1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCTargetMachine.h" 18 #include "MCTargetDesc/PPCPredicates.h" 19 #include "llvm/CallingConv.h" 20 #include "llvm/Constants.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/Function.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 40 CCValAssign::LocInfo &LocInfo, 41 ISD::ArgFlagsTy &ArgFlags, 42 CCState &State); 43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 44 MVT &LocVT, 45 CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, 47 CCState &State); 48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 49 MVT &LocVT, 50 CCValAssign::LocInfo &LocInfo, 51 ISD::ArgFlagsTy &ArgFlags, 52 CCState &State); 53 54 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 55 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 58 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 59 60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65 } 66 67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); 70 71 setPow2DivIsCheap(); 72 73 // Use _setjmp/_longjmp instead of setjmp/longjmp. 74 setUseUnderscoreSetJmp(true); 75 setUseUnderscoreLongJmp(true); 76 77 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 78 // arguments are at least 4/8 bytes aligned. 79 bool isPPC64 = Subtarget->isPPC64(); 80 setMinStackArgumentAlignment(isPPC64 ? 8:4); 81 82 // Set up the register classes. 83 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 87 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 88 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 89 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 90 91 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 92 93 // PowerPC has pre-inc load and store's. 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 102 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 103 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 104 105 // This is used in the ppcf128->int sequence. Note it has different semantics 106 // from FP_ROUND: that rounds to nearest, this rounds to zero. 107 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 108 109 // We do not currently implment this libm ops for PowerPC. 110 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 111 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 112 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 113 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 114 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 115 116 // PowerPC has no SREM/UREM instructions 117 setOperationAction(ISD::SREM, MVT::i32, Expand); 118 setOperationAction(ISD::UREM, MVT::i32, Expand); 119 setOperationAction(ISD::SREM, MVT::i64, Expand); 120 setOperationAction(ISD::UREM, MVT::i64, Expand); 121 122 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 123 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 124 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 125 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 126 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 127 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 128 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 129 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 130 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 131 132 // We don't support sin/cos/sqrt/fmod/pow 133 setOperationAction(ISD::FSIN , MVT::f64, Expand); 134 setOperationAction(ISD::FCOS , MVT::f64, Expand); 135 setOperationAction(ISD::FREM , MVT::f64, Expand); 136 setOperationAction(ISD::FPOW , MVT::f64, Expand); 137 setOperationAction(ISD::FMA , MVT::f64, Legal); 138 setOperationAction(ISD::FSIN , MVT::f32, Expand); 139 setOperationAction(ISD::FCOS , MVT::f32, Expand); 140 setOperationAction(ISD::FREM , MVT::f32, Expand); 141 setOperationAction(ISD::FPOW , MVT::f32, Expand); 142 setOperationAction(ISD::FMA , MVT::f32, Legal); 143 144 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 145 146 // If we're enabling GP optimizations, use hardware square root 147 if (!Subtarget->hasFSQRT()) { 148 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 149 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 150 } 151 152 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 153 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 154 155 // PowerPC does not have BSWAP, CTPOP or CTTZ 156 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 157 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 158 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 159 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 160 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 161 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 162 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 163 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 164 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 165 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 166 167 // PowerPC does not have ROTR 168 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 169 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 170 171 // PowerPC does not have Select 172 setOperationAction(ISD::SELECT, MVT::i32, Expand); 173 setOperationAction(ISD::SELECT, MVT::i64, Expand); 174 setOperationAction(ISD::SELECT, MVT::f32, Expand); 175 setOperationAction(ISD::SELECT, MVT::f64, Expand); 176 177 // PowerPC wants to turn select_cc of FP into fsel when possible. 178 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 179 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 180 181 // PowerPC wants to optimize integer setcc a bit 182 setOperationAction(ISD::SETCC, MVT::i32, Custom); 183 184 // PowerPC does not have BRCOND which requires SetCC 185 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 186 187 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 188 189 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 190 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 191 192 // PowerPC does not have [U|S]INT_TO_FP 193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 194 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 195 196 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 197 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 198 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 199 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 200 201 // We cannot sextinreg(i1). Expand to shifts. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 204 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 205 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 206 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 207 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 208 209 210 // We want to legalize GlobalAddress and ConstantPool nodes into the 211 // appropriate instructions to materialize the address. 212 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 213 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 214 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 215 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 216 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 217 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 218 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 219 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 220 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 221 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 222 223 // TRAP is legal. 224 setOperationAction(ISD::TRAP, MVT::Other, Legal); 225 226 // TRAMPOLINE is custom lowered. 227 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 228 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 229 230 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 231 setOperationAction(ISD::VASTART , MVT::Other, Custom); 232 233 if (Subtarget->isSVR4ABI()) { 234 if (isPPC64) { 235 // VAARG always uses double-word chunks, so promote anything smaller. 236 setOperationAction(ISD::VAARG, MVT::i1, Promote); 237 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 238 setOperationAction(ISD::VAARG, MVT::i8, Promote); 239 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 240 setOperationAction(ISD::VAARG, MVT::i16, Promote); 241 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 242 setOperationAction(ISD::VAARG, MVT::i32, Promote); 243 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 244 setOperationAction(ISD::VAARG, MVT::Other, Expand); 245 } else { 246 // VAARG is custom lowered with the 32-bit SVR4 ABI. 247 setOperationAction(ISD::VAARG, MVT::Other, Custom); 248 setOperationAction(ISD::VAARG, MVT::i64, Custom); 249 } 250 } else 251 setOperationAction(ISD::VAARG, MVT::Other, Expand); 252 253 // Use the default implementation. 254 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 255 setOperationAction(ISD::VAEND , MVT::Other, Expand); 256 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 257 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 258 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 259 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 260 261 // We want to custom lower some of our intrinsics. 262 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 263 264 // Comparisons that require checking two conditions. 265 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 266 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 267 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 268 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 269 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 270 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 271 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 272 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 273 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 274 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 275 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 276 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 277 278 if (Subtarget->has64BitSupport()) { 279 // They also have instructions for converting between i64 and fp. 280 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 281 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 282 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 283 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 284 // This is just the low 32 bits of a (signed) fp->i64 conversion. 285 // We cannot do this with Promote because i64 is not a legal type. 286 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 287 288 // FIXME: disable this lowered code. This generates 64-bit register values, 289 // and we don't model the fact that the top part is clobbered by calls. We 290 // need to flag these together so that the value isn't live across a call. 291 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 292 } else { 293 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 294 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 295 } 296 297 if (Subtarget->use64BitRegs()) { 298 // 64-bit PowerPC implementations can support i64 types directly 299 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 300 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 301 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 302 // 64-bit PowerPC wants to expand i128 shifts itself. 303 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 304 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 305 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 306 } else { 307 // 32-bit PowerPC wants to expand i64 shifts itself. 308 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 309 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 310 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 311 } 312 313 if (Subtarget->hasAltivec()) { 314 // First set operation action for all vector types to expand. Then we 315 // will selectively turn on ones that can be effectively codegen'd. 316 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 317 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 318 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 319 320 // add/sub are legal for all supported vector VT's. 321 setOperationAction(ISD::ADD , VT, Legal); 322 setOperationAction(ISD::SUB , VT, Legal); 323 324 // We promote all shuffles to v16i8. 325 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 326 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 327 328 // We promote all non-typed operations to v4i32. 329 setOperationAction(ISD::AND , VT, Promote); 330 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 331 setOperationAction(ISD::OR , VT, Promote); 332 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 333 setOperationAction(ISD::XOR , VT, Promote); 334 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 335 setOperationAction(ISD::LOAD , VT, Promote); 336 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 337 setOperationAction(ISD::SELECT, VT, Promote); 338 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 339 setOperationAction(ISD::STORE, VT, Promote); 340 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 341 342 // No other operations are legal. 343 setOperationAction(ISD::MUL , VT, Expand); 344 setOperationAction(ISD::SDIV, VT, Expand); 345 setOperationAction(ISD::SREM, VT, Expand); 346 setOperationAction(ISD::UDIV, VT, Expand); 347 setOperationAction(ISD::UREM, VT, Expand); 348 setOperationAction(ISD::FDIV, VT, Expand); 349 setOperationAction(ISD::FNEG, VT, Expand); 350 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 351 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 352 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 353 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 354 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 355 setOperationAction(ISD::UDIVREM, VT, Expand); 356 setOperationAction(ISD::SDIVREM, VT, Expand); 357 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 358 setOperationAction(ISD::FPOW, VT, Expand); 359 setOperationAction(ISD::CTPOP, VT, Expand); 360 setOperationAction(ISD::CTLZ, VT, Expand); 361 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 362 setOperationAction(ISD::CTTZ, VT, Expand); 363 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 364 } 365 366 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 367 // with merges, splats, etc. 368 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 369 370 setOperationAction(ISD::AND , MVT::v4i32, Legal); 371 setOperationAction(ISD::OR , MVT::v4i32, Legal); 372 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 373 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 374 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 375 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 376 377 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 378 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 379 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 380 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 381 382 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 383 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 384 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 385 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 386 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 387 388 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 389 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 390 391 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 392 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 393 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 394 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 395 } 396 397 if (Subtarget->has64BitSupport()) 398 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 399 400 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 401 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 402 403 setBooleanContents(ZeroOrOneBooleanContent); 404 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 405 406 if (isPPC64) { 407 setStackPointerRegisterToSaveRestore(PPC::X1); 408 setExceptionPointerRegister(PPC::X3); 409 setExceptionSelectorRegister(PPC::X4); 410 } else { 411 setStackPointerRegisterToSaveRestore(PPC::R1); 412 setExceptionPointerRegister(PPC::R3); 413 setExceptionSelectorRegister(PPC::R4); 414 } 415 416 // We have target-specific dag combine patterns for the following nodes: 417 setTargetDAGCombine(ISD::SINT_TO_FP); 418 setTargetDAGCombine(ISD::STORE); 419 setTargetDAGCombine(ISD::BR_CC); 420 setTargetDAGCombine(ISD::BSWAP); 421 422 // Darwin long double math library functions have $LDBL128 appended. 423 if (Subtarget->isDarwin()) { 424 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 425 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 426 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 427 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 428 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 429 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 430 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 431 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 432 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 433 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 434 } 435 436 setMinFunctionAlignment(2); 437 if (PPCSubTarget.isDarwin()) 438 setPrefFunctionAlignment(4); 439 440 if (isPPC64 && Subtarget->isJITCodeModel()) 441 // Temporary workaround for the inability of PPC64 JIT to handle jump 442 // tables. 443 setSupportJumpTables(false); 444 445 setInsertFencesForAtomic(true); 446 447 setSchedulingPreference(Sched::Hybrid); 448 449 computeRegisterProperties(); 450 } 451 452 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 453 /// function arguments in the caller parameter area. 454 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 455 const TargetMachine &TM = getTargetMachine(); 456 // Darwin passes everything on 4 byte boundary. 457 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 458 return 4; 459 460 // 16byte and wider vectors are passed on 16byte boundary. 461 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 462 if (VTy->getBitWidth() >= 128) 463 return 16; 464 465 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 466 if (PPCSubTarget.isPPC64()) 467 return 8; 468 469 return 4; 470 } 471 472 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 473 switch (Opcode) { 474 default: return 0; 475 case PPCISD::FSEL: return "PPCISD::FSEL"; 476 case PPCISD::FCFID: return "PPCISD::FCFID"; 477 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 478 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 479 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 480 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 481 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 482 case PPCISD::VPERM: return "PPCISD::VPERM"; 483 case PPCISD::Hi: return "PPCISD::Hi"; 484 case PPCISD::Lo: return "PPCISD::Lo"; 485 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 486 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 487 case PPCISD::LOAD: return "PPCISD::LOAD"; 488 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 489 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 490 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 491 case PPCISD::SRL: return "PPCISD::SRL"; 492 case PPCISD::SRA: return "PPCISD::SRA"; 493 case PPCISD::SHL: return "PPCISD::SHL"; 494 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 495 case PPCISD::STD_32: return "PPCISD::STD_32"; 496 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 497 case PPCISD::CALL_NOP_SVR4: return "PPCISD::CALL_NOP_SVR4"; 498 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 499 case PPCISD::NOP: return "PPCISD::NOP"; 500 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 501 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 502 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 503 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 504 case PPCISD::MFCR: return "PPCISD::MFCR"; 505 case PPCISD::VCMP: return "PPCISD::VCMP"; 506 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 507 case PPCISD::LBRX: return "PPCISD::LBRX"; 508 case PPCISD::STBRX: return "PPCISD::STBRX"; 509 case PPCISD::LARX: return "PPCISD::LARX"; 510 case PPCISD::STCX: return "PPCISD::STCX"; 511 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 512 case PPCISD::MFFS: return "PPCISD::MFFS"; 513 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 514 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 515 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 516 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 517 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 518 } 519 } 520 521 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { 522 return MVT::i32; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // Node matching predicates, for use by the tblgen matching code. 527 //===----------------------------------------------------------------------===// 528 529 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 530 static bool isFloatingPointZero(SDValue Op) { 531 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 532 return CFP->getValueAPF().isZero(); 533 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 534 // Maybe this has already been legalized into the constant pool? 535 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 536 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 537 return CFP->getValueAPF().isZero(); 538 } 539 return false; 540 } 541 542 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 543 /// true if Op is undef or if it matches the specified value. 544 static bool isConstantOrUndef(int Op, int Val) { 545 return Op < 0 || Op == Val; 546 } 547 548 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 549 /// VPKUHUM instruction. 550 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 551 if (!isUnary) { 552 for (unsigned i = 0; i != 16; ++i) 553 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 554 return false; 555 } else { 556 for (unsigned i = 0; i != 8; ++i) 557 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 558 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 559 return false; 560 } 561 return true; 562 } 563 564 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 565 /// VPKUWUM instruction. 566 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 567 if (!isUnary) { 568 for (unsigned i = 0; i != 16; i += 2) 569 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 570 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 571 return false; 572 } else { 573 for (unsigned i = 0; i != 8; i += 2) 574 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 575 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 576 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 577 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 578 return false; 579 } 580 return true; 581 } 582 583 /// isVMerge - Common function, used to match vmrg* shuffles. 584 /// 585 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 586 unsigned LHSStart, unsigned RHSStart) { 587 assert(N->getValueType(0) == MVT::v16i8 && 588 "PPC only supports shuffles by bytes!"); 589 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 590 "Unsupported merge size!"); 591 592 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 593 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 594 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 595 LHSStart+j+i*UnitSize) || 596 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 597 RHSStart+j+i*UnitSize)) 598 return false; 599 } 600 return true; 601 } 602 603 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 604 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 605 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 606 bool isUnary) { 607 if (!isUnary) 608 return isVMerge(N, UnitSize, 8, 24); 609 return isVMerge(N, UnitSize, 8, 8); 610 } 611 612 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 613 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 614 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 615 bool isUnary) { 616 if (!isUnary) 617 return isVMerge(N, UnitSize, 0, 16); 618 return isVMerge(N, UnitSize, 0, 0); 619 } 620 621 622 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 623 /// amount, otherwise return -1. 624 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 625 assert(N->getValueType(0) == MVT::v16i8 && 626 "PPC only supports shuffles by bytes!"); 627 628 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 629 630 // Find the first non-undef value in the shuffle mask. 631 unsigned i; 632 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 633 /*search*/; 634 635 if (i == 16) return -1; // all undef. 636 637 // Otherwise, check to see if the rest of the elements are consecutively 638 // numbered from this value. 639 unsigned ShiftAmt = SVOp->getMaskElt(i); 640 if (ShiftAmt < i) return -1; 641 ShiftAmt -= i; 642 643 if (!isUnary) { 644 // Check the rest of the elements to see if they are consecutive. 645 for (++i; i != 16; ++i) 646 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 647 return -1; 648 } else { 649 // Check the rest of the elements to see if they are consecutive. 650 for (++i; i != 16; ++i) 651 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 652 return -1; 653 } 654 return ShiftAmt; 655 } 656 657 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 658 /// specifies a splat of a single element that is suitable for input to 659 /// VSPLTB/VSPLTH/VSPLTW. 660 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 661 assert(N->getValueType(0) == MVT::v16i8 && 662 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 663 664 // This is a splat operation if each element of the permute is the same, and 665 // if the value doesn't reference the second vector. 666 unsigned ElementBase = N->getMaskElt(0); 667 668 // FIXME: Handle UNDEF elements too! 669 if (ElementBase >= 16) 670 return false; 671 672 // Check that the indices are consecutive, in the case of a multi-byte element 673 // splatted with a v16i8 mask. 674 for (unsigned i = 1; i != EltSize; ++i) 675 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 676 return false; 677 678 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 679 if (N->getMaskElt(i) < 0) continue; 680 for (unsigned j = 0; j != EltSize; ++j) 681 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 682 return false; 683 } 684 return true; 685 } 686 687 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 688 /// are -0.0. 689 bool PPC::isAllNegativeZeroVector(SDNode *N) { 690 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 691 692 APInt APVal, APUndef; 693 unsigned BitSize; 694 bool HasAnyUndefs; 695 696 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 697 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 698 return CFP->getValueAPF().isNegZero(); 699 700 return false; 701 } 702 703 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 704 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 705 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 706 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 707 assert(isSplatShuffleMask(SVOp, EltSize)); 708 return SVOp->getMaskElt(0) / EltSize; 709 } 710 711 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 712 /// by using a vspltis[bhw] instruction of the specified element size, return 713 /// the constant being splatted. The ByteSize field indicates the number of 714 /// bytes of each element [124] -> [bhw]. 715 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 716 SDValue OpVal(0, 0); 717 718 // If ByteSize of the splat is bigger than the element size of the 719 // build_vector, then we have a case where we are checking for a splat where 720 // multiple elements of the buildvector are folded together into a single 721 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 722 unsigned EltSize = 16/N->getNumOperands(); 723 if (EltSize < ByteSize) { 724 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 725 SDValue UniquedVals[4]; 726 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 727 728 // See if all of the elements in the buildvector agree across. 