1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 171 172 // PowerPC has pre-inc load and store's. 173 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 174 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 175 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 176 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 177 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 178 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 179 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 180 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 181 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 182 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 183 if (!Subtarget.hasSPE()) { 184 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 185 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 186 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 187 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 188 } 189 190 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 192 for (MVT VT : ScalarIntVTs) { 193 setOperationAction(ISD::ADDC, VT, Legal); 194 setOperationAction(ISD::ADDE, VT, Legal); 195 setOperationAction(ISD::SUBC, VT, Legal); 196 setOperationAction(ISD::SUBE, VT, Legal); 197 } 198 199 if (Subtarget.useCRBits()) { 200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 201 202 if (isPPC64 || Subtarget.hasFPCVT()) { 203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 204 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 205 isPPC64 ? MVT::i64 : MVT::i32); 206 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 207 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 208 isPPC64 ? MVT::i64 : MVT::i32); 209 } else { 210 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 211 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 212 } 213 214 // PowerPC does not support direct load/store of condition registers. 215 setOperationAction(ISD::LOAD, MVT::i1, Custom); 216 setOperationAction(ISD::STORE, MVT::i1, Custom); 217 218 // FIXME: Remove this once the ANDI glue bug is fixed: 219 if (ANDIGlueBug) 220 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 221 222 for (MVT VT : MVT::integer_valuetypes()) { 223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 225 setTruncStoreAction(VT, MVT::i1, Expand); 226 } 227 228 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 229 } 230 231 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 232 // PPC (the libcall is not available). 233 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 234 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 235 236 // We do not currently implement these libm ops for PowerPC. 237 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 238 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 239 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 240 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 241 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 242 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 243 244 // PowerPC has no SREM/UREM instructions unless we are on P9 245 // On P9 we may use a hardware instruction to compute the remainder. 246 // The instructions are not legalized directly because in the cases where the 247 // result of both the remainder and the division is required it is more 248 // efficient to compute the remainder from the result of the division rather 249 // than use the remainder instruction. 250 if (Subtarget.isISA3_0()) { 251 setOperationAction(ISD::SREM, MVT::i32, Custom); 252 setOperationAction(ISD::UREM, MVT::i32, Custom); 253 setOperationAction(ISD::SREM, MVT::i64, Custom); 254 setOperationAction(ISD::UREM, MVT::i64, Custom); 255 } else { 256 setOperationAction(ISD::SREM, MVT::i32, Expand); 257 setOperationAction(ISD::UREM, MVT::i32, Expand); 258 setOperationAction(ISD::SREM, MVT::i64, Expand); 259 setOperationAction(ISD::UREM, MVT::i64, Expand); 260 } 261 262 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 263 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 264 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 265 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 266 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 267 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 268 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 269 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 270 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 271 272 // Handle constrained floating-point operations of scalar. 273 // TODO: Handle SPE specific operation. 274 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 275 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 276 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 277 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 278 279 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 280 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 281 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 282 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 283 284 // We don't support sin/cos/sqrt/fmod/pow 285 setOperationAction(ISD::FSIN , MVT::f64, Expand); 286 setOperationAction(ISD::FCOS , MVT::f64, Expand); 287 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 288 setOperationAction(ISD::FREM , MVT::f64, Expand); 289 setOperationAction(ISD::FPOW , MVT::f64, Expand); 290 setOperationAction(ISD::FSIN , MVT::f32, Expand); 291 setOperationAction(ISD::FCOS , MVT::f32, Expand); 292 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 293 setOperationAction(ISD::FREM , MVT::f32, Expand); 294 setOperationAction(ISD::FPOW , MVT::f32, Expand); 295 if (Subtarget.hasSPE()) { 296 setOperationAction(ISD::FMA , MVT::f64, Expand); 297 setOperationAction(ISD::FMA , MVT::f32, Expand); 298 } else { 299 setOperationAction(ISD::FMA , MVT::f64, Legal); 300 setOperationAction(ISD::FMA , MVT::f32, Legal); 301 } 302 303 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 304 305 // If we're enabling GP optimizations, use hardware square root 306 if (!Subtarget.hasFSQRT() && 307 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 308 Subtarget.hasFRE())) 309 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 310 311 if (!Subtarget.hasFSQRT() && 312 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 313 Subtarget.hasFRES())) 314 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 315 316 if (Subtarget.hasFCPSGN()) { 317 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 318 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 319 } else { 320 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 321 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 322 } 323 324 if (Subtarget.hasFPRND()) { 325 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 326 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 327 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 328 setOperationAction(ISD::FROUND, MVT::f64, Legal); 329 330 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 331 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 332 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 333 setOperationAction(ISD::FROUND, MVT::f32, Legal); 334 } 335 336 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 337 // to speed up scalar BSWAP64. 338 // CTPOP or CTTZ were introduced in P8/P9 respectively 339 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 340 if (Subtarget.hasP9Vector()) 341 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 342 else 343 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 344 if (Subtarget.isISA3_0()) { 345 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 346 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 347 } else { 348 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 349 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 350 } 351 352 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 353 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 354 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 355 } else { 356 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 357 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 358 } 359 360 // PowerPC does not have ROTR 361 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 362 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 363 364 if (!Subtarget.useCRBits()) { 365 // PowerPC does not have Select 366 setOperationAction(ISD::SELECT, MVT::i32, Expand); 367 setOperationAction(ISD::SELECT, MVT::i64, Expand); 368 setOperationAction(ISD::SELECT, MVT::f32, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Expand); 370 } 371 372 // PowerPC wants to turn select_cc of FP into fsel when possible. 373 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 374 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 375 376 // PowerPC wants to optimize integer setcc a bit 377 if (!Subtarget.useCRBits()) 378 setOperationAction(ISD::SETCC, MVT::i32, Custom); 379 380 // PowerPC does not have BRCOND which requires SetCC 381 if (!Subtarget.useCRBits()) 382 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 383 384 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 385 386 if (Subtarget.hasSPE()) { 387 // SPE has built-in conversions 388 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 389 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 390 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 391 } else { 392 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 393 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 394 395 // PowerPC does not have [U|S]INT_TO_FP 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 398 } 399 400 if (Subtarget.hasDirectMove() && isPPC64) { 401 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 402 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 403 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 404 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 405 if (TM.Options.UnsafeFPMath) { 406 setOperationAction(ISD::LRINT, MVT::f64, Legal); 407 setOperationAction(ISD::LRINT, MVT::f32, Legal); 408 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 409 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 410 setOperationAction(ISD::LROUND, MVT::f64, Legal); 411 setOperationAction(ISD::LROUND, MVT::f32, Legal); 412 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 413 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 414 } 415 } else { 416 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 417 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 418 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 419 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 420 } 421 422 // We cannot sextinreg(i1). Expand to shifts. 423 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 424 425 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 426 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 427 // support continuation, user-level threading, and etc.. As a result, no 428 // other SjLj exception interfaces are implemented and please don't build 429 // your own exception handling based on them. 430 // LLVM/Clang supports zero-cost DWARF exception handling. 431 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 432 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 433 434 // We want to legalize GlobalAddress and ConstantPool nodes into the 435 // appropriate instructions to materialize the address. 436 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 437 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 438 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 439 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 440 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 441 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 442 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 443 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 444 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 445 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 446 447 // TRAP is legal. 448 setOperationAction(ISD::TRAP, MVT::Other, Legal); 449 450 // TRAMPOLINE is custom lowered. 451 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 452 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 453 454 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 455 setOperationAction(ISD::VASTART , MVT::Other, Custom); 456 457 if (Subtarget.is64BitELFABI()) { 458 // VAARG always uses double-word chunks, so promote anything smaller. 459 setOperationAction(ISD::VAARG, MVT::i1, Promote); 460 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 461 setOperationAction(ISD::VAARG, MVT::i8, Promote); 462 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 463 setOperationAction(ISD::VAARG, MVT::i16, Promote); 464 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 465 setOperationAction(ISD::VAARG, MVT::i32, Promote); 466 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 467 setOperationAction(ISD::VAARG, MVT::Other, Expand); 468 } else if (Subtarget.is32BitELFABI()) { 469 // VAARG is custom lowered with the 32-bit SVR4 ABI. 470 setOperationAction(ISD::VAARG, MVT::Other, Custom); 471 setOperationAction(ISD::VAARG, MVT::i64, Custom); 472 } else 473 setOperationAction(ISD::VAARG, MVT::Other, Expand); 474 475 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 476 if (Subtarget.is32BitELFABI()) 477 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 478 else 479 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 480 481 // Use the default implementation. 482 setOperationAction(ISD::VAEND , MVT::Other, Expand); 483 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 484 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 485 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 486 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 487 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 488 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 489 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 490 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 491 492 // We want to custom lower some of our intrinsics. 493 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 494 495 // To handle counter-based loop conditions. 496 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 497 498 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 499 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 500 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 501 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 502 503 // Comparisons that require checking two conditions. 504 if (Subtarget.hasSPE()) { 505 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 506 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 507 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 508 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 509 } 510 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 511 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 512 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 513 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 514 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 515 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 516 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 517 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 518 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 519 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 520 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 521 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 522 523 if (Subtarget.has64BitSupport()) { 524 // They also have instructions for converting between i64 and fp. 525 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 526 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 527 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 528 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 529 // This is just the low 32 bits of a (signed) fp->i64 conversion. 530 // We cannot do this with Promote because i64 is not a legal type. 531 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 532 533 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 534 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 535 } else { 536 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 537 if (Subtarget.hasSPE()) 538 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 539 else 540 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 541 } 542 543 // With the instructions enabled under FPCVT, we can do everything. 544 if (Subtarget.hasFPCVT()) { 545 if (Subtarget.has64BitSupport()) { 546 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 547 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 548 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 549 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 550 } 551 552 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 553 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 554 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 555 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 556 } 557 558 if (Subtarget.use64BitRegs()) { 559 // 64-bit PowerPC implementations can support i64 types directly 560 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 561 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 562 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 563 // 64-bit PowerPC wants to expand i128 shifts itself. 564 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 565 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 566 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 567 } else { 568 // 32-bit PowerPC wants to expand i64 shifts itself. 569 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 570 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 571 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 572 } 573 574 if (Subtarget.hasVSX()) { 575 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 576 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 577 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 578 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 579 } 580 581 if (Subtarget.hasAltivec()) { 582 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 583 setOperationAction(ISD::SADDSAT, VT, Legal); 584 setOperationAction(ISD::SSUBSAT, VT, Legal); 585 setOperationAction(ISD::UADDSAT, VT, Legal); 586 setOperationAction(ISD::USUBSAT, VT, Legal); 587 } 588 // First set operation action for all vector types to expand. Then we 589 // will selectively turn on ones that can be effectively codegen'd. 590 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 591 // add/sub are legal for all supported vector VT's. 592 setOperationAction(ISD::ADD, VT, Legal); 593 setOperationAction(ISD::SUB, VT, Legal); 594 595 // For v2i64, these are only valid with P8Vector. This is corrected after 596 // the loop. 597 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 598 setOperationAction(ISD::SMAX, VT, Legal); 599 setOperationAction(ISD::SMIN, VT, Legal); 600 setOperationAction(ISD::UMAX, VT, Legal); 601 setOperationAction(ISD::UMIN, VT, Legal); 602 } 603 else { 604 setOperationAction(ISD::SMAX, VT, Expand); 605 setOperationAction(ISD::SMIN, VT, Expand); 606 setOperationAction(ISD::UMAX, VT, Expand); 607 setOperationAction(ISD::UMIN, VT, Expand); 608 } 609 610 if (Subtarget.hasVSX()) { 611 setOperationAction(ISD::FMAXNUM, VT, Legal); 612 setOperationAction(ISD::FMINNUM, VT, Legal); 613 } 614 615 // Vector instructions introduced in P8 616 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 617 setOperationAction(ISD::CTPOP, VT, Legal); 618 setOperationAction(ISD::CTLZ, VT, Legal); 619 } 620 else { 621 setOperationAction(ISD::CTPOP, VT, Expand); 622 setOperationAction(ISD::CTLZ, VT, Expand); 623 } 624 625 // Vector instructions introduced in P9 626 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 627 setOperationAction(ISD::CTTZ, VT, Legal); 628 else 629 setOperationAction(ISD::CTTZ, VT, Expand); 630 631 // We promote all shuffles to v16i8. 632 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 633 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 634 635 // We promote all non-typed operations to v4i32. 636 setOperationAction(ISD::AND , VT, Promote); 637 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 638 setOperationAction(ISD::OR , VT, Promote); 639 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 640 setOperationAction(ISD::XOR , VT, Promote); 641 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 642 setOperationAction(ISD::LOAD , VT, Promote); 643 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 644 setOperationAction(ISD::SELECT, VT, Promote); 645 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 646 setOperationAction(ISD::VSELECT, VT, Legal); 647 setOperationAction(ISD::SELECT_CC, VT, Promote); 648 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 649 setOperationAction(ISD::STORE, VT, Promote); 650 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 651 652 // No other operations are legal. 653 setOperationAction(ISD::MUL , VT, Expand); 654 setOperationAction(ISD::SDIV, VT, Expand); 655 setOperationAction(ISD::SREM, VT, Expand); 656 setOperationAction(ISD::UDIV, VT, Expand); 657 setOperationAction(ISD::UREM, VT, Expand); 658 setOperationAction(ISD::FDIV, VT, Expand); 659 setOperationAction(ISD::FREM, VT, Expand); 660 setOperationAction(ISD::FNEG, VT, Expand); 661 setOperationAction(ISD::FSQRT, VT, Expand); 662 setOperationAction(ISD::FLOG, VT, Expand); 663 setOperationAction(ISD::FLOG10, VT, Expand); 664 setOperationAction(ISD::FLOG2, VT, Expand); 665 setOperationAction(ISD::FEXP, VT, Expand); 666 setOperationAction(ISD::FEXP2, VT, Expand); 667 setOperationAction(ISD::FSIN, VT, Expand); 668 setOperationAction(ISD::FCOS, VT, Expand); 669 setOperationAction(ISD::FABS, VT, Expand); 670 setOperationAction(ISD::FFLOOR, VT, Expand); 671 setOperationAction(ISD::FCEIL, VT, Expand); 672 setOperationAction(ISD::FTRUNC, VT, Expand); 673 setOperationAction(ISD::FRINT, VT, Expand); 674 setOperationAction(ISD::FNEARBYINT, VT, Expand); 675 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 676 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 677 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 678 setOperationAction(ISD::MULHU, VT, Expand); 679 setOperationAction(ISD::MULHS, VT, Expand); 680 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 681 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 682 setOperationAction(ISD::UDIVREM, VT, Expand); 683 setOperationAction(ISD::SDIVREM, VT, Expand); 684 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 685 setOperationAction(ISD::FPOW, VT, Expand); 686 setOperationAction(ISD::BSWAP, VT, Expand); 687 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 688 setOperationAction(ISD::ROTL, VT, Expand); 689 setOperationAction(ISD::ROTR, VT, Expand); 690 691 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 692 setTruncStoreAction(VT, InnerVT, Expand); 693 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 694 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 695 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 696 } 697 } 698 if (!Subtarget.hasP8Vector()) { 699 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 700 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 701 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 702 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 703 } 704 705 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 706 setOperationAction(ISD::ABS, VT, Custom); 707 708 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 709 // with merges, splats, etc. 710 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 711 712 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 713 // are cheap, so handle them before they get expanded to scalar. 714 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 715 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 716 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 717 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 718 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 719 720 setOperationAction(ISD::AND , MVT::v4i32, Legal); 721 setOperationAction(ISD::OR , MVT::v4i32, Legal); 722 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 723 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 724 setOperationAction(ISD::SELECT, MVT::v4i32, 725 Subtarget.useCRBits() ? Legal : Expand); 726 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 727 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 728 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 729 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 730 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 731 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 732 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 733 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 734 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 735 736 // Without hasP8Altivec set, v2i64 SMAX isn't available. 737 // But ABS custom lowering requires SMAX support. 738 if (!Subtarget.hasP8Altivec()) 739 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 740 741 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 742 if (Subtarget.hasAltivec()) 743 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 744 setOperationAction(ISD::ROTL, VT, Legal); 745 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 746 if (Subtarget.hasP8Altivec()) 747 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 748 749 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 750 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 751 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 752 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 753 754 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 755 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 756 757 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 758 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 759 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 760 } 761 762 if (Subtarget.hasP8Altivec()) 763 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 764 else 765 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 766 767 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 768 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 769 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 771 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 772 773 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 774 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 775 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 776 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 777 778 // Altivec does not contain unordered floating-point compare instructions 779 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 780 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 781 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 782 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 783 784 if (Subtarget.hasVSX()) { 785 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 786 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 787 if (Subtarget.hasP8Vector()) { 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 789 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 790 } 791 if (Subtarget.hasDirectMove() && isPPC64) { 792 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 793 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 794 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 795 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 798 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 799 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 800 } 801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 802 803 // The nearbyint variants are not allowed to raise the inexact exception 804 // so we can only code-gen them with unsafe math. 805 if (TM.Options.UnsafeFPMath) { 806 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 807 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 808 } 809 810 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 811 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 812 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 813 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 814 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 815 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 816 setOperationAction(ISD::FROUND, MVT::f64, Legal); 817 setOperationAction(ISD::FRINT, MVT::f64, Legal); 818 819 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 820 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 821 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 822 setOperationAction(ISD::FROUND, MVT::f32, Legal); 823 setOperationAction(ISD::FRINT, MVT::f32, Legal); 824 825 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 826 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 827 828 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 829 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 830 831 // Share the Altivec comparison restrictions. 832 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 833 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 834 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 835 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 836 837 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 838 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 839 840 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 841 842 if (Subtarget.hasP8Vector()) 843 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 844 845 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 846 847 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 848 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 849 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 850 851 if (Subtarget.hasP8Altivec()) { 852 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 853 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 854 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 855 856 // 128 bit shifts can be accomplished via 3 instructions for SHL and 857 // SRL, but not for SRA because of the instructions available: 858 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 859 // doing 860 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 861 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 862 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 863 864 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 865 } 866 else { 867 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 868 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 869 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 870 871 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 872 873 // VSX v2i64 only supports non-arithmetic operations. 874 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 875 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 876 } 877 878 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 879 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 880 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 881 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 882 883 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 884 885 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 886 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 887 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 888 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 889 890 // Custom handling for partial vectors of integers converted to 891 // floating point. We already have optimal handling for v2i32 through 892 // the DAG combine, so those aren't necessary. 893 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 894 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 895 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 896 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 897 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 898 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 900 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 901 902 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 903 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 904 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 905 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 906 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 907 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 908 909 if (Subtarget.hasDirectMove()) 910 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 911 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 912 913 // Handle constrained floating-point operations of vector. 914 // The predictor is `hasVSX` because altivec instruction has 915 // no exception but VSX vector instruction has. 916 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 917 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 918 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 919 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 920 921 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 922 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 923 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 924 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 925 926 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 927 } 928 929 if (Subtarget.hasP8Altivec()) { 930 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 931 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 932 } 933 934 if (Subtarget.hasP9Vector()) { 935 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 936 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 937 938 // 128 bit shifts can be accomplished via 3 instructions for SHL and 939 // SRL, but not for SRA because of the instructions available: 940 // VS{RL} and VS{RL}O. 941 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 942 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 943 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 944 945 if (EnableQuadPrecision) { 946 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 947 setOperationAction(ISD::FADD, MVT::f128, Legal); 948 setOperationAction(ISD::FSUB, MVT::f128, Legal); 949 setOperationAction(ISD::FDIV, MVT::f128, Legal); 950 setOperationAction(ISD::FMUL, MVT::f128, Legal); 951 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 952 // No extending loads to f128 on PPC. 953 for (MVT FPT : MVT::fp_valuetypes()) 954 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 955 setOperationAction(ISD::FMA, MVT::f128, Legal); 956 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 957 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 958 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 959 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 960 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 961 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 962 963 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 964 setOperationAction(ISD::FRINT, MVT::f128, Legal); 965 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 966 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 967 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 968 setOperationAction(ISD::FROUND, MVT::f128, Legal); 969 970 setOperationAction(ISD::SELECT, MVT::f128, Expand); 971 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 972 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 973 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 974 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 975 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 976 // No implementation for these ops for PowerPC. 977 setOperationAction(ISD::FSIN , MVT::f128, Expand); 978 setOperationAction(ISD::FCOS , MVT::f128, Expand); 979 setOperationAction(ISD::FPOW, MVT::f128, Expand); 980 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 981 setOperationAction(ISD::FREM, MVT::f128, Expand); 982 983 // Handle constrained floating-point operations of fp128 984 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 985 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 986 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 987 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 988 } 989 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 990 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 991 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 992 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 993 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 994 } 995 996 if (Subtarget.hasP9Altivec()) { 997 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 998 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 999 1000 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1001 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1002 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1003 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1004 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1005 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1006 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1007 } 1008 } 1009 1010 if (Subtarget.hasQPX()) { 1011 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1012 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1013 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1014 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1015 1016 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1017 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1018 1019 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1020 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1021 1022 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1023 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1024 1025 if (!Subtarget.useCRBits()) 1026 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1027 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1028 1029 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1030 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1031 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1032 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1033 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1034 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1035 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1036 1037 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1038 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1039 1040 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1041 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1042 1043 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1044 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1045 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1046 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1047 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1048 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1049 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1050 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1051 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1052 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1053 1054 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1055 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1056 1057 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1058 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1059 1060 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1061 1062 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1063 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1065 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1066 1067 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1068 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1069 1070 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1071 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1072 1073 if (!Subtarget.useCRBits()) 1074 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1075 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1076 1077 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1078 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1079 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1080 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1081 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1082 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1083 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1084 1085 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1086 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1087 1088 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1089 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1090 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1091 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1092 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1093 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1094 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1095 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1096 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1097 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1098 1099 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1101 1102 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1103 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1104 1105 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1106 1107 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1108 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1109 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1110 1111 if (!Subtarget.useCRBits()) 1112 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1113 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1114 1115 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1116 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1117 1118 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1119 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1120 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1121 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1122 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1123 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1124 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1125 1126 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1127 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1128 1129 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1130 1131 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1132 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1133 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1134 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1135 1136 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1137 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1138 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1140 1141 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1142 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1143 1144 // These need to set FE_INEXACT, and so cannot be vectorized here. 1145 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1146 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1147 1148 if (TM.Options.UnsafeFPMath) { 1149 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1150 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1151 1152 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1153 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1154 } else { 1155 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1156 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1157 1158 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1159 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1160 } 1161 1162 // TODO: Handle constrained floating-point operations of v4f64 1163 } 1164 1165 if (Subtarget.has64BitSupport()) 1166 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1167 1168 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1169 1170 if (!isPPC64) { 1171 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1172 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1173 } 1174 1175 setBooleanContents(ZeroOrOneBooleanContent); 1176 1177 if (Subtarget.hasAltivec()) { 1178 // Altivec instructions set fields to all zeros or all ones. 1179 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1180 } 1181 1182 if (!isPPC64) { 1183 // These libcalls are not available in 32-bit. 1184 setLibcallName(RTLIB::SHL_I128, nullptr); 1185 setLibcallName(RTLIB::SRL_I128, nullptr); 1186 setLibcallName(RTLIB::SRA_I128, nullptr); 1187 } 1188 1189 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1190 1191 // We have target-specific dag combine patterns for the following nodes: 1192 setTargetDAGCombine(ISD::ADD); 1193 setTargetDAGCombine(ISD::SHL); 1194 setTargetDAGCombine(ISD::SRA); 1195 setTargetDAGCombine(ISD::SRL); 1196 setTargetDAGCombine(ISD::MUL); 1197 setTargetDAGCombine(ISD::SINT_TO_FP); 1198 setTargetDAGCombine(ISD::BUILD_VECTOR); 1199 if (Subtarget.hasFPCVT()) 1200 setTargetDAGCombine(ISD::UINT_TO_FP); 1201 setTargetDAGCombine(ISD::LOAD); 1202 setTargetDAGCombine(ISD::STORE); 1203 setTargetDAGCombine(ISD::BR_CC); 1204 if (Subtarget.useCRBits()) 1205 setTargetDAGCombine(ISD::BRCOND); 1206 setTargetDAGCombine(ISD::BSWAP); 1207 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1208 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1209 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1210 1211 setTargetDAGCombine(ISD::SIGN_EXTEND); 1212 setTargetDAGCombine(ISD::ZERO_EXTEND); 1213 setTargetDAGCombine(ISD::ANY_EXTEND); 1214 1215 setTargetDAGCombine(ISD::TRUNCATE); 1216 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1217 1218 1219 if (Subtarget.useCRBits()) { 1220 setTargetDAGCombine(ISD::TRUNCATE); 1221 setTargetDAGCombine(ISD::SETCC); 1222 setTargetDAGCombine(ISD::SELECT_CC); 1223 } 1224 1225 // Use reciprocal estimates. 1226 if (TM.Options.UnsafeFPMath) { 1227 setTargetDAGCombine(ISD::FDIV); 1228 setTargetDAGCombine(ISD::FSQRT); 1229 } 1230 1231 if (Subtarget.hasP9Altivec()) { 1232 setTargetDAGCombine(ISD::ABS); 1233 setTargetDAGCombine(ISD::VSELECT); 1234 } 1235 1236 if (EnableQuadPrecision) { 1237 setLibcallName(RTLIB::LOG_F128, "logf128"); 1238 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1239 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1240 setLibcallName(RTLIB::EXP_F128, "expf128"); 1241 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1242 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1243 setLibcallName(RTLIB::COS_F128, "cosf128"); 1244 setLibcallName(RTLIB::POW_F128, "powf128"); 1245 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1246 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1247 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1248 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1249 } 1250 1251 // With 32 condition bits, we don't need to sink (and duplicate) compares 1252 // aggressively in CodeGenPrep. 1253 if (Subtarget.useCRBits()) { 1254 setHasMultipleConditionRegisters(); 1255 setJumpIsExpensive(); 1256 } 1257 1258 setMinFunctionAlignment(Align(4)); 1259 1260 switch (Subtarget.getCPUDirective()) { 1261 default: break; 1262 case PPC::DIR_970: 1263 case PPC::DIR_A2: 1264 case PPC::DIR_E500: 1265 case PPC::DIR_E500mc: 1266 case PPC::DIR_E5500: 1267 case PPC::DIR_PWR4: 1268 case PPC::DIR_PWR5: 1269 case PPC::DIR_PWR5X: 1270 case PPC::DIR_PWR6: 1271 case PPC::DIR_PWR6X: 1272 case PPC::DIR_PWR7: 1273 case PPC::DIR_PWR8: 1274 case PPC::DIR_PWR9: 1275 case PPC::DIR_PWR_FUTURE: 1276 setPrefLoopAlignment(Align(16)); 1277 setPrefFunctionAlignment(Align(16)); 1278 break; 1279 } 1280 1281 if (Subtarget.enableMachineScheduler()) 1282 setSchedulingPreference(Sched::Source); 1283 else 1284 setSchedulingPreference(Sched::Hybrid); 1285 1286 computeRegisterProperties(STI.getRegisterInfo()); 1287 1288 // The Freescale cores do better with aggressive inlining of memcpy and 1289 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1290 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1291 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1292 MaxStoresPerMemset = 32; 1293 MaxStoresPerMemsetOptSize = 16; 1294 MaxStoresPerMemcpy = 32; 1295 MaxStoresPerMemcpyOptSize = 8; 1296 MaxStoresPerMemmove = 32; 1297 MaxStoresPerMemmoveOptSize = 8; 1298 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1299 // The A2 also benefits from (very) aggressive inlining of memcpy and 1300 // friends. The overhead of a the function call, even when warm, can be 1301 // over one hundred cycles. 1302 MaxStoresPerMemset = 128; 1303 MaxStoresPerMemcpy = 128; 1304 MaxStoresPerMemmove = 128; 1305 MaxLoadsPerMemcmp = 128; 1306 } else { 1307 MaxLoadsPerMemcmp = 8; 1308 MaxLoadsPerMemcmpOptSize = 4; 1309 } 1310 } 1311 1312 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1313 /// the desired ByVal argument alignment. 1314 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1315 unsigned MaxMaxAlign) { 1316 if (MaxAlign == MaxMaxAlign) 1317 return; 1318 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1319 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1320 MaxAlign = 32; 1321 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1322 MaxAlign = 16; 1323 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1324 unsigned EltAlign = 0; 1325 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1326 if (EltAlign > MaxAlign) 1327 MaxAlign = EltAlign; 1328 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1329 for (auto *EltTy : STy->elements()) { 1330 unsigned EltAlign = 0; 1331 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1332 if (EltAlign > MaxAlign) 1333 MaxAlign = EltAlign; 1334 if (MaxAlign == MaxMaxAlign) 1335 break; 1336 } 1337 } 1338 } 1339 1340 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1341 /// function arguments in the caller parameter area. 1342 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1343 const DataLayout &DL) const { 1344 // 16byte and wider vectors are passed on 16byte boundary. 1345 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1346 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1347 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1348 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1349 return Align; 1350 } 1351 1352 bool PPCTargetLowering::useSoftFloat() const { 1353 return Subtarget.useSoftFloat(); 1354 } 1355 1356 bool PPCTargetLowering::hasSPE() const { 1357 return Subtarget.hasSPE(); 1358 } 1359 1360 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1361 return VT.isScalarInteger(); 1362 } 1363 1364 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1365 switch ((PPCISD::NodeType)Opcode) { 1366 case PPCISD::FIRST_NUMBER: break; 1367 case PPCISD::FSEL: return "PPCISD::FSEL"; 1368 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1369 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1370 case PPCISD::FCFID: return "PPCISD::FCFID"; 1371 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1372 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1373 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1374 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1375 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1376 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1377 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1378 case PPCISD::FP_TO_UINT_IN_VSR: 1379 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1380 case PPCISD::FP_TO_SINT_IN_VSR: 1381 return "PPCISD::FP_TO_SINT_IN_VSR"; 1382 case PPCISD::FRE: return "PPCISD::FRE"; 1383 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1384 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1385 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1386 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1387 case PPCISD::VPERM: return "PPCISD::VPERM"; 1388 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1389 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1390 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1391 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1392 case PPCISD::CMPB: return "PPCISD::CMPB"; 1393 case PPCISD::Hi: return "PPCISD::Hi"; 1394 case PPCISD::Lo: return "PPCISD::Lo"; 1395 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1396 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1397 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1398 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1399 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1400 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1401 case PPCISD::SRL: return "PPCISD::SRL"; 1402 case PPCISD::SRA: return "PPCISD::SRA"; 1403 case PPCISD::SHL: return "PPCISD::SHL"; 1404 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1405 case PPCISD::CALL: return "PPCISD::CALL"; 1406 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1407 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1408 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1409 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1410 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1411 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1412 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1413 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1414 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1415 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1416 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1417 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1418 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1419 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1420 case PPCISD::ANDI_rec_1_EQ_BIT: 1421 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1422 case PPCISD::ANDI_rec_1_GT_BIT: 1423 return "PPCISD::ANDI_rec_1_GT_BIT"; 1424 case PPCISD::VCMP: return "PPCISD::VCMP"; 1425 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1426 case PPCISD::LBRX: return "PPCISD::LBRX"; 1427 case PPCISD::STBRX: return "PPCISD::STBRX"; 1428 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1429 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1430 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1431 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1432 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1433 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1434 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1435 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1436 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1437 case PPCISD::ST_VSR_SCAL_INT: 1438 return "PPCISD::ST_VSR_SCAL_INT"; 1439 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1440 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1441 case PPCISD::BDZ: return "PPCISD::BDZ"; 1442 case PPCISD::MFFS: return "PPCISD::MFFS"; 1443 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1444 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1445 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1446 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1447 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1448 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1449 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1450 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1451 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1452 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1453 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1454 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1455 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1456 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1457 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1458 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1459 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1460 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1461 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1462 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1463 case PPCISD::SC: return "PPCISD::SC"; 1464 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1465 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1466 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1467 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1468 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1469 case PPCISD::VABSD: return "PPCISD::VABSD"; 1470 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1471 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1472 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1473 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1474 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1475 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1476 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1477 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1478 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1479 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1480 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1481 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1482 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1483 } 1484 return nullptr; 1485 } 1486 1487 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1488 EVT VT) const { 1489 if (!VT.isVector()) 1490 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1491 1492 if (Subtarget.hasQPX()) 1493 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1494 1495 return VT.changeVectorElementTypeToInteger(); 1496 } 1497 1498 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1499 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1500 return true; 1501 } 1502 1503 //===----------------------------------------------------------------------===// 1504 // Node matching predicates, for use by the tblgen matching code. 1505 //===----------------------------------------------------------------------===// 1506 1507 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1508 static bool isFloatingPointZero(SDValue Op) { 1509 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1510 return CFP->getValueAPF().isZero(); 1511 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1512 // Maybe this has already been legalized into the constant pool? 1513 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1514 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1515 return CFP->getValueAPF().isZero(); 1516 } 1517 return false; 1518 } 1519 1520 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1521 /// true if Op is undef or if it matches the specified value. 1522 static bool isConstantOrUndef(int Op, int Val) { 1523 return Op < 0 || Op == Val; 1524 } 1525 1526 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1527 /// VPKUHUM instruction. 1528 /// The ShuffleKind distinguishes between big-endian operations with 1529 /// two different inputs (0), either-endian operations with two identical 1530 /// inputs (1), and little-endian operations with two different inputs (2). 1531 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1532 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1533 SelectionDAG &DAG) { 1534 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1535 if (ShuffleKind == 0) { 1536 if (IsLE) 1537 return false; 1538 for (unsigned i = 0; i != 16; ++i) 1539 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1540 return false; 1541 } else if (ShuffleKind == 2) { 1542 if (!IsLE) 1543 return false; 1544 for (unsigned i = 0; i != 16; ++i) 1545 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1546 return false; 1547 } else if (ShuffleKind == 1) { 1548 unsigned j = IsLE ? 0 : 1; 1549 for (unsigned i = 0; i != 8; ++i) 1550 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1551 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1552 return false; 1553 } 1554 return true; 1555 } 1556 1557 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1558 /// VPKUWUM instruction. 1559 /// The ShuffleKind distinguishes between big-endian operations with 1560 /// two different inputs (0), either-endian operations with two identical 1561 /// inputs (1), and little-endian operations with two different inputs (2). 1562 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1563 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1564 SelectionDAG &DAG) { 1565 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1566 if (ShuffleKind == 0) { 1567 if (IsLE) 1568 return false; 1569 for (unsigned i = 0; i != 16; i += 2) 1570 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1571 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1572 return false; 1573 } else if (ShuffleKind == 2) { 1574 if (!IsLE) 1575 return false; 1576 for (unsigned i = 0; i != 16; i += 2) 1577 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1578 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1579 return false; 1580 } else if (ShuffleKind == 1) { 1581 unsigned j = IsLE ? 0 : 2; 1582 for (unsigned i = 0; i != 8; i += 2) 1583 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1584 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1585 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1586 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1587 return false; 1588 } 1589 return true; 1590 } 1591 1592 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1593 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1594 /// current subtarget. 1595 /// 1596 /// The ShuffleKind distinguishes between big-endian operations with 1597 /// two different inputs (0), either-endian operations with two identical 1598 /// inputs (1), and little-endian operations with two different inputs (2). 1599 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1600 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1601 SelectionDAG &DAG) { 1602 const PPCSubtarget& Subtarget = 1603 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1604 if (!Subtarget.hasP8Vector()) 1605 return false; 1606 1607 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1608 if (ShuffleKind == 0) { 1609 if (IsLE) 1610 return false; 1611 for (unsigned i = 0; i != 16; i += 4) 1612 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1613 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1614 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1615 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1616 return false; 1617 } else if (ShuffleKind == 2) { 1618 if (!IsLE) 1619 return false; 1620 for (unsigned i = 0; i != 16; i += 4) 1621 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1622 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1623 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1624 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1625 return false; 1626 } else if (ShuffleKind == 1) { 1627 unsigned j = IsLE ? 