG.getVTList(MVT::v2f64, MVT::Other), 14312 LoadOps, MVT::v2f64, MMO); 14313 14314 DCI.AddToWorklist(Load.getNode()); 14315 Chain = Load.getValue(1); 14316 SDValue Swap = DAG.getNode( 14317 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14318 DCI.AddToWorklist(Swap.getNode()); 14319 14320 // Add a bitcast if the resulting load type doesn't match v2f64. 14321 if (VecTy != MVT::v2f64) { 14322 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14323 DCI.AddToWorklist(N.getNode()); 14324 // Package {bitcast value, swap's chain} to match Load's shape. 14325 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14326 N, Swap.getValue(1)); 14327 } 14328 14329 return Swap; 14330 } 14331 14332 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14333 // builtins) into stores with swaps. 14334 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14335 DAGCombinerInfo &DCI) const { 14336 SelectionDAG &DAG = DCI.DAG; 14337 SDLoc dl(N); 14338 SDValue Chain; 14339 SDValue Base; 14340 unsigned SrcOpnd; 14341 MachineMemOperand *MMO; 14342 14343 switch (N->getOpcode()) { 14344 default: 14345 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14346 case ISD::STORE: { 14347 StoreSDNode *ST = cast<StoreSDNode>(N); 14348 Chain = ST->getChain(); 14349 Base = ST->getBasePtr(); 14350 MMO = ST->getMemOperand(); 14351 SrcOpnd = 1; 14352 // If the MMO suggests this isn't a store of a full vector, leave 14353 // things alone. For a built-in, we have to make the change for 14354 // correctness, so if there is a size problem that will be a bug. 14355 if (MMO->getSize() < 16) 14356 return SDValue(); 14357 break; 14358 } 14359 case ISD::INTRINSIC_VOID: { 14360 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14361 Chain = Intrin->getChain(); 14362 // Intrin->getBasePtr() oddly does not get what we want. 14363 Base = Intrin->getOperand(3); 14364 MMO = Intrin->getMemOperand(); 14365 SrcOpnd = 2; 14366 break; 14367 } 14368 } 14369 14370 SDValue Src = N->getOperand(SrcOpnd); 14371 MVT VecTy = Src.getValueType().getSimpleVT(); 14372 14373 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14374 // aligned and the type is a vector with elements up to 4 bytes 14375 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14376 VecTy.getScalarSizeInBits() <= 32) { 14377 return SDValue(); 14378 } 14379 14380 // All stores are done as v2f64 and possible bit cast. 14381 if (VecTy != MVT::v2f64) { 14382 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14383 DCI.AddToWorklist(Src.getNode()); 14384 } 14385 14386 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14387 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14388 DCI.AddToWorklist(Swap.getNode()); 14389 Chain = Swap.getValue(1); 14390 SDValue StoreOps[] = { Chain, Swap, Base }; 14391 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14392 DAG.getVTList(MVT::Other), 14393 StoreOps, VecTy, MMO); 14394 DCI.AddToWorklist(Store.getNode()); 14395 return Store; 14396 } 14397 14398 // Handle DAG combine for STORE (FP_TO_INT F). 14399 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14400 DAGCombinerInfo &DCI) const { 14401 14402 SelectionDAG &DAG = DCI.DAG; 14403 SDLoc dl(N); 14404 unsigned Opcode = N->getOperand(1).getOpcode(); 14405 14406 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14407 && "Not a FP_TO_INT Instruction!"); 14408 14409 SDValue Val = N->getOperand(1).getOperand(0); 14410 EVT Op1VT = N->getOperand(1).getValueType(); 14411 EVT ResVT = Val.getValueType(); 14412 14413 if (!isTypeLegal(ResVT)) 14414 return SDValue(); 14415 14416 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14417 bool ValidTypeForStoreFltAsInt = 14418 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14419 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14420 14421 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14422 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14423 return SDValue(); 14424 14425 // Extend f32 values to f64 14426 if (ResVT.getScalarSizeInBits() == 32) { 14427 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14428 DCI.AddToWorklist(Val.getNode()); 14429 } 14430 14431 // Set signed or unsigned conversion opcode. 14432 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14433 PPCISD::FP_TO_SINT_IN_VSR : 14434 PPCISD::FP_TO_UINT_IN_VSR; 14435 14436 Val = DAG.getNode(ConvOpcode, 14437 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14438 DCI.AddToWorklist(Val.getNode()); 14439 14440 // Set number of bytes being converted. 14441 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14442 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14443 DAG.getIntPtrConstant(ByteSize, dl, false), 14444 DAG.getValueType(Op1VT) }; 14445 14446 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14447 DAG.getVTList(MVT::Other), Ops, 14448 cast<StoreSDNode>(N)->getMemoryVT(), 14449 cast<StoreSDNode>(N)->getMemOperand()); 14450 14451 DCI.AddToWorklist(Val.getNode()); 14452 return Val; 14453 } 14454 14455 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14456 // Check that the source of the element keeps flipping 14457 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14458 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14459 for (int i = 1, e = Mask.size(); i < e; i++) { 14460 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14461 return false; 14462 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14463 return false; 14464 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14465 } 14466 return true; 14467 } 14468 14469 static bool isSplatBV(SDValue Op) { 14470 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14471 return false; 14472 SDValue FirstOp; 14473 14474 // Find first non-undef input. 14475 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14476 FirstOp = Op.getOperand(i); 14477 if (!FirstOp.isUndef()) 14478 break; 14479 } 14480 14481 // All inputs are undef or the same as the first non-undef input. 14482 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14483 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14484 return false; 14485 return true; 14486 } 14487 14488 static SDValue isScalarToVec(SDValue Op) { 14489 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14490 return Op; 14491 if (Op.getOpcode() != ISD::BITCAST) 14492 return SDValue(); 14493 Op = Op.getOperand(0); 14494 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14495 return Op; 14496 return SDValue(); 14497 } 14498 14499 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14500 int LHSMaxIdx, int RHSMinIdx, 14501 int RHSMaxIdx, int HalfVec) { 14502 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14503 int Idx = ShuffV[i]; 14504 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14505 ShuffV[i] += HalfVec; 14506 } 14507 return; 14508 } 14509 14510 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14511 // the original is: 14512 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14513 // In such a case, just change the shuffle mask to extract the element 14514 // from the permuted index. 14515 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14516 SDLoc dl(OrigSToV); 14517 EVT VT = OrigSToV.getValueType(); 14518 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14519 "Expecting a SCALAR_TO_VECTOR here"); 14520 SDValue Input = OrigSToV.getOperand(0); 14521 14522 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14523 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14524 SDValue OrigVector = Input.getOperand(0); 14525 14526 // Can't handle non-const element indices or different vector types 14527 // for the input to the extract and the output of the scalar_to_vector. 14528 if (Idx && VT == OrigVector.getValueType()) { 14529 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14530 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14531 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14532 } 14533 } 14534 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14535 OrigSToV.getOperand(0)); 14536 } 14537 14538 // On little endian subtargets, combine shuffles such as: 14539 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14540 // into: 14541 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14542 // because the latter can be matched to a single instruction merge. 14543 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14544 // to put the value into element zero. Adjust the shuffle mask so that the 14545 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14546 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14547 SelectionDAG &DAG) const { 14548 SDValue LHS = SVN->getOperand(0); 14549 SDValue RHS = SVN->getOperand(1); 14550 auto Mask = SVN->getMask(); 14551 int NumElts = LHS.getValueType().getVectorNumElements(); 14552 SDValue Res(SVN, 0); 14553 SDLoc dl(SVN); 14554 14555 // None of these combines are useful on big endian systems since the ISA 14556 // already has a big endian bias. 14557 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14558 return Res; 14559 14560 // If this is not a shuffle of a shuffle and the first element comes from 14561 // the second vector, canonicalize to the commuted form. This will make it 14562 // more likely to match one of the single instruction patterns. 14563 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14564 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14565 std::swap(LHS, RHS); 14566 Res = DAG.getCommutedVectorShuffle(*SVN); 14567 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14568 } 14569 14570 // Adjust the shuffle mask if either input vector comes from a 14571 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14572 // form (to prevent the need for a swap). 14573 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14574 SDValue SToVLHS = isScalarToVec(LHS); 14575 SDValue SToVRHS = isScalarToVec(RHS); 14576 if (SToVLHS || SToVRHS) { 14577 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14578 : SToVRHS.getValueType().getVectorNumElements(); 14579 int NumEltsOut = ShuffV.size(); 14580 14581 // Initially assume that neither input is permuted. These will be adjusted 14582 // accordingly if either input is. 14583 int LHSMaxIdx = -1; 14584 int RHSMinIdx = -1; 14585 int RHSMaxIdx = -1; 14586 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14587 14588 // Get the permuted scalar to vector nodes for the source(s) that come from 14589 // ISD::SCALAR_TO_VECTOR. 14590 if (SToVLHS) { 14591 // Set up the values for the shuffle vector fixup. 14592 LHSMaxIdx = NumEltsOut / NumEltsIn; 14593 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14594 if (SToVLHS.getValueType() != LHS.getValueType()) 14595 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14596 LHS = SToVLHS; 14597 } 14598 if (SToVRHS) { 14599 RHSMinIdx = NumEltsOut; 14600 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14601 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14602 if (SToVRHS.getValueType() != RHS.getValueType()) 14603 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14604 RHS = SToVRHS; 14605 } 14606 14607 // Fix up the shuffle mask to reflect where the desired element actually is. 14608 // The minimum and maximum indices that correspond to element zero for both 14609 // the LHS and RHS are computed and will control which shuffle mask entries 14610 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14611 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14612 // HalfVec to refer to the corresponding element in the permuted vector. 14613 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14614 HalfVec); 14615 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14616 14617 // We may have simplified away the shuffle. We won't be able to do anything 14618 // further with it here. 14619 if (!isa<ShuffleVectorSDNode>(Res)) 14620 return Res; 14621 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14622 } 14623 14624 // The common case after we commuted the shuffle is that the RHS is a splat 14625 // and we have elements coming in from the splat at indices that are not 14626 // conducive to using a merge. 14627 // Example: 14628 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14629 if (!isSplatBV(RHS)) 14630 return Res; 14631 14632 // We are looking for a mask such that all even elements are from 14633 // one vector and all odd elements from the other. 