729 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 730 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 731 // If the element isn't a constant, bail fully out. 732 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 733 734 735 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 736 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 737 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 738 return SDValue(); // no match. 739 } 740 741 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 742 // either constant or undef values that are identical for each chunk. See 743 // if these chunks can form into a larger vspltis*. 744 745 // Check to see if all of the leading entries are either 0 or -1. If 746 // neither, then this won't fit into the immediate field. 747 bool LeadingZero = true; 748 bool LeadingOnes = true; 749 for (unsigned i = 0; i != Multiple-1; ++i) { 750 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 751 752 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 753 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 754 } 755 // Finally, check the least significant entry. 756 if (LeadingZero) { 757 if (UniquedVals[Multiple-1].getNode() == 0) 758 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 759 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 760 if (Val < 16) 761 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 762 } 763 if (LeadingOnes) { 764 if (UniquedVals[Multiple-1].getNode() == 0) 765 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 766 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 767 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 768 return DAG.getTargetConstant(Val, MVT::i32); 769 } 770 771 return SDValue(); 772 } 773 774 // Check to see if this buildvec has a single non-undef value in its elements. 775 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 776 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 777 if (OpVal.getNode() == 0) 778 OpVal = N->getOperand(i); 779 else if (OpVal != N->getOperand(i)) 780 return SDValue(); 781 } 782 783 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 784 785 unsigned ValSizeInBytes = EltSize; 786 uint64_t Value = 0; 787 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 788 Value = CN->getZExtValue(); 789 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 790 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 791 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 792 } 793 794 // If the splat value is larger than the element value, then we can never do 795 // this splat. The only case that we could fit the replicated bits into our 796 // immediate field for would be zero, and we prefer to use vxor for it. 797 if (ValSizeInBytes < ByteSize) return SDValue(); 798 799 // If the element value is larger than the splat value, cut it in half and 800 // check to see if the two halves are equal. Continue doing this until we 801 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 802 while (ValSizeInBytes > ByteSize) { 803 ValSizeInBytes >>= 1; 804 805 // If the top half equals the bottom half, we're still ok. 806 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 807 (Value & ((1 << (8*ValSizeInBytes))-1))) 808 return SDValue(); 809 } 810 811 // Properly sign extend the value. 812 int ShAmt = (4-ByteSize)*8; 813 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 814 815 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 816 if (MaskVal == 0) return SDValue(); 817 818 // Finally, if this value fits in a 5 bit sext field, return it 819 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 820 return DAG.getTargetConstant(MaskVal, MVT::i32); 821 return SDValue(); 822 } 823 824 //===----------------------------------------------------------------------===// 825 // Addressing Mode Selection 826 //===----------------------------------------------------------------------===// 827 828 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 829 /// or 64-bit immediate, and if the value can be accurately represented as a 830 /// sign extension from a 16-bit value. If so, this returns true and the 831 /// immediate. 832 static bool isIntS16Immediate(SDNode *N, short &Imm) { 833 if (N->getOpcode() != ISD::Constant) 834 return false; 835 836 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 837 if (N->getValueType(0) == MVT::i32) 838 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 839 else 840 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 841 } 842 static bool isIntS16Immediate(SDValue Op, short &Imm) { 843 return isIntS16Immediate(Op.getNode(), Imm); 844 } 845 846 847 /// SelectAddressRegReg - Given the specified addressed, check to see if it 848 /// can be represented as an indexed [r+r] operation. Returns false if it 849 /// can be more efficiently represented with [r+imm]. 850 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 851 SDValue &Index, 852 SelectionDAG &DAG) const { 853 short imm = 0; 854 if (N.getOpcode() == ISD::ADD) { 855 if (isIntS16Immediate(N.getOperand(1), imm)) 856 return false; // r+i 857 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 858 return false; // r+i 859 860 Base = N.getOperand(0); 861 Index = N.getOperand(1); 862 return true; 863 } else if (N.getOpcode() == ISD::OR) { 864 if (isIntS16Immediate(N.getOperand(1), imm)) 865 return false; // r+i can fold it if we can. 866 867 // If this is an or of disjoint bitfields, we can codegen this as an add 868 // (for better address arithmetic) if the LHS and RHS of the OR are provably 869 // disjoint. 870 APInt LHSKnownZero, LHSKnownOne; 871 APInt RHSKnownZero, RHSKnownOne; 872 DAG.ComputeMaskedBits(N.getOperand(0), 873 LHSKnownZero, LHSKnownOne); 874 875 if (LHSKnownZero.getBoolValue()) { 876 DAG.ComputeMaskedBits(N.getOperand(1), 877 RHSKnownZero, RHSKnownOne); 878 // If all of the bits are known zero on the LHS or RHS, the add won't 879 // carry. 880 if (~(LHSKnownZero | RHSKnownZero) == 0) { 881 Base = N.getOperand(0); 882 Index = N.getOperand(1); 883 return true; 884 } 885 } 886 } 887 888 return false; 889 } 890 891 /// Returns true if the address N can be represented by a base register plus 892 /// a signed 16-bit displacement [r+imm], and if it is not better 893 /// represented as reg+reg. 894 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 895 SDValue &Base, 896 SelectionDAG &DAG) const { 897 // FIXME dl should come from parent load or store, not from address 898 DebugLoc dl = N.getDebugLoc(); 899 // If this can be more profitably realized as r+r, fail. 900 if (SelectAddressRegReg(N, Disp, Base, DAG)) 901 return false; 902 903 if (N.getOpcode() == ISD::ADD) { 904 short imm = 0; 905 if (isIntS16Immediate(N.getOperand(1), imm)) { 906 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 907 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 908 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 909 } else { 910 Base = N.getOperand(0); 911 } 912 return true; // [r+i] 913 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 914 // Match LOAD (ADD (X, Lo(G))). 915 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 916 && "Cannot handle constant offsets yet!"); 917 Disp = N.getOperand(1).getOperand(0); // The global address. 918 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 919 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 920 Disp.getOpcode() == ISD::TargetConstantPool || 921 Disp.getOpcode() == ISD::TargetJumpTable); 922 Base = N.getOperand(0); 923 return true; // [&g+r] 924 } 925 } else if (N.getOpcode() == ISD::OR) { 926 short imm = 0; 927 if (isIntS16Immediate(N.getOperand(1), imm)) { 928 // If this is an or of disjoint bitfields, we can codegen this as an add 929 // (for better address arithmetic) if the LHS and RHS of the OR are 930 // provably disjoint. 931 APInt LHSKnownZero, LHSKnownOne; 932 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 933 934 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 935 // If all of the bits are known zero on the LHS or RHS, the add won't 936 // carry. 937 Base = N.getOperand(0); 938 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 939 return true; 940 } 941 } 942 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 943 // Loading from a constant address. 944 945 // If this address fits entirely in a 16-bit sext immediate field, codegen 946 // this as "d, 0" 947 short Imm; 948 if (isIntS16Immediate(CN, Imm)) { 949 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 950 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 951 CN->getValueType(0)); 952 return true; 953 } 954 955 // Handle 32-bit sext immediates with LIS + addr mode. 956 if (CN->getValueType(0) == MVT::i32 || 957 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 958 int Addr = (int)CN->getZExtValue(); 959 960 // Otherwise, break this down into an LIS + disp. 961 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 962 963 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 964 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 965 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 966 return true; 967 } 968 } 969 970 Disp = DAG.getTargetConstant(0, getPointerTy()); 971 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 972 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 973 else 974 Base = N; 975 return true; // [r+0] 976 } 977 978 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 979 /// represented as an indexed [r+r] operation. 980 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 981 SDValue &Index, 982 SelectionDAG &DAG) const { 983 // Check to see if we can easily represent this as an [r+r] address. This 984 // will fail if it thinks that the address is more profitably represented as 985 // reg+imm, e.g. where imm = 0. 986 if (SelectAddressRegReg(N, Base, Index, DAG)) 987 return true; 988 989 // If the operand is an addition, always emit this as [r+r], since this is 990 // better (for code size, and execution, as the memop does the add for free) 991 // than emitting an explicit add. 992 if (N.getOpcode() == ISD::ADD) { 993 Base = N.getOperand(0); 994 Index = N.getOperand(1); 995 return true; 996 } 997 998 // Otherwise, do it the hard way, using R0 as the base register. 999 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1000 N.getValueType()); 1001 Index = N; 1002 return true; 1003 } 1004 1005 /// SelectAddressRegImmShift - Returns true if the address N can be 1006 /// represented by a base register plus a signed 14-bit displacement 1007 /// [r+imm*4]. Suitable for use by STD and friends. 1008 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 1009 SDValue &Base, 1010 SelectionDAG &DAG) const { 1011 // FIXME dl should come from the parent load or store, not the address 1012 DebugLoc dl = N.getDebugLoc(); 1013 // If this can be more profitably realized as r+r, fail. 1014 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1015 return false; 1016 1017 if (N.getOpcode() == ISD::ADD) { 1018 short imm = 0; 1019 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1020 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1021 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1022 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1023 } else { 1024 Base = N.getOperand(0); 1025 } 1026 return true; // [r+i] 1027 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1028 // Match LOAD (ADD (X, Lo(G))). 1029 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1030 && "Cannot handle constant offsets yet!"); 1031 Disp = N.getOperand(1).getOperand(0); // The global address. 1032 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1033 Disp.getOpcode() == ISD::TargetConstantPool || 1034 Disp.getOpcode() == ISD::TargetJumpTable); 1035 Base = N.getOperand(0); 1036 return true; // [&g+r] 1037 } 1038 } else if (N.getOpcode() == ISD::OR) { 1039 short imm = 0; 1040 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 1041 // If this is an or of disjoint bitfields, we can codegen this as an add 1042 // (for better address arithmetic) if the LHS and RHS of the OR are 1043 // provably disjoint. 1044 APInt LHSKnownZero, LHSKnownOne; 1045 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1046 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1047 // If all of the bits are known zero on the LHS or RHS, the add won't 1048 // carry. 1049 Base = N.getOperand(0); 1050 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1051 return true; 1052 } 1053 } 1054 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1055 // Loading from a constant address. Verify low two bits are clear. 1056 if ((CN->getZExtValue() & 3) == 0) { 1057 // If this address fits entirely in a 14-bit sext immediate field, codegen 1058 // this as "d, 0" 1059 short Imm; 1060 if (isIntS16Immediate(CN, Imm)) { 1061 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1062 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1063 CN->getValueType(0)); 1064 return true; 1065 } 1066 1067 // Fold the low-part of 32-bit absolute addresses into addr mode. 1068 if (CN->getValueType(0) == MVT::i32 || 1069 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1070 int Addr = (int)CN->getZExtValue(); 1071 1072 // Otherwise, break this down into an LIS + disp. 1073 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1074 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1075 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1076 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1077 return true; 1078 } 1079 } 1080 } 1081 1082 Disp = DAG.getTargetConstant(0, getPointerTy()); 1083 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1084 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1085 else 1086 Base = N; 1087 return true; // [r+0] 1088 } 1089 1090 1091 /// getPreIndexedAddressParts - returns true by value, base pointer and 1092 /// offset pointer and addressing mode by reference if the node's address 1093 /// can be legally represented as pre-indexed load / store address. 1094 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1095 SDValue &Offset, 1096 ISD::MemIndexedMode &AM, 1097 SelectionDAG &DAG) const { 1098 if (DisablePPCPreinc) return false; 1099 1100 SDValue Ptr; 1101 EVT VT; 1102 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1103 Ptr = LD->getBasePtr(); 1104 VT = LD->getMemoryVT(); 1105 1106 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1107 Ptr = ST->getBasePtr(); 1108 VT = ST->getMemoryVT(); 1109 } else 1110 return false; 1111 1112 // PowerPC doesn't have preinc load/store instructions for vectors. 1113 if (VT.isVector()) 1114 return false; 1115 1116 if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) { 1117 AM = ISD::PRE_INC; 1118 return true; 1119 } 1120 1121 // LDU/STU use reg+imm*4, others use reg+imm. 1122 if (VT != MVT::i64) { 1123 // reg + imm 1124 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1125 return false; 1126 } else { 1127 // reg + imm * 4. 1128 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1129 return false; 1130 } 1131 1132 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1133 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1134 // sext i32 to i64 when addr mode is r+i. 1135 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1136 LD->getExtensionType() == ISD::SEXTLOAD && 1137 isa<ConstantSDNode>(Offset)) 1138 return false; 1139 } 1140 1141 AM = ISD::PRE_INC; 1142 return true; 1143 } 1144 1145 //===----------------------------------------------------------------------===// 1146 // LowerOperation implementation 1147 //===----------------------------------------------------------------------===// 1148 1149 /// GetLabelAccessInfo - Return true if we should reference labels using a 1150 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1151 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1152 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1153 HiOpFlags = PPCII::MO_HA16; 1154 LoOpFlags = PPCII::MO_LO16; 1155 1156 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1157 // non-darwin platform. We don't support PIC on other platforms yet. 1158 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1159 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1160 if (isPIC) { 1161 HiOpFlags |= PPCII::MO_PIC_FLAG; 1162 LoOpFlags |= PPCII::MO_PIC_FLAG; 1163 } 1164 1165 // If this is a reference to a global value that requires a non-lazy-ptr, make 1166 // sure that instruction lowering adds it. 1167 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1168 HiOpFlags |= PPCII::MO_NLP_FLAG; 1169 LoOpFlags |= PPCII::MO_NLP_FLAG; 1170 1171 if (GV->hasHiddenVisibility()) { 1172 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1173 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1174 } 1175 } 1176 1177 return isPIC; 1178 } 1179 1180 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1181 SelectionDAG &DAG) { 1182 EVT PtrVT = HiPart.getValueType(); 1183 SDValue Zero = DAG.getConstant(0, PtrVT); 1184 DebugLoc DL = HiPart.getDebugLoc(); 1185 1186 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1187 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1188 1189 // With PIC, the first instruction is actually "GR+hi(&G)". 1190 if (isPIC) 1191 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1192 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1193 1194 // Generate non-pic code that has direct accesses to the constant pool. 1195 // The address of the global is just (hi(&g)+lo(&g)). 1196 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1197 } 1198 1199 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1200 SelectionDAG &DAG) const { 1201 EVT PtrVT = Op.getValueType(); 1202 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1203 const Constant *C = CP->getConstVal(); 1204 1205 unsigned MOHiFlag, MOLoFlag; 1206 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1207 SDValue CPIHi = 1208 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1209 SDValue CPILo = 1210 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1211 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1212 } 1213 1214 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1215 EVT PtrVT = Op.getValueType(); 1216 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1217 1218 unsigned MOHiFlag, MOLoFlag; 1219 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1220 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1221 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1222 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1223 } 1224 1225 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1226 SelectionDAG &DAG) const { 1227 EVT PtrVT = Op.getValueType(); 1228 1229 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1230 1231 unsigned MOHiFlag, MOLoFlag; 1232 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1233 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1234 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1235 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1236 } 1237 1238 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 1241 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1242 DebugLoc dl = GA->getDebugLoc(); 1243 const GlobalValue *GV = GA->getGlobal(); 1244 EVT PtrVT = getPointerTy(); 1245 bool is64bit = PPCSubTarget.isPPC64(); 1246 1247 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 1248 1249 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1250 PPCII::MO_TPREL16_HA); 1251 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 1252 PPCII::MO_TPREL16_LO); 1253 1254 if (model != TLSModel::LocalExec) 1255 llvm_unreachable("only local-exec TLS mode supported"); 1256 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 1257 is64bit ? MVT::i64 : MVT::i32); 1258 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 1259 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 1260 } 1261 1262 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1263 SelectionDAG &DAG) const { 1264 EVT PtrVT = Op.getValueType(); 1265 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1266 DebugLoc DL = GSDN->getDebugLoc(); 1267 const GlobalValue *GV = GSDN->getGlobal(); 1268 1269 // 64-bit SVR4 ABI code is always position-independent. 1270 // The actual address of the GlobalValue is stored in the TOC. 1271 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1272 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1273 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1274 DAG.getRegister(PPC::X2, MVT::i64)); 1275 } 1276 1277 unsigned MOHiFlag, MOLoFlag; 1278 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1279 1280 SDValue GAHi = 1281 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1282 SDValue GALo = 1283 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1284 1285 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1286 1287 // If the global reference is actually to a non-lazy-pointer, we have to do an 1288 // extra load to get the address of the global. 1289 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1290 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1291 false, false, false, 0); 1292 return Ptr; 1293 } 1294 1295 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1296 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1297 DebugLoc dl = Op.getDebugLoc(); 1298 1299 // If we're comparing for equality to zero, expose the fact that this is 1300 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1301 // fold the new nodes. 1302 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1303 if (C->isNullValue() && CC == ISD::SETEQ) { 1304 EVT VT = Op.getOperand(0).getValueType(); 1305 SDValue Zext = Op.getOperand(0); 1306 if (VT.bitsLT(MVT::i32)) { 1307 VT = MVT::i32; 1308 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1309 } 1310 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1311 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1312 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1313 DAG.getConstant(Log2b, MVT::i32)); 1314 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1315 } 1316 // Leave comparisons against 0 and -1 alone for now, since they're usually 1317 // optimized. FIXME: revisit this when we can custom lower all setcc 1318 // optimizations. 1319 if (C->isAllOnesValue() || C->isNullValue()) 1320 return SDValue(); 1321 } 1322 1323 // If we have an integer seteq/setne, turn it into a compare against zero 1324 // by xor'ing the rhs with the lhs, which is faster than setting a 1325 // condition register, reading it back out, and masking the correct bit. The 1326 // normal approach here uses sub to do this instead of xor. Using xor exposes 1327 // the result to other bit-twiddling opportunities. 1328 EVT LHSVT = Op.getOperand(0).getValueType(); 1329 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1330 EVT VT = Op.getValueType(); 1331 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1332 Op.getOperand(1)); 1333 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1334 } 1335 return SDValue(); 1336 } 1337 1338 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1339 const PPCSubtarget &Subtarget) const { 1340 SDNode *Node = Op.getNode(); 1341 EVT VT = Node->getValueType(0); 1342 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1343 SDValue InChain = Node->getOperand(0); 1344 SDValue VAListPtr = Node->getOperand(1); 1345 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1346 DebugLoc dl = Node->getDebugLoc(); 1347 1348 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1349 1350 // gpr_index 1351 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1352 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1353 false, false, 0); 1354 InChain = GprIndex.getValue(1); 1355 1356 if (VT == MVT::i64) { 1357 // Check if GprIndex is even 1358 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1359 DAG.getConstant(1, MVT::i32)); 1360 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1361 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1362 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1363 DAG.getConstant(1, MVT::i32)); 1364 // Align GprIndex to be even if it isn't 1365 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1366 GprIndex); 1367 } 1368 1369 // fpr index is 1 byte after gpr 1370 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1371 DAG.getConstant(1, MVT::i32)); 1372 1373 // fpr 1374 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1375 FprPtr, MachinePointerInfo(SV), MVT::i8, 1376 false, false, 0); 1377 InChain = FprIndex.getValue(1); 1378 1379 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1380 DAG.getConstant(8, MVT::i32)); 1381 1382 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1383 DAG.getConstant(4, MVT::i32)); 1384 1385 // areas 1386 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1387 MachinePointerInfo(), false, false, 1388 false, 0); 1389 InChain = OverflowArea.getValue(1); 1390 1391 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1392 MachinePointerInfo(), false, false, 1393 false, 0); 1394 InChain = RegSaveArea.getValue(1); 1395 1396 // select overflow_area if index > 8 1397 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1398 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1399 1400 // adjustment constant gpr_index * 4/8 1401 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1402 VT.isInteger() ? GprIndex : FprIndex, 1403 DAG.getConstant(VT.isInteger() ? 4 : 8, 1404 MVT::i32)); 1405 1406 // OurReg = RegSaveArea + RegConstant 1407 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1408 RegConstant); 1409 1410 // Floating types are 32 bytes into RegSaveArea 1411 if (VT.isFloatingPoint()) 1412 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1413 DAG.getConstant(32, MVT::i32)); 1414 1415 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1416 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1417 VT.isInteger() ? GprIndex : FprIndex, 1418 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1419 MVT::i32)); 1420 1421 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1422 VT.isInteger() ? VAListPtr : FprPtr, 1423 MachinePointerInfo(SV), 1424 MVT::i8, false, false, 0); 1425 1426 // determine if we should load from reg_save_area or overflow_area 1427 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1428 1429 // increase overflow_area by 4/8 if gpr/fpr > 8 1430 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1431 DAG.getConstant(VT.isInteger() ? 4 : 8, 1432 MVT::i32)); 1433 1434 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1435 OverflowAreaPlusN); 1436 1437 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1438 OverflowAreaPtr, 1439 MachinePointerInfo(), 1440 MVT::i32, false, false, 0); 1441 1442 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 1443 false, false, false, 0); 1444 } 1445 1446 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 1447 SelectionDAG &DAG) const { 1448 return Op.getOperand(0); 1449 } 1450 1451 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 1452 SelectionDAG &DAG) const { 1453 SDValue Chain = Op.getOperand(0); 1454 SDValue Trmp = Op.getOperand(1); // trampoline 1455 SDValue FPtr = Op.getOperand(2); // nested function 1456 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1457 DebugLoc dl = Op.getDebugLoc(); 1458 1459 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1460 bool isPPC64 = (PtrVT == MVT::i64); 1461 Type *IntPtrTy = 1462 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1463 *DAG.getContext()); 1464 1465 TargetLowering::ArgListTy Args; 1466 TargetLowering::ArgListEntry Entry; 1467 1468 Entry.Ty = IntPtrTy; 1469 Entry.Node = Trmp; Args.push_back(Entry); 1470 1471 // TrampSize == (isPPC64 ? 