0 : 4; 1628 for (unsigned i = 0; i != 8; i += 4) 1629 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1630 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1631 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1632 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1633 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1634 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1635 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1636 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1637 return false; 1638 } 1639 return true; 1640 } 1641 1642 /// isVMerge - Common function, used to match vmrg* shuffles. 1643 /// 1644 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1645 unsigned LHSStart, unsigned RHSStart) { 1646 if (N->getValueType(0) != MVT::v16i8) 1647 return false; 1648 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1649 "Unsupported merge size!"); 1650 1651 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1652 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1653 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1654 LHSStart+j+i*UnitSize) || 1655 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1656 RHSStart+j+i*UnitSize)) 1657 return false; 1658 } 1659 return true; 1660 } 1661 1662 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1663 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1664 /// The ShuffleKind distinguishes between big-endian merges with two 1665 /// different inputs (0), either-endian merges with two identical inputs (1), 1666 /// and little-endian merges with two different inputs (2). For the latter, 1667 /// the input operands are swapped (see PPCInstrAltivec.td). 1668 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1669 unsigned ShuffleKind, SelectionDAG &DAG) { 1670 if (DAG.getDataLayout().isLittleEndian()) { 1671 if (ShuffleKind == 1) // unary 1672 return isVMerge(N, UnitSize, 0, 0); 1673 else if (ShuffleKind == 2) // swapped 1674 return isVMerge(N, UnitSize, 0, 16); 1675 else 1676 return false; 1677 } else { 1678 if (ShuffleKind == 1) // unary 1679 return isVMerge(N, UnitSize, 8, 8); 1680 else if (ShuffleKind == 0) // normal 1681 return isVMerge(N, UnitSize, 8, 24); 1682 else 1683 return false; 1684 } 1685 } 1686 1687 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1688 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1689 /// The ShuffleKind distinguishes between big-endian merges with two 1690 /// different inputs (0), either-endian merges with two identical inputs (1), 1691 /// and little-endian merges with two different inputs (2). For the latter, 1692 /// the input operands are swapped (see PPCInstrAltivec.td). 1693 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1694 unsigned ShuffleKind, SelectionDAG &DAG) { 1695 if (DAG.getDataLayout().isLittleEndian()) { 1696 if (ShuffleKind == 1) // unary 1697 return isVMerge(N, UnitSize, 8, 8); 1698 else if (ShuffleKind == 2) // swapped 1699 return isVMerge(N, UnitSize, 8, 24); 1700 else 1701 return false; 1702 } else { 1703 if (ShuffleKind == 1) // unary 1704 return isVMerge(N, UnitSize, 0, 0); 1705 else if (ShuffleKind == 0) // normal 1706 return isVMerge(N, UnitSize, 0, 16); 1707 else 1708 return false; 1709 } 1710 } 1711 1712 /** 1713 * Common function used to match vmrgew and vmrgow shuffles 1714 * 1715 * The indexOffset determines whether to look for even or odd words in 1716 * the shuffle mask. This is based on the of the endianness of the target 1717 * machine. 1718 * - Little Endian: 1719 * - Use offset of 0 to check for odd elements 1720 * - Use offset of 4 to check for even elements 1721 * - Big Endian: 1722 * - Use offset of 0 to check for even elements 1723 * - Use offset of 4 to check for odd elements 1724 * A detailed description of the vector element ordering for little endian and 1725 * big endian can be found at 1726 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1727 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1728 * compiler differences mean to you 1729 * 1730 * The mask to the shuffle vector instruction specifies the indices of the 1731 * elements from the two input vectors to place in the result. The elements are 1732 * numbered in array-access order, starting with the first vector. These vectors 1733 * are always of type v16i8, thus each vector will contain 16 elements of size 1734 * 8. More info on the shuffle vector can be found in the 1735 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1736 * Language Reference. 1737 * 1738 * The RHSStartValue indicates whether the same input vectors are used (unary) 1739 * or two different input vectors are used, based on the following: 1740 * - If the instruction uses the same vector for both inputs, the range of the 1741 * indices will be 0 to 15. In this case, the RHSStart value passed should 1742 * be 0. 1743 * - If the instruction has two different vectors then the range of the 1744 * indices will be 0 to 31. In this case, the RHSStart value passed should 1745 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1746 * to 31 specify elements in the second vector). 1747 * 1748 * \param[in] N The shuffle vector SD Node to analyze 1749 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1750 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1751 * vector to the shuffle_vector instruction 1752 * \return true iff this shuffle vector represents an even or odd word merge 1753 */ 1754 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1755 unsigned RHSStartValue) { 1756 if (N->getValueType(0) != MVT::v16i8) 1757 return false; 1758 1759 for (unsigned i = 0; i < 2; ++i) 1760 for (unsigned j = 0; j < 4; ++j) 1761 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1762 i*RHSStartValue+j+IndexOffset) || 1763 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1764 i*RHSStartValue+j+IndexOffset+8)) 1765 return false; 1766 return true; 1767 } 1768 1769 /** 1770 * Determine if the specified shuffle mask is suitable for the vmrgew or 1771 * vmrgow instructions. 1772 * 1773 * \param[in] N The shuffle vector SD Node to analyze 1774 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1775 * \param[in] ShuffleKind Identify the type of merge: 1776 * - 0 = big-endian merge with two different inputs; 1777 * - 1 = either-endian merge with two identical inputs; 1778 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1779 * little-endian merges). 1780 * \param[in] DAG The current SelectionDAG 1781 * \return true iff this shuffle mask 1782 */ 1783 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1784 unsigned ShuffleKind, SelectionDAG &DAG) { 1785 if (DAG.getDataLayout().isLittleEndian()) { 1786 unsigned indexOffset = CheckEven ? 4 : 0; 1787 if (ShuffleKind == 1) // Unary 1788 return isVMerge(N, indexOffset, 0); 1789 else if (ShuffleKind == 2) // swapped 1790 return isVMerge(N, indexOffset, 16); 1791 else 1792 return false; 1793 } 1794 else { 1795 unsigned indexOffset = CheckEven ? 0 : 4; 1796 if (ShuffleKind == 1) // Unary 1797 return isVMerge(N, indexOffset, 0); 1798 else if (ShuffleKind == 0) // Normal 1799 return isVMerge(N, indexOffset, 16); 1800 else 1801 return false; 1802 } 1803 return false; 1804 } 1805 1806 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1807 /// amount, otherwise return -1. 1808 /// The ShuffleKind distinguishes between big-endian operations with two 1809 /// different inputs (0), either-endian operations with two identical inputs 1810 /// (1), and little-endian operations with two different inputs (2). For the 1811 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1812 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1813 SelectionDAG &DAG) { 1814 if (N->getValueType(0) != MVT::v16i8) 1815 return -1; 1816 1817 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1818 1819 // Find the first non-undef value in the shuffle mask. 1820 unsigned i; 1821 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1822 /*search*/; 1823 1824 if (i == 16) return -1; // all undef. 1825 1826 // Otherwise, check to see if the rest of the elements are consecutively 1827 // numbered from this value. 1828 unsigned ShiftAmt = SVOp->getMaskElt(i); 1829 if (ShiftAmt < i) return -1; 1830 1831 ShiftAmt -= i; 1832 bool isLE = DAG.getDataLayout().isLittleEndian(); 1833 1834 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1835 // Check the rest of the elements to see if they are consecutive. 1836 for (++i; i != 16; ++i) 1837 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1838 return -1; 1839 } else if (ShuffleKind == 1) { 1840 // Check the rest of the elements to see if they are consecutive. 1841 for (++i; i != 16; ++i) 1842 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1843 return -1; 1844 } else 1845 return -1; 1846 1847 if (isLE) 1848 ShiftAmt = 16 - ShiftAmt; 1849 1850 return ShiftAmt; 1851 } 1852 1853 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1854 /// specifies a splat of a single element that is suitable for input to 1855 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1856 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1857 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1858 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1859 1860 // The consecutive indices need to specify an element, not part of two 1861 // different elements. So abandon ship early if this isn't the case. 1862 if (N->getMaskElt(0) % EltSize != 0) 1863 return false; 1864 1865 // This is a splat operation if each element of the permute is the same, and 1866 // if the value doesn't reference the second vector. 1867 unsigned ElementBase = N->getMaskElt(0); 1868 1869 // FIXME: Handle UNDEF elements too! 1870 if (ElementBase >= 16) 1871 return false; 1872 1873 // Check that the indices are consecutive, in the case of a multi-byte element 1874 // splatted with a v16i8 mask. 1875 for (unsigned i = 1; i != EltSize; ++i) 1876 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1877 return false; 1878 1879 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1880 if (N->getMaskElt(i) < 0) continue; 1881 for (unsigned j = 0; j != EltSize; ++j) 1882 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1883 return false; 1884 } 1885 return true; 1886 } 1887 1888 /// Check that the mask is shuffling N byte elements. Within each N byte 1889 /// element of the mask, the indices could be either in increasing or 1890 /// decreasing order as long as they are consecutive. 1891 /// \param[in] N the shuffle vector SD Node to analyze 1892 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1893 /// Word/DoubleWord/QuadWord). 1894 /// \param[in] StepLen the delta indices number among the N byte element, if 1895 /// the mask is in increasing/decreasing order then it is 1/-1. 1896 /// \return true iff the mask is shuffling N byte elements. 1897 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1898 int StepLen) { 1899 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1900 "Unexpected element width."); 1901 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1902 1903 unsigned NumOfElem = 16 / Width; 1904 unsigned MaskVal[16]; // Width is never greater than 16 1905 for (unsigned i = 0; i < NumOfElem; ++i) { 1906 MaskVal[0] = N->getMaskElt(i * Width); 1907 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1908 return false; 1909 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1910 return false; 1911 } 1912 1913 for (unsigned int j = 1; j < Width; ++j) { 1914 MaskVal[j] = N->getMaskElt(i * Width + j); 1915 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1916 return false; 1917 } 1918 } 1919 } 1920 1921 return true; 1922 } 1923 1924 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1925 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1926 if (!isNByteElemShuffleMask(N, 4, 1)) 1927 return false; 1928 1929 // Now we look at mask elements 0,4,8,12 1930 unsigned M0 = N->getMaskElt(0) / 4; 1931 unsigned M1 = N->getMaskElt(4) / 4; 1932 unsigned M2 = N->getMaskElt(8) / 4; 1933 unsigned M3 = N->getMaskElt(12) / 4; 1934 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1935 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1936 1937 // Below, let H and L be arbitrary elements of the shuffle mask 1938 // where H is in the range [4,7] and L is in the range [0,3]. 1939 // H, 1, 2, 3 or L, 5, 6, 7 1940 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1941 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1942 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1943 InsertAtByte = IsLE ? 12 : 0; 1944 Swap = M0 < 4; 1945 return true; 1946 } 1947 // 0, H, 2, 3 or 4, L, 6, 7 1948 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1949 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1950 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1951 InsertAtByte = IsLE ? 8 : 4; 1952 Swap = M1 < 4; 1953 return true; 1954 } 1955 // 0, 1, H, 3 or 4, 5, L, 7 1956 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1957 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1958 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1959 InsertAtByte = IsLE ? 4 : 8; 1960 Swap = M2 < 4; 1961 return true; 1962 } 1963 // 0, 1, 2, H or 4, 5, 6, L 1964 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1965 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1966 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1967 InsertAtByte = IsLE ? 0 : 12; 1968 Swap = M3 < 4; 1969 return true; 1970 } 1971 1972 // If both vector operands for the shuffle are the same vector, the mask will 1973 // contain only elements from the first one and the second one will be undef. 1974 if (N->getOperand(1).isUndef()) { 1975 ShiftElts = 0; 1976 Swap = true; 1977 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1978 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1979 InsertAtByte = IsLE ? 12 : 0; 1980 return true; 1981 } 1982 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1983 InsertAtByte = IsLE ? 8 : 4; 1984 return true; 1985 } 1986 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1987 InsertAtByte = IsLE ? 4 : 8; 1988 return true; 1989 } 1990 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1991 InsertAtByte = IsLE ? 0 : 12; 1992 return true; 1993 } 1994 } 1995 1996 return false; 1997 } 1998 1999 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2000 bool &Swap, bool IsLE) { 2001 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2002 // Ensure each byte index of the word is consecutive. 2003 if (!isNByteElemShuffleMask(N, 4, 1)) 2004 return false; 2005 2006 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2007 unsigned M0 = N->getMaskElt(0) / 4; 2008 unsigned M1 = N->getMaskElt(4) / 4; 2009 unsigned M2 = N->getMaskElt(8) / 4; 2010 unsigned M3 = N->getMaskElt(12) / 4; 2011 2012 // If both vector operands for the shuffle are the same vector, the mask will 2013 // contain only elements from the first one and the second one will be undef. 2014 if (N->getOperand(1).isUndef()) { 2015 assert(M0 < 4 && "Indexing into an undef vector?"); 2016 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2017 return false; 2018 2019 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2020 Swap = false; 2021 return true; 2022 } 2023 2024 // Ensure each word index of the ShuffleVector Mask is consecutive. 2025 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2026 return false; 2027 2028 if (IsLE) { 2029 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2030 // Input vectors don't need to be swapped if the leading element 2031 // of the result is one of the 3 left elements of the second vector 2032 // (or if there is no shift to be done at all). 2033 Swap = false; 2034 ShiftElts = (8 - M0) % 8; 2035 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2036 // Input vectors need to be swapped if the leading element 2037 // of the result is one of the 3 left elements of the first vector 2038 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2039 Swap = true; 2040 ShiftElts = (4 - M0) % 4; 2041 } 2042 2043 return true; 2044 } else { // BE 2045 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2046 // Input vectors don't need to be swapped if the leading element 2047 // of the result is one of the 4 elements of the first vector. 2048 Swap = false; 2049 ShiftElts = M0; 2050 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2051 // Input vectors need to be swapped if the leading element 2052 // of the result is one of the 4 elements of the right vector. 2053 Swap = true; 2054 ShiftElts = M0 - 4; 2055 } 2056 2057 return true; 2058 } 2059 } 2060 2061 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2062 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2063 2064 if (!isNByteElemShuffleMask(N, Width, -1)) 2065 return false; 2066 2067 for (int i = 0; i < 16; i += Width) 2068 if (N->getMaskElt(i) != i + Width - 1) 2069 return false; 2070 2071 return true; 2072 } 2073 2074 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2075 return isXXBRShuffleMaskHelper(N, 2); 2076 } 2077 2078 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2079 return isXXBRShuffleMaskHelper(N, 4); 2080 } 2081 2082 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2083 return isXXBRShuffleMaskHelper(N, 8); 2084 } 2085 2086 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2087 return isXXBRShuffleMaskHelper(N, 16); 2088 } 2089 2090 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2091 /// if the inputs to the instruction should be swapped and set \p DM to the 2092 /// value for the immediate. 2093 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2094 /// AND element 0 of the result comes from the first input (LE) or second input 2095 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2096 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2097 /// mask. 2098 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2099 bool &Swap, bool IsLE) { 2100 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2101 2102 // Ensure each byte index of the double word is consecutive. 2103 if (!isNByteElemShuffleMask(N, 8, 1)) 2104 return false; 2105 2106 unsigned M0 = N->getMaskElt(0) / 8; 2107 unsigned M1 = N->getMaskElt(8) / 8; 2108 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2109 2110 // If both vector operands for the shuffle are the same vector, the mask will 2111 // contain only elements from the first one and the second one will be undef. 2112 if (N->getOperand(1).isUndef()) { 2113 if ((M0 | M1) < 2) { 2114 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2115 Swap = false; 2116 return true; 2117 } else 2118 return false; 2119 } 2120 2121 if (IsLE) { 2122 if (M0 > 1 && M1 < 2) { 2123 Swap = false; 2124 } else if (M0 < 2 && M1 > 1) { 2125 M0 = (M0 + 2) % 4; 2126 M1 = (M1 + 2) % 4; 2127 Swap = true; 2128 } else 2129 return false; 2130 2131 // Note: if control flow comes here that means Swap is already set above 2132 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2133 return true; 2134 } else { // BE 2135 if (M0 < 2 && M1 > 1) { 2136 Swap = false; 2137 } else if (M0 > 1 && M1 < 2) { 2138 M0 = (M0 + 2) % 4; 2139 M1 = (M1 + 2) % 4; 2140 Swap = true; 2141 } else 2142 return false; 2143 2144 // Note: if control flow comes here that means Swap is already set above 2145 DM = (M0 << 1) + (M1 & 1); 2146 return true; 2147 } 2148 } 2149 2150 2151 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2152 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2153 /// elements are counted from the left of the vector register). 2154 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2155 SelectionDAG &DAG) { 2156 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2157 assert(isSplatShuffleMask(SVOp, EltSize)); 2158 if (DAG.getDataLayout().isLittleEndian()) 2159 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2160 else 2161 return SVOp->getMaskElt(0) / EltSize; 2162 } 2163 2164 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2165 /// by using a vspltis[bhw] instruction of the specified element size, return 2166 /// the constant being splatted. The ByteSize field indicates the number of 2167 /// bytes of each element [124] -> [bhw]. 2168 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2169 SDValue OpVal(nullptr, 0); 2170 2171 // If ByteSize of the splat is bigger than the element size of the 2172 // build_vector, then we have a case where we are checking for a splat where 2173 // multiple elements of the buildvector are folded together into a single 2174 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2175 unsigned EltSize = 16/N->getNumOperands(); 2176 if (EltSize < ByteSize) { 2177 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2178 SDValue UniquedVals[4]; 2179 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2180 2181 // See if all of the elements in the buildvector agree across. 2182 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2183 if (N->getOperand(i).isUndef()) continue; 2184 // If the element isn't a constant, bail fully out. 2185 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2186 2187 if (!UniquedVals[i&(Multiple-1)].getNode()) 2188 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2189 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2190 return SDValue(); // no match. 2191 } 2192 2193 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2194 // either constant or undef values that are identical for each chunk. See 2195 // if these chunks can form into a larger vspltis*. 2196 2197 // Check to see if all of the leading entries are either 0 or -1. If 2198 // neither, then this won't fit into the immediate field. 2199 bool LeadingZero = true; 2200 bool LeadingOnes = true; 2201 for (unsigned i = 0; i != Multiple-1; ++i) { 2202 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2203 2204 LeadingZero &= isNullConstant(UniquedVals[i]); 2205 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2206 } 2207 // Finally, check the least significant entry. 2208 if (LeadingZero) { 2209 if (!UniquedVals[Multiple-1].getNode()) 2210 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2211 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2212 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2213 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2214 } 2215 if (LeadingOnes) { 2216 if (!UniquedVals[Multiple-1].getNode()) 2217 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2218 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2219 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2220 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2221 } 2222 2223 return SDValue(); 2224 } 2225 2226 // Check to see if this buildvec has a single non-undef value in its elements. 2227 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2228 if (N->getOperand(i).isUndef()) continue; 2229 if (!OpVal.getNode()) 2230 OpVal = N->getOperand(i); 2231 else if (OpVal != N->getOperand(i)) 2232 return SDValue(); 2233 } 2234 2235 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2236 2237 unsigned ValSizeInBytes = EltSize; 2238 uint64_t Value = 0; 2239 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2240 Value = CN->getZExtValue(); 2241 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2242 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2243 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2244 } 2245 2246 // If the splat value is larger than the element value, then we can never do 2247 // this splat. The only case that we could fit the replicated bits into our 2248 // immediate field for would be zero, and we prefer to use vxor for it. 2249 if (ValSizeInBytes < ByteSize) return SDValue(); 2250 2251 // If the element value is larger than the splat value, check if it consists 2252 // of a repeated bit pattern of size ByteSize. 2253 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2254 return SDValue(); 2255 2256 // Properly sign extend the value. 2257 int MaskVal = SignExtend32(Value, ByteSize * 8); 2258 2259 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2260 if (MaskVal == 0) return SDValue(); 2261 2262 // Finally, if this value fits in a 5 bit sext field, return it 2263 if (SignExtend32<5>(MaskVal) == MaskVal) 2264 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2265 return SDValue(); 2266 } 2267 2268 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2269 /// amount, otherwise return -1. 2270 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2271 EVT VT = N->getValueType(0); 2272 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2273 return -1; 2274 2275 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2276 2277 // Find the first non-undef value in the shuffle mask. 2278 unsigned i; 2279 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2280 /*search*/; 2281 2282 if (i == 4) return -1; // all undef. 2283 2284 // Otherwise, check to see if the rest of the elements are consecutively 2285 // numbered from this value. 2286 unsigned ShiftAmt = SVOp->getMaskElt(i); 2287 if (ShiftAmt < i) return -1; 2288 ShiftAmt -= i; 2289 2290 // Check the rest of the elements to see if they are consecutive. 2291 for (++i; i != 4; ++i) 2292 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2293 return -1; 2294 2295 return ShiftAmt; 2296 } 2297 2298 //===----------------------------------------------------------------------===// 2299 // Addressing Mode Selection 2300 //===----------------------------------------------------------------------===// 2301 2302 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2303 /// or 64-bit immediate, and if the value can be accurately represented as a 2304 /// sign extension from a 16-bit value. If so, this returns true and the 2305 /// immediate. 2306 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2307 if (!isa<ConstantSDNode>(N)) 2308 return false; 2309 2310 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2311 if (N->getValueType(0) == MVT::i32) 2312 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2313 else 2314 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2315 } 2316 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2317 return isIntS16Immediate(Op.getNode(), Imm); 2318 } 2319 2320 2321 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2322 /// be represented as an indexed [r+r] operation. 2323 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2324 SDValue &Index, 2325 SelectionDAG &DAG) const { 2326 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2327 UI != E; ++UI) { 2328 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2329 if (Memop->getMemoryVT() == MVT::f64) { 2330 Base = N.getOperand(0); 2331 Index = N.getOperand(1); 2332 return true; 2333 } 2334 } 2335 } 2336 return false; 2337 } 2338 2339 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2340 /// can be represented as an indexed [r+r] operation. Returns false if it 2341 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2342 /// non-zero and N can be represented by a base register plus a signed 16-bit 2343 /// displacement, make a more precise judgement by checking (displacement % \p 2344 /// EncodingAlignment). 2345 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2346 SDValue &Index, SelectionDAG &DAG, 2347 unsigned EncodingAlignment) const { 2348 int16_t imm = 0; 2349 if (N.getOpcode() == ISD::ADD) { 2350 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2351 // SPE load/store can only handle 8-bit offsets. 2352 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2353 return true; 2354 if (isIntS16Immediate(N.getOperand(1), imm) && 2355 (!EncodingAlignment || !(imm % EncodingAlignment))) 2356 return false; // r+i 2357 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2358 return false; // r+i 2359 2360 Base = N.getOperand(0); 2361 Index = N.getOperand(1); 2362 return true; 2363 } else if (N.getOpcode() == ISD::OR) { 2364 if (isIntS16Immediate(N.getOperand(1), imm) && 2365 (!EncodingAlignment || !(imm % EncodingAlignment))) 2366 return false; // r+i can fold it if we can. 2367 2368 // If this is an or of disjoint bitfields, we can codegen this as an add 2369 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2370 // disjoint. 2371 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2372 2373 if (LHSKnown.Zero.getBoolValue()) { 2374 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2375 // If all of the bits are known zero on the LHS or RHS, the add won't 2376 // carry. 2377 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2378 Base = N.getOperand(0); 2379 Index = N.getOperand(1); 2380 return true; 2381 } 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 // If we happen to be doing an i64 load or store into a stack slot that has 2389 // less than a 4-byte alignment, then the frame-index elimination may need to 2390 // use an indexed load or store instruction (because the offset may not be a 2391 // multiple of 4). The extra register needed to hold the offset comes from the 2392 // register scavenger, and it is possible that the scavenger will need to use 2393 // an emergency spill slot. As a result, we need to make sure that a spill slot 2394 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2395 // stack slot. 2396 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2397 // FIXME: This does not handle the LWA case. 2398 if (VT != MVT::i64) 2399 return; 2400 2401 // NOTE: We'll exclude negative FIs here, which come from argument 2402 // lowering, because there are no known test cases triggering this problem 2403 // using packed structures (or similar). We can remove this exclusion if 2404 // we find such a test case. The reason why this is so test-case driven is 2405 // because this entire 'fixup' is only to prevent crashes (from the 2406 // register scavenger) on not-really-valid inputs. For example, if we have: 2407 // %a = alloca i1 2408 // %b = bitcast i1* %a to i64* 2409 // store i64* a, i64 b 2410 // then the store should really be marked as 'align 1', but is not. If it 2411 // were marked as 'align 1' then the indexed form would have been 2412 // instruction-selected initially, and the problem this 'fixup' is preventing 2413 // won't happen regardless. 2414 if (FrameIdx < 0) 2415 return; 2416 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 MachineFrameInfo &MFI = MF.getFrameInfo(); 2419 2420 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2421 if (Align >= 4) 2422 return; 2423 2424 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2425 FuncInfo->setHasNonRISpills(); 2426 } 2427 2428 /// Returns true if the address N can be represented by a base register plus 2429 /// a signed 16-bit displacement [r+imm], and if it is not better 2430 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2431 /// displacements that are multiples of that value. 2432 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2433 SDValue &Base, 2434 SelectionDAG &DAG, 2435 unsigned EncodingAlignment) const { 2436 // FIXME dl should come from parent load or store, not from address 2437 SDLoc dl(N); 2438 // If this can be more profitably realized as r+r, fail. 2439 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2440 return false; 2441 2442 if (N.getOpcode() == ISD::ADD) { 2443 int16_t imm = 0; 2444 if (isIntS16Immediate(N.getOperand(1), imm) && 2445 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2446 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2447 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2448 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2449 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2450 } else { 2451 Base = N.getOperand(0); 2452 } 2453 return true; // [r+i] 2454 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2455 // Match LOAD (ADD (X, Lo(G))). 2456 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2457 && "Cannot handle constant offsets yet!"); 2458 Disp = N.getOperand(1).getOperand(0); // The global address. 2459 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2460 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2461 Disp.getOpcode() == ISD::TargetConstantPool || 2462 Disp.getOpcode() == ISD::TargetJumpTable); 2463 Base = N.getOperand(0); 2464 return true; // [&g+r] 2465 } 2466 } else if (N.getOpcode() == ISD::OR) { 2467 int16_t imm = 0; 2468 if (isIntS16Immediate(N.getOperand(1), imm) && 2469 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2470 // If this is an or of disjoint bitfields, we can codegen this as an add 2471 // (for better address arithmetic) if the LHS and RHS of the OR are 2472 // provably disjoint. 2473 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2474 2475 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2476 // If all of the bits are known zero on the LHS or RHS, the add won't 2477 // carry. 2478 if (FrameIndexSDNode *FI = 2479 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2480 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2481 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2482 } else { 2483 Base = N.getOperand(0); 2484 } 2485 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2486 return true; 2487 } 2488 } 2489 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2490 // Loading from a constant address. 2491 2492 // If this address fits entirely in a 16-bit sext immediate field, codegen 2493 // this as "d, 0" 2494 int16_t Imm; 2495 if (isIntS16Immediate(CN, Imm) && 2496 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2497 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2498 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2499 CN->getValueType(0)); 2500 return true; 2501 } 2502 2503 // Handle 32-bit sext immediates with LIS + addr mode. 2504 if ((CN->getValueType(0) == MVT::i32 || 2505 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2506 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2507 int Addr = (int)CN->getZExtValue(); 2508 2509 // Otherwise, break this down into an LIS + disp. 2510 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2511 2512 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2513 MVT::i32); 2514 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2515 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2516 return true; 2517 } 2518 } 2519 2520 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2521 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2522 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2523 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2524 } else 2525 Base = N; 2526 return true; // [r+0] 2527 } 2528 2529 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2530 /// represented as an indexed [r+r] operation. 2531 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2532 SDValue &Index, 2533 SelectionDAG &DAG) const { 2534 // Check to see if we can easily represent this as an [r+r] address. This 2535 // will fail if it thinks that the address is more profitably represented as 2536 // reg+imm, e.g. where imm = 0. 2537 if (SelectAddressRegReg(N, Base, Index, DAG)) 2538 return true; 2539 2540 // If the address is the result of an add, we will utilize the fact that the 2541 // address calculation includes an implicit add. However, we can reduce 2542 // register pressure if we do not materialize a constant just for use as the 2543 // index register. We only get rid of the add if it is not an add of a 2544 // value and a 16-bit signed constant and both have a single use. 2545 int16_t imm = 0; 2546 if (N.getOpcode() == ISD::ADD && 2547 (!isIntS16Immediate(N.getOperand(1), imm) || 2548 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2549 Base = N.getOperand(0); 2550 Index = N.getOperand(1); 2551 return true; 2552 } 2553 2554 // Otherwise, do it the hard way, using R0 as the base register. 2555 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2556 N.getValueType()); 2557 Index = N; 2558 return true; 2559 } 2560 2561 /// Returns true if we should use a direct load into vector instruction 2562 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2563 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2564 2565 // If there are any other uses other than scalar to vector, then we should 2566 // keep it as a scalar load -> direct move pattern to prevent multiple 2567 // loads. 2568 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2569 if (!LD) 2570 return false; 2571 2572 EVT MemVT = LD->getMemoryVT(); 2573 if (!MemVT.isSimple()) 2574 return false; 2575 switch(MemVT.getSimpleVT().SimpleTy) { 2576 case MVT::i64: 2577 break; 2578 case MVT::i32: 2579 if (!ST.hasP8Vector()) 2580 return false; 2581 break; 2582 case MVT::i16: 2583 case MVT::i8: 2584 if (!ST.hasP9Vector()) 2585 return false; 2586 break; 2587 default: 2588 return false; 2589 } 2590 2591 SDValue LoadedVal(N, 0); 2592 if (!LoadedVal.hasOneUse()) 2593 return false; 2594 2595 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2596 UI != UE; ++UI) 2597 if (UI.getUse().get().getResNo() == 0 && 2598 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 /// getPreIndexedAddressParts - returns true by value, base pointer and 2605 /// offset pointer and addressing mode by reference if the node's address 2606 /// can be legally represented as pre-indexed load / store address. 2607 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2608 SDValue &Offset, 2609 ISD::MemIndexedMode &AM, 2610 SelectionDAG &DAG) const { 2611 if (DisablePPCPreinc) return false; 2612 2613 bool isLoad = true; 2614 SDValue Ptr; 2615 EVT VT; 2616 unsigned Alignment; 2617 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2618 Ptr = LD->getBasePtr(); 2619 VT = LD->getMemoryVT(); 2620 Alignment = LD->getAlignment(); 2621 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2622 Ptr = ST->getBasePtr(); 2623 VT = ST->getMemoryVT(); 2624 Alignment = ST->getAlignment(); 2625 isLoad = false; 2626 } else 2627 return false; 2628 2629 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2630 // instructions because we can fold these into a more efficient instruction 2631 // instead, (such as LXSD). 2632 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2633 return false; 2634 } 2635 2636 // PowerPC doesn't have preinc load/store instructions for vectors (except 2637 // for QPX, which does have preinc r+r forms). 2638 if (VT.isVector()) { 2639 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2640 return false; 2641 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2642 AM = ISD::PRE_INC; 2643 return true; 2644 } 2645 } 2646 2647 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2648 // Common code will reject creating a pre-inc form if the base pointer 2649 // is a frame index, or if N is a store and the base pointer is either 2650 // the same as or a predecessor of the value being stored. Check for 2651 // those situations here, and try with swapped Base/Offset instead. 2652 bool Swap = false; 2653 2654 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2655 Swap = true; 2656 else if (!isLoad) { 2657 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2658 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2659 Swap = true; 2660 } 2661 2662 if (Swap) 2663 std::swap(Base, Offset); 2664 2665 AM = ISD::PRE_INC; 2666 return true; 2667 } 2668 2669 // LDU/STU can only handle immediates that are a multiple of 4. 2670 if (VT != MVT::i64) { 2671 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2672 return false; 2673 } else { 2674 // LDU/STU need an address with at least 4-byte alignment. 2675 if (Alignment < 4) 2676 return false; 2677 2678 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2679 return false; 2680 } 2681 2682 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2683 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2684 // sext i32 to i64 when addr mode is r+i. 2685 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2686 LD->getExtensionType() == ISD::SEXTLOAD && 2687 isa<ConstantSDNode>(Offset)) 2688 return false; 2689 } 2690 2691 AM = ISD::PRE_INC; 2692 return true; 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // LowerOperation implementation 2697 //===----------------------------------------------------------------------===// 2698 2699 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2700 /// and LoOpFlags to the target MO flags. 2701 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2702 unsigned &HiOpFlags, unsigned &LoOpFlags, 2703 const GlobalValue *GV = nullptr) { 2704 HiOpFlags = PPCII::MO_HA; 2705 LoOpFlags = PPCII::MO_LO; 2706 2707 // Don't use the pic base if not in PIC relocation model. 2708 if (IsPIC) { 2709 HiOpFlags |= PPCII::MO_PIC_FLAG; 2710 LoOpFlags |= PPCII::MO_PIC_FLAG; 2711 } 2712 } 2713 2714 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2715 SelectionDAG &DAG) { 2716 SDLoc DL(HiPart); 2717 EVT PtrVT = HiPart.getValueType(); 2718 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2719 2720 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2721 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2722 2723 // With PIC, the first instruction is actually "GR+hi(&G)". 2724 if (isPIC) 2725 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2726 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2727 2728 // Generate non-pic code that has direct accesses to the constant pool. 2729 // The address of the global is just (hi(&g)+lo(&g)). 2730 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2731 } 2732 2733 static void setUsesTOCBasePtr(MachineFunction &MF) { 2734 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2735 FuncInfo->setUsesTOCBasePtr(); 2736 } 2737 2738 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2739 setUsesTOCBasePtr(DAG.getMachineFunction()); 2740 } 2741 2742 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2743 SDValue GA) const { 2744 const bool Is64Bit = Subtarget.isPPC64(); 2745 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2746 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2747 : Subtarget.isAIXABI() 2748 ? DAG.getRegister(PPC::R2, VT) 2749 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2750 SDValue Ops[] = { GA, Reg }; 2751 return DAG.getMemIntrinsicNode( 2752 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2753 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2754 MachineMemOperand::MOLoad); 2755 } 2756 2757 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2758 SelectionDAG &DAG) const { 2759 EVT PtrVT = Op.getValueType(); 2760 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2761 const Constant *C = CP->getConstVal(); 2762 2763 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2764 // The actual address of the GlobalValue is stored in the TOC. 2765 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2766 setUsesTOCBasePtr(DAG); 2767 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2768 return getTOCEntry(DAG, SDLoc(CP), GA); 2769 } 2770 2771 unsigned MOHiFlag, MOLoFlag; 2772 bool IsPIC = isPositionIndependent(); 2773 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2774 2775 if (IsPIC && Subtarget.isSVR4ABI()) { 2776 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2777 PPCII::MO_PIC_FLAG); 2778 return getTOCEntry(DAG, SDLoc(CP), GA); 2779 } 2780 2781 SDValue CPIHi = 2782 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2783 SDValue CPILo = 2784 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2785 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2786 } 2787 2788 // For 64-bit PowerPC, prefer the more compact relative encodings. 2789 // This trades 32 bits per jump table entry for one or two instructions 2790 // on the jump site. 2791 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2792 if (isJumpTableRelative()) 2793 return MachineJumpTableInfo::EK_LabelDifference32; 2794 2795 return TargetLowering::getJumpTableEncoding(); 2796 } 2797 2798 bool PPCTargetLowering::isJumpTableRelative() const { 2799 if (UseAbsoluteJumpTables) 2800 return false; 2801 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2802 return true; 2803 return TargetLowering::isJumpTableRelative(); 2804 } 2805 2806 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2807 SelectionDAG &DAG) const { 2808 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2809 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2810 2811 switch (getTargetMachine().getCodeModel()) { 2812 case CodeModel::Small: 2813 case CodeModel::Medium: 2814 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2815 default: 2816 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2817 getPointerTy(DAG.getDataLayout())); 2818 } 2819 } 2820 2821 const MCExpr * 2822 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2823 unsigned JTI, 2824 MCContext &Ctx) const { 2825 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2826 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2827 2828 switch (getTargetMachine().getCodeModel()) { 2829 case CodeModel::Small: 2830 case CodeModel::Medium: 2831 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2832 default: 2833 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2834 } 2835 } 2836 2837 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2838 EVT PtrVT = Op.getValueType(); 2839 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2840 2841 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2842 // The actual address of the GlobalValue is stored in the TOC. 2843 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2844 setUsesTOCBasePtr(DAG); 2845 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2846 return getTOCEntry(DAG, SDLoc(JT), GA); 2847 } 2848 2849 unsigned MOHiFlag, MOLoFlag; 2850 bool IsPIC = isPositionIndependent(); 2851 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2852 2853 if (IsPIC && Subtarget.isSVR4ABI()) { 2854 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2855 PPCII::MO_PIC_FLAG); 2856 return getTOCEntry(DAG, SDLoc(GA), GA); 2857 } 2858 2859 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2860 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2861 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2862 } 2863 2864 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 EVT PtrVT = Op.getValueType(); 2867 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2868 const BlockAddress *BA = BASDN->getBlockAddress(); 2869 2870 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2871 // The actual BlockAddress is stored in the TOC. 2872 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2873 setUsesTOCBasePtr(DAG); 2874 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2875 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2876 } 2877 2878 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2879 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2880 return getTOCEntry( 2881 DAG, SDLoc(BASDN), 2882 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2883 2884 unsigned MOHiFlag, MOLoFlag; 2885 bool IsPIC = isPositionIndependent(); 2886 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2887 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2888 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2889 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2890 } 2891 2892 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 // FIXME: TLS addresses currently use medium model code sequences, 2895 // which is the most useful form. Eventually support for small and 2896 // large models could be added if users need it, at the cost of 2897 // additional complexity. 2898 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2899 if (DAG.getTarget().useEmulatedTLS()) 2900 return LowerToTLSEmulatedModel(GA, DAG); 2901 2902 SDLoc dl(GA); 2903 const GlobalValue *GV = GA->getGlobal(); 2904 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2905 bool is64bit = Subtarget.isPPC64(); 2906 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2907 PICLevel::Level picLevel = M->getPICLevel(); 2908 2909 const TargetMachine &TM = getTargetMachine(); 2910 TLSModel::Model Model = TM.getTLSModel(GV); 2911 2912 if (Model == TLSModel::LocalExec) { 2913 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2914 PPCII::MO_TPREL_HA); 2915 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2916 PPCII::MO_TPREL_LO); 2917 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2918 : DAG.getRegister(PPC::R2, MVT::i32); 2919 2920 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2921 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2922 } 2923 2924 if (Model == TLSModel::InitialExec) { 2925 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2926 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2927 PPCII::MO_TLS); 2928 SDValue GOTPtr; 2929 if (is64bit) { 2930 setUsesTOCBasePtr(DAG); 2931 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2932 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2933 PtrVT, GOTReg, TGA); 2934 } else { 2935 if (!TM.isPositionIndependent()) 2936 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2937 else if (picLevel == PICLevel::SmallPIC) 2938 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2939 else 2940 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2941 } 2942 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2943 PtrVT, TGA, GOTPtr); 2944 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2945 } 2946 2947 if (Model == TLSModel::GeneralDynamic) { 2948 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2949 SDValue GOTPtr; 2950 if (is64bit) { 2951 setUsesTOCBasePtr(DAG); 2952 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2953 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2954 GOTReg, TGA); 2955 } else { 2956 if (picLevel == PICLevel::SmallPIC) 2957 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2958 else 2959 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2960 } 2961 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2962 GOTPtr, TGA, TGA); 2963 } 2964 2965 if (Model == TLSModel::LocalDynamic) { 2966 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2967 SDValue GOTPtr; 2968 if (is64bit) { 2969 setUsesTOCBasePtr(DAG); 2970 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2971 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2972 GOTReg, TGA); 2973 } else { 2974 if (picLevel == PICLevel::SmallPIC) 2975 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2976 else 2977 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2978 } 2979 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2980 PtrVT, GOTPtr, TGA, TGA); 2981 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2982 PtrVT, TLSAddr, TGA); 2983 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2984 } 2985 2986 llvm_unreachable("Unknown TLS model!"); 2987 } 2988 2989 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2990 SelectionDAG &DAG) const { 2991 EVT PtrVT = Op.getValueType(); 2992 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2993 SDLoc DL(GSDN); 2994 const GlobalValue *GV = GSDN->getGlobal(); 2995 2996 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 2997 // The actual address of the GlobalValue is stored in the TOC. 2998 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2999 setUsesTOCBasePtr(DAG); 3000 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3001 return getTOCEntry(DAG, DL, GA); 3002 } 3003 3004 unsigned MOHiFlag, MOLoFlag; 3005 bool IsPIC = isPositionIndependent(); 3006 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3007 3008 if (IsPIC && Subtarget.isSVR4ABI()) { 3009 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3010 GSDN->getOffset(), 3011 PPCII::MO_PIC_FLAG); 3012 return getTOCEntry(DAG, DL, GA); 3013 } 3014 3015 SDValue GAHi = 3016 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3017 SDValue GALo = 3018 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3019 3020 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3021 } 3022 3023 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3024 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3025 SDLoc dl(Op); 3026 3027 if (Op.getValueType() == MVT::v2i64) { 3028 // When the operands themselves are v2i64 values, we need to do something 3029 // special because VSX has no underlying comparison operations for these. 3030 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3031 // Equality can be handled by casting to the legal type for Altivec 3032 // comparisons, everything else needs to be expanded. 3033 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3034 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3035 DAG.getSetCC(dl, MVT::v4i32, 3036 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3037 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3038 CC)); 3039 } 3040 3041 return SDValue(); 3042 } 3043 3044 // We handle most of these in the usual way. 3045 return Op; 3046 } 3047 3048 // If we're comparing for equality to zero, expose the fact that this is 3049 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3050 // fold the new nodes. 3051 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3052 return V; 3053 3054 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3055 // Leave comparisons against 0 and -1 alone for now, since they're usually 3056 // optimized. FIXME: revisit this when we can custom lower all setcc 3057 // optimizations. 3058 if (C->isAllOnesValue() || C->isNullValue()) 3059 return SDValue(); 3060 } 3061 3062 // If we have an integer seteq/setne, turn it into a compare against zero 3063 // by xor'ing the rhs with the lhs, which is faster than setting a 3064 // condition register, reading it back out, and masking the correct bit. The 3065 // normal approach here uses sub to do this instead of xor. Using xor exposes 3066 // the result to other bit-twiddling opportunities. 3067 EVT LHSVT = Op.getOperand(0).getValueType(); 3068 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3069 EVT VT = Op.getValueType(); 3070 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3071 Op.getOperand(1)); 3072 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3073 } 3074 return SDValue(); 3075 } 3076 3077 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3078 SDNode *Node = Op.getNode(); 3079 EVT VT = Node->getValueType(0); 3080 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3081 SDValue InChain = Node->getOperand(0); 3082 SDValue VAListPtr = Node->getOperand(1); 3083 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3084 SDLoc dl(Node); 3085 3086 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3087 3088 // gpr_index 3089 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3090 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3091 InChain = GprIndex.getValue(1); 3092 3093 if (VT == MVT::i64) { 3094 // Check if GprIndex is even 3095 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3096 DAG.getConstant(1, dl, MVT::i32)); 3097 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3098 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3099 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3100 DAG.getConstant(1, dl, MVT::i32)); 3101 // Align GprIndex to be even if it isn't 3102 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3103 GprIndex); 3104 } 3105 3106 // fpr index is 1 byte after gpr 3107 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3108 DAG.getConstant(1, dl, MVT::i32)); 3109 3110 // fpr 3111 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3112 FprPtr, MachinePointerInfo(SV), MVT::i8); 3113 InChain = FprIndex.getValue(1); 3114 3115 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3116 DAG.getConstant(8, dl, MVT::i32)); 3117 3118 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3119 DAG.getConstant(4, dl, MVT::i32)); 3120 3121 // areas 3122 SDValue OverflowArea = 3123 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3124 InChain = OverflowArea.getValue(1); 3125 3126 SDValue RegSaveArea = 3127 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3128 InChain = RegSaveArea.getValue(1); 3129 3130 // select overflow_area if index > 8 3131 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3132 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3133 3134 // adjustment constant gpr_index * 4/8 3135 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3136 VT.isInteger() ? GprIndex : FprIndex, 3137 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3138 MVT::i32)); 3139 3140 // OurReg = RegSaveArea + RegConstant 3141 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3142 RegConstant); 3143 3144 // Floating types are 32 bytes into RegSaveArea 3145 if (VT.isFloatingPoint()) 3146 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3147 DAG.getConstant(32, dl, MVT::i32)); 3148 3149 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3150 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3151 VT.isInteger() ? GprIndex : FprIndex, 3152 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3153 MVT::i32)); 3154 3155 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3156 VT.isInteger() ? VAListPtr : FprPtr, 3157 MachinePointerInfo(SV), MVT::i8); 3158 3159 // determine if we should load from reg_save_area or overflow_area 3160 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3161 3162 // increase overflow_area by 4/8 if gpr/fpr > 8 3163 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3164 DAG.getConstant(VT.isInteger() ? 4 : 8, 3165 dl, MVT::i32)); 3166 3167 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3168 OverflowAreaPlusN); 3169 3170 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3171 MachinePointerInfo(), MVT::i32); 3172 3173 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3174 } 3175 3176 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3177 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3178 3179 // We have to copy the entire va_list struct: 3180 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3181 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3182 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3183 false, true, false, MachinePointerInfo(), 3184 MachinePointerInfo()); 3185 } 3186 3187 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3188 SelectionDAG &DAG) const { 3189 if (Subtarget.isAIXABI()) 3190 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3191 3192 return Op.getOperand(0); 3193 } 3194 3195 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3196 SelectionDAG &DAG) const { 3197 if (Subtarget.isAIXABI()) 3198 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3199 3200 SDValue Chain = Op.getOperand(0); 3201 SDValue Trmp = Op.getOperand(1); // trampoline 3202 SDValue FPtr = Op.getOperand(2); // nested function 3203 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3204 SDLoc dl(Op); 3205 3206 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3207 bool isPPC64 = (PtrVT == MVT::i64); 3208 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3209 3210 TargetLowering::ArgListTy Args; 3211 TargetLowering::ArgListEntry Entry; 3212 3213 Entry.Ty = IntPtrTy; 3214 Entry.Node = Trmp; Args.push_back(Entry); 3215 3216 // TrampSize == (isPPC64 ? 48 : 40); 3217 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3218 isPPC64 ? MVT::i64 : MVT::i32); 3219 Args.push_back(Entry); 3220 3221 Entry.Node = FPtr; Args.push_back(Entry); 3222 Entry.Node = Nest; Args.push_back(Entry); 3223 3224 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3225 TargetLowering::CallLoweringInfo CLI(DAG); 3226 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3227 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3228 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3229 3230 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3231 return CallResult.second; 3232 } 3233 3234 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3235 MachineFunction &MF = DAG.getMachineFunction(); 3236 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3237 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3238 3239 SDLoc dl(Op); 3240 3241 if (Subtarget.isPPC64()) { 3242 // vastart just stores the address of the VarArgsFrameIndex slot into the 3243 // memory location argument. 3244 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3245 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3246 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3247 MachinePointerInfo(SV)); 3248 } 3249 3250 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3251 // We suppose the given va_list is already allocated. 3252 // 3253 // typedef struct { 3254 // char gpr; /* index into the array of 8 GPRs 3255 // * stored in the register save area 3256 // * gpr=0 corresponds to r3, 3257 // * gpr=1 to r4, etc. 3258 // */ 3259 // char fpr; /* index into the array of 8 FPRs 3260 // * stored in the register save area 3261 // * fpr=0 corresponds to f1, 3262 // * fpr=1 to f2, etc. 3263 // */ 3264 // char *overflow_arg_area; 3265 // /* location on stack that holds 3266 // * the next overflow argument 3267 // */ 3268 // char *reg_save_area; 3269 // /* where r3:r10 and f1:f8 (if saved) 3270 // * are stored 3271 // */ 3272 // } va_list[1]; 3273 3274 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3275 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3276 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3277 PtrVT); 3278 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3279 PtrVT); 3280 3281 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3282 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3283 3284 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3285 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3286 3287 uint64_t FPROffset = 1; 3288 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3289 3290 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3291 3292 // Store first byte : number of int regs 3293 SDValue firstStore = 3294 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3295 MachinePointerInfo(SV), MVT::i8); 3296 uint64_t nextOffset = FPROffset; 3297 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3298 ConstFPROffset); 3299 3300 // Store second byte : number of float regs 3301 SDValue secondStore = 3302 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3303 MachinePointerInfo(SV, nextOffset), MVT::i8); 3304 nextOffset += StackOffset; 3305 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3306 3307 // Store second word : arguments given on stack 3308 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3309 MachinePointerInfo(SV, nextOffset)); 3310 nextOffset += FrameOffset; 3311 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3312 3313 // Store third word : arguments given in registers 3314 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3315 MachinePointerInfo(SV, nextOffset)); 3316 } 3317 3318 /// FPR - The set of FP registers that should be allocated for arguments 3319 /// on Darwin and AIX. 3320 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3321 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3322 PPC::F11, PPC::F12, PPC::F13}; 3323 3324 /// QFPR - The set of QPX registers that should be allocated for arguments. 