14634 if (!isAlternatingShuffMask(Mask, NumElts)) 14635 return Res; 14636 14637 // Adjust the mask so we are pulling in the same index from the splat 14638 // as the index from the interesting vector in consecutive elements. 14639 // Example (even elements from first vector): 14640 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14641 if (Mask[0] < NumElts) 14642 for (int i = 1, e = Mask.size(); i < e; i += 2) 14643 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14644 // Example (odd elements from first vector): 14645 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14646 else 14647 for (int i = 0, e = Mask.size(); i < e; i += 2) 14648 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14649 14650 // If the RHS has undefs, we need to remove them since we may have created 14651 // a shuffle that adds those instead of the splat value. 14652 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14653 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14654 14655 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14656 return Res; 14657 } 14658 14659 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14660 LSBaseSDNode *LSBase, 14661 DAGCombinerInfo &DCI) const { 14662 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14663 "Not a reverse memop pattern!"); 14664 14665 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14666 auto Mask = SVN->getMask(); 14667 int i = 0; 14668 auto I = Mask.rbegin(); 14669 auto E = Mask.rend(); 14670 14671 for (; I != E; ++I) { 14672 if (*I != i) 14673 return false; 14674 i++; 14675 } 14676 return true; 14677 }; 14678 14679 SelectionDAG &DAG = DCI.DAG; 14680 EVT VT = SVN->getValueType(0); 14681 14682 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14683 return SDValue(); 14684 14685 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14686 // See comment in PPCVSXSwapRemoval.cpp. 14687 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14688 if (!Subtarget.hasP9Vector()) 14689 return SDValue(); 14690 14691 if(!IsElementReverse(SVN)) 14692 return SDValue(); 14693 14694 if (LSBase->getOpcode() == ISD::LOAD) { 14695 SDLoc dl(SVN); 14696 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14697 return DAG.getMemIntrinsicNode( 14698 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14699 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14700 } 14701 14702 if (LSBase->getOpcode() == ISD::STORE) { 14703 SDLoc dl(LSBase); 14704 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14705 LSBase->getBasePtr()}; 14706 return DAG.getMemIntrinsicNode( 14707 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14708 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14709 } 14710 14711 llvm_unreachable("Expected a load or store node here"); 14712 } 14713 14714 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14715 DAGCombinerInfo &DCI) const { 14716 SelectionDAG &DAG = DCI.DAG; 14717 SDLoc dl(N); 14718 switch (N->getOpcode()) { 14719 default: break; 14720 case ISD::ADD: 14721 return combineADD(N, DCI); 14722 case ISD::SHL: 14723 return combineSHL(N, DCI); 14724 case ISD::SRA: 14725 return combineSRA(N, DCI); 14726 case ISD::SRL: 14727 return combineSRL(N, DCI); 14728 case ISD::MUL: 14729 return combineMUL(N, DCI); 14730 case ISD::FMA: 14731 case PPCISD::FNMSUB: 14732 return combineFMALike(N, DCI); 14733 case PPCISD::SHL: 14734 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14735 return N->getOperand(0); 14736 break; 14737 case PPCISD::SRL: 14738 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14739 return N->getOperand(0); 14740 break; 14741 case PPCISD::SRA: 14742 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14743 if (C->isNullValue() || // 0 >>s V -> 0. 14744 C->isAllOnesValue()) // -1 >>s V -> -1. 14745 return N->getOperand(0); 14746 } 14747 break; 14748 case ISD::SIGN_EXTEND: 14749 case ISD::ZERO_EXTEND: 14750 case ISD::ANY_EXTEND: 14751 return DAGCombineExtBoolTrunc(N, DCI); 14752 case ISD::TRUNCATE: 14753 return combineTRUNCATE(N, DCI); 14754 case ISD::SETCC: 14755 if (SDValue CSCC = combineSetCC(N, DCI)) 14756 return CSCC; 14757 LLVM_FALLTHROUGH; 14758 case ISD::SELECT_CC: 14759 return DAGCombineTruncBoolExt(N, DCI); 14760 case ISD::SINT_TO_FP: 14761 case ISD::UINT_TO_FP: 14762 return combineFPToIntToFP(N, DCI); 14763 case ISD::VECTOR_SHUFFLE: 14764 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14765 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14766 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14767 } 14768 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14769 case ISD::STORE: { 14770 14771 EVT Op1VT = N->getOperand(1).getValueType(); 14772 unsigned Opcode = N->getOperand(1).getOpcode(); 14773 14774 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14775 SDValue Val= combineStoreFPToInt(N, DCI); 14776 if (Val) 14777 return Val; 14778 } 14779 14780 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14781 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14782 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14783 if (Val) 14784 return Val; 14785 } 14786 14787 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14788 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14789 N->getOperand(1).getNode()->hasOneUse() && 14790 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14791 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14792 14793 // STBRX can only handle simple types and it makes no sense to store less 14794 // two bytes in byte-reversed order. 14795 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14796 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14797 break; 14798 14799 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14800 // Do an any-extend to 32-bits if this is a half-word input. 14801 if (BSwapOp.getValueType() == MVT::i16) 14802 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14803 14804 // If the type of BSWAP operand is wider than stored memory width 14805 // it need to be shifted to the right side before STBRX. 14806 if (Op1VT.bitsGT(mVT)) { 14807 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14808 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14809 DAG.getConstant(Shift, dl, MVT::i32)); 14810 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14811 if (Op1VT == MVT::i64) 14812 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14813 } 14814 14815 SDValue Ops[] = { 14816 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14817 }; 14818 return 14819 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14820 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14821 cast<StoreSDNode>(N)->getMemOperand()); 14822 } 14823 14824 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14825 // So it can increase the chance of CSE constant construction. 14826 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14827 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14828 // Need to sign-extended to 64-bits to handle negative values. 14829 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14830 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14831 MemVT.getSizeInBits()); 14832 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14833 14834 // DAG.getTruncStore() can't be used here because it doesn't accept 14835 // the general (base + offset) addressing mode. 14836 // So we use UpdateNodeOperands and setTruncatingStore instead. 14837 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14838 N->getOperand(3)); 14839 cast<StoreSDNode>(N)->setTruncatingStore(true); 14840 return SDValue(N, 0); 14841 } 14842 14843 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14844 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14845 if (Op1VT.isSimple()) { 14846 MVT StoreVT = Op1VT.getSimpleVT(); 14847 if (Subtarget.needsSwapsForVSXMemOps() && 14848 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14849 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14850 return expandVSXStoreForLE(N, DCI); 14851 } 14852 break; 14853 } 14854 case ISD::LOAD: { 14855 LoadSDNode *LD = cast<LoadSDNode>(N); 14856 EVT VT = LD->getValueType(0); 14857 14858 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14859 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14860 if (VT.isSimple()) { 14861 MVT LoadVT = VT.getSimpleVT(); 14862 if (Subtarget.needsSwapsForVSXMemOps() && 14863 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14864 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14865 return expandVSXLoadForLE(N, DCI); 14866 } 14867 14868 // We sometimes end up with a 64-bit integer load, from which we extract 14869 // two single-precision floating-point numbers. This happens with 14870 // std::complex<float>, and other similar structures, because of the way we 14871 // canonicalize structure copies. However, if we lack direct moves, 14872 // then the final bitcasts from the extracted integer values to the 14873 // floating-point numbers turn into store/load pairs. Even with direct moves, 14874 // just loading the two floating-point numbers is likely better. 14875 auto ReplaceTwoFloatLoad = [&]() { 14876 if (VT != MVT::i64) 14877 return false; 14878 14879 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14880 LD->isVolatile()) 14881 return false; 14882 14883 // We're looking for a sequence like this: 14884 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14885 // t16: i64 = srl t13, Constant:i32<32> 14886 // t17: i32 = truncate t16 14887 // t18: f32 = bitcast t17 14888 // t19: i32 = truncate t13 14889 // t20: f32 = bitcast t19 14890 14891 if (!LD->hasNUsesOfValue(2, 0)) 14892 return false; 14893 14894 auto UI = LD->use_begin(); 14895 while (UI.getUse().getResNo() != 0) ++UI; 14896 SDNode *Trunc = *UI++; 14897 while (UI.getUse().getResNo() != 0) ++UI; 14898 SDNode *RightShift = *UI; 14899 if (Trunc->getOpcode() != ISD::TRUNCATE) 14900 std::swap(Trunc, RightShift); 14901 14902 if (Trunc->getOpcode() != ISD::TRUNCATE || 14903 Trunc->getValueType(0) != MVT::i32 || 14904 !Trunc->hasOneUse()) 14905 return false; 14906 if (RightShift->getOpcode() != ISD::SRL || 14907 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14908 RightShift->getConstantOperandVal(1) != 32 || 14909 !RightShift->hasOneUse()) 14910 return false; 14911 14912 SDNode *Trunc2 = *RightShift->use_begin(); 14913 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14914 Trunc2->getValueType(0) != MVT::i32 || 14915 !Trunc2->hasOneUse()) 14916 return false; 14917 14918 SDNode *Bitcast = *Trunc->use_begin(); 14919 SDNode *Bitcast2 = *Trunc2->use_begin(); 14920 14921 if (Bitcast->getOpcode() != ISD::BITCAST || 14922 Bitcast->getValueType(0) != MVT::f32) 14923 return false; 14924 if (Bitcast2->getOpcode() != ISD::BITCAST || 14925 Bitcast2->getValueType(0) != MVT::f32) 14926 return false; 14927 14928 if (Subtarget.isLittleEndian()) 14929 std::swap(Bitcast, Bitcast2); 14930 14931 // Bitcast has the second float (in memory-layout order) and Bitcast2 14932 // has the first one. 14933 14934 SDValue BasePtr = LD->getBasePtr(); 14935 if (LD->isIndexed()) { 14936 assert(LD->getAddressingMode() == ISD::PRE_INC && 14937 "Non-pre-inc AM on PPC?"); 14938 BasePtr = 14939 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14940 LD->getOffset()); 14941 } 14942 14943 auto MMOFlags = 14944 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14945 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14946 LD->getPointerInfo(), LD->getAlignment(), 14947 MMOFlags, LD->getAAInfo()); 14948 SDValue AddPtr = 14949 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14950 BasePtr, DAG.getIntPtrConstant(4, dl)); 14951 SDValue FloatLoad2 = DAG.getLoad( 14952 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14953 LD->getPointerInfo().getWithOffset(4), 14954 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14955 14956 if (LD->isIndexed()) { 14957 // Note that DAGCombine should re-form any pre-increment load(s) from 14958 // what is produced here if that makes sense. 