48 : 40); 1472 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1473 isPPC64 ? MVT::i64 : MVT::i32); 1474 Args.push_back(Entry); 1475 1476 Entry.Node = FPtr; Args.push_back(Entry); 1477 Entry.Node = Nest; Args.push_back(Entry); 1478 1479 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1480 TargetLowering::CallLoweringInfo CLI(Chain, 1481 Type::getVoidTy(*DAG.getContext()), 1482 false, false, false, false, 0, 1483 CallingConv::C, 1484 /*isTailCall=*/false, 1485 /*doesNotRet=*/false, 1486 /*isReturnValueUsed=*/true, 1487 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1488 Args, DAG, dl); 1489 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 1490 1491 return CallResult.second; 1492 } 1493 1494 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1495 const PPCSubtarget &Subtarget) const { 1496 MachineFunction &MF = DAG.getMachineFunction(); 1497 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1498 1499 DebugLoc dl = Op.getDebugLoc(); 1500 1501 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1502 // vastart just stores the address of the VarArgsFrameIndex slot into the 1503 // memory location argument. 1504 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1505 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1506 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1507 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1508 MachinePointerInfo(SV), 1509 false, false, 0); 1510 } 1511 1512 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1513 // We suppose the given va_list is already allocated. 1514 // 1515 // typedef struct { 1516 // char gpr; /* index into the array of 8 GPRs 1517 // * stored in the register save area 1518 // * gpr=0 corresponds to r3, 1519 // * gpr=1 to r4, etc. 1520 // */ 1521 // char fpr; /* index into the array of 8 FPRs 1522 // * stored in the register save area 1523 // * fpr=0 corresponds to f1, 1524 // * fpr=1 to f2, etc. 1525 // */ 1526 // char *overflow_arg_area; 1527 // /* location on stack that holds 1528 // * the next overflow argument 1529 // */ 1530 // char *reg_save_area; 1531 // /* where r3:r10 and f1:f8 (if saved) 1532 // * are stored 1533 // */ 1534 // } va_list[1]; 1535 1536 1537 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1538 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1539 1540 1541 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1542 1543 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1544 PtrVT); 1545 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1546 PtrVT); 1547 1548 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1549 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1550 1551 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1552 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1553 1554 uint64_t FPROffset = 1; 1555 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1556 1557 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1558 1559 // Store first byte : number of int regs 1560 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1561 Op.getOperand(1), 1562 MachinePointerInfo(SV), 1563 MVT::i8, false, false, 0); 1564 uint64_t nextOffset = FPROffset; 1565 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1566 ConstFPROffset); 1567 1568 // Store second byte : number of float regs 1569 SDValue secondStore = 1570 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1571 MachinePointerInfo(SV, nextOffset), MVT::i8, 1572 false, false, 0); 1573 nextOffset += StackOffset; 1574 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1575 1576 // Store second word : arguments given on stack 1577 SDValue thirdStore = 1578 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1579 MachinePointerInfo(SV, nextOffset), 1580 false, false, 0); 1581 nextOffset += FrameOffset; 1582 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1583 1584 // Store third word : arguments given in registers 1585 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1586 MachinePointerInfo(SV, nextOffset), 1587 false, false, 0); 1588 1589 } 1590 1591 #include "PPCGenCallingConv.inc" 1592 1593 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1594 CCValAssign::LocInfo &LocInfo, 1595 ISD::ArgFlagsTy &ArgFlags, 1596 CCState &State) { 1597 return true; 1598 } 1599 1600 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1601 MVT &LocVT, 1602 CCValAssign::LocInfo &LocInfo, 1603 ISD::ArgFlagsTy &ArgFlags, 1604 CCState &State) { 1605 static const uint16_t ArgRegs[] = { 1606 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1607 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1608 }; 1609 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1610 1611 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1612 1613 // Skip one register if the first unallocated register has an even register 1614 // number and there are still argument registers available which have not been 1615 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1616 // need to skip a register if RegNum is odd. 1617 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1618 State.AllocateReg(ArgRegs[RegNum]); 1619 } 1620 1621 // Always return false here, as this function only makes sure that the first 1622 // unallocated register has an odd register number and does not actually 1623 // allocate a register for the current argument. 1624 return false; 1625 } 1626 1627 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1628 MVT &LocVT, 1629 CCValAssign::LocInfo &LocInfo, 1630 ISD::ArgFlagsTy &ArgFlags, 1631 CCState &State) { 1632 static const uint16_t ArgRegs[] = { 1633 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1634 PPC::F8 1635 }; 1636 1637 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1638 1639 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1640 1641 // If there is only one Floating-point register left we need to put both f64 1642 // values of a split ppc_fp128 value on the stack. 1643 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1644 State.AllocateReg(ArgRegs[RegNum]); 1645 } 1646 1647 // Always return false here, as this function only makes sure that the two f64 1648 // values a ppc_fp128 value is split into are both passed in registers or both 1649 // passed on the stack and does not actually allocate a register for the 1650 // current argument. 1651 return false; 1652 } 1653 1654 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1655 /// on Darwin. 1656 static const uint16_t *GetFPR() { 1657 static const uint16_t FPR[] = { 1658 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1659 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1660 }; 1661 1662 return FPR; 1663 } 1664 1665 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1666 /// the stack. 1667 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1668 unsigned PtrByteSize) { 1669 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1670 if (Flags.isByVal()) 1671 ArgSize = Flags.getByValSize(); 1672 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1673 1674 return ArgSize; 1675 } 1676 1677 SDValue 1678 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1679 CallingConv::ID CallConv, bool isVarArg, 1680 const SmallVectorImpl<ISD::InputArg> 1681 &Ins, 1682 DebugLoc dl, SelectionDAG &DAG, 1683 SmallVectorImpl<SDValue> &InVals) 1684 const { 1685 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1686 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1687 dl, DAG, InVals); 1688 } else { 1689 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1690 dl, DAG, InVals); 1691 } 1692 } 1693 1694 SDValue 1695 PPCTargetLowering::LowerFormalArguments_SVR4( 1696 SDValue Chain, 1697 CallingConv::ID CallConv, bool isVarArg, 1698 const SmallVectorImpl<ISD::InputArg> 1699 &Ins, 1700 DebugLoc dl, SelectionDAG &DAG, 1701 SmallVectorImpl<SDValue> &InVals) const { 1702 1703 // 32-bit SVR4 ABI Stack Frame Layout: 1704 // +-----------------------------------+ 1705 // +--> | Back chain | 1706 // | +-----------------------------------+ 1707 // | | Floating-point register save area | 1708 // | +-----------------------------------+ 1709 // | | General register save area | 1710 // | +-----------------------------------+ 1711 // | | CR save word | 1712 // | +-----------------------------------+ 1713 // | | VRSAVE save word | 1714 // | +-----------------------------------+ 1715 // | | Alignment padding | 1716 // | +-----------------------------------+ 1717 // | | Vector register save area | 1718 // | +-----------------------------------+ 1719 // | | Local variable space | 1720 // | +-----------------------------------+ 1721 // | | Parameter list area | 1722 // | +-----------------------------------+ 1723 // | | LR save word | 1724 // | +-----------------------------------+ 1725 // SP--> +--- | Back chain | 1726 // +-----------------------------------+ 1727 // 1728 // Specifications: 1729 // System V Application Binary Interface PowerPC Processor Supplement 1730 // AltiVec Technology Programming Interface Manual 1731 1732 MachineFunction &MF = DAG.getMachineFunction(); 1733 MachineFrameInfo *MFI = MF.getFrameInfo(); 1734 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1735 1736 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1737 // Potential tail calls could cause overwriting of argument stack slots. 1738 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1739 (CallConv == CallingConv::Fast)); 1740 unsigned PtrByteSize = 4; 1741 1742 // Assign locations to all of the incoming arguments. 1743 SmallVector<CCValAssign, 16> ArgLocs; 1744 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1745 getTargetMachine(), ArgLocs, *DAG.getContext()); 1746 1747 // Reserve space for the linkage area on the stack. 1748 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1749 1750 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1751 1752 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1753 CCValAssign &VA = ArgLocs[i]; 1754 1755 // Arguments stored in registers. 1756 if (VA.isRegLoc()) { 1757 const TargetRegisterClass *RC; 1758 EVT ValVT = VA.getValVT(); 1759 1760 switch (ValVT.getSimpleVT().SimpleTy) { 1761 default: 1762 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1763 case MVT::i32: 1764 RC = &PPC::GPRCRegClass; 1765 break; 1766 case MVT::f32: 1767 RC = &PPC::F4RCRegClass; 1768 break; 1769 case MVT::f64: 1770 RC = &PPC::F8RCRegClass; 1771 break; 1772 case MVT::v16i8: 1773 case MVT::v8i16: 1774 case MVT::v4i32: 1775 case MVT::v4f32: 1776 RC = &PPC::VRRCRegClass; 1777 break; 1778 } 1779 1780 // Transform the arguments stored in physical registers into virtual ones. 1781 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1782 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1783 1784 InVals.push_back(ArgValue); 1785 } else { 1786 // Argument stored in memory. 1787 assert(VA.isMemLoc()); 1788 1789 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1790 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1791 isImmutable); 1792 1793 // Create load nodes to retrieve arguments from the stack. 1794 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1795 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1796 MachinePointerInfo(), 1797 false, false, false, 0)); 1798 } 1799 } 1800 1801 // Assign locations to all of the incoming aggregate by value arguments. 1802 // Aggregates passed by value are stored in the local variable space of the 1803 // caller's stack frame, right above the parameter list area. 1804 SmallVector<CCValAssign, 16> ByValArgLocs; 1805 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1806 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1807 1808 // Reserve stack space for the allocations in CCInfo. 1809 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1810 1811 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1812 1813 // Area that is at least reserved in the caller of this function. 1814 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1815 1816 // Set the size that is at least reserved in caller of this function. Tail 1817 // call optimized function's reserved stack space needs to be aligned so that 1818 // taking the difference between two stack areas will result in an aligned 1819 // stack. 1820 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1821 1822 MinReservedArea = 1823 std::max(MinReservedArea, 1824 PPCFrameLowering::getMinCallFrameSize(false, false)); 1825 1826 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1827 getStackAlignment(); 1828 unsigned AlignMask = TargetAlign-1; 1829 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1830 1831 FI->setMinReservedArea(MinReservedArea); 1832 1833 SmallVector<SDValue, 8> MemOps; 1834 1835 // If the function takes variable number of arguments, make a frame index for 1836 // the start of the first vararg value... for expansion of llvm.va_start. 1837 if (isVarArg) { 1838 static const uint16_t GPArgRegs[] = { 1839 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1840 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1841 }; 1842 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1843 1844 static const uint16_t FPArgRegs[] = { 1845 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1846 PPC::F8 1847 }; 1848 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1849 1850 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1851 NumGPArgRegs)); 1852 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1853 NumFPArgRegs)); 1854 1855 // Make room for NumGPArgRegs and NumFPArgRegs. 1856 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1857 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1858 1859 FuncInfo->setVarArgsStackOffset( 1860 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1861 CCInfo.getNextStackOffset(), true)); 1862 1863 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1864 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1865 1866 // The fixed integer arguments of a variadic function are stored to the 1867 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1868 // the result of va_next. 1869 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1870 // Get an existing live-in vreg, or add a new one. 1871 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1872 if (!VReg) 1873 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1874 1875 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1876 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1877 MachinePointerInfo(), false, false, 0); 1878 MemOps.push_back(Store); 1879 // Increment the address by four for the next argument to store 1880 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1881 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1882 } 1883 1884 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1885 // is set. 1886 // The double arguments are stored to the VarArgsFrameIndex 1887 // on the stack. 1888 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1889 // Get an existing live-in vreg, or add a new one. 1890 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1891 if (!VReg) 1892 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1893 1894 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1895 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1896 MachinePointerInfo(), false, false, 0); 1897 MemOps.push_back(Store); 1898 // Increment the address by eight for the next argument to store 1899 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1900 PtrVT); 1901 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1902 } 1903 } 1904 1905 if (!MemOps.empty()) 1906 Chain = DAG.getNode(ISD::TokenFactor, dl, 1907 MVT::Other, &MemOps[0], MemOps.size()); 1908 1909 return Chain; 1910 } 1911 1912 SDValue 1913 PPCTargetLowering::LowerFormalArguments_Darwin( 1914 SDValue Chain, 1915 CallingConv::ID CallConv, bool isVarArg, 1916 const SmallVectorImpl<ISD::InputArg> 1917 &Ins, 1918 DebugLoc dl, SelectionDAG &DAG, 1919 SmallVectorImpl<SDValue> &InVals) const { 1920 // TODO: add description of PPC stack frame format, or at least some docs. 1921 // 1922 MachineFunction &MF = DAG.getMachineFunction(); 1923 MachineFrameInfo *MFI = MF.getFrameInfo(); 1924 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1925 1926 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1927 bool isPPC64 = PtrVT == MVT::i64; 1928 // Potential tail calls could cause overwriting of argument stack slots. 1929 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 1930 (CallConv == CallingConv::Fast)); 1931 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1932 1933 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1934 // Area that is at least reserved in caller of this function. 1935 unsigned MinReservedArea = ArgOffset; 1936 1937 static const uint16_t GPR_32[] = { // 32-bit registers. 1938 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1939 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1940 }; 1941 static const uint16_t GPR_64[] = { // 64-bit registers. 1942 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1943 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1944 }; 1945 1946 static const uint16_t *FPR = GetFPR(); 1947 1948 static const uint16_t VR[] = { 1949 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1950 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1951 }; 1952 1953 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1954 const unsigned Num_FPR_Regs = 13; 1955 const unsigned Num_VR_Regs = array_lengthof( VR); 1956 1957 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1958 1959 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 1960 1961 // In 32-bit non-varargs functions, the stack space for vectors is after the 1962 // stack space for non-vectors. We do not use this space unless we have 1963 // too many vectors to fit in registers, something that only occurs in 1964 // constructed examples:), but we have to walk the arglist to figure 1965 // that out...for the pathological case, compute VecArgOffset as the 1966 // start of the vector parameter area. Computing VecArgOffset is the 1967 // entire point of the following loop. 1968 unsigned VecArgOffset = ArgOffset; 1969 if (!isVarArg && !isPPC64) { 1970 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1971 ++ArgNo) { 1972 EVT ObjectVT = Ins[ArgNo].VT; 1973 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1974 1975 if (Flags.isByVal()) { 1976 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1977 unsigned ObjSize = Flags.getByValSize(); 1978 unsigned ArgSize = 1979 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1980 VecArgOffset += ArgSize; 1981 continue; 1982 } 1983 1984 switch(ObjectVT.getSimpleVT().SimpleTy) { 1985 default: llvm_unreachable("Unhandled argument type!"); 1986 case MVT::i32: 1987 case MVT::f32: 1988 VecArgOffset += isPPC64 ? 8 : 4; 1989 break; 1990 case MVT::i64: // PPC64 1991 case MVT::f64: 1992 VecArgOffset += 8; 1993 break; 1994 case MVT::v4f32: 1995 case MVT::v4i32: 1996 case MVT::v8i16: 1997 case MVT::v16i8: 1998 // Nothing to do, we're only looking at Nonvector args here. 1999 break; 2000 } 2001 } 2002 } 2003 // We've found where the vector parameter area in memory is. Skip the 2004 // first 12 parameters; these don't use that memory. 2005 VecArgOffset = ((VecArgOffset+15)/16)*16; 2006 VecArgOffset += 12*16; 2007 2008 // Add DAG nodes to load the arguments or copy them out of registers. On 2009 // entry to a function on PPC, the arguments start after the linkage area, 2010 // although the first ones are often in registers. 2011 2012 SmallVector<SDValue, 8> MemOps; 2013 unsigned nAltivecParamsAtEnd = 0; 2014 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 2015 SDValue ArgVal; 2016 bool needsLoad = false; 2017 EVT ObjectVT = Ins[ArgNo].VT; 2018 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 2019 unsigned ArgSize = ObjSize; 2020 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 2021 2022 unsigned CurArgOffset = ArgOffset; 2023 2024 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 2025 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 2026 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 2027 if (isVarArg || isPPC64) { 2028 MinReservedArea = ((MinReservedArea+15)/16)*16; 2029 MinReservedArea += CalculateStackSlotSize(ObjectVT, 2030 Flags, 2031 PtrByteSize); 2032 } else nAltivecParamsAtEnd++; 2033 } else 2034 // Calculate min reserved area. 2035 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 2036 Flags, 2037 PtrByteSize); 2038 2039 // FIXME the codegen can be much improved in some cases. 2040 // We do not have to keep everything in memory. 2041 if (Flags.isByVal()) { 2042 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 2043 ObjSize = Flags.getByValSize(); 2044 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2045 // Objects of size 1 and 2 are right justified, everything else is 2046 // left justified. This means the memory address is adjusted forwards. 2047 if (ObjSize==1 || ObjSize==2) { 2048 CurArgOffset = CurArgOffset + (4 - ObjSize); 2049 } 2050 // The value of the object is its address. 2051 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 2052 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2053 InVals.push_back(FIN); 2054 if (ObjSize==1 || ObjSize==2) { 2055 if (GPR_idx != Num_GPR_Regs) { 2056 unsigned VReg; 2057 if (isPPC64) 2058 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2059 else 2060 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2061 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2062 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 2063 MachinePointerInfo(), 2064 ObjSize==1 ? MVT::i8 : MVT::i16, 2065 false, false, 0); 2066 MemOps.push_back(Store); 2067 ++GPR_idx; 2068 } 2069 2070 ArgOffset += PtrByteSize; 2071 2072 continue; 2073 } 2074 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 2075 // Store whatever pieces of the object are in registers 2076 // to memory. ArgVal will be address of the beginning of 2077 // the object. 2078 if (GPR_idx != Num_GPR_Regs) { 2079 unsigned VReg; 2080 if (isPPC64) 2081 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2082 else 2083 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2084 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2085 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2086 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2087 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2088 MachinePointerInfo(), 2089 false, false, 0); 2090 MemOps.push_back(Store); 2091 ++GPR_idx; 2092 ArgOffset += PtrByteSize; 2093 } else { 2094 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2095 break; 2096 } 2097 } 2098 continue; 2099 } 2100 2101 switch (ObjectVT.getSimpleVT().SimpleTy) { 2102 default: llvm_unreachable("Unhandled argument type!"); 2103 case MVT::i32: 2104 if (!isPPC64) { 2105 if (GPR_idx != Num_GPR_Regs) { 2106 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2107 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2108 ++GPR_idx; 2109 } else { 2110 needsLoad = true; 2111 ArgSize = PtrByteSize; 2112 } 2113 // All int arguments reserve stack space in the Darwin ABI. 2114 ArgOffset += PtrByteSize; 2115 break; 2116 } 2117 // FALLTHROUGH 2118 case MVT::i64: // PPC64 2119 if (GPR_idx != Num_GPR_Regs) { 2120 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2121 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2122 2123 if (ObjectVT == MVT::i32) { 2124 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2125 // value to MVT::i64 and then truncate to the correct register size. 2126 if (Flags.isSExt()) 2127 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2128 DAG.getValueType(ObjectVT)); 2129 else if (Flags.isZExt()) 2130 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2131 DAG.getValueType(ObjectVT)); 2132 2133 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2134 } 2135 2136 ++GPR_idx; 2137 } else { 2138 needsLoad = true; 2139 ArgSize = PtrByteSize; 2140 } 2141 // All int arguments reserve stack space in the Darwin ABI. 2142 ArgOffset += 8; 2143 break; 2144 2145 case MVT::f32: 2146 case MVT::f64: 2147 // Every 4 bytes of argument space consumes one of the GPRs available for 2148 // argument passing. 2149 if (GPR_idx != Num_GPR_Regs) { 2150 ++GPR_idx; 2151 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2152 ++GPR_idx; 2153 } 2154 if (FPR_idx != Num_FPR_Regs) { 2155 unsigned VReg; 2156 2157 if (ObjectVT == MVT::f32) 2158 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2159 else 2160 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2161 2162 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2163 ++FPR_idx; 2164 } else { 2165 needsLoad = true; 2166 } 2167 2168 // All FP arguments reserve stack space in the Darwin ABI. 2169 ArgOffset += isPPC64 ? 8 : ObjSize; 2170 break; 2171 case MVT::v4f32: 2172 case MVT::v4i32: 2173 case MVT::v8i16: 2174 case MVT::v16i8: 2175 // Note that vector arguments in registers don't reserve stack space, 2176 // except in varargs functions. 2177 if (VR_idx != Num_VR_Regs) { 2178 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2179 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2180 if (isVarArg) { 2181 while ((ArgOffset % 16) != 0) { 2182 ArgOffset += PtrByteSize; 2183 if (GPR_idx != Num_GPR_Regs) 2184 GPR_idx++; 2185 } 2186 ArgOffset += 16; 2187 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2188 } 2189 ++VR_idx; 2190 } else { 2191 if (!isVarArg && !isPPC64) { 2192 // Vectors go after all the nonvectors. 2193 CurArgOffset = VecArgOffset; 2194 VecArgOffset += 16; 2195 } else { 2196 // Vectors are aligned. 2197 ArgOffset = ((ArgOffset+15)/16)*16; 2198 CurArgOffset = ArgOffset; 2199 ArgOffset += 16; 2200 } 2201 needsLoad = true; 2202 } 2203 break; 2204 } 2205 2206 // We need to load the argument to a virtual register if we determined above 2207 // that we ran out of physical registers of the appropriate type. 2208 if (needsLoad) { 2209 int FI = MFI->CreateFixedObject(ObjSize, 2210 CurArgOffset + (ArgSize - ObjSize), 2211 isImmutable); 2212 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2213 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2214 false, false, false, 0); 2215 } 2216 2217 InVals.push_back(ArgVal); 2218 } 2219 2220 // Set the size that is at least reserved in caller of this function. Tail 2221 // call optimized function's reserved stack space needs to be aligned so that 2222 // taking the difference between two stack areas will result in an aligned 2223 // stack. 2224 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2225 // Add the Altivec parameters at the end, if needed. 2226 if (nAltivecParamsAtEnd) { 2227 MinReservedArea = ((MinReservedArea+15)/16)*16; 2228 MinReservedArea += 16*nAltivecParamsAtEnd; 2229 } 2230 MinReservedArea = 2231 std::max(MinReservedArea, 2232 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2233 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2234 getStackAlignment(); 2235 unsigned AlignMask = TargetAlign-1; 2236 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2237 FI->setMinReservedArea(MinReservedArea); 2238 2239 // If the function takes variable number of arguments, make a frame index for 2240 // the start of the first vararg value... for expansion of llvm.va_start. 2241 if (isVarArg) { 2242 int Depth = ArgOffset; 2243 2244 FuncInfo->setVarArgsFrameIndex( 2245 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2246 Depth, true)); 2247 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2248 2249 // If this function is vararg, store any remaining integer argument regs 2250 // to their spots on the stack so that they may be loaded by deferencing the 2251 // result of va_next. 2252 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2253 unsigned VReg; 2254 2255 if (isPPC64) 2256 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2257 else 2258 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2259 2260 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2261 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2262 MachinePointerInfo(), false, false, 0); 2263 MemOps.push_back(Store); 2264 // Increment the address by four for the next argument to store 2265 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2266 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2267 } 2268 } 2269 2270 if (!MemOps.empty()) 2271 Chain = DAG.getNode(ISD::TokenFactor, dl, 2272 MVT::Other, &MemOps[0], MemOps.size()); 2273 2274 return Chain; 2275 } 2276 2277 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2278 /// linkage area for the Darwin ABI. 2279 static unsigned 2280 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2281 bool isPPC64, 2282 bool isVarArg, 2283 unsigned CC, 2284 const SmallVectorImpl<ISD::OutputArg> 2285 &Outs, 2286 const SmallVectorImpl<SDValue> &OutVals, 2287 unsigned &nAltivecParamsAtEnd) { 2288 // Count how many bytes are to be pushed on the stack, including the linkage 2289 // area, and parameter passing area. We start with 24/48 bytes, which is 2290 // prereserved space for [SP][CR][LR][3 x unused]. 