3325 static const MCPhysReg QFPR[] = { 3326 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3327 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3328 3329 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3330 /// the stack. 3331 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3332 unsigned PtrByteSize) { 3333 unsigned ArgSize = ArgVT.getStoreSize(); 3334 if (Flags.isByVal()) 3335 ArgSize = Flags.getByValSize(); 3336 3337 // Round up to multiples of the pointer size, except for array members, 3338 // which are always packed. 3339 if (!Flags.isInConsecutiveRegs()) 3340 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3341 3342 return ArgSize; 3343 } 3344 3345 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3346 /// on the stack. 3347 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3348 ISD::ArgFlagsTy Flags, 3349 unsigned PtrByteSize) { 3350 Align Alignment(PtrByteSize); 3351 3352 // Altivec parameters are padded to a 16 byte boundary. 3353 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3354 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3355 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3356 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3357 Alignment = Align(16); 3358 // QPX vector types stored in double-precision are padded to a 32 byte 3359 // boundary. 3360 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3361 Alignment = Align(32); 3362 3363 // ByVal parameters are aligned as requested. 3364 if (Flags.isByVal()) { 3365 auto BVAlign = Flags.getNonZeroByValAlign(); 3366 if (BVAlign > PtrByteSize) { 3367 if (BVAlign.value() % PtrByteSize != 0) 3368 llvm_unreachable( 3369 "ByVal alignment is not a multiple of the pointer size"); 3370 3371 Alignment = BVAlign; 3372 } 3373 } 3374 3375 // Array members are always packed to their original alignment. 3376 if (Flags.isInConsecutiveRegs()) { 3377 // If the array member was split into multiple registers, the first 3378 // needs to be aligned to the size of the full type. (Except for 3379 // ppcf128, which is only aligned as its f64 components.) 3380 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3381 Alignment = Align(OrigVT.getStoreSize()); 3382 else 3383 Alignment = Align(ArgVT.getStoreSize()); 3384 } 3385 3386 return Alignment; 3387 } 3388 3389 /// CalculateStackSlotUsed - Return whether this argument will use its 3390 /// stack slot (instead of being passed in registers). ArgOffset, 3391 /// AvailableFPRs, and AvailableVRs must hold the current argument 3392 /// position, and will be updated to account for this argument. 3393 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3394 ISD::ArgFlagsTy Flags, 3395 unsigned PtrByteSize, 3396 unsigned LinkageSize, 3397 unsigned ParamAreaSize, 3398 unsigned &ArgOffset, 3399 unsigned &AvailableFPRs, 3400 unsigned &AvailableVRs, bool HasQPX) { 3401 bool UseMemory = false; 3402 3403 // Respect alignment of argument on the stack. 3404 Align Alignment = 3405 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3406 ArgOffset = alignTo(ArgOffset, Alignment); 3407 // If there's no space left in the argument save area, we must 3408 // use memory (this check also catches zero-sized arguments). 3409 if (ArgOffset >= LinkageSize + ParamAreaSize) 3410 UseMemory = true; 3411 3412 // Allocate argument on the stack. 3413 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3414 if (Flags.isInConsecutiveRegsLast()) 3415 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3416 // If we overran the argument save area, we must use memory 3417 // (this check catches arguments passed partially in memory) 3418 if (ArgOffset > LinkageSize + ParamAreaSize) 3419 UseMemory = true; 3420 3421 // However, if the argument is actually passed in an FPR or a VR, 3422 // we don't use memory after all. 3423 if (!Flags.isByVal()) { 3424 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3425 // QPX registers overlap with the scalar FP registers. 3426 (HasQPX && (ArgVT == MVT::v4f32 || 3427 ArgVT == MVT::v4f64 || 3428 ArgVT == MVT::v4i1))) 3429 if (AvailableFPRs > 0) { 3430 --AvailableFPRs; 3431 return false; 3432 } 3433 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3434 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3435 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3436 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3437 if (AvailableVRs > 0) { 3438 --AvailableVRs; 3439 return false; 3440 } 3441 } 3442 3443 return UseMemory; 3444 } 3445 3446 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3447 /// ensure minimum alignment required for target. 3448 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3449 unsigned NumBytes) { 3450 unsigned TargetAlign = Lowering->getStackAlignment(); 3451 unsigned AlignMask = TargetAlign - 1; 3452 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3453 return NumBytes; 3454 } 3455 3456 SDValue PPCTargetLowering::LowerFormalArguments( 3457 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3458 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3459 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3460 if (Subtarget.isAIXABI()) 3461 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3462 InVals); 3463 if (Subtarget.is64BitELFABI()) 3464 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3465 InVals); 3466 if (Subtarget.is32BitELFABI()) 3467 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3468 InVals); 3469 3470 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3471 InVals); 3472 } 3473 3474 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3475 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3476 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3477 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3478 3479 // 32-bit SVR4 ABI Stack Frame Layout: 3480 // +-----------------------------------+ 3481 // +--> | Back chain | 3482 // | +-----------------------------------+ 3483 // | | Floating-point register save area | 3484 // | +-----------------------------------+ 3485 // | | General register save area | 3486 // | +-----------------------------------+ 3487 // | | CR save word | 3488 // | +-----------------------------------+ 3489 // | | VRSAVE save word | 3490 // | +-----------------------------------+ 3491 // | | Alignment padding | 3492 // | +-----------------------------------+ 3493 // | | Vector register save area | 3494 // | +-----------------------------------+ 3495 // | | Local variable space | 3496 // | +-----------------------------------+ 3497 // | | Parameter list area | 3498 // | +-----------------------------------+ 3499 // | | LR save word | 3500 // | +-----------------------------------+ 3501 // SP--> +--- | Back chain | 3502 // +-----------------------------------+ 3503 // 3504 // Specifications: 3505 // System V Application Binary Interface PowerPC Processor Supplement 3506 // AltiVec Technology Programming Interface Manual 3507 3508 MachineFunction &MF = DAG.getMachineFunction(); 3509 MachineFrameInfo &MFI = MF.getFrameInfo(); 3510 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3511 3512 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3513 // Potential tail calls could cause overwriting of argument stack slots. 3514 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3515 (CallConv == CallingConv::Fast)); 3516 unsigned PtrByteSize = 4; 3517 3518 // Assign locations to all of the incoming arguments. 3519 SmallVector<CCValAssign, 16> ArgLocs; 3520 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3521 *DAG.getContext()); 3522 3523 // Reserve space for the linkage area on the stack. 3524 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3525 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3526 if (useSoftFloat()) 3527 CCInfo.PreAnalyzeFormalArguments(Ins); 3528 3529 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3530 CCInfo.clearWasPPCF128(); 3531 3532 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3533 CCValAssign &VA = ArgLocs[i]; 3534 3535 // Arguments stored in registers. 3536 if (VA.isRegLoc()) { 3537 const TargetRegisterClass *RC; 3538 EVT ValVT = VA.getValVT(); 3539 3540 switch (ValVT.getSimpleVT().SimpleTy) { 3541 default: 3542 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3543 case MVT::i1: 3544 case MVT::i32: 3545 RC = &PPC::GPRCRegClass; 3546 break; 3547 case MVT::f32: 3548 if (Subtarget.hasP8Vector()) 3549 RC = &PPC::VSSRCRegClass; 3550 else if (Subtarget.hasSPE()) 3551 RC = &PPC::GPRCRegClass; 3552 else 3553 RC = &PPC::F4RCRegClass; 3554 break; 3555 case MVT::f64: 3556 if (Subtarget.hasVSX()) 3557 RC = &PPC::VSFRCRegClass; 3558 else if (Subtarget.hasSPE()) 3559 // SPE passes doubles in GPR pairs. 3560 RC = &PPC::GPRCRegClass; 3561 else 3562 RC = &PPC::F8RCRegClass; 3563 break; 3564 case MVT::v16i8: 3565 case MVT::v8i16: 3566 case MVT::v4i32: 3567 RC = &PPC::VRRCRegClass; 3568 break; 3569 case MVT::v4f32: 3570 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3571 break; 3572 case MVT::v2f64: 3573 case MVT::v2i64: 3574 RC = &PPC::VRRCRegClass; 3575 break; 3576 case MVT::v4f64: 3577 RC = &PPC::QFRCRegClass; 3578 break; 3579 case MVT::v4i1: 3580 RC = &PPC::QBRCRegClass; 3581 break; 3582 } 3583 3584 SDValue ArgValue; 3585 // Transform the arguments stored in physical registers into 3586 // virtual ones. 3587 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3588 assert(i + 1 < e && "No second half of double precision argument"); 3589 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3590 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3591 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3592 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3593 if (!Subtarget.isLittleEndian()) 3594 std::swap (ArgValueLo, ArgValueHi); 3595 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3596 ArgValueHi); 3597 } else { 3598 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3599 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3600 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3601 if (ValVT == MVT::i1) 3602 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3603 } 3604 3605 InVals.push_back(ArgValue); 3606 } else { 3607 // Argument stored in memory. 3608 assert(VA.isMemLoc()); 3609 3610 // Get the extended size of the argument type in stack 3611 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3612 // Get the actual size of the argument type 3613 unsigned ObjSize = VA.getValVT().getStoreSize(); 3614 unsigned ArgOffset = VA.getLocMemOffset(); 3615 // Stack objects in PPC32 are right justified. 3616 ArgOffset += ArgSize - ObjSize; 3617 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3618 3619 // Create load nodes to retrieve arguments from the stack. 3620 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3621 InVals.push_back( 3622 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3623 } 3624 } 3625 3626 // Assign locations to all of the incoming aggregate by value arguments. 3627 // Aggregates passed by value are stored in the local variable space of the 3628 // caller's stack frame, right above the parameter list area. 3629 SmallVector<CCValAssign, 16> ByValArgLocs; 3630 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3631 ByValArgLocs, *DAG.getContext()); 3632 3633 // Reserve stack space for the allocations in CCInfo. 3634 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3635 3636 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3637 3638 // Area that is at least reserved in the caller of this function. 3639 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3640 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3641 3642 // Set the size that is at least reserved in caller of this function. Tail 3643 // call optimized function's reserved stack space needs to be aligned so that 3644 // taking the difference between two stack areas will result in an aligned 3645 // stack. 3646 MinReservedArea = 3647 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3648 FuncInfo->setMinReservedArea(MinReservedArea); 3649 3650 SmallVector<SDValue, 8> MemOps; 3651 3652 // If the function takes variable number of arguments, make a frame index for 3653 // the start of the first vararg value... for expansion of llvm.va_start. 3654 if (isVarArg) { 3655 static const MCPhysReg GPArgRegs[] = { 3656 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3657 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3658 }; 3659 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3660 3661 static const MCPhysReg FPArgRegs[] = { 3662 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3663 PPC::F8 3664 }; 3665 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3666 3667 if (useSoftFloat() || hasSPE()) 3668 NumFPArgRegs = 0; 3669 3670 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3671 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3672 3673 // Make room for NumGPArgRegs and NumFPArgRegs. 3674 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3675 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3676 3677 FuncInfo->setVarArgsStackOffset( 3678 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3679 CCInfo.getNextStackOffset(), true)); 3680 3681 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3682 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3683 3684 // The fixed integer arguments of a variadic function are stored to the 3685 // VarArgsFrameIndex on the stack so that they may be loaded by 3686 // dereferencing the result of va_next. 3687 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3688 // Get an existing live-in vreg, or add a new one. 3689 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3690 if (!VReg) 3691 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3692 3693 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3694 SDValue Store = 3695 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3696 MemOps.push_back(Store); 3697 // Increment the address by four for the next argument to store 3698 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3699 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3700 } 3701 3702 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3703 // is set. 3704 // The double arguments are stored to the VarArgsFrameIndex 3705 // on the stack. 3706 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3707 // Get an existing live-in vreg, or add a new one. 3708 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3709 if (!VReg) 3710 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3711 3712 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3713 SDValue Store = 3714 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3715 MemOps.push_back(Store); 3716 // Increment the address by eight for the next argument to store 3717 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3718 PtrVT); 3719 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3720 } 3721 } 3722 3723 if (!MemOps.empty()) 3724 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3725 3726 return Chain; 3727 } 3728 3729 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3730 // value to MVT::i64 and then truncate to the correct register size. 3731 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3732 EVT ObjectVT, SelectionDAG &DAG, 3733 SDValue ArgVal, 3734 const SDLoc &dl) const { 3735 if (Flags.isSExt()) 3736 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3737 DAG.getValueType(ObjectVT)); 3738 else if (Flags.isZExt()) 3739 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3740 DAG.getValueType(ObjectVT)); 3741 3742 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3743 } 3744 3745 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3746 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3747 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3748 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3749 // TODO: add description of PPC stack frame format, or at least some docs. 3750 // 3751 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3752 bool isLittleEndian = Subtarget.isLittleEndian(); 3753 MachineFunction &MF = DAG.getMachineFunction(); 3754 MachineFrameInfo &MFI = MF.getFrameInfo(); 3755 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3756 3757 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3758 "fastcc not supported on varargs functions"); 3759 3760 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3761 // Potential tail calls could cause overwriting of argument stack slots. 3762 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3763 (CallConv == CallingConv::Fast)); 3764 unsigned PtrByteSize = 8; 3765 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3766 3767 static const MCPhysReg GPR[] = { 3768 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3769 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3770 }; 3771 static const MCPhysReg VR[] = { 3772 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3773 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3774 }; 3775 3776 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3777 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3778 const unsigned Num_VR_Regs = array_lengthof(VR); 3779 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3780 3781 // Do a first pass over the arguments to determine whether the ABI 3782 // guarantees that our caller has allocated the parameter save area 3783 // on its stack frame. In the ELFv1 ABI, this is always the case; 3784 // in the ELFv2 ABI, it is true if this is a vararg function or if 3785 // any parameter is located in a stack slot. 3786 3787 bool HasParameterArea = !isELFv2ABI || isVarArg; 3788 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3789 unsigned NumBytes = LinkageSize; 3790 unsigned AvailableFPRs = Num_FPR_Regs; 3791 unsigned AvailableVRs = Num_VR_Regs; 3792 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3793 if (Ins[i].Flags.isNest()) 3794 continue; 3795 3796 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3797 PtrByteSize, LinkageSize, ParamAreaSize, 3798 NumBytes, AvailableFPRs, AvailableVRs, 3799 Subtarget.hasQPX())) 3800 HasParameterArea = true; 3801 } 3802 3803 // Add DAG nodes to load the arguments or copy them out of registers. On 3804 // entry to a function on PPC, the arguments start after the linkage area, 3805 // although the first ones are often in registers. 3806 3807 unsigned ArgOffset = LinkageSize; 3808 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3809 unsigned &QFPR_idx = FPR_idx; 3810 SmallVector<SDValue, 8> MemOps; 3811 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3812 unsigned CurArgIdx = 0; 3813 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3814 SDValue ArgVal; 3815 bool needsLoad = false; 3816 EVT ObjectVT = Ins[ArgNo].VT; 3817 EVT OrigVT = Ins[ArgNo].ArgVT; 3818 unsigned ObjSize = ObjectVT.getStoreSize(); 3819 unsigned ArgSize = ObjSize; 3820 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3821 if (Ins[ArgNo].isOrigArg()) { 3822 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3823 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3824 } 3825 // We re-align the argument offset for each argument, except when using the 3826 // fast calling convention, when we need to make sure we do that only when 3827 // we'll actually use a stack slot. 3828 unsigned CurArgOffset; 3829 Align Alignment; 3830 auto ComputeArgOffset = [&]() { 3831 /* Respect alignment of argument on the stack. */ 3832 Alignment = 3833 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3834 ArgOffset = alignTo(ArgOffset, Alignment); 3835 CurArgOffset = ArgOffset; 3836 }; 3837 3838 if (CallConv != CallingConv::Fast) { 3839 ComputeArgOffset(); 3840 3841 /* Compute GPR index associated with argument offset. */ 3842 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3843 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3844 } 3845 3846 // FIXME the codegen can be much improved in some cases. 3847 // We do not have to keep everything in memory. 3848 if (Flags.isByVal()) { 3849 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3850 3851 if (CallConv == CallingConv::Fast) 3852 ComputeArgOffset(); 3853 3854 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3855 ObjSize = Flags.getByValSize(); 3856 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3857 // Empty aggregate parameters do not take up registers. Examples: 3858 // struct { } a; 3859 // union { } b; 3860 // int c[0]; 3861 // etc. However, we have to provide a place-holder in InVals, so 3862 // pretend we have an 8-byte item at the current address for that 3863 // purpose. 3864 if (!ObjSize) { 3865 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3866 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3867 InVals.push_back(FIN); 3868 continue; 3869 } 3870 3871 // Create a stack object covering all stack doublewords occupied 3872 // by the argument. If the argument is (fully or partially) on 3873 // the stack, or if the argument is fully in registers but the 3874 // caller has allocated the parameter save anyway, we can refer 3875 // directly to the caller's stack frame. Otherwise, create a 3876 // local copy in our own frame. 3877 int FI; 3878 if (HasParameterArea || 3879 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3880 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3881 else 3882 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 3883 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3884 3885 // Handle aggregates smaller than 8 bytes. 3886 if (ObjSize < PtrByteSize) { 3887 // The value of the object is its address, which differs from the 3888 // address of the enclosing doubleword on big-endian systems. 3889 SDValue Arg = FIN; 3890 if (!isLittleEndian) { 3891 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3892 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3893 } 3894 InVals.push_back(Arg); 3895 3896 if (GPR_idx != Num_GPR_Regs) { 3897 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3898 FuncInfo->addLiveInAttr(VReg, Flags); 3899 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3900 SDValue Store; 3901 3902 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3903 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3904 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3905 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3906 MachinePointerInfo(&*FuncArg), ObjType); 3907 } else { 3908 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3909 // store the whole register as-is to the parameter save area 3910 // slot. 3911 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3912 MachinePointerInfo(&*FuncArg)); 3913 } 3914 3915 MemOps.push_back(Store); 3916 } 3917 // Whether we copied from a register or not, advance the offset 3918 // into the parameter save area by a full doubleword. 3919 ArgOffset += PtrByteSize; 3920 continue; 3921 } 3922 3923 // The value of the object is its address, which is the address of 3924 // its first stack doubleword. 3925 InVals.push_back(FIN); 3926 3927 // Store whatever pieces of the object are in registers to memory. 3928 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3929 if (GPR_idx == Num_GPR_Regs) 3930 break; 3931 3932 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3933 FuncInfo->addLiveInAttr(VReg, Flags); 3934 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3935 SDValue Addr = FIN; 3936 if (j) { 3937 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3938 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3939 } 3940 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3941 MachinePointerInfo(&*FuncArg, j)); 3942 MemOps.push_back(Store); 3943 ++GPR_idx; 3944 } 3945 ArgOffset += ArgSize; 3946 continue; 3947 } 3948 3949 switch (ObjectVT.getSimpleVT().SimpleTy) { 3950 default: llvm_unreachable("Unhandled argument type!"); 3951 case MVT::i1: 3952 case MVT::i32: 3953 case MVT::i64: 3954 if (Flags.isNest()) { 3955 // The 'nest' parameter, if any, is passed in R11. 3956 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3957 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3958 3959 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3960 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3961 3962 break; 3963 } 3964 3965 // These can be scalar arguments or elements of an integer array type 3966 // passed directly. Clang may use those instead of "byval" aggregate 3967 // types to avoid forcing arguments to memory unnecessarily. 3968 if (GPR_idx != Num_GPR_Regs) { 3969 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3970 FuncInfo->addLiveInAttr(VReg, Flags); 3971 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3972 3973 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3974 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3975 // value to MVT::i64 and then truncate to the correct register size. 3976 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3977 } else { 3978 if (CallConv == CallingConv::Fast) 3979 ComputeArgOffset(); 3980 3981 needsLoad = true; 3982 ArgSize = PtrByteSize; 3983 } 3984 if (CallConv != CallingConv::Fast || needsLoad) 3985 ArgOffset += 8; 3986 break; 3987 3988 case MVT::f32: 3989 case MVT::f64: 3990 // These can be scalar arguments or elements of a float array type 3991 // passed directly. The latter are used to implement ELFv2 homogenous 3992 // float aggregates. 3993 if (FPR_idx != Num_FPR_Regs) { 3994 unsigned VReg; 3995 3996 if (ObjectVT == MVT::f32) 3997 VReg = MF.addLiveIn(FPR[FPR_idx], 3998 Subtarget.hasP8Vector() 3999 ? &PPC::VSSRCRegClass 4000 : &PPC::F4RCRegClass); 4001 else 4002 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4003 ? &PPC::VSFRCRegClass 4004 : &PPC::F8RCRegClass); 4005 4006 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4007 ++FPR_idx; 4008 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4009 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4010 // once we support fp <-> gpr moves. 4011 4012 // This can only ever happen in the presence of f32 array types, 4013 // since otherwise we never run out of FPRs before running out 4014 // of GPRs. 4015 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4016 FuncInfo->addLiveInAttr(VReg, Flags); 4017 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4018 4019 if (ObjectVT == MVT::f32) { 4020 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4021 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4022 DAG.getConstant(32, dl, MVT::i32)); 4023 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4024 } 4025 4026 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4027 } else { 4028 if (CallConv == CallingConv::Fast) 4029 ComputeArgOffset(); 4030 4031 needsLoad = true; 4032 } 4033 4034 // When passing an array of floats, the array occupies consecutive 4035 // space in the argument area; only round up to the next doubleword 4036 // at the end of the array. Otherwise, each float takes 8 bytes. 4037 if (CallConv != CallingConv::Fast || needsLoad) { 4038 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4039 ArgOffset += ArgSize; 4040 if (Flags.isInConsecutiveRegsLast()) 4041 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4042 } 4043 break; 4044 case MVT::v4f32: 4045 case MVT::v4i32: 4046 case MVT::v8i16: 4047 case MVT::v16i8: 4048 case MVT::v2f64: 4049 case MVT::v2i64: 4050 case MVT::v1i128: 4051 case MVT::f128: 4052 if (!Subtarget.hasQPX()) { 4053 // These can be scalar arguments or elements of a vector array type 4054 // passed directly. The latter are used to implement ELFv2 homogenous 4055 // vector aggregates. 4056 if (VR_idx != Num_VR_Regs) { 4057 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4058 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4059 ++VR_idx; 4060 } else { 4061 if (CallConv == CallingConv::Fast) 4062 ComputeArgOffset(); 4063 needsLoad = true; 4064 } 4065 if (CallConv != CallingConv::Fast || needsLoad) 4066 ArgOffset += 16; 4067 break; 4068 } // not QPX 4069 4070 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4071 "Invalid QPX parameter type"); 4072 LLVM_FALLTHROUGH; 4073 4074 case MVT::v4f64: 4075 case MVT::v4i1: 4076 // QPX vectors are treated like their scalar floating-point subregisters 4077 // (except that they're larger). 4078 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4079 if (QFPR_idx != Num_QFPR_Regs) { 4080 const TargetRegisterClass *RC; 4081 switch (ObjectVT.getSimpleVT().SimpleTy) { 4082 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4083 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4084 default: RC = &PPC::QBRCRegClass; break; 4085 } 4086 4087 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4088 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4089 ++QFPR_idx; 4090 } else { 4091 if (CallConv == CallingConv::Fast) 4092 ComputeArgOffset(); 4093 needsLoad = true; 4094 } 4095 if (CallConv != CallingConv::Fast || needsLoad) 4096 ArgOffset += Sz; 4097 break; 4098 } 4099 4100 // We need to load the argument to a virtual register if we determined 4101 // above that we ran out of physical registers of the appropriate type. 4102 if (needsLoad) { 4103 if (ObjSize < ArgSize && !isLittleEndian) 4104 CurArgOffset += ArgSize - ObjSize; 4105 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4106 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4107 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4108 } 4109 4110 InVals.push_back(ArgVal); 4111 } 4112 4113 // Area that is at least reserved in the caller of this function. 4114 unsigned MinReservedArea; 4115 if (HasParameterArea) 4116 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4117 else 4118 MinReservedArea = LinkageSize; 4119 4120 // Set the size that is at least reserved in caller of this function. Tail 4121 // call optimized functions' reserved stack space needs to be aligned so that 4122 // taking the difference between two stack areas will result in an aligned 4123 // stack. 4124 MinReservedArea = 4125 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4126 FuncInfo->setMinReservedArea(MinReservedArea); 4127 4128 // If the function takes variable number of arguments, make a frame index for 4129 // the start of the first vararg value... for expansion of llvm.va_start. 4130 if (isVarArg) { 4131 int Depth = ArgOffset; 4132 4133 FuncInfo->setVarArgsFrameIndex( 4134 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4135 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4136 4137 // If this function is vararg, store any remaining integer argument regs 4138 // to their spots on the stack so that they may be loaded by dereferencing 4139 // the result of va_next. 4140 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4141 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4142 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4143 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4144 SDValue Store = 4145 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4146 MemOps.push_back(Store); 4147 // Increment the address by four for the next argument to store 4148 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4149 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4150 } 4151 } 4152 4153 if (!MemOps.empty()) 4154 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4155 4156 return Chain; 4157 } 4158 4159 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4160 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4161 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4162 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4163 // TODO: add description of PPC stack frame format, or at least some docs. 4164 // 4165 MachineFunction &MF = DAG.getMachineFunction(); 4166 MachineFrameInfo &MFI = MF.getFrameInfo(); 4167 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4168 4169 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4170 bool isPPC64 = PtrVT == MVT::i64; 4171 // Potential tail calls could cause overwriting of argument stack slots. 4172 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4173 (CallConv == CallingConv::Fast)); 4174 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4175 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4176 unsigned ArgOffset = LinkageSize; 4177 // Area that is at least reserved in caller of this function. 4178 unsigned MinReservedArea = ArgOffset; 4179 4180 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4181 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4182 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4183 }; 4184 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4185 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4186 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4187 }; 4188 static const MCPhysReg VR[] = { 4189 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4190 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4191 }; 4192 4193 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4194 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4195 const unsigned Num_VR_Regs = array_lengthof( VR); 4196 4197 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4198 4199 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4200 4201 // In 32-bit non-varargs functions, the stack space for vectors is after the 4202 // stack space for non-vectors. We do not use this space unless we have 4203 // too many vectors to fit in registers, something that only occurs in 4204 // constructed examples:), but we have to walk the arglist to figure 4205 // that out...for the pathological case, compute VecArgOffset as the 4206 // start of the vector parameter area. Computing VecArgOffset is the 4207 // entire point of the following loop. 4208 unsigned VecArgOffset = ArgOffset; 4209 if (!isVarArg && !isPPC64) { 4210 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4211 ++ArgNo) { 4212 EVT ObjectVT = Ins[ArgNo].VT; 4213 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4214 4215 if (Flags.isByVal()) { 4216 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4217 unsigned ObjSize = Flags.getByValSize(); 4218 unsigned ArgSize = 4219 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4220 VecArgOffset += ArgSize; 4221 continue; 4222 } 4223 4224 switch(ObjectVT.getSimpleVT().SimpleTy) { 4225 default: llvm_unreachable("Unhandled argument type!"); 4226 case MVT::i1: 4227 case MVT::i32: 4228 case MVT::f32: 4229 VecArgOffset += 4; 4230 break; 4231 case MVT::i64: // PPC64 4232 case MVT::f64: 4233 // FIXME: We are guaranteed to be !isPPC64 at this point. 4234 // Does MVT::i64 apply? 4235 VecArgOffset += 8; 4236 break; 4237 case MVT::v4f32: 4238 case MVT::v4i32: 4239 case MVT::v8i16: 4240 case MVT::v16i8: 4241 // Nothing to do, we're only looking at Nonvector args here. 4242 break; 4243 } 4244 } 4245 } 4246 // We've found where the vector parameter area in memory is. Skip the 4247 // first 12 parameters; these don't use that memory. 4248 VecArgOffset = ((VecArgOffset+15)/16)*16; 4249 VecArgOffset += 12*16; 4250 4251 // Add DAG nodes to load the arguments or copy them out of registers. On 4252 // entry to a function on PPC, the arguments start after the linkage area, 4253 // although the first ones are often in registers. 4254 4255 SmallVector<SDValue, 8> MemOps; 4256 unsigned nAltivecParamsAtEnd = 0; 4257 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4258 unsigned CurArgIdx = 0; 4259 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4260 SDValue ArgVal; 4261 bool needsLoad = false; 4262 EVT ObjectVT = Ins[ArgNo].VT; 4263 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4264 unsigned ArgSize = ObjSize; 4265 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4266 if (Ins[ArgNo].isOrigArg()) { 4267 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4268 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4269 } 4270 unsigned CurArgOffset = ArgOffset; 4271 4272 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4273 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4274 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4275 if (isVarArg || isPPC64) { 4276 MinReservedArea = ((MinReservedArea+15)/16)*16; 4277 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4278 Flags, 4279 PtrByteSize); 4280 } else nAltivecParamsAtEnd++; 4281 } else 4282 // Calculate min reserved area. 4283 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4284 Flags, 4285 PtrByteSize); 4286 4287 // FIXME the codegen can be much improved in some cases. 4288 // We do not have to keep everything in memory. 4289 if (Flags.isByVal()) { 4290 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4291 4292 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4293 ObjSize = Flags.getByValSize(); 4294 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4295 // Objects of size 1 and 2 are right justified, everything else is 4296 // left justified. This means the memory address is adjusted forwards. 4297 if (ObjSize==1 || ObjSize==2) { 4298 CurArgOffset = CurArgOffset + (4 - ObjSize); 4299 } 4300 // The value of the object is its address. 4301 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4302 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4303 InVals.push_back(FIN); 4304 if (ObjSize==1 || ObjSize==2) { 4305 if (GPR_idx != Num_GPR_Regs) { 4306 unsigned VReg; 4307 if (isPPC64) 4308 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4309 else 4310 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4311 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4312 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4313 SDValue Store = 4314 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4315 MachinePointerInfo(&*FuncArg), ObjType); 4316 MemOps.push_back(Store); 4317 ++GPR_idx; 4318 } 4319 4320 ArgOffset += PtrByteSize; 4321 4322 continue; 4323 } 4324 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4325 // Store whatever pieces of the object are in registers 4326 // to memory. ArgOffset will be the address of the beginning 4327 // of the object. 4328 if (GPR_idx != Num_GPR_Regs) { 4329 unsigned VReg; 4330 if (isPPC64) 4331 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4332 else 4333 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4334 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4335 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4336 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4337 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4338 MachinePointerInfo(&*FuncArg, j)); 4339 MemOps.push_back(Store); 4340 ++GPR_idx; 4341 ArgOffset += PtrByteSize; 4342 } else { 4343 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4344 break; 4345 } 4346 } 4347 continue; 4348 } 4349 4350 switch (ObjectVT.getSimpleVT().SimpleTy) { 4351 default: llvm_unreachable("Unhandled argument type!"); 4352 case MVT::i1: 4353 case MVT::i32: 4354 if (!isPPC64) { 4355 if (GPR_idx != Num_GPR_Regs) { 4356 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4357 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4358 4359 if (ObjectVT == MVT::i1) 4360 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4361 4362 ++GPR_idx; 4363 } else { 4364 needsLoad = true; 4365 ArgSize = PtrByteSize; 4366 } 4367 // All int arguments reserve stack space in the Darwin ABI. 4368 ArgOffset += PtrByteSize; 4369 break; 4370 } 4371 LLVM_FALLTHROUGH; 4372 case MVT::i64: // PPC64 4373 if (GPR_idx != Num_GPR_Regs) { 4374 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4375 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4376 4377 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4378 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4379 // value to MVT::i64 and then truncate to the correct register size. 4380 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4381 4382 ++GPR_idx; 4383 } else { 4384 needsLoad = true; 4385 ArgSize = PtrByteSize; 4386 } 4387 // All int arguments reserve stack space in the Darwin ABI. 4388 ArgOffset += 8; 4389 break; 4390 4391 case MVT::f32: 4392 case MVT::f64: 4393 // Every 4 bytes of argument space consumes one of the GPRs available for 4394 // argument passing. 4395 if (GPR_idx != Num_GPR_Regs) { 4396 ++GPR_idx; 4397 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4398 ++GPR_idx; 4399 } 4400 if (FPR_idx != Num_FPR_Regs) { 4401 unsigned VReg; 4402 4403 if (ObjectVT == MVT::f32) 4404 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4405 else 4406 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4407 4408 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4409 ++FPR_idx; 4410 } else { 4411 needsLoad = true; 4412 } 4413 4414 // All FP arguments reserve stack space in the Darwin ABI. 4415 ArgOffset += isPPC64 ? 8 : ObjSize; 4416 break; 4417 case MVT::v4f32: 4418 case MVT::v4i32: 4419 case MVT::v8i16: 4420 case MVT::v16i8: 4421 // Note that vector arguments in registers don't reserve stack space, 4422 // except in varargs functions. 4423 if (VR_idx != Num_VR_Regs) { 4424 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4425 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4426 if (isVarArg) { 4427 while ((ArgOffset % 16) != 0) { 4428 ArgOffset += PtrByteSize; 4429 if (GPR_idx != Num_GPR_Regs) 4430 GPR_idx++; 4431 } 4432 ArgOffset += 16; 4433 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4434 } 4435 ++VR_idx; 4436 } else { 4437 if (!isVarArg && !isPPC64) { 4438 // Vectors go after all the nonvectors. 4439 CurArgOffset = VecArgOffset; 4440 VecArgOffset += 16; 4441 } else { 4442 // Vectors are aligned. 4443 ArgOffset = ((ArgOffset+15)/16)*16; 4444 CurArgOffset = ArgOffset; 4445 ArgOffset += 16; 4446 } 4447 needsLoad = true; 4448 } 4449 break; 4450 } 4451 4452 // We need to load the argument to a virtual register if we determined above 4453 // that we ran out of physical registers of the appropriate type. 4454 if (needsLoad) { 4455 int FI = MFI.CreateFixedObject(ObjSize, 4456 CurArgOffset + (ArgSize - ObjSize), 4457 isImmutable); 4458 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4459 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4460 } 4461 4462 InVals.push_back(ArgVal); 4463 } 4464 4465 // Allow for Altivec parameters at the end, if needed. 4466 if (nAltivecParamsAtEnd) { 4467 MinReservedArea = ((MinReservedArea+15)/16)*16; 4468 MinReservedArea += 16*nAltivecParamsAtEnd; 4469 } 4470 4471 // Area that is at least reserved in the caller of this function. 4472 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4473 4474 // Set the size that is at least reserved in caller of this function. Tail 4475 // call optimized functions' reserved stack space needs to be aligned so that 4476 // taking the difference between two stack areas will result in an aligned 4477 // stack. 4478 MinReservedArea = 4479 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4480 FuncInfo->setMinReservedArea(MinReservedArea); 4481 4482 // If the function takes variable number of arguments, make a frame index for 4483 // the start of the first vararg value... for expansion of llvm.va_start. 4484 if (isVarArg) { 4485 int Depth = ArgOffset; 4486 4487 FuncInfo->setVarArgsFrameIndex( 4488 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4489 Depth, true)); 4490 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4491 4492 // If this function is vararg, store any remaining integer argument regs 4493 // to their spots on the stack so that they may be loaded by dereferencing 4494 // the result of va_next. 4495 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4496 unsigned VReg; 4497 4498 if (isPPC64) 4499 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4500 else 4501 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4502 4503 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4504 SDValue Store = 4505 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4506 MemOps.push_back(Store); 4507 // Increment the address by four for the next argument to store 4508 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4509 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4510 } 4511 } 4512 4513 if (!MemOps.empty()) 4514 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4515 4516 return Chain; 4517 } 4518 4519 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4520 /// adjusted to accommodate the arguments for the tailcall. 4521 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4522 unsigned ParamSize) { 4523 4524 if (!isTailCall) return 0; 4525 4526 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4527 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4528 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4529 // Remember only if the new adjustment is bigger. 4530 if (SPDiff < FI->getTailCallSPDelta()) 4531 FI->setTailCallSPDelta(SPDiff); 4532 4533 return SPDiff; 4534 } 4535 4536 static bool isFunctionGlobalAddress(SDValue Callee); 4537 4538 static bool 4539 callsShareTOCBase(const Function *Caller, SDValue Callee, 4540 const TargetMachine &TM) { 4541 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4542 // don't have enough information to determine if the caller and calle share 4543 // the same TOC base, so we have to pessimistically assume they don't for 4544 // correctness. 4545 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4546 if (!G) 4547 return false; 4548 4549 const GlobalValue *GV = G->getGlobal(); 4550 // The medium and large code models are expected to provide a sufficiently 4551 // large TOC to provide all data addressing needs of a module with a 4552 // single TOC. Since each module will be addressed with a single TOC then we 4553 // only need to check that caller and callee don't cross dso boundaries. 4554 if (CodeModel::Medium == TM.getCodeModel() || 4555 CodeModel::Large == TM.getCodeModel()) 4556 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4557 4558 // Otherwise we need to ensure callee and caller are in the same section, 4559 // since the linker may allocate multiple TOCs, and we don't know which 4560 // sections will belong to the same TOC base. 4561 4562 if (!GV->isStrongDefinitionForLinker()) 4563 return false; 4564 4565 // Any explicitly-specified sections and section prefixes must also match. 4566 // Also, if we're using -ffunction-sections, then each function is always in 4567 // a different section (the same is true for COMDAT functions). 4568 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4569 GV->getSection() != Caller->getSection()) 4570 return false; 4571 if (const auto *F = dyn_cast<Function>(GV)) { 4572 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4573 return false; 4574 } 4575 4576 // If the callee might be interposed, then we can't assume the ultimate call 4577 // target will be in the same section. Even in cases where we can assume that 4578 // interposition won't happen, in any case where the linker might insert a 4579 // stub to allow for interposition, we must generate code as though 4580 // interposition might occur. To understand why this matters, consider a 4581 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4582 // in the same section, but a is in a different module (i.e. has a different 4583 // TOC base pointer). If the linker allows for interposition between b and c, 4584 // then it will generate a stub for the call edge between b and c which will 4585 // save the TOC pointer into the designated stack slot allocated by b. If we 4586 // return true here, and therefore allow a tail call between b and c, that 4587 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4588 // pointer into the stack slot allocated by a (where the a -> b stub saved 4589 // a's TOC base pointer). If we're not considering a tail call, but rather, 4590 // whether a nop is needed after the call instruction in b, because the linker 4591 // will insert a stub, it might complain about a missing nop if we omit it 4592 // (although many don't complain in this case). 4593 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4594 return false; 4595 4596 return true; 4597 } 4598 4599 static bool 4600 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4601 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4602 assert(Subtarget.is64BitELFABI()); 4603 4604 const unsigned PtrByteSize = 8; 4605 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4606 4607 static const MCPhysReg GPR[] = { 4608 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4609 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4610 }; 4611 static const MCPhysReg VR[] = { 4612 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4613 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4614 }; 4615 4616 const unsigned NumGPRs = array_lengthof(GPR); 4617 const unsigned NumFPRs = 13; 4618 const unsigned NumVRs = array_lengthof(VR); 4619 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4620 4621 unsigned NumBytes = LinkageSize; 4622 unsigned AvailableFPRs = NumFPRs; 4623 unsigned AvailableVRs = NumVRs; 4624 4625 for (const ISD::OutputArg& Param : Outs) { 4626 if (Param.Flags.isNest()) continue; 4627 4628 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4629 PtrByteSize, LinkageSize, ParamAreaSize, 4630 NumBytes, AvailableFPRs, AvailableVRs, 4631 Subtarget.hasQPX())) 4632 return true; 4633 } 4634 return false; 4635 } 4636 4637 static bool 4638 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4639 if (CS.arg_size() != CallerFn->arg_size()) 4640 return false; 4641 4642 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4643 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4644 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4645 4646 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4647 const Value* CalleeArg = *CalleeArgIter; 4648 const Value* CallerArg = &(*CallerArgIter); 4649 if (CalleeArg == CallerArg) 4650 continue; 4651 4652 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4653 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4654 // } 4655 // 1st argument of callee is undef and has the same type as caller. 4656 if (CalleeArg->getType() == CallerArg->getType() && 4657 isa<UndefValue>(CalleeArg)) 4658 continue; 4659 4660 return false; 4661 } 4662 4663 return true; 4664 } 4665 4666 // Returns true if TCO is possible between the callers and callees 4667 // calling conventions. 4668 static bool 4669 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4670 CallingConv::ID CalleeCC) { 4671 // Tail calls are possible with fastcc and ccc. 4672 auto isTailCallableCC = [] (CallingConv::ID CC){ 4673 return CC == CallingConv::C || CC == CallingConv::Fast; 4674 }; 4675 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4676 return false; 4677 4678 // We can safely tail call both fastcc and ccc callees from a c calling 4679 // convention caller. If the caller is fastcc, we may have less stack space 4680 // than a non-fastcc caller with the same signature so disable tail-calls in 4681 // that case. 4682 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4683 } 4684 4685 bool 4686 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4687 SDValue Callee, 4688 CallingConv::ID CalleeCC, 4689 ImmutableCallSite CS, 4690 bool isVarArg, 4691 const SmallVectorImpl<ISD::OutputArg> &Outs, 4692 const SmallVectorImpl<ISD::InputArg> &Ins, 4693 SelectionDAG& DAG) const { 4694 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4695 4696 if (DisableSCO && !TailCallOpt) return false; 4697 4698 // Variadic argument functions are not supported. 4699 if (isVarArg) return false; 4700 4701 auto &Caller = DAG.getMachineFunction().getFunction(); 4702 // Check that the calling conventions are compatible for tco. 4703 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4704 return false; 4705 4706 // Caller contains any byval parameter is not supported. 4707 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4708 return false; 4709 4710 // Callee contains any byval parameter is not supported, too. 4711 // Note: This is a quick work around, because in some cases, e.g. 4712 // caller's stack size > callee's stack size, we are still able to apply 4713 // sibling call optimization. For example, gcc is able to do SCO for caller1 4714 // in the following example, but not for caller2. 4715 // struct test { 4716 // long int a; 4717 // char ary[56]; 4718 // } gTest; 4719 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4720 // b->a = v.a; 4721 // return 0; 4722 // } 4723 // void caller1(struct test a, struct test c, struct test *b) { 4724 // callee(gTest, b); } 4725 // void caller2(struct test *b) { callee(gTest, b); } 4726 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4727 return false; 4728 4729 // If callee and caller use different calling conventions, we cannot pass 4730 // parameters on stack since offsets for the parameter area may be different. 4731 if (Caller.getCallingConv() != CalleeCC && 4732 needStackSlotPassParameters(Subtarget, Outs)) 4733 return false; 4734 4735 // No TCO/SCO on indirect call because Caller have to restore its TOC 4736 if (!isFunctionGlobalAddress(Callee) && 4737 !isa<ExternalSymbolSDNode>(Callee)) 4738 return false; 4739 4740 // If the caller and callee potentially have different TOC bases then we 4741 // cannot tail call since we need to restore the TOC pointer after the call. 4742 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4743 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4744 return false; 4745 4746 // TCO allows altering callee ABI, so we don't have to check further. 4747 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4748 return true; 4749 4750 if (DisableSCO) return false; 4751 4752 // If callee use the same argument list that caller is using, then we can 4753 // apply SCO on this case. If it is not, then we need to check if callee needs 4754 // stack for passing arguments. 4755 if (!hasSameArgumentList(&Caller, CS) && 4756 needStackSlotPassParameters(Subtarget, Outs)) { 4757 return false; 4758 } 4759 4760 return true; 4761 } 4762 4763 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4764 /// for tail call optimization. Targets which want to do tail call 4765 /// optimization should implement this function. 4766 bool 4767 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4768 CallingConv::ID CalleeCC, 4769 bool isVarArg, 4770 const SmallVectorImpl<ISD::InputArg> &Ins, 4771 SelectionDAG& DAG) const { 4772 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4773 return false; 4774 4775 // Variable argument functions are not supported. 4776 if (isVarArg) 4777 return false; 4778 4779 MachineFunction &MF = DAG.getMachineFunction(); 4780 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4781 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4782 // Functions containing by val parameters are not supported. 4783 for (unsigned i = 0; i != Ins.size(); i++) { 4784 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4785 if (Flags.isByVal()) return false; 4786 } 4787 4788 // Non-PIC/GOT tail calls are supported. 4789 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4790 return true; 4791 4792 // At the moment we can only do local tail calls (in same module, hidden 4793 // or protected) if we are generating PIC. 4794 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4795 return G->getGlobal()->hasHiddenVisibility() 4796 || G->getGlobal()->hasProtectedVisibility(); 4797 } 4798 4799 return false; 4800 } 4801 4802 /// isCallCompatibleAddress - Return the immediate to use if the specified 4803 /// 32-bit value is representable in the immediate field of a BxA instruction. 4804 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4805 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4806 if (!C) return nullptr; 4807 4808 int Addr = C->getZExtValue(); 4809 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4810 SignExtend32<26>(Addr) != Addr) 4811 return nullptr; // Top 6 bits have to be sext of immediate. 4812 4813 return DAG 4814 .getConstant( 4815 (int)C->getZExtValue() >> 2, SDLoc(Op), 4816 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4817 .getNode(); 4818 } 4819 4820 namespace { 4821 4822 struct TailCallArgumentInfo { 4823 SDValue Arg; 4824 SDValue FrameIdxOp; 4825 int FrameIdx = 0; 4826 4827 TailCallArgumentInfo() = default; 4828 }; 4829 4830 } // end anonymous namespace 4831 4832 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4833 static void StoreTailCallArgumentsToStackSlot( 4834 SelectionDAG &DAG, SDValue Chain, 4835 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4836 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4837 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4838 SDValue Arg = TailCallArgs[i].Arg; 4839 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4840 int FI = TailCallArgs[i].FrameIdx; 4841 // Store relative to framepointer. 4842 MemOpChains.push_back(DAG.getStore( 4843 Chain, dl, Arg, FIN, 4844 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4845 } 4846 } 4847 4848 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4849 /// the appropriate stack slot for the tail call optimized function call. 4850 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4851 SDValue OldRetAddr, SDValue OldFP, 4852 int SPDiff, const SDLoc &dl) { 4853 if (SPDiff) { 4854 // Calculate the new stack slot for the return address. 4855 MachineFunction &MF = DAG.getMachineFunction(); 4856 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4857 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4858 bool isPPC64 = Subtarget.isPPC64(); 4859 int SlotSize = isPPC64 ? 8 : 4; 4860 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4861 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4862 NewRetAddrLoc, true); 4863 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4864 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4865 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4866 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4867 } 4868 return Chain; 4869 } 4870 4871 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4872 /// the position of the argument. 4873 static void 4874 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4875 SDValue Arg, int SPDiff, unsigned ArgOffset, 4876 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4877 int Offset = ArgOffset + SPDiff; 4878 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4879 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4880 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4881 SDValue FIN = DAG.getFrameIndex(FI, VT); 4882 TailCallArgumentInfo Info; 4883 Info.Arg = Arg; 4884 Info.FrameIdxOp = FIN; 4885 Info.FrameIdx = FI; 4886 TailCallArguments.push_back(Info); 4887 } 4888 4889 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4890 /// stack slot. Returns the chain as result and the loaded frame pointers in 4891 /// LROpOut/FPOpout. Used when tail calling. 4892 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4893 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4894 SDValue &FPOpOut, const SDLoc &dl) const { 4895 if (SPDiff) { 4896 // Load the LR and FP stack slot for later adjusting. 4897 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4898 LROpOut = getReturnAddrFrameIndex(DAG); 4899 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4900 Chain = SDValue(LROpOut.getNode(), 1); 4901 } 4902 return Chain; 4903 } 4904 4905 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4906 /// by "Src" to address "Dst" of size "Size". Alignment information is 4907 /// specified by the specific parameter attribute. The copy will be passed as 4908 /// a byval function parameter. 4909 /// Sometimes what we are copying is the end of a larger object, the part that 4910 /// does not fit in registers. 4911 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4912 SDValue Chain, ISD::ArgFlagsTy Flags, 4913 SelectionDAG &DAG, const SDLoc &dl) { 4914 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4915 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4916 Flags.getNonZeroByValAlign(), false, false, false, 4917 MachinePointerInfo(), MachinePointerInfo()); 4918 } 4919 4920 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4921 /// tail calls. 4922 static void LowerMemOpCallTo( 4923 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4924 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4925 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4926 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4927 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4928 if (!isTailCall) { 4929 if (isVector) { 4930 SDValue StackPtr; 4931 if (isPPC64) 4932 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4933 else 4934 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4935 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4936 DAG.getConstant(ArgOffset, dl, PtrVT)); 4937 } 4938 MemOpChains.push_back( 4939 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4940 // Calculate and remember argument location. 4941 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4942 TailCallArguments); 4943 } 4944 4945 static void 4946 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4947 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4948 SDValue FPOp, 4949 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4950 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4951 // might overwrite each other in case of tail call optimization. 4952 SmallVector<SDValue, 8> MemOpChains2; 4953 // Do not flag preceding copytoreg stuff together with the following stuff. 4954 InFlag = SDValue(); 4955 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4956 MemOpChains2, dl); 4957 if (!MemOpChains2.empty()) 4958 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4959 4960 // Store the return address to the appropriate stack slot. 4961 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4962 4963 // Emit callseq_end just before tailcall node. 4964 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4965 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4966 InFlag = Chain.getValue(1); 4967 } 4968 4969 // Is this global address that of a function that can be called by name? (as 4970 // opposed to something that must hold a descriptor for an indirect call). 