14959 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14960 } 14961 14962 DCI.CombineTo(Bitcast2, FloatLoad); 14963 DCI.CombineTo(Bitcast, FloatLoad2); 14964 14965 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14966 SDValue(FloatLoad2.getNode(), 1)); 14967 return true; 14968 }; 14969 14970 if (ReplaceTwoFloatLoad()) 14971 return SDValue(N, 0); 14972 14973 EVT MemVT = LD->getMemoryVT(); 14974 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14975 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14976 if (LD->isUnindexed() && VT.isVector() && 14977 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14978 // P8 and later hardware should just use LOAD. 14979 !Subtarget.hasP8Vector() && 14980 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14981 VT == MVT::v4f32))) && 14982 LD->getAlign() < ABIAlignment) { 14983 // This is a type-legal unaligned Altivec load. 14984 SDValue Chain = LD->getChain(); 14985 SDValue Ptr = LD->getBasePtr(); 14986 bool isLittleEndian = Subtarget.isLittleEndian(); 14987 14988 // This implements the loading of unaligned vectors as described in 14989 // the venerable Apple Velocity Engine overview. Specifically: 14990 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14991 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14992 // 14993 // The general idea is to expand a sequence of one or more unaligned 14994 // loads into an alignment-based permutation-control instruction (lvsl 14995 // or lvsr), a series of regular vector loads (which always truncate 14996 // their input address to an aligned address), and a series of 14997 // permutations. The results of these permutations are the requested 14998 // loaded values. The trick is that the last "extra" load is not taken 14999 // from the address you might suspect (sizeof(vector) bytes after the 15000 // last requested load), but rather sizeof(vector) - 1 bytes after the 15001 // last requested vector. The point of this is to avoid a page fault if 15002 // the base address happened to be aligned. This works because if the 15003 // base address is aligned, then adding less than a full vector length 15004 // will cause the last vector in the sequence to be (re)loaded. 15005 // Otherwise, the next vector will be fetched as you might suspect was 15006 // necessary. 15007 15008 // We might be able to reuse the permutation generation from 15009 // a different base address offset from this one by an aligned amount. 15010 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15011 // optimization later. 15012 Intrinsic::ID Intr, IntrLD, IntrPerm; 15013 MVT PermCntlTy, PermTy, LDTy; 15014 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15015 : Intrinsic::ppc_altivec_lvsl; 15016 IntrLD = Intrinsic::ppc_altivec_lvx; 15017 IntrPerm = Intrinsic::ppc_altivec_vperm; 15018 PermCntlTy = MVT::v16i8; 15019 PermTy = MVT::v4i32; 15020 LDTy = MVT::v4i32; 15021 15022 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15023 15024 // Create the new MMO for the new base load. It is like the original MMO, 15025 // but represents an area in memory almost twice the vector size centered 15026 // on the original address. If the address is unaligned, we might start 15027 // reading up to (sizeof(vector)-1) bytes below the address of the 15028 // original unaligned load. 15029 MachineFunction &MF = DAG.getMachineFunction(); 15030 MachineMemOperand *BaseMMO = 15031 MF.getMachineMemOperand(LD->getMemOperand(), 15032 -(long)MemVT.getStoreSize()+1, 15033 2*MemVT.getStoreSize()-1); 15034 15035 // Create the new base load. 15036 SDValue LDXIntID = 15037 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15038 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15039 SDValue BaseLoad = 15040 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15041 DAG.getVTList(PermTy, MVT::Other), 15042 BaseLoadOps, LDTy, BaseMMO); 15043 15044 // Note that the value of IncOffset (which is provided to the next 15045 // load's pointer info offset value, and thus used to calculate the 15046 // alignment), and the value of IncValue (which is actually used to 15047 // increment the pointer value) are different! This is because we 15048 // require the next load to appear to be aligned, even though it 15049 // is actually offset from the base pointer by a lesser amount. 15050 int IncOffset = VT.getSizeInBits() / 8; 15051 int IncValue = IncOffset; 15052 15053 // Walk (both up and down) the chain looking for another load at the real 15054 // (aligned) offset (the alignment of the other load does not matter in 15055 // this case). If found, then do not use the offset reduction trick, as 15056 // that will prevent the loads from being later combined (as they would 15057 // otherwise be duplicates). 15058 if (!findConsecutiveLoad(LD, DAG)) 15059 --IncValue; 15060 15061 SDValue Increment = 15062 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15063 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15064 15065 MachineMemOperand *ExtraMMO = 15066 MF.getMachineMemOperand(LD->getMemOperand(), 15067 1, 2*MemVT.getStoreSize()-1); 15068 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15069 SDValue ExtraLoad = 15070 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15071 DAG.getVTList(PermTy, MVT::Other), 15072 ExtraLoadOps, LDTy, ExtraMMO); 15073 15074 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15075 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15076 15077 // Because vperm has a big-endian bias, we must reverse the order 15078 // of the input vectors and complement the permute control vector 15079 // when generating little endian code. We have already handled the 15080 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15081 // and ExtraLoad here. 15082 SDValue Perm; 15083 if (isLittleEndian) 15084 Perm = BuildIntrinsicOp(IntrPerm, 15085 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15086 else 15087 Perm = BuildIntrinsicOp(IntrPerm, 15088 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15089 15090 if (VT != PermTy) 15091 Perm = Subtarget.hasAltivec() 15092 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15093 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15094 DAG.getTargetConstant(1, dl, MVT::i64)); 15095 // second argument is 1 because this rounding 15096 // is always exact. 15097 15098 // The output of the permutation is our loaded result, the TokenFactor is 15099 // our new chain. 15100 DCI.CombineTo(N, Perm, TF); 15101 return SDValue(N, 0); 15102 } 15103 } 15104 break; 15105 case ISD::INTRINSIC_WO_CHAIN: { 15106 bool isLittleEndian = Subtarget.isLittleEndian(); 15107 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15108 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15109 : Intrinsic::ppc_altivec_lvsl); 15110 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15111 SDValue Add = N->getOperand(1); 15112 15113 int Bits = 4 /* 16 byte alignment */; 15114 15115 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15116 APInt::getAllOnesValue(Bits /* alignment */) 15117 .zext(Add.getScalarValueSizeInBits()))) { 15118 SDNode *BasePtr = Add->getOperand(0).getNode(); 15119 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15120 UE = BasePtr->use_end(); 15121 UI != UE; ++UI) { 15122 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15123 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15124 IID) { 15125 // We've found another LVSL/LVSR, and this address is an aligned 15126 // multiple of that one. The results will be the same, so use the 15127 // one we've just found instead. 15128 15129 return SDValue(*UI, 0); 15130 } 15131 } 15132 } 15133 15134 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15135 SDNode *BasePtr = Add->getOperand(0).getNode(); 15136 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15137 UE = BasePtr->use_end(); UI != UE; ++UI) { 15138 if (UI->getOpcode() == ISD::ADD && 15139 isa<ConstantSDNode>(UI->getOperand(1)) && 15140 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15141 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15142 (1ULL << Bits) == 0) { 15143 SDNode *OtherAdd = *UI; 15144 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15145 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15146 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15147 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15148 return SDValue(*VI, 0); 15149 } 15150 } 15151 } 15152 } 15153 } 15154 } 15155 15156 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15157 // Expose the vabsduw/h/b opportunity for down stream 15158 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15159 (IID == Intrinsic::ppc_altivec_vmaxsw || 15160 IID == Intrinsic::ppc_altivec_vmaxsh || 15161 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15162 SDValue V1 = N->getOperand(1); 15163 SDValue V2 = N->getOperand(2); 15164 if ((V1.getSimpleValueType() == MVT::v4i32 || 15165 V1.getSimpleValueType() == MVT::v8i16 || 15166 V1.getSimpleValueType() == MVT::v16i8) && 15167 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15168 // (0-a, a) 15169 if (V1.getOpcode() == ISD::SUB && 15170 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15171 V1.getOperand(1) == V2) { 15172 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15173 } 15174 // (a, 0-a) 15175 if (V2.getOpcode() == ISD::SUB && 15176 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15177 V2.getOperand(1) == V1) { 15178 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15179 } 15180 // (x-y, y-x) 15181 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15182 V1.getOperand(0) == V2.getOperand(1) && 15183 V1.getOperand(1) == V2.getOperand(0)) { 15184 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15185 } 15186 } 15187 } 15188 } 15189 15190 break; 15191 case ISD::INTRINSIC_W_CHAIN: 15192 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15193 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15194 if (Subtarget.needsSwapsForVSXMemOps()) { 15195 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15196 default: 15197 break; 15198 case Intrinsic::ppc_vsx_lxvw4x: 15199 case Intrinsic::ppc_vsx_lxvd2x: 15200 return expandVSXLoadForLE(N, DCI); 15201 } 15202 } 15203 break; 15204 case ISD::INTRINSIC_VOID: 15205 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15206 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15207 if (Subtarget.needsSwapsForVSXMemOps()) { 15208 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15209 default: 15210 break; 15211 case Intrinsic::ppc_vsx_stxvw4x: 15212 case Intrinsic::ppc_vsx_stxvd2x: 15213 return expandVSXStoreForLE(N, DCI); 15214 } 15215 } 15216 break; 15217 case ISD::BSWAP: 15218 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15219 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 15220 N->getOperand(0).hasOneUse() && 15221 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15222 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 15223 N->getValueType(0) == MVT::i64))) { 15224 SDValue Load = N->getOperand(0); 15225 LoadSDNode *LD = cast<LoadSDNode>(Load); 15226 // Create the byte-swapping load. 15227 SDValue Ops[] = { 15228 LD->getChain(), // Chain 15229 LD->getBasePtr(), // Ptr 15230 DAG.getValueType(N->getValueType(0)) // VT 15231 }; 15232 SDValue BSLoad = 15233 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15234 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15235 MVT::i64 : MVT::i32, MVT::Other), 15236 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15237 15238 // If this is an i16 load, insert the truncate. 15239 SDValue ResVal = BSLoad; 15240 if (N->getValueType(0) == MVT::i16) 15241 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15242 15243 // First, combine the bswap away. This makes the value produced by the 15244 // load dead. 15245 DCI.CombineTo(N, ResVal); 15246 15247 // Next, combine the load away, we give it a bogus result value but a real 15248 // chain result. The result value is dead because the bswap is dead. 15249 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15250 15251 // Return N so it doesn't get rechecked! 15252 return SDValue(N, 0); 15253 } 15254 break; 15255 case PPCISD::VCMP: 15256 // If a VCMP_rec node already exists with exactly the same operands as this 15257 // node, use its result instead of this node (VCMP_rec computes both a CR6 15258 // and a normal output). 15259 // 15260 if (!N->getOperand(0).hasOneUse() && 15261 !N->getOperand(1).hasOneUse() && 15262 !N->getOperand(2).hasOneUse()) { 15263 15264 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15265 SDNode *VCMPrecNode = nullptr; 15266 15267 SDNode *LHSN = N->getOperand(0).getNode(); 15268 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15269 UI != E; ++UI) 15270 if (UI->getOpcode() == PPCISD::VCMP_rec && 15271 UI->getOperand(1) == N->getOperand(1) && 15272 UI->getOperand(2) == N->getOperand(2) && 15273 UI->getOperand(0) == N->getOperand(0)) { 15274 VCMPrecNode = *UI; 15275 break; 15276 } 15277 15278 // If there is no VCMP_rec node, or if the flag value has a single use, 15279 // don't transform this. 15280 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15281 break; 15282 15283 // Look at the (necessarily single) use of the flag value. If it has a 15284 // chain, this transformation is more complex. Note that multiple things 15285 // could use the value result, which we should ignore. 