2291 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2292 unsigned NumOps = Outs.size(); 2293 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2294 2295 // Add up all the space actually used. 2296 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2297 // they all go in registers, but we must reserve stack space for them for 2298 // possible use by the caller. In varargs or 64-bit calls, parameters are 2299 // assigned stack space in order, with padding so Altivec parameters are 2300 // 16-byte aligned. 2301 nAltivecParamsAtEnd = 0; 2302 for (unsigned i = 0; i != NumOps; ++i) { 2303 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2304 EVT ArgVT = Outs[i].VT; 2305 // Varargs Altivec parameters are padded to a 16 byte boundary. 2306 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2307 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2308 if (!isVarArg && !isPPC64) { 2309 // Non-varargs Altivec parameters go after all the non-Altivec 2310 // parameters; handle those later so we know how much padding we need. 2311 nAltivecParamsAtEnd++; 2312 continue; 2313 } 2314 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2315 NumBytes = ((NumBytes+15)/16)*16; 2316 } 2317 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2318 } 2319 2320 // Allow for Altivec parameters at the end, if needed. 2321 if (nAltivecParamsAtEnd) { 2322 NumBytes = ((NumBytes+15)/16)*16; 2323 NumBytes += 16*nAltivecParamsAtEnd; 2324 } 2325 2326 // The prolog code of the callee may store up to 8 GPR argument registers to 2327 // the stack, allowing va_start to index over them in memory if its varargs. 2328 // Because we cannot tell if this is needed on the caller side, we have to 2329 // conservatively assume that it is needed. As such, make sure we have at 2330 // least enough stack space for the caller to store the 8 GPRs. 2331 NumBytes = std::max(NumBytes, 2332 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2333 2334 // Tail call needs the stack to be aligned. 2335 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ 2336 unsigned TargetAlign = DAG.getMachineFunction().getTarget(). 2337 getFrameLowering()->getStackAlignment(); 2338 unsigned AlignMask = TargetAlign-1; 2339 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2340 } 2341 2342 return NumBytes; 2343 } 2344 2345 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2346 /// adjusted to accommodate the arguments for the tailcall. 2347 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2348 unsigned ParamSize) { 2349 2350 if (!isTailCall) return 0; 2351 2352 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2353 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2354 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2355 // Remember only if the new adjustement is bigger. 2356 if (SPDiff < FI->getTailCallSPDelta()) 2357 FI->setTailCallSPDelta(SPDiff); 2358 2359 return SPDiff; 2360 } 2361 2362 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2363 /// for tail call optimization. Targets which want to do tail call 2364 /// optimization should implement this function. 2365 bool 2366 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2367 CallingConv::ID CalleeCC, 2368 bool isVarArg, 2369 const SmallVectorImpl<ISD::InputArg> &Ins, 2370 SelectionDAG& DAG) const { 2371 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 2372 return false; 2373 2374 // Variable argument functions are not supported. 2375 if (isVarArg) 2376 return false; 2377 2378 MachineFunction &MF = DAG.getMachineFunction(); 2379 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2380 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2381 // Functions containing by val parameters are not supported. 2382 for (unsigned i = 0; i != Ins.size(); i++) { 2383 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2384 if (Flags.isByVal()) return false; 2385 } 2386 2387 // Non PIC/GOT tail calls are supported. 2388 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2389 return true; 2390 2391 // At the moment we can only do local tail calls (in same module, hidden 2392 // or protected) if we are generating PIC. 2393 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2394 return G->getGlobal()->hasHiddenVisibility() 2395 || G->getGlobal()->hasProtectedVisibility(); 2396 } 2397 2398 return false; 2399 } 2400 2401 /// isCallCompatibleAddress - Return the immediate to use if the specified 2402 /// 32-bit value is representable in the immediate field of a BxA instruction. 2403 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2404 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2405 if (!C) return 0; 2406 2407 int Addr = C->getZExtValue(); 2408 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2409 (Addr << 6 >> 6) != Addr) 2410 return 0; // Top 6 bits have to be sext of immediate. 2411 2412 return DAG.getConstant((int)C->getZExtValue() >> 2, 2413 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2414 } 2415 2416 namespace { 2417 2418 struct TailCallArgumentInfo { 2419 SDValue Arg; 2420 SDValue FrameIdxOp; 2421 int FrameIdx; 2422 2423 TailCallArgumentInfo() : FrameIdx(0) {} 2424 }; 2425 2426 } 2427 2428 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2429 static void 2430 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2431 SDValue Chain, 2432 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2433 SmallVector<SDValue, 8> &MemOpChains, 2434 DebugLoc dl) { 2435 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2436 SDValue Arg = TailCallArgs[i].Arg; 2437 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2438 int FI = TailCallArgs[i].FrameIdx; 2439 // Store relative to framepointer. 2440 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2441 MachinePointerInfo::getFixedStack(FI), 2442 false, false, 0)); 2443 } 2444 } 2445 2446 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2447 /// the appropriate stack slot for the tail call optimized function call. 2448 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2449 MachineFunction &MF, 2450 SDValue Chain, 2451 SDValue OldRetAddr, 2452 SDValue OldFP, 2453 int SPDiff, 2454 bool isPPC64, 2455 bool isDarwinABI, 2456 DebugLoc dl) { 2457 if (SPDiff) { 2458 // Calculate the new stack slot for the return address. 2459 int SlotSize = isPPC64 ? 8 : 4; 2460 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2461 isDarwinABI); 2462 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2463 NewRetAddrLoc, true); 2464 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2465 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2466 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2467 MachinePointerInfo::getFixedStack(NewRetAddr), 2468 false, false, 0); 2469 2470 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2471 // slot as the FP is never overwritten. 2472 if (isDarwinABI) { 2473 int NewFPLoc = 2474 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2475 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2476 true); 2477 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2478 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2479 MachinePointerInfo::getFixedStack(NewFPIdx), 2480 false, false, 0); 2481 } 2482 } 2483 return Chain; 2484 } 2485 2486 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2487 /// the position of the argument. 2488 static void 2489 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2490 SDValue Arg, int SPDiff, unsigned ArgOffset, 2491 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2492 int Offset = ArgOffset + SPDiff; 2493 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2494 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2495 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2496 SDValue FIN = DAG.getFrameIndex(FI, VT); 2497 TailCallArgumentInfo Info; 2498 Info.Arg = Arg; 2499 Info.FrameIdxOp = FIN; 2500 Info.FrameIdx = FI; 2501 TailCallArguments.push_back(Info); 2502 } 2503 2504 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2505 /// stack slot. Returns the chain as result and the loaded frame pointers in 2506 /// LROpOut/FPOpout. Used when tail calling. 2507 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2508 int SPDiff, 2509 SDValue Chain, 2510 SDValue &LROpOut, 2511 SDValue &FPOpOut, 2512 bool isDarwinABI, 2513 DebugLoc dl) const { 2514 if (SPDiff) { 2515 // Load the LR and FP stack slot for later adjusting. 2516 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2517 LROpOut = getReturnAddrFrameIndex(DAG); 2518 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2519 false, false, false, 0); 2520 Chain = SDValue(LROpOut.getNode(), 1); 2521 2522 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2523 // slot as the FP is never overwritten. 2524 if (isDarwinABI) { 2525 FPOpOut = getFramePointerFrameIndex(DAG); 2526 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2527 false, false, false, 0); 2528 Chain = SDValue(FPOpOut.getNode(), 1); 2529 } 2530 } 2531 return Chain; 2532 } 2533 2534 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2535 /// by "Src" to address "Dst" of size "Size". Alignment information is 2536 /// specified by the specific parameter attribute. The copy will be passed as 2537 /// a byval function parameter. 2538 /// Sometimes what we are copying is the end of a larger object, the part that 2539 /// does not fit in registers. 2540 static SDValue 2541 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2542 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2543 DebugLoc dl) { 2544 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2545 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2546 false, false, MachinePointerInfo(0), 2547 MachinePointerInfo(0)); 2548 } 2549 2550 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2551 /// tail calls. 2552 static void 2553 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2554 SDValue Arg, SDValue PtrOff, int SPDiff, 2555 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2556 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2557 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2558 DebugLoc dl) { 2559 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2560 if (!isTailCall) { 2561 if (isVector) { 2562 SDValue StackPtr; 2563 if (isPPC64) 2564 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2565 else 2566 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2567 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2568 DAG.getConstant(ArgOffset, PtrVT)); 2569 } 2570 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2571 MachinePointerInfo(), false, false, 0)); 2572 // Calculate and remember argument location. 2573 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2574 TailCallArguments); 2575 } 2576 2577 static 2578 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2579 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2580 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2581 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2582 MachineFunction &MF = DAG.getMachineFunction(); 2583 2584 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2585 // might overwrite each other in case of tail call optimization. 2586 SmallVector<SDValue, 8> MemOpChains2; 2587 // Do not flag preceding copytoreg stuff together with the following stuff. 2588 InFlag = SDValue(); 2589 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2590 MemOpChains2, dl); 2591 if (!MemOpChains2.empty()) 2592 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2593 &MemOpChains2[0], MemOpChains2.size()); 2594 2595 // Store the return address to the appropriate stack slot. 2596 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2597 isPPC64, isDarwinABI, dl); 2598 2599 // Emit callseq_end just before tailcall node. 2600 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2601 DAG.getIntPtrConstant(0, true), InFlag); 2602 InFlag = Chain.getValue(1); 2603 } 2604 2605 static 2606 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2607 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2608 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2609 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2610 const PPCSubtarget &PPCSubTarget) { 2611 2612 bool isPPC64 = PPCSubTarget.isPPC64(); 2613 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2614 2615 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2616 NodeTys.push_back(MVT::Other); // Returns a chain 2617 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2618 2619 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2620 2621 bool needIndirectCall = true; 2622 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2623 // If this is an absolute destination address, use the munged value. 2624 Callee = SDValue(Dest, 0); 2625 needIndirectCall = false; 2626 } 2627 2628 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2629 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2630 // Use indirect calls for ALL functions calls in JIT mode, since the 2631 // far-call stubs may be outside relocation limits for a BL instruction. 2632 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2633 unsigned OpFlags = 0; 2634 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2635 (PPCSubTarget.getTargetTriple().isMacOSX() && 2636 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2637 (G->getGlobal()->isDeclaration() || 2638 G->getGlobal()->isWeakForLinker())) { 2639 // PC-relative references to external symbols should go through $stub, 2640 // unless we're building with the leopard linker or later, which 2641 // automatically synthesizes these stubs. 2642 OpFlags = PPCII::MO_DARWIN_STUB; 2643 } 2644 2645 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2646 // every direct call is) turn it into a TargetGlobalAddress / 2647 // TargetExternalSymbol node so that legalize doesn't hack it. 2648 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2649 Callee.getValueType(), 2650 0, OpFlags); 2651 needIndirectCall = false; 2652 } 2653 } 2654 2655 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2656 unsigned char OpFlags = 0; 2657 2658 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2659 (PPCSubTarget.getTargetTriple().isMacOSX() && 2660 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2661 // PC-relative references to external symbols should go through $stub, 2662 // unless we're building with the leopard linker or later, which 2663 // automatically synthesizes these stubs. 2664 OpFlags = PPCII::MO_DARWIN_STUB; 2665 } 2666 2667 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2668 OpFlags); 2669 needIndirectCall = false; 2670 } 2671 2672 if (needIndirectCall) { 2673 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2674 // to do the call, we can't use PPCISD::CALL. 2675 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2676 2677 if (isSVR4ABI && isPPC64) { 2678 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2679 // entry point, but to the function descriptor (the function entry point 2680 // address is part of the function descriptor though). 2681 // The function descriptor is a three doubleword structure with the 2682 // following fields: function entry point, TOC base address and 2683 // environment pointer. 2684 // Thus for a call through a function pointer, the following actions need 2685 // to be performed: 2686 // 1. Save the TOC of the caller in the TOC save area of its stack 2687 // frame (this is done in LowerCall_Darwin()). 2688 // 2. Load the address of the function entry point from the function 2689 // descriptor. 2690 // 3. Load the TOC of the callee from the function descriptor into r2. 2691 // 4. Load the environment pointer from the function descriptor into 2692 // r11. 2693 // 5. Branch to the function entry point address. 2694 // 6. On return of the callee, the TOC of the caller needs to be 2695 // restored (this is done in FinishCall()). 2696 // 2697 // All those operations are flagged together to ensure that no other 2698 // operations can be scheduled in between. E.g. without flagging the 2699 // operations together, a TOC access in the caller could be scheduled 2700 // between the load of the callee TOC and the branch to the callee, which 2701 // results in the TOC access going through the TOC of the callee instead 2702 // of going through the TOC of the caller, which leads to incorrect code. 2703 2704 // Load the address of the function entry point from the function 2705 // descriptor. 2706 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2707 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2708 InFlag.getNode() ? 3 : 2); 2709 Chain = LoadFuncPtr.getValue(1); 2710 InFlag = LoadFuncPtr.getValue(2); 2711 2712 // Load environment pointer into r11. 2713 // Offset of the environment pointer within the function descriptor. 2714 SDValue PtrOff = DAG.getIntPtrConstant(16); 2715 2716 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2717 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2718 InFlag); 2719 Chain = LoadEnvPtr.getValue(1); 2720 InFlag = LoadEnvPtr.getValue(2); 2721 2722 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2723 InFlag); 2724 Chain = EnvVal.getValue(0); 2725 InFlag = EnvVal.getValue(1); 2726 2727 // Load TOC of the callee into r2. We are using a target-specific load 2728 // with r2 hard coded, because the result of a target-independent load 2729 // would never go directly into r2, since r2 is a reserved register (which 2730 // prevents the register allocator from allocating it), resulting in an 2731 // additional register being allocated and an unnecessary move instruction 2732 // being generated. 2733 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2734 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2735 Callee, InFlag); 2736 Chain = LoadTOCPtr.getValue(0); 2737 InFlag = LoadTOCPtr.getValue(1); 2738 2739 MTCTROps[0] = Chain; 2740 MTCTROps[1] = LoadFuncPtr; 2741 MTCTROps[2] = InFlag; 2742 } 2743 2744 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2745 2 + (InFlag.getNode() != 0)); 2746 InFlag = Chain.getValue(1); 2747 2748 NodeTys.clear(); 2749 NodeTys.push_back(MVT::Other); 2750 NodeTys.push_back(MVT::Glue); 2751 Ops.push_back(Chain); 2752 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2753 Callee.setNode(0); 2754 // Add CTR register as callee so a bctr can be emitted later. 2755 if (isTailCall) 2756 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2757 } 2758 2759 // If this is a direct call, pass the chain and the callee. 2760 if (Callee.getNode()) { 2761 Ops.push_back(Chain); 2762 Ops.push_back(Callee); 2763 } 2764 // If this is a tail call add stack pointer delta. 2765 if (isTailCall) 2766 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2767 2768 // Add argument registers to the end of the list so that they are known live 2769 // into the call. 2770 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2771 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2772 RegsToPass[i].second.getValueType())); 2773 2774 return CallOpc; 2775 } 2776 2777 SDValue 2778 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2779 CallingConv::ID CallConv, bool isVarArg, 2780 const SmallVectorImpl<ISD::InputArg> &Ins, 2781 DebugLoc dl, SelectionDAG &DAG, 2782 SmallVectorImpl<SDValue> &InVals) const { 2783 2784 SmallVector<CCValAssign, 16> RVLocs; 2785 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2786 getTargetMachine(), RVLocs, *DAG.getContext()); 2787 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2788 2789 // Copy all of the result registers out of their specified physreg. 2790 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2791 CCValAssign &VA = RVLocs[i]; 2792 EVT VT = VA.getValVT(); 2793 assert(VA.isRegLoc() && "Can only return in registers!"); 2794 Chain = DAG.getCopyFromReg(Chain, dl, 2795 VA.getLocReg(), VT, InFlag).getValue(1); 2796 InVals.push_back(Chain.getValue(0)); 2797 InFlag = Chain.getValue(2); 2798 } 2799 2800 return Chain; 2801 } 2802 2803 SDValue 2804 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2805 bool isTailCall, bool isVarArg, 2806 SelectionDAG &DAG, 2807 SmallVector<std::pair<unsigned, SDValue>, 8> 2808 &RegsToPass, 2809 SDValue InFlag, SDValue Chain, 2810 SDValue &Callee, 2811 int SPDiff, unsigned NumBytes, 2812 const SmallVectorImpl<ISD::InputArg> &Ins, 2813 SmallVectorImpl<SDValue> &InVals) const { 2814 std::vector<EVT> NodeTys; 2815 SmallVector<SDValue, 8> Ops; 2816 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2817 isTailCall, RegsToPass, Ops, NodeTys, 2818 PPCSubTarget); 2819 2820 // When performing tail call optimization the callee pops its arguments off 2821 // the stack. Account for this here so these bytes can be pushed back on in 2822 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2823 int BytesCalleePops = 2824 (CallConv == CallingConv::Fast && 2825 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 2826 2827 // Add a register mask operand representing the call-preserved registers. 2828 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 2829 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 2830 assert(Mask && "Missing call preserved mask for calling convention"); 2831 Ops.push_back(DAG.getRegisterMask(Mask)); 2832 2833 if (InFlag.getNode()) 2834 Ops.push_back(InFlag); 2835 2836 // Emit tail call. 2837 if (isTailCall) { 2838 // If this is the first return lowered for this function, add the regs 2839 // to the liveout set for the function. 2840 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2841 SmallVector<CCValAssign, 16> RVLocs; 2842 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2843 getTargetMachine(), RVLocs, *DAG.getContext()); 2844 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2845 for (unsigned i = 0; i != RVLocs.size(); ++i) 2846 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2847 } 2848 2849 assert(((Callee.getOpcode() == ISD::Register && 2850 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2851 Callee.getOpcode() == ISD::TargetExternalSymbol || 2852 Callee.getOpcode() == ISD::TargetGlobalAddress || 2853 isa<ConstantSDNode>(Callee)) && 2854 "Expecting an global address, external symbol, absolute value or register"); 2855 2856 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2857 } 2858 2859 // Add a NOP immediately after the branch instruction when using the 64-bit 2860 // SVR4 ABI. At link time, if caller and callee are in a different module and 2861 // thus have a different TOC, the call will be replaced with a call to a stub 2862 // function which saves the current TOC, loads the TOC of the callee and 2863 // branches to the callee. The NOP will be replaced with a load instruction 2864 // which restores the TOC of the caller from the TOC save slot of the current 2865 // stack frame. If caller and callee belong to the same module (and have the 2866 // same TOC), the NOP will remain unchanged. 2867 2868 bool needsTOCRestore = false; 2869 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2870 if (CallOpc == PPCISD::BCTRL_SVR4) { 2871 // This is a call through a function pointer. 2872 // Restore the caller TOC from the save area into R2. 2873 // See PrepareCall() for more information about calls through function 2874 // pointers in the 64-bit SVR4 ABI. 2875 // We are using a target-specific load with r2 hard coded, because the 2876 // result of a target-independent load would never go directly into r2, 2877 // since r2 is a reserved register (which prevents the register allocator 2878 // from allocating it), resulting in an additional register being 2879 // allocated and an unnecessary move instruction being generated. 2880 needsTOCRestore = true; 2881 } else if (CallOpc == PPCISD::CALL_SVR4) { 2882 // Otherwise insert NOP. 2883 CallOpc = PPCISD::CALL_NOP_SVR4; 2884 } 2885 } 2886 2887 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2888 InFlag = Chain.getValue(1); 2889 2890 if (needsTOCRestore) { 2891 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2892 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2893 InFlag = Chain.getValue(1); 2894 } 2895 2896 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2897 DAG.getIntPtrConstant(BytesCalleePops, true), 2898 InFlag); 2899 if (!Ins.empty()) 2900 InFlag = Chain.getValue(1); 2901 2902 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2903 Ins, dl, DAG, InVals); 2904 } 2905 2906 SDValue 2907 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 2908 SmallVectorImpl<SDValue> &InVals) const { 2909 SelectionDAG &DAG = CLI.DAG; 2910 DebugLoc &dl = CLI.DL; 2911 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 2912 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 2913 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 2914 SDValue Chain = CLI.Chain; 2915 SDValue Callee = CLI.Callee; 2916 bool &isTailCall = CLI.IsTailCall; 2917 CallingConv::ID CallConv = CLI.CallConv; 2918 bool isVarArg = CLI.IsVarArg; 2919 2920 if (isTailCall) 2921 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2922 Ins, DAG); 2923 2924 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2925 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2926 isTailCall, Outs, OutVals, Ins, 2927 dl, DAG, InVals); 2928 2929 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2930 isTailCall, Outs, OutVals, Ins, 2931 dl, DAG, InVals); 2932 } 2933 2934 SDValue 2935 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2936 CallingConv::ID CallConv, bool isVarArg, 2937 bool isTailCall, 2938 const SmallVectorImpl<ISD::OutputArg> &Outs, 2939 const SmallVectorImpl<SDValue> &OutVals, 2940 const SmallVectorImpl<ISD::InputArg> &Ins, 2941 DebugLoc dl, SelectionDAG &DAG, 2942 SmallVectorImpl<SDValue> &InVals) const { 2943 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2944 // of the 32-bit SVR4 ABI stack frame layout. 2945 2946 assert((CallConv == CallingConv::C || 2947 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2948 2949 unsigned PtrByteSize = 4; 2950 2951 MachineFunction &MF = DAG.getMachineFunction(); 2952 2953 // Mark this function as potentially containing a function that contains a 2954 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2955 // and restoring the callers stack pointer in this functions epilog. This is 2956 // done because by tail calling the called function might overwrite the value 2957 // in this function's (MF) stack pointer stack slot 0(SP). 2958 if (getTargetMachine().Options.GuaranteedTailCallOpt && 2959 CallConv == CallingConv::Fast) 2960 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2961 2962 // Count how many bytes are to be pushed on the stack, including the linkage 2963 // area, parameter list area and the part of the local variable space which 2964 // contains copies of aggregates which are passed by value. 2965 2966 // Assign locations to all of the outgoing arguments. 2967 SmallVector<CCValAssign, 16> ArgLocs; 2968 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2969 getTargetMachine(), ArgLocs, *DAG.getContext()); 2970 2971 // Reserve space for the linkage area on the stack. 2972 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2973 2974 if (isVarArg) { 2975 // Handle fixed and variable vector arguments differently. 2976 // Fixed vector arguments go into registers as long as registers are 2977 // available. Variable vector arguments always go into memory. 