4971 static bool isFunctionGlobalAddress(SDValue Callee) { 4972 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4973 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4974 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4975 return false; 4976 4977 return G->getGlobal()->getValueType()->isFunctionTy(); 4978 } 4979 4980 return false; 4981 } 4982 4983 SDValue PPCTargetLowering::LowerCallResult( 4984 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4985 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4986 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4987 SmallVector<CCValAssign, 16> RVLocs; 4988 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4989 *DAG.getContext()); 4990 4991 CCRetInfo.AnalyzeCallResult( 4992 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4993 ? RetCC_PPC_Cold 4994 : RetCC_PPC); 4995 4996 // Copy all of the result registers out of their specified physreg. 4997 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4998 CCValAssign &VA = RVLocs[i]; 4999 assert(VA.isRegLoc() && "Can only return in registers!"); 5000 5001 SDValue Val; 5002 5003 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5004 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5005 InFlag); 5006 Chain = Lo.getValue(1); 5007 InFlag = Lo.getValue(2); 5008 VA = RVLocs[++i]; // skip ahead to next loc 5009 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5010 InFlag); 5011 Chain = Hi.getValue(1); 5012 InFlag = Hi.getValue(2); 5013 if (!Subtarget.isLittleEndian()) 5014 std::swap (Lo, Hi); 5015 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5016 } else { 5017 Val = DAG.getCopyFromReg(Chain, dl, 5018 VA.getLocReg(), VA.getLocVT(), InFlag); 5019 Chain = Val.getValue(1); 5020 InFlag = Val.getValue(2); 5021 } 5022 5023 switch (VA.getLocInfo()) { 5024 default: llvm_unreachable("Unknown loc info!"); 5025 case CCValAssign::Full: break; 5026 case CCValAssign::AExt: 5027 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5028 break; 5029 case CCValAssign::ZExt: 5030 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5031 DAG.getValueType(VA.getValVT())); 5032 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5033 break; 5034 case CCValAssign::SExt: 5035 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5036 DAG.getValueType(VA.getValVT())); 5037 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5038 break; 5039 } 5040 5041 InVals.push_back(Val); 5042 } 5043 5044 return Chain; 5045 } 5046 5047 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5048 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5049 // PatchPoint calls are not indirect. 5050 if (isPatchPoint) 5051 return false; 5052 5053 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5054 return false; 5055 5056 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5057 // becuase the immediate function pointer points to a descriptor instead of 5058 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5059 // pointer immediate points to the global entry point, while the BLA would 5060 // need to jump to the local entry point (see rL211174). 5061 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5062 isBLACompatibleAddress(Callee, DAG)) 5063 return false; 5064 5065 return true; 5066 } 5067 5068 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5069 const Function &Caller, 5070 const SDValue &Callee, 5071 const PPCSubtarget &Subtarget, 5072 const TargetMachine &TM) { 5073 if (CFlags.IsTailCall) 5074 return PPCISD::TC_RETURN; 5075 5076 // This is a call through a function pointer. 5077 if (CFlags.IsIndirect) { 5078 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5079 // indirect calls. The save of the caller's TOC pointer to the stack will be 5080 // inserted into the DAG as part of call lowering. The restore of the TOC 5081 // pointer is modeled by using a pseudo instruction for the call opcode that 5082 // represents the 2 instruction sequence of an indirect branch and link, 5083 // immediately followed by a load of the TOC pointer from the the stack save 5084 // slot into gpr2. 5085 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5086 return PPCISD::BCTRL_LOAD_TOC; 5087 5088 // An indirect call that does not need a TOC restore. 5089 return PPCISD::BCTRL; 5090 } 5091 5092 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5093 // immediately following the call instruction if the caller and callee may 5094 // have different TOC bases. At link time if the linker determines the calls 5095 // may not share a TOC base, the call is redirected to a trampoline inserted 5096 // by the linker. The trampoline will (among other things) save the callers 5097 // TOC pointer at an ABI designated offset in the linkage area and the linker 5098 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5099 // into gpr2. 5100 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5101 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5102 : PPCISD::CALL_NOP; 5103 5104 return PPCISD::CALL; 5105 } 5106 5107 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5108 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5109 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5110 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5111 return SDValue(Dest, 0); 5112 5113 // Returns true if the callee is local, and false otherwise. 5114 auto isLocalCallee = [&]() { 5115 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5116 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5117 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5118 5119 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5120 !dyn_cast_or_null<GlobalIFunc>(GV); 5121 }; 5122 5123 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5124 // a static relocation model causes some versions of GNU LD (2.17.50, at 5125 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5126 // built with secure-PLT. 5127 bool UsePlt = 5128 Subtarget.is32BitELFABI() && !isLocalCallee() && 5129 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5130 5131 // On AIX, direct function calls reference the symbol for the function's 5132 // entry point, which is named by prepending a "." before the function's 5133 // C-linkage name. 5134 const auto getAIXFuncEntryPointSymbolSDNode = 5135 [&](StringRef FuncName, bool IsDeclaration, 5136 const XCOFF::StorageClass &SC) { 5137 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5138 5139 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5140 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5141 5142 if (IsDeclaration && !S->hasContainingCsect()) { 5143 // On AIX, an undefined symbol needs to be associated with a 5144 // MCSectionXCOFF to get the correct storage mapping class. 5145 // In this case, XCOFF::XMC_PR. 5146 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5147 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5148 SectionKind::getMetadata()); 5149 S->setContainingCsect(Sec); 5150 } 5151 5152 MVT PtrVT = 5153 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5154 return DAG.getMCSymbol(S, PtrVT); 5155 }; 5156 5157 if (isFunctionGlobalAddress(Callee)) { 5158 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5159 const GlobalValue *GV = G->getGlobal(); 5160 5161 if (!Subtarget.isAIXABI()) 5162 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5163 UsePlt ? PPCII::MO_PLT : 0); 5164 5165 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5166 const GlobalObject *GO = cast<GlobalObject>(GV); 5167 const XCOFF::StorageClass SC = 5168 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5169 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5170 SC); 5171 } 5172 5173 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5174 const char *SymName = S->getSymbol(); 5175 if (!Subtarget.isAIXABI()) 5176 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5177 UsePlt ? PPCII::MO_PLT : 0); 5178 5179 // If there exists a user-declared function whose name is the same as the 5180 // ExternalSymbol's, then we pick up the user-declared version. 5181 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5182 if (const Function *F = 5183 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5184 const XCOFF::StorageClass SC = 5185 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5186 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5187 SC); 5188 } 5189 5190 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5191 } 5192 5193 // No transformation needed. 5194 assert(Callee.getNode() && "What no callee?"); 5195 return Callee; 5196 } 5197 5198 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5199 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5200 "Expected a CALLSEQ_STARTSDNode."); 5201 5202 // The last operand is the chain, except when the node has glue. If the node 5203 // has glue, then the last operand is the glue, and the chain is the second 5204 // last operand. 5205 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5206 if (LastValue.getValueType() != MVT::Glue) 5207 return LastValue; 5208 5209 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5210 } 5211 5212 // Creates the node that moves a functions address into the count register 5213 // to prepare for an indirect call instruction. 5214 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5215 SDValue &Glue, SDValue &Chain, 5216 const SDLoc &dl) { 5217 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5218 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5219 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5220 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5221 // The glue is the second value produced. 5222 Glue = Chain.getValue(1); 5223 } 5224 5225 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5226 SDValue &Glue, SDValue &Chain, 5227 SDValue CallSeqStart, 5228 ImmutableCallSite CS, const SDLoc &dl, 5229 bool hasNest, 5230 const PPCSubtarget &Subtarget) { 5231 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5232 // entry point, but to the function descriptor (the function entry point 5233 // address is part of the function descriptor though). 5234 // The function descriptor is a three doubleword structure with the 5235 // following fields: function entry point, TOC base address and 5236 // environment pointer. 5237 // Thus for a call through a function pointer, the following actions need 5238 // to be performed: 5239 // 1. Save the TOC of the caller in the TOC save area of its stack 5240 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5241 // 2. Load the address of the function entry point from the function 5242 // descriptor. 5243 // 3. Load the TOC of the callee from the function descriptor into r2. 5244 // 4. Load the environment pointer from the function descriptor into 5245 // r11. 5246 // 5. Branch to the function entry point address. 5247 // 6. On return of the callee, the TOC of the caller needs to be 5248 // restored (this is done in FinishCall()). 5249 // 5250 // The loads are scheduled at the beginning of the call sequence, and the 5251 // register copies are flagged together to ensure that no other 5252 // operations can be scheduled in between. E.g. without flagging the 5253 // copies together, a TOC access in the caller could be scheduled between 5254 // the assignment of the callee TOC and the branch to the callee, which leads 5255 // to incorrect code. 5256 5257 // Start by loading the function address from the descriptor. 5258 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5259 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5260 ? (MachineMemOperand::MODereferenceable | 5261 MachineMemOperand::MOInvariant) 5262 : MachineMemOperand::MONone; 5263 5264 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5265 5266 // Registers used in building the DAG. 5267 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5268 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5269 5270 // Offsets of descriptor members. 5271 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5272 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5273 5274 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5275 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5276 5277 // One load for the functions entry point address. 5278 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5279 Alignment, MMOFlags); 5280 5281 // One for loading the TOC anchor for the module that contains the called 5282 // function. 5283 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5284 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5285 SDValue TOCPtr = 5286 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5287 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5288 5289 // One for loading the environment pointer. 5290 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5291 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5292 SDValue LoadEnvPtr = 5293 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5294 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5295 5296 5297 // Then copy the newly loaded TOC anchor to the TOC pointer. 5298 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5299 Chain = TOCVal.getValue(0); 5300 Glue = TOCVal.getValue(1); 5301 5302 // If the function call has an explicit 'nest' parameter, it takes the 5303 // place of the environment pointer. 5304 assert((!hasNest || !Subtarget.isAIXABI()) && 5305 "Nest parameter is not supported on AIX."); 5306 if (!hasNest) { 5307 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5308 Chain = EnvVal.getValue(0); 5309 Glue = EnvVal.getValue(1); 5310 } 5311 5312 // The rest of the indirect call sequence is the same as the non-descriptor 5313 // DAG. 5314 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5315 } 5316 5317 static void 5318 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5319 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5320 SelectionDAG &DAG, 5321 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5322 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5323 const PPCSubtarget &Subtarget) { 5324 const bool IsPPC64 = Subtarget.isPPC64(); 5325 // MVT for a general purpose register. 5326 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5327 5328 // First operand is always the chain. 5329 Ops.push_back(Chain); 5330 5331 // If it's a direct call pass the callee as the second operand. 5332 if (!CFlags.IsIndirect) 5333 Ops.push_back(Callee); 5334 else { 5335 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5336 5337 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5338 // on the stack (this would have been done in `LowerCall_64SVR4` or 5339 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5340 // represents both the indirect branch and a load that restores the TOC 5341 // pointer from the linkage area. The operand for the TOC restore is an add 5342 // of the TOC save offset to the stack pointer. This must be the second 5343 // operand: after the chain input but before any other variadic arguments. 5344 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5345 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5346 5347 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5348 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5349 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5350 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5351 Ops.push_back(AddTOC); 5352 } 5353 5354 // Add the register used for the environment pointer. 5355 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5356 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5357 RegVT)); 5358 5359 5360 // Add CTR register as callee so a bctr can be emitted later. 5361 if (CFlags.IsTailCall) 5362 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5363 } 5364 5365 // If this is a tail call add stack pointer delta. 5366 if (CFlags.IsTailCall) 5367 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5368 5369 // Add argument registers to the end of the list so that they are known live 5370 // into the call. 5371 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5372 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5373 RegsToPass[i].second.getValueType())); 5374 5375 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5376 // no way to mark dependencies as implicit here. 5377 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5378 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5379 !CFlags.IsPatchPoint) 5380 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5381 5382 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5383 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5384 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5385 5386 // Add a register mask operand representing the call-preserved registers. 5387 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5388 const uint32_t *Mask = 5389 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5390 assert(Mask && "Missing call preserved mask for calling convention"); 5391 Ops.push_back(DAG.getRegisterMask(Mask)); 5392 5393 // If the glue is valid, it is the last operand. 5394 if (Glue.getNode()) 5395 Ops.push_back(Glue); 5396 } 5397 5398 SDValue PPCTargetLowering::FinishCall( 5399 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5400 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5401 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5402 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5403 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5404 5405 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5406 setUsesTOCBasePtr(DAG); 5407 5408 unsigned CallOpc = 5409 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5410 Subtarget, DAG.getTarget()); 5411 5412 if (!CFlags.IsIndirect) 5413 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5414 else if (Subtarget.usesFunctionDescriptors()) 5415 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5416 dl, CFlags.HasNest, Subtarget); 5417 else 5418 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5419 5420 // Build the operand list for the call instruction. 5421 SmallVector<SDValue, 8> Ops; 5422 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5423 SPDiff, Subtarget); 5424 5425 // Emit tail call. 5426 if (CFlags.IsTailCall) { 5427 assert(((Callee.getOpcode() == ISD::Register && 5428 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5429 Callee.getOpcode() == ISD::TargetExternalSymbol || 5430 Callee.getOpcode() == ISD::TargetGlobalAddress || 5431 isa<ConstantSDNode>(Callee)) && 5432 "Expecting a global address, external symbol, absolute value or " 5433 "register"); 5434 assert(CallOpc == PPCISD::TC_RETURN && 5435 "Unexpected call opcode for a tail call."); 5436 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5437 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5438 } 5439 5440 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5441 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5442 Glue = Chain.getValue(1); 5443 5444 // When performing tail call optimization the callee pops its arguments off 5445 // the stack. Account for this here so these bytes can be pushed back on in 5446 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5447 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5448 getTargetMachine().Options.GuaranteedTailCallOpt) 5449 ? NumBytes 5450 : 0; 5451 5452 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5453 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5454 Glue, dl); 5455 Glue = Chain.getValue(1); 5456 5457 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5458 DAG, InVals); 5459 } 5460 5461 SDValue 5462 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5463 SmallVectorImpl<SDValue> &InVals) const { 5464 SelectionDAG &DAG = CLI.DAG; 5465 SDLoc &dl = CLI.DL; 5466 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5467 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5468 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5469 SDValue Chain = CLI.Chain; 5470 SDValue Callee = CLI.Callee; 5471 bool &isTailCall = CLI.IsTailCall; 5472 CallingConv::ID CallConv = CLI.CallConv; 5473 bool isVarArg = CLI.IsVarArg; 5474 bool isPatchPoint = CLI.IsPatchPoint; 5475 ImmutableCallSite CS = CLI.CS; 5476 5477 if (isTailCall) { 5478 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5479 isTailCall = false; 5480 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5481 isTailCall = 5482 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5483 isVarArg, Outs, Ins, DAG); 5484 else 5485 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5486 Ins, DAG); 5487 if (isTailCall) { 5488 ++NumTailCalls; 5489 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5490 ++NumSiblingCalls; 5491 5492 assert(isa<GlobalAddressSDNode>(Callee) && 5493 "Callee should be an llvm::Function object."); 5494 LLVM_DEBUG( 5495 const GlobalValue *GV = 5496 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5497 const unsigned Width = 5498 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5499 dbgs() << "TCO caller: " 5500 << left_justify(DAG.getMachineFunction().getName(), Width) 5501 << ", callee linkage: " << GV->getVisibility() << ", " 5502 << GV->getLinkage() << "\n"); 5503 } 5504 } 5505 5506 if (!isTailCall && CS && CS.isMustTailCall()) 5507 report_fatal_error("failed to perform tail call elimination on a call " 5508 "site marked musttail"); 5509 5510 // When long calls (i.e. indirect calls) are always used, calls are always 5511 // made via function pointer. If we have a function name, first translate it 5512 // into a pointer. 5513 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5514 !isTailCall) 5515 Callee = LowerGlobalAddress(Callee, DAG); 5516 5517 CallFlags CFlags( 5518 CallConv, isTailCall, isVarArg, isPatchPoint, 5519 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5520 // hasNest 5521 Subtarget.is64BitELFABI() && 5522 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); })); 5523 5524 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5525 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5526 InVals, CS); 5527 5528 if (Subtarget.isSVR4ABI()) 5529 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5530 InVals, CS); 5531 5532 if (Subtarget.isAIXABI()) 5533 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5534 InVals, CS); 5535 5536 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5537 InVals, CS); 5538 } 5539 5540 SDValue PPCTargetLowering::LowerCall_32SVR4( 5541 SDValue Chain, SDValue Callee, CallFlags CFlags, 5542 const SmallVectorImpl<ISD::OutputArg> &Outs, 5543 const SmallVectorImpl<SDValue> &OutVals, 5544 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5545 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5546 ImmutableCallSite CS) const { 5547 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5548 // of the 32-bit SVR4 ABI stack frame layout. 5549 5550 const CallingConv::ID CallConv = CFlags.CallConv; 5551 const bool IsVarArg = CFlags.IsVarArg; 5552 const bool IsTailCall = CFlags.IsTailCall; 5553 5554 assert((CallConv == CallingConv::C || 5555 CallConv == CallingConv::Cold || 5556 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5557 5558 unsigned PtrByteSize = 4; 5559 5560 MachineFunction &MF = DAG.getMachineFunction(); 5561 5562 // Mark this function as potentially containing a function that contains a 5563 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5564 // and restoring the callers stack pointer in this functions epilog. This is 5565 // done because by tail calling the called function might overwrite the value 5566 // in this function's (MF) stack pointer stack slot 0(SP). 5567 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5568 CallConv == CallingConv::Fast) 5569 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5570 5571 // Count how many bytes are to be pushed on the stack, including the linkage 5572 // area, parameter list area and the part of the local variable space which 5573 // contains copies of aggregates which are passed by value. 5574 5575 // Assign locations to all of the outgoing arguments. 5576 SmallVector<CCValAssign, 16> ArgLocs; 5577 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5578 5579 // Reserve space for the linkage area on the stack. 5580 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5581 PtrByteSize); 5582 if (useSoftFloat()) 5583 CCInfo.PreAnalyzeCallOperands(Outs); 5584 5585 if (IsVarArg) { 5586 // Handle fixed and variable vector arguments differently. 5587 // Fixed vector arguments go into registers as long as registers are 5588 // available. Variable vector arguments always go into memory. 5589 unsigned NumArgs = Outs.size(); 5590 5591 for (unsigned i = 0; i != NumArgs; ++i) { 5592 MVT ArgVT = Outs[i].VT; 5593 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5594 bool Result; 5595 5596 if (Outs[i].IsFixed) { 5597 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5598 CCInfo); 5599 } else { 5600 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5601 ArgFlags, CCInfo); 5602 } 5603 5604 if (Result) { 5605 #ifndef NDEBUG 5606 errs() << "Call operand #" << i << " has unhandled type " 5607 << EVT(ArgVT).getEVTString() << "\n"; 5608 #endif 5609 llvm_unreachable(nullptr); 5610 } 5611 } 5612 } else { 5613 // All arguments are treated the same. 5614 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5615 } 5616 CCInfo.clearWasPPCF128(); 5617 5618 // Assign locations to all of the outgoing aggregate by value arguments. 5619 SmallVector<CCValAssign, 16> ByValArgLocs; 5620 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5621 5622 // Reserve stack space for the allocations in CCInfo. 5623 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5624 5625 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5626 5627 // Size of the linkage area, parameter list area and the part of the local 5628 // space variable where copies of aggregates which are passed by value are 5629 // stored. 5630 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5631 5632 // Calculate by how many bytes the stack has to be adjusted in case of tail 5633 // call optimization. 5634 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5635 5636 // Adjust the stack pointer for the new arguments... 5637 // These operations are automatically eliminated by the prolog/epilog pass 5638 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5639 SDValue CallSeqStart = Chain; 5640 5641 // Load the return address and frame pointer so it can be moved somewhere else 5642 // later. 5643 SDValue LROp, FPOp; 5644 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5645 5646 // Set up a copy of the stack pointer for use loading and storing any 5647 // arguments that may not fit in the registers available for argument 5648 // passing. 5649 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5650 5651 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5652 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5653 SmallVector<SDValue, 8> MemOpChains; 5654 5655 bool seenFloatArg = false; 5656 // Walk the register/memloc assignments, inserting copies/loads. 5657 // i - Tracks the index into the list of registers allocated for the call 5658 // RealArgIdx - Tracks the index into the list of actual function arguments 5659 // j - Tracks the index into the list of byval arguments 5660 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5661 i != e; 5662 ++i, ++RealArgIdx) { 5663 CCValAssign &VA = ArgLocs[i]; 5664 SDValue Arg = OutVals[RealArgIdx]; 5665 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5666 5667 if (Flags.isByVal()) { 5668 // Argument is an aggregate which is passed by value, thus we need to 5669 // create a copy of it in the local variable space of the current stack 5670 // frame (which is the stack frame of the caller) and pass the address of 5671 // this copy to the callee. 5672 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5673 CCValAssign &ByValVA = ByValArgLocs[j++]; 5674 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5675 5676 // Memory reserved in the local variable space of the callers stack frame. 5677 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5678 5679 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5680 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5681 StackPtr, PtrOff); 5682 5683 // Create a copy of the argument in the local area of the current 5684 // stack frame. 5685 SDValue MemcpyCall = 5686 CreateCopyOfByValArgument(Arg, PtrOff, 5687 CallSeqStart.getNode()->getOperand(0), 5688 Flags, DAG, dl); 5689 5690 // This must go outside the CALLSEQ_START..END. 5691 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5692 SDLoc(MemcpyCall)); 5693 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5694 NewCallSeqStart.getNode()); 5695 Chain = CallSeqStart = NewCallSeqStart; 5696 5697 // Pass the address of the aggregate copy on the stack either in a 5698 // physical register or in the parameter list area of the current stack 5699 // frame to the callee. 5700 Arg = PtrOff; 5701 } 5702 5703 // When useCRBits() is true, there can be i1 arguments. 5704 // It is because getRegisterType(MVT::i1) => MVT::i1, 5705 // and for other integer types getRegisterType() => MVT::i32. 5706 // Extend i1 and ensure callee will get i32. 5707 if (Arg.getValueType() == MVT::i1) 5708 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5709 dl, MVT::i32, Arg); 5710 5711 if (VA.isRegLoc()) { 5712 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5713 // Put argument in a physical register. 5714 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5715 bool IsLE = Subtarget.isLittleEndian(); 5716 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5717 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5718 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5719 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5720 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5721 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5722 SVal.getValue(0))); 5723 } else 5724 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5725 } else { 5726 // Put argument in the parameter list area of the current stack frame. 5727 assert(VA.isMemLoc()); 5728 unsigned LocMemOffset = VA.getLocMemOffset(); 5729 5730 if (!IsTailCall) { 5731 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5732 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5733 StackPtr, PtrOff); 5734 5735 MemOpChains.push_back( 5736 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5737 } else { 5738 // Calculate and remember argument location. 5739 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5740 TailCallArguments); 5741 } 5742 } 5743 } 5744 5745 if (!MemOpChains.empty()) 5746 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5747 5748 // Build a sequence of copy-to-reg nodes chained together with token chain 5749 // and flag operands which copy the outgoing args into the appropriate regs. 5750 SDValue InFlag; 5751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5752 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5753 RegsToPass[i].second, InFlag); 5754 InFlag = Chain.getValue(1); 5755 } 5756 5757 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5758 // registers. 5759 if (IsVarArg) { 5760 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5761 SDValue Ops[] = { Chain, InFlag }; 5762 5763 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5764 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5765 5766 InFlag = Chain.getValue(1); 5767 } 5768 5769 if (IsTailCall) 5770 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5771 TailCallArguments); 5772 5773 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5774 Callee, SPDiff, NumBytes, Ins, InVals, CS); 5775 } 5776 5777 // Copy an argument into memory, being careful to do this outside the 5778 // call sequence for the call to which the argument belongs. 5779 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5780 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5781 SelectionDAG &DAG, const SDLoc &dl) const { 5782 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5783 CallSeqStart.getNode()->getOperand(0), 5784 Flags, DAG, dl); 5785 // The MEMCPY must go outside the CALLSEQ_START..END. 5786 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5787 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5788 SDLoc(MemcpyCall)); 5789 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5790 NewCallSeqStart.getNode()); 5791 return NewCallSeqStart; 5792 } 5793 5794 SDValue PPCTargetLowering::LowerCall_64SVR4( 5795 SDValue Chain, SDValue Callee, CallFlags CFlags, 5796 const SmallVectorImpl<ISD::OutputArg> &Outs, 5797 const SmallVectorImpl<SDValue> &OutVals, 5798 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5799 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5800 ImmutableCallSite CS) const { 5801 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5802 bool isLittleEndian = Subtarget.isLittleEndian(); 5803 unsigned NumOps = Outs.size(); 5804 bool IsSibCall = false; 5805 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5806 5807 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5808 unsigned PtrByteSize = 8; 5809 5810 MachineFunction &MF = DAG.getMachineFunction(); 5811 5812 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5813 IsSibCall = true; 5814 5815 // Mark this function as potentially containing a function that contains a 5816 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5817 // and restoring the callers stack pointer in this functions epilog. This is 5818 // done because by tail calling the called function might overwrite the value 5819 // in this function's (MF) stack pointer stack slot 0(SP). 5820 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5821 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5822 5823 assert(!(IsFastCall && CFlags.IsVarArg) && 5824 "fastcc not supported on varargs functions"); 5825 5826 // Count how many bytes are to be pushed on the stack, including the linkage 5827 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5828 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5829 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5830 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5831 unsigned NumBytes = LinkageSize; 5832 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5833 unsigned &QFPR_idx = FPR_idx; 5834 5835 static const MCPhysReg GPR[] = { 5836 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5837 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5838 }; 5839 static const MCPhysReg VR[] = { 5840 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5841 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5842 }; 5843 5844 const unsigned NumGPRs = array_lengthof(GPR); 5845 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5846 const unsigned NumVRs = array_lengthof(VR); 5847 const unsigned NumQFPRs = NumFPRs; 5848 5849 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5850 // can be passed to the callee in registers. 5851 // For the fast calling convention, there is another check below. 5852 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5853 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5854 if (!HasParameterArea) { 5855 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5856 unsigned AvailableFPRs = NumFPRs; 5857 unsigned AvailableVRs = NumVRs; 5858 unsigned NumBytesTmp = NumBytes; 5859 for (unsigned i = 0; i != NumOps; ++i) { 5860 if (Outs[i].Flags.isNest()) continue; 5861 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5862 PtrByteSize, LinkageSize, ParamAreaSize, 5863 NumBytesTmp, AvailableFPRs, AvailableVRs, 5864 Subtarget.hasQPX())) 5865 HasParameterArea = true; 5866 } 5867 } 5868 5869 // When using the fast calling convention, we don't provide backing for 5870 // arguments that will be in registers. 5871 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5872 5873 // Avoid allocating parameter area for fastcc functions if all the arguments 5874 // can be passed in the registers. 5875 if (IsFastCall) 5876 HasParameterArea = false; 5877 5878 // Add up all the space actually used. 5879 for (unsigned i = 0; i != NumOps; ++i) { 5880 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5881 EVT ArgVT = Outs[i].VT; 5882 EVT OrigVT = Outs[i].ArgVT; 5883 5884 if (Flags.isNest()) 5885 continue; 5886 5887 if (IsFastCall) { 5888 if (Flags.isByVal()) { 5889 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5890 if (NumGPRsUsed > NumGPRs) 5891 HasParameterArea = true; 5892 } else { 5893 switch (ArgVT.getSimpleVT().SimpleTy) { 5894 default: llvm_unreachable("Unexpected ValueType for argument!"); 5895 case MVT::i1: 5896 case MVT::i32: 5897 case MVT::i64: 5898 if (++NumGPRsUsed <= NumGPRs) 5899 continue; 5900 break; 5901 case MVT::v4i32: 5902 case MVT::v8i16: 5903 case MVT::v16i8: 5904 case MVT::v2f64: 5905 case MVT::v2i64: 5906 case MVT::v1i128: 5907 case MVT::f128: 5908 if (++NumVRsUsed <= NumVRs) 5909 continue; 5910 break; 5911 case MVT::v4f32: 5912 // When using QPX, this is handled like a FP register, otherwise, it 5913 // is an Altivec register. 5914 if (Subtarget.hasQPX()) { 5915 if (++NumFPRsUsed <= NumFPRs) 5916 continue; 5917 } else { 5918 if (++NumVRsUsed <= NumVRs) 5919 continue; 5920 } 5921 break; 5922 case MVT::f32: 5923 case MVT::f64: 5924 case MVT::v4f64: // QPX 5925 case MVT::v4i1: // QPX 5926 if (++NumFPRsUsed <= NumFPRs) 5927 continue; 5928 break; 5929 } 5930 HasParameterArea = true; 5931 } 5932 } 5933 5934 /* Respect alignment of argument on the stack. */ 5935 auto Alignement = 5936 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5937 NumBytes = alignTo(NumBytes, Alignement); 5938 5939 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5940 if (Flags.isInConsecutiveRegsLast()) 5941 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5942 } 5943 5944 unsigned NumBytesActuallyUsed = NumBytes; 5945 5946 // In the old ELFv1 ABI, 5947 // the prolog code of the callee may store up to 8 GPR argument registers to 5948 // the stack, allowing va_start to index over them in memory if its varargs. 5949 // Because we cannot tell if this is needed on the caller side, we have to 5950 // conservatively assume that it is needed. As such, make sure we have at 5951 // least enough stack space for the caller to store the 8 GPRs. 5952 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5953 // really requires memory operands, e.g. a vararg function. 5954 if (HasParameterArea) 5955 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5956 else 5957 NumBytes = LinkageSize; 5958 5959 // Tail call needs the stack to be aligned. 5960 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5961 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5962 5963 int SPDiff = 0; 5964 5965 // Calculate by how many bytes the stack has to be adjusted in case of tail 5966 // call optimization. 5967 if (!IsSibCall) 5968 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5969 5970 // To protect arguments on the stack from being clobbered in a tail call, 5971 // force all the loads to happen before doing any other lowering. 5972 if (CFlags.IsTailCall) 5973 Chain = DAG.getStackArgumentTokenFactor(Chain); 5974 5975 // Adjust the stack pointer for the new arguments... 5976 // These operations are automatically eliminated by the prolog/epilog pass 5977 if (!IsSibCall) 5978 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5979 SDValue CallSeqStart = Chain; 5980 5981 // Load the return address and frame pointer so it can be move somewhere else 5982 // later. 5983 SDValue LROp, FPOp; 5984 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5985 5986 // Set up a copy of the stack pointer for use loading and storing any 5987 // arguments that may not fit in the registers available for argument 5988 // passing. 5989 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5990 5991 // Figure out which arguments are going to go in registers, and which in 5992 // memory. Also, if this is a vararg function, floating point operations 5993 // must be stored to our stack, and loaded into integer regs as well, if 5994 // any integer regs are available for argument passing. 5995 unsigned ArgOffset = LinkageSize; 5996 5997 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5998 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5999 6000 SmallVector<SDValue, 8> MemOpChains; 6001 for (unsigned i = 0; i != NumOps; ++i) { 6002 SDValue Arg = OutVals[i]; 6003 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6004 EVT ArgVT = Outs[i].VT; 6005 EVT OrigVT = Outs[i].ArgVT; 6006 6007 // PtrOff will be used to store the current argument to the stack if a 6008 // register cannot be found for it. 6009 SDValue PtrOff; 6010 6011 // We re-align the argument offset for each argument, except when using the 6012 // fast calling convention, when we need to make sure we do that only when 6013 // we'll actually use a stack slot. 6014 auto ComputePtrOff = [&]() { 6015 /* Respect alignment of argument on the stack. */ 6016 auto Alignment = 6017 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6018 ArgOffset = alignTo(ArgOffset, Alignment); 6019 6020 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6021 6022 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6023 }; 6024 6025 if (!IsFastCall) { 6026 ComputePtrOff(); 6027 6028 /* Compute GPR index associated with argument offset. */ 6029 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6030 GPR_idx = std::min(GPR_idx, NumGPRs); 6031 } 6032 6033 // Promote integers to 64-bit values. 6034 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6035 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6036 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6037 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6038 } 6039 6040 // FIXME memcpy is used way more than necessary. Correctness first. 6041 // Note: "by value" is code for passing a structure by value, not 6042 // basic types. 6043 if (Flags.isByVal()) { 6044 // Note: Size includes alignment padding, so 6045 // struct x { short a; char b; } 6046 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6047 // These are the proper values we need for right-justifying the 6048 // aggregate in a parameter register. 6049 unsigned Size = Flags.getByValSize(); 6050 6051 // An empty aggregate parameter takes up no storage and no 6052 // registers. 6053 if (Size == 0) 6054 continue; 6055 6056 if (IsFastCall) 6057 ComputePtrOff(); 6058 6059 // All aggregates smaller than 8 bytes must be passed right-justified. 6060 if (Size==1 || Size==2 || Size==4) { 6061 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6062 if (GPR_idx != NumGPRs) { 6063 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6064 MachinePointerInfo(), VT); 6065 MemOpChains.push_back(Load.getValue(1)); 6066 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6067 6068 ArgOffset += PtrByteSize; 6069 continue; 6070 } 6071 } 6072 6073 if (GPR_idx == NumGPRs && Size < 8) { 6074 SDValue AddPtr = PtrOff; 6075 if (!isLittleEndian) { 6076 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6077 PtrOff.getValueType()); 6078 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6079 } 6080 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6081 CallSeqStart, 6082 Flags, DAG, dl); 6083 ArgOffset += PtrByteSize; 6084 continue; 6085 } 6086 // Copy entire object into memory. There are cases where gcc-generated 6087 // code assumes it is there, even if it could be put entirely into 6088 // registers. (This is not what the doc says.) 6089 6090 // FIXME: The above statement is likely due to a misunderstanding of the 6091 // documents. All arguments must be copied into the parameter area BY 6092 // THE CALLEE in the event that the callee takes the address of any 6093 // formal argument. That has not yet been implemented. However, it is 6094 // reasonable to use the stack area as a staging area for the register 6095 // load. 6096 6097 // Skip this for small aggregates, as we will use the same slot for a 6098 // right-justified copy, below. 6099 if (Size >= 8) 6100 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6101 CallSeqStart, 6102 Flags, DAG, dl); 6103 6104 // When a register is available, pass a small aggregate right-justified. 6105 if (Size < 8 && GPR_idx != NumGPRs) { 6106 // The easiest way to get this right-justified in a register 6107 // is to copy the structure into the rightmost portion of a 6108 // local variable slot, then load the whole slot into the 6109 // register. 6110 // FIXME: The memcpy seems to produce pretty awful code for 6111 // small aggregates, particularly for packed ones. 6112 // FIXME: It would be preferable to use the slot in the 6113 // parameter save area instead of a new local variable. 6114 SDValue AddPtr = PtrOff; 6115 if (!isLittleEndian) { 6116 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6117 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6118 } 6119 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6120 CallSeqStart, 6121 Flags, DAG, dl); 6122 6123 // Load the slot into the register. 6124 SDValue Load = 6125 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6126 MemOpChains.push_back(Load.getValue(1)); 6127 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6128 6129 // Done with this argument. 6130 ArgOffset += PtrByteSize; 6131 continue; 6132 } 6133 6134 // For aggregates larger than PtrByteSize, copy the pieces of the 6135 // object that fit into registers from the parameter save area. 6136 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6137 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6138 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6139 if (GPR_idx != NumGPRs) { 6140 SDValue Load = 6141 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6142 MemOpChains.push_back(Load.getValue(1)); 6143 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6144 ArgOffset += PtrByteSize; 6145 } else { 6146 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6147 break; 6148 } 6149 } 6150 continue; 6151 } 6152 6153 switch (Arg.getSimpleValueType().SimpleTy) { 6154 default: llvm_unreachable("Unexpected ValueType for argument!"); 6155 case MVT::i1: 6156 case MVT::i32: 6157 case MVT::i64: 6158 if (Flags.isNest()) { 6159 // The 'nest' parameter, if any, is passed in R11. 6160 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6161 break; 6162 } 6163 6164 // These can be scalar arguments or elements of an integer array type 6165 // passed directly. Clang may use those instead of "byval" aggregate 6166 // types to avoid forcing arguments to memory unnecessarily. 6167 if (GPR_idx != NumGPRs) { 6168 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6169 } else { 6170 if (IsFastCall) 6171 ComputePtrOff(); 6172 6173 assert(HasParameterArea && 6174 "Parameter area must exist to pass an argument in memory."); 6175 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6176 true, CFlags.IsTailCall, false, MemOpChains, 6177 TailCallArguments, dl); 6178 if (IsFastCall) 6179 ArgOffset += PtrByteSize; 6180 } 6181 if (!IsFastCall) 6182 ArgOffset += PtrByteSize; 6183 break; 6184 case MVT::f32: 6185 case MVT::f64: { 6186 // These can be scalar arguments or elements of a float array type 6187 // passed directly. The latter are used to implement ELFv2 homogenous 6188 // float aggregates. 6189 6190 // Named arguments go into FPRs first, and once they overflow, the 6191 // remaining arguments go into GPRs and then the parameter save area. 6192 // Unnamed arguments for vararg functions always go to GPRs and 6193 // then the parameter save area. For now, put all arguments to vararg 6194 // routines always in both locations (FPR *and* GPR or stack slot). 6195 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6196 bool NeededLoad = false; 6197 6198 // First load the argument into the next available FPR. 6199 if (FPR_idx != NumFPRs) 6200 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6201 6202 // Next, load the argument into GPR or stack slot if needed. 6203 if (!NeedGPROrStack) 6204 ; 6205 else if (GPR_idx != NumGPRs && !IsFastCall) { 6206 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6207 // once we support fp <-> gpr moves. 6208 6209 // In the non-vararg case, this can only ever happen in the 6210 // presence of f32 array types, since otherwise we never run 6211 // out of FPRs before running out of GPRs. 6212 SDValue ArgVal; 6213 6214 // Double values are always passed in a single GPR. 6215 if (Arg.getValueType() != MVT::f32) { 6216 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6217 6218 // Non-array float values are extended and passed in a GPR. 6219 } else if (!Flags.isInConsecutiveRegs()) { 6220 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6221 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6222 6223 // If we have an array of floats, we collect every odd element 6224 // together with its predecessor into one GPR. 6225 } else if (ArgOffset % PtrByteSize != 0) { 6226 SDValue Lo, Hi; 6227 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6228 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6229 if (!isLittleEndian) 6230 std::swap(Lo, Hi); 6231 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6232 6233 // The final element, if even, goes into the first half of a GPR. 6234 } else if (Flags.isInConsecutiveRegsLast()) { 6235 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6236 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6237 if (!isLittleEndian) 6238 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6239 DAG.getConstant(32, dl, MVT::i32)); 6240 6241 // Non-final even elements are skipped; they will be handled 6242 // together the with subsequent argument on the next go-around. 6243 } else 6244 ArgVal = SDValue(); 6245 6246 if (ArgVal.getNode()) 6247 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6248 } else { 6249 if (IsFastCall) 6250 ComputePtrOff(); 6251 6252 // Single-precision floating-point values are mapped to the 6253 // second (rightmost) word of the stack doubleword. 6254 if (Arg.getValueType() == MVT::f32 && 6255 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6256 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6257 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6258 } 6259 6260 assert(HasParameterArea && 6261 "Parameter area must exist to pass an argument in memory."); 6262 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6263 true, CFlags.IsTailCall, false, MemOpChains, 6264 TailCallArguments, dl); 6265 6266 NeededLoad = true; 6267 } 6268 // When passing an array of floats, the array occupies consecutive 6269 // space in the argument area; only round up to the next doubleword 6270 // at the end of the array. Otherwise, each float takes 8 bytes. 6271 if (!IsFastCall || NeededLoad) { 6272 ArgOffset += (Arg.getValueType() == MVT::f32 && 6273 Flags.isInConsecutiveRegs()) ? 4 : 8; 6274 if (Flags.isInConsecutiveRegsLast()) 6275 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6276 } 6277 break; 6278 } 6279 case MVT::v4f32: 6280 case MVT::v4i32: 6281 case MVT::v8i16: 6282 case MVT::v16i8: 6283 case MVT::v2f64: 6284 case MVT::v2i64: 6285 case MVT::v1i128: 6286 case MVT::f128: 6287 if (!Subtarget.hasQPX()) { 6288 // These can be scalar arguments or elements of a vector array type 6289 // passed directly. The latter are used to implement ELFv2 homogenous 6290 // vector aggregates. 6291 6292 // For a varargs call, named arguments go into VRs or on the stack as 6293 // usual; unnamed arguments always go to the stack or the corresponding 6294 // GPRs when within range. For now, we always put the value in both 6295 // locations (or even all three). 6296 if (CFlags.IsVarArg) { 6297 assert(HasParameterArea && 6298 "Parameter area must exist if we have a varargs call."); 6299 // We could elide this store in the case where the object fits 6300 // entirely in R registers. Maybe later. 6301 SDValue Store = 6302 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6303 MemOpChains.push_back(Store); 6304 if (VR_idx != NumVRs) { 6305 SDValue Load = 6306 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6307 MemOpChains.push_back(Load.getValue(1)); 6308 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6309 } 6310 ArgOffset += 16; 6311 for (unsigned i=0; i<16; i+=PtrByteSize) { 6312 if (GPR_idx == NumGPRs) 6313 break; 6314 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6315 DAG.getConstant(i, dl, PtrVT)); 6316 SDValue Load = 6317 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6318 MemOpChains.push_back(Load.getValue(1)); 6319 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6320 } 6321 break; 6322 } 6323 6324 // Non-varargs Altivec params go into VRs or on the stack. 6325 if (VR_idx != NumVRs) { 6326 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6327 } else { 6328 if (IsFastCall) 6329 ComputePtrOff(); 6330 6331 assert(HasParameterArea && 6332 "Parameter area must exist to pass an argument in memory."); 6333 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6334 true, CFlags.IsTailCall, true, MemOpChains, 6335 TailCallArguments, dl); 6336 if (IsFastCall) 6337 ArgOffset += 16; 6338 } 6339 6340 if (!IsFastCall) 6341 ArgOffset += 16; 6342 break; 6343 } // not QPX 6344 6345 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6346 "Invalid QPX parameter type"); 6347 6348 LLVM_FALLTHROUGH; 6349 case MVT::v4f64: 6350 case MVT::v4i1: { 6351 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6352 if (CFlags.IsVarArg) { 6353 assert(HasParameterArea && 6354 "Parameter area must exist if we have a varargs call."); 6355 // We could elide this store in the case where the object fits 6356 // entirely in R registers. Maybe later. 6357 SDValue Store = 6358 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6359 MemOpChains.push_back(Store); 6360 if (QFPR_idx != NumQFPRs) { 6361 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6362 PtrOff, MachinePointerInfo()); 6363 MemOpChains.push_back(Load.getValue(1)); 6364 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6365 } 6366 ArgOffset += (IsF32 ? 16 : 32); 6367 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6368 if (GPR_idx == NumGPRs) 6369 break; 6370 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6371 DAG.getConstant(i, dl, PtrVT)); 6372 SDValue Load = 6373 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6374 MemOpChains.push_back(Load.getValue(1)); 6375 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6376 } 6377 break; 6378 } 6379 6380 // Non-varargs QPX params go into registers or on the stack. 6381 if (QFPR_idx != NumQFPRs) { 6382 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6383 } else { 6384 if (IsFastCall) 6385 ComputePtrOff(); 6386 6387 assert(HasParameterArea && 6388 "Parameter area must exist to pass an argument in memory."); 6389 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6390 true, CFlags.IsTailCall, true, MemOpChains, 6391 TailCallArguments, dl); 6392 if (IsFastCall) 6393 ArgOffset += (IsF32 ? 16 : 32); 6394 } 6395 6396 if (!IsFastCall) 6397 ArgOffset += (IsF32 ? 16 : 32); 6398 break; 6399 } 6400 } 6401 } 6402 6403 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6404 "mismatch in size of parameter area"); 6405 (void)NumBytesActuallyUsed; 6406 6407 if (!MemOpChains.empty()) 6408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6409 6410 // Check if this is an indirect call (MTCTR/BCTRL). 6411 // See prepareDescriptorIndirectCall and buildCallOperands for more 6412 // information about calls through function pointers in the 64-bit SVR4 ABI. 6413 if (CFlags.IsIndirect) { 6414 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6415 // Load r2 into a virtual register and store it to the TOC save area. 6416 setUsesTOCBasePtr(DAG); 6417 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6418 // TOC save area offset. 6419 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6420 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6421 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6422 Chain = DAG.getStore( 6423 Val.getValue(1), dl, Val, AddPtr, 6424 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6425 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6426 // This does not mean the MTCTR instruction must use R12; it's easier 6427 // to model this as an extra parameter, so do that. 6428 if (isELFv2ABI && !CFlags.IsPatchPoint) 6429 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6430 } 6431 6432 // Build a sequence of copy-to-reg nodes chained together with token chain 6433 // and flag operands which copy the outgoing args into the appropriate regs. 6434 SDValue InFlag; 6435 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6436 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6437 RegsToPass[i].second, InFlag); 6438 InFlag = Chain.getValue(1); 6439 } 6440 6441 if (CFlags.IsTailCall && !IsSibCall) 6442 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6443 TailCallArguments); 6444 6445 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6446 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6447 } 6448 6449 SDValue PPCTargetLowering::LowerCall_Darwin( 6450 SDValue Chain, SDValue Callee, CallFlags CFlags, 6451 const SmallVectorImpl<ISD::OutputArg> &Outs, 6452 const SmallVectorImpl<SDValue> &OutVals, 6453 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6454 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6455 ImmutableCallSite CS) const { 6456 unsigned NumOps = Outs.size(); 6457 6458 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6459 bool isPPC64 = PtrVT == MVT::i64; 6460 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6461 6462 MachineFunction &MF = DAG.getMachineFunction(); 6463 6464 // Mark this function as potentially containing a function that contains a 6465 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6466 // and restoring the callers stack pointer in this functions epilog. This is 6467 // done because by tail calling the called function might overwrite the value 6468 // in this function's (MF) stack pointer stack slot 0(SP). 6469 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6470 CFlags.CallConv == CallingConv::Fast) 6471 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6472 6473 // Count how many bytes are to be pushed on the stack, including the linkage 6474 // area, and parameter passing area. We start with 24/48 bytes, which is 6475 // prereserved space for [SP][CR][LR][3 x unused]. 6476 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6477 unsigned NumBytes = LinkageSize; 6478 6479 // Add up all the space actually used. 6480 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6481 // they all go in registers, but we must reserve stack space for them for 6482 // possible use by the caller. In varargs or 64-bit calls, parameters are 6483 // assigned stack space in order, with padding so Altivec parameters are 6484 // 16-byte aligned. 6485 unsigned nAltivecParamsAtEnd = 0; 6486 for (unsigned i = 0; i != NumOps; ++i) { 6487 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6488 EVT ArgVT = Outs[i].VT; 6489 // Varargs Altivec parameters are padded to a 16 byte boundary. 6490 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6491 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6492 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6493 if (!CFlags.IsVarArg && !isPPC64) { 6494 // Non-varargs Altivec parameters go after all the non-Altivec 6495 // parameters; handle those later so we know how much padding we need. 6496 nAltivecParamsAtEnd++; 6497 continue; 6498 } 6499 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6500 NumBytes = ((NumBytes+15)/16)*16; 6501 } 6502 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6503 } 6504 6505 // Allow for Altivec parameters at the end, if needed. 6506 if (nAltivecParamsAtEnd) { 6507 NumBytes = ((NumBytes+15)/16)*16; 6508 NumBytes += 16*nAltivecParamsAtEnd; 6509 } 6510 6511 // The prolog code of the callee may store up to 8 GPR argument registers to 6512 // the stack, allowing va_start to index over them in memory if its varargs. 6513 // Because we cannot tell if this is needed on the caller side, we have to 6514 // conservatively assume that it is needed. As such, make sure we have at 6515 // least enough stack space for the caller to store the 8 GPRs. 6516 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6517 6518 // Tail call needs the stack to be aligned. 6519 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6520 CFlags.CallConv == CallingConv::Fast) 6521 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6522 6523 // Calculate by how many bytes the stack has to be adjusted in case of tail 6524 // call optimization. 6525 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6526 6527 // To protect arguments on the stack from being clobbered in a tail call, 6528 // force all the loads to happen before doing any other lowering. 6529 if (CFlags.IsTailCall) 6530 Chain = DAG.getStackArgumentTokenFactor(Chain); 6531 6532 // Adjust the stack pointer for the new arguments... 6533 // These operations are automatically eliminated by the prolog/epilog pass 6534 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6535 SDValue CallSeqStart = Chain; 6536 6537 // Load the return address and frame pointer so it can be move somewhere else 6538 // later. 6539 SDValue LROp, FPOp; 6540 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6541 6542 // Set up a copy of the stack pointer for use loading and storing any 6543 // arguments that may not fit in the registers available for argument 6544 // passing. 6545 SDValue StackPtr; 6546 if (isPPC64) 6547 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6548 else 6549 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6550 6551 // Figure out which arguments are going to go in registers, and which in 6552 // memory. Also, if this is a vararg function, floating point operations 6553 // must be stored to our stack, and loaded into integer regs as well, if 6554 // any integer regs are available for argument passing. 