15286 SDNode *FlagUser = nullptr; 15287 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15288 FlagUser == nullptr; ++UI) { 15289 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15290 SDNode *User = *UI; 15291 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15292 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15293 FlagUser = User; 15294 break; 15295 } 15296 } 15297 } 15298 15299 // If the user is a MFOCRF instruction, we know this is safe. 15300 // Otherwise we give up for right now. 15301 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15302 return SDValue(VCMPrecNode, 0); 15303 } 15304 break; 15305 case ISD::BRCOND: { 15306 SDValue Cond = N->getOperand(1); 15307 SDValue Target = N->getOperand(2); 15308 15309 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15310 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15311 Intrinsic::loop_decrement) { 15312 15313 // We now need to make the intrinsic dead (it cannot be instruction 15314 // selected). 15315 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15316 assert(Cond.getNode()->hasOneUse() && 15317 "Counter decrement has more than one use"); 15318 15319 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15320 N->getOperand(0), Target); 15321 } 15322 } 15323 break; 15324 case ISD::BR_CC: { 15325 // If this is a branch on an altivec predicate comparison, lower this so 15326 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15327 // lowering is done pre-legalize, because the legalizer lowers the predicate 15328 // compare down to code that is difficult to reassemble. 15329 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15330 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15331 15332 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15333 // value. If so, pass-through the AND to get to the intrinsic. 15334 if (LHS.getOpcode() == ISD::AND && 15335 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15336 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15337 Intrinsic::loop_decrement && 15338 isa<ConstantSDNode>(LHS.getOperand(1)) && 15339 !isNullConstant(LHS.getOperand(1))) 15340 LHS = LHS.getOperand(0); 15341 15342 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15343 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15344 Intrinsic::loop_decrement && 15345 isa<ConstantSDNode>(RHS)) { 15346 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15347 "Counter decrement comparison is not EQ or NE"); 15348 15349 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15350 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15351 (CC == ISD::SETNE && !Val); 15352 15353 // We now need to make the intrinsic dead (it cannot be instruction 15354 // selected). 15355 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15356 assert(LHS.getNode()->hasOneUse() && 15357 "Counter decrement has more than one use"); 15358 15359 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15360 N->getOperand(0), N->getOperand(4)); 15361 } 15362 15363 int CompareOpc; 15364 bool isDot; 15365 15366 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15367 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15368 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15369 assert(isDot && "Can't compare against a vector result!"); 15370 15371 // If this is a comparison against something other than 0/1, then we know 15372 // that the condition is never/always true. 15373 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15374 if (Val != 0 && Val != 1) { 15375 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15376 return N->getOperand(0); 15377 // Always !=, turn it into an unconditional branch. 15378 return DAG.getNode(ISD::BR, dl, MVT::Other, 15379 N->getOperand(0), N->getOperand(4)); 15380 } 15381 15382 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15383 15384 // Create the PPCISD altivec 'dot' comparison node. 15385 SDValue Ops[] = { 15386 LHS.getOperand(2), // LHS of compare 15387 LHS.getOperand(3), // RHS of compare 15388 DAG.getConstant(CompareOpc, dl, MVT::i32) 15389 }; 15390 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15391 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15392 15393 // Unpack the result based on how the target uses it. 15394 PPC::Predicate CompOpc; 15395 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15396 default: // Can't happen, don't crash on invalid number though. 15397 case 0: // Branch on the value of the EQ bit of CR6. 15398 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15399 break; 15400 case 1: // Branch on the inverted value of the EQ bit of CR6. 15401 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15402 break; 15403 case 2: // Branch on the value of the LT bit of CR6. 15404 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15405 break; 15406 case 3: // Branch on the inverted value of the LT bit of CR6. 15407 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15408 break; 15409 } 15410 15411 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15412 DAG.getConstant(CompOpc, dl, MVT::i32), 15413 DAG.getRegister(PPC::CR6, MVT::i32), 15414 N->getOperand(4), CompNode.getValue(1)); 15415 } 15416 break; 15417 } 15418 case ISD::BUILD_VECTOR: 15419 return DAGCombineBuildVector(N, DCI); 15420 case ISD::ABS: 15421 return combineABS(N, DCI); 15422 case ISD::VSELECT: 15423 return combineVSelect(N, DCI); 15424 } 15425 15426 return SDValue(); 15427 } 15428 15429 SDValue 15430 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15431 SelectionDAG &DAG, 15432 SmallVectorImpl<SDNode *> &Created) const { 15433 // fold (sdiv X, pow2) 15434 EVT VT = N->getValueType(0); 15435 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15436 return SDValue(); 15437 if ((VT != MVT::i32 && VT != MVT::i64) || 15438 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15439 return SDValue(); 15440 15441 SDLoc DL(N); 15442 SDValue N0 = N->getOperand(0); 15443 15444 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15445 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15446 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15447 15448 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15449 Created.push_back(Op.getNode()); 15450 15451 if (IsNegPow2) { 15452 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15453 Created.push_back(Op.getNode()); 15454 } 15455 15456 return Op; 15457 } 15458 15459 //===----------------------------------------------------------------------===// 15460 // Inline Assembly Support 15461 //===----------------------------------------------------------------------===// 15462 15463 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15464 KnownBits &Known, 15465 const APInt &DemandedElts, 15466 const SelectionDAG &DAG, 15467 unsigned Depth) const { 15468 Known.resetAll(); 15469 switch (Op.getOpcode()) { 15470 default: break; 15471 case PPCISD::LBRX: { 15472 // lhbrx is known to have the top bits cleared out. 15473 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15474 Known.Zero = 0xFFFF0000; 15475 break; 15476 } 15477 case ISD::INTRINSIC_WO_CHAIN: { 15478 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15479 default: break; 15480 case Intrinsic::ppc_altivec_vcmpbfp_p: 15481 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15482 case Intrinsic::ppc_altivec_vcmpequb_p: 15483 case Intrinsic::ppc_altivec_vcmpequh_p: 15484 case Intrinsic::ppc_altivec_vcmpequw_p: 15485 case Intrinsic::ppc_altivec_vcmpequd_p: 15486 case Intrinsic::ppc_altivec_vcmpequq_p: 15487 case Intrinsic::ppc_altivec_vcmpgefp_p: 15488 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15489 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15490 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15491 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15492 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15493 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15494 case Intrinsic::ppc_altivec_vcmpgtub_p: 15495 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15496 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15497 case Intrinsic::ppc_altivec_vcmpgtud_p: 15498 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15499 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15500 break; 15501 } 15502 } 15503 } 15504 } 15505 15506 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15507 switch (Subtarget.getCPUDirective()) { 15508 default: break; 15509 case PPC::DIR_970: 15510 case PPC::DIR_PWR4: 15511 case PPC::DIR_PWR5: 15512 case PPC::DIR_PWR5X: 15513 case PPC::DIR_PWR6: 15514 case PPC::DIR_PWR6X: 15515 case PPC::DIR_PWR7: 15516 case PPC::DIR_PWR8: 15517 case PPC::DIR_PWR9: 15518 case PPC::DIR_PWR10: 15519 case PPC::DIR_PWR_FUTURE: { 15520 if (!ML) 15521 break; 15522 15523 if (!DisableInnermostLoopAlign32) { 15524 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15525 // so that we can decrease cache misses and branch-prediction misses. 15526 // Actual alignment of the loop will depend on the hotness check and other 15527 // logic in alignBlocks. 15528 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15529 return Align(32); 15530 } 15531 15532 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15533 15534 // For small loops (between 5 and 8 instructions), align to a 32-byte 15535 // boundary so that the entire loop fits in one instruction-cache line. 15536 uint64_t LoopSize = 0; 15537 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15538 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15539 LoopSize += TII->getInstSizeInBytes(*J); 15540 if (LoopSize > 32) 15541 break; 15542 } 15543 15544 if (LoopSize > 16 && LoopSize <= 32) 15545 return Align(32); 15546 15547 break; 15548 } 15549 } 15550 15551 return TargetLowering::getPrefLoopAlignment(ML); 15552 } 15553 15554 /// getConstraintType - Given a constraint, return the type of 15555 /// constraint it is for this target. 15556 PPCTargetLowering::ConstraintType 15557 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15558 if (Constraint.size() == 1) { 15559 switch (Constraint[0]) { 15560 default: break; 15561 case 'b': 15562 case 'r': 15563 case 'f': 15564 case 'd': 15565 case 'v': 15566 case 'y': 15567 return C_RegisterClass; 15568 case 'Z': 15569 // FIXME: While Z does indicate a memory constraint, it specifically 15570 // indicates an r+r address (used in conjunction with the 'y' modifier 15571 // in the replacement string). Currently, we're forcing the base 15572 // register to be r0 in the asm printer (which is interpreted as zero) 15573 // and forming the complete address in the second register. This is 15574 // suboptimal. 15575 return C_Memory; 15576 } 15577 } else if (Constraint == "wc") { // individual CR bits. 15578 return C_RegisterClass; 15579 } else if (Constraint == "wa" || Constraint == "wd" || 15580 Constraint == "wf" || Constraint == "ws" || 15581 Constraint == "wi" || Constraint == "ww") { 15582 return C_RegisterClass; // VSX registers. 15583 } 15584 return TargetLowering::getConstraintType(Constraint); 15585 } 15586 15587 /// Examine constraint type and operand type and determine a weight value. 15588 /// This object must already have been set up with the operand type 15589 /// and the current alternative constraint selected. 15590 TargetLowering::ConstraintWeight 15591 PPCTargetLowering::getSingleConstraintMatchWeight( 15592 AsmOperandInfo &info, const char *constraint) const { 15593 ConstraintWeight weight = CW_Invalid; 15594 Value *CallOperandVal = info.CallOperandVal; 15595 // If we don't have a value, we can't do a match, 15596 // but allow it at the lowest weight. 