2978 unsigned NumArgs = Outs.size(); 2979 2980 for (unsigned i = 0; i != NumArgs; ++i) { 2981 MVT ArgVT = Outs[i].VT; 2982 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2983 bool Result; 2984 2985 if (Outs[i].IsFixed) { 2986 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2987 CCInfo); 2988 } else { 2989 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2990 ArgFlags, CCInfo); 2991 } 2992 2993 if (Result) { 2994 #ifndef NDEBUG 2995 errs() << "Call operand #" << i << " has unhandled type " 2996 << EVT(ArgVT).getEVTString() << "\n"; 2997 #endif 2998 llvm_unreachable(0); 2999 } 3000 } 3001 } else { 3002 // All arguments are treated the same. 3003 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 3004 } 3005 3006 // Assign locations to all of the outgoing aggregate by value arguments. 3007 SmallVector<CCValAssign, 16> ByValArgLocs; 3008 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3009 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 3010 3011 // Reserve stack space for the allocations in CCInfo. 3012 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3013 3014 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 3015 3016 // Size of the linkage area, parameter list area and the part of the local 3017 // space variable where copies of aggregates which are passed by value are 3018 // stored. 3019 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 3020 3021 // Calculate by how many bytes the stack has to be adjusted in case of tail 3022 // call optimization. 3023 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3024 3025 // Adjust the stack pointer for the new arguments... 3026 // These operations are automatically eliminated by the prolog/epilog pass 3027 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3028 SDValue CallSeqStart = Chain; 3029 3030 // Load the return address and frame pointer so it can be moved somewhere else 3031 // later. 3032 SDValue LROp, FPOp; 3033 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 3034 dl); 3035 3036 // Set up a copy of the stack pointer for use loading and storing any 3037 // arguments that may not fit in the registers available for argument 3038 // passing. 3039 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3040 3041 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3042 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3043 SmallVector<SDValue, 8> MemOpChains; 3044 3045 bool seenFloatArg = false; 3046 // Walk the register/memloc assignments, inserting copies/loads. 3047 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 3048 i != e; 3049 ++i) { 3050 CCValAssign &VA = ArgLocs[i]; 3051 SDValue Arg = OutVals[i]; 3052 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3053 3054 if (Flags.isByVal()) { 3055 // Argument is an aggregate which is passed by value, thus we need to 3056 // create a copy of it in the local variable space of the current stack 3057 // frame (which is the stack frame of the caller) and pass the address of 3058 // this copy to the callee. 3059 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 3060 CCValAssign &ByValVA = ByValArgLocs[j++]; 3061 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 3062 3063 // Memory reserved in the local variable space of the callers stack frame. 3064 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 3065 3066 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3067 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3068 3069 // Create a copy of the argument in the local area of the current 3070 // stack frame. 3071 SDValue MemcpyCall = 3072 CreateCopyOfByValArgument(Arg, PtrOff, 3073 CallSeqStart.getNode()->getOperand(0), 3074 Flags, DAG, dl); 3075 3076 // This must go outside the CALLSEQ_START..END. 3077 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3078 CallSeqStart.getNode()->getOperand(1)); 3079 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3080 NewCallSeqStart.getNode()); 3081 Chain = CallSeqStart = NewCallSeqStart; 3082 3083 // Pass the address of the aggregate copy on the stack either in a 3084 // physical register or in the parameter list area of the current stack 3085 // frame to the callee. 3086 Arg = PtrOff; 3087 } 3088 3089 if (VA.isRegLoc()) { 3090 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 3091 // Put argument in a physical register. 3092 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 3093 } else { 3094 // Put argument in the parameter list area of the current stack frame. 3095 assert(VA.isMemLoc()); 3096 unsigned LocMemOffset = VA.getLocMemOffset(); 3097 3098 if (!isTailCall) { 3099 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 3100 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 3101 3102 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3103 MachinePointerInfo(), 3104 false, false, 0)); 3105 } else { 3106 // Calculate and remember argument location. 3107 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3108 TailCallArguments); 3109 } 3110 } 3111 } 3112 3113 if (!MemOpChains.empty()) 3114 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3115 &MemOpChains[0], MemOpChains.size()); 3116 3117 // Set CR6 to true if this is a vararg call with floating args passed in 3118 // registers. 3119 if (isVarArg) { 3120 SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET, 3121 dl, MVT::i32), 0); 3122 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3123 } 3124 3125 // Build a sequence of copy-to-reg nodes chained together with token chain 3126 // and flag operands which copy the outgoing args into the appropriate regs. 3127 SDValue InFlag; 3128 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3129 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3130 RegsToPass[i].second, InFlag); 3131 InFlag = Chain.getValue(1); 3132 } 3133 3134 if (isTailCall) 3135 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3136 false, TailCallArguments); 3137 3138 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3139 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3140 Ins, InVals); 3141 } 3142 3143 SDValue 3144 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3145 CallingConv::ID CallConv, bool isVarArg, 3146 bool isTailCall, 3147 const SmallVectorImpl<ISD::OutputArg> &Outs, 3148 const SmallVectorImpl<SDValue> &OutVals, 3149 const SmallVectorImpl<ISD::InputArg> &Ins, 3150 DebugLoc dl, SelectionDAG &DAG, 3151 SmallVectorImpl<SDValue> &InVals) const { 3152 3153 unsigned NumOps = Outs.size(); 3154 3155 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3156 bool isPPC64 = PtrVT == MVT::i64; 3157 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3158 3159 MachineFunction &MF = DAG.getMachineFunction(); 3160 3161 // Mark this function as potentially containing a function that contains a 3162 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3163 // and restoring the callers stack pointer in this functions epilog. This is 3164 // done because by tail calling the called function might overwrite the value 3165 // in this function's (MF) stack pointer stack slot 0(SP). 3166 if (getTargetMachine().Options.GuaranteedTailCallOpt && 3167 CallConv == CallingConv::Fast) 3168 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3169 3170 unsigned nAltivecParamsAtEnd = 0; 3171 3172 // Count how many bytes are to be pushed on the stack, including the linkage 3173 // area, and parameter passing area. We start with 24/48 bytes, which is 3174 // prereserved space for [SP][CR][LR][3 x unused]. 3175 unsigned NumBytes = 3176 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3177 Outs, OutVals, 3178 nAltivecParamsAtEnd); 3179 3180 // Calculate by how many bytes the stack has to be adjusted in case of tail 3181 // call optimization. 3182 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3183 3184 // To protect arguments on the stack from being clobbered in a tail call, 3185 // force all the loads to happen before doing any other lowering. 3186 if (isTailCall) 3187 Chain = DAG.getStackArgumentTokenFactor(Chain); 3188 3189 // Adjust the stack pointer for the new arguments... 3190 // These operations are automatically eliminated by the prolog/epilog pass 3191 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3192 SDValue CallSeqStart = Chain; 3193 3194 // Load the return address and frame pointer so it can be move somewhere else 3195 // later. 3196 SDValue LROp, FPOp; 3197 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3198 dl); 3199 3200 // Set up a copy of the stack pointer for use loading and storing any 3201 // arguments that may not fit in the registers available for argument 3202 // passing. 3203 SDValue StackPtr; 3204 if (isPPC64) 3205 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3206 else 3207 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3208 3209 // Figure out which arguments are going to go in registers, and which in 3210 // memory. Also, if this is a vararg function, floating point operations 3211 // must be stored to our stack, and loaded into integer regs as well, if 3212 // any integer regs are available for argument passing. 3213 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3214 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3215 3216 static const uint16_t GPR_32[] = { // 32-bit registers. 3217 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3218 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3219 }; 3220 static const uint16_t GPR_64[] = { // 64-bit registers. 3221 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3222 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3223 }; 3224 static const uint16_t *FPR = GetFPR(); 3225 3226 static const uint16_t VR[] = { 3227 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3228 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3229 }; 3230 const unsigned NumGPRs = array_lengthof(GPR_32); 3231 const unsigned NumFPRs = 13; 3232 const unsigned NumVRs = array_lengthof(VR); 3233 3234 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; 3235 3236 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3237 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3238 3239 SmallVector<SDValue, 8> MemOpChains; 3240 for (unsigned i = 0; i != NumOps; ++i) { 3241 SDValue Arg = OutVals[i]; 3242 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3243 3244 // PtrOff will be used to store the current argument to the stack if a 3245 // register cannot be found for it. 3246 SDValue PtrOff; 3247 3248 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3249 3250 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3251 3252 // On PPC64, promote integers to 64-bit values. 3253 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3254 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3255 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3256 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3257 } 3258 3259 // FIXME memcpy is used way more than necessary. Correctness first. 3260 if (Flags.isByVal()) { 3261 unsigned Size = Flags.getByValSize(); 3262 if (Size==1 || Size==2) { 3263 // Very small objects are passed right-justified. 3264 // Everything else is passed left-justified. 3265 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3266 if (GPR_idx != NumGPRs) { 3267 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3268 MachinePointerInfo(), VT, 3269 false, false, 0); 3270 MemOpChains.push_back(Load.getValue(1)); 3271 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3272 3273 ArgOffset += PtrByteSize; 3274 } else { 3275 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3276 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3277 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3278 CallSeqStart.getNode()->getOperand(0), 3279 Flags, DAG, dl); 3280 // This must go outside the CALLSEQ_START..END. 3281 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3282 CallSeqStart.getNode()->getOperand(1)); 3283 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3284 NewCallSeqStart.getNode()); 3285 Chain = CallSeqStart = NewCallSeqStart; 3286 ArgOffset += PtrByteSize; 3287 } 3288 continue; 3289 } 3290 // Copy entire object into memory. There are cases where gcc-generated 3291 // code assumes it is there, even if it could be put entirely into 3292 // registers. (This is not what the doc says.) 3293 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3294 CallSeqStart.getNode()->getOperand(0), 3295 Flags, DAG, dl); 3296 // This must go outside the CALLSEQ_START..END. 3297 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3298 CallSeqStart.getNode()->getOperand(1)); 3299 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3300 Chain = CallSeqStart = NewCallSeqStart; 3301 // And copy the pieces of it that fit into registers. 3302 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3303 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3304 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3305 if (GPR_idx != NumGPRs) { 3306 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3307 MachinePointerInfo(), 3308 false, false, false, 0); 3309 MemOpChains.push_back(Load.getValue(1)); 3310 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3311 ArgOffset += PtrByteSize; 3312 } else { 3313 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3314 break; 3315 } 3316 } 3317 continue; 3318 } 3319 3320 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3321 default: llvm_unreachable("Unexpected ValueType for argument!"); 3322 case MVT::i32: 3323 case MVT::i64: 3324 if (GPR_idx != NumGPRs) { 3325 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3326 } else { 3327 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3328 isPPC64, isTailCall, false, MemOpChains, 3329 TailCallArguments, dl); 3330 } 3331 ArgOffset += PtrByteSize; 3332 break; 3333 case MVT::f32: 3334 case MVT::f64: 3335 if (FPR_idx != NumFPRs) { 3336 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3337 3338 if (isVarArg) { 3339 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3340 MachinePointerInfo(), false, false, 0); 3341 MemOpChains.push_back(Store); 3342 3343 // Float varargs are always shadowed in available integer registers 3344 if (GPR_idx != NumGPRs) { 3345 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3346 MachinePointerInfo(), false, false, 3347 false, 0); 3348 MemOpChains.push_back(Load.getValue(1)); 3349 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3350 } 3351 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3352 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3353 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3354 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3355 MachinePointerInfo(), 3356 false, false, false, 0); 3357 MemOpChains.push_back(Load.getValue(1)); 3358 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3359 } 3360 } else { 3361 // If we have any FPRs remaining, we may also have GPRs remaining. 3362 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3363 // GPRs. 3364 if (GPR_idx != NumGPRs) 3365 ++GPR_idx; 3366 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3367 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3368 ++GPR_idx; 3369 } 3370 } else { 3371 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3372 isPPC64, isTailCall, false, MemOpChains, 3373 TailCallArguments, dl); 3374 } 3375 if (isPPC64) 3376 ArgOffset += 8; 3377 else 3378 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3379 break; 3380 case MVT::v4f32: 3381 case MVT::v4i32: 3382 case MVT::v8i16: 3383 case MVT::v16i8: 3384 if (isVarArg) { 3385 // These go aligned on the stack, or in the corresponding R registers 3386 // when within range. The Darwin PPC ABI doc claims they also go in 3387 // V registers; in fact gcc does this only for arguments that are 3388 // prototyped, not for those that match the ... We do it for all 3389 // arguments, seems to work. 3390 while (ArgOffset % 16 !=0) { 3391 ArgOffset += PtrByteSize; 3392 if (GPR_idx != NumGPRs) 3393 GPR_idx++; 3394 } 3395 // We could elide this store in the case where the object fits 3396 // entirely in R registers. Maybe later. 3397 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3398 DAG.getConstant(ArgOffset, PtrVT)); 3399 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3400 MachinePointerInfo(), false, false, 0); 3401 MemOpChains.push_back(Store); 3402 if (VR_idx != NumVRs) { 3403 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3404 MachinePointerInfo(), 3405 false, false, false, 0); 3406 MemOpChains.push_back(Load.getValue(1)); 3407 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3408 } 3409 ArgOffset += 16; 3410 for (unsigned i=0; i<16; i+=PtrByteSize) { 3411 if (GPR_idx == NumGPRs) 3412 break; 3413 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3414 DAG.getConstant(i, PtrVT)); 3415 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3416 false, false, false, 0); 3417 MemOpChains.push_back(Load.getValue(1)); 3418 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3419 } 3420 break; 3421 } 3422 3423 // Non-varargs Altivec params generally go in registers, but have 3424 // stack space allocated at the end. 3425 if (VR_idx != NumVRs) { 3426 // Doesn't have GPR space allocated. 3427 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3428 } else if (nAltivecParamsAtEnd==0) { 3429 // We are emitting Altivec params in order. 3430 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3431 isPPC64, isTailCall, true, MemOpChains, 3432 TailCallArguments, dl); 3433 ArgOffset += 16; 3434 } 3435 break; 3436 } 3437 } 3438 // If all Altivec parameters fit in registers, as they usually do, 3439 // they get stack space following the non-Altivec parameters. We 3440 // don't track this here because nobody below needs it. 3441 // If there are more Altivec parameters than fit in registers emit 3442 // the stores here. 3443 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3444 unsigned j = 0; 3445 // Offset is aligned; skip 1st 12 params which go in V registers. 3446 ArgOffset = ((ArgOffset+15)/16)*16; 3447 ArgOffset += 12*16; 3448 for (unsigned i = 0; i != NumOps; ++i) { 3449 SDValue Arg = OutVals[i]; 3450 EVT ArgType = Outs[i].VT; 3451 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3452 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3453 if (++j > NumVRs) { 3454 SDValue PtrOff; 3455 // We are emitting Altivec params in order. 3456 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3457 isPPC64, isTailCall, true, MemOpChains, 3458 TailCallArguments, dl); 3459 ArgOffset += 16; 3460 } 3461 } 3462 } 3463 } 3464 3465 if (!MemOpChains.empty()) 3466 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3467 &MemOpChains[0], MemOpChains.size()); 3468 3469 // Check if this is an indirect call (MTCTR/BCTRL). 3470 // See PrepareCall() for more information about calls through function 3471 // pointers in the 64-bit SVR4 ABI. 3472 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3473 !dyn_cast<GlobalAddressSDNode>(Callee) && 3474 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3475 !isBLACompatibleAddress(Callee, DAG)) { 3476 // Load r2 into a virtual register and store it to the TOC save area. 3477 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3478 // TOC save area offset. 3479 SDValue PtrOff = DAG.getIntPtrConstant(40); 3480 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3481 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3482 false, false, 0); 3483 } 3484 3485 // On Darwin, R12 must contain the address of an indirect callee. This does 3486 // not mean the MTCTR instruction must use R12; it's easier to model this as 3487 // an extra parameter, so do that. 3488 if (!isTailCall && 3489 !dyn_cast<GlobalAddressSDNode>(Callee) && 3490 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3491 !isBLACompatibleAddress(Callee, DAG)) 3492 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3493 PPC::R12), Callee)); 3494 3495 // Build a sequence of copy-to-reg nodes chained together with token chain 3496 // and flag operands which copy the outgoing args into the appropriate regs. 3497 SDValue InFlag; 3498 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3499 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3500 RegsToPass[i].second, InFlag); 3501 InFlag = Chain.getValue(1); 3502 } 3503 3504 if (isTailCall) 3505 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3506 FPOp, true, TailCallArguments); 3507 3508 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3509 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3510 Ins, InVals); 3511 } 3512 3513 bool 3514 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3515 MachineFunction &MF, bool isVarArg, 3516 const SmallVectorImpl<ISD::OutputArg> &Outs, 3517 LLVMContext &Context) const { 3518 SmallVector<CCValAssign, 16> RVLocs; 3519 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), 3520 RVLocs, Context); 3521 return CCInfo.CheckReturn(Outs, RetCC_PPC); 3522 } 3523 3524 SDValue 3525 PPCTargetLowering::LowerReturn(SDValue Chain, 3526 CallingConv::ID CallConv, bool isVarArg, 3527 const SmallVectorImpl<ISD::OutputArg> &Outs, 3528 const SmallVectorImpl<SDValue> &OutVals, 3529 DebugLoc dl, SelectionDAG &DAG) const { 3530 3531 SmallVector<CCValAssign, 16> RVLocs; 3532 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3533 getTargetMachine(), RVLocs, *DAG.getContext()); 3534 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3535 3536 // If this is the first return lowered for this function, add the regs to the 3537 // liveout set for the function. 3538 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3539 for (unsigned i = 0; i != RVLocs.size(); ++i) 3540 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3541 } 3542 3543 SDValue Flag; 3544 3545 // Copy the result values into the output registers. 3546 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3547 CCValAssign &VA = RVLocs[i]; 3548 assert(VA.isRegLoc() && "Can only return in registers!"); 3549 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3550 OutVals[i], Flag); 3551 Flag = Chain.getValue(1); 3552 } 3553 3554 if (Flag.getNode()) 3555 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3556 else 3557 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3558 } 3559 3560 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3561 const PPCSubtarget &Subtarget) const { 3562 // When we pop the dynamic allocation we need to restore the SP link. 3563 DebugLoc dl = Op.getDebugLoc(); 3564 3565 // Get the corect type for pointers. 3566 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3567 3568 // Construct the stack pointer operand. 3569 bool isPPC64 = Subtarget.isPPC64(); 3570 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3571 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3572 3573 // Get the operands for the STACKRESTORE. 3574 SDValue Chain = Op.getOperand(0); 3575 SDValue SaveSP = Op.getOperand(1); 3576 3577 // Load the old link SP. 3578 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3579 MachinePointerInfo(), 3580 false, false, false, 0); 3581 3582 // Restore the stack pointer. 3583 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3584 3585 // Store the old link SP. 3586 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3587 false, false, 0); 3588 } 3589 3590 3591 3592 SDValue 3593 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3594 MachineFunction &MF = DAG.getMachineFunction(); 3595 bool isPPC64 = PPCSubTarget.isPPC64(); 3596 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3597 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3598 3599 // Get current frame pointer save index. The users of this index will be 3600 // primarily DYNALLOC instructions. 3601 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3602 int RASI = FI->getReturnAddrSaveIndex(); 3603 3604 // If the frame pointer save index hasn't been defined yet. 3605 if (!RASI) { 3606 // Find out what the fix offset of the frame pointer save area. 3607 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3608 // Allocate the frame index for frame pointer save area. 3609 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3610 // Save the result. 3611 FI->setReturnAddrSaveIndex(RASI); 3612 } 3613 return DAG.getFrameIndex(RASI, PtrVT); 3614 } 3615 3616 SDValue 3617 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3618 MachineFunction &MF = DAG.getMachineFunction(); 3619 bool isPPC64 = PPCSubTarget.isPPC64(); 3620 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3621 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3622 3623 // Get current frame pointer save index. The users of this index will be 3624 // primarily DYNALLOC instructions. 3625 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3626 int FPSI = FI->getFramePointerSaveIndex(); 3627 3628 // If the frame pointer save index hasn't been defined yet. 3629 if (!FPSI) { 3630 // Find out what the fix offset of the frame pointer save area. 3631 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3632 isDarwinABI); 3633 3634 // Allocate the frame index for frame pointer save area. 3635 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3636 // Save the result. 3637 FI->setFramePointerSaveIndex(FPSI); 3638 } 3639 return DAG.getFrameIndex(FPSI, PtrVT); 3640 } 3641 3642 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3643 SelectionDAG &DAG, 3644 const PPCSubtarget &Subtarget) const { 3645 // Get the inputs. 3646 SDValue Chain = Op.getOperand(0); 3647 SDValue Size = Op.getOperand(1); 3648 DebugLoc dl = Op.getDebugLoc(); 3649 3650 // Get the corect type for pointers. 3651 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3652 // Negate the size. 3653 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3654 DAG.getConstant(0, PtrVT), Size); 3655 // Construct a node for the frame pointer save index. 3656 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3657 // Build a DYNALLOC node. 3658 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3659 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3660 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3661 } 3662 3663 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3664 /// possible. 3665 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3666 // Not FP? Not a fsel. 3667 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3668 !Op.getOperand(2).getValueType().isFloatingPoint()) 3669 return Op; 3670 3671 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3672 3673 // Cannot handle SETEQ/SETNE. 3674 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3675 3676 EVT ResVT = Op.getValueType(); 3677 EVT CmpVT = Op.getOperand(0).getValueType(); 3678 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3679 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3680 DebugLoc dl = Op.getDebugLoc(); 3681 3682 // If the RHS of the comparison is a 0.0, we don't need to do the 3683 // subtraction at all. 3684 if (isFloatingPointZero(RHS)) 3685 switch (CC) { 3686 default: break; // SETUO etc aren't handled by fsel. 3687 case ISD::SETULT: 3688 case ISD::SETLT: 3689 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3690 case ISD::SETOGE: 3691 case ISD::SETGE: 3692 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3693 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3694 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3695 case ISD::SETUGT: 3696 case ISD::SETGT: 3697 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3698 case ISD::SETOLE: 3699 case ISD::SETLE: 3700 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3701 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3702 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3703 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3704 } 3705 3706 SDValue Cmp; 3707 switch (CC) { 3708 default: break; // SETUO etc aren't handled by fsel. 3709 case ISD::SETULT: 3710 case ISD::SETLT: 3711 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3712 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3713 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3714 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3715 case ISD::SETOGE: 3716 case ISD::SETGE: 3717 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3718 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3719 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3720 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3721 case ISD::SETUGT: 3722 case ISD::SETGT: 3723 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3724 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3725 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3726 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3727 case ISD::SETOLE: 3728 case ISD::SETLE: 3729 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3730 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3731 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3732 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3733 } 3734 return Op; 3735 } 3736 3737 // FIXME: Split this code up when LegalizeDAGTypes lands. 