6555 unsigned ArgOffset = LinkageSize; 6556 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6557 6558 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6559 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6560 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6561 }; 6562 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6563 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6564 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6565 }; 6566 static const MCPhysReg VR[] = { 6567 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6568 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6569 }; 6570 const unsigned NumGPRs = array_lengthof(GPR_32); 6571 const unsigned NumFPRs = 13; 6572 const unsigned NumVRs = array_lengthof(VR); 6573 6574 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6575 6576 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6577 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6578 6579 SmallVector<SDValue, 8> MemOpChains; 6580 for (unsigned i = 0; i != NumOps; ++i) { 6581 SDValue Arg = OutVals[i]; 6582 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6583 6584 // PtrOff will be used to store the current argument to the stack if a 6585 // register cannot be found for it. 6586 SDValue PtrOff; 6587 6588 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6589 6590 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6591 6592 // On PPC64, promote integers to 64-bit values. 6593 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6594 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6595 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6596 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6597 } 6598 6599 // FIXME memcpy is used way more than necessary. Correctness first. 6600 // Note: "by value" is code for passing a structure by value, not 6601 // basic types. 6602 if (Flags.isByVal()) { 6603 unsigned Size = Flags.getByValSize(); 6604 // Very small objects are passed right-justified. Everything else is 6605 // passed left-justified. 6606 if (Size==1 || Size==2) { 6607 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6608 if (GPR_idx != NumGPRs) { 6609 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6610 MachinePointerInfo(), VT); 6611 MemOpChains.push_back(Load.getValue(1)); 6612 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6613 6614 ArgOffset += PtrByteSize; 6615 } else { 6616 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6617 PtrOff.getValueType()); 6618 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6619 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6620 CallSeqStart, 6621 Flags, DAG, dl); 6622 ArgOffset += PtrByteSize; 6623 } 6624 continue; 6625 } 6626 // Copy entire object into memory. There are cases where gcc-generated 6627 // code assumes it is there, even if it could be put entirely into 6628 // registers. (This is not what the doc says.) 6629 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6630 CallSeqStart, 6631 Flags, DAG, dl); 6632 6633 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6634 // copy the pieces of the object that fit into registers from the 6635 // parameter save area. 6636 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6637 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6638 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6639 if (GPR_idx != NumGPRs) { 6640 SDValue Load = 6641 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6642 MemOpChains.push_back(Load.getValue(1)); 6643 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6644 ArgOffset += PtrByteSize; 6645 } else { 6646 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6647 break; 6648 } 6649 } 6650 continue; 6651 } 6652 6653 switch (Arg.getSimpleValueType().SimpleTy) { 6654 default: llvm_unreachable("Unexpected ValueType for argument!"); 6655 case MVT::i1: 6656 case MVT::i32: 6657 case MVT::i64: 6658 if (GPR_idx != NumGPRs) { 6659 if (Arg.getValueType() == MVT::i1) 6660 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6661 6662 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6663 } else { 6664 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6665 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6666 TailCallArguments, dl); 6667 } 6668 ArgOffset += PtrByteSize; 6669 break; 6670 case MVT::f32: 6671 case MVT::f64: 6672 if (FPR_idx != NumFPRs) { 6673 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6674 6675 if (CFlags.IsVarArg) { 6676 SDValue Store = 6677 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6678 MemOpChains.push_back(Store); 6679 6680 // Float varargs are always shadowed in available integer registers 6681 if (GPR_idx != NumGPRs) { 6682 SDValue Load = 6683 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6684 MemOpChains.push_back(Load.getValue(1)); 6685 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6686 } 6687 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6688 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6689 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6690 SDValue Load = 6691 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6692 MemOpChains.push_back(Load.getValue(1)); 6693 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6694 } 6695 } else { 6696 // If we have any FPRs remaining, we may also have GPRs remaining. 6697 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6698 // GPRs. 6699 if (GPR_idx != NumGPRs) 6700 ++GPR_idx; 6701 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6702 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6703 ++GPR_idx; 6704 } 6705 } else 6706 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6707 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6708 TailCallArguments, dl); 6709 if (isPPC64) 6710 ArgOffset += 8; 6711 else 6712 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6713 break; 6714 case MVT::v4f32: 6715 case MVT::v4i32: 6716 case MVT::v8i16: 6717 case MVT::v16i8: 6718 if (CFlags.IsVarArg) { 6719 // These go aligned on the stack, or in the corresponding R registers 6720 // when within range. The Darwin PPC ABI doc claims they also go in 6721 // V registers; in fact gcc does this only for arguments that are 6722 // prototyped, not for those that match the ... We do it for all 6723 // arguments, seems to work. 6724 while (ArgOffset % 16 !=0) { 6725 ArgOffset += PtrByteSize; 6726 if (GPR_idx != NumGPRs) 6727 GPR_idx++; 6728 } 6729 // We could elide this store in the case where the object fits 6730 // entirely in R registers. Maybe later. 6731 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6732 DAG.getConstant(ArgOffset, dl, PtrVT)); 6733 SDValue Store = 6734 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6735 MemOpChains.push_back(Store); 6736 if (VR_idx != NumVRs) { 6737 SDValue Load = 6738 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6739 MemOpChains.push_back(Load.getValue(1)); 6740 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6741 } 6742 ArgOffset += 16; 6743 for (unsigned i=0; i<16; i+=PtrByteSize) { 6744 if (GPR_idx == NumGPRs) 6745 break; 6746 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6747 DAG.getConstant(i, dl, PtrVT)); 6748 SDValue Load = 6749 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6750 MemOpChains.push_back(Load.getValue(1)); 6751 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6752 } 6753 break; 6754 } 6755 6756 // Non-varargs Altivec params generally go in registers, but have 6757 // stack space allocated at the end. 6758 if (VR_idx != NumVRs) { 6759 // Doesn't have GPR space allocated. 6760 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6761 } else if (nAltivecParamsAtEnd==0) { 6762 // We are emitting Altivec params in order. 6763 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6764 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6765 TailCallArguments, dl); 6766 ArgOffset += 16; 6767 } 6768 break; 6769 } 6770 } 6771 // If all Altivec parameters fit in registers, as they usually do, 6772 // they get stack space following the non-Altivec parameters. We 6773 // don't track this here because nobody below needs it. 6774 // If there are more Altivec parameters than fit in registers emit 6775 // the stores here. 6776 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6777 unsigned j = 0; 6778 // Offset is aligned; skip 1st 12 params which go in V registers. 6779 ArgOffset = ((ArgOffset+15)/16)*16; 6780 ArgOffset += 12*16; 6781 for (unsigned i = 0; i != NumOps; ++i) { 6782 SDValue Arg = OutVals[i]; 6783 EVT ArgType = Outs[i].VT; 6784 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6785 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6786 if (++j > NumVRs) { 6787 SDValue PtrOff; 6788 // We are emitting Altivec params in order. 6789 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6790 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6791 TailCallArguments, dl); 6792 ArgOffset += 16; 6793 } 6794 } 6795 } 6796 } 6797 6798 if (!MemOpChains.empty()) 6799 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6800 6801 // On Darwin, R12 must contain the address of an indirect callee. This does 6802 // not mean the MTCTR instruction must use R12; it's easier to model this as 6803 // an extra parameter, so do that. 6804 if (CFlags.IsIndirect) { 6805 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6806 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6807 PPC::R12), Callee)); 6808 } 6809 6810 // Build a sequence of copy-to-reg nodes chained together with token chain 6811 // and flag operands which copy the outgoing args into the appropriate regs. 6812 SDValue InFlag; 6813 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6814 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6815 RegsToPass[i].second, InFlag); 6816 InFlag = Chain.getValue(1); 6817 } 6818 6819 if (CFlags.IsTailCall) 6820 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6821 TailCallArguments); 6822 6823 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6824 Callee, SPDiff, NumBytes, Ins, InVals, CS); 6825 } 6826 6827 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6828 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6829 CCState &State) { 6830 6831 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6832 State.getMachineFunction().getSubtarget()); 6833 const bool IsPPC64 = Subtarget.isPPC64(); 6834 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6835 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6836 6837 assert((!ValVT.isInteger() || 6838 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6839 "Integer argument exceeds register size: should have been legalized"); 6840 6841 if (ValVT == MVT::f128) 6842 report_fatal_error("f128 is unimplemented on AIX."); 6843 6844 if (ArgFlags.isNest()) 6845 report_fatal_error("Nest arguments are unimplemented."); 6846 6847 if (ValVT.isVector() || LocVT.isVector()) 6848 report_fatal_error("Vector arguments are unimplemented on AIX."); 6849 6850 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6851 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6852 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6853 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6854 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6855 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6856 6857 if (ArgFlags.isByVal()) { 6858 if (ArgFlags.getNonZeroByValAlign() > PtrByteSize) 6859 report_fatal_error("Pass-by-value arguments with alignment greater than " 6860 "register width are not supported."); 6861 6862 const unsigned ByValSize = ArgFlags.getByValSize(); 6863 6864 // An empty aggregate parameter takes up no storage and no registers, 6865 // but needs a MemLoc for a stack slot for the formal arguments side. 6866 if (ByValSize == 0) { 6867 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6868 State.getNextStackOffset(), RegVT, 6869 LocInfo)); 6870 return false; 6871 } 6872 6873 if (ByValSize <= PtrByteSize) { 6874 State.AllocateStack(PtrByteSize, PtrByteSize); 6875 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6876 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6877 return false; 6878 } 6879 } 6880 6881 report_fatal_error( 6882 "Pass-by-value arguments are only supported in a single register."); 6883 } 6884 6885 // Arguments always reserve parameter save area. 6886 switch (ValVT.SimpleTy) { 6887 default: 6888 report_fatal_error("Unhandled value type for argument."); 6889 case MVT::i64: 6890 // i64 arguments should have been split to i32 for PPC32. 6891 assert(IsPPC64 && "PPC32 should have split i64 values."); 6892 LLVM_FALLTHROUGH; 6893 case MVT::i1: 6894 case MVT::i32: { 6895 const unsigned Offset = State.AllocateStack(PtrByteSize, PtrByteSize); 6896 // AIX integer arguments are always passed in register width. 6897 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6898 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6899 : CCValAssign::LocInfo::ZExt; 6900 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6901 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6902 else 6903 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6904 6905 return false; 6906 } 6907 case MVT::f32: 6908 case MVT::f64: { 6909 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6910 const unsigned StoreSize = LocVT.getStoreSize(); 6911 // Floats are always 4-byte aligned in the PSA on AIX. 6912 // This includes f64 in 64-bit mode for ABI compatibility. 6913 const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6914 unsigned FReg = State.AllocateReg(FPR); 6915 if (FReg) 6916 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6917 6918 // Reserve and initialize GPRs or initialize the PSA as required. 6919 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 6920 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6921 assert(FReg && "An FPR should be available when a GPR is reserved."); 6922 if (State.isVarArg()) { 6923 // Successfully reserved GPRs are only initialized for vararg calls. 6924 // Custom handling is required for: 6925 // f64 in PPC32 needs to be split into 2 GPRs. 6926 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6927 State.addLoc( 6928 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6929 } 6930 } else { 6931 // If there are insufficient GPRs, the PSA needs to be initialized. 6932 // Initialization occurs even if an FPR was initialized for 6933 // compatibility with the AIX XL compiler. The full memory for the 6934 // argument will be initialized even if a prior word is saved in GPR. 6935 // A custom memLoc is used when the argument also passes in FPR so 6936 // that the callee handling can skip over it easily. 6937 State.addLoc( 6938 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6939 LocInfo) 6940 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6941 break; 6942 } 6943 } 6944 6945 return false; 6946 } 6947 } 6948 return true; 6949 } 6950 6951 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6952 bool IsPPC64) { 6953 assert((IsPPC64 || SVT != MVT::i64) && 6954 "i64 should have been split for 32-bit codegen."); 6955 6956 switch (SVT) { 6957 default: 6958 report_fatal_error("Unexpected value type for formal argument"); 6959 case MVT::i1: 6960 case MVT::i32: 6961 case MVT::i64: 6962 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6963 case MVT::f32: 6964 return &PPC::F4RCRegClass; 6965 case MVT::f64: 6966 return &PPC::F8RCRegClass; 6967 } 6968 } 6969 6970 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6971 SelectionDAG &DAG, SDValue ArgValue, 6972 MVT LocVT, const SDLoc &dl) { 6973 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6974 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6975 6976 if (Flags.isSExt()) 6977 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6978 DAG.getValueType(ValVT)); 6979 else if (Flags.isZExt()) 6980 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6981 DAG.getValueType(ValVT)); 6982 6983 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6984 } 6985 6986 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6987 const unsigned LASize = FL->getLinkageSize(); 6988 6989 if (PPC::GPRCRegClass.contains(Reg)) { 6990 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6991 "Reg must be a valid argument register!"); 6992 return LASize + 4 * (Reg - PPC::R3); 6993 } 6994 6995 if (PPC::G8RCRegClass.contains(Reg)) { 6996 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6997 "Reg must be a valid argument register!"); 6998 return LASize + 8 * (Reg - PPC::X3); 6999 } 7000 7001 llvm_unreachable("Only general purpose registers expected."); 7002 } 7003 7004 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7005 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7006 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7007 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7008 7009 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7010 CallConv == CallingConv::Fast) && 7011 "Unexpected calling convention!"); 7012 7013 if (isVarArg) 7014 report_fatal_error("This call type is unimplemented on AIX."); 7015 7016 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7017 report_fatal_error("Tail call support is unimplemented on AIX."); 7018 7019 if (useSoftFloat()) 7020 report_fatal_error("Soft float support is unimplemented on AIX."); 7021 7022 const PPCSubtarget &Subtarget = 7023 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7024 if (Subtarget.hasQPX()) 7025 report_fatal_error("QPX support is not supported on AIX."); 7026 7027 const bool IsPPC64 = Subtarget.isPPC64(); 7028 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7029 7030 // Assign locations to all of the incoming arguments. 7031 SmallVector<CCValAssign, 16> ArgLocs; 7032 MachineFunction &MF = DAG.getMachineFunction(); 7033 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7034 7035 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7036 // Reserve space for the linkage area on the stack. 7037 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7038 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7039 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7040 7041 SmallVector<SDValue, 8> MemOps; 7042 7043 for (CCValAssign &VA : ArgLocs) { 7044 EVT ValVT = VA.getValVT(); 7045 MVT LocVT = VA.getLocVT(); 7046 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7047 assert((VA.isRegLoc() || VA.isMemLoc()) && 7048 "Unexpected location for function call argument."); 7049 7050 // For compatibility with the AIX XL compiler, the float args in the 7051 // parameter save area are initialized even if the argument is available 7052 // in register. The caller is required to initialize both the register 7053 // and memory, however, the callee can choose to expect it in either. 7054 // The memloc is dismissed here because the argument is retrieved from 7055 // the register. 7056 if (VA.isMemLoc() && VA.needsCustom()) 7057 continue; 7058 7059 if (Flags.isByVal() && VA.isMemLoc()) { 7060 if (Flags.getByValSize() != 0) 7061 report_fatal_error( 7062 "ByVal arguments passed on stack not implemented yet"); 7063 7064 const int FI = MF.getFrameInfo().CreateFixedObject( 7065 PtrByteSize, VA.getLocMemOffset(), /* IsImmutable */ false, 7066 /* IsAliased */ true); 7067 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7068 InVals.push_back(FIN); 7069 7070 continue; 7071 } 7072 7073 if (Flags.isByVal()) { 7074 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7075 7076 const unsigned ByValSize = Flags.getByValSize(); 7077 if (ByValSize > PtrByteSize) 7078 report_fatal_error("Formal arguments greater then register size not " 7079 "implemented yet."); 7080 7081 const MCPhysReg ArgReg = VA.getLocReg(); 7082 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7083 const unsigned Offset = mapArgRegToOffsetAIX(ArgReg, FL); 7084 7085 const unsigned StackSize = alignTo(ByValSize, PtrByteSize); 7086 const int FI = MF.getFrameInfo().CreateFixedObject( 7087 StackSize, Offset, /* IsImmutable */ false, /* IsAliased */ true); 7088 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7089 7090 InVals.push_back(FIN); 7091 7092 const unsigned VReg = MF.addLiveIn(ArgReg, IsPPC64 ? &PPC::G8RCRegClass 7093 : &PPC::GPRCRegClass); 7094 7095 // Since the callers side has left justified the aggregate in the 7096 // register, we can simply store the entire register into the stack 7097 // slot. 7098 // The store to the fixedstack object is needed becuase accessing a 7099 // field of the ByVal will use a gep and load. Ideally we will optimize 7100 // to extracting the value from the register directly, and elide the 7101 // stores when the arguments address is not taken, but that will need to 7102 // be future work. 7103 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7104 SDValue Store = 7105 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, FIN, 7106 MachinePointerInfo::getFixedStack(MF, FI, 0)); 7107 7108 MemOps.push_back(Store); 7109 continue; 7110 } 7111 7112 if (VA.isRegLoc()) { 7113 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7114 unsigned VReg = 7115 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7116 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7117 if (ValVT.isScalarInteger() && 7118 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7119 ArgValue = 7120 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7121 } 7122 InVals.push_back(ArgValue); 7123 continue; 7124 } 7125 7126 const unsigned LocSize = LocVT.getStoreSize(); 7127 const unsigned ValSize = ValVT.getStoreSize(); 7128 assert((ValSize <= LocSize) && "Object size is larger than size of MemLoc"); 7129 int CurArgOffset = VA.getLocMemOffset(); 7130 // Objects are right-justified because AIX is big-endian. 7131 if (LocSize > ValSize) 7132 CurArgOffset += LocSize - ValSize; 7133 MachineFrameInfo &MFI = MF.getFrameInfo(); 7134 // Potential tail calls could cause overwriting of argument stack slots. 7135 const bool IsImmutable = 7136 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7137 (CallConv == CallingConv::Fast)); 7138 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7139 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7140 SDValue ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7141 InVals.push_back(ArgValue); 7142 } 7143 7144 // On AIX a minimum of 8 words is saved to the parameter save area. 7145 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7146 // Area that is at least reserved in the caller of this function. 7147 unsigned CallerReservedArea = 7148 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7149 7150 // Set the size that is at least reserved in caller of this function. Tail 7151 // call optimized function's reserved stack space needs to be aligned so 7152 // that taking the difference between two stack areas will result in an 7153 // aligned stack. 7154 CallerReservedArea = 7155 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7156 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7157 FuncInfo->setMinReservedArea(CallerReservedArea); 7158 7159 if (!MemOps.empty()) 7160 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7161 7162 return Chain; 7163 } 7164 7165 SDValue PPCTargetLowering::LowerCall_AIX( 7166 SDValue Chain, SDValue Callee, CallFlags CFlags, 7167 const SmallVectorImpl<ISD::OutputArg> &Outs, 7168 const SmallVectorImpl<SDValue> &OutVals, 7169 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7170 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7171 ImmutableCallSite CS) const { 7172 7173 assert((CFlags.CallConv == CallingConv::C || 7174 CFlags.CallConv == CallingConv::Cold || 7175 CFlags.CallConv == CallingConv::Fast) && 7176 "Unexpected calling convention!"); 7177 7178 if (CFlags.IsPatchPoint) 7179 report_fatal_error("This call type is unimplemented on AIX."); 7180 7181 const PPCSubtarget& Subtarget = 7182 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7183 if (Subtarget.hasQPX()) 7184 report_fatal_error("QPX is not supported on AIX."); 7185 if (Subtarget.hasAltivec()) 7186 report_fatal_error("Altivec support is unimplemented on AIX."); 7187 7188 MachineFunction &MF = DAG.getMachineFunction(); 7189 SmallVector<CCValAssign, 16> ArgLocs; 7190 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7191 *DAG.getContext()); 7192 7193 // Reserve space for the linkage save area (LSA) on the stack. 7194 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7195 // [SP][CR][LR][2 x reserved][TOC]. 7196 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7197 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7198 const bool IsPPC64 = Subtarget.isPPC64(); 7199 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7200 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7201 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7202 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7203 7204 // The prolog code of the callee may store up to 8 GPR argument registers to 7205 // the stack, allowing va_start to index over them in memory if the callee 7206 // is variadic. 7207 // Because we cannot tell if this is needed on the caller side, we have to 7208 // conservatively assume that it is needed. As such, make sure we have at 7209 // least enough stack space for the caller to store the 8 GPRs. 7210 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7211 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7212 CCInfo.getNextStackOffset()); 7213 7214 // Adjust the stack pointer for the new arguments... 7215 // These operations are automatically eliminated by the prolog/epilog pass. 7216 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7217 SDValue CallSeqStart = Chain; 7218 7219 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7220 SmallVector<SDValue, 8> MemOpChains; 7221 7222 // Set up a copy of the stack pointer for loading and storing any 7223 // arguments that may not fit in the registers available for argument 7224 // passing. 7225 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7226 : DAG.getRegister(PPC::R1, MVT::i32); 7227 7228 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7229 CCValAssign &VA = ArgLocs[I++]; 7230 7231 SDValue Arg = OutVals[VA.getValNo()]; 7232 ISD::ArgFlagsTy Flags = Outs[VA.getValNo()].Flags; 7233 const MVT LocVT = VA.getLocVT(); 7234 const MVT ValVT = VA.getValVT(); 7235 7236 if (Flags.isByVal()) { 7237 const unsigned ByValSize = Flags.getByValSize(); 7238 7239 // Nothing to do for zero-sized ByVals on the caller side. 7240 if (!ByValSize) 7241 continue; 7242 7243 assert( 7244 VA.isRegLoc() && ByValSize <= PtrByteSize && 7245 "Pass-by-value arguments are only supported in a single register."); 7246 7247 // Loads must be a power-of-2 size and cannot be larger than the 7248 // ByValSize. For example: a 7 byte by-val arg requires 4, 2 and 1 byte 7249 // loads. 7250 SDValue RegVal; 7251 for (unsigned Bytes = 0; Bytes != ByValSize;) { 7252 unsigned N = PowerOf2Floor(ByValSize - Bytes); 7253 const MVT VT = 7254 N == 1 ? MVT::i8 7255 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7256 7257 SDValue LoadAddr = Arg; 7258 if (Bytes != 0) { 7259 // Adjust the load offset by the number of bytes read so far. 7260 SDNodeFlags Flags; 7261 Flags.setNoUnsignedWrap(true); 7262 LoadAddr = DAG.getNode(ISD::ADD, dl, LocVT, Arg, 7263 DAG.getConstant(Bytes, dl, LocVT), Flags); 7264 } 7265 SDValue Load = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, LoadAddr, 7266 MachinePointerInfo(), VT); 7267 MemOpChains.push_back(Load.getValue(1)); 7268 7269 Bytes += N; 7270 assert(LocVT.getSizeInBits() >= (Bytes * 8)); 7271 if (unsigned NumSHLBits = LocVT.getSizeInBits() - (Bytes * 8)) { 7272 // By-val arguments are passed left-justfied in register. 7273 EVT ShiftAmountTy = 7274 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7275 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7276 SDValue ShiftedLoad = 7277 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7278 RegVal = RegVal ? DAG.getNode(ISD::OR, dl, LocVT, RegVal, ShiftedLoad) 7279 : ShiftedLoad; 7280 } else { 7281 assert(!RegVal && Bytes == ByValSize && 7282 "Pass-by-value argument handling unexpectedly incomplete."); 7283 RegVal = Load; 7284 } 7285 } 7286 7287 RegsToPass.push_back(std::make_pair(VA.getLocReg(), RegVal)); 7288 continue; 7289 } 7290 7291 switch (VA.getLocInfo()) { 7292 default: 7293 report_fatal_error("Unexpected argument extension type."); 7294 case CCValAssign::Full: 7295 break; 7296 case CCValAssign::ZExt: 7297 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7298 break; 7299 case CCValAssign::SExt: 7300 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7301 break; 7302 } 7303 7304 if (VA.isRegLoc() && !VA.needsCustom()) { 7305 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7306 continue; 7307 } 7308 7309 if (VA.isMemLoc()) { 7310 SDValue PtrOff = 7311 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7312 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7313 MemOpChains.push_back( 7314 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7315 7316 continue; 7317 } 7318 7319 // Custom handling is used for GPR initializations for vararg float 7320 // arguments. 7321 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7322 ValVT.isFloatingPoint() && LocVT.isInteger() && 7323 "Unexpected register handling for calling convention."); 7324 7325 SDValue ArgAsInt = 7326 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7327 7328 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7329 // f32 in 32-bit GPR 7330 // f64 in 64-bit GPR 7331 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7332 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7333 // f32 in 64-bit GPR. 7334 RegsToPass.push_back(std::make_pair( 7335 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7336 else { 7337 // f64 in two 32-bit GPRs 7338 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7339 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7340 "Unexpected custom register for argument!"); 7341 CCValAssign &GPR1 = VA; 7342 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7343 DAG.getConstant(32, dl, MVT::i8)); 7344 RegsToPass.push_back(std::make_pair( 7345 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7346 7347 if (I != E) { 7348 // If only 1 GPR was available, there will only be one custom GPR and 7349 // the argument will also pass in memory. 7350 CCValAssign &PeekArg = ArgLocs[I]; 7351 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7352 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7353 CCValAssign &GPR2 = ArgLocs[I++]; 7354 RegsToPass.push_back(std::make_pair( 7355 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7356 } 7357 } 7358 } 7359 } 7360 7361 if (!MemOpChains.empty()) 7362 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7363 7364 // For indirect calls, we need to save the TOC base to the stack for 7365 // restoration after the call. 7366 if (CFlags.IsIndirect) { 7367 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7368 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7369 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7370 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7371 const unsigned TOCSaveOffset = 7372 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7373 7374 setUsesTOCBasePtr(DAG); 7375 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7376 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7377 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7378 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7379 Chain = DAG.getStore( 7380 Val.getValue(1), dl, Val, AddPtr, 7381 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7382 } 7383 7384 // Build a sequence of copy-to-reg nodes chained together with token chain 7385 // and flag operands which copy the outgoing args into the appropriate regs. 7386 SDValue InFlag; 7387 for (auto Reg : RegsToPass) { 7388 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7389 InFlag = Chain.getValue(1); 7390 } 7391 7392 const int SPDiff = 0; 7393 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7394 Callee, SPDiff, NumBytes, Ins, InVals, CS); 7395 } 7396 7397 bool 7398 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7399 MachineFunction &MF, bool isVarArg, 7400 const SmallVectorImpl<ISD::OutputArg> &Outs, 7401 LLVMContext &Context) const { 7402 SmallVector<CCValAssign, 16> RVLocs; 7403 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7404 return CCInfo.CheckReturn( 7405 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7406 ? RetCC_PPC_Cold 7407 : RetCC_PPC); 7408 } 7409 7410 SDValue 7411 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7412 bool isVarArg, 7413 const SmallVectorImpl<ISD::OutputArg> &Outs, 7414 const SmallVectorImpl<SDValue> &OutVals, 7415 const SDLoc &dl, SelectionDAG &DAG) const { 7416 SmallVector<CCValAssign, 16> RVLocs; 7417 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7418 *DAG.getContext()); 7419 CCInfo.AnalyzeReturn(Outs, 7420 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7421 ? RetCC_PPC_Cold 7422 : RetCC_PPC); 7423 7424 SDValue Flag; 7425 SmallVector<SDValue, 4> RetOps(1, Chain); 7426 7427 // Copy the result values into the output registers. 7428 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7429 CCValAssign &VA = RVLocs[i]; 7430 assert(VA.isRegLoc() && "Can only return in registers!"); 7431 7432 SDValue Arg = OutVals[RealResIdx]; 7433 7434 switch (VA.getLocInfo()) { 7435 default: llvm_unreachable("Unknown loc info!"); 7436 case CCValAssign::Full: break; 7437 case CCValAssign::AExt: 7438 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7439 break; 7440 case CCValAssign::ZExt: 7441 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7442 break; 7443 case CCValAssign::SExt: 7444 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7445 break; 7446 } 7447 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7448 bool isLittleEndian = Subtarget.isLittleEndian(); 7449 // Legalize ret f64 -> ret 2 x i32. 7450 SDValue SVal = 7451 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7452 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7453 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7454 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7455 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7456 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7457 Flag = Chain.getValue(1); 7458 VA = RVLocs[++i]; // skip ahead to next loc 7459 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7460 } else 7461 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7462 Flag = Chain.getValue(1); 7463 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7464 } 7465 7466 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7467 const MCPhysReg *I = 7468 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7469 if (I) { 7470 for (; *I; ++I) { 7471 7472 if (PPC::G8RCRegClass.contains(*I)) 7473 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7474 else if (PPC::F8RCRegClass.contains(*I)) 7475 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7476 else if (PPC::CRRCRegClass.contains(*I)) 7477 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7478 else if (PPC::VRRCRegClass.contains(*I)) 7479 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7480 else 7481 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7482 } 7483 } 7484 7485 RetOps[0] = Chain; // Update chain. 7486 7487 // Add the flag if we have it. 7488 if (Flag.getNode()) 7489 RetOps.push_back(Flag); 7490 7491 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7492 } 7493 7494 SDValue 7495 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7496 SelectionDAG &DAG) const { 7497 SDLoc dl(Op); 7498 7499 // Get the correct type for integers. 7500 EVT IntVT = Op.getValueType(); 7501 7502 // Get the inputs. 7503 SDValue Chain = Op.getOperand(0); 7504 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7505 // Build a DYNAREAOFFSET node. 7506 SDValue Ops[2] = {Chain, FPSIdx}; 7507 SDVTList VTs = DAG.getVTList(IntVT); 7508 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7509 } 7510 7511 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7512 SelectionDAG &DAG) const { 7513 // When we pop the dynamic allocation we need to restore the SP link. 7514 SDLoc dl(Op); 7515 7516 // Get the correct type for pointers. 7517 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7518 7519 // Construct the stack pointer operand. 7520 bool isPPC64 = Subtarget.isPPC64(); 7521 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7522 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7523 7524 // Get the operands for the STACKRESTORE. 7525 SDValue Chain = Op.getOperand(0); 7526 SDValue SaveSP = Op.getOperand(1); 7527 7528 // Load the old link SP. 7529 SDValue LoadLinkSP = 7530 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7531 7532 // Restore the stack pointer. 7533 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7534 7535 // Store the old link SP. 7536 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7537 } 7538 7539 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7540 MachineFunction &MF = DAG.getMachineFunction(); 7541 bool isPPC64 = Subtarget.isPPC64(); 7542 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7543 7544 // Get current frame pointer save index. The users of this index will be 7545 // primarily DYNALLOC instructions. 7546 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7547 int RASI = FI->getReturnAddrSaveIndex(); 7548 7549 // If the frame pointer save index hasn't been defined yet. 7550 if (!RASI) { 7551 // Find out what the fix offset of the frame pointer save area. 7552 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7553 // Allocate the frame index for frame pointer save area. 7554 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7555 // Save the result. 7556 FI->setReturnAddrSaveIndex(RASI); 7557 } 7558 return DAG.getFrameIndex(RASI, PtrVT); 7559 } 7560 7561 SDValue 7562 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7563 MachineFunction &MF = DAG.getMachineFunction(); 7564 bool isPPC64 = Subtarget.isPPC64(); 7565 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7566 7567 // Get current frame pointer save index. The users of this index will be 7568 // primarily DYNALLOC instructions. 7569 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7570 int FPSI = FI->getFramePointerSaveIndex(); 7571 7572 // If the frame pointer save index hasn't been defined yet. 7573 if (!FPSI) { 7574 // Find out what the fix offset of the frame pointer save area. 7575 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7576 // Allocate the frame index for frame pointer save area. 7577 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7578 // Save the result. 7579 FI->setFramePointerSaveIndex(FPSI); 7580 } 7581 return DAG.getFrameIndex(FPSI, PtrVT); 7582 } 7583 7584 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7585 SelectionDAG &DAG) const { 7586 // Get the inputs. 7587 SDValue Chain = Op.getOperand(0); 7588 SDValue Size = Op.getOperand(1); 7589 SDLoc dl(Op); 7590 7591 // Get the correct type for pointers. 7592 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7593 // Negate the size. 7594 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7595 DAG.getConstant(0, dl, PtrVT), Size); 7596 // Construct a node for the frame pointer save index. 7597 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7598 // Build a DYNALLOC node. 7599 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7600 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7601 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7602 } 7603 7604 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7605 SelectionDAG &DAG) const { 7606 MachineFunction &MF = DAG.getMachineFunction(); 7607 7608 bool isPPC64 = Subtarget.isPPC64(); 7609 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7610 7611 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7612 return DAG.getFrameIndex(FI, PtrVT); 7613 } 7614 7615 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7616 SelectionDAG &DAG) const { 7617 SDLoc DL(Op); 7618 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7619 DAG.getVTList(MVT::i32, MVT::Other), 7620 Op.getOperand(0), Op.getOperand(1)); 7621 } 7622 7623 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7624 SelectionDAG &DAG) const { 7625 SDLoc DL(Op); 7626 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7627 Op.getOperand(0), Op.getOperand(1)); 7628 } 7629 7630 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7631 if (Op.getValueType().isVector()) 7632 return LowerVectorLoad(Op, DAG); 7633 7634 assert(Op.getValueType() == MVT::i1 && 7635 "Custom lowering only for i1 loads"); 7636 7637 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7638 7639 SDLoc dl(Op); 7640 LoadSDNode *LD = cast<LoadSDNode>(Op); 7641 7642 SDValue Chain = LD->getChain(); 7643 SDValue BasePtr = LD->getBasePtr(); 7644 MachineMemOperand *MMO = LD->getMemOperand(); 7645 7646 SDValue NewLD = 7647 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7648 BasePtr, MVT::i8, MMO); 7649 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7650 7651 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7652 return DAG.getMergeValues(Ops, dl); 7653 } 7654 7655 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7656 if (Op.getOperand(1).getValueType().isVector()) 7657 return LowerVectorStore(Op, DAG); 7658 7659 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7660 "Custom lowering only for i1 stores"); 7661 7662 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7663 7664 SDLoc dl(Op); 7665 StoreSDNode *ST = cast<StoreSDNode>(Op); 7666 7667 SDValue Chain = ST->getChain(); 7668 SDValue BasePtr = ST->getBasePtr(); 7669 SDValue Value = ST->getValue(); 7670 MachineMemOperand *MMO = ST->getMemOperand(); 7671 7672 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7673 Value); 7674 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7675 } 7676 7677 // FIXME: Remove this once the ANDI glue bug is fixed: 7678 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7679 assert(Op.getValueType() == MVT::i1 && 7680 "Custom lowering only for i1 results"); 7681 7682 SDLoc DL(Op); 7683 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7684 } 7685 7686 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7687 SelectionDAG &DAG) const { 7688 7689 // Implements a vector truncate that fits in a vector register as a shuffle. 7690 // We want to legalize vector truncates down to where the source fits in 7691 // a vector register (and target is therefore smaller than vector register 7692 // size). At that point legalization will try to custom lower the sub-legal 7693 // result and get here - where we can contain the truncate as a single target 7694 // operation. 7695 7696 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7697 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7698 // 7699 // We will implement it for big-endian ordering as this (where x denotes 7700 // undefined): 7701 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7702 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7703 // 7704 // The same operation in little-endian ordering will be: 7705 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7706 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7707 7708 assert(Op.getValueType().isVector() && "Vector type expected."); 7709 7710 SDLoc DL(Op); 7711 SDValue N1 = Op.getOperand(0); 7712 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7713 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7714 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7715 7716 EVT TrgVT = Op.getValueType(); 7717 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7718 EVT EltVT = TrgVT.getVectorElementType(); 7719 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7720 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7721 7722 // First list the elements we want to keep. 7723 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7724 SmallVector<int, 16> ShuffV; 7725 if (Subtarget.isLittleEndian()) 7726 for (unsigned i = 0; i < TrgNumElts; ++i) 7727 ShuffV.push_back(i * SizeMult); 7728 else 7729 for (unsigned i = 1; i <= TrgNumElts; ++i) 7730 ShuffV.push_back(i * SizeMult - 1); 7731 7732 // Populate the remaining elements with undefs. 7733 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7734 // ShuffV.push_back(i + WideNumElts); 7735 ShuffV.push_back(WideNumElts + 1); 7736 7737 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7738 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7739 } 7740 7741 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7742 /// possible. 7743 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7744 // Not FP? Not a fsel. 7745 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7746 !Op.getOperand(2).getValueType().isFloatingPoint()) 7747 return Op; 7748 7749 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7750 7751 EVT ResVT = Op.getValueType(); 7752 EVT CmpVT = Op.getOperand(0).getValueType(); 7753 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7754 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7755 SDLoc dl(Op); 7756 7757 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7758 // presence of infinities. 7759 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7760 switch (CC) { 7761 default: 7762 break; 7763 case ISD::SETOGT: 7764 case ISD::SETGT: 7765 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7766 case ISD::SETOLT: 7767 case ISD::SETLT: 7768 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7769 } 7770 } 7771 7772 // We might be able to do better than this under some circumstances, but in 7773 // general, fsel-based lowering of select is a finite-math-only optimization. 7774 // For more information, see section F.3 of the 2.06 ISA specification. 7775 // With ISA 3.0 7776 if (!DAG.getTarget().Options.NoInfsFPMath || 7777 !DAG.getTarget().Options.NoNaNsFPMath) 7778 return Op; 7779 7780 // TODO: Propagate flags from the select rather than global settings. 7781 SDNodeFlags Flags; 7782 Flags.setNoInfs(true); 7783 Flags.setNoNaNs(true); 7784 7785 // If the RHS of the comparison is a 0.0, we don't need to do the 7786 // subtraction at all. 7787 SDValue Sel1; 7788 if (isFloatingPointZero(RHS)) 7789 switch (CC) { 7790 default: break; // SETUO etc aren't handled by fsel. 7791 case ISD::SETNE: 7792 std::swap(TV, FV); 7793 LLVM_FALLTHROUGH; 7794 case ISD::SETEQ: 7795 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7796 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7797 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7798 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7799 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7800 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7801 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7802 case ISD::SETULT: 7803 case ISD::SETLT: 7804 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7805 LLVM_FALLTHROUGH; 7806 case ISD::SETOGE: 7807 case ISD::SETGE: 7808 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7809 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7810 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7811 case ISD::SETUGT: 7812 case ISD::SETGT: 7813 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7814 LLVM_FALLTHROUGH; 7815 case ISD::SETOLE: 7816 case ISD::SETLE: 7817 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7818 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7819 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7820 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7821 } 7822 7823 SDValue Cmp; 7824 switch (CC) { 7825 default: break; // SETUO etc aren't handled by fsel. 7826 case ISD::SETNE: 7827 std::swap(TV, FV); 7828 LLVM_FALLTHROUGH; 7829 case ISD::SETEQ: 7830 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7831 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7832 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7833 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7834 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7835 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7836 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7837 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7838 case ISD::SETULT: 7839 case ISD::SETLT: 7840 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7841 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7842 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7843 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7844 case ISD::SETOGE: 7845 case ISD::SETGE: 7846 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7847 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7848 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7849 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7850 case ISD::SETUGT: 7851 case ISD::SETGT: 7852 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7853 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7854 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7855 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7856 case ISD::SETOLE: 7857 case ISD::SETLE: 7858 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7859 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7860 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7861 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7862 } 7863 return Op; 7864 } 7865 7866 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7867 SelectionDAG &DAG, 7868 const SDLoc &dl) const { 7869 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7870 SDValue Src = Op.getOperand(0); 7871 if (Src.getValueType() == MVT::f32) 7872 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7873 7874 SDValue Tmp; 7875 switch (Op.getSimpleValueType().SimpleTy) { 7876 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7877 case MVT::i32: 7878 Tmp = DAG.getNode( 7879 Op.getOpcode() == ISD::FP_TO_SINT 7880 ? PPCISD::FCTIWZ 7881 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7882 dl, MVT::f64, Src); 7883 break; 7884 case MVT::i64: 7885 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7886 "i64 FP_TO_UINT is supported only with FPCVT"); 7887 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7888 PPCISD::FCTIDUZ, 7889 dl, MVT::f64, Src); 7890 break; 7891 } 7892 7893 // Convert the FP value to an int value through memory. 7894 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7895 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7896 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7897 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7898 MachinePointerInfo MPI = 7899 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7900 7901 // Emit a store to the stack slot. 7902 SDValue Chain; 7903 if (i32Stack) { 7904 MachineFunction &MF = DAG.getMachineFunction(); 7905 MachineMemOperand *MMO = 7906 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 7907 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7908 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7909 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7910 } else 7911 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 7912 7913 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7914 // add in a bias on big endian. 7915 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7916 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7917 DAG.getConstant(4, dl, FIPtr.getValueType())); 7918 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7919 } 7920 7921 RLI.Chain = Chain; 7922 RLI.Ptr = FIPtr; 7923 RLI.MPI = MPI; 7924 } 7925 7926 /// Custom lowers floating point to integer conversions to use 7927 /// the direct move instructions available in ISA 2.07 to avoid the 7928 /// need for load/store combinations. 7929 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7930 SelectionDAG &DAG, 7931 const SDLoc &dl) const { 7932 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7933 SDValue Src = Op.getOperand(0); 7934 7935 if (Src.getValueType() == MVT::f32) 7936 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7937 7938 SDValue Tmp; 7939 switch (Op.getSimpleValueType().SimpleTy) { 7940 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7941 case MVT::i32: 7942 Tmp = DAG.getNode( 7943 Op.getOpcode() == ISD::FP_TO_SINT 7944 ? PPCISD::FCTIWZ 7945 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7946 dl, MVT::f64, Src); 7947 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7948 break; 7949 case MVT::i64: 7950 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7951 "i64 FP_TO_UINT is supported only with FPCVT"); 7952 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7953 PPCISD::FCTIDUZ, 7954 dl, MVT::f64, Src); 7955 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7956 break; 7957 } 7958 return Tmp; 7959 } 7960 7961 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7962 const SDLoc &dl) const { 7963 7964 // FP to INT conversions are legal for f128. 7965 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7966 return Op; 7967 7968 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7969 // PPC (the libcall is not available). 7970 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7971 if (Op.getValueType() == MVT::i32) { 7972 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7973 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7974 MVT::f64, Op.getOperand(0), 7975 DAG.getIntPtrConstant(0, dl)); 7976 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7977 MVT::f64, Op.getOperand(0), 7978 DAG.getIntPtrConstant(1, dl)); 7979 7980 // Add the two halves of the long double in round-to-zero mode. 7981 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7982 7983 // Now use a smaller FP_TO_SINT. 7984 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7985 } 7986 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7987 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7988 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7989 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7990 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7991 // FIXME: generated code sucks. 7992 // TODO: Are there fast-math-flags to propagate to this FSUB? 7993 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7994 Op.getOperand(0), Tmp); 7995 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7996 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7997 DAG.getConstant(0x80000000, dl, MVT::i32)); 7998 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7999 Op.getOperand(0)); 8000 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8001 ISD::SETGE); 8002 } 8003 } 8004 8005 return SDValue(); 8006 } 8007 8008 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8009 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8010 8011 ReuseLoadInfo RLI; 8012 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8013 8014 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8015 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8016 } 8017 8018 // We're trying to insert a regular store, S, and then a load, L. If the 8019 // incoming value, O, is a load, we might just be able to have our load use the 8020 // address used by O. However, we don't know if anything else will store to 8021 // that address before we can load from it. To prevent this situation, we need 8022 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8023 // the same chain operand as O, we create a token factor from the chain results 8024 // of O and L, and we replace all uses of O's chain result with that token 8025 // factor (see spliceIntoChain below for this last part). 8026 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8027 ReuseLoadInfo &RLI, 8028 SelectionDAG &DAG, 8029 ISD::LoadExtType ET) const { 8030 SDLoc dl(Op); 8031 if (ET == ISD::NON_EXTLOAD && 8032 (Op.getOpcode() == ISD::FP_TO_UINT || 8033 Op.getOpcode() == ISD::FP_TO_SINT) && 8034 isOperationLegalOrCustom(Op.getOpcode(), 8035 Op.getOperand(0).getValueType())) { 8036 8037 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8038 return true; 8039 } 8040 8041 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8042 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8043 LD->isNonTemporal()) 8044 return false; 8045 if (LD->getMemoryVT() != MemVT) 8046 return false; 8047 8048 RLI.Ptr = LD->getBasePtr(); 8049 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8050 assert(LD->getAddressingMode() == ISD::PRE_INC && 8051 "Non-pre-inc AM on PPC?"); 8052 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8053 LD->getOffset()); 8054 } 8055 8056 RLI.Chain = LD->getChain(); 8057 RLI.MPI = LD->getPointerInfo(); 8058 RLI.IsDereferenceable = LD->isDereferenceable(); 8059 RLI.IsInvariant = LD->isInvariant(); 8060 RLI.Alignment = LD->getAlignment(); 8061 RLI.AAInfo = LD->getAAInfo(); 8062 RLI.Ranges = LD->getRanges(); 8063 8064 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8065 return true; 8066 } 8067 8068 // Given the head of the old chain, ResChain, insert a token factor containing 8069 // it and NewResChain, and make users of ResChain now be users of that token 8070 // factor. 8071 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8072 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8073 SDValue NewResChain, 8074 SelectionDAG &DAG) const { 8075 if (!ResChain) 8076 return; 8077 8078 SDLoc dl(NewResChain); 8079 8080 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8081 NewResChain, DAG.getUNDEF(MVT::Other)); 8082 assert(TF.getNode() != NewResChain.getNode() && 8083 "A new TF really is required here"); 8084 8085 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8086 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8087 } 8088 8089 /// Analyze profitability of direct move 8090 /// prefer float load to int load plus direct move 8091 /// when there is no integer use of int load 8092 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8093 SDNode *Origin = Op.getOperand(0).getNode(); 8094 if (Origin->getOpcode() != ISD::LOAD) 8095 return true; 8096 8097 // If there is no LXSIBZX/LXSIHZX, like Power8, 8098 // prefer direct move if the memory size is 1 or 2 bytes. 8099 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8100 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8101 return true; 8102 8103 for (SDNode::use_iterator UI = Origin->use_begin(), 8104 UE = Origin->use_end(); 8105 UI != UE; ++UI) { 8106 8107 // Only look at the users of the loaded value. 8108 if (UI.getUse().get().getResNo() != 0) 8109 continue; 8110 8111 if (UI->getOpcode() != ISD::SINT_TO_FP && 8112 UI->getOpcode() != ISD::UINT_TO_FP) 8113 return true; 8114 } 8115 8116 return false; 8117 } 8118 8119 /// Custom lowers integer to floating point conversions to use 8120 /// the direct move instructions available in ISA 2.07 to avoid the 8121 /// need for load/store combinations. 8122 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8123 SelectionDAG &DAG, 8124 const SDLoc &dl) const { 8125 assert((Op.getValueType() == MVT::f32 || 8126 Op.getValueType() == MVT::f64) && 8127 "Invalid floating point type as target of conversion"); 8128 assert(Subtarget.hasFPCVT() && 8129 "Int to FP conversions with direct moves require FPCVT"); 8130 SDValue FP; 8131 SDValue Src = Op.getOperand(0); 8132 bool SinglePrec = Op.getValueType() == MVT::f32; 8133 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8134 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8135 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8136 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8137 8138 if (WordInt) { 8139 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8140 dl, MVT::f64, Src); 8141 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8142 } 8143 else { 8144 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8145 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8146 } 8147 8148 return FP; 8149 } 8150 8151 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8152 8153 EVT VecVT = Vec.getValueType(); 8154 assert(VecVT.isVector() && "Expected a vector type."); 8155 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8156 8157 EVT EltVT = VecVT.getVectorElementType(); 8158 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8159 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8160 8161 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8162 SmallVector<SDValue, 16> Ops(NumConcat); 8163 Ops[0] = Vec; 8164 SDValue UndefVec = DAG.getUNDEF(VecVT); 8165 for (unsigned i = 1; i < NumConcat; ++i) 8166 Ops[i] = UndefVec; 8167 8168 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8169 } 8170 8171 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8172 const SDLoc &dl) const { 8173 8174 unsigned Opc = Op.getOpcode(); 8175 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8176 "Unexpected conversion type"); 8177 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8178 "Supports conversions to v2f64/v4f32 only."); 8179 8180 bool SignedConv = Opc == ISD::SINT_TO_FP; 8181 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8182 8183 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8184 EVT WideVT = Wide.getValueType(); 8185 unsigned WideNumElts = WideVT.getVectorNumElements(); 8186 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8187 8188 SmallVector<int, 16> ShuffV; 8189 for (unsigned i = 0; i < WideNumElts; ++i) 8190 ShuffV.push_back(i + WideNumElts); 8191 8192 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8193 int SaveElts = FourEltRes ? 4 : 2; 8194 if (Subtarget.isLittleEndian()) 8195 for (int i = 0; i < SaveElts; i++) 8196 ShuffV[i * Stride] = i; 8197 else 8198 for (int i = 1; i <= SaveElts; i++) 8199 ShuffV[i * Stride - 1] = i - 1; 8200 8201 SDValue ShuffleSrc2 = 8202 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8203 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8204 8205 SDValue Extend; 8206 if (SignedConv) { 8207 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8208 EVT ExtVT = Op.getOperand(0).getValueType(); 8209 if (Subtarget.hasP9Altivec()) 8210 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8211 IntermediateVT.getVectorNumElements()); 8212 8213 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8214 DAG.getValueType(ExtVT)); 8215 } else 8216 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8217 8218 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8219 } 8220 8221 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8222 SelectionDAG &DAG) const { 8223 SDLoc dl(Op); 8224 8225 EVT InVT = Op.getOperand(0).getValueType(); 8226 EVT OutVT = Op.getValueType(); 8227 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8228 isOperationCustom(Op.getOpcode(), InVT)) 8229 return LowerINT_TO_FPVector(Op, DAG, dl); 8230 8231 // Conversions to f128 are legal. 