15597 if (!CallOperandVal) 15598 return CW_Default; 15599 Type *type = CallOperandVal->getType(); 15600 15601 // Look at the constraint type. 15602 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15603 return CW_Register; // an individual CR bit. 15604 else if ((StringRef(constraint) == "wa" || 15605 StringRef(constraint) == "wd" || 15606 StringRef(constraint) == "wf") && 15607 type->isVectorTy()) 15608 return CW_Register; 15609 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15610 return CW_Register; // just hold 64-bit integers data. 15611 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15612 return CW_Register; 15613 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15614 return CW_Register; 15615 15616 switch (*constraint) { 15617 default: 15618 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15619 break; 15620 case 'b': 15621 if (type->isIntegerTy()) 15622 weight = CW_Register; 15623 break; 15624 case 'f': 15625 if (type->isFloatTy()) 15626 weight = CW_Register; 15627 break; 15628 case 'd': 15629 if (type->isDoubleTy()) 15630 weight = CW_Register; 15631 break; 15632 case 'v': 15633 if (type->isVectorTy()) 15634 weight = CW_Register; 15635 break; 15636 case 'y': 15637 weight = CW_Register; 15638 break; 15639 case 'Z': 15640 weight = CW_Memory; 15641 break; 15642 } 15643 return weight; 15644 } 15645 15646 std::pair<unsigned, const TargetRegisterClass *> 15647 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15648 StringRef Constraint, 15649 MVT VT) const { 15650 if (Constraint.size() == 1) { 15651 // GCC RS6000 Constraint Letters 15652 switch (Constraint[0]) { 15653 case 'b': // R1-R31 15654 if (VT == MVT::i64 && Subtarget.isPPC64()) 15655 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15656 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15657 case 'r': // R0-R31 15658 if (VT == MVT::i64 && Subtarget.isPPC64()) 15659 return std::make_pair(0U, &PPC::G8RCRegClass); 15660 return std::make_pair(0U, &PPC::GPRCRegClass); 15661 // 'd' and 'f' constraints are both defined to be "the floating point 15662 // registers", where one is for 32-bit and the other for 64-bit. We don't 15663 // really care overly much here so just give them all the same reg classes. 15664 case 'd': 15665 case 'f': 15666 if (Subtarget.hasSPE()) { 15667 if (VT == MVT::f32 || VT == MVT::i32) 15668 return std::make_pair(0U, &PPC::GPRCRegClass); 15669 if (VT == MVT::f64 || VT == MVT::i64) 15670 return std::make_pair(0U, &PPC::SPERCRegClass); 15671 } else { 15672 if (VT == MVT::f32 || VT == MVT::i32) 15673 return std::make_pair(0U, &PPC::F4RCRegClass); 15674 if (VT == MVT::f64 || VT == MVT::i64) 15675 return std::make_pair(0U, &PPC::F8RCRegClass); 15676 } 15677 break; 15678 case 'v': 15679 if (Subtarget.hasAltivec()) 15680 return std::make_pair(0U, &PPC::VRRCRegClass); 15681 break; 15682 case 'y': // crrc 15683 return std::make_pair(0U, &PPC::CRRCRegClass); 15684 } 15685 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15686 // An individual CR bit. 15687 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15688 } else if ((Constraint == "wa" || Constraint == "wd" || 15689 Constraint == "wf" || Constraint == "wi") && 15690 Subtarget.hasVSX()) { 15691 return std::make_pair(0U, &PPC::VSRCRegClass); 15692 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15693 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15694 return std::make_pair(0U, &PPC::VSSRCRegClass); 15695 else 15696 return std::make_pair(0U, &PPC::VSFRCRegClass); 15697 } 15698 15699 // If we name a VSX register, we can't defer to the base class because it 15700 // will not recognize the correct register (their names will be VSL{0-31} 15701 // and V{0-31} so they won't match). So we match them here. 15702 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15703 int VSNum = atoi(Constraint.data() + 3); 15704 assert(VSNum >= 0 && VSNum <= 63 && 15705 "Attempted to access a vsr out of range"); 15706 if (VSNum < 32) 15707 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15708 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15709 } 15710 std::pair<unsigned, const TargetRegisterClass *> R = 15711 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15712 15713 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15714 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15715 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15716 // register. 15717 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15718 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15719 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15720 PPC::GPRCRegClass.contains(R.first)) 15721 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15722 PPC::sub_32, &PPC::G8RCRegClass), 15723 &PPC::G8RCRegClass); 15724 15725 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15726 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15727 R.first = PPC::CR0; 15728 R.second = &PPC::CRRCRegClass; 15729 } 15730 15731 return R; 15732 } 15733 15734 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15735 /// vector. If it is invalid, don't add anything to Ops. 15736 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15737 std::string &Constraint, 15738 std::vector<SDValue>&Ops, 15739 SelectionDAG &DAG) const { 15740 SDValue Result; 15741 15742 // Only support length 1 constraints. 15743 if (Constraint.length() > 1) return; 15744 15745 char Letter = Constraint[0]; 15746 switch (Letter) { 15747 default: break; 15748 case 'I': 15749 case 'J': 15750 case 'K': 15751 case 'L': 15752 case 'M': 15753 case 'N': 15754 case 'O': 15755 case 'P': { 15756 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15757 if (!CST) return; // Must be an immediate to match. 15758 SDLoc dl(Op); 15759 int64_t Value = CST->getSExtValue(); 15760 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15761 // numbers are printed as such. 15762 switch (Letter) { 15763 default: llvm_unreachable("Unknown constraint letter!"); 15764 case 'I': // "I" is a signed 16-bit constant. 15765 if (isInt<16>(Value)) 15766 Result = DAG.getTargetConstant(Value, dl, TCVT); 15767 break; 15768 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15769 if (isShiftedUInt<16, 16>(Value)) 15770 Result = DAG.getTargetConstant(Value, dl, TCVT); 15771 break; 15772 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15773 if (isShiftedInt<16, 16>(Value)) 15774 Result = DAG.getTargetConstant(Value, dl, TCVT); 15775 break; 15776 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15777 if (isUInt<16>(Value)) 15778 Result = DAG.getTargetConstant(Value, dl, TCVT); 15779 break; 15780 case 'M': // "M" is a constant that is greater than 31. 15781 if (Value > 31) 15782 Result = DAG.getTargetConstant(Value, dl, TCVT); 15783 break; 15784 case 'N': // "N" is a positive constant that is an exact power of two. 15785 if (Value > 0 && isPowerOf2_64(Value)) 15786 Result = DAG.getTargetConstant(Value, dl, TCVT); 15787 break; 15788 case 'O': // "O" is the constant zero. 15789 if (Value == 0) 15790 Result = DAG.getTargetConstant(Value, dl, TCVT); 15791 break; 15792 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15793 if (isInt<16>(-Value)) 15794 Result = DAG.getTargetConstant(Value, dl, TCVT); 15795 break; 15796 } 15797 break; 15798 } 15799 } 15800 15801 if (Result.getNode()) { 15802 Ops.push_back(Result); 15803 return; 15804 } 15805 15806 // Handle standard constraint letters. 15807 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15808 } 15809 15810 // isLegalAddressingMode - Return true if the addressing mode represented 15811 // by AM is legal for this target, for a load/store of the specified type. 15812 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15813 const AddrMode &AM, Type *Ty, 15814 unsigned AS, 15815 Instruction *I) const { 15816 // Vector type r+i form is supported since power9 as DQ form. We don't check 15817 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15818 // imm form is preferred and the offset can be adjusted to use imm form later 15819 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15820 // max offset to check legal addressing mode, we should be a little aggressive 15821 // to contain other offsets for that LSRUse. 15822 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15823 return false; 15824 15825 // PPC allows a sign-extended 16-bit immediate field. 15826 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15827 return false; 15828 15829 // No global is ever allowed as a base. 15830 if (AM.BaseGV) 15831 return false; 15832 15833 // PPC only support r+r, 15834 switch (AM.Scale) { 15835 case 0: // "r+i" or just "i", depending on HasBaseReg. 15836 break; 15837 case 1: 15838 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15839 return false; 15840 // Otherwise we have r+r or r+i. 15841 break; 15842 case 2: 15843 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15844 return false; 15845 // Allow 2*r as r+r. 15846 break; 15847 default: 15848 // No other scales are supported. 15849 return false; 15850 } 15851 15852 return true; 15853 } 15854 15855 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15856 SelectionDAG &DAG) const { 15857 MachineFunction &MF = DAG.getMachineFunction(); 15858 MachineFrameInfo &MFI = MF.getFrameInfo(); 15859 MFI.setReturnAddressIsTaken(true); 15860 15861 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15862 return SDValue(); 15863 15864 SDLoc dl(Op); 15865 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15866 15867 // Make sure the function does not optimize away the store of the RA to 15868 // the stack. 15869 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15870 FuncInfo->setLRStoreRequired(); 15871 bool isPPC64 = Subtarget.isPPC64(); 15872 auto PtrVT = getPointerTy(MF.getDataLayout()); 15873 15874 if (Depth > 0) { 15875 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15876 SDValue Offset = 15877 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15878 isPPC64 ? MVT::i64 : MVT::i32); 15879 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15880 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15881 MachinePointerInfo()); 15882 } 15883 15884 // Just load the return address off the stack. 15885 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15886 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15887 MachinePointerInfo()); 15888 } 15889 15890 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15891 SelectionDAG &DAG) const { 15892 SDLoc dl(Op); 15893 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15894 15895 MachineFunction &MF = DAG.getMachineFunction(); 15896 MachineFrameInfo &MFI = MF.getFrameInfo(); 15897 MFI.setFrameAddressIsTaken(true); 15898 15899 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15900 bool isPPC64 = PtrVT == MVT::i64; 15901 15902 // Naked functions never have a frame pointer, and so we use r1. For all 15903 // other functions, this decision must be delayed until during PEI. 15904 unsigned FrameReg; 15905 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15906 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15907 else 15908 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15909 15910 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15911 PtrVT); 15912 while (Depth--) 15913 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15914 FrameAddr, MachinePointerInfo()); 15915 return FrameAddr; 15916 } 15917 15918 // FIXME? Maybe this could be a TableGen attribute on some registers and 15919 // this table could be generated automatically from RegInfo. 15920 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15921 const MachineFunction &MF) const { 15922 bool isPPC64 = Subtarget.isPPC64(); 15923 15924 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15925 if (!is64Bit && VT != LLT::scalar(32)) 15926 report_fatal_error("Invalid register global variable type"); 15927 15928 Register Reg = StringSwitch<Register>(RegName) 15929 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15930 .Case("r2", isPPC64 ? Register() : PPC::R2) 15931 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15932 .Default(Register()); 15933 15934 if (Reg) 15935 return Reg; 15936 report_fatal_error("Invalid register name global variable"); 15937 } 15938 15939 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15940 // 32-bit SVR4 ABI access everything as got-indirect. 15941 if (Subtarget.is32BitELFABI()) 15942 return true; 15943 15944 // AIX accesses everything indirectly through the TOC, which is similar to 15945 // the GOT. 15946 if (Subtarget.isAIXABI()) 15947 return true; 15948 15949 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15950 // If it is small or large code model, module locals are accessed 15951 // indirectly by loading their address from .toc/.got. 15952 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15953 return true; 15954 15955 // JumpTable and BlockAddress are accessed as got-indirect. 