3738 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3739 DebugLoc dl) const { 3740 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3741 SDValue Src = Op.getOperand(0); 3742 if (Src.getValueType() == MVT::f32) 3743 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3744 3745 SDValue Tmp; 3746 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3747 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3748 case MVT::i32: 3749 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3750 PPCISD::FCTIDZ, 3751 dl, MVT::f64, Src); 3752 break; 3753 case MVT::i64: 3754 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3755 break; 3756 } 3757 3758 // Convert the FP value to an int value through memory. 3759 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3760 3761 // Emit a store to the stack slot. 3762 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3763 MachinePointerInfo(), false, false, 0); 3764 3765 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3766 // add in a bias. 3767 if (Op.getValueType() == MVT::i32) 3768 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3769 DAG.getConstant(4, FIPtr.getValueType())); 3770 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3771 false, false, false, 0); 3772 } 3773 3774 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3775 SelectionDAG &DAG) const { 3776 DebugLoc dl = Op.getDebugLoc(); 3777 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3778 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3779 return SDValue(); 3780 3781 if (Op.getOperand(0).getValueType() == MVT::i64) { 3782 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3783 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3784 if (Op.getValueType() == MVT::f32) 3785 FP = DAG.getNode(ISD::FP_ROUND, dl, 3786 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3787 return FP; 3788 } 3789 3790 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3791 "Unhandled SINT_TO_FP type in custom expander!"); 3792 // Since we only generate this in 64-bit mode, we can take advantage of 3793 // 64-bit registers. In particular, sign extend the input value into the 3794 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3795 // then lfd it and fcfid it. 3796 MachineFunction &MF = DAG.getMachineFunction(); 3797 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3798 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3799 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3800 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3801 3802 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3803 Op.getOperand(0)); 3804 3805 // STD the extended value into the stack slot. 3806 MachineMemOperand *MMO = 3807 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3808 MachineMemOperand::MOStore, 8, 8); 3809 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3810 SDValue Store = 3811 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3812 Ops, 4, MVT::i64, MMO); 3813 // Load the value as a double. 3814 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3815 false, false, false, 0); 3816 3817 // FCFID it and return it. 3818 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3819 if (Op.getValueType() == MVT::f32) 3820 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3821 return FP; 3822 } 3823 3824 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3825 SelectionDAG &DAG) const { 3826 DebugLoc dl = Op.getDebugLoc(); 3827 /* 3828 The rounding mode is in bits 30:31 of FPSR, and has the following 3829 settings: 3830 00 Round to nearest 3831 01 Round to 0 3832 10 Round to +inf 3833 11 Round to -inf 3834 3835 FLT_ROUNDS, on the other hand, expects the following: 3836 -1 Undefined 3837 0 Round to 0 3838 1 Round to nearest 3839 2 Round to +inf 3840 3 Round to -inf 3841 3842 To perform the conversion, we do: 3843 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3844 */ 3845 3846 MachineFunction &MF = DAG.getMachineFunction(); 3847 EVT VT = Op.getValueType(); 3848 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3849 std::vector<EVT> NodeTys; 3850 SDValue MFFSreg, InFlag; 3851 3852 // Save FP Control Word to register 3853 NodeTys.push_back(MVT::f64); // return register 3854 NodeTys.push_back(MVT::Glue); // unused in this context 3855 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3856 3857 // Save FP register to stack slot 3858 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3859 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3860 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3861 StackSlot, MachinePointerInfo(), false, false,0); 3862 3863 // Load FP Control Word from low 32 bits of stack slot. 3864 SDValue Four = DAG.getConstant(4, PtrVT); 3865 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3866 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3867 false, false, false, 0); 3868 3869 // Transform as necessary 3870 SDValue CWD1 = 3871 DAG.getNode(ISD::AND, dl, MVT::i32, 3872 CWD, DAG.getConstant(3, MVT::i32)); 3873 SDValue CWD2 = 3874 DAG.getNode(ISD::SRL, dl, MVT::i32, 3875 DAG.getNode(ISD::AND, dl, MVT::i32, 3876 DAG.getNode(ISD::XOR, dl, MVT::i32, 3877 CWD, DAG.getConstant(3, MVT::i32)), 3878 DAG.getConstant(3, MVT::i32)), 3879 DAG.getConstant(1, MVT::i32)); 3880 3881 SDValue RetVal = 3882 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3883 3884 return DAG.getNode((VT.getSizeInBits() < 16 ? 3885 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3886 } 3887 3888 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3889 EVT VT = Op.getValueType(); 3890 unsigned BitWidth = VT.getSizeInBits(); 3891 DebugLoc dl = Op.getDebugLoc(); 3892 assert(Op.getNumOperands() == 3 && 3893 VT == Op.getOperand(1).getValueType() && 3894 "Unexpected SHL!"); 3895 3896 // Expand into a bunch of logical ops. Note that these ops 3897 // depend on the PPC behavior for oversized shift amounts. 3898 SDValue Lo = Op.getOperand(0); 3899 SDValue Hi = Op.getOperand(1); 3900 SDValue Amt = Op.getOperand(2); 3901 EVT AmtVT = Amt.getValueType(); 3902 3903 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3904 DAG.getConstant(BitWidth, AmtVT), Amt); 3905 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3906 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3907 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3908 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3909 DAG.getConstant(-BitWidth, AmtVT)); 3910 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3911 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3912 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3913 SDValue OutOps[] = { OutLo, OutHi }; 3914 return DAG.getMergeValues(OutOps, 2, dl); 3915 } 3916 3917 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3918 EVT VT = Op.getValueType(); 3919 DebugLoc dl = Op.getDebugLoc(); 3920 unsigned BitWidth = VT.getSizeInBits(); 3921 assert(Op.getNumOperands() == 3 && 3922 VT == Op.getOperand(1).getValueType() && 3923 "Unexpected SRL!"); 3924 3925 // Expand into a bunch of logical ops. Note that these ops 3926 // depend on the PPC behavior for oversized shift amounts. 3927 SDValue Lo = Op.getOperand(0); 3928 SDValue Hi = Op.getOperand(1); 3929 SDValue Amt = Op.getOperand(2); 3930 EVT AmtVT = Amt.getValueType(); 3931 3932 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3933 DAG.getConstant(BitWidth, AmtVT), Amt); 3934 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3935 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3936 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3937 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3938 DAG.getConstant(-BitWidth, AmtVT)); 3939 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3940 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3941 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3942 SDValue OutOps[] = { OutLo, OutHi }; 3943 return DAG.getMergeValues(OutOps, 2, dl); 3944 } 3945 3946 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3947 DebugLoc dl = Op.getDebugLoc(); 3948 EVT VT = Op.getValueType(); 3949 unsigned BitWidth = VT.getSizeInBits(); 3950 assert(Op.getNumOperands() == 3 && 3951 VT == Op.getOperand(1).getValueType() && 3952 "Unexpected SRA!"); 3953 3954 // Expand into a bunch of logical ops, followed by a select_cc. 3955 SDValue Lo = Op.getOperand(0); 3956 SDValue Hi = Op.getOperand(1); 3957 SDValue Amt = Op.getOperand(2); 3958 EVT AmtVT = Amt.getValueType(); 3959 3960 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3961 DAG.getConstant(BitWidth, AmtVT), Amt); 3962 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3963 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3964 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3965 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3966 DAG.getConstant(-BitWidth, AmtVT)); 3967 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3968 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3969 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3970 Tmp4, Tmp6, ISD::SETLE); 3971 SDValue OutOps[] = { OutLo, OutHi }; 3972 return DAG.getMergeValues(OutOps, 2, dl); 3973 } 3974 3975 //===----------------------------------------------------------------------===// 3976 // Vector related lowering. 3977 // 3978 3979 /// BuildSplatI - Build a canonical splati of Val with an element size of 3980 /// SplatSize. Cast the result to VT. 3981 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3982 SelectionDAG &DAG, DebugLoc dl) { 3983 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3984 3985 static const EVT VTys[] = { // canonical VT to use for each size. 3986 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3987 }; 3988 3989 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3990 3991 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3992 if (Val == -1) 3993 SplatSize = 1; 3994 3995 EVT CanonicalVT = VTys[SplatSize-1]; 3996 3997 // Build a canonical splat for this value. 3998 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3999 SmallVector<SDValue, 8> Ops; 4000 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 4001 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 4002 &Ops[0], Ops.size()); 4003 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 4004 } 4005 4006 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 4007 /// specified intrinsic ID. 4008 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 4009 SelectionDAG &DAG, DebugLoc dl, 4010 EVT DestVT = MVT::Other) { 4011 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 4012 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4013 DAG.getConstant(IID, MVT::i32), LHS, RHS); 4014 } 4015 4016 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 4017 /// specified intrinsic ID. 4018 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 4019 SDValue Op2, SelectionDAG &DAG, 4020 DebugLoc dl, EVT DestVT = MVT::Other) { 4021 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 4022 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4023 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 4024 } 4025 4026 4027 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 4028 /// amount. The result has the specified value type. 4029 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 4030 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 4031 // Force LHS/RHS to be the right type. 4032 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 4033 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 4034 4035 int Ops[16]; 4036 for (unsigned i = 0; i != 16; ++i) 4037 Ops[i] = i + Amt; 4038 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 4039 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4040 } 4041 4042 // If this is a case we can't handle, return null and let the default 4043 // expansion code take care of it. If we CAN select this case, and if it 4044 // selects to a single instruction, return Op. Otherwise, if we can codegen 4045 // this case more efficiently than a constant pool load, lower it to the 4046 // sequence of ops that should be used. 4047 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 4048 SelectionDAG &DAG) const { 4049 DebugLoc dl = Op.getDebugLoc(); 4050 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 4051 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 4052 4053 // Check if this is a splat of a constant value. 4054 APInt APSplatBits, APSplatUndef; 4055 unsigned SplatBitSize; 4056 bool HasAnyUndefs; 4057 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 4058 HasAnyUndefs, 0, true) || SplatBitSize > 32) 4059 return SDValue(); 4060 4061 unsigned SplatBits = APSplatBits.getZExtValue(); 4062 unsigned SplatUndef = APSplatUndef.getZExtValue(); 4063 unsigned SplatSize = SplatBitSize / 8; 4064 4065 // First, handle single instruction cases. 4066 4067 // All zeros? 4068 if (SplatBits == 0) { 4069 // Canonicalize all zero vectors to be v4i32. 4070 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 4071 SDValue Z = DAG.getConstant(0, MVT::i32); 4072 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 4073 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 4074 } 4075 return Op; 4076 } 4077 4078 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 4079 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 4080 (32-SplatBitSize)); 4081 if (SextVal >= -16 && SextVal <= 15) 4082 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 4083 4084 4085 // Two instruction sequences. 4086 4087 // If this value is in the range [-32,30] and is even, use: 4088 // tmp = VSPLTI[bhw], result = add tmp, tmp 4089 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 4090 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 4091 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 4092 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4093 } 4094 4095 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 4096 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 4097 // for fneg/fabs. 4098 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 4099 // Make -1 and vspltisw -1: 4100 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 4101 4102 // Make the VSLW intrinsic, computing 0x8000_0000. 4103 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 4104 OnesV, DAG, dl); 4105 4106 // xor by OnesV to invert it. 4107 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 4108 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4109 } 4110 4111 // Check to see if this is a wide variety of vsplti*, binop self cases. 4112 static const signed char SplatCsts[] = { 4113 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 4114 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 4115 }; 4116 4117 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4118 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4119 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4120 int i = SplatCsts[idx]; 4121 4122 // Figure out what shift amount will be used by altivec if shifted by i in 4123 // this splat size. 4124 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4125 4126 // vsplti + shl self. 4127 if (SextVal == (i << (int)TypeShiftAmt)) { 4128 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4129 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4130 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4131 Intrinsic::ppc_altivec_vslw 4132 }; 4133 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4134 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4135 } 4136 4137 // vsplti + srl self. 4138 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4139 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4140 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4141 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4142 Intrinsic::ppc_altivec_vsrw 4143 }; 4144 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4145 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4146 } 4147 4148 // vsplti + sra self. 4149 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4150 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4151 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4152 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4153 Intrinsic::ppc_altivec_vsraw 4154 }; 4155 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4156 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4157 } 4158 4159 // vsplti + rol self. 4160 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4161 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4162 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4163 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4164 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4165 Intrinsic::ppc_altivec_vrlw 4166 }; 4167 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4168 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4169 } 4170 4171 // t = vsplti c, result = vsldoi t, t, 1 4172 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4173 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4174 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4175 } 4176 // t = vsplti c, result = vsldoi t, t, 2 4177 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4178 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4179 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4180 } 4181 // t = vsplti c, result = vsldoi t, t, 3 4182 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4183 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4184 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4185 } 4186 } 4187 4188 // Three instruction sequences. 4189 4190 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4191 if (SextVal >= 0 && SextVal <= 31) { 4192 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4193 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4194 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4195 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4196 } 4197 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4198 if (SextVal >= -31 && SextVal <= 0) { 4199 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4200 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4201 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4202 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4203 } 4204 4205 return SDValue(); 4206 } 4207 4208 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4209 /// the specified operations to build the shuffle. 4210 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4211 SDValue RHS, SelectionDAG &DAG, 4212 DebugLoc dl) { 4213 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4214 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4215 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4216 4217 enum { 4218 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4219 OP_VMRGHW, 4220 OP_VMRGLW, 4221 OP_VSPLTISW0, 4222 OP_VSPLTISW1, 4223 OP_VSPLTISW2, 4224 OP_VSPLTISW3, 4225 OP_VSLDOI4, 4226 OP_VSLDOI8, 4227 OP_VSLDOI12 4228 }; 4229 4230 if (OpNum == OP_COPY) { 4231 if (LHSID == (1*9+2)*9+3) return LHS; 4232 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4233 return RHS; 4234 } 4235 4236 SDValue OpLHS, OpRHS; 4237 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4238 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4239 4240 int ShufIdxs[16]; 4241 switch (OpNum) { 4242 default: llvm_unreachable("Unknown i32 permute!"); 4243 case OP_VMRGHW: 4244 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4245 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4246 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4247 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4248 break; 4249 case OP_VMRGLW: 4250 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4251 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4252 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4253 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4254 break; 4255 case OP_VSPLTISW0: 4256 for (unsigned i = 0; i != 16; ++i) 4257 ShufIdxs[i] = (i&3)+0; 4258 break; 4259 case OP_VSPLTISW1: 4260 for (unsigned i = 0; i != 16; ++i) 4261 ShufIdxs[i] = (i&3)+4; 4262 break; 4263 case OP_VSPLTISW2: 4264 for (unsigned i = 0; i != 16; ++i) 4265 ShufIdxs[i] = (i&3)+8; 4266 break; 4267 case OP_VSPLTISW3: 4268 for (unsigned i = 0; i != 16; ++i) 4269 ShufIdxs[i] = (i&3)+12; 4270 break; 4271 case OP_VSLDOI4: 4272 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4273 case OP_VSLDOI8: 4274 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4275 case OP_VSLDOI12: 4276 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4277 } 4278 EVT VT = OpLHS.getValueType(); 4279 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4280 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4281 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4282 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4283 } 4284 4285 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4286 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4287 /// return the code it can be lowered into. Worst case, it can always be 4288 /// lowered into a vperm. 4289 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4290 SelectionDAG &DAG) const { 4291 DebugLoc dl = Op.getDebugLoc(); 4292 SDValue V1 = Op.getOperand(0); 4293 SDValue V2 = Op.getOperand(1); 4294 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4295 EVT VT = Op.getValueType(); 4296 4297 // Cases that are handled by instructions that take permute immediates 4298 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4299 // selected by the instruction selector. 4300 if (V2.getOpcode() == ISD::UNDEF) { 4301 if (PPC::isSplatShuffleMask(SVOp, 1) || 4302 PPC::isSplatShuffleMask(SVOp, 2) || 4303 PPC::isSplatShuffleMask(SVOp, 4) || 4304 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4305 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4306 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4307 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4308 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4309 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4310 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4311 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4312 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4313 return Op; 4314 } 4315 } 4316 4317 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4318 // and produce a fixed permutation. If any of these match, do not lower to 4319 // VPERM. 4320 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4321 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4322 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4323 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4324 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4325 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4326 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4327 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4328 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4329 return Op; 4330 4331 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4332 // perfect shuffle table to emit an optimal matching sequence. 4333 ArrayRef<int> PermMask = SVOp->getMask(); 4334 4335 unsigned PFIndexes[4]; 4336 bool isFourElementShuffle = true; 4337 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4338 unsigned EltNo = 8; // Start out undef. 4339 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4340 if (PermMask[i*4+j] < 0) 4341 continue; // Undef, ignore it. 4342 4343 unsigned ByteSource = PermMask[i*4+j]; 4344 if ((ByteSource & 3) != j) { 4345 isFourElementShuffle = false; 4346 break; 4347 } 4348 4349 if (EltNo == 8) { 4350 EltNo = ByteSource/4; 4351 } else if (EltNo != ByteSource/4) { 4352 isFourElementShuffle = false; 4353 break; 4354 } 4355 } 4356 PFIndexes[i] = EltNo; 4357 } 4358 4359 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4360 // perfect shuffle vector to determine if it is cost effective to do this as 4361 // discrete instructions, or whether we should use a vperm. 4362 if (isFourElementShuffle) { 4363 // Compute the index in the perfect shuffle table. 4364 unsigned PFTableIndex = 4365 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4366 4367 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4368 unsigned Cost = (PFEntry >> 30); 4369 4370 // Determining when to avoid vperm is tricky. Many things affect the cost 4371 // of vperm, particularly how many times the perm mask needs to be computed. 4372 // For example, if the perm mask can be hoisted out of a loop or is already 4373 // used (perhaps because there are multiple permutes with the same shuffle 4374 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4375 // the loop requires an extra register. 4376 // 4377 // As a compromise, we only emit discrete instructions if the shuffle can be 4378 // generated in 3 or fewer operations. When we have loop information 4379 // available, if this block is within a loop, we should avoid using vperm 4380 // for 3-operation perms and use a constant pool load instead. 4381 if (Cost < 3) 4382 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4383 } 4384 4385 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4386 // vector that will get spilled to the constant pool. 4387 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4388 4389 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4390 // that it is in input element units, not in bytes. Convert now. 4391 EVT EltVT = V1.getValueType().getVectorElementType(); 4392 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4393 4394 SmallVector<SDValue, 16> ResultMask; 4395 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4396 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4397 4398 for (unsigned j = 0; j != BytesPerElement; ++j) 4399 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4400 MVT::i32)); 4401 } 4402 4403 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4404 &ResultMask[0], ResultMask.size()); 4405 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4406 } 4407 4408 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4409 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4410 /// information about the intrinsic. 4411 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4412 bool &isDot) { 4413 unsigned IntrinsicID = 4414 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4415 CompareOpc = -1; 4416 isDot = false; 4417 switch (IntrinsicID) { 4418 default: return false; 4419 // Comparison predicates. 4420 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4421 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4422 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4423 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4424 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4425 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4426 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4427 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4428 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4429 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4430 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4431 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4432 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4433 4434 // Normal Comparisons. 