8232 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8233 return Op; 8234 8235 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8236 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8237 return SDValue(); 8238 8239 SDValue Value = Op.getOperand(0); 8240 // The values are now known to be -1 (false) or 1 (true). To convert this 8241 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8242 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8243 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8244 8245 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8246 8247 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8248 8249 if (Op.getValueType() != MVT::v4f64) 8250 Value = DAG.getNode(ISD::FP_ROUND, dl, 8251 Op.getValueType(), Value, 8252 DAG.getIntPtrConstant(1, dl)); 8253 return Value; 8254 } 8255 8256 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8257 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8258 return SDValue(); 8259 8260 if (Op.getOperand(0).getValueType() == MVT::i1) 8261 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8262 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8263 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8264 8265 // If we have direct moves, we can do all the conversion, skip the store/load 8266 // however, without FPCVT we can't do most conversions. 8267 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8268 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8269 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8270 8271 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8272 "UINT_TO_FP is supported only with FPCVT"); 8273 8274 // If we have FCFIDS, then use it when converting to single-precision. 8275 // Otherwise, convert to double-precision and then round. 8276 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8277 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8278 : PPCISD::FCFIDS) 8279 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8280 : PPCISD::FCFID); 8281 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8282 ? MVT::f32 8283 : MVT::f64; 8284 8285 if (Op.getOperand(0).getValueType() == MVT::i64) { 8286 SDValue SINT = Op.getOperand(0); 8287 // When converting to single-precision, we actually need to convert 8288 // to double-precision first and then round to single-precision. 8289 // To avoid double-rounding effects during that operation, we have 8290 // to prepare the input operand. Bits that might be truncated when 8291 // converting to double-precision are replaced by a bit that won't 8292 // be lost at this stage, but is below the single-precision rounding 8293 // position. 8294 // 8295 // However, if -enable-unsafe-fp-math is in effect, accept double 8296 // rounding to avoid the extra overhead. 8297 if (Op.getValueType() == MVT::f32 && 8298 !Subtarget.hasFPCVT() && 8299 !DAG.getTarget().Options.UnsafeFPMath) { 8300 8301 // Twiddle input to make sure the low 11 bits are zero. (If this 8302 // is the case, we are guaranteed the value will fit into the 53 bit 8303 // mantissa of an IEEE double-precision value without rounding.) 8304 // If any of those low 11 bits were not zero originally, make sure 8305 // bit 12 (value 2048) is set instead, so that the final rounding 8306 // to single-precision gets the correct result. 8307 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8308 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8309 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8310 Round, DAG.getConstant(2047, dl, MVT::i64)); 8311 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8312 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8313 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8314 8315 // However, we cannot use that value unconditionally: if the magnitude 8316 // of the input value is small, the bit-twiddling we did above might 8317 // end up visibly changing the output. Fortunately, in that case, we 8318 // don't need to twiddle bits since the original input will convert 8319 // exactly to double-precision floating-point already. Therefore, 8320 // construct a conditional to use the original value if the top 11 8321 // bits are all sign-bit copies, and use the rounded value computed 8322 // above otherwise. 8323 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8324 SINT, DAG.getConstant(53, dl, MVT::i32)); 8325 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8326 Cond, DAG.getConstant(1, dl, MVT::i64)); 8327 Cond = DAG.getSetCC( 8328 dl, 8329 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8330 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8331 8332 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8333 } 8334 8335 ReuseLoadInfo RLI; 8336 SDValue Bits; 8337 8338 MachineFunction &MF = DAG.getMachineFunction(); 8339 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8340 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8341 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8342 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8343 } else if (Subtarget.hasLFIWAX() && 8344 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8345 MachineMemOperand *MMO = 8346 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8347 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8348 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8349 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8350 DAG.getVTList(MVT::f64, MVT::Other), 8351 Ops, MVT::i32, MMO); 8352 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8353 } else if (Subtarget.hasFPCVT() && 8354 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8355 MachineMemOperand *MMO = 8356 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8357 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8358 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8359 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8360 DAG.getVTList(MVT::f64, MVT::Other), 8361 Ops, MVT::i32, MMO); 8362 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8363 } else if (((Subtarget.hasLFIWAX() && 8364 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8365 (Subtarget.hasFPCVT() && 8366 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8367 SINT.getOperand(0).getValueType() == MVT::i32) { 8368 MachineFrameInfo &MFI = MF.getFrameInfo(); 8369 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8370 8371 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8372 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8373 8374 SDValue Store = 8375 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8376 MachinePointerInfo::getFixedStack( 8377 DAG.getMachineFunction(), FrameIdx)); 8378 8379 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8380 "Expected an i32 store"); 8381 8382 RLI.Ptr = FIdx; 8383 RLI.Chain = Store; 8384 RLI.MPI = 8385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8386 RLI.Alignment = 4; 8387 8388 MachineMemOperand *MMO = 8389 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8390 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8391 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8392 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8393 PPCISD::LFIWZX : PPCISD::LFIWAX, 8394 dl, DAG.getVTList(MVT::f64, MVT::Other), 8395 Ops, MVT::i32, MMO); 8396 } else 8397 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8398 8399 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8400 8401 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8402 FP = DAG.getNode(ISD::FP_ROUND, dl, 8403 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8404 return FP; 8405 } 8406 8407 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8408 "Unhandled INT_TO_FP type in custom expander!"); 8409 // Since we only generate this in 64-bit mode, we can take advantage of 8410 // 64-bit registers. In particular, sign extend the input value into the 8411 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8412 // then lfd it and fcfid it. 8413 MachineFunction &MF = DAG.getMachineFunction(); 8414 MachineFrameInfo &MFI = MF.getFrameInfo(); 8415 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8416 8417 SDValue Ld; 8418 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8419 ReuseLoadInfo RLI; 8420 bool ReusingLoad; 8421 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8422 DAG))) { 8423 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8424 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8425 8426 SDValue Store = 8427 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8428 MachinePointerInfo::getFixedStack( 8429 DAG.getMachineFunction(), FrameIdx)); 8430 8431 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8432 "Expected an i32 store"); 8433 8434 RLI.Ptr = FIdx; 8435 RLI.Chain = Store; 8436 RLI.MPI = 8437 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8438 RLI.Alignment = 4; 8439 } 8440 8441 MachineMemOperand *MMO = 8442 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8443 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8444 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8445 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8446 PPCISD::LFIWZX : PPCISD::LFIWAX, 8447 dl, DAG.getVTList(MVT::f64, MVT::Other), 8448 Ops, MVT::i32, MMO); 8449 if (ReusingLoad) 8450 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8451 } else { 8452 assert(Subtarget.isPPC64() && 8453 "i32->FP without LFIWAX supported only on PPC64"); 8454 8455 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8456 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8457 8458 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8459 Op.getOperand(0)); 8460 8461 // STD the extended value into the stack slot. 8462 SDValue Store = DAG.getStore( 8463 DAG.getEntryNode(), dl, Ext64, FIdx, 8464 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8465 8466 // Load the value as a double. 8467 Ld = DAG.getLoad( 8468 MVT::f64, dl, Store, FIdx, 8469 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8470 } 8471 8472 // FCFID it and return it. 8473 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8474 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8475 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8476 DAG.getIntPtrConstant(0, dl)); 8477 return FP; 8478 } 8479 8480 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8481 SelectionDAG &DAG) const { 8482 SDLoc dl(Op); 8483 /* 8484 The rounding mode is in bits 30:31 of FPSR, and has the following 8485 settings: 8486 00 Round to nearest 8487 01 Round to 0 8488 10 Round to +inf 8489 11 Round to -inf 8490 8491 FLT_ROUNDS, on the other hand, expects the following: 8492 -1 Undefined 8493 0 Round to 0 8494 1 Round to nearest 8495 2 Round to +inf 8496 3 Round to -inf 8497 8498 To perform the conversion, we do: 8499 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8500 */ 8501 8502 MachineFunction &MF = DAG.getMachineFunction(); 8503 EVT VT = Op.getValueType(); 8504 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8505 8506 // Save FP Control Word to register 8507 SDValue Chain = Op.getOperand(0); 8508 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8509 Chain = MFFS.getValue(1); 8510 8511 // Save FP register to stack slot 8512 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8513 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8514 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8515 8516 // Load FP Control Word from low 32 bits of stack slot. 8517 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8518 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8519 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8520 Chain = CWD.getValue(1); 8521 8522 // Transform as necessary 8523 SDValue CWD1 = 8524 DAG.getNode(ISD::AND, dl, MVT::i32, 8525 CWD, DAG.getConstant(3, dl, MVT::i32)); 8526 SDValue CWD2 = 8527 DAG.getNode(ISD::SRL, dl, MVT::i32, 8528 DAG.getNode(ISD::AND, dl, MVT::i32, 8529 DAG.getNode(ISD::XOR, dl, MVT::i32, 8530 CWD, DAG.getConstant(3, dl, MVT::i32)), 8531 DAG.getConstant(3, dl, MVT::i32)), 8532 DAG.getConstant(1, dl, MVT::i32)); 8533 8534 SDValue RetVal = 8535 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8536 8537 RetVal = 8538 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8539 dl, VT, RetVal); 8540 8541 return DAG.getMergeValues({RetVal, Chain}, dl); 8542 } 8543 8544 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8545 EVT VT = Op.getValueType(); 8546 unsigned BitWidth = VT.getSizeInBits(); 8547 SDLoc dl(Op); 8548 assert(Op.getNumOperands() == 3 && 8549 VT == Op.getOperand(1).getValueType() && 8550 "Unexpected SHL!"); 8551 8552 // Expand into a bunch of logical ops. Note that these ops 8553 // depend on the PPC behavior for oversized shift amounts. 8554 SDValue Lo = Op.getOperand(0); 8555 SDValue Hi = Op.getOperand(1); 8556 SDValue Amt = Op.getOperand(2); 8557 EVT AmtVT = Amt.getValueType(); 8558 8559 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8560 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8561 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8562 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8563 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8564 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8565 DAG.getConstant(-BitWidth, dl, AmtVT)); 8566 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8567 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8568 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8569 SDValue OutOps[] = { OutLo, OutHi }; 8570 return DAG.getMergeValues(OutOps, dl); 8571 } 8572 8573 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8574 EVT VT = Op.getValueType(); 8575 SDLoc dl(Op); 8576 unsigned BitWidth = VT.getSizeInBits(); 8577 assert(Op.getNumOperands() == 3 && 8578 VT == Op.getOperand(1).getValueType() && 8579 "Unexpected SRL!"); 8580 8581 // Expand into a bunch of logical ops. Note that these ops 8582 // depend on the PPC behavior for oversized shift amounts. 8583 SDValue Lo = Op.getOperand(0); 8584 SDValue Hi = Op.getOperand(1); 8585 SDValue Amt = Op.getOperand(2); 8586 EVT AmtVT = Amt.getValueType(); 8587 8588 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8589 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8590 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8591 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8592 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8593 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8594 DAG.getConstant(-BitWidth, dl, AmtVT)); 8595 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8596 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8597 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8598 SDValue OutOps[] = { OutLo, OutHi }; 8599 return DAG.getMergeValues(OutOps, dl); 8600 } 8601 8602 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8603 SDLoc dl(Op); 8604 EVT VT = Op.getValueType(); 8605 unsigned BitWidth = VT.getSizeInBits(); 8606 assert(Op.getNumOperands() == 3 && 8607 VT == Op.getOperand(1).getValueType() && 8608 "Unexpected SRA!"); 8609 8610 // Expand into a bunch of logical ops, followed by a select_cc. 8611 SDValue Lo = Op.getOperand(0); 8612 SDValue Hi = Op.getOperand(1); 8613 SDValue Amt = Op.getOperand(2); 8614 EVT AmtVT = Amt.getValueType(); 8615 8616 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8617 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8618 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8619 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8620 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8621 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8622 DAG.getConstant(-BitWidth, dl, AmtVT)); 8623 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8624 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8625 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8626 Tmp4, Tmp6, ISD::SETLE); 8627 SDValue OutOps[] = { OutLo, OutHi }; 8628 return DAG.getMergeValues(OutOps, dl); 8629 } 8630 8631 //===----------------------------------------------------------------------===// 8632 // Vector related lowering. 8633 // 8634 8635 /// BuildSplatI - Build a canonical splati of Val with an element size of 8636 /// SplatSize. Cast the result to VT. 8637 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8638 SelectionDAG &DAG, const SDLoc &dl) { 8639 static const MVT VTys[] = { // canonical VT to use for each size. 8640 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8641 }; 8642 8643 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8644 8645 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8646 if (Val == -1) 8647 SplatSize = 1; 8648 8649 EVT CanonicalVT = VTys[SplatSize-1]; 8650 8651 // Build a canonical splat for this value. 8652 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8653 } 8654 8655 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8656 /// specified intrinsic ID. 8657 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8658 const SDLoc &dl, EVT DestVT = MVT::Other) { 8659 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8660 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8661 DAG.getConstant(IID, dl, MVT::i32), Op); 8662 } 8663 8664 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8665 /// specified intrinsic ID. 8666 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8667 SelectionDAG &DAG, const SDLoc &dl, 8668 EVT DestVT = MVT::Other) { 8669 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8670 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8671 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8672 } 8673 8674 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8675 /// specified intrinsic ID. 8676 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8677 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8678 EVT DestVT = MVT::Other) { 8679 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8680 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8681 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8682 } 8683 8684 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8685 /// amount. The result has the specified value type. 8686 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8687 SelectionDAG &DAG, const SDLoc &dl) { 8688 // Force LHS/RHS to be the right type. 8689 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8690 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8691 8692 int Ops[16]; 8693 for (unsigned i = 0; i != 16; ++i) 8694 Ops[i] = i + Amt; 8695 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8696 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8697 } 8698 8699 /// Do we have an efficient pattern in a .td file for this node? 8700 /// 8701 /// \param V - pointer to the BuildVectorSDNode being matched 8702 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8703 /// 8704 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8705 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8706 /// the opposite is true (expansion is beneficial) are: 8707 /// - The node builds a vector out of integers that are not 32 or 64-bits 8708 /// - The node builds a vector out of constants 8709 /// - The node is a "load-and-splat" 8710 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8711 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8712 bool HasDirectMove, 8713 bool HasP8Vector) { 8714 EVT VecVT = V->getValueType(0); 8715 bool RightType = VecVT == MVT::v2f64 || 8716 (HasP8Vector && VecVT == MVT::v4f32) || 8717 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8718 if (!RightType) 8719 return false; 8720 8721 bool IsSplat = true; 8722 bool IsLoad = false; 8723 SDValue Op0 = V->getOperand(0); 8724 8725 // This function is called in a block that confirms the node is not a constant 8726 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8727 // different constants. 8728 if (V->isConstant()) 8729 return false; 8730 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8731 if (V->getOperand(i).isUndef()) 8732 return false; 8733 // We want to expand nodes that represent load-and-splat even if the 8734 // loaded value is a floating point truncation or conversion to int. 8735 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8736 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8737 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8738 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8739 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8740 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8741 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8742 IsLoad = true; 8743 // If the operands are different or the input is not a load and has more 8744 // uses than just this BV node, then it isn't a splat. 8745 if (V->getOperand(i) != Op0 || 8746 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8747 IsSplat = false; 8748 } 8749 return !(IsSplat && IsLoad); 8750 } 8751 8752 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8753 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8754 8755 SDLoc dl(Op); 8756 SDValue Op0 = Op->getOperand(0); 8757 8758 if (!EnableQuadPrecision || 8759 (Op.getValueType() != MVT::f128 ) || 8760 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8761 (Op0.getOperand(0).getValueType() != MVT::i64) || 8762 (Op0.getOperand(1).getValueType() != MVT::i64)) 8763 return SDValue(); 8764 8765 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8766 Op0.getOperand(1)); 8767 } 8768 8769 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8770 const SDValue *InputLoad = &Op; 8771 if (InputLoad->getOpcode() == ISD::BITCAST) 8772 InputLoad = &InputLoad->getOperand(0); 8773 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8774 InputLoad = &InputLoad->getOperand(0); 8775 if (InputLoad->getOpcode() != ISD::LOAD) 8776 return nullptr; 8777 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8778 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8779 } 8780 8781 // If this is a case we can't handle, return null and let the default 8782 // expansion code take care of it. If we CAN select this case, and if it 8783 // selects to a single instruction, return Op. Otherwise, if we can codegen 8784 // this case more efficiently than a constant pool load, lower it to the 8785 // sequence of ops that should be used. 8786 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8787 SelectionDAG &DAG) const { 8788 SDLoc dl(Op); 8789 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8790 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8791 8792 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8793 // We first build an i32 vector, load it into a QPX register, 8794 // then convert it to a floating-point vector and compare it 8795 // to a zero vector to get the boolean result. 8796 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8797 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8798 MachinePointerInfo PtrInfo = 8799 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8800 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8801 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8802 8803 assert(BVN->getNumOperands() == 4 && 8804 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8805 8806 bool IsConst = true; 8807 for (unsigned i = 0; i < 4; ++i) { 8808 if (BVN->getOperand(i).isUndef()) continue; 8809 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8810 IsConst = false; 8811 break; 8812 } 8813 } 8814 8815 if (IsConst) { 8816 Constant *One = 8817 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8818 Constant *NegOne = 8819 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8820 8821 Constant *CV[4]; 8822 for (unsigned i = 0; i < 4; ++i) { 8823 if (BVN->getOperand(i).isUndef()) 8824 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8825 else if (isNullConstant(BVN->getOperand(i))) 8826 CV[i] = NegOne; 8827 else 8828 CV[i] = One; 8829 } 8830 8831 Constant *CP = ConstantVector::get(CV); 8832 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8833 16 /* alignment */); 8834 8835 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8836 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8837 return DAG.getMemIntrinsicNode( 8838 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8839 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8840 } 8841 8842 SmallVector<SDValue, 4> Stores; 8843 for (unsigned i = 0; i < 4; ++i) { 8844 if (BVN->getOperand(i).isUndef()) continue; 8845 8846 unsigned Offset = 4*i; 8847 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8848 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8849 8850 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8851 if (StoreSize > 4) { 8852 Stores.push_back( 8853 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8854 PtrInfo.getWithOffset(Offset), MVT::i32)); 8855 } else { 8856 SDValue StoreValue = BVN->getOperand(i); 8857 if (StoreSize < 4) 8858 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8859 8860 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8861 PtrInfo.getWithOffset(Offset))); 8862 } 8863 } 8864 8865 SDValue StoreChain; 8866 if (!Stores.empty()) 8867 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8868 else 8869 StoreChain = DAG.getEntryNode(); 8870 8871 // Now load from v4i32 into the QPX register; this will extend it to 8872 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8873 // is typed as v4f64 because the QPX register integer states are not 8874 // explicitly represented. 8875 8876 SDValue Ops[] = {StoreChain, 8877 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8878 FIdx}; 8879 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8880 8881 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8882 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8883 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8884 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8885 LoadedVect); 8886 8887 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8888 8889 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8890 } 8891 8892 // All other QPX vectors are handled by generic code. 8893 if (Subtarget.hasQPX()) 8894 return SDValue(); 8895 8896 // Check if this is a splat of a constant value. 8897 APInt APSplatBits, APSplatUndef; 8898 unsigned SplatBitSize; 8899 bool HasAnyUndefs; 8900 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8901 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8902 SplatBitSize > 32) { 8903 8904 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8905 // Handle load-and-splat patterns as we have instructions that will do this 8906 // in one go. 8907 if (InputLoad && DAG.isSplatValue(Op, true)) { 8908 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8909 8910 // We have handling for 4 and 8 byte elements. 8911 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8912 8913 // Checking for a single use of this load, we have to check for vector 8914 // width (128 bits) / ElementSize uses (since each operand of the 8915 // BUILD_VECTOR is a separate use of the value. 8916 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8917 ((Subtarget.hasVSX() && ElementSize == 64) || 8918 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8919 SDValue Ops[] = { 8920 LD->getChain(), // Chain 8921 LD->getBasePtr(), // Ptr 8922 DAG.getValueType(Op.getValueType()) // VT 8923 }; 8924 return 8925 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8926 DAG.getVTList(Op.getValueType(), MVT::Other), 8927 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8928 } 8929 } 8930 8931 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8932 // lowered to VSX instructions under certain conditions. 8933 // Without VSX, there is no pattern more efficient than expanding the node. 8934 if (Subtarget.hasVSX() && 8935 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8936 Subtarget.hasP8Vector())) 8937 return Op; 8938 return SDValue(); 8939 } 8940 8941 unsigned SplatBits = APSplatBits.getZExtValue(); 8942 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8943 unsigned SplatSize = SplatBitSize / 8; 8944 8945 // First, handle single instruction cases. 8946 8947 // All zeros? 8948 if (SplatBits == 0) { 8949 // Canonicalize all zero vectors to be v4i32. 8950 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8951 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8952 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8953 } 8954 return Op; 8955 } 8956 8957 // We have XXSPLTIB for constant splats one byte wide 8958 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 8959 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 8960 if (Subtarget.hasP9Vector() && SplatSize == 1) 8961 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 8962 8963 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8964 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8965 (32-SplatBitSize)); 8966 if (SextVal >= -16 && SextVal <= 15) 8967 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8968 8969 // Two instruction sequences. 8970 8971 // If this value is in the range [-32,30] and is even, use: 8972 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8973 // If this value is in the range [17,31] and is odd, use: 8974 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8975 // If this value is in the range [-31,-17] and is odd, use: 8976 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8977 // Note the last two are three-instruction sequences. 8978 if (SextVal >= -32 && SextVal <= 31) { 8979 // To avoid having these optimizations undone by constant folding, 8980 // we convert to a pseudo that will be expanded later into one of 8981 // the above forms. 8982 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8983 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8984 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8985 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8986 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8987 if (VT == Op.getValueType()) 8988 return RetVal; 8989 else 8990 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8991 } 8992 8993 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8994 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8995 // for fneg/fabs. 8996 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8997 // Make -1 and vspltisw -1: 8998 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8999 9000 // Make the VSLW intrinsic, computing 0x8000_0000. 9001 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9002 OnesV, DAG, dl); 9003 9004 // xor by OnesV to invert it. 9005 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9006 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9007 } 9008 9009 // Check to see if this is a wide variety of vsplti*, binop self cases. 9010 static const signed char SplatCsts[] = { 9011 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9012 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9013 }; 9014 9015 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9016 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9017 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9018 int i = SplatCsts[idx]; 9019 9020 // Figure out what shift amount will be used by altivec if shifted by i in 9021 // this splat size. 9022 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9023 9024 // vsplti + shl self. 9025 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9026 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9027 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9028 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9029 Intrinsic::ppc_altivec_vslw 9030 }; 9031 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9032 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9033 } 9034 9035 // vsplti + srl self. 9036 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9037 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9038 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9039 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9040 Intrinsic::ppc_altivec_vsrw 9041 }; 9042 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9043 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9044 } 9045 9046 // vsplti + sra self. 9047 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9048 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9049 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9050 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9051 Intrinsic::ppc_altivec_vsraw 9052 }; 9053 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9054 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9055 } 9056 9057 // vsplti + rol self. 9058 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9059 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9060 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9061 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9062 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9063 Intrinsic::ppc_altivec_vrlw 9064 }; 9065 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9066 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9067 } 9068 9069 // t = vsplti c, result = vsldoi t, t, 1 9070 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9071 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9072 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9073 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9074 } 9075 // t = vsplti c, result = vsldoi t, t, 2 9076 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9077 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9078 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9079 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9080 } 9081 // t = vsplti c, result = vsldoi t, t, 3 9082 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9083 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9084 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9085 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9086 } 9087 } 9088 9089 return SDValue(); 9090 } 9091 9092 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9093 /// the specified operations to build the shuffle. 9094 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9095 SDValue RHS, SelectionDAG &DAG, 9096 const SDLoc &dl) { 9097 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9098 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9099 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9100 9101 enum { 9102 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9103 OP_VMRGHW, 9104 OP_VMRGLW, 9105 OP_VSPLTISW0, 9106 OP_VSPLTISW1, 9107 OP_VSPLTISW2, 9108 OP_VSPLTISW3, 9109 OP_VSLDOI4, 9110 OP_VSLDOI8, 9111 OP_VSLDOI12 9112 }; 9113 9114 if (OpNum == OP_COPY) { 9115 if (LHSID == (1*9+2)*9+3) return LHS; 9116 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9117 return RHS; 9118 } 9119 9120 SDValue OpLHS, OpRHS; 9121 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9122 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9123 9124 int ShufIdxs[16]; 9125 switch (OpNum) { 9126 default: llvm_unreachable("Unknown i32 permute!"); 9127 case OP_VMRGHW: 9128 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9129 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9130 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9131 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9132 break; 9133 case OP_VMRGLW: 9134 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9135 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9136 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9137 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9138 break; 9139 case OP_VSPLTISW0: 9140 for (unsigned i = 0; i != 16; ++i) 9141 ShufIdxs[i] = (i&3)+0; 9142 break; 9143 case OP_VSPLTISW1: 9144 for (unsigned i = 0; i != 16; ++i) 9145 ShufIdxs[i] = (i&3)+4; 9146 break; 9147 case OP_VSPLTISW2: 9148 for (unsigned i = 0; i != 16; ++i) 9149 ShufIdxs[i] = (i&3)+8; 9150 break; 9151 case OP_VSPLTISW3: 9152 for (unsigned i = 0; i != 16; ++i) 9153 ShufIdxs[i] = (i&3)+12; 9154 break; 9155 case OP_VSLDOI4: 9156 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9157 case OP_VSLDOI8: 9158 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9159 case OP_VSLDOI12: 9160 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9161 } 9162 EVT VT = OpLHS.getValueType(); 9163 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9164 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9165 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9166 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9167 } 9168 9169 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9170 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9171 /// SDValue. 9172 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9173 SelectionDAG &DAG) const { 9174 const unsigned BytesInVector = 16; 9175 bool IsLE = Subtarget.isLittleEndian(); 9176 SDLoc dl(N); 9177 SDValue V1 = N->getOperand(0); 9178 SDValue V2 = N->getOperand(1); 9179 unsigned ShiftElts = 0, InsertAtByte = 0; 9180 bool Swap = false; 9181 9182 // Shifts required to get the byte we want at element 7. 9183 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9184 0, 15, 14, 13, 12, 11, 10, 9}; 9185 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9186 1, 2, 3, 4, 5, 6, 7, 8}; 9187 9188 ArrayRef<int> Mask = N->getMask(); 9189 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9190 9191 // For each mask element, find out if we're just inserting something 9192 // from V2 into V1 or vice versa. 9193 // Possible permutations inserting an element from V2 into V1: 9194 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9195 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9196 // ... 9197 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9198 // Inserting from V1 into V2 will be similar, except mask range will be 9199 // [16,31]. 9200 9201 bool FoundCandidate = false; 9202 // If both vector operands for the shuffle are the same vector, the mask 9203 // will contain only elements from the first one and the second one will be 9204 // undef. 9205 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9206 // Go through the mask of half-words to find an element that's being moved 9207 // from one vector to the other. 9208 for (unsigned i = 0; i < BytesInVector; ++i) { 9209 unsigned CurrentElement = Mask[i]; 9210 // If 2nd operand is undefined, we should only look for element 7 in the 9211 // Mask. 9212 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9213 continue; 9214 9215 bool OtherElementsInOrder = true; 9216 // Examine the other elements in the Mask to see if they're in original 9217 // order. 9218 for (unsigned j = 0; j < BytesInVector; ++j) { 9219 if (j == i) 9220 continue; 9221 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9222 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9223 // in which we always assume we're always picking from the 1st operand. 9224 int MaskOffset = 9225 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9226 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9227 OtherElementsInOrder = false; 9228 break; 9229 } 9230 } 9231 // If other elements are in original order, we record the number of shifts 9232 // we need to get the element we want into element 7. Also record which byte 9233 // in the vector we should insert into. 9234 if (OtherElementsInOrder) { 9235 // If 2nd operand is undefined, we assume no shifts and no swapping. 9236 if (V2.isUndef()) { 9237 ShiftElts = 0; 9238 Swap = false; 9239 } else { 9240 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9241 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9242 : BigEndianShifts[CurrentElement & 0xF]; 9243 Swap = CurrentElement < BytesInVector; 9244 } 9245 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9246 FoundCandidate = true; 9247 break; 9248 } 9249 } 9250 9251 if (!FoundCandidate) 9252 return SDValue(); 9253 9254 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9255 // optionally with VECSHL if shift is required. 9256 if (Swap) 9257 std::swap(V1, V2); 9258 if (V2.isUndef()) 9259 V2 = V1; 9260 if (ShiftElts) { 9261 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9262 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9263 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9264 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9265 } 9266 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9267 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9268 } 9269 9270 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9271 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9272 /// SDValue. 9273 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9274 SelectionDAG &DAG) const { 9275 const unsigned NumHalfWords = 8; 9276 const unsigned BytesInVector = NumHalfWords * 2; 9277 // Check that the shuffle is on half-words. 9278 if (!isNByteElemShuffleMask(N, 2, 1)) 9279 return SDValue(); 9280 9281 bool IsLE = Subtarget.isLittleEndian(); 9282 SDLoc dl(N); 9283 SDValue V1 = N->getOperand(0); 9284 SDValue V2 = N->getOperand(1); 9285 unsigned ShiftElts = 0, InsertAtByte = 0; 9286 bool Swap = false; 9287 9288 // Shifts required to get the half-word we want at element 3. 9289 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9290 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9291 9292 uint32_t Mask = 0; 9293 uint32_t OriginalOrderLow = 0x1234567; 9294 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9295 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9296 // 32-bit space, only need 4-bit nibbles per element. 9297 for (unsigned i = 0; i < NumHalfWords; ++i) { 9298 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9299 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9300 } 9301 9302 // For each mask element, find out if we're just inserting something 9303 // from V2 into V1 or vice versa. Possible permutations inserting an element 9304 // from V2 into V1: 9305 // X, 1, 2, 3, 4, 5, 6, 7 9306 // 0, X, 2, 3, 4, 5, 6, 7 9307 // 0, 1, X, 3, 4, 5, 6, 7 9308 // 0, 1, 2, X, 4, 5, 6, 7 9309 // 0, 1, 2, 3, X, 5, 6, 7 9310 // 0, 1, 2, 3, 4, X, 6, 7 9311 // 0, 1, 2, 3, 4, 5, X, 7 9312 // 0, 1, 2, 3, 4, 5, 6, X 9313 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9314 9315 bool FoundCandidate = false; 9316 // Go through the mask of half-words to find an element that's being moved 9317 // from one vector to the other. 9318 for (unsigned i = 0; i < NumHalfWords; ++i) { 9319 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9320 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9321 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9322 uint32_t TargetOrder = 0x0; 9323 9324 // If both vector operands for the shuffle are the same vector, the mask 9325 // will contain only elements from the first one and the second one will be 9326 // undef. 9327 if (V2.isUndef()) { 9328 ShiftElts = 0; 9329 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9330 TargetOrder = OriginalOrderLow; 9331 Swap = false; 9332 // Skip if not the correct element or mask of other elements don't equal 9333 // to our expected order. 9334 if (MaskOneElt == VINSERTHSrcElem && 9335 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9336 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9337 FoundCandidate = true; 9338 break; 9339 } 9340 } else { // If both operands are defined. 9341 // Target order is [8,15] if the current mask is between [0,7]. 9342 TargetOrder = 9343 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9344 // Skip if mask of other elements don't equal our expected order. 9345 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9346 // We only need the last 3 bits for the number of shifts. 9347 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9348 : BigEndianShifts[MaskOneElt & 0x7]; 9349 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9350 Swap = MaskOneElt < NumHalfWords; 9351 FoundCandidate = true; 9352 break; 9353 } 9354 } 9355 } 9356 9357 if (!FoundCandidate) 9358 return SDValue(); 9359 9360 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9361 // optionally with VECSHL if shift is required. 9362 if (Swap) 9363 std::swap(V1, V2); 9364 if (V2.isUndef()) 9365 V2 = V1; 9366 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9367 if (ShiftElts) { 9368 // Double ShiftElts because we're left shifting on v16i8 type. 9369 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9370 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9371 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9372 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9373 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9374 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9375 } 9376 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9377 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9378 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9379 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9380 } 9381 9382 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9383 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9384 /// return the code it can be lowered into. Worst case, it can always be 9385 /// lowered into a vperm. 9386 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9387 SelectionDAG &DAG) const { 9388 SDLoc dl(Op); 9389 SDValue V1 = Op.getOperand(0); 9390 SDValue V2 = Op.getOperand(1); 9391 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9392 EVT VT = Op.getValueType(); 9393 bool isLittleEndian = Subtarget.isLittleEndian(); 9394 9395 unsigned ShiftElts, InsertAtByte; 9396 bool Swap = false; 9397 9398 // If this is a load-and-splat, we can do that with a single instruction 9399 // in some cases. However if the load has multiple uses, we don't want to 9400 // combine it because that will just produce multiple loads. 9401 const SDValue *InputLoad = getNormalLoadInput(V1); 9402 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9403 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9404 InputLoad->hasOneUse()) { 9405 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9406 int SplatIdx = 9407 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9408 9409 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9410 // For 4-byte load-and-splat, we need Power9. 9411 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9412 uint64_t Offset = 0; 9413 if (IsFourByte) 9414 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9415 else 9416 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9417 SDValue BasePtr = LD->getBasePtr(); 9418 if (Offset != 0) 9419 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9420 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9421 SDValue Ops[] = { 9422 LD->getChain(), // Chain 9423 BasePtr, // BasePtr 9424 DAG.getValueType(Op.getValueType()) // VT 9425 }; 9426 SDVTList VTL = 9427 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9428 SDValue LdSplt = 9429 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9430 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9431 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9432 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9433 return LdSplt; 9434 } 9435 } 9436 if (Subtarget.hasP9Vector() && 9437 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9438 isLittleEndian)) { 9439 if (Swap) 9440 std::swap(V1, V2); 9441 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9442 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9443 if (ShiftElts) { 9444 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9445 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9446 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9447 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9448 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9449 } 9450 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9451 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9452 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9453 } 9454 9455 if (Subtarget.hasP9Altivec()) { 9456 SDValue NewISDNode; 9457 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9458 return NewISDNode; 9459 9460 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9461 return NewISDNode; 9462 } 9463 9464 if (Subtarget.hasVSX() && 9465 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9466 if (Swap) 9467 std::swap(V1, V2); 9468 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9469 SDValue Conv2 = 9470 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9471 9472 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9473 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9474 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9475 } 9476 9477 if (Subtarget.hasVSX() && 9478 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9479 if (Swap) 9480 std::swap(V1, V2); 9481 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9482 SDValue Conv2 = 9483 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9484 9485 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9486 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9487 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9488 } 9489 9490 if (Subtarget.hasP9Vector()) { 9491 if (PPC::isXXBRHShuffleMask(SVOp)) { 9492 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9493 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9494 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9495 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9496 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9497 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9498 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9499 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9500 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9501 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9502 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9503 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9504 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9505 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9506 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9507 } 9508 } 9509 9510 if (Subtarget.hasVSX()) { 9511 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9512 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9513 9514 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9515 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9516 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9517 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9518 } 9519 9520 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9521 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9522 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9523 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9524 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9525 } 9526 } 9527 9528 if (Subtarget.hasQPX()) { 9529 if (VT.getVectorNumElements() != 4) 9530 return SDValue(); 9531 9532 if (V2.isUndef()) V2 = V1; 9533 9534 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9535 if (AlignIdx != -1) { 9536 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9537 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9538 } else if (SVOp->isSplat()) { 9539 int SplatIdx = SVOp->getSplatIndex(); 9540 if (SplatIdx >= 4) { 9541 std::swap(V1, V2); 9542 SplatIdx -= 4; 9543 } 9544 9545 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9546 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9547 } 9548 9549 // Lower this into a qvgpci/qvfperm pair. 9550 9551 // Compute the qvgpci literal 9552 unsigned idx = 0; 9553 for (unsigned i = 0; i < 4; ++i) { 9554 int m = SVOp->getMaskElt(i); 9555 unsigned mm = m >= 0 ? (unsigned) m : i; 9556 idx |= mm << (3-i)*3; 9557 } 9558 9559 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9560 DAG.getConstant(idx, dl, MVT::i32)); 9561 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9562 } 9563 9564 // Cases that are handled by instructions that take permute immediates 9565 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9566 // selected by the instruction selector. 9567 if (V2.isUndef()) { 9568 if (PPC::isSplatShuffleMask(SVOp, 1) || 9569 PPC::isSplatShuffleMask(SVOp, 2) || 9570 PPC::isSplatShuffleMask(SVOp, 4) || 9571 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9572 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9573 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9574 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9575 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9576 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9577 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9578 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9579 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9580 (Subtarget.hasP8Altivec() && ( 9581 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9582 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9583 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9584 return Op; 9585 } 9586 } 9587 9588 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9589 // and produce a fixed permutation. If any of these match, do not lower to 9590 // VPERM. 9591 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9592 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9593 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9594 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9595 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9596 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9597 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9598 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9599 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9600 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9601 (Subtarget.hasP8Altivec() && ( 9602 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9603 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9604 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9605 return Op; 9606 9607 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9608 // perfect shuffle table to emit an optimal matching sequence. 9609 ArrayRef<int> PermMask = SVOp->getMask(); 9610 9611 unsigned PFIndexes[4]; 9612 bool isFourElementShuffle = true; 9613 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9614 unsigned EltNo = 8; // Start out undef. 9615 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9616 if (PermMask[i*4+j] < 0) 9617 continue; // Undef, ignore it. 9618 9619 unsigned ByteSource = PermMask[i*4+j]; 9620 if ((ByteSource & 3) != j) { 9621 isFourElementShuffle = false; 9622 break; 9623 } 9624 9625 if (EltNo == 8) { 9626 EltNo = ByteSource/4; 9627 } else if (EltNo != ByteSource/4) { 9628 isFourElementShuffle = false; 9629 break; 9630 } 9631 } 9632 PFIndexes[i] = EltNo; 9633 } 9634 9635 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9636 // perfect shuffle vector to determine if it is cost effective to do this as 9637 // discrete instructions, or whether we should use a vperm. 9638 // For now, we skip this for little endian until such time as we have a 9639 // little-endian perfect shuffle table. 9640 if (isFourElementShuffle && !isLittleEndian) { 9641 // Compute the index in the perfect shuffle table. 9642 unsigned PFTableIndex = 9643 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9644 9645 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9646 unsigned Cost = (PFEntry >> 30); 9647 9648 // Determining when to avoid vperm is tricky. Many things affect the cost 9649 // of vperm, particularly how many times the perm mask needs to be computed. 9650 // For example, if the perm mask can be hoisted out of a loop or is already 9651 // used (perhaps because there are multiple permutes with the same shuffle 9652 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9653 // the loop requires an extra register. 9654 // 9655 // As a compromise, we only emit discrete instructions if the shuffle can be 9656 // generated in 3 or fewer operations. When we have loop information 9657 // available, if this block is within a loop, we should avoid using vperm 9658 // for 3-operation perms and use a constant pool load instead. 9659 if (Cost < 3) 9660 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9661 } 9662 9663 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9664 // vector that will get spilled to the constant pool. 9665 if (V2.isUndef()) V2 = V1; 9666 9667 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9668 // that it is in input element units, not in bytes. Convert now. 9669 9670 // For little endian, the order of the input vectors is reversed, and 9671 // the permutation mask is complemented with respect to 31. This is 9672 // necessary to produce proper semantics with the big-endian-biased vperm 9673 // instruction. 9674 EVT EltVT = V1.getValueType().getVectorElementType(); 9675 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9676 9677 SmallVector<SDValue, 16> ResultMask; 9678 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9679 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9680 9681 for (unsigned j = 0; j != BytesPerElement; ++j) 9682 if (isLittleEndian) 9683 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9684 dl, MVT::i32)); 9685 else 9686 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9687 MVT::i32)); 9688 } 9689 9690 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9691 if (isLittleEndian) 9692 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9693 V2, V1, VPermMask); 9694 else 9695 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9696 V1, V2, VPermMask); 9697 } 9698 9699 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9700 /// vector comparison. If it is, return true and fill in Opc/isDot with 9701 /// information about the intrinsic. 9702 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9703 bool &isDot, const PPCSubtarget &Subtarget) { 9704 unsigned IntrinsicID = 9705 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9706 CompareOpc = -1; 9707 isDot = false; 9708 switch (IntrinsicID) { 9709 default: 9710 return false; 9711 // Comparison predicates. 9712 case Intrinsic::ppc_altivec_vcmpbfp_p: 9713 CompareOpc = 966; 9714 isDot = true; 9715 break; 9716 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9717 CompareOpc = 198; 9718 isDot = true; 9719 break; 9720 case Intrinsic::ppc_altivec_vcmpequb_p: 9721 CompareOpc = 6; 9722 isDot = true; 9723 break; 9724 case Intrinsic::ppc_altivec_vcmpequh_p: 9725 CompareOpc = 70; 9726 isDot = true; 9727 break; 9728 case Intrinsic::ppc_altivec_vcmpequw_p: 9729 CompareOpc = 134; 9730 isDot = true; 9731 break; 9732 case Intrinsic::ppc_altivec_vcmpequd_p: 9733 if (Subtarget.hasP8Altivec()) { 9734 CompareOpc = 199; 9735 isDot = true; 9736 } else 9737 return false; 9738 break; 9739 case Intrinsic::ppc_altivec_vcmpneb_p: 9740 case Intrinsic::ppc_altivec_vcmpneh_p: 9741 case Intrinsic::ppc_altivec_vcmpnew_p: 9742 case Intrinsic::ppc_altivec_vcmpnezb_p: 9743 case Intrinsic::ppc_altivec_vcmpnezh_p: 9744 case Intrinsic::ppc_altivec_vcmpnezw_p: 9745 if (Subtarget.hasP9Altivec()) { 9746 switch (IntrinsicID) { 9747 default: 9748 llvm_unreachable("Unknown comparison intrinsic."); 9749 case Intrinsic::ppc_altivec_vcmpneb_p: 9750 CompareOpc = 7; 9751 break; 9752 case Intrinsic::ppc_altivec_vcmpneh_p: 9753 CompareOpc = 71; 9754 break; 9755 case Intrinsic::ppc_altivec_vcmpnew_p: 9756 CompareOpc = 135; 9757 break; 9758 case Intrinsic::ppc_altivec_vcmpnezb_p: 9759 CompareOpc = 263; 9760 break; 9761 case Intrinsic::ppc_altivec_vcmpnezh_p: 9762 CompareOpc = 327; 9763 break; 9764 case Intrinsic::ppc_altivec_vcmpnezw_p: 9765 CompareOpc = 391; 9766 break; 9767 } 9768 isDot = true; 9769 } else 9770 return false; 9771 break; 9772 case Intrinsic::ppc_altivec_vcmpgefp_p: 9773 CompareOpc = 454; 9774 isDot = true; 9775 break; 9776 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9777 CompareOpc = 710; 9778 isDot = true; 9779 break; 9780 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9781 CompareOpc = 774; 9782 isDot = true; 9783 break; 9784 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9785 CompareOpc = 838; 9786 isDot = true; 9787 break; 9788 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9789 CompareOpc = 902; 9790 isDot = true; 9791 break; 9792 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9793 if (Subtarget.hasP8Altivec()) { 9794 CompareOpc = 967; 9795 isDot = true; 9796 } else 9797 return false; 9798 break; 9799 case Intrinsic::ppc_altivec_vcmpgtub_p: 9800 CompareOpc = 518; 9801 isDot = true; 9802 break; 9803 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9804 CompareOpc = 582; 9805 isDot = true; 9806 break; 9807 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9808 CompareOpc = 646; 9809 isDot = true; 9810 break; 9811 case Intrinsic::ppc_altivec_vcmpgtud_p: 9812 if (Subtarget.hasP8Altivec()) { 9813 CompareOpc = 711; 9814 isDot = true; 9815 } else 9816 return false; 9817 break; 9818 9819 // VSX predicate comparisons use the same infrastructure 9820 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9821 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9822 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9823 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9824 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9825 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9826 if (Subtarget.hasVSX()) { 9827 switch (IntrinsicID) { 9828 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9829 CompareOpc = 99; 9830 break; 9831 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9832 CompareOpc = 115; 9833 break; 9834 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9835 CompareOpc = 107; 9836 break; 9837 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9838 CompareOpc = 67; 9839 break; 9840 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9841 CompareOpc = 83; 9842 break; 9843 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9844 CompareOpc = 75; 9845 break; 9846 } 9847 isDot = true; 9848 } else 9849 return false; 9850 break; 9851 9852 // Normal Comparisons. 