15956 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15957 return true; 15958 15959 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15960 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15961 15962 return false; 15963 } 15964 15965 bool 15966 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15967 // The PowerPC target isn't yet aware of offsets. 15968 return false; 15969 } 15970 15971 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15972 const CallInst &I, 15973 MachineFunction &MF, 15974 unsigned Intrinsic) const { 15975 switch (Intrinsic) { 15976 case Intrinsic::ppc_altivec_lvx: 15977 case Intrinsic::ppc_altivec_lvxl: 15978 case Intrinsic::ppc_altivec_lvebx: 15979 case Intrinsic::ppc_altivec_lvehx: 15980 case Intrinsic::ppc_altivec_lvewx: 15981 case Intrinsic::ppc_vsx_lxvd2x: 15982 case Intrinsic::ppc_vsx_lxvw4x: 15983 case Intrinsic::ppc_vsx_lxvd2x_be: 15984 case Intrinsic::ppc_vsx_lxvw4x_be: 15985 case Intrinsic::ppc_vsx_lxvl: 15986 case Intrinsic::ppc_vsx_lxvll: { 15987 EVT VT; 15988 switch (Intrinsic) { 15989 case Intrinsic::ppc_altivec_lvebx: 15990 VT = MVT::i8; 15991 break; 15992 case Intrinsic::ppc_altivec_lvehx: 15993 VT = MVT::i16; 15994 break; 15995 case Intrinsic::ppc_altivec_lvewx: 15996 VT = MVT::i32; 15997 break; 15998 case Intrinsic::ppc_vsx_lxvd2x: 15999 case Intrinsic::ppc_vsx_lxvd2x_be: 16000 VT = MVT::v2f64; 16001 break; 16002 default: 16003 VT = MVT::v4i32; 16004 break; 16005 } 16006 16007 Info.opc = ISD::INTRINSIC_W_CHAIN; 16008 Info.memVT = VT; 16009 Info.ptrVal = I.getArgOperand(0); 16010 Info.offset = -VT.getStoreSize()+1; 16011 Info.size = 2*VT.getStoreSize()-1; 16012 Info.align = Align(1); 16013 Info.flags = MachineMemOperand::MOLoad; 16014 return true; 16015 } 16016 case Intrinsic::ppc_altivec_stvx: 16017 case Intrinsic::ppc_altivec_stvxl: 16018 case Intrinsic::ppc_altivec_stvebx: 16019 case Intrinsic::ppc_altivec_stvehx: 16020 case Intrinsic::ppc_altivec_stvewx: 16021 case Intrinsic::ppc_vsx_stxvd2x: 16022 case Intrinsic::ppc_vsx_stxvw4x: 16023 case Intrinsic::ppc_vsx_stxvd2x_be: 16024 case Intrinsic::ppc_vsx_stxvw4x_be: 16025 case Intrinsic::ppc_vsx_stxvl: 16026 case Intrinsic::ppc_vsx_stxvll: { 16027 EVT VT; 16028 switch (Intrinsic) { 16029 case Intrinsic::ppc_altivec_stvebx: 16030 VT = MVT::i8; 16031 break; 16032 case Intrinsic::ppc_altivec_stvehx: 16033 VT = MVT::i16; 16034 break; 16035 case Intrinsic::ppc_altivec_stvewx: 16036 VT = MVT::i32; 16037 break; 16038 case Intrinsic::ppc_vsx_stxvd2x: 16039 case Intrinsic::ppc_vsx_stxvd2x_be: 16040 VT = MVT::v2f64; 16041 break; 16042 default: 16043 VT = MVT::v4i32; 16044 break; 16045 } 16046 16047 Info.opc = ISD::INTRINSIC_VOID; 16048 Info.memVT = VT; 16049 Info.ptrVal = I.getArgOperand(1); 16050 Info.offset = -VT.getStoreSize()+1; 16051 Info.size = 2*VT.getStoreSize()-1; 16052 Info.align = Align(1); 16053 Info.flags = MachineMemOperand::MOStore; 16054 return true; 16055 } 16056 default: 16057 break; 16058 } 16059 16060 return false; 16061 } 16062 16063 /// It returns EVT::Other if the type should be determined using generic 16064 /// target-independent logic. 16065 EVT PPCTargetLowering::getOptimalMemOpType( 16066 const MemOp &Op, const AttributeList &FuncAttributes) const { 16067 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16068 // We should use Altivec/VSX loads and stores when available. For unaligned 16069 // addresses, unaligned VSX loads are only fast starting with the P8. 16070 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16071 (Op.isAligned(Align(16)) || 16072 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16073 return MVT::v4i32; 16074 } 16075 16076 if (Subtarget.isPPC64()) { 16077 return MVT::i64; 16078 } 16079 16080 return MVT::i32; 16081 } 16082 16083 /// Returns true if it is beneficial to convert a load of a constant 16084 /// to just the constant itself. 16085 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16086 Type *Ty) const { 16087 assert(Ty->isIntegerTy()); 16088 16089 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16090 return !(BitSize == 0 || BitSize > 64); 16091 } 16092 16093 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16094 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16095 return false; 16096 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16097 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16098 return NumBits1 == 64 && NumBits2 == 32; 16099 } 16100 16101 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16102 if (!VT1.isInteger() || !VT2.isInteger()) 16103 return false; 16104 unsigned NumBits1 = VT1.getSizeInBits(); 16105 unsigned NumBits2 = VT2.getSizeInBits(); 16106 return NumBits1 == 64 && NumBits2 == 32; 16107 } 16108 16109 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16110 // Generally speaking, zexts are not free, but they are free when they can be 16111 // folded with other operations. 16112 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16113 EVT MemVT = LD->getMemoryVT(); 16114 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16115 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16116 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16117 LD->getExtensionType() == ISD::ZEXTLOAD)) 16118 return true; 16119 } 16120 16121 // FIXME: Add other cases... 16122 // - 32-bit shifts with a zext to i64 16123 // - zext after ctlz, bswap, etc. 16124 // - zext after and by a constant mask 16125 16126 return TargetLowering::isZExtFree(Val, VT2); 16127 } 16128 16129 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16130 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16131 "invalid fpext types"); 16132 // Extending to float128 is not free. 16133 if (DestVT == MVT::f128) 16134 return false; 16135 return true; 16136 } 16137 16138 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16139 return isInt<16>(Imm) || isUInt<16>(Imm); 16140 } 16141 16142 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16143 return isInt<16>(Imm) || isUInt<16>(Imm); 16144 } 16145 16146 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16147 unsigned, 16148 unsigned, 16149 MachineMemOperand::Flags, 16150 bool *Fast) const { 16151 if (DisablePPCUnaligned) 16152 return false; 16153 16154 // PowerPC supports unaligned memory access for simple non-vector types. 16155 // Although accessing unaligned addresses is not as efficient as accessing 16156 // aligned addresses, it is generally more efficient than manual expansion, 16157 // and generally only traps for software emulation when crossing page 16158 // boundaries. 16159 16160 if (!VT.isSimple()) 16161 return false; 16162 16163 if (VT.isFloatingPoint() && !VT.isVector() && 16164 !Subtarget.allowsUnalignedFPAccess()) 16165 return false; 16166 16167 if (VT.getSimpleVT().isVector()) { 16168 if (Subtarget.hasVSX()) { 16169 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16170 VT != MVT::v4f32 && VT != MVT::v4i32) 16171 return false; 16172 } else { 16173 return false; 16174 } 16175 } 16176 16177 if (VT == MVT::ppcf128) 16178 return false; 16179 16180 if (Fast) 16181 *Fast = true; 16182 16183 return true; 16184 } 16185 16186 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16187 SDValue C) const { 16188 // Check integral scalar types. 16189 if (!VT.isScalarInteger()) 16190 return false; 16191 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16192 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16193 return false; 16194 // This transformation will generate >= 2 operations. But the following 16195 // cases will generate <= 2 instructions during ISEL. So exclude them. 16196 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16197 // HW instruction, ie. MULLI 16198 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16199 // instruction is needed than case 1, ie. MULLI and RLDICR 16200 int64_t Imm = ConstNode->getSExtValue(); 16201 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16202 Imm >>= Shift; 16203 if (isInt<16>(Imm)) 16204 return false; 16205 uint64_t UImm = static_cast<uint64_t>(Imm); 16206 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16207 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16208 return true; 16209 } 16210 return false; 16211 } 16212 16213 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16214 EVT VT) const { 16215 return isFMAFasterThanFMulAndFAdd( 16216 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16217 } 16218 16219 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16220 Type *Ty) const { 16221 switch (Ty->getScalarType()->getTypeID()) { 16222 case Type::FloatTyID: 16223 case Type::DoubleTyID: 16224 return true; 16225 case Type::FP128TyID: 16226 return Subtarget.hasP9Vector(); 16227 default: 16228 return false; 16229 } 16230 } 16231 16232 // FIXME: add more patterns which are not profitable to hoist. 16233 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16234 if (!I->hasOneUse()) 16235 return true; 16236 16237 Instruction *User = I->user_back(); 16238 assert(User && "A single use instruction with no uses."); 16239 16240 switch (I->getOpcode()) { 16241 case Instruction::FMul: { 16242 // Don't break FMA, PowerPC prefers FMA. 16243 if (User->getOpcode() != Instruction::FSub && 16244 User->getOpcode() != Instruction::FAdd) 16245 return true; 16246 16247 const TargetOptions &Options = getTargetMachine().Options; 16248 const Function *F = I->getFunction(); 16249 const DataLayout &DL = F->getParent()->getDataLayout(); 16250 Type *Ty = User->getOperand(0)->getType(); 16251 16252 return !( 16253 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16254 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16255 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16256 } 16257 case Instruction::Load: { 16258 // Don't break "store (load float*)" pattern, this pattern will be combined 16259 // to "store (load int32)" in later InstCombine pass. See function 16260 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16261 // cycles than loading a 32 bit integer. 16262 LoadInst *LI = cast<LoadInst>(I); 16263 // For the loads that combineLoadToOperationType does nothing, like 16264 // ordered load, it should be profitable to hoist them. 16265 // For swifterror load, it can only be used for pointer to pointer type, so 16266 // later type check should get rid of this case. 16267 if (!LI->isUnordered()) 16268 return true; 16269 16270 if (User->getOpcode() != Instruction::Store) 16271 return true; 16272 16273 if (I->getType()->getTypeID() != Type::FloatTyID) 16274 return true; 16275 16276 return false; 16277 } 16278 default: 16279 return true; 16280 } 16281 return true; 16282 } 16283 16284 const MCPhysReg * 16285 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16286 // LR is a callee-save register, but we must treat it as clobbered by any call 16287 // site. Hence we include LR in the scratch registers, which are in turn added 16288 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16289 // to CTR, which is used by any indirect call. 16290 static const MCPhysReg ScratchRegs[] = { 16291 PPC::X12, PPC::LR8, PPC::CTR8, 0 16292 }; 16293 16294 return ScratchRegs; 16295 } 16296 16297 Register PPCTargetLowering::getExceptionPointerRegister( 16298 const Constant *PersonalityFn) const { 16299 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16300 } 16301 16302 Register PPCTargetLowering::getExceptionSelectorRegister( 16303 const Constant *PersonalityFn) const { 16304 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16305 } 16306 16307 bool 16308 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16309 EVT VT , unsigned DefinedValues) const { 16310 if (VT == MVT::v2i64) 16311 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16312 16313 if (Subtarget.hasVSX()) 16314 return true; 16315 16316 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16317 } 16318 16319 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16320 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16321 return TargetLowering::getSchedulingPreference(N); 16322 16323 return Sched::ILP; 16324 } 16325 16326 // Create a fast isel object. 