4435 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4436 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4437 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4438 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4439 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4440 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4441 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4442 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4443 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4444 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4445 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4446 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4447 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4448 } 4449 return true; 4450 } 4451 4452 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4453 /// lower, do it, otherwise return null. 4454 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4455 SelectionDAG &DAG) const { 4456 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4457 // opcode number of the comparison. 4458 DebugLoc dl = Op.getDebugLoc(); 4459 int CompareOpc; 4460 bool isDot; 4461 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4462 return SDValue(); // Don't custom lower most intrinsics. 4463 4464 // If this is a non-dot comparison, make the VCMP node and we are done. 4465 if (!isDot) { 4466 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4467 Op.getOperand(1), Op.getOperand(2), 4468 DAG.getConstant(CompareOpc, MVT::i32)); 4469 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4470 } 4471 4472 // Create the PPCISD altivec 'dot' comparison node. 4473 SDValue Ops[] = { 4474 Op.getOperand(2), // LHS 4475 Op.getOperand(3), // RHS 4476 DAG.getConstant(CompareOpc, MVT::i32) 4477 }; 4478 std::vector<EVT> VTs; 4479 VTs.push_back(Op.getOperand(2).getValueType()); 4480 VTs.push_back(MVT::Glue); 4481 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4482 4483 // Now that we have the comparison, emit a copy from the CR to a GPR. 4484 // This is flagged to the above dot comparison. 4485 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4486 DAG.getRegister(PPC::CR6, MVT::i32), 4487 CompNode.getValue(1)); 4488 4489 // Unpack the result based on how the target uses it. 4490 unsigned BitNo; // Bit # of CR6. 4491 bool InvertBit; // Invert result? 4492 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4493 default: // Can't happen, don't crash on invalid number though. 4494 case 0: // Return the value of the EQ bit of CR6. 4495 BitNo = 0; InvertBit = false; 4496 break; 4497 case 1: // Return the inverted value of the EQ bit of CR6. 4498 BitNo = 0; InvertBit = true; 4499 break; 4500 case 2: // Return the value of the LT bit of CR6. 4501 BitNo = 2; InvertBit = false; 4502 break; 4503 case 3: // Return the inverted value of the LT bit of CR6. 4504 BitNo = 2; InvertBit = true; 4505 break; 4506 } 4507 4508 // Shift the bit into the low position. 4509 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4510 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4511 // Isolate the bit. 4512 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4513 DAG.getConstant(1, MVT::i32)); 4514 4515 // If we are supposed to, toggle the bit. 4516 if (InvertBit) 4517 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4518 DAG.getConstant(1, MVT::i32)); 4519 return Flags; 4520 } 4521 4522 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4523 SelectionDAG &DAG) const { 4524 DebugLoc dl = Op.getDebugLoc(); 4525 // Create a stack slot that is 16-byte aligned. 4526 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4527 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4528 EVT PtrVT = getPointerTy(); 4529 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4530 4531 // Store the input value into Value#0 of the stack slot. 4532 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4533 Op.getOperand(0), FIdx, MachinePointerInfo(), 4534 false, false, 0); 4535 // Load it out. 4536 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4537 false, false, false, 0); 4538 } 4539 4540 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4541 DebugLoc dl = Op.getDebugLoc(); 4542 if (Op.getValueType() == MVT::v4i32) { 4543 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4544 4545 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4546 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4547 4548 SDValue RHSSwap = // = vrlw RHS, 16 4549 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4550 4551 // Shrinkify inputs to v8i16. 4552 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4553 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4554 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4555 4556 // Low parts multiplied together, generating 32-bit results (we ignore the 4557 // top parts). 4558 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4559 LHS, RHS, DAG, dl, MVT::v4i32); 4560 4561 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4562 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4563 // Shift the high parts up 16 bits. 4564 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4565 Neg16, DAG, dl); 4566 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4567 } else if (Op.getValueType() == MVT::v8i16) { 4568 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4569 4570 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4571 4572 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4573 LHS, RHS, Zero, DAG, dl); 4574 } else if (Op.getValueType() == MVT::v16i8) { 4575 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4576 4577 // Multiply the even 8-bit parts, producing 16-bit sums. 4578 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4579 LHS, RHS, DAG, dl, MVT::v8i16); 4580 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4581 4582 // Multiply the odd 8-bit parts, producing 16-bit sums. 4583 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4584 LHS, RHS, DAG, dl, MVT::v8i16); 4585 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4586 4587 // Merge the results together. 4588 int Ops[16]; 4589 for (unsigned i = 0; i != 8; ++i) { 4590 Ops[i*2 ] = 2*i+1; 4591 Ops[i*2+1] = 2*i+1+16; 4592 } 4593 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4594 } else { 4595 llvm_unreachable("Unknown mul to lower!"); 4596 } 4597 } 4598 4599 /// LowerOperation - Provide custom lowering hooks for some operations. 4600 /// 4601 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4602 switch (Op.getOpcode()) { 4603 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4604 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4605 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4606 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4607 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 4608 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4609 case ISD::SETCC: return LowerSETCC(Op, DAG); 4610 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 4611 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 4612 case ISD::VASTART: 4613 return LowerVASTART(Op, DAG, PPCSubTarget); 4614 4615 case ISD::VAARG: 4616 return LowerVAARG(Op, DAG, PPCSubTarget); 4617 4618 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4619 case ISD::DYNAMIC_STACKALLOC: 4620 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4621 4622 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4623 case ISD::FP_TO_UINT: 4624 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4625 Op.getDebugLoc()); 4626 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4627 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4628 4629 // Lower 64-bit shifts. 4630 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4631 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4632 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4633 4634 // Vector-related lowering. 4635 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4636 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4637 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4638 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4639 case ISD::MUL: return LowerMUL(Op, DAG); 4640 4641 // Frame & Return address. 4642 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4643 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4644 } 4645 } 4646 4647 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4648 SmallVectorImpl<SDValue>&Results, 4649 SelectionDAG &DAG) const { 4650 const TargetMachine &TM = getTargetMachine(); 4651 DebugLoc dl = N->getDebugLoc(); 4652 switch (N->getOpcode()) { 4653 default: 4654 llvm_unreachable("Do not know how to custom type legalize this operation!"); 4655 case ISD::VAARG: { 4656 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4657 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4658 return; 4659 4660 EVT VT = N->getValueType(0); 4661 4662 if (VT == MVT::i64) { 4663 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4664 4665 Results.push_back(NewNode); 4666 Results.push_back(NewNode.getValue(1)); 4667 } 4668 return; 4669 } 4670 case ISD::FP_ROUND_INREG: { 4671 assert(N->getValueType(0) == MVT::ppcf128); 4672 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4673 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4674 MVT::f64, N->getOperand(0), 4675 DAG.getIntPtrConstant(0)); 4676 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4677 MVT::f64, N->getOperand(0), 4678 DAG.getIntPtrConstant(1)); 4679 4680 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4681 // of the long double, and puts FPSCR back the way it was. We do not 4682 // actually model FPSCR. 4683 std::vector<EVT> NodeTys; 4684 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4685 4686 NodeTys.push_back(MVT::f64); // Return register 4687 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4688 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4689 MFFSreg = Result.getValue(0); 4690 InFlag = Result.getValue(1); 4691 4692 NodeTys.clear(); 4693 NodeTys.push_back(MVT::Glue); // Returns a flag 4694 Ops[0] = DAG.getConstant(31, MVT::i32); 4695 Ops[1] = InFlag; 4696 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4697 InFlag = Result.getValue(0); 4698 4699 NodeTys.clear(); 4700 NodeTys.push_back(MVT::Glue); // Returns a flag 4701 Ops[0] = DAG.getConstant(30, MVT::i32); 4702 Ops[1] = InFlag; 4703 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4704 InFlag = Result.getValue(0); 4705 4706 NodeTys.clear(); 4707 NodeTys.push_back(MVT::f64); // result of add 4708 NodeTys.push_back(MVT::Glue); // Returns a flag 4709 Ops[0] = Lo; 4710 Ops[1] = Hi; 4711 Ops[2] = InFlag; 4712 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4713 FPreg = Result.getValue(0); 4714 InFlag = Result.getValue(1); 4715 4716 NodeTys.clear(); 4717 NodeTys.push_back(MVT::f64); 4718 Ops[0] = DAG.getConstant(1, MVT::i32); 4719 Ops[1] = MFFSreg; 4720 Ops[2] = FPreg; 4721 Ops[3] = InFlag; 4722 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4723 FPreg = Result.getValue(0); 4724 4725 // We know the low half is about to be thrown away, so just use something 4726 // convenient. 4727 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4728 FPreg, FPreg)); 4729 return; 4730 } 4731 case ISD::FP_TO_SINT: 4732 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4733 return; 4734 } 4735 } 4736 4737 4738 //===----------------------------------------------------------------------===// 4739 // Other Lowering Code 4740 //===----------------------------------------------------------------------===// 4741 4742 MachineBasicBlock * 4743 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4744 bool is64bit, unsigned BinOpcode) const { 4745 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4746 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4747 4748 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4749 MachineFunction *F = BB->getParent(); 4750 MachineFunction::iterator It = BB; 4751 ++It; 4752 4753 unsigned dest = MI->getOperand(0).getReg(); 4754 unsigned ptrA = MI->getOperand(1).getReg(); 4755 unsigned ptrB = MI->getOperand(2).getReg(); 4756 unsigned incr = MI->getOperand(3).getReg(); 4757 DebugLoc dl = MI->getDebugLoc(); 4758 4759 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4760 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4761 F->insert(It, loopMBB); 4762 F->insert(It, exitMBB); 4763 exitMBB->splice(exitMBB->begin(), BB, 4764 llvm::next(MachineBasicBlock::iterator(MI)), 4765 BB->end()); 4766 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4767 4768 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4769 unsigned TmpReg = (!BinOpcode) ? incr : 4770 RegInfo.createVirtualRegister( 4771 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4772 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4773 4774 // thisMBB: 4775 // ... 4776 // fallthrough --> loopMBB 4777 BB->addSuccessor(loopMBB); 4778 4779 // loopMBB: 4780 // l[wd]arx dest, ptr 4781 // add r0, dest, incr 4782 // st[wd]cx. r0, ptr 4783 // bne- loopMBB 4784 // fallthrough --> exitMBB 4785 BB = loopMBB; 4786 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4787 .addReg(ptrA).addReg(ptrB); 4788 if (BinOpcode) 4789 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4790 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4791 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4792 BuildMI(BB, dl, TII->get(PPC::BCC)) 4793 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4794 BB->addSuccessor(loopMBB); 4795 BB->addSuccessor(exitMBB); 4796 4797 // exitMBB: 4798 // ... 4799 BB = exitMBB; 4800 return BB; 4801 } 4802 4803 MachineBasicBlock * 4804 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4805 MachineBasicBlock *BB, 4806 bool is8bit, // operation 4807 unsigned BinOpcode) const { 4808 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4809 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4810 // In 64 bit mode we have to use 64 bits for addresses, even though the 4811 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4812 // registers without caring whether they're 32 or 64, but here we're 4813 // doing actual arithmetic on the addresses. 4814 bool is64bit = PPCSubTarget.isPPC64(); 4815 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4816 4817 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4818 MachineFunction *F = BB->getParent(); 4819 MachineFunction::iterator It = BB; 4820 ++It; 4821 4822 unsigned dest = MI->getOperand(0).getReg(); 4823 unsigned ptrA = MI->getOperand(1).getReg(); 4824 unsigned ptrB = MI->getOperand(2).getReg(); 4825 unsigned incr = MI->getOperand(3).getReg(); 4826 DebugLoc dl = MI->getDebugLoc(); 4827 4828 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4829 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4830 F->insert(It, loopMBB); 4831 F->insert(It, exitMBB); 4832 exitMBB->splice(exitMBB->begin(), BB, 4833 llvm::next(MachineBasicBlock::iterator(MI)), 4834 BB->end()); 4835 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4836 4837 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4838 const TargetRegisterClass *RC = 4839 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4840 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4841 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4842 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4843 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4844 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4845 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4846 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4847 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4848 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4849 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4850 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4851 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4852 unsigned Ptr1Reg; 4853 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4854 4855 // thisMBB: 4856 // ... 4857 // fallthrough --> loopMBB 4858 BB->addSuccessor(loopMBB); 4859 4860 // The 4-byte load must be aligned, while a char or short may be 4861 // anywhere in the word. Hence all this nasty bookkeeping code. 4862 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4863 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4864 // xori shift, shift1, 24 [16] 4865 // rlwinm ptr, ptr1, 0, 0, 29 4866 // slw incr2, incr, shift 4867 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4868 // slw mask, mask2, shift 4869 // loopMBB: 4870 // lwarx tmpDest, ptr 4871 // add tmp, tmpDest, incr2 4872 // andc tmp2, tmpDest, mask 4873 // and tmp3, tmp, mask 4874 // or tmp4, tmp3, tmp2 4875 // stwcx. tmp4, ptr 4876 // bne- loopMBB 4877 // fallthrough --> exitMBB 4878 // srw dest, tmpDest, shift 4879 if (ptrA != ZeroReg) { 4880 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4881 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4882 .addReg(ptrA).addReg(ptrB); 4883 } else { 4884 Ptr1Reg = ptrB; 4885 } 4886 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4887 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4888 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4889 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4890 if (is64bit) 4891 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4892 .addReg(Ptr1Reg).addImm(0).addImm(61); 4893 else 4894 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4895 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4896 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4897 .addReg(incr).addReg(ShiftReg); 4898 if (is8bit) 4899 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4900 else { 4901 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4902 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4903 } 4904 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4905 .addReg(Mask2Reg).addReg(ShiftReg); 4906 4907 BB = loopMBB; 4908 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4909 .addReg(ZeroReg).addReg(PtrReg); 4910 if (BinOpcode) 4911 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4912 .addReg(Incr2Reg).addReg(TmpDestReg); 4913 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4914 .addReg(TmpDestReg).addReg(MaskReg); 4915 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4916 .addReg(TmpReg).addReg(MaskReg); 4917 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4918 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4919 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4920 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4921 BuildMI(BB, dl, TII->get(PPC::BCC)) 4922 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4923 BB->addSuccessor(loopMBB); 4924 BB->addSuccessor(exitMBB); 4925 4926 // exitMBB: 4927 // ... 4928 BB = exitMBB; 4929 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4930 .addReg(ShiftReg); 4931 return BB; 4932 } 4933 4934 MachineBasicBlock * 4935 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4936 MachineBasicBlock *BB) const { 4937 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4938 4939 // To "insert" these instructions we actually have to insert their 4940 // control-flow patterns. 4941 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4942 MachineFunction::iterator It = BB; 4943 ++It; 4944 4945 MachineFunction *F = BB->getParent(); 4946 4947 if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 4948 MI->getOpcode() == PPC::SELECT_CC_I8)) { 4949 unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ? 4950 PPC::ISEL8 : PPC::ISEL; 4951 unsigned SelectPred = MI->getOperand(4).getImm(); 4952 DebugLoc dl = MI->getDebugLoc(); 4953 4954 // The SelectPred is ((BI << 5) | BO) for a BCC 4955 unsigned BO = SelectPred & 0xF; 4956 assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel"); 4957 4958 unsigned TrueOpNo, FalseOpNo; 4959 if (BO == 12) { 4960 TrueOpNo = 2; 4961 FalseOpNo = 3; 4962 } else { 4963 TrueOpNo = 3; 4964 FalseOpNo = 2; 4965 SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred); 4966 } 4967 4968 BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg()) 4969 .addReg(MI->getOperand(TrueOpNo).getReg()) 4970 .addReg(MI->getOperand(FalseOpNo).getReg()) 4971 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()); 4972 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4973 MI->getOpcode() == PPC::SELECT_CC_I8 || 4974 MI->getOpcode() == PPC::SELECT_CC_F4 || 4975 MI->getOpcode() == PPC::SELECT_CC_F8 || 4976 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4977 4978 4979 // The incoming instruction knows the destination vreg to set, the 4980 // condition code register to branch on, the true/false values to 4981 // select between, and a branch opcode to use. 4982 4983 // thisMBB: 4984 // ... 4985 // TrueVal = ... 4986 // cmpTY ccX, r1, r2 4987 // bCC copy1MBB 4988 // fallthrough --> copy0MBB 4989 MachineBasicBlock *thisMBB = BB; 4990 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4991 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4992 unsigned SelectPred = MI->getOperand(4).getImm(); 4993 DebugLoc dl = MI->getDebugLoc(); 4994 F->insert(It, copy0MBB); 4995 F->insert(It, sinkMBB); 4996 4997 // Transfer the remainder of BB and its successor edges to sinkMBB. 4998 sinkMBB->splice(sinkMBB->begin(), BB, 4999 llvm::next(MachineBasicBlock::iterator(MI)), 5000 BB->end()); 5001 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 5002 5003 // Next, add the true and fallthrough blocks as its successors. 5004 BB->addSuccessor(copy0MBB); 5005 BB->addSuccessor(sinkMBB); 5006 5007 BuildMI(BB, dl, TII->get(PPC::BCC)) 5008 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 5009 5010 // copy0MBB: 5011 // %FalseValue = ... 5012 // # fallthrough to sinkMBB 5013 BB = copy0MBB; 5014 5015 // Update machine-CFG edges 5016 BB->addSuccessor(sinkMBB); 5017 5018 // sinkMBB: 5019 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 5020 // ... 5021 BB = sinkMBB; 5022 BuildMI(*BB, BB->begin(), dl, 5023 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 5024 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 5025 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 5026 } 5027 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 5028 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 5029 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 5030 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 5031 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 5032 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 5033 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 5034 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 5035 5036 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 5037 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 5038 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 5039 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 5040 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 5041 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 5042 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 5043 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 5044 5045 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 5046 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 5047 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 5048 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 5049 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 5050 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 5051 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 5052 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 5053 5054 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 5055 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 5056 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 5057 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 5058 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 5059 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 5060 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 5061 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 5062 5063 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 5064 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 5065 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 5066 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 5067 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 5068 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 5069 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 5070 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 5071 5072 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 5073 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 5074 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 5075 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 5076 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 5077 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 5078 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 5079 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 5080 5081 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 5082 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 5083 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 5084 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 5085 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 5086 BB = EmitAtomicBinary(MI, BB, false, 0); 5087 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 5088 BB = EmitAtomicBinary(MI, BB, true, 0); 5089 5090 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 5091 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 5092 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 5093 5094 unsigned dest = MI->getOperand(0).getReg(); 5095 unsigned ptrA = MI->getOperand(1).getReg(); 5096 unsigned ptrB = MI->getOperand(2).getReg(); 5097 unsigned oldval = MI->getOperand(3).getReg(); 5098 unsigned newval = MI->getOperand(4).getReg(); 5099 DebugLoc dl = MI->getDebugLoc(); 5100 5101 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5102 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5103 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5104 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5105 F->insert(It, loop1MBB); 5106 F->insert(It, loop2MBB); 5107 F->insert(It, midMBB); 5108 F->insert(It, exitMBB); 5109 exitMBB->splice(exitMBB->begin(), BB, 5110 llvm::next(MachineBasicBlock::iterator(MI)), 5111 BB->end()); 5112 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5113 5114 // thisMBB: 5115 // ... 5116 // fallthrough --> loopMBB 5117 BB->addSuccessor(loop1MBB); 5118 5119 // loop1MBB: 5120 // l[wd]arx dest, ptr 5121 // cmp[wd] dest, oldval 5122 // bne- midMBB 5123 // loop2MBB: 5124 // st[wd]cx. newval, ptr 5125 // bne- loopMBB 5126 // b exitBB 5127 // midMBB: 5128 // st[wd]cx. dest, ptr 5129 // exitBB: 5130 BB = loop1MBB; 5131 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 5132 .addReg(ptrA).addReg(ptrB); 5133 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 5134 .addReg(oldval).addReg(dest); 5135 BuildMI(BB, dl, TII->get(PPC::BCC)) 5136 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5137 BB->addSuccessor(loop2MBB); 5138 BB->addSuccessor(midMBB); 5139 5140 BB = loop2MBB; 5141 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5142 .addReg(newval).addReg(ptrA).addReg(ptrB); 5143 BuildMI(BB, dl, TII->get(PPC::BCC)) 5144 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5145 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5146 BB->addSuccessor(loop1MBB); 5147 BB->addSuccessor(exitMBB); 5148 5149 BB = midMBB; 5150 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5151 .addReg(dest).addReg(ptrA).addReg(ptrB); 5152 BB->addSuccessor(exitMBB); 5153 5154 // exitMBB: 5155 // ... 