9853 case Intrinsic::ppc_altivec_vcmpbfp: 9854 CompareOpc = 966; 9855 break; 9856 case Intrinsic::ppc_altivec_vcmpeqfp: 9857 CompareOpc = 198; 9858 break; 9859 case Intrinsic::ppc_altivec_vcmpequb: 9860 CompareOpc = 6; 9861 break; 9862 case Intrinsic::ppc_altivec_vcmpequh: 9863 CompareOpc = 70; 9864 break; 9865 case Intrinsic::ppc_altivec_vcmpequw: 9866 CompareOpc = 134; 9867 break; 9868 case Intrinsic::ppc_altivec_vcmpequd: 9869 if (Subtarget.hasP8Altivec()) 9870 CompareOpc = 199; 9871 else 9872 return false; 9873 break; 9874 case Intrinsic::ppc_altivec_vcmpneb: 9875 case Intrinsic::ppc_altivec_vcmpneh: 9876 case Intrinsic::ppc_altivec_vcmpnew: 9877 case Intrinsic::ppc_altivec_vcmpnezb: 9878 case Intrinsic::ppc_altivec_vcmpnezh: 9879 case Intrinsic::ppc_altivec_vcmpnezw: 9880 if (Subtarget.hasP9Altivec()) 9881 switch (IntrinsicID) { 9882 default: 9883 llvm_unreachable("Unknown comparison intrinsic."); 9884 case Intrinsic::ppc_altivec_vcmpneb: 9885 CompareOpc = 7; 9886 break; 9887 case Intrinsic::ppc_altivec_vcmpneh: 9888 CompareOpc = 71; 9889 break; 9890 case Intrinsic::ppc_altivec_vcmpnew: 9891 CompareOpc = 135; 9892 break; 9893 case Intrinsic::ppc_altivec_vcmpnezb: 9894 CompareOpc = 263; 9895 break; 9896 case Intrinsic::ppc_altivec_vcmpnezh: 9897 CompareOpc = 327; 9898 break; 9899 case Intrinsic::ppc_altivec_vcmpnezw: 9900 CompareOpc = 391; 9901 break; 9902 } 9903 else 9904 return false; 9905 break; 9906 case Intrinsic::ppc_altivec_vcmpgefp: 9907 CompareOpc = 454; 9908 break; 9909 case Intrinsic::ppc_altivec_vcmpgtfp: 9910 CompareOpc = 710; 9911 break; 9912 case Intrinsic::ppc_altivec_vcmpgtsb: 9913 CompareOpc = 774; 9914 break; 9915 case Intrinsic::ppc_altivec_vcmpgtsh: 9916 CompareOpc = 838; 9917 break; 9918 case Intrinsic::ppc_altivec_vcmpgtsw: 9919 CompareOpc = 902; 9920 break; 9921 case Intrinsic::ppc_altivec_vcmpgtsd: 9922 if (Subtarget.hasP8Altivec()) 9923 CompareOpc = 967; 9924 else 9925 return false; 9926 break; 9927 case Intrinsic::ppc_altivec_vcmpgtub: 9928 CompareOpc = 518; 9929 break; 9930 case Intrinsic::ppc_altivec_vcmpgtuh: 9931 CompareOpc = 582; 9932 break; 9933 case Intrinsic::ppc_altivec_vcmpgtuw: 9934 CompareOpc = 646; 9935 break; 9936 case Intrinsic::ppc_altivec_vcmpgtud: 9937 if (Subtarget.hasP8Altivec()) 9938 CompareOpc = 711; 9939 else 9940 return false; 9941 break; 9942 } 9943 return true; 9944 } 9945 9946 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9947 /// lower, do it, otherwise return null. 9948 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9949 SelectionDAG &DAG) const { 9950 unsigned IntrinsicID = 9951 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9952 9953 SDLoc dl(Op); 9954 9955 if (IntrinsicID == Intrinsic::thread_pointer) { 9956 // Reads the thread pointer register, used for __builtin_thread_pointer. 9957 if (Subtarget.isPPC64()) 9958 return DAG.getRegister(PPC::X13, MVT::i64); 9959 return DAG.getRegister(PPC::R2, MVT::i32); 9960 } 9961 9962 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9963 // opcode number of the comparison. 9964 int CompareOpc; 9965 bool isDot; 9966 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9967 return SDValue(); // Don't custom lower most intrinsics. 9968 9969 // If this is a non-dot comparison, make the VCMP node and we are done. 9970 if (!isDot) { 9971 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9972 Op.getOperand(1), Op.getOperand(2), 9973 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9974 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9975 } 9976 9977 // Create the PPCISD altivec 'dot' comparison node. 9978 SDValue Ops[] = { 9979 Op.getOperand(2), // LHS 9980 Op.getOperand(3), // RHS 9981 DAG.getConstant(CompareOpc, dl, MVT::i32) 9982 }; 9983 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9984 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9985 9986 // Now that we have the comparison, emit a copy from the CR to a GPR. 9987 // This is flagged to the above dot comparison. 9988 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9989 DAG.getRegister(PPC::CR6, MVT::i32), 9990 CompNode.getValue(1)); 9991 9992 // Unpack the result based on how the target uses it. 9993 unsigned BitNo; // Bit # of CR6. 9994 bool InvertBit; // Invert result? 9995 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9996 default: // Can't happen, don't crash on invalid number though. 9997 case 0: // Return the value of the EQ bit of CR6. 9998 BitNo = 0; InvertBit = false; 9999 break; 10000 case 1: // Return the inverted value of the EQ bit of CR6. 10001 BitNo = 0; InvertBit = true; 10002 break; 10003 case 2: // Return the value of the LT bit of CR6. 10004 BitNo = 2; InvertBit = false; 10005 break; 10006 case 3: // Return the inverted value of the LT bit of CR6. 10007 BitNo = 2; InvertBit = true; 10008 break; 10009 } 10010 10011 // Shift the bit into the low position. 10012 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10013 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10014 // Isolate the bit. 10015 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10016 DAG.getConstant(1, dl, MVT::i32)); 10017 10018 // If we are supposed to, toggle the bit. 10019 if (InvertBit) 10020 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10021 DAG.getConstant(1, dl, MVT::i32)); 10022 return Flags; 10023 } 10024 10025 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10026 SelectionDAG &DAG) const { 10027 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10028 // the beginning of the argument list. 10029 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10030 SDLoc DL(Op); 10031 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10032 case Intrinsic::ppc_cfence: { 10033 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10034 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10035 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10036 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10037 Op.getOperand(ArgStart + 1)), 10038 Op.getOperand(0)), 10039 0); 10040 } 10041 default: 10042 break; 10043 } 10044 return SDValue(); 10045 } 10046 10047 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10048 // Check for a DIV with the same operands as this REM. 10049 for (auto UI : Op.getOperand(1)->uses()) { 10050 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10051 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10052 if (UI->getOperand(0) == Op.getOperand(0) && 10053 UI->getOperand(1) == Op.getOperand(1)) 10054 return SDValue(); 10055 } 10056 return Op; 10057 } 10058 10059 // Lower scalar BSWAP64 to xxbrd. 10060 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10061 SDLoc dl(Op); 10062 // MTVSRDD 10063 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10064 Op.getOperand(0)); 10065 // XXBRD 10066 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10067 // MFVSRD 10068 int VectorIndex = 0; 10069 if (Subtarget.isLittleEndian()) 10070 VectorIndex = 1; 10071 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10072 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10073 return Op; 10074 } 10075 10076 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10077 // compared to a value that is atomically loaded (atomic loads zero-extend). 10078 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10079 SelectionDAG &DAG) const { 10080 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10081 "Expecting an atomic compare-and-swap here."); 10082 SDLoc dl(Op); 10083 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10084 EVT MemVT = AtomicNode->getMemoryVT(); 10085 if (MemVT.getSizeInBits() >= 32) 10086 return Op; 10087 10088 SDValue CmpOp = Op.getOperand(2); 10089 // If this is already correctly zero-extended, leave it alone. 10090 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10091 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10092 return Op; 10093 10094 // Clear the high bits of the compare operand. 10095 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10096 SDValue NewCmpOp = 10097 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10098 DAG.getConstant(MaskVal, dl, MVT::i32)); 10099 10100 // Replace the existing compare operand with the properly zero-extended one. 10101 SmallVector<SDValue, 4> Ops; 10102 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10103 Ops.push_back(AtomicNode->getOperand(i)); 10104 Ops[2] = NewCmpOp; 10105 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10106 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10107 auto NodeTy = 10108 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10109 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10110 } 10111 10112 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10113 SelectionDAG &DAG) const { 10114 SDLoc dl(Op); 10115 // Create a stack slot that is 16-byte aligned. 10116 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10117 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10118 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10119 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10120 10121 // Store the input value into Value#0 of the stack slot. 10122 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10123 MachinePointerInfo()); 10124 // Load it out. 10125 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10126 } 10127 10128 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10129 SelectionDAG &DAG) const { 10130 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10131 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10132 10133 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10134 // We have legal lowering for constant indices but not for variable ones. 10135 if (!C) 10136 return SDValue(); 10137 10138 EVT VT = Op.getValueType(); 10139 SDLoc dl(Op); 10140 SDValue V1 = Op.getOperand(0); 10141 SDValue V2 = Op.getOperand(1); 10142 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10143 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10144 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10145 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10146 unsigned InsertAtElement = C->getZExtValue(); 10147 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10148 if (Subtarget.isLittleEndian()) { 10149 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10150 } 10151 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10152 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10153 } 10154 return Op; 10155 } 10156 10157 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10158 SelectionDAG &DAG) const { 10159 SDLoc dl(Op); 10160 SDNode *N = Op.getNode(); 10161 10162 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10163 "Unknown extract_vector_elt type"); 10164 10165 SDValue Value = N->getOperand(0); 10166 10167 // The first part of this is like the store lowering except that we don't 10168 // need to track the chain. 10169 10170 // The values are now known to be -1 (false) or 1 (true). To convert this 10171 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10172 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10173 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10174 10175 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10176 // understand how to form the extending load. 10177 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10178 10179 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10180 10181 // Now convert to an integer and store. 10182 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10183 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10184 Value); 10185 10186 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10187 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10188 MachinePointerInfo PtrInfo = 10189 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10190 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10191 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10192 10193 SDValue StoreChain = DAG.getEntryNode(); 10194 SDValue Ops[] = {StoreChain, 10195 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10196 Value, FIdx}; 10197 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10198 10199 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10200 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10201 10202 // Extract the value requested. 10203 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10204 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10205 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10206 10207 SDValue IntVal = 10208 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10209 10210 if (!Subtarget.useCRBits()) 10211 return IntVal; 10212 10213 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10214 } 10215 10216 /// Lowering for QPX v4i1 loads 10217 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10218 SelectionDAG &DAG) const { 10219 SDLoc dl(Op); 10220 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10221 SDValue LoadChain = LN->getChain(); 10222 SDValue BasePtr = LN->getBasePtr(); 10223 10224 if (Op.getValueType() == MVT::v4f64 || 10225 Op.getValueType() == MVT::v4f32) { 10226 EVT MemVT = LN->getMemoryVT(); 10227 unsigned Alignment = LN->getAlignment(); 10228 10229 // If this load is properly aligned, then it is legal. 10230 if (Alignment >= MemVT.getStoreSize()) 10231 return Op; 10232 10233 EVT ScalarVT = Op.getValueType().getScalarType(), 10234 ScalarMemVT = MemVT.getScalarType(); 10235 unsigned Stride = ScalarMemVT.getStoreSize(); 10236 10237 SDValue Vals[4], LoadChains[4]; 10238 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10239 SDValue Load; 10240 if (ScalarVT != ScalarMemVT) 10241 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10242 BasePtr, 10243 LN->getPointerInfo().getWithOffset(Idx * Stride), 10244 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10245 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10246 else 10247 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10248 LN->getPointerInfo().getWithOffset(Idx * Stride), 10249 MinAlign(Alignment, Idx * Stride), 10250 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10251 10252 if (Idx == 0 && LN->isIndexed()) { 10253 assert(LN->getAddressingMode() == ISD::PRE_INC && 10254 "Unknown addressing mode on vector load"); 10255 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10256 LN->getAddressingMode()); 10257 } 10258 10259 Vals[Idx] = Load; 10260 LoadChains[Idx] = Load.getValue(1); 10261 10262 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10263 DAG.getConstant(Stride, dl, 10264 BasePtr.getValueType())); 10265 } 10266 10267 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10268 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10269 10270 if (LN->isIndexed()) { 10271 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10272 return DAG.getMergeValues(RetOps, dl); 10273 } 10274 10275 SDValue RetOps[] = { Value, TF }; 10276 return DAG.getMergeValues(RetOps, dl); 10277 } 10278 10279 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10280 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10281 10282 // To lower v4i1 from a byte array, we load the byte elements of the 10283 // vector and then reuse the BUILD_VECTOR logic. 10284 10285 SDValue VectElmts[4], VectElmtChains[4]; 10286 for (unsigned i = 0; i < 4; ++i) { 10287 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10288 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10289 10290 VectElmts[i] = DAG.getExtLoad( 10291 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10292 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10293 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10294 VectElmtChains[i] = VectElmts[i].getValue(1); 10295 } 10296 10297 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10298 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10299 10300 SDValue RVals[] = { Value, LoadChain }; 10301 return DAG.getMergeValues(RVals, dl); 10302 } 10303 10304 /// Lowering for QPX v4i1 stores 10305 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10306 SelectionDAG &DAG) const { 10307 SDLoc dl(Op); 10308 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10309 SDValue StoreChain = SN->getChain(); 10310 SDValue BasePtr = SN->getBasePtr(); 10311 SDValue Value = SN->getValue(); 10312 10313 if (Value.getValueType() == MVT::v4f64 || 10314 Value.getValueType() == MVT::v4f32) { 10315 EVT MemVT = SN->getMemoryVT(); 10316 unsigned Alignment = SN->getAlignment(); 10317 10318 // If this store is properly aligned, then it is legal. 10319 if (Alignment >= MemVT.getStoreSize()) 10320 return Op; 10321 10322 EVT ScalarVT = Value.getValueType().getScalarType(), 10323 ScalarMemVT = MemVT.getScalarType(); 10324 unsigned Stride = ScalarMemVT.getStoreSize(); 10325 10326 SDValue Stores[4]; 10327 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10328 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10329 DAG.getVectorIdxConstant(Idx, dl)); 10330 SDValue Store; 10331 if (ScalarVT != ScalarMemVT) 10332 Store = 10333 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10334 SN->getPointerInfo().getWithOffset(Idx * Stride), 10335 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10336 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10337 else 10338 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10339 SN->getPointerInfo().getWithOffset(Idx * Stride), 10340 MinAlign(Alignment, Idx * Stride), 10341 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10342 10343 if (Idx == 0 && SN->isIndexed()) { 10344 assert(SN->getAddressingMode() == ISD::PRE_INC && 10345 "Unknown addressing mode on vector store"); 10346 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10347 SN->getAddressingMode()); 10348 } 10349 10350 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10351 DAG.getConstant(Stride, dl, 10352 BasePtr.getValueType())); 10353 Stores[Idx] = Store; 10354 } 10355 10356 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10357 10358 if (SN->isIndexed()) { 10359 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10360 return DAG.getMergeValues(RetOps, dl); 10361 } 10362 10363 return TF; 10364 } 10365 10366 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10367 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10368 10369 // The values are now known to be -1 (false) or 1 (true). To convert this 10370 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10371 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10372 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10373 10374 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10375 // understand how to form the extending load. 10376 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10377 10378 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10379 10380 // Now convert to an integer and store. 10381 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10382 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10383 Value); 10384 10385 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10386 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10387 MachinePointerInfo PtrInfo = 10388 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10389 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10390 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10391 10392 SDValue Ops[] = {StoreChain, 10393 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10394 Value, FIdx}; 10395 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10396 10397 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10398 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10399 10400 // Move data into the byte array. 10401 SDValue Loads[4], LoadChains[4]; 10402 for (unsigned i = 0; i < 4; ++i) { 10403 unsigned Offset = 4*i; 10404 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10405 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10406 10407 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10408 PtrInfo.getWithOffset(Offset)); 10409 LoadChains[i] = Loads[i].getValue(1); 10410 } 10411 10412 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10413 10414 SDValue Stores[4]; 10415 for (unsigned i = 0; i < 4; ++i) { 10416 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10417 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10418 10419 Stores[i] = DAG.getTruncStore( 10420 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10421 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10422 SN->getAAInfo()); 10423 } 10424 10425 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10426 10427 return StoreChain; 10428 } 10429 10430 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10431 SDLoc dl(Op); 10432 if (Op.getValueType() == MVT::v4i32) { 10433 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10434 10435 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10436 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10437 10438 SDValue RHSSwap = // = vrlw RHS, 16 10439 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10440 10441 // Shrinkify inputs to v8i16. 10442 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10443 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10444 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10445 10446 // Low parts multiplied together, generating 32-bit results (we ignore the 10447 // top parts). 10448 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10449 LHS, RHS, DAG, dl, MVT::v4i32); 10450 10451 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10452 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10453 // Shift the high parts up 16 bits. 10454 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10455 Neg16, DAG, dl); 10456 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10457 } else if (Op.getValueType() == MVT::v8i16) { 10458 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10459 10460 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10461 10462 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10463 LHS, RHS, Zero, DAG, dl); 10464 } else if (Op.getValueType() == MVT::v16i8) { 10465 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10466 bool isLittleEndian = Subtarget.isLittleEndian(); 10467 10468 // Multiply the even 8-bit parts, producing 16-bit sums. 10469 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10470 LHS, RHS, DAG, dl, MVT::v8i16); 10471 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10472 10473 // Multiply the odd 8-bit parts, producing 16-bit sums. 10474 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10475 LHS, RHS, DAG, dl, MVT::v8i16); 10476 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10477 10478 // Merge the results together. Because vmuleub and vmuloub are 10479 // instructions with a big-endian bias, we must reverse the 10480 // element numbering and reverse the meaning of "odd" and "even" 10481 // when generating little endian code. 10482 int Ops[16]; 10483 for (unsigned i = 0; i != 8; ++i) { 10484 if (isLittleEndian) { 10485 Ops[i*2 ] = 2*i; 10486 Ops[i*2+1] = 2*i+16; 10487 } else { 10488 Ops[i*2 ] = 2*i+1; 10489 Ops[i*2+1] = 2*i+1+16; 10490 } 10491 } 10492 if (isLittleEndian) 10493 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10494 else 10495 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10496 } else { 10497 llvm_unreachable("Unknown mul to lower!"); 10498 } 10499 } 10500 10501 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10502 10503 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10504 10505 EVT VT = Op.getValueType(); 10506 assert(VT.isVector() && 10507 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10508 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10509 VT == MVT::v16i8) && 10510 "Unexpected vector element type!"); 10511 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10512 "Current subtarget doesn't support smax v2i64!"); 10513 10514 // For vector abs, it can be lowered to: 10515 // abs x 10516 // ==> 10517 // y = -x 10518 // smax(x, y) 10519 10520 SDLoc dl(Op); 10521 SDValue X = Op.getOperand(0); 10522 SDValue Zero = DAG.getConstant(0, dl, VT); 10523 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10524 10525 // SMAX patch https://reviews.llvm.org/D47332 10526 // hasn't landed yet, so use intrinsic first here. 10527 // TODO: Should use SMAX directly once SMAX patch landed 10528 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10529 if (VT == MVT::v2i64) 10530 BifID = Intrinsic::ppc_altivec_vmaxsd; 10531 else if (VT == MVT::v8i16) 10532 BifID = Intrinsic::ppc_altivec_vmaxsh; 10533 else if (VT == MVT::v16i8) 10534 BifID = Intrinsic::ppc_altivec_vmaxsb; 10535 10536 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10537 } 10538 10539 // Custom lowering for fpext vf32 to v2f64 10540 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10541 10542 assert(Op.getOpcode() == ISD::FP_EXTEND && 10543 "Should only be called for ISD::FP_EXTEND"); 10544 10545 // We only want to custom lower an extend from v2f32 to v2f64. 10546 if (Op.getValueType() != MVT::v2f64 || 10547 Op.getOperand(0).getValueType() != MVT::v2f32) 10548 return SDValue(); 10549 10550 SDLoc dl(Op); 10551 SDValue Op0 = Op.getOperand(0); 10552 10553 switch (Op0.getOpcode()) { 10554 default: 10555 return SDValue(); 10556 case ISD::EXTRACT_SUBVECTOR: { 10557 assert(Op0.getNumOperands() == 2 && 10558 isa<ConstantSDNode>(Op0->getOperand(1)) && 10559 "Node should have 2 operands with second one being a constant!"); 10560 10561 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10562 return SDValue(); 10563 10564 // Custom lower is only done for high or low doubleword. 10565 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10566 if (Idx % 2 != 0) 10567 return SDValue(); 10568 10569 // Since input is v4f32, at this point Idx is either 0 or 2. 10570 // Shift to get the doubleword position we want. 10571 int DWord = Idx >> 1; 10572 10573 // High and low word positions are different on little endian. 10574 if (Subtarget.isLittleEndian()) 10575 DWord ^= 0x1; 10576 10577 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10578 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10579 } 10580 case ISD::FADD: 10581 case ISD::FMUL: 10582 case ISD::FSUB: { 10583 SDValue NewLoad[2]; 10584 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10585 // Ensure both input are loads. 10586 SDValue LdOp = Op0.getOperand(i); 10587 if (LdOp.getOpcode() != ISD::LOAD) 10588 return SDValue(); 10589 // Generate new load node. 10590 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10591 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10592 NewLoad[i] = DAG.getMemIntrinsicNode( 10593 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10594 LD->getMemoryVT(), LD->getMemOperand()); 10595 } 10596 SDValue NewOp = 10597 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10598 NewLoad[1], Op0.getNode()->getFlags()); 10599 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10600 DAG.getConstant(0, dl, MVT::i32)); 10601 } 10602 case ISD::LOAD: { 10603 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10604 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10605 SDValue NewLd = DAG.getMemIntrinsicNode( 10606 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10607 LD->getMemoryVT(), LD->getMemOperand()); 10608 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10609 DAG.getConstant(0, dl, MVT::i32)); 10610 } 10611 } 10612 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10613 } 10614 10615 /// LowerOperation - Provide custom lowering hooks for some operations. 10616 /// 10617 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10618 switch (Op.getOpcode()) { 10619 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10620 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10621 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10622 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10623 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10624 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10625 case ISD::SETCC: return LowerSETCC(Op, DAG); 10626 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10627 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10628 10629 // Variable argument lowering. 10630 case ISD::VASTART: return LowerVASTART(Op, DAG); 10631 case ISD::VAARG: return LowerVAARG(Op, DAG); 10632 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10633 10634 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10635 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10636 case ISD::GET_DYNAMIC_AREA_OFFSET: 10637 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10638 10639 // Exception handling lowering. 10640 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10641 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10642 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10643 10644 case ISD::LOAD: return LowerLOAD(Op, DAG); 10645 case ISD::STORE: return LowerSTORE(Op, DAG); 10646 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10647 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10648 case ISD::FP_TO_UINT: 10649 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10650 case ISD::UINT_TO_FP: 10651 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10652 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10653 10654 // Lower 64-bit shifts. 10655 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10656 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10657 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10658 10659 // Vector-related lowering. 10660 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10661 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10662 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10663 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10664 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10665 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10666 case ISD::MUL: return LowerMUL(Op, DAG); 10667 case ISD::ABS: return LowerABS(Op, DAG); 10668 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10669 10670 // For counter-based loop handling. 10671 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10672 10673 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10674 10675 // Frame & Return address. 10676 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10677 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10678 10679 case ISD::INTRINSIC_VOID: 10680 return LowerINTRINSIC_VOID(Op, DAG); 10681 case ISD::SREM: 10682 case ISD::UREM: 10683 return LowerREM(Op, DAG); 10684 case ISD::BSWAP: 10685 return LowerBSWAP(Op, DAG); 10686 case ISD::ATOMIC_CMP_SWAP: 10687 return LowerATOMIC_CMP_SWAP(Op, DAG); 10688 } 10689 } 10690 10691 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10692 SmallVectorImpl<SDValue>&Results, 10693 SelectionDAG &DAG) const { 10694 SDLoc dl(N); 10695 switch (N->getOpcode()) { 10696 default: 10697 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10698 case ISD::READCYCLECOUNTER: { 10699 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10700 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10701 10702 Results.push_back( 10703 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10704 Results.push_back(RTB.getValue(2)); 10705 break; 10706 } 10707 case ISD::INTRINSIC_W_CHAIN: { 10708 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10709 Intrinsic::loop_decrement) 10710 break; 10711 10712 assert(N->getValueType(0) == MVT::i1 && 10713 "Unexpected result type for CTR decrement intrinsic"); 10714 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10715 N->getValueType(0)); 10716 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10717 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10718 N->getOperand(1)); 10719 10720 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10721 Results.push_back(NewInt.getValue(1)); 10722 break; 10723 } 10724 case ISD::VAARG: { 10725 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10726 return; 10727 10728 EVT VT = N->getValueType(0); 10729 10730 if (VT == MVT::i64) { 10731 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10732 10733 Results.push_back(NewNode); 10734 Results.push_back(NewNode.getValue(1)); 10735 } 10736 return; 10737 } 10738 case ISD::FP_TO_SINT: 10739 case ISD::FP_TO_UINT: 10740 // LowerFP_TO_INT() can only handle f32 and f64. 10741 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10742 return; 10743 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10744 return; 10745 case ISD::TRUNCATE: { 10746 EVT TrgVT = N->getValueType(0); 10747 EVT OpVT = N->getOperand(0).getValueType(); 10748 if (TrgVT.isVector() && 10749 isOperationCustom(N->getOpcode(), TrgVT) && 10750 OpVT.getSizeInBits() <= 128 && 10751 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10752 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10753 return; 10754 } 10755 case ISD::BITCAST: 10756 // Don't handle bitcast here. 10757 return; 10758 } 10759 } 10760 10761 //===----------------------------------------------------------------------===// 10762 // Other Lowering Code 10763 //===----------------------------------------------------------------------===// 10764 10765 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10766 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10767 Function *Func = Intrinsic::getDeclaration(M, Id); 10768 return Builder.CreateCall(Func, {}); 10769 } 10770 10771 // The mappings for emitLeading/TrailingFence is taken from 10772 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10773 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10774 Instruction *Inst, 10775 AtomicOrdering Ord) const { 10776 if (Ord == AtomicOrdering::SequentiallyConsistent) 10777 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10778 if (isReleaseOrStronger(Ord)) 10779 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10780 return nullptr; 10781 } 10782 10783 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10784 Instruction *Inst, 10785 AtomicOrdering Ord) const { 10786 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10787 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10788 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10789 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10790 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10791 return Builder.CreateCall( 10792 Intrinsic::getDeclaration( 10793 Builder.GetInsertBlock()->getParent()->getParent(), 10794 Intrinsic::ppc_cfence, {Inst->getType()}), 10795 {Inst}); 10796 // FIXME: Can use isync for rmw operation. 10797 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10798 } 10799 return nullptr; 10800 } 10801 10802 MachineBasicBlock * 10803 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10804 unsigned AtomicSize, 10805 unsigned BinOpcode, 10806 unsigned CmpOpcode, 10807 unsigned CmpPred) const { 10808 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10809 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10810 10811 auto LoadMnemonic = PPC::LDARX; 10812 auto StoreMnemonic = PPC::STDCX; 10813 switch (AtomicSize) { 10814 default: 10815 llvm_unreachable("Unexpected size of atomic entity"); 10816 case 1: 10817 LoadMnemonic = PPC::LBARX; 10818 StoreMnemonic = PPC::STBCX; 10819 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10820 break; 10821 case 2: 10822 LoadMnemonic = PPC::LHARX; 10823 StoreMnemonic = PPC::STHCX; 10824 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10825 break; 10826 case 4: 10827 LoadMnemonic = PPC::LWARX; 10828 StoreMnemonic = PPC::STWCX; 10829 break; 10830 case 8: 10831 LoadMnemonic = PPC::LDARX; 10832 StoreMnemonic = PPC::STDCX; 10833 break; 10834 } 10835 10836 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10837 MachineFunction *F = BB->getParent(); 10838 MachineFunction::iterator It = ++BB->getIterator(); 10839 10840 Register dest = MI.getOperand(0).getReg(); 10841 Register ptrA = MI.getOperand(1).getReg(); 10842 Register ptrB = MI.getOperand(2).getReg(); 10843 Register incr = MI.getOperand(3).getReg(); 10844 DebugLoc dl = MI.getDebugLoc(); 10845 10846 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10847 MachineBasicBlock *loop2MBB = 10848 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10849 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10850 F->insert(It, loopMBB); 10851 if (CmpOpcode) 10852 F->insert(It, loop2MBB); 10853 F->insert(It, exitMBB); 10854 exitMBB->splice(exitMBB->begin(), BB, 10855 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10856 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10857 10858 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10859 Register TmpReg = (!BinOpcode) ? incr : 10860 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10861 : &PPC::GPRCRegClass); 10862 10863 // thisMBB: 10864 // ... 10865 // fallthrough --> loopMBB 10866 BB->addSuccessor(loopMBB); 10867 10868 // loopMBB: 10869 // l[wd]arx dest, ptr 10870 // add r0, dest, incr 10871 // st[wd]cx. r0, ptr 10872 // bne- loopMBB 10873 // fallthrough --> exitMBB 10874 10875 // For max/min... 10876 // loopMBB: 10877 // l[wd]arx dest, ptr 10878 // cmpl?[wd] incr, dest 10879 // bgt exitMBB 10880 // loop2MBB: 10881 // st[wd]cx. dest, ptr 10882 // bne- loopMBB 10883 // fallthrough --> exitMBB 10884 10885 BB = loopMBB; 10886 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10887 .addReg(ptrA).addReg(ptrB); 10888 if (BinOpcode) 10889 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10890 if (CmpOpcode) { 10891 // Signed comparisons of byte or halfword values must be sign-extended. 10892 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10893 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10894 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10895 ExtReg).addReg(dest); 10896 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10897 .addReg(incr).addReg(ExtReg); 10898 } else 10899 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10900 .addReg(incr).addReg(dest); 10901 10902 BuildMI(BB, dl, TII->get(PPC::BCC)) 10903 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10904 BB->addSuccessor(loop2MBB); 10905 BB->addSuccessor(exitMBB); 10906 BB = loop2MBB; 10907 } 10908 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10909 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10910 BuildMI(BB, dl, TII->get(PPC::BCC)) 10911 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10912 BB->addSuccessor(loopMBB); 10913 BB->addSuccessor(exitMBB); 10914 10915 // exitMBB: 10916 // ... 10917 BB = exitMBB; 10918 return BB; 10919 } 10920 10921 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10922 MachineInstr &MI, MachineBasicBlock *BB, 10923 bool is8bit, // operation 10924 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10925 // If we support part-word atomic mnemonics, just use them 10926 if (Subtarget.hasPartwordAtomics()) 10927 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10928 CmpPred); 10929 10930 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10931 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10932 // In 64 bit mode we have to use 64 bits for addresses, even though the 10933 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10934 // registers without caring whether they're 32 or 64, but here we're 10935 // doing actual arithmetic on the addresses. 10936 bool is64bit = Subtarget.isPPC64(); 10937 bool isLittleEndian = Subtarget.isLittleEndian(); 10938 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10939 10940 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10941 MachineFunction *F = BB->getParent(); 10942 MachineFunction::iterator It = ++BB->getIterator(); 10943 10944 Register dest = MI.getOperand(0).getReg(); 10945 Register ptrA = MI.getOperand(1).getReg(); 10946 Register ptrB = MI.getOperand(2).getReg(); 10947 Register incr = MI.getOperand(3).getReg(); 10948 DebugLoc dl = MI.getDebugLoc(); 10949 10950 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10951 MachineBasicBlock *loop2MBB = 10952 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10953 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10954 F->insert(It, loopMBB); 10955 if (CmpOpcode) 10956 F->insert(It, loop2MBB); 10957 F->insert(It, exitMBB); 10958 exitMBB->splice(exitMBB->begin(), BB, 10959 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10960 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10961 10962 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10963 const TargetRegisterClass *RC = 10964 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10965 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10966 10967 Register PtrReg = RegInfo.createVirtualRegister(RC); 10968 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10969 Register ShiftReg = 10970 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10971 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10972 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10973 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10974 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10975 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10976 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10977 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10978 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10979 Register Ptr1Reg; 10980 Register TmpReg = 10981 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10982 10983 // thisMBB: 10984 // ... 10985 // fallthrough --> loopMBB 10986 BB->addSuccessor(loopMBB); 10987 10988 // The 4-byte load must be aligned, while a char or short may be 10989 // anywhere in the word. Hence all this nasty bookkeeping code. 10990 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10991 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10992 // xori shift, shift1, 24 [16] 10993 // rlwinm ptr, ptr1, 0, 0, 29 10994 // slw incr2, incr, shift 10995 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10996 // slw mask, mask2, shift 10997 // loopMBB: 10998 // lwarx tmpDest, ptr 10999 // add tmp, tmpDest, incr2 11000 // andc tmp2, tmpDest, mask 11001 // and tmp3, tmp, mask 11002 // or tmp4, tmp3, tmp2 11003 // stwcx. tmp4, ptr 11004 // bne- loopMBB 11005 // fallthrough --> exitMBB 11006 // srw dest, tmpDest, shift 11007 if (ptrA != ZeroReg) { 11008 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11009 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11010 .addReg(ptrA) 11011 .addReg(ptrB); 11012 } else { 11013 Ptr1Reg = ptrB; 11014 } 11015 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11016 // mode. 11017 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11018 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11019 .addImm(3) 11020 .addImm(27) 11021 .addImm(is8bit ? 28 : 27); 11022 if (!isLittleEndian) 11023 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11024 .addReg(Shift1Reg) 11025 .addImm(is8bit ? 24 : 16); 11026 if (is64bit) 11027 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11028 .addReg(Ptr1Reg) 11029 .addImm(0) 11030 .addImm(61); 11031 else 11032 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11033 .addReg(Ptr1Reg) 11034 .addImm(0) 11035 .addImm(0) 11036 .addImm(29); 11037 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11038 if (is8bit) 11039 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11040 else { 11041 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11042 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11043 .addReg(Mask3Reg) 11044 .addImm(65535); 11045 } 11046 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11047 .addReg(Mask2Reg) 11048 .addReg(ShiftReg); 11049 11050 BB = loopMBB; 11051 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11052 .addReg(ZeroReg) 11053 .addReg(PtrReg); 11054 if (BinOpcode) 11055 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11056 .addReg(Incr2Reg) 11057 .addReg(TmpDestReg); 11058 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11059 .addReg(TmpDestReg) 11060 .addReg(MaskReg); 11061 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11062 if (CmpOpcode) { 11063 // For unsigned comparisons, we can directly compare the shifted values. 11064 // For signed comparisons we shift and sign extend. 11065 Register SReg = RegInfo.createVirtualRegister(GPRC); 11066 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11067 .addReg(TmpDestReg) 11068 .addReg(MaskReg); 11069 unsigned ValueReg = SReg; 11070 unsigned CmpReg = Incr2Reg; 11071 if (CmpOpcode == PPC::CMPW) { 11072 ValueReg = RegInfo.createVirtualRegister(GPRC); 11073 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11074 .addReg(SReg) 11075 .addReg(ShiftReg); 11076 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11077 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11078 .addReg(ValueReg); 11079 ValueReg = ValueSReg; 11080 CmpReg = incr; 11081 } 11082 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11083 .addReg(CmpReg) 11084 .addReg(ValueReg); 11085 BuildMI(BB, dl, TII->get(PPC::BCC)) 11086 .addImm(CmpPred) 11087 .addReg(PPC::CR0) 11088 .addMBB(exitMBB); 11089 BB->addSuccessor(loop2MBB); 11090 BB->addSuccessor(exitMBB); 11091 BB = loop2MBB; 11092 } 11093 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11094 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11095 .addReg(Tmp4Reg) 11096 .addReg(ZeroReg) 11097 .addReg(PtrReg); 11098 BuildMI(BB, dl, TII->get(PPC::BCC)) 11099 .addImm(PPC::PRED_NE) 11100 .addReg(PPC::CR0) 11101 .addMBB(loopMBB); 11102 BB->addSuccessor(loopMBB); 11103 BB->addSuccessor(exitMBB); 11104 11105 // exitMBB: 11106 // ... 11107 BB = exitMBB; 11108 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11109 .addReg(TmpDestReg) 11110 .addReg(ShiftReg); 11111 return BB; 11112 } 11113 11114 llvm::MachineBasicBlock * 11115 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11116 MachineBasicBlock *MBB) const { 11117 DebugLoc DL = MI.getDebugLoc(); 11118 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11119 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11120 11121 MachineFunction *MF = MBB->getParent(); 11122 MachineRegisterInfo &MRI = MF->getRegInfo(); 11123 11124 const BasicBlock *BB = MBB->getBasicBlock(); 11125 MachineFunction::iterator I = ++MBB->getIterator(); 11126 11127 Register DstReg = MI.getOperand(0).getReg(); 11128 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11129 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11130 Register mainDstReg = MRI.createVirtualRegister(RC); 11131 Register restoreDstReg = MRI.createVirtualRegister(RC); 11132 11133 MVT PVT = getPointerTy(MF->getDataLayout()); 11134 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11135 "Invalid Pointer Size!"); 11136 // For v = setjmp(buf), we generate 11137 // 11138 // thisMBB: 11139 // SjLjSetup mainMBB 11140 // bl mainMBB 11141 // v_restore = 1 11142 // b sinkMBB 11143 // 11144 // mainMBB: 11145 // buf[LabelOffset] = LR 11146 // v_main = 0 11147 // 11148 // sinkMBB: 11149 // v = phi(main, restore) 11150 // 11151 11152 MachineBasicBlock *thisMBB = MBB; 11153 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11154 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11155 MF->insert(I, mainMBB); 11156 MF->insert(I, sinkMBB); 11157 11158 MachineInstrBuilder MIB; 11159 11160 // Transfer the remainder of BB and its successor edges to sinkMBB. 11161 sinkMBB->splice(sinkMBB->begin(), MBB, 11162 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11163 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11164 11165 // Note that the structure of the jmp_buf used here is not compatible 11166 // with that used by libc, and is not designed to be. Specifically, it 11167 // stores only those 'reserved' registers that LLVM does not otherwise 11168 // understand how to spill. Also, by convention, by the time this 11169 // intrinsic is called, Clang has already stored the frame address in the 11170 // first slot of the buffer and stack address in the third. Following the 11171 // X86 target code, we'll store the jump address in the second slot. We also 11172 // need to save the TOC pointer (R2) to handle jumps between shared 11173 // libraries, and that will be stored in the fourth slot. The thread 11174 // identifier (R13) is not affected. 11175 11176 // thisMBB: 11177 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11178 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11179 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11180 11181 // Prepare IP either in reg. 11182 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11183 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11184 Register BufReg = MI.getOperand(1).getReg(); 11185 11186 if (Subtarget.is64BitELFABI()) { 11187 setUsesTOCBasePtr(*MBB->getParent()); 11188 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11189 .addReg(PPC::X2) 11190 .addImm(TOCOffset) 11191 .addReg(BufReg) 11192 .cloneMemRefs(MI); 11193 } 11194 11195 // Naked functions never have a base pointer, and so we use r1. For all 11196 // other functions, this decision must be delayed until during PEI. 11197 unsigned BaseReg; 11198 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11199 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11200 else 11201 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11202 11203 MIB = BuildMI(*thisMBB, MI, DL, 11204 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11205 .addReg(BaseReg) 11206 .addImm(BPOffset) 11207 .addReg(BufReg) 11208 .cloneMemRefs(MI); 11209 11210 // Setup 11211 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11212 MIB.addRegMask(TRI->getNoPreservedMask()); 11213 11214 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11215 11216 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11217 .addMBB(mainMBB); 11218 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11219 11220 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11221 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11222 11223 // mainMBB: 11224 // mainDstReg = 0 11225 MIB = 11226 BuildMI(mainMBB, DL, 11227 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11228 11229 // Store IP 11230 if (Subtarget.isPPC64()) { 11231 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11232 .addReg(LabelReg) 11233 .addImm(LabelOffset) 11234 .addReg(BufReg); 11235 } else { 11236 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11237 .addReg(LabelReg) 11238 .addImm(LabelOffset) 11239 .addReg(BufReg); 11240 } 11241 MIB.cloneMemRefs(MI); 11242 11243 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11244 mainMBB->addSuccessor(sinkMBB); 11245 11246 // sinkMBB: 11247 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11248 TII->get(PPC::PHI), DstReg) 11249 .addReg(mainDstReg).addMBB(mainMBB) 11250 .addReg(restoreDstReg).addMBB(thisMBB); 11251 11252 MI.eraseFromParent(); 11253 return sinkMBB; 11254 } 11255 11256 MachineBasicBlock * 11257 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11258 MachineBasicBlock *MBB) const { 11259 DebugLoc DL = MI.getDebugLoc(); 11260 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11261 11262 MachineFunction *MF = MBB->getParent(); 11263 MachineRegisterInfo &MRI = MF->getRegInfo(); 11264 11265 MVT PVT = getPointerTy(MF->getDataLayout()); 11266 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11267 "Invalid Pointer Size!"); 11268 11269 const TargetRegisterClass *RC = 11270 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11271 Register Tmp = MRI.createVirtualRegister(RC); 11272 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11273 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11274 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11275 unsigned BP = 11276 (PVT == MVT::i64) 11277 ? PPC::X30 11278 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11279 : PPC::R30); 11280 11281 MachineInstrBuilder MIB; 11282 11283 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11284 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11285 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11286 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11287 11288 Register BufReg = MI.getOperand(0).getReg(); 11289 11290 // Reload FP (the jumped-to function may not have had a 11291 // frame pointer, and if so, then its r31 will be restored 11292 // as necessary). 11293 if (PVT == MVT::i64) { 11294 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11295 .addImm(0) 11296 .addReg(BufReg); 11297 } else { 11298 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11299 .addImm(0) 11300 .addReg(BufReg); 11301 } 11302 MIB.cloneMemRefs(MI); 11303 11304 // Reload IP 11305 if (PVT == MVT::i64) { 11306 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11307 .addImm(LabelOffset) 11308 .addReg(BufReg); 11309 } else { 11310 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11311 .addImm(LabelOffset) 11312 .addReg(BufReg); 11313 } 11314 MIB.cloneMemRefs(MI); 11315 11316 // Reload SP 11317 if (PVT == MVT::i64) { 11318 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11319 .addImm(SPOffset) 11320 .addReg(BufReg); 11321 } else { 11322 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11323 .addImm(SPOffset) 11324 .addReg(BufReg); 11325 } 11326 MIB.cloneMemRefs(MI); 11327 11328 // Reload BP 11329 if (PVT == MVT::i64) { 11330 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11331 .addImm(BPOffset) 11332 .addReg(BufReg); 11333 } else { 11334 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11335 .addImm(BPOffset) 11336 .addReg(BufReg); 11337 } 11338 MIB.cloneMemRefs(MI); 11339 11340 // Reload TOC 11341 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11342 setUsesTOCBasePtr(*MBB->getParent()); 11343 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11344 .addImm(TOCOffset) 11345 .addReg(BufReg) 11346 .cloneMemRefs(MI); 11347 } 11348 11349 // Jump 11350 BuildMI(*MBB, MI, DL, 11351 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11352 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11353 11354 MI.eraseFromParent(); 11355 return MBB; 11356 } 11357 11358 MachineBasicBlock * 11359 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11360 MachineBasicBlock *BB) const { 11361 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11362 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11363 if (Subtarget.is64BitELFABI() && 11364 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11365 // Call lowering should have added an r2 operand to indicate a dependence 11366 // on the TOC base pointer value. It can't however, because there is no 11367 // way to mark the dependence as implicit there, and so the stackmap code 11368 // will confuse it with a regular operand. Instead, add the dependence 11369 // here. 11370 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11371 } 11372 11373 return emitPatchPoint(MI, BB); 11374 } 11375 11376 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11377 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11378 return emitEHSjLjSetJmp(MI, BB); 11379 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11380 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11381 return emitEHSjLjLongJmp(MI, BB); 11382 } 11383 11384 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11385 11386 // To "insert" these instructions we actually have to insert their 11387 // control-flow patterns. 11388 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11389 MachineFunction::iterator It = ++BB->getIterator(); 11390 11391 MachineFunction *F = BB->getParent(); 11392 11393 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11394 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11395 MI.getOpcode() == PPC::SELECT_I8) { 11396 SmallVector<MachineOperand, 2> Cond; 11397 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11398 MI.getOpcode() == PPC::SELECT_CC_I8) 11399 Cond.push_back(MI.getOperand(4)); 11400 else 11401 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11402 Cond.push_back(MI.getOperand(1)); 11403 11404 DebugLoc dl = MI.getDebugLoc(); 11405 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11406 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11407 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11408 MI.getOpcode() == PPC::SELECT_CC_F8 || 11409 MI.getOpcode() == PPC::SELECT_CC_F16 || 11410 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11411 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11412 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11413 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11414 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11415 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11416 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11417 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11418 MI.getOpcode() == PPC::SELECT_CC_SPE || 11419 MI.getOpcode() == PPC::SELECT_F4 || 11420 MI.getOpcode() == PPC::SELECT_F8 || 11421 MI.getOpcode() == PPC::SELECT_F16 || 11422 MI.getOpcode() == PPC::SELECT_QFRC || 11423 MI.getOpcode() == PPC::SELECT_QSRC || 11424 MI.getOpcode() == PPC::SELECT_QBRC || 11425 MI.getOpcode() == PPC::SELECT_SPE || 11426 MI.getOpcode() == PPC::SELECT_SPE4 || 11427 MI.getOpcode() == PPC::SELECT_VRRC || 11428 MI.getOpcode() == PPC::SELECT_VSFRC || 11429 MI.getOpcode() == PPC::SELECT_VSSRC || 11430 MI.getOpcode() == PPC::SELECT_VSRC) { 11431 // The incoming instruction knows the destination vreg to set, the 11432 // condition code register to branch on, the true/false values to 11433 // select between, and a branch opcode to use. 11434 11435 // thisMBB: 11436 // ... 11437 // TrueVal = ... 11438 // cmpTY ccX, r1, r2 11439 // bCC copy1MBB 11440 // fallthrough --> copy0MBB 11441 MachineBasicBlock *thisMBB = BB; 11442 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11443 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11444 DebugLoc dl = MI.getDebugLoc(); 11445 F->insert(It, copy0MBB); 11446 F->insert(It, sinkMBB); 11447 11448 // Transfer the remainder of BB and its successor edges to sinkMBB. 11449 sinkMBB->splice(sinkMBB->begin(), BB, 11450 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11451 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11452 11453 // Next, add the true and fallthrough blocks as its successors. 11454 BB->addSuccessor(copy0MBB); 11455 BB->addSuccessor(sinkMBB); 11456 11457 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11458 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11459 MI.getOpcode() == PPC::SELECT_F16 || 11460 MI.getOpcode() == PPC::SELECT_SPE4 || 11461 MI.getOpcode() == PPC::SELECT_SPE || 11462 MI.getOpcode() == PPC::SELECT_QFRC || 11463 MI.getOpcode() == PPC::SELECT_QSRC || 11464 MI.getOpcode() == PPC::SELECT_QBRC || 11465 MI.getOpcode() == PPC::SELECT_VRRC || 11466 MI.getOpcode() == PPC::SELECT_VSFRC || 11467 MI.getOpcode() == PPC::SELECT_VSSRC || 11468 MI.getOpcode() == PPC::SELECT_VSRC) { 11469 BuildMI(BB, dl, TII->get(PPC::BC)) 11470 .addReg(MI.getOperand(1).getReg()) 11471 .addMBB(sinkMBB); 11472 } else { 11473 unsigned SelectPred = MI.getOperand(4).getImm(); 11474 BuildMI(BB, dl, TII->get(PPC::BCC)) 11475 .addImm(SelectPred) 11476 .addReg(MI.getOperand(1).getReg()) 11477 .addMBB(sinkMBB); 11478 } 11479 11480 // copy0MBB: 11481 // %FalseValue = ... 11482 // # fallthrough to sinkMBB 11483 BB = copy0MBB; 11484 11485 // Update machine-CFG edges 11486 BB->addSuccessor(sinkMBB); 11487 11488 // sinkMBB: 11489 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11490 // ... 11491 BB = sinkMBB; 11492 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11493 .addReg(MI.getOperand(3).getReg()) 11494 .addMBB(copy0MBB) 11495 .addReg(MI.getOperand(2).getReg()) 11496 .addMBB(thisMBB); 11497 } else if (MI.getOpcode() == PPC::ReadTB) { 11498 // To read the 64-bit time-base register on a 32-bit target, we read the 11499 // two halves. Should the counter have wrapped while it was being read, we 11500 // need to try again. 11501 // ... 11502 // readLoop: 11503 // mfspr Rx,TBU # load from TBU 11504 // mfspr Ry,TB # load from TB 11505 // mfspr Rz,TBU # load from TBU 11506 // cmpw crX,Rx,Rz # check if 'old'='new' 11507 // bne readLoop # branch if they're not equal 11508 // ... 11509 11510 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11511 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11512 DebugLoc dl = MI.getDebugLoc(); 11513 F->insert(It, readMBB); 11514 F->insert(It, sinkMBB); 11515 11516 // Transfer the remainder of BB and its successor edges to sinkMBB. 