16327 FastISel * 16328 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16329 const TargetLibraryInfo *LibInfo) const { 16330 return PPC::createFastISel(FuncInfo, LibInfo); 16331 } 16332 16333 // 'Inverted' means the FMA opcode after negating one multiplicand. 16334 // For example, (fma -a b c) = (fnmsub a b c) 16335 static unsigned invertFMAOpcode(unsigned Opc) { 16336 switch (Opc) { 16337 default: 16338 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16339 case ISD::FMA: 16340 return PPCISD::FNMSUB; 16341 case PPCISD::FNMSUB: 16342 return ISD::FMA; 16343 } 16344 } 16345 16346 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16347 bool LegalOps, bool OptForSize, 16348 NegatibleCost &Cost, 16349 unsigned Depth) const { 16350 if (Depth > SelectionDAG::MaxRecursionDepth) 16351 return SDValue(); 16352 16353 unsigned Opc = Op.getOpcode(); 16354 EVT VT = Op.getValueType(); 16355 SDNodeFlags Flags = Op.getNode()->getFlags(); 16356 16357 switch (Opc) { 16358 case PPCISD::FNMSUB: 16359 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16360 break; 16361 16362 const TargetOptions &Options = getTargetMachine().Options; 16363 SDValue N0 = Op.getOperand(0); 16364 SDValue N1 = Op.getOperand(1); 16365 SDValue N2 = Op.getOperand(2); 16366 SDLoc Loc(Op); 16367 16368 NegatibleCost N2Cost = NegatibleCost::Expensive; 16369 SDValue NegN2 = 16370 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16371 16372 if (!NegN2) 16373 return SDValue(); 16374 16375 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16376 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16377 // These transformations may change sign of zeroes. For example, 16378 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16379 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16380 // Try and choose the cheaper one to negate. 16381 NegatibleCost N0Cost = NegatibleCost::Expensive; 16382 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16383 N0Cost, Depth + 1); 16384 16385 NegatibleCost N1Cost = NegatibleCost::Expensive; 16386 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16387 N1Cost, Depth + 1); 16388 16389 if (NegN0 && N0Cost <= N1Cost) { 16390 Cost = std::min(N0Cost, N2Cost); 16391 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16392 } else if (NegN1) { 16393 Cost = std::min(N1Cost, N2Cost); 16394 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16395 } 16396 } 16397 16398 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16399 if (isOperationLegal(ISD::FMA, VT)) { 16400 Cost = N2Cost; 16401 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16402 } 16403 16404 break; 16405 } 16406 16407 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16408 Cost, Depth); 16409 } 16410 16411 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16412 bool PPCTargetLowering::useLoadStackGuardNode() const { 16413 if (!Subtarget.isTargetLinux()) 16414 return TargetLowering::useLoadStackGuardNode(); 16415 return true; 16416 } 16417 16418 // Override to disable global variable loading on Linux. 16419 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16420 if (!Subtarget.isTargetLinux()) 16421 return TargetLowering::insertSSPDeclarations(M); 16422 } 16423 16424 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16425 bool ForCodeSize) const { 16426 if (!VT.isSimple() || !Subtarget.hasVSX()) 16427 return false; 16428 16429 switch(VT.getSimpleVT().SimpleTy) { 16430 default: 16431 // For FP types that are currently not supported by PPC backend, return 16432 // false. Examples: f16, f80. 16433 return false; 16434 case MVT::f32: 16435 case MVT::f64: 16436 if (Subtarget.hasPrefixInstrs()) { 16437 // With prefixed instructions, we can materialize anything that can be 16438 // represented with a 32-bit immediate, not just positive zero. 16439 APFloat APFloatOfImm = Imm; 16440 return convertToNonDenormSingle(APFloatOfImm); 16441 } 16442 LLVM_FALLTHROUGH; 16443 case MVT::ppcf128: 16444 return Imm.isPosZero(); 16445 } 16446 } 16447 16448 // For vector shift operation op, fold 16449 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16450 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16451 SelectionDAG &DAG) { 16452 SDValue N0 = N->getOperand(0); 16453 SDValue N1 = N->getOperand(1); 16454 EVT VT = N0.getValueType(); 16455 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16456 unsigned Opcode = N->getOpcode(); 16457 unsigned TargetOpcode; 16458 16459 switch (Opcode) { 16460 default: 16461 llvm_unreachable("Unexpected shift operation"); 16462 case ISD::SHL: 16463 TargetOpcode = PPCISD::SHL; 16464 break; 16465 case ISD::SRL: 16466 TargetOpcode = PPCISD::SRL; 16467 break; 16468 case ISD::SRA: 16469 TargetOpcode = PPCISD::SRA; 16470 break; 16471 } 16472 16473 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16474 N1->getOpcode() == ISD::AND) 16475 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16476 if (Mask->getZExtValue() == OpSizeInBits - 1) 16477 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16478 16479 return SDValue(); 16480 } 16481 16482 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16483 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16484 return Value; 16485 16486 SDValue N0 = N->getOperand(0); 16487 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16488 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16489 N0.getOpcode() != ISD::SIGN_EXTEND || 16490 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16491 N->getValueType(0) != MVT::i64) 16492 return SDValue(); 16493 16494 // We can't save an operation here if the value is already extended, and 16495 // the existing shift is easier to combine. 16496 SDValue ExtsSrc = N0.getOperand(0); 16497 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16498 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16499 return SDValue(); 16500 16501 SDLoc DL(N0); 16502 SDValue ShiftBy = SDValue(CN1, 0); 16503 // We want the shift amount to be i32 on the extswli, but the shift could 16504 // have an i64. 16505 if (ShiftBy.getValueType() == MVT::i64) 16506 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16507 16508 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16509 ShiftBy); 16510 } 16511 16512 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16513 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16514 return Value; 16515 16516 return SDValue(); 16517 } 16518 16519 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16520 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16521 return Value; 16522 16523 return SDValue(); 16524 } 16525 16526 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16527 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16528 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16529 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16530 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16531 const PPCSubtarget &Subtarget) { 16532 if (!Subtarget.isPPC64()) 16533 return SDValue(); 16534 16535 SDValue LHS = N->getOperand(0); 16536 SDValue RHS = N->getOperand(1); 16537 16538 auto isZextOfCompareWithConstant = [](SDValue Op) { 16539 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16540 Op.getValueType() != MVT::i64) 16541 return false; 16542 16543 SDValue Cmp = Op.getOperand(0); 16544 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16545 Cmp.getOperand(0).getValueType() != MVT::i64) 16546 return false; 16547 16548 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16549 int64_t NegConstant = 0 - Constant->getSExtValue(); 16550 // Due to the limitations of the addi instruction, 16551 // -C is required to be [-32768, 32767]. 16552 return isInt<16>(NegConstant); 16553 } 16554 16555 return false; 16556 }; 16557 16558 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16559 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16560 16561 // If there is a pattern, canonicalize a zext operand to the RHS. 16562 if (LHSHasPattern && !RHSHasPattern) 16563 std::swap(LHS, RHS); 16564 else if (!LHSHasPattern && !RHSHasPattern) 16565 return SDValue(); 16566 16567 SDLoc DL(N); 16568 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16569 SDValue Cmp = RHS.getOperand(0); 16570 SDValue Z = Cmp.getOperand(0); 16571 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16572 16573 assert(Constant && "Constant Should not be a null pointer."); 16574 int64_t NegConstant = 0 - Constant->getSExtValue(); 16575 16576 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16577 default: break; 16578 case ISD::SETNE: { 16579 // when C == 0 16580 // --> addze X, (addic Z, -1).carry 16581 // / 16582 // add X, (zext(setne Z, C))-- 16583 // \ when -32768 <= -C <= 32767 && C != 0 16584 // --> addze X, (addic (addi Z, -C), -1).carry 16585 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16586 DAG.getConstant(NegConstant, DL, MVT::i64)); 16587 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16588 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16589 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16590 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16591 SDValue(Addc.getNode(), 1)); 16592 } 16593 case ISD::SETEQ: { 16594 // when C == 0 16595 // --> addze X, (subfic Z, 0).carry 16596 // / 16597 // add X, (zext(sete Z, C))-- 16598 // \ when -32768 <= -C <= 32767 && C != 0 16599 // --> addze X, (subfic (addi Z, -C), 0).carry 16600 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16601 DAG.getConstant(NegConstant, DL, MVT::i64)); 16602 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16603 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16604 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16605 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16606 SDValue(Subc.getNode(), 1)); 16607 } 16608 } 16609 16610 return SDValue(); 16611 } 16612 16613 // Transform 16614 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16615 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16616 // In this case both C1 and C2 must be known constants. 16617 // C1+C2 must fit into a 34 bit signed integer. 16618 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16619 const PPCSubtarget &Subtarget) { 16620 if (!Subtarget.isUsingPCRelativeCalls()) 16621 return SDValue(); 16622 16623 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16624 // If we find that node try to cast the Global Address and the Constant. 16625 SDValue LHS = N->getOperand(0); 16626 SDValue RHS = N->getOperand(1); 16627 16628 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16629 std::swap(LHS, RHS); 16630 16631 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16632 return SDValue(); 16633 16634 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16635 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16636 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16637 16638 // Check that both casts succeeded. 16639 if (!GSDN || !ConstNode) 16640 return SDValue(); 16641 16642 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16643 SDLoc DL(GSDN); 16644 16645 // The signed int offset needs to fit in 34 bits. 16646 if (!isInt<34>(NewOffset)) 16647 return SDValue(); 16648 16649 // The new global address is a copy of the old global address except 16650 // that it has the updated Offset. 16651 SDValue GA = 16652 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16653 NewOffset, GSDN->getTargetFlags()); 16654 SDValue MatPCRel = 16655 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16656 return MatPCRel; 16657 } 16658 16659 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16660 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16661 return Value; 16662 16663 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16664 return Value; 16665 16666 return SDValue(); 16667 } 16668 16669 // Detect TRUNCATE operations on bitcasts of float128 values. 16670 // What we are looking for here is the situtation where we extract a subset 16671 // of bits from a 128 bit float. 16672 // This can be of two forms: 16673 // 1) BITCAST of f128 feeding TRUNCATE 16674 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16675 // The reason this is required is because we do not have a legal i128 type 16676 // and so we want to prevent having to store the f128 and then reload part 16677 // of it. 16678 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16679 DAGCombinerInfo &DCI) const { 16680 // If we are using CRBits then try that first. 