5156 BB = exitMBB; 5157 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5158 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5159 // We must use 64-bit registers for addresses when targeting 64-bit, 5160 // since we're actually doing arithmetic on them. Other registers 5161 // can be 32-bit. 5162 bool is64bit = PPCSubTarget.isPPC64(); 5163 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5164 5165 unsigned dest = MI->getOperand(0).getReg(); 5166 unsigned ptrA = MI->getOperand(1).getReg(); 5167 unsigned ptrB = MI->getOperand(2).getReg(); 5168 unsigned oldval = MI->getOperand(3).getReg(); 5169 unsigned newval = MI->getOperand(4).getReg(); 5170 DebugLoc dl = MI->getDebugLoc(); 5171 5172 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5173 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5174 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5175 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5176 F->insert(It, loop1MBB); 5177 F->insert(It, loop2MBB); 5178 F->insert(It, midMBB); 5179 F->insert(It, exitMBB); 5180 exitMBB->splice(exitMBB->begin(), BB, 5181 llvm::next(MachineBasicBlock::iterator(MI)), 5182 BB->end()); 5183 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5184 5185 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5186 const TargetRegisterClass *RC = 5187 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5188 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5189 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5190 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5191 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5192 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5193 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5194 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5195 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5196 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5197 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5198 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5199 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5200 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5201 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5202 unsigned Ptr1Reg; 5203 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5204 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5205 // thisMBB: 5206 // ... 5207 // fallthrough --> loopMBB 5208 BB->addSuccessor(loop1MBB); 5209 5210 // The 4-byte load must be aligned, while a char or short may be 5211 // anywhere in the word. Hence all this nasty bookkeeping code. 5212 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5213 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5214 // xori shift, shift1, 24 [16] 5215 // rlwinm ptr, ptr1, 0, 0, 29 5216 // slw newval2, newval, shift 5217 // slw oldval2, oldval,shift 5218 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5219 // slw mask, mask2, shift 5220 // and newval3, newval2, mask 5221 // and oldval3, oldval2, mask 5222 // loop1MBB: 5223 // lwarx tmpDest, ptr 5224 // and tmp, tmpDest, mask 5225 // cmpw tmp, oldval3 5226 // bne- midMBB 5227 // loop2MBB: 5228 // andc tmp2, tmpDest, mask 5229 // or tmp4, tmp2, newval3 5230 // stwcx. tmp4, ptr 5231 // bne- loop1MBB 5232 // b exitBB 5233 // midMBB: 5234 // stwcx. tmpDest, ptr 5235 // exitBB: 5236 // srw dest, tmpDest, shift 5237 if (ptrA != ZeroReg) { 5238 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5239 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5240 .addReg(ptrA).addReg(ptrB); 5241 } else { 5242 Ptr1Reg = ptrB; 5243 } 5244 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5245 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5246 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5247 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5248 if (is64bit) 5249 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5250 .addReg(Ptr1Reg).addImm(0).addImm(61); 5251 else 5252 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5253 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5254 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5255 .addReg(newval).addReg(ShiftReg); 5256 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5257 .addReg(oldval).addReg(ShiftReg); 5258 if (is8bit) 5259 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5260 else { 5261 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5262 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5263 .addReg(Mask3Reg).addImm(65535); 5264 } 5265 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5266 .addReg(Mask2Reg).addReg(ShiftReg); 5267 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5268 .addReg(NewVal2Reg).addReg(MaskReg); 5269 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5270 .addReg(OldVal2Reg).addReg(MaskReg); 5271 5272 BB = loop1MBB; 5273 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5274 .addReg(ZeroReg).addReg(PtrReg); 5275 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5276 .addReg(TmpDestReg).addReg(MaskReg); 5277 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5278 .addReg(TmpReg).addReg(OldVal3Reg); 5279 BuildMI(BB, dl, TII->get(PPC::BCC)) 5280 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5281 BB->addSuccessor(loop2MBB); 5282 BB->addSuccessor(midMBB); 5283 5284 BB = loop2MBB; 5285 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5286 .addReg(TmpDestReg).addReg(MaskReg); 5287 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5288 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5289 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5290 .addReg(ZeroReg).addReg(PtrReg); 5291 BuildMI(BB, dl, TII->get(PPC::BCC)) 5292 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5293 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5294 BB->addSuccessor(loop1MBB); 5295 BB->addSuccessor(exitMBB); 5296 5297 BB = midMBB; 5298 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5299 .addReg(ZeroReg).addReg(PtrReg); 5300 BB->addSuccessor(exitMBB); 5301 5302 // exitMBB: 5303 // ... 5304 BB = exitMBB; 5305 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5306 .addReg(ShiftReg); 5307 } else { 5308 llvm_unreachable("Unexpected instr type to insert"); 5309 } 5310 5311 MI->eraseFromParent(); // The pseudo instruction is gone now. 5312 return BB; 5313 } 5314 5315 //===----------------------------------------------------------------------===// 5316 // Target Optimization Hooks 5317 //===----------------------------------------------------------------------===// 5318 5319 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5320 DAGCombinerInfo &DCI) const { 5321 const TargetMachine &TM = getTargetMachine(); 5322 SelectionDAG &DAG = DCI.DAG; 5323 DebugLoc dl = N->getDebugLoc(); 5324 switch (N->getOpcode()) { 5325 default: break; 5326 case PPCISD::SHL: 5327 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5328 if (C->isNullValue()) // 0 << V -> 0. 5329 return N->getOperand(0); 5330 } 5331 break; 5332 case PPCISD::SRL: 5333 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5334 if (C->isNullValue()) // 0 >>u V -> 0. 5335 return N->getOperand(0); 5336 } 5337 break; 5338 case PPCISD::SRA: 5339 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5340 if (C->isNullValue() || // 0 >>s V -> 0. 5341 C->isAllOnesValue()) // -1 >>s V -> -1. 5342 return N->getOperand(0); 5343 } 5344 break; 5345 5346 case ISD::SINT_TO_FP: 5347 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5348 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5349 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5350 // We allow the src/dst to be either f32/f64, but the intermediate 5351 // type must be i64. 5352 if (N->getOperand(0).getValueType() == MVT::i64 && 5353 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5354 SDValue Val = N->getOperand(0).getOperand(0); 5355 if (Val.getValueType() == MVT::f32) { 5356 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5357 DCI.AddToWorklist(Val.getNode()); 5358 } 5359 5360 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5361 DCI.AddToWorklist(Val.getNode()); 5362 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5363 DCI.AddToWorklist(Val.getNode()); 5364 if (N->getValueType(0) == MVT::f32) { 5365 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5366 DAG.getIntPtrConstant(0)); 5367 DCI.AddToWorklist(Val.getNode()); 5368 } 5369 return Val; 5370 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5371 // If the intermediate type is i32, we can avoid the load/store here 5372 // too. 5373 } 5374 } 5375 } 5376 break; 5377 case ISD::STORE: 5378 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5379 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5380 !cast<StoreSDNode>(N)->isTruncatingStore() && 5381 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5382 N->getOperand(1).getValueType() == MVT::i32 && 5383 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5384 SDValue Val = N->getOperand(1).getOperand(0); 5385 if (Val.getValueType() == MVT::f32) { 5386 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5387 DCI.AddToWorklist(Val.getNode()); 5388 } 5389 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5390 DCI.AddToWorklist(Val.getNode()); 5391 5392 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5393 N->getOperand(2), N->getOperand(3)); 5394 DCI.AddToWorklist(Val.getNode()); 5395 return Val; 5396 } 5397 5398 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5399 if (cast<StoreSDNode>(N)->isUnindexed() && 5400 N->getOperand(1).getOpcode() == ISD::BSWAP && 5401 N->getOperand(1).getNode()->hasOneUse() && 5402 (N->getOperand(1).getValueType() == MVT::i32 || 5403 N->getOperand(1).getValueType() == MVT::i16)) { 5404 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5405 // Do an any-extend to 32-bits if this is a half-word input. 5406 if (BSwapOp.getValueType() == MVT::i16) 5407 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5408 5409 SDValue Ops[] = { 5410 N->getOperand(0), BSwapOp, N->getOperand(2), 5411 DAG.getValueType(N->getOperand(1).getValueType()) 5412 }; 5413 return 5414 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5415 Ops, array_lengthof(Ops), 5416 cast<StoreSDNode>(N)->getMemoryVT(), 5417 cast<StoreSDNode>(N)->getMemOperand()); 5418 } 5419 break; 5420 case ISD::BSWAP: 5421 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5422 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5423 N->getOperand(0).hasOneUse() && 5424 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5425 SDValue Load = N->getOperand(0); 5426 LoadSDNode *LD = cast<LoadSDNode>(Load); 5427 // Create the byte-swapping load. 5428 SDValue Ops[] = { 5429 LD->getChain(), // Chain 5430 LD->getBasePtr(), // Ptr 5431 DAG.getValueType(N->getValueType(0)) // VT 5432 }; 5433 SDValue BSLoad = 5434 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5435 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5436 LD->getMemoryVT(), LD->getMemOperand()); 5437 5438 // If this is an i16 load, insert the truncate. 5439 SDValue ResVal = BSLoad; 5440 if (N->getValueType(0) == MVT::i16) 5441 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5442 5443 // First, combine the bswap away. This makes the value produced by the 5444 // load dead. 5445 DCI.CombineTo(N, ResVal); 5446 5447 // Next, combine the load away, we give it a bogus result value but a real 5448 // chain result. The result value is dead because the bswap is dead. 5449 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5450 5451 // Return N so it doesn't get rechecked! 5452 return SDValue(N, 0); 5453 } 5454 5455 break; 5456 case PPCISD::VCMP: { 5457 // If a VCMPo node already exists with exactly the same operands as this 5458 // node, use its result instead of this node (VCMPo computes both a CR6 and 5459 // a normal output). 5460 // 5461 if (!N->getOperand(0).hasOneUse() && 5462 !N->getOperand(1).hasOneUse() && 5463 !N->getOperand(2).hasOneUse()) { 5464 5465 // Scan all of the users of the LHS, looking for VCMPo's that match. 5466 SDNode *VCMPoNode = 0; 5467 5468 SDNode *LHSN = N->getOperand(0).getNode(); 5469 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5470 UI != E; ++UI) 5471 if (UI->getOpcode() == PPCISD::VCMPo && 5472 UI->getOperand(1) == N->getOperand(1) && 5473 UI->getOperand(2) == N->getOperand(2) && 5474 UI->getOperand(0) == N->getOperand(0)) { 5475 VCMPoNode = *UI; 5476 break; 5477 } 5478 5479 // If there is no VCMPo node, or if the flag value has a single use, don't 5480 // transform this. 5481 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5482 break; 5483 5484 // Look at the (necessarily single) use of the flag value. If it has a 5485 // chain, this transformation is more complex. Note that multiple things 5486 // could use the value result, which we should ignore. 5487 SDNode *FlagUser = 0; 5488 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5489 FlagUser == 0; ++UI) { 5490 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5491 SDNode *User = *UI; 5492 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5493 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5494 FlagUser = User; 5495 break; 5496 } 5497 } 5498 } 5499 5500 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5501 // give up for right now. 5502 if (FlagUser->getOpcode() == PPCISD::MFCR) 5503 return SDValue(VCMPoNode, 0); 5504 } 5505 break; 5506 } 5507 case ISD::BR_CC: { 5508 // If this is a branch on an altivec predicate comparison, lower this so 5509 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5510 // lowering is done pre-legalize, because the legalizer lowers the predicate 5511 // compare down to code that is difficult to reassemble. 5512 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5513 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5514 int CompareOpc; 5515 bool isDot; 5516 5517 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5518 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5519 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5520 assert(isDot && "Can't compare against a vector result!"); 5521 5522 // If this is a comparison against something other than 0/1, then we know 5523 // that the condition is never/always true. 5524 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5525 if (Val != 0 && Val != 1) { 5526 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5527 return N->getOperand(0); 5528 // Always !=, turn it into an unconditional branch. 5529 return DAG.getNode(ISD::BR, dl, MVT::Other, 5530 N->getOperand(0), N->getOperand(4)); 5531 } 5532 5533 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5534 5535 // Create the PPCISD altivec 'dot' comparison node. 5536 std::vector<EVT> VTs; 5537 SDValue Ops[] = { 5538 LHS.getOperand(2), // LHS of compare 5539 LHS.getOperand(3), // RHS of compare 5540 DAG.getConstant(CompareOpc, MVT::i32) 5541 }; 5542 VTs.push_back(LHS.getOperand(2).getValueType()); 5543 VTs.push_back(MVT::Glue); 5544 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5545 5546 // Unpack the result based on how the target uses it. 5547 PPC::Predicate CompOpc; 5548 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5549 default: // Can't happen, don't crash on invalid number though. 5550 case 0: // Branch on the value of the EQ bit of CR6. 5551 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5552 break; 5553 case 1: // Branch on the inverted value of the EQ bit of CR6. 5554 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5555 break; 5556 case 2: // Branch on the value of the LT bit of CR6. 5557 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5558 break; 5559 case 3: // Branch on the inverted value of the LT bit of CR6. 5560 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5561 break; 5562 } 5563 5564 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5565 DAG.getConstant(CompOpc, MVT::i32), 5566 DAG.getRegister(PPC::CR6, MVT::i32), 5567 N->getOperand(4), CompNode.getValue(1)); 5568 } 5569 break; 5570 } 5571 } 5572 5573 return SDValue(); 5574 } 5575 5576 //===----------------------------------------------------------------------===// 5577 // Inline Assembly Support 5578 //===----------------------------------------------------------------------===// 5579 5580 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5581 APInt &KnownZero, 5582 APInt &KnownOne, 5583 const SelectionDAG &DAG, 5584 unsigned Depth) const { 5585 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 5586 switch (Op.getOpcode()) { 5587 default: break; 5588 case PPCISD::LBRX: { 5589 // lhbrx is known to have the top bits cleared out. 5590 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5591 KnownZero = 0xFFFF0000; 5592 break; 5593 } 5594 case ISD::INTRINSIC_WO_CHAIN: { 5595 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5596 default: break; 5597 case Intrinsic::ppc_altivec_vcmpbfp_p: 5598 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5599 case Intrinsic::ppc_altivec_vcmpequb_p: 5600 case Intrinsic::ppc_altivec_vcmpequh_p: 5601 case Intrinsic::ppc_altivec_vcmpequw_p: 5602 case Intrinsic::ppc_altivec_vcmpgefp_p: 5603 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5604 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5605 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5606 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5607 case Intrinsic::ppc_altivec_vcmpgtub_p: 5608 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5609 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5610 KnownZero = ~1U; // All bits but the low one are known to be zero. 5611 break; 5612 } 5613 } 5614 } 5615 } 5616 5617 5618 /// getConstraintType - Given a constraint, return the type of 5619 /// constraint it is for this target. 5620 PPCTargetLowering::ConstraintType 5621 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5622 if (Constraint.size() == 1) { 5623 switch (Constraint[0]) { 5624 default: break; 5625 case 'b': 5626 case 'r': 5627 case 'f': 5628 case 'v': 5629 case 'y': 5630 return C_RegisterClass; 5631 } 5632 } 5633 return TargetLowering::getConstraintType(Constraint); 5634 } 5635 5636 /// Examine constraint type and operand type and determine a weight value. 5637 /// This object must already have been set up with the operand type 5638 /// and the current alternative constraint selected. 5639 TargetLowering::ConstraintWeight 5640 PPCTargetLowering::getSingleConstraintMatchWeight( 5641 AsmOperandInfo &info, const char *constraint) const { 5642 ConstraintWeight weight = CW_Invalid; 5643 Value *CallOperandVal = info.CallOperandVal; 5644 // If we don't have a value, we can't do a match, 5645 // but allow it at the lowest weight. 5646 if (CallOperandVal == NULL) 5647 return CW_Default; 5648 Type *type = CallOperandVal->getType(); 5649 // Look at the constraint type. 5650 switch (*constraint) { 5651 default: 5652 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5653 break; 5654 case 'b': 5655 if (type->isIntegerTy()) 5656 weight = CW_Register; 5657 break; 5658 case 'f': 5659 if (type->isFloatTy()) 5660 weight = CW_Register; 5661 break; 5662 case 'd': 5663 if (type->isDoubleTy()) 5664 weight = CW_Register; 5665 break; 5666 case 'v': 5667 if (type->isVectorTy()) 5668 weight = CW_Register; 5669 break; 5670 case 'y': 5671 weight = CW_Register; 5672 break; 5673 } 5674 return weight; 5675 } 5676 5677 std::pair<unsigned, const TargetRegisterClass*> 5678 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5679 EVT VT) const { 5680 if (Constraint.size() == 1) { 5681 // GCC RS6000 Constraint Letters 5682 switch (Constraint[0]) { 5683 case 'b': // R1-R31 5684 case 'r': // R0-R31 5685 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5686 return std::make_pair(0U, &PPC::G8RCRegClass); 5687 return std::make_pair(0U, &PPC::GPRCRegClass); 5688 case 'f': 5689 if (VT == MVT::f32) 5690 return std::make_pair(0U, &PPC::F4RCRegClass); 5691 if (VT == MVT::f64) 5692 return std::make_pair(0U, &PPC::F8RCRegClass); 5693 break; 5694 case 'v': 5695 return std::make_pair(0U, &PPC::VRRCRegClass); 5696 case 'y': // crrc 5697 return std::make_pair(0U, &PPC::CRRCRegClass); 5698 } 5699 } 5700 5701 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5702 } 5703 5704 5705 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5706 /// vector. If it is invalid, don't add anything to Ops. 5707 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5708 std::string &Constraint, 5709 std::vector<SDValue>&Ops, 5710 SelectionDAG &DAG) const { 5711 SDValue Result(0,0); 5712 5713 // Only support length 1 constraints. 5714 if (Constraint.length() > 1) return; 5715 5716 char Letter = Constraint[0]; 5717 switch (Letter) { 5718 default: break; 5719 case 'I': 5720 case 'J': 5721 case 'K': 5722 case 'L': 5723 case 'M': 5724 case 'N': 5725 case 'O': 5726 case 'P': { 5727 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5728 if (!CST) return; // Must be an immediate to match. 5729 unsigned Value = CST->getZExtValue(); 5730 switch (Letter) { 5731 default: llvm_unreachable("Unknown constraint letter!"); 5732 case 'I': // "I" is a signed 16-bit constant. 5733 if ((short)Value == (int)Value) 5734 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5735 break; 5736 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5737 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5738 if ((short)Value == 0) 5739 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5740 break; 5741 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5742 if ((Value >> 16) == 0) 5743 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5744 break; 5745 case 'M': // "M" is a constant that is greater than 31. 5746 if (Value > 31) 5747 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5748 break; 5749 case 'N': // "N" is a positive constant that is an exact power of two. 5750 if ((int)Value > 0 && isPowerOf2_32(Value)) 5751 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5752 break; 5753 case 'O': // "O" is the constant zero. 5754 if (Value == 0) 5755 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5756 break; 5757 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5758 if ((short)-Value == (int)-Value) 5759 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5760 break; 5761 } 5762 break; 5763 } 5764 } 5765 5766 if (Result.getNode()) { 5767 Ops.push_back(Result); 5768 return; 5769 } 5770 5771 // Handle standard constraint letters. 5772 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5773 } 5774 5775 // isLegalAddressingMode - Return true if the addressing mode represented 5776 // by AM is legal for this target, for a load/store of the specified type. 5777 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5778 Type *Ty) const { 5779 // FIXME: PPC does not allow r+i addressing modes for vectors! 5780 5781 // PPC allows a sign-extended 16-bit immediate field. 5782 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5783 return false; 5784 5785 // No global is ever allowed as a base. 5786 if (AM.BaseGV) 5787 return false; 5788 5789 // PPC only support r+r, 5790 switch (AM.Scale) { 5791 case 0: // "r+i" or just "i", depending on HasBaseReg. 5792 break; 5793 case 1: 5794 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5795 return false; 5796 // Otherwise we have r+r or r+i. 5797 break; 5798 case 2: 5799 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5800 return false; 5801 // Allow 2*r as r+r. 5802 break; 5803 default: 5804 // No other scales are supported. 5805 return false; 5806 } 5807 5808 return true; 5809 } 5810 5811 /// isLegalAddressImmediate - Return true if the integer value can be used 5812 /// as the offset of the target addressing mode for load / store of the 5813 /// given type. 5814 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5815 // PPC allows a sign-extended 16-bit immediate field. 5816 return (V > -(1 << 16) && V < (1 << 16)-1); 5817 } 5818 5819 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const { 5820 return false; 5821 } 5822 5823 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5824 SelectionDAG &DAG) const { 5825 MachineFunction &MF = DAG.getMachineFunction(); 5826 MachineFrameInfo *MFI = MF.getFrameInfo(); 5827 MFI->setReturnAddressIsTaken(true); 5828 5829 DebugLoc dl = Op.getDebugLoc(); 5830 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5831 5832 // Make sure the function does not optimize away the store of the RA to 5833 // the stack. 5834 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5835 FuncInfo->setLRStoreRequired(); 5836 bool isPPC64 = PPCSubTarget.isPPC64(); 5837 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5838 5839 if (Depth > 0) { 5840 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5841 SDValue Offset = 5842 5843 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5844 isPPC64? MVT::i64 : MVT::i32); 5845 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5846 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5847 FrameAddr, Offset), 5848 MachinePointerInfo(), false, false, false, 0); 5849 } 5850 5851 // Just load the return address off the stack. 5852 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5853 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5854 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 5855 } 5856 5857 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5858 SelectionDAG &DAG) const { 5859 DebugLoc dl = Op.getDebugLoc(); 5860 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5861 5862 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5863 bool isPPC64 = PtrVT == MVT::i64; 5864 5865 MachineFunction &MF = DAG.getMachineFunction(); 5866 MachineFrameInfo *MFI = MF.getFrameInfo(); 5867 MFI->setFrameAddressIsTaken(true); 5868 bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || 5869 MFI->hasVarSizedObjects()) && 5870 MFI->getStackSize() && 5871 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5872 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5873 (is31 ? PPC::R31 : PPC::R1); 5874 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5875 PtrVT); 5876 while (Depth--) 5877 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5878 FrameAddr, MachinePointerInfo(), false, false, 5879 false, 0); 5880 return FrameAddr; 5881 } 5882 5883 bool 5884 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5885 // The PowerPC target isn't yet aware of offsets. 5886 return false; 5887 } 5888 5889 /// getOptimalMemOpType - Returns the target specific optimal type for load 5890 /// and store operations as a result of memset, memcpy, and memmove 5891 /// lowering. If DstAlign is zero that means it's safe to destination 5892 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5893 /// means there isn't a need to check it against alignment requirement, 5894 /// probably because the source does not need to be loaded. If 5895 /// 'IsZeroVal' is true, that means it's safe to return a 5896 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5897 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5898 /// constant so it does not need to be loaded. 5899 /// It returns EVT::Other if the type should be determined using generic 5900 /// target-independent logic. 5901 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5902 unsigned DstAlign, unsigned SrcAlign, 5903 bool IsZeroVal, 5904 bool MemcpyStrSrc, 5905 MachineFunction &MF) const { 5906 if (this->PPCSubTarget.isPPC64()) { 5907 return MVT::i64; 5908 } else { 5909 return MVT::i32; 5910 } 5911 } 5912 5913 /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than 5914 /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to 5915 /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd 5916 /// is expanded to mul + add. 5917 bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const { 5918 if (!VT.isSimple()) 5919 return false; 5920 5921 switch (VT.getSimpleVT().SimpleTy) { 5922 case MVT::f32: 5923 case MVT::f64: 5924 case MVT::v4f32: 5925 return true; 5926 default: 5927 break; 5928 } 5929 5930 return false; 5931 } 5932 5933 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 5934 if (DisableILPPref) 5935 return TargetLowering::getSchedulingPreference(N); 5936 5937 return Sched::ILP; 5938 } 5939 5940