11517 sinkMBB->splice(sinkMBB->begin(), BB, 11518 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11519 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11520 11521 BB->addSuccessor(readMBB); 11522 BB = readMBB; 11523 11524 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11525 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11526 Register LoReg = MI.getOperand(0).getReg(); 11527 Register HiReg = MI.getOperand(1).getReg(); 11528 11529 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11530 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11531 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11532 11533 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11534 11535 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11536 .addReg(HiReg) 11537 .addReg(ReadAgainReg); 11538 BuildMI(BB, dl, TII->get(PPC::BCC)) 11539 .addImm(PPC::PRED_NE) 11540 .addReg(CmpReg) 11541 .addMBB(readMBB); 11542 11543 BB->addSuccessor(readMBB); 11544 BB->addSuccessor(sinkMBB); 11545 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11546 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11548 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11549 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11550 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11551 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11552 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11553 11554 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11555 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11557 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11558 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11559 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11560 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11561 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11562 11563 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11564 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11566 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11567 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11568 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11569 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11570 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11571 11572 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11573 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11575 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11576 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11577 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11578 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11579 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11580 11581 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11582 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11583 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11584 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11585 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11586 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11587 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11588 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11589 11590 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11591 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11592 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11593 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11594 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11595 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11596 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11597 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11598 11599 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11600 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11601 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11602 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11603 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11604 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11605 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11606 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11607 11608 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11609 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11610 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11611 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11612 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11613 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11614 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11615 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11616 11617 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11618 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11619 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11620 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11621 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11622 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11623 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11624 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11625 11626 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11627 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11628 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11629 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11630 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11631 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11632 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11633 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11634 11635 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11636 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11637 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11638 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11639 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11640 BB = EmitAtomicBinary(MI, BB, 4, 0); 11641 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11642 BB = EmitAtomicBinary(MI, BB, 8, 0); 11643 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11644 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11645 (Subtarget.hasPartwordAtomics() && 11646 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11647 (Subtarget.hasPartwordAtomics() && 11648 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11649 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11650 11651 auto LoadMnemonic = PPC::LDARX; 11652 auto StoreMnemonic = PPC::STDCX; 11653 switch (MI.getOpcode()) { 11654 default: 11655 llvm_unreachable("Compare and swap of unknown size"); 11656 case PPC::ATOMIC_CMP_SWAP_I8: 11657 LoadMnemonic = PPC::LBARX; 11658 StoreMnemonic = PPC::STBCX; 11659 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11660 break; 11661 case PPC::ATOMIC_CMP_SWAP_I16: 11662 LoadMnemonic = PPC::LHARX; 11663 StoreMnemonic = PPC::STHCX; 11664 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11665 break; 11666 case PPC::ATOMIC_CMP_SWAP_I32: 11667 LoadMnemonic = PPC::LWARX; 11668 StoreMnemonic = PPC::STWCX; 11669 break; 11670 case PPC::ATOMIC_CMP_SWAP_I64: 11671 LoadMnemonic = PPC::LDARX; 11672 StoreMnemonic = PPC::STDCX; 11673 break; 11674 } 11675 Register dest = MI.getOperand(0).getReg(); 11676 Register ptrA = MI.getOperand(1).getReg(); 11677 Register ptrB = MI.getOperand(2).getReg(); 11678 Register oldval = MI.getOperand(3).getReg(); 11679 Register newval = MI.getOperand(4).getReg(); 11680 DebugLoc dl = MI.getDebugLoc(); 11681 11682 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11683 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11684 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11685 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11686 F->insert(It, loop1MBB); 11687 F->insert(It, loop2MBB); 11688 F->insert(It, midMBB); 11689 F->insert(It, exitMBB); 11690 exitMBB->splice(exitMBB->begin(), BB, 11691 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11692 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11693 11694 // thisMBB: 11695 // ... 11696 // fallthrough --> loopMBB 11697 BB->addSuccessor(loop1MBB); 11698 11699 // loop1MBB: 11700 // l[bhwd]arx dest, ptr 11701 // cmp[wd] dest, oldval 11702 // bne- midMBB 11703 // loop2MBB: 11704 // st[bhwd]cx. newval, ptr 11705 // bne- loopMBB 11706 // b exitBB 11707 // midMBB: 11708 // st[bhwd]cx. dest, ptr 11709 // exitBB: 11710 BB = loop1MBB; 11711 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11712 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11713 .addReg(oldval) 11714 .addReg(dest); 11715 BuildMI(BB, dl, TII->get(PPC::BCC)) 11716 .addImm(PPC::PRED_NE) 11717 .addReg(PPC::CR0) 11718 .addMBB(midMBB); 11719 BB->addSuccessor(loop2MBB); 11720 BB->addSuccessor(midMBB); 11721 11722 BB = loop2MBB; 11723 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11724 .addReg(newval) 11725 .addReg(ptrA) 11726 .addReg(ptrB); 11727 BuildMI(BB, dl, TII->get(PPC::BCC)) 11728 .addImm(PPC::PRED_NE) 11729 .addReg(PPC::CR0) 11730 .addMBB(loop1MBB); 11731 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11732 BB->addSuccessor(loop1MBB); 11733 BB->addSuccessor(exitMBB); 11734 11735 BB = midMBB; 11736 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11737 .addReg(dest) 11738 .addReg(ptrA) 11739 .addReg(ptrB); 11740 BB->addSuccessor(exitMBB); 11741 11742 // exitMBB: 11743 // ... 11744 BB = exitMBB; 11745 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11746 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11747 // We must use 64-bit registers for addresses when targeting 64-bit, 11748 // since we're actually doing arithmetic on them. Other registers 11749 // can be 32-bit. 11750 bool is64bit = Subtarget.isPPC64(); 11751 bool isLittleEndian = Subtarget.isLittleEndian(); 11752 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11753 11754 Register dest = MI.getOperand(0).getReg(); 11755 Register ptrA = MI.getOperand(1).getReg(); 11756 Register ptrB = MI.getOperand(2).getReg(); 11757 Register oldval = MI.getOperand(3).getReg(); 11758 Register newval = MI.getOperand(4).getReg(); 11759 DebugLoc dl = MI.getDebugLoc(); 11760 11761 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11762 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11763 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11764 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11765 F->insert(It, loop1MBB); 11766 F->insert(It, loop2MBB); 11767 F->insert(It, midMBB); 11768 F->insert(It, exitMBB); 11769 exitMBB->splice(exitMBB->begin(), BB, 11770 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11771 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11772 11773 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11774 const TargetRegisterClass *RC = 11775 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11776 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11777 11778 Register PtrReg = RegInfo.createVirtualRegister(RC); 11779 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11780 Register ShiftReg = 11781 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11782 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11783 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11784 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11785 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11786 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11787 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11788 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11789 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11790 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11791 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11792 Register Ptr1Reg; 11793 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11794 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11795 // thisMBB: 11796 // ... 11797 // fallthrough --> loopMBB 11798 BB->addSuccessor(loop1MBB); 11799 11800 // The 4-byte load must be aligned, while a char or short may be 11801 // anywhere in the word. Hence all this nasty bookkeeping code. 11802 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11803 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11804 // xori shift, shift1, 24 [16] 11805 // rlwinm ptr, ptr1, 0, 0, 29 11806 // slw newval2, newval, shift 11807 // slw oldval2, oldval,shift 11808 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11809 // slw mask, mask2, shift 11810 // and newval3, newval2, mask 11811 // and oldval3, oldval2, mask 11812 // loop1MBB: 11813 // lwarx tmpDest, ptr 11814 // and tmp, tmpDest, mask 11815 // cmpw tmp, oldval3 11816 // bne- midMBB 11817 // loop2MBB: 11818 // andc tmp2, tmpDest, mask 11819 // or tmp4, tmp2, newval3 11820 // stwcx. tmp4, ptr 11821 // bne- loop1MBB 11822 // b exitBB 11823 // midMBB: 11824 // stwcx. tmpDest, ptr 11825 // exitBB: 11826 // srw dest, tmpDest, shift 11827 if (ptrA != ZeroReg) { 11828 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11829 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11830 .addReg(ptrA) 11831 .addReg(ptrB); 11832 } else { 11833 Ptr1Reg = ptrB; 11834 } 11835 11836 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11837 // mode. 11838 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11839 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11840 .addImm(3) 11841 .addImm(27) 11842 .addImm(is8bit ? 28 : 27); 11843 if (!isLittleEndian) 11844 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11845 .addReg(Shift1Reg) 11846 .addImm(is8bit ? 24 : 16); 11847 if (is64bit) 11848 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11849 .addReg(Ptr1Reg) 11850 .addImm(0) 11851 .addImm(61); 11852 else 11853 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11854 .addReg(Ptr1Reg) 11855 .addImm(0) 11856 .addImm(0) 11857 .addImm(29); 11858 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11859 .addReg(newval) 11860 .addReg(ShiftReg); 11861 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11862 .addReg(oldval) 11863 .addReg(ShiftReg); 11864 if (is8bit) 11865 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11866 else { 11867 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11868 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11869 .addReg(Mask3Reg) 11870 .addImm(65535); 11871 } 11872 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11873 .addReg(Mask2Reg) 11874 .addReg(ShiftReg); 11875 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11876 .addReg(NewVal2Reg) 11877 .addReg(MaskReg); 11878 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11879 .addReg(OldVal2Reg) 11880 .addReg(MaskReg); 11881 11882 BB = loop1MBB; 11883 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11884 .addReg(ZeroReg) 11885 .addReg(PtrReg); 11886 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11887 .addReg(TmpDestReg) 11888 .addReg(MaskReg); 11889 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11890 .addReg(TmpReg) 11891 .addReg(OldVal3Reg); 11892 BuildMI(BB, dl, TII->get(PPC::BCC)) 11893 .addImm(PPC::PRED_NE) 11894 .addReg(PPC::CR0) 11895 .addMBB(midMBB); 11896 BB->addSuccessor(loop2MBB); 11897 BB->addSuccessor(midMBB); 11898 11899 BB = loop2MBB; 11900 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11901 .addReg(TmpDestReg) 11902 .addReg(MaskReg); 11903 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11904 .addReg(Tmp2Reg) 11905 .addReg(NewVal3Reg); 11906 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11907 .addReg(Tmp4Reg) 11908 .addReg(ZeroReg) 11909 .addReg(PtrReg); 11910 BuildMI(BB, dl, TII->get(PPC::BCC)) 11911 .addImm(PPC::PRED_NE) 11912 .addReg(PPC::CR0) 11913 .addMBB(loop1MBB); 11914 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11915 BB->addSuccessor(loop1MBB); 11916 BB->addSuccessor(exitMBB); 11917 11918 BB = midMBB; 11919 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11920 .addReg(TmpDestReg) 11921 .addReg(ZeroReg) 11922 .addReg(PtrReg); 11923 BB->addSuccessor(exitMBB); 11924 11925 // exitMBB: 11926 // ... 11927 BB = exitMBB; 11928 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11929 .addReg(TmpReg) 11930 .addReg(ShiftReg); 11931 } else if (MI.getOpcode() == PPC::FADDrtz) { 11932 // This pseudo performs an FADD with rounding mode temporarily forced 11933 // to round-to-zero. We emit this via custom inserter since the FPSCR 11934 // is not modeled at the SelectionDAG level. 11935 Register Dest = MI.getOperand(0).getReg(); 11936 Register Src1 = MI.getOperand(1).getReg(); 11937 Register Src2 = MI.getOperand(2).getReg(); 11938 DebugLoc dl = MI.getDebugLoc(); 11939 11940 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11941 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11942 11943 // Save FPSCR value. 11944 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11945 11946 // Set rounding mode to round-to-zero. 11947 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11948 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11949 11950 // Perform addition. 11951 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11952 11953 // Restore FPSCR value. 11954 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11955 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11956 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11957 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11958 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11959 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11960 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11961 ? PPC::ANDI8_rec 11962 : PPC::ANDI_rec; 11963 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11964 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11965 11966 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11967 Register Dest = RegInfo.createVirtualRegister( 11968 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11969 11970 DebugLoc Dl = MI.getDebugLoc(); 11971 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11972 .addReg(MI.getOperand(1).getReg()) 11973 .addImm(1); 11974 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11975 MI.getOperand(0).getReg()) 11976 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11977 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11978 DebugLoc Dl = MI.getDebugLoc(); 11979 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11980 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11981 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11982 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11983 MI.getOperand(0).getReg()) 11984 .addReg(CRReg); 11985 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11986 DebugLoc Dl = MI.getDebugLoc(); 11987 unsigned Imm = MI.getOperand(1).getImm(); 11988 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11989 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11990 MI.getOperand(0).getReg()) 11991 .addReg(PPC::CR0EQ); 11992 } else if (MI.getOpcode() == PPC::SETRNDi) { 11993 DebugLoc dl = MI.getDebugLoc(); 11994 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11995 11996 // Save FPSCR value. 11997 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11998 11999 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12000 // the following settings: 12001 // 00 Round to nearest 12002 // 01 Round to 0 12003 // 10 Round to +inf 12004 // 11 Round to -inf 12005 12006 // When the operand is immediate, using the two least significant bits of 12007 // the immediate to set the bits 62:63 of FPSCR. 12008 unsigned Mode = MI.getOperand(1).getImm(); 12009 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12010 .addImm(31); 12011 12012 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12013 .addImm(30); 12014 } else if (MI.getOpcode() == PPC::SETRND) { 12015 DebugLoc dl = MI.getDebugLoc(); 12016 12017 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12018 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12019 // If the target doesn't have DirectMove, we should use stack to do the 12020 // conversion, because the target doesn't have the instructions like mtvsrd 12021 // or mfvsrd to do this conversion directly. 12022 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12023 if (Subtarget.hasDirectMove()) { 12024 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12025 .addReg(SrcReg); 12026 } else { 12027 // Use stack to do the register copy. 12028 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12029 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12030 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12031 if (RC == &PPC::F8RCRegClass) { 12032 // Copy register from F8RCRegClass to G8RCRegclass. 12033 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12034 "Unsupported RegClass."); 12035 12036 StoreOp = PPC::STFD; 12037 LoadOp = PPC::LD; 12038 } else { 12039 // Copy register from G8RCRegClass to F8RCRegclass. 12040 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12041 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12042 "Unsupported RegClass."); 12043 } 12044 12045 MachineFrameInfo &MFI = F->getFrameInfo(); 12046 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12047 12048 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12049 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12050 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12051 MFI.getObjectAlignment(FrameIdx)); 12052 12053 // Store the SrcReg into the stack. 12054 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12055 .addReg(SrcReg) 12056 .addImm(0) 12057 .addFrameIndex(FrameIdx) 12058 .addMemOperand(MMOStore); 12059 12060 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12061 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12062 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12063 MFI.getObjectAlignment(FrameIdx)); 12064 12065 // Load from the stack where SrcReg is stored, and save to DestReg, 12066 // so we have done the RegClass conversion from RegClass::SrcReg to 12067 // RegClass::DestReg. 12068 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12069 .addImm(0) 12070 .addFrameIndex(FrameIdx) 12071 .addMemOperand(MMOLoad); 12072 } 12073 }; 12074 12075 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12076 12077 // Save FPSCR value. 12078 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12079 12080 // When the operand is gprc register, use two least significant bits of the 12081 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12082 // 12083 // copy OldFPSCRTmpReg, OldFPSCRReg 12084 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12085 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12086 // copy NewFPSCRReg, NewFPSCRTmpReg 12087 // mtfsf 255, NewFPSCRReg 12088 MachineOperand SrcOp = MI.getOperand(1); 12089 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12090 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12091 12092 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12093 12094 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12095 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12096 12097 // The first operand of INSERT_SUBREG should be a register which has 12098 // subregisters, we only care about its RegClass, so we should use an 12099 // IMPLICIT_DEF register. 12100 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12101 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12102 .addReg(ImDefReg) 12103 .add(SrcOp) 12104 .addImm(1); 12105 12106 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12107 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12108 .addReg(OldFPSCRTmpReg) 12109 .addReg(ExtSrcReg) 12110 .addImm(0) 12111 .addImm(62); 12112 12113 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12114 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12115 12116 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12117 // bits of FPSCR. 12118 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12119 .addImm(255) 12120 .addReg(NewFPSCRReg) 12121 .addImm(0) 12122 .addImm(0); 12123 } else { 12124 llvm_unreachable("Unexpected instr type to insert"); 12125 } 12126 12127 MI.eraseFromParent(); // The pseudo instruction is gone now. 12128 return BB; 12129 } 12130 12131 //===----------------------------------------------------------------------===// 12132 // Target Optimization Hooks 12133 //===----------------------------------------------------------------------===// 12134 12135 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12136 // For the estimates, convergence is quadratic, so we essentially double the 12137 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12138 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12139 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12140 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12141 if (VT.getScalarType() == MVT::f64) 12142 RefinementSteps++; 12143 return RefinementSteps; 12144 } 12145 12146 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12147 int Enabled, int &RefinementSteps, 12148 bool &UseOneConstNR, 12149 bool Reciprocal) const { 12150 EVT VT = Operand.getValueType(); 12151 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12152 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12153 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12154 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12155 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12156 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12157 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12158 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12159 12160 // The Newton-Raphson computation with a single constant does not provide 12161 // enough accuracy on some CPUs. 12162 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12163 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12164 } 12165 return SDValue(); 12166 } 12167 12168 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12169 int Enabled, 12170 int &RefinementSteps) const { 12171 EVT VT = Operand.getValueType(); 12172 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12173 (VT == MVT::f64 && Subtarget.hasFRE()) || 12174 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12175 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12176 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12177 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12178 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12179 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12180 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12181 } 12182 return SDValue(); 12183 } 12184 12185 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12186 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12187 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12188 // enabled for division), this functionality is redundant with the default 12189 // combiner logic (once the division -> reciprocal/multiply transformation 12190 // has taken place). As a result, this matters more for older cores than for 12191 // newer ones. 12192 12193 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12194 // reciprocal if there are two or more FDIVs (for embedded cores with only 12195 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12196 switch (Subtarget.getCPUDirective()) { 12197 default: 12198 return 3; 12199 case PPC::DIR_440: 12200 case PPC::DIR_A2: 12201 case PPC::DIR_E500: 12202 case PPC::DIR_E500mc: 12203 case PPC::DIR_E5500: 12204 return 2; 12205 } 12206 } 12207 12208 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12209 // collapsed, and so we need to look through chains of them. 12210 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12211 int64_t& Offset, SelectionDAG &DAG) { 12212 if (DAG.isBaseWithConstantOffset(Loc)) { 12213 Base = Loc.getOperand(0); 12214 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12215 12216 // The base might itself be a base plus an offset, and if so, accumulate 12217 // that as well. 12218 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12219 } 12220 } 12221 12222 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12223 unsigned Bytes, int Dist, 12224 SelectionDAG &DAG) { 12225 if (VT.getSizeInBits() / 8 != Bytes) 12226 return false; 12227 12228 SDValue BaseLoc = Base->getBasePtr(); 12229 if (Loc.getOpcode() == ISD::FrameIndex) { 12230 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12231 return false; 12232 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12233 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12234 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12235 int FS = MFI.getObjectSize(FI); 12236 int BFS = MFI.getObjectSize(BFI); 12237 if (FS != BFS || FS != (int)Bytes) return false; 12238 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12239 } 12240 12241 SDValue Base1 = Loc, Base2 = BaseLoc; 12242 int64_t Offset1 = 0, Offset2 = 0; 12243 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12244 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12245 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12246 return true; 12247 12248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12249 const GlobalValue *GV1 = nullptr; 12250 const GlobalValue *GV2 = nullptr; 12251 Offset1 = 0; 12252 Offset2 = 0; 12253 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12254 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12255 if (isGA1 && isGA2 && GV1 == GV2) 12256 return Offset1 == (Offset2 + Dist*Bytes); 12257 return false; 12258 } 12259 12260 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12261 // not enforce equality of the chain operands. 12262 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12263 unsigned Bytes, int Dist, 12264 SelectionDAG &DAG) { 12265 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12266 EVT VT = LS->getMemoryVT(); 12267 SDValue Loc = LS->getBasePtr(); 12268 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12269 } 12270 12271 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12272 EVT VT; 12273 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12274 default: return false; 12275 case Intrinsic::ppc_qpx_qvlfd: 12276 case Intrinsic::ppc_qpx_qvlfda: 12277 VT = MVT::v4f64; 12278 break; 12279 case Intrinsic::ppc_qpx_qvlfs: 12280 case Intrinsic::ppc_qpx_qvlfsa: 12281 VT = MVT::v4f32; 12282 break; 12283 case Intrinsic::ppc_qpx_qvlfcd: 12284 case Intrinsic::ppc_qpx_qvlfcda: 12285 VT = MVT::v2f64; 12286 break; 12287 case Intrinsic::ppc_qpx_qvlfcs: 12288 case Intrinsic::ppc_qpx_qvlfcsa: 12289 VT = MVT::v2f32; 12290 break; 12291 case Intrinsic::ppc_qpx_qvlfiwa: 12292 case Intrinsic::ppc_qpx_qvlfiwz: 12293 case Intrinsic::ppc_altivec_lvx: 12294 case Intrinsic::ppc_altivec_lvxl: 12295 case Intrinsic::ppc_vsx_lxvw4x: 12296 case Intrinsic::ppc_vsx_lxvw4x_be: 12297 VT = MVT::v4i32; 12298 break; 12299 case Intrinsic::ppc_vsx_lxvd2x: 12300 case Intrinsic::ppc_vsx_lxvd2x_be: 12301 VT = MVT::v2f64; 12302 break; 12303 case Intrinsic::ppc_altivec_lvebx: 12304 VT = MVT::i8; 12305 break; 12306 case Intrinsic::ppc_altivec_lvehx: 12307 VT = MVT::i16; 12308 break; 12309 case Intrinsic::ppc_altivec_lvewx: 12310 VT = MVT::i32; 12311 break; 12312 } 12313 12314 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12315 } 12316 12317 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12318 EVT VT; 12319 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12320 default: return false; 12321 case Intrinsic::ppc_qpx_qvstfd: 12322 case Intrinsic::ppc_qpx_qvstfda: 12323 VT = MVT::v4f64; 12324 break; 12325 case Intrinsic::ppc_qpx_qvstfs: 12326 case Intrinsic::ppc_qpx_qvstfsa: 12327 VT = MVT::v4f32; 12328 break; 12329 case Intrinsic::ppc_qpx_qvstfcd: 12330 case Intrinsic::ppc_qpx_qvstfcda: 12331 VT = MVT::v2f64; 12332 break; 12333 case Intrinsic::ppc_qpx_qvstfcs: 12334 case Intrinsic::ppc_qpx_qvstfcsa: 12335 VT = MVT::v2f32; 12336 break; 12337 case Intrinsic::ppc_qpx_qvstfiw: 12338 case Intrinsic::ppc_qpx_qvstfiwa: 12339 case Intrinsic::ppc_altivec_stvx: 12340 case Intrinsic::ppc_altivec_stvxl: 12341 case Intrinsic::ppc_vsx_stxvw4x: 12342 VT = MVT::v4i32; 12343 break; 12344 case Intrinsic::ppc_vsx_stxvd2x: 12345 VT = MVT::v2f64; 12346 break; 12347 case Intrinsic::ppc_vsx_stxvw4x_be: 12348 VT = MVT::v4i32; 12349 break; 12350 case Intrinsic::ppc_vsx_stxvd2x_be: 12351 VT = MVT::v2f64; 12352 break; 12353 case Intrinsic::ppc_altivec_stvebx: 12354 VT = MVT::i8; 12355 break; 12356 case Intrinsic::ppc_altivec_stvehx: 12357 VT = MVT::i16; 12358 break; 12359 case Intrinsic::ppc_altivec_stvewx: 12360 VT = MVT::i32; 12361 break; 12362 } 12363 12364 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12365 } 12366 12367 return false; 12368 } 12369 12370 // Return true is there is a nearyby consecutive load to the one provided 12371 // (regardless of alignment). We search up and down the chain, looking though 12372 // token factors and other loads (but nothing else). As a result, a true result 12373 // indicates that it is safe to create a new consecutive load adjacent to the 12374 // load provided. 12375 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12376 SDValue Chain = LD->getChain(); 12377 EVT VT = LD->getMemoryVT(); 12378 12379 SmallSet<SDNode *, 16> LoadRoots; 12380 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12381 SmallSet<SDNode *, 16> Visited; 12382 12383 // First, search up the chain, branching to follow all token-factor operands. 12384 // If we find a consecutive load, then we're done, otherwise, record all 12385 // nodes just above the top-level loads and token factors. 12386 while (!Queue.empty()) { 12387 SDNode *ChainNext = Queue.pop_back_val(); 12388 if (!Visited.insert(ChainNext).second) 12389 continue; 12390 12391 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12392 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12393 return true; 12394 12395 if (!Visited.count(ChainLD->getChain().getNode())) 12396 Queue.push_back(ChainLD->getChain().getNode()); 12397 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12398 for (const SDUse &O : ChainNext->ops()) 12399 if (!Visited.count(O.getNode())) 12400 Queue.push_back(O.getNode()); 12401 } else 12402 LoadRoots.insert(ChainNext); 12403 } 12404 12405 // Second, search down the chain, starting from the top-level nodes recorded 12406 // in the first phase. These top-level nodes are the nodes just above all 12407 // loads and token factors. Starting with their uses, recursively look though 12408 // all loads (just the chain uses) and token factors to find a consecutive 12409 // load. 12410 Visited.clear(); 12411 Queue.clear(); 12412 12413 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12414 IE = LoadRoots.end(); I != IE; ++I) { 12415 Queue.push_back(*I); 12416 12417 while (!Queue.empty()) { 12418 SDNode *LoadRoot = Queue.pop_back_val(); 12419 if (!Visited.insert(LoadRoot).second) 12420 continue; 12421 12422 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12423 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12424 return true; 12425 12426 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12427 UE = LoadRoot->use_end(); UI != UE; ++UI) 12428 if (((isa<MemSDNode>(*UI) && 12429 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12430 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12431 Queue.push_back(*UI); 12432 } 12433 } 12434 12435 return false; 12436 } 12437 12438 /// This function is called when we have proved that a SETCC node can be replaced 12439 /// by subtraction (and other supporting instructions) so that the result of 12440 /// comparison is kept in a GPR instead of CR. This function is purely for 12441 /// codegen purposes and has some flags to guide the codegen process. 12442 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12443 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12444 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12445 12446 // Zero extend the operands to the largest legal integer. Originally, they 12447 // must be of a strictly smaller size. 12448 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12449 DAG.getConstant(Size, DL, MVT::i32)); 12450 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12451 DAG.getConstant(Size, DL, MVT::i32)); 12452 12453 // Swap if needed. Depends on the condition code. 12454 if (Swap) 12455 std::swap(Op0, Op1); 12456 12457 // Subtract extended integers. 12458 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12459 12460 // Move the sign bit to the least significant position and zero out the rest. 12461 // Now the least significant bit carries the result of original comparison. 12462 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12463 DAG.getConstant(Size - 1, DL, MVT::i32)); 12464 auto Final = Shifted; 12465 12466 // Complement the result if needed. Based on the condition code. 12467 if (Complement) 12468 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12469 DAG.getConstant(1, DL, MVT::i64)); 12470 12471 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12472 } 12473 12474 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12475 DAGCombinerInfo &DCI) const { 12476 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12477 12478 SelectionDAG &DAG = DCI.DAG; 12479 SDLoc DL(N); 12480 12481 // Size of integers being compared has a critical role in the following 12482 // analysis, so we prefer to do this when all types are legal. 12483 if (!DCI.isAfterLegalizeDAG()) 12484 return SDValue(); 12485 12486 // If all users of SETCC extend its value to a legal integer type 12487 // then we replace SETCC with a subtraction 12488 for (SDNode::use_iterator UI = N->use_begin(), 12489 UE = N->use_end(); UI != UE; ++UI) { 12490 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12491 return SDValue(); 12492 } 12493 12494 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12495 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12496 12497 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12498 12499 if (OpSize < Size) { 12500 switch (CC) { 12501 default: break; 12502 case ISD::SETULT: 12503 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12504 case ISD::SETULE: 12505 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12506 case ISD::SETUGT: 12507 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12508 case ISD::SETUGE: 12509 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12510 } 12511 } 12512 12513 return SDValue(); 12514 } 12515 12516 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12517 DAGCombinerInfo &DCI) const { 12518 SelectionDAG &DAG = DCI.DAG; 12519 SDLoc dl(N); 12520 12521 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12522 // If we're tracking CR bits, we need to be careful that we don't have: 12523 // trunc(binary-ops(zext(x), zext(y))) 12524 // or 12525 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12526 // such that we're unnecessarily moving things into GPRs when it would be 12527 // better to keep them in CR bits. 12528 12529 // Note that trunc here can be an actual i1 trunc, or can be the effective 12530 // truncation that comes from a setcc or select_cc. 12531 if (N->getOpcode() == ISD::TRUNCATE && 12532 N->getValueType(0) != MVT::i1) 12533 return SDValue(); 12534 12535 if (N->getOperand(0).getValueType() != MVT::i32 && 12536 N->getOperand(0).getValueType() != MVT::i64) 12537 return SDValue(); 12538 12539 if (N->getOpcode() == ISD::SETCC || 12540 N->getOpcode() == ISD::SELECT_CC) { 12541 // If we're looking at a comparison, then we need to make sure that the 12542 // high bits (all except for the first) don't matter the result. 12543 ISD::CondCode CC = 12544 cast<CondCodeSDNode>(N->getOperand( 12545 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12546 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12547 12548 if (ISD::isSignedIntSetCC(CC)) { 12549 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12550 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12551 return SDValue(); 12552 } else if (ISD::isUnsignedIntSetCC(CC)) { 12553 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12554 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12555 !DAG.MaskedValueIsZero(N->getOperand(1), 12556 APInt::getHighBitsSet(OpBits, OpBits-1))) 12557 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12558 : SDValue()); 12559 } else { 12560 // This is neither a signed nor an unsigned comparison, just make sure 12561 // that the high bits are equal. 12562 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12563 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12564 12565 // We don't really care about what is known about the first bit (if 12566 // anything), so clear it in all masks prior to comparing them. 12567 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12568 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12569 12570 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12571 return SDValue(); 12572 } 12573 } 12574 12575 // We now know that the higher-order bits are irrelevant, we just need to 12576 // make sure that all of the intermediate operations are bit operations, and 12577 // all inputs are extensions. 12578 if (N->getOperand(0).getOpcode() != ISD::AND && 12579 N->getOperand(0).getOpcode() != ISD::OR && 12580 N->getOperand(0).getOpcode() != ISD::XOR && 12581 N->getOperand(0).getOpcode() != ISD::SELECT && 12582 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12583 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12584 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12585 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12586 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12587 return SDValue(); 12588 12589 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12590 N->getOperand(1).getOpcode() != ISD::AND && 12591 N->getOperand(1).getOpcode() != ISD::OR && 12592 N->getOperand(1).getOpcode() != ISD::XOR && 12593 N->getOperand(1).getOpcode() != ISD::SELECT && 12594 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12595 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12596 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12597 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12598 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12599 return SDValue(); 12600 12601 SmallVector<SDValue, 4> Inputs; 12602 SmallVector<SDValue, 8> BinOps, PromOps; 12603 SmallPtrSet<SDNode *, 16> Visited; 12604 12605 for (unsigned i = 0; i < 2; ++i) { 12606 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12607 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12608 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12609 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12610 isa<ConstantSDNode>(N->getOperand(i))) 12611 Inputs.push_back(N->getOperand(i)); 12612 else 12613 BinOps.push_back(N->getOperand(i)); 12614 12615 if (N->getOpcode() == ISD::TRUNCATE) 12616 break; 12617 } 12618 12619 // Visit all inputs, collect all binary operations (and, or, xor and 12620 // select) that are all fed by extensions. 12621 while (!BinOps.empty()) { 12622 SDValue BinOp = BinOps.back(); 12623 BinOps.pop_back(); 12624 12625 if (!Visited.insert(BinOp.getNode()).second) 12626 continue; 12627 12628 PromOps.push_back(BinOp); 12629 12630 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12631 // The condition of the select is not promoted. 12632 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12633 continue; 12634 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12635 continue; 12636 12637 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12638 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12639 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12640 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12641 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12642 Inputs.push_back(BinOp.getOperand(i)); 12643 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12644 BinOp.getOperand(i).getOpcode() == ISD::OR || 12645 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12646 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12647 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12648 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12649 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12650 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12651 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12652 BinOps.push_back(BinOp.getOperand(i)); 12653 } else { 12654 // We have an input that is not an extension or another binary 12655 // operation; we'll abort this transformation. 12656 return SDValue(); 12657 } 12658 } 12659 } 12660 12661 // Make sure that this is a self-contained cluster of operations (which 12662 // is not quite the same thing as saying that everything has only one 12663 // use). 12664 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12665 if (isa<ConstantSDNode>(Inputs[i])) 12666 continue; 12667 12668 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12669 UE = Inputs[i].getNode()->use_end(); 12670 UI != UE; ++UI) { 12671 SDNode *User = *UI; 12672 if (User != N && !Visited.count(User)) 12673 return SDValue(); 12674 12675 // Make sure that we're not going to promote the non-output-value 12676 // operand(s) or SELECT or SELECT_CC. 12677 // FIXME: Although we could sometimes handle this, and it does occur in 12678 // practice that one of the condition inputs to the select is also one of 12679 // the outputs, we currently can't deal with this. 12680 if (User->getOpcode() == ISD::SELECT) { 12681 if (User->getOperand(0) == Inputs[i]) 12682 return SDValue(); 12683 } else if (User->getOpcode() == ISD::SELECT_CC) { 12684 if (User->getOperand(0) == Inputs[i] || 12685 User->getOperand(1) == Inputs[i]) 12686 return SDValue(); 12687 } 12688 } 12689 } 12690 12691 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12692 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12693 UE = PromOps[i].getNode()->use_end(); 12694 UI != UE; ++UI) { 12695 SDNode *User = *UI; 12696 if (User != N && !Visited.count(User)) 12697 return SDValue(); 12698 12699 // Make sure that we're not going to promote the non-output-value 12700 // operand(s) or SELECT or SELECT_CC. 12701 // FIXME: Although we could sometimes handle this, and it does occur in 12702 // practice that one of the condition inputs to the select is also one of 12703 // the outputs, we currently can't deal with this. 12704 if (User->getOpcode() == ISD::SELECT) { 12705 if (User->getOperand(0) == PromOps[i]) 12706 return SDValue(); 12707 } else if (User->getOpcode() == ISD::SELECT_CC) { 12708 if (User->getOperand(0) == PromOps[i] || 12709 User->getOperand(1) == PromOps[i]) 12710 return SDValue(); 12711 } 12712 } 12713 } 12714 12715 // Replace all inputs with the extension operand. 12716 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12717 // Constants may have users outside the cluster of to-be-promoted nodes, 12718 // and so we need to replace those as we do the promotions. 12719 if (isa<ConstantSDNode>(Inputs[i])) 12720 continue; 12721 else 12722 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12723 } 12724 12725 std::list<HandleSDNode> PromOpHandles; 12726 for (auto &PromOp : PromOps) 12727 PromOpHandles.emplace_back(PromOp); 12728 12729 // Replace all operations (these are all the same, but have a different 12730 // (i1) return type). DAG.getNode will validate that the types of 12731 // a binary operator match, so go through the list in reverse so that 12732 // we've likely promoted both operands first. Any intermediate truncations or 12733 // extensions disappear. 12734 while (!PromOpHandles.empty()) { 12735 SDValue PromOp = PromOpHandles.back().getValue(); 12736 PromOpHandles.pop_back(); 12737 12738 if (PromOp.getOpcode() == ISD::TRUNCATE || 12739 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12740 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12741 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12742 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12743 PromOp.getOperand(0).getValueType() != MVT::i1) { 12744 // The operand is not yet ready (see comment below). 12745 PromOpHandles.emplace_front(PromOp); 12746 continue; 12747 } 12748 12749 SDValue RepValue = PromOp.getOperand(0); 12750 if (isa<ConstantSDNode>(RepValue)) 12751 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12752 12753 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12754 continue; 12755 } 12756 12757 unsigned C; 12758 switch (PromOp.getOpcode()) { 12759 default: C = 0; break; 12760 case ISD::SELECT: C = 1; break; 12761 case ISD::SELECT_CC: C = 2; break; 12762 } 12763 12764 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12765 PromOp.getOperand(C).getValueType() != MVT::i1) || 12766 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12767 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12768 // The to-be-promoted operands of this node have not yet been 12769 // promoted (this should be rare because we're going through the 12770 // list backward, but if one of the operands has several users in 12771 // this cluster of to-be-promoted nodes, it is possible). 12772 PromOpHandles.emplace_front(PromOp); 12773 continue; 12774 } 12775 12776 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12777 PromOp.getNode()->op_end()); 12778 12779 // If there are any constant inputs, make sure they're replaced now. 12780 for (unsigned i = 0; i < 2; ++i) 12781 if (isa<ConstantSDNode>(Ops[C+i])) 12782 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12783 12784 DAG.ReplaceAllUsesOfValueWith(PromOp, 12785 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12786 } 12787 12788 // Now we're left with the initial truncation itself. 12789 if (N->getOpcode() == ISD::TRUNCATE) 12790 return N->getOperand(0); 12791 12792 // Otherwise, this is a comparison. The operands to be compared have just 12793 // changed type (to i1), but everything else is the same. 12794 return SDValue(N, 0); 12795 } 12796 12797 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12798 DAGCombinerInfo &DCI) const { 12799 SelectionDAG &DAG = DCI.DAG; 12800 SDLoc dl(N); 12801 12802 // If we're tracking CR bits, we need to be careful that we don't have: 12803 // zext(binary-ops(trunc(x), trunc(y))) 12804 // or 12805 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12806 // such that we're unnecessarily moving things into CR bits that can more 12807 // efficiently stay in GPRs. Note that if we're not certain that the high 12808 // bits are set as required by the final extension, we still may need to do 12809 // some masking to get the proper behavior. 12810 12811 // This same functionality is important on PPC64 when dealing with 12812 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12813 // the return values of functions. Because it is so similar, it is handled 12814 // here as well. 12815 12816 if (N->getValueType(0) != MVT::i32 && 12817 N->getValueType(0) != MVT::i64) 12818 return SDValue(); 12819 12820 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12821 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12822 return SDValue(); 12823 12824 if (N->getOperand(0).getOpcode() != ISD::AND && 12825 N->getOperand(0).getOpcode() != ISD::OR && 12826 N->getOperand(0).getOpcode() != ISD::XOR && 12827 N->getOperand(0).getOpcode() != ISD::SELECT && 12828 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12829 return SDValue(); 12830 12831 SmallVector<SDValue, 4> Inputs; 12832 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12833 SmallPtrSet<SDNode *, 16> Visited; 12834 12835 // Visit all inputs, collect all binary operations (and, or, xor and 12836 // select) that are all fed by truncations. 12837 while (!BinOps.empty()) { 12838 SDValue BinOp = BinOps.back(); 12839 BinOps.pop_back(); 12840 12841 if (!Visited.insert(BinOp.getNode()).second) 12842 continue; 12843 12844 PromOps.push_back(BinOp); 12845 12846 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12847 // The condition of the select is not promoted. 12848 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12849 continue; 12850 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12851 continue; 12852 12853 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12854 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12855 Inputs.push_back(BinOp.getOperand(i)); 12856 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12857 BinOp.getOperand(i).getOpcode() == ISD::OR || 12858 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12859 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12860 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12861 BinOps.push_back(BinOp.getOperand(i)); 12862 } else { 12863 // We have an input that is not a truncation or another binary 12864 // operation; we'll abort this transformation. 12865 return SDValue(); 12866 } 12867 } 12868 } 12869 12870 // The operands of a select that must be truncated when the select is 12871 // promoted because the operand is actually part of the to-be-promoted set. 12872 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12873 12874 // Make sure that this is a self-contained cluster of operations (which 12875 // is not quite the same thing as saying that everything has only one 12876 // use). 12877 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12878 if (isa<ConstantSDNode>(Inputs[i])) 12879 continue; 12880 12881 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12882 UE = Inputs[i].getNode()->use_end(); 12883 UI != UE; ++UI) { 12884 SDNode *User = *UI; 12885 if (User != N && !Visited.count(User)) 12886 return SDValue(); 12887 12888 // If we're going to promote the non-output-value operand(s) or SELECT or 12889 // SELECT_CC, record them for truncation. 12890 if (User->getOpcode() == ISD::SELECT) { 12891 if (User->getOperand(0) == Inputs[i]) 12892 SelectTruncOp[0].insert(std::make_pair(User, 12893 User->getOperand(0).getValueType())); 12894 } else if (User->getOpcode() == ISD::SELECT_CC) { 12895 if (User->getOperand(0) == Inputs[i]) 12896 SelectTruncOp[0].insert(std::make_pair(User, 12897 User->getOperand(0).getValueType())); 12898 if (User->getOperand(1) == Inputs[i]) 12899 SelectTruncOp[1].insert(std::make_pair(User, 12900 User->getOperand(1).getValueType())); 12901 } 12902 } 12903 } 12904 12905 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12906 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12907 UE = PromOps[i].getNode()->use_end(); 12908 UI != UE; ++UI) { 12909 SDNode *User = *UI; 12910 if (User != N && !Visited.count(User)) 12911 return SDValue(); 12912 12913 // If we're going to promote the non-output-value operand(s) or SELECT or 12914 // SELECT_CC, record them for truncation. 12915 if (User->getOpcode() == ISD::SELECT) { 12916 if (User->getOperand(0) == PromOps[i]) 12917 SelectTruncOp[0].insert(std::make_pair(User, 12918 User->getOperand(0).getValueType())); 12919 } else if (User->getOpcode() == ISD::SELECT_CC) { 12920 if (User->getOperand(0) == PromOps[i]) 12921 SelectTruncOp[0].insert(std::make_pair(User, 12922 User->getOperand(0).getValueType())); 12923 if (User->getOperand(1) == PromOps[i]) 12924 SelectTruncOp[1].insert(std::make_pair(User, 12925 User->getOperand(1).getValueType())); 12926 } 12927 } 12928 } 12929 12930 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12931 bool ReallyNeedsExt = false; 12932 if (N->getOpcode() != ISD::ANY_EXTEND) { 12933 // If all of the inputs are not already sign/zero extended, then 12934 // we'll still need to do that at the end. 12935 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12936 if (isa<ConstantSDNode>(Inputs[i])) 12937 continue; 12938 12939 unsigned OpBits = 12940 Inputs[i].getOperand(0).getValueSizeInBits(); 12941 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12942 12943 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12944 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12945 APInt::getHighBitsSet(OpBits, 12946 OpBits-PromBits))) || 12947 (N->getOpcode() == ISD::SIGN_EXTEND && 12948 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12949 (OpBits-(PromBits-1)))) { 12950 ReallyNeedsExt = true; 12951 break; 12952 } 12953 } 12954 } 12955 12956 // Replace all inputs, either with the truncation operand, or a 12957 // truncation or extension to the final output type. 12958 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12959 // Constant inputs need to be replaced with the to-be-promoted nodes that 12960 // use them because they might have users outside of the cluster of 12961 // promoted nodes. 12962 if (isa<ConstantSDNode>(Inputs[i])) 12963 continue; 12964 12965 SDValue InSrc = Inputs[i].getOperand(0); 12966 if (Inputs[i].getValueType() == N->getValueType(0)) 12967 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12968 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12969 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12970 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12971 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12972 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12973 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12974 else 12975 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12976 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12977 } 12978 12979 std::list<HandleSDNode> PromOpHandles; 12980 for (auto &PromOp : PromOps) 12981 PromOpHandles.emplace_back(PromOp); 12982 12983 // Replace all operations (these are all the same, but have a different 12984 // (promoted) return type). DAG.getNode will validate that the types of 12985 // a binary operator match, so go through the list in reverse so that 12986 // we've likely promoted both operands first. 12987 while (!PromOpHandles.empty()) { 12988 SDValue PromOp = PromOpHandles.back().getValue(); 12989 PromOpHandles.pop_back(); 12990 12991 unsigned C; 12992 switch (PromOp.getOpcode()) { 12993 default: C = 0; break; 12994 case ISD::SELECT: C = 1; break; 12995 case ISD::SELECT_CC: C = 2; break; 12996 } 12997 12998 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12999 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13000 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13001 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13002 // The to-be-promoted operands of this node have not yet been 13003 // promoted (this should be rare because we're going through the 13004 // list backward, but if one of the operands has several users in 13005 // this cluster of to-be-promoted nodes, it is possible). 13006 PromOpHandles.emplace_front(PromOp); 13007 continue; 13008 } 13009 13010 // For SELECT and SELECT_CC nodes, we do a similar check for any 13011 // to-be-promoted comparison inputs. 13012 if (PromOp.getOpcode() == ISD::SELECT || 13013 PromOp.getOpcode() == ISD::SELECT_CC) { 13014 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13015 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13016 (SelectTruncOp[1].count(PromOp.getNode()) && 13017 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13018 PromOpHandles.emplace_front(PromOp); 13019 continue; 13020 } 13021 } 13022 13023 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13024 PromOp.getNode()->op_end()); 13025 13026 // If this node has constant inputs, then they'll need to be promoted here. 13027 for (unsigned i = 0; i < 2; ++i) { 13028 if (!isa<ConstantSDNode>(Ops[C+i])) 13029 continue; 13030 if (Ops[C+i].getValueType() == N->getValueType(0)) 13031 continue; 13032 13033 if (N->getOpcode() == ISD::SIGN_EXTEND) 13034 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13035 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13036 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13037 else 13038 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13039 } 13040 13041 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13042 // truncate them again to the original value type. 13043 if (PromOp.getOpcode() == ISD::SELECT || 13044 PromOp.getOpcode() == ISD::SELECT_CC) { 13045 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13046 if (SI0 != SelectTruncOp[0].end()) 13047 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13048 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13049 if (SI1 != SelectTruncOp[1].end()) 13050 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13051 } 13052 13053 DAG.ReplaceAllUsesOfValueWith(PromOp, 13054 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13055 } 13056 13057 // Now we're left with the initial extension itself. 13058 if (!ReallyNeedsExt) 13059 return N->getOperand(0); 13060 13061 // To zero extend, just mask off everything except for the first bit (in the 13062 // i1 case). 13063 if (N->getOpcode() == ISD::ZERO_EXTEND) 13064 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13065 DAG.getConstant(APInt::getLowBitsSet( 13066 N->getValueSizeInBits(0), PromBits), 13067 dl, N->getValueType(0))); 13068 13069 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13070 "Invalid extension type"); 13071 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13072 SDValue ShiftCst = 13073 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13074 return DAG.getNode( 13075 ISD::SRA, dl, N->getValueType(0), 13076 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13077 ShiftCst); 13078 } 13079 13080 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13081 DAGCombinerInfo &DCI) const { 13082 assert(N->getOpcode() == ISD::SETCC && 13083 "Should be called with a SETCC node"); 13084 13085 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13086 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13087 SDValue LHS = N->getOperand(0); 13088 SDValue RHS = N->getOperand(1); 13089 13090 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13091 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13092 LHS.hasOneUse()) 13093 std::swap(LHS, RHS); 13094 13095 // x == 0-y --> x+y == 0 13096 // x != 0-y --> x+y != 0 13097 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13098 RHS.hasOneUse()) { 13099 SDLoc DL(N); 13100 SelectionDAG &DAG = DCI.DAG; 13101 EVT VT = N->getValueType(0); 13102 EVT OpVT = LHS.getValueType(); 13103 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13104 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13105 } 13106 } 13107 13108 return DAGCombineTruncBoolExt(N, DCI); 13109 } 13110 13111 // Is this an extending load from an f32 to an f64? 13112 static bool isFPExtLoad(SDValue Op) { 13113 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13114 return LD->getExtensionType() == ISD::EXTLOAD && 13115 Op.getValueType() == MVT::f64; 13116 return false; 13117 } 13118 13119 /// Reduces the number of fp-to-int conversion when building a vector. 13120 /// 13121 /// If this vector is built out of floating to integer conversions, 13122 /// transform it to a vector built out of floating point values followed by a 13123 /// single floating to integer conversion of the vector. 13124 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13125 /// becomes (fptosi (build_vector ($A, $B, ...))) 13126 SDValue PPCTargetLowering:: 13127 combineElementTruncationToVectorTruncation(SDNode *N, 13128 DAGCombinerInfo &DCI) const { 13129 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13130 "Should be called with a BUILD_VECTOR node"); 13131 13132 SelectionDAG &DAG = DCI.DAG; 13133 SDLoc dl(N); 13134 13135 SDValue FirstInput = N->getOperand(0); 13136 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13137 "The input operand must be an fp-to-int conversion."); 13138 13139 // This combine happens after legalization so the fp_to_[su]i nodes are 13140 // already converted to PPCSISD nodes. 13141 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13142 if (FirstConversion == PPCISD::FCTIDZ || 13143 FirstConversion == PPCISD::FCTIDUZ || 13144 FirstConversion == PPCISD::FCTIWZ || 13145 FirstConversion == PPCISD::FCTIWUZ) { 13146 bool IsSplat = true; 13147 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13148 FirstConversion == PPCISD::FCTIWUZ; 13149 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13150 SmallVector<SDValue, 4> Ops; 13151 EVT TargetVT = N->getValueType(0); 13152 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13153 SDValue NextOp = N->getOperand(i); 13154 if (NextOp.getOpcode() != PPCISD::MFVSR) 13155 return SDValue(); 13156 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13157 if (NextConversion != FirstConversion) 13158 return SDValue(); 13159 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13160 // This is not valid if the input was originally double precision. It is 13161 // also not profitable to do unless this is an extending load in which 13162 // case doing this combine will allow us to combine consecutive loads. 13163 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13164 return SDValue(); 13165 if (N->getOperand(i) != FirstInput) 13166 IsSplat = false; 13167 } 13168 13169 // If this is a splat, we leave it as-is since there will be only a single 13170 // fp-to-int conversion followed by a splat of the integer. This is better 13171 // for 32-bit and smaller ints and neutral for 64-bit ints. 13172 if (IsSplat) 13173 return SDValue(); 13174 13175 // Now that we know we have the right type of node, get its operands 13176 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13177 SDValue In = N->getOperand(i).getOperand(0); 13178 if (Is32Bit) { 13179 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13180 // here, we know that all inputs are extending loads so this is safe). 13181 if (In.isUndef()) 13182 Ops.push_back(DAG.getUNDEF(SrcVT)); 13183 else { 13184 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13185 MVT::f32, In.getOperand(0), 13186 DAG.getIntPtrConstant(1, dl)); 13187 Ops.push_back(Trunc); 13188 } 13189 } else 13190 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13191 } 13192 13193 unsigned Opcode; 13194 if (FirstConversion == PPCISD::FCTIDZ || 13195 FirstConversion == PPCISD::FCTIWZ) 13196 Opcode