16681 if (Subtarget.useCRBits()) { 16682 // Check if CRBits did anything and return that if it did. 16683 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16684 return CRTruncValue; 16685 } 16686 16687 SDLoc dl(N); 16688 SDValue Op0 = N->getOperand(0); 16689 16690 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16691 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16692 EVT VT = N->getValueType(0); 16693 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16694 return SDValue(); 16695 SDValue Sub = Op0.getOperand(0); 16696 if (Sub.getOpcode() == ISD::SUB) { 16697 SDValue SubOp0 = Sub.getOperand(0); 16698 SDValue SubOp1 = Sub.getOperand(1); 16699 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16700 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16701 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16702 SubOp1.getOperand(0), 16703 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16704 } 16705 } 16706 } 16707 16708 // Looking for a truncate of i128 to i64. 16709 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16710 return SDValue(); 16711 16712 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16713 16714 // SRL feeding TRUNCATE. 16715 if (Op0.getOpcode() == ISD::SRL) { 16716 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16717 // The right shift has to be by 64 bits. 16718 if (!ConstNode || ConstNode->getZExtValue() != 64) 16719 return SDValue(); 16720 16721 // Switch the element number to extract. 16722 EltToExtract = EltToExtract ? 0 : 1; 16723 // Update Op0 past the SRL. 16724 Op0 = Op0.getOperand(0); 16725 } 16726 16727 // BITCAST feeding a TRUNCATE possibly via SRL. 16728 if (Op0.getOpcode() == ISD::BITCAST && 16729 Op0.getValueType() == MVT::i128 && 16730 Op0.getOperand(0).getValueType() == MVT::f128) { 16731 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16732 return DCI.DAG.getNode( 16733 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16734 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16735 } 16736 return SDValue(); 16737 } 16738 16739 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16740 SelectionDAG &DAG = DCI.DAG; 16741 16742 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16743 if (!ConstOpOrElement) 16744 return SDValue(); 16745 16746 // An imul is usually smaller than the alternative sequence for legal type. 16747 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16748 isOperationLegal(ISD::MUL, N->getValueType(0))) 16749 return SDValue(); 16750 16751 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16752 switch (this->Subtarget.getCPUDirective()) { 16753 default: 16754 // TODO: enhance the condition for subtarget before pwr8 16755 return false; 16756 case PPC::DIR_PWR8: 16757 // type mul add shl 16758 // scalar 4 1 1 16759 // vector 7 2 2 16760 return true; 16761 case PPC::DIR_PWR9: 16762 case PPC::DIR_PWR10: 16763 case PPC::DIR_PWR_FUTURE: 16764 // type mul add shl 16765 // scalar 5 2 2 16766 // vector 7 2 2 16767 16768 // The cycle RATIO of related operations are showed as a table above. 16769 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16770 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16771 // are 4, it is always profitable; but for 3 instrs patterns 16772 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16773 // So we should only do it for vector type. 16774 return IsAddOne && IsNeg ? VT.isVector() : true; 16775 } 16776 }; 16777 16778 EVT VT = N->getValueType(0); 16779 SDLoc DL(N); 16780 16781 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16782 bool IsNeg = MulAmt.isNegative(); 16783 APInt MulAmtAbs = MulAmt.abs(); 16784 16785 if ((MulAmtAbs - 1).isPowerOf2()) { 16786 // (mul x, 2^N + 1) => (add (shl x, N), x) 16787 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16788 16789 if (!IsProfitable(IsNeg, true, VT)) 16790 return SDValue(); 16791 16792 SDValue Op0 = N->getOperand(0); 16793 SDValue Op1 = 16794 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16795 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16796 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16797 16798 if (!IsNeg) 16799 return Res; 16800 16801 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16802 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16803 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16804 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16805 16806 if (!IsProfitable(IsNeg, false, VT)) 16807 return SDValue(); 16808 16809 SDValue Op0 = N->getOperand(0); 16810 SDValue Op1 = 16811 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16812 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16813 16814 if (!IsNeg) 16815 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16816 else 16817 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16818 16819 } else { 16820 return SDValue(); 16821 } 16822 } 16823 16824 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16825 // in combiner since we need to check SD flags and other subtarget features. 16826 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16827 DAGCombinerInfo &DCI) const { 16828 SDValue N0 = N->getOperand(0); 16829 SDValue N1 = N->getOperand(1); 16830 SDValue N2 = N->getOperand(2); 16831 SDNodeFlags Flags = N->getFlags(); 16832 EVT VT = N->getValueType(0); 16833 SelectionDAG &DAG = DCI.DAG; 16834 const TargetOptions &Options = getTargetMachine().Options; 16835 unsigned Opc = N->getOpcode(); 16836 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16837 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16838 SDLoc Loc(N); 16839 16840 if (!isOperationLegal(ISD::FMA, VT)) 16841 return SDValue(); 16842 16843 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16844 // since (fnmsub a b c)=-0 while c-ab=+0. 16845 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16846 return SDValue(); 16847 16848 // (fma (fneg a) b c) => (fnmsub a b c) 16849 // (fnmsub (fneg a) b c) => (fma a b c) 16850 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16851 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16852 16853 // (fma a (fneg b) c) => (fnmsub a b c) 16854 // (fnmsub a (fneg b) c) => (fma a b c) 16855 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16856 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16857 16858 return SDValue(); 16859 } 16860 16861 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16862 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16863 if (!Subtarget.is64BitELFABI()) 16864 return false; 16865 16866 // If not a tail call then no need to proceed. 16867 if (!CI->isTailCall()) 16868 return false; 16869 16870 // If sibling calls have been disabled and tail-calls aren't guaranteed 16871 // there is no reason to duplicate. 16872 auto &TM = getTargetMachine(); 16873 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16874 return false; 16875 16876 // Can't tail call a function called indirectly, or if it has variadic args. 16877 const Function *Callee = CI->getCalledFunction(); 16878 if (!Callee || Callee->isVarArg()) 16879 return false; 16880 16881 // Make sure the callee and caller calling conventions are eligible for tco. 16882 const Function *Caller = CI->getParent()->getParent(); 16883 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16884 CI->getCallingConv())) 16885 return false; 16886 16887 // If the function is local then we have a good chance at tail-calling it 16888 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16889 } 16890 16891 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16892 if (!Subtarget.hasVSX()) 16893 return false; 16894 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16895 return true; 16896 return VT == MVT::f32 || VT == MVT::f64 || 16897 VT == MVT::v4f32 || VT == MVT::v2f64; 16898 } 16899 16900 bool PPCTargetLowering:: 16901 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16902 const Value *Mask = AndI.getOperand(1); 16903 // If the mask is suitable for andi. or andis. we should sink the and. 16904 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16905 // Can't handle constants wider than 64-bits. 16906 if (CI->getBitWidth() > 64) 16907 return false; 16908 int64_t ConstVal = CI->getZExtValue(); 16909 return isUInt<16>(ConstVal) || 16910 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16911 } 16912 16913 // For non-constant masks, we can always use the record-form and. 16914 return true; 16915 } 16916 16917 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16918 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16919 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16920 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16921 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16922 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16923 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16924 assert(Subtarget.hasP9Altivec() && 16925 "Only combine this when P9 altivec supported!"); 16926 EVT VT = N->getValueType(0); 16927 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16928 return SDValue(); 16929 16930 SelectionDAG &DAG = DCI.DAG; 16931 SDLoc dl(N); 16932 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16933 // Even for signed integers, if it's known to be positive (as signed 16934 // integer) due to zero-extended inputs. 16935 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16936 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16937 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16938 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16939 (SubOpcd1 == ISD::ZERO_EXTEND || 16940 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16941 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16942 N->getOperand(0)->getOperand(0), 16943 N->getOperand(0)->getOperand(1), 16944 DAG.getTargetConstant(0, dl, MVT::i32)); 16945 } 16946 16947 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16948 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16949 N->getOperand(0).hasOneUse()) { 16950 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16951 N->getOperand(0)->getOperand(0), 16952 N->getOperand(0)->getOperand(1), 16953 DAG.getTargetConstant(1, dl, MVT::i32)); 16954 } 16955 } 16956 16957 return SDValue(); 16958 } 16959 16960 // For type v4i32/v8ii16/v16i8, transform 16961 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16962 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16963 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16964 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16965 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16966 DAGCombinerInfo &DCI) const { 16967 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16968 assert(Subtarget.hasP9Altivec() && 16969 "Only combine this when P9 altivec supported!"); 16970 16971 SelectionDAG &DAG = DCI.DAG; 16972 SDLoc dl(N); 16973 SDValue Cond = N->getOperand(0); 16974 SDValue TrueOpnd = N->getOperand(1); 16975 SDValue FalseOpnd = N->getOperand(2); 16976 EVT VT = N->getOperand(1).getValueType(); 16977 16978 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16979 FalseOpnd.getOpcode() != ISD::SUB) 16980 return SDValue(); 16981 16982 // ABSD only available for type v4i32/v8i16/v16i8 16983 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16984 return SDValue(); 16985 16986 // At least to save one more dependent computation 16987 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16988 return SDValue(); 16989 16990 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16991 16992 // Can only handle unsigned comparison here 16993 switch (CC) { 16994 default: 16995 return SDValue(); 16996 case ISD::SETUGT: 16997 case ISD::SETUGE: 16998 break; 16999 case ISD::SETULT: 17000 case ISD::SETULE: 17001 std::swap(TrueOpnd, FalseOpnd); 17002 break; 17003 } 17004 17005 SDValue CmpOpnd1 = Cond.getOperand(0); 17006 SDValue CmpOpnd2 = Cond.getOperand(1); 17007 17008 // SETCC CmpOpnd1 CmpOpnd2 cond 17009 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17010 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17011 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17012 TrueOpnd.getOperand(1) == CmpOpnd2 && 17013 FalseOpnd.getOperand(0) == CmpOpnd2 && 17014 FalseOpnd.getOperand(1) == CmpOpnd1) { 17015 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17016 CmpOpnd1, CmpOpnd2, 17017 DAG.getTargetConstant(0, dl, MVT::i32)); 17018 } 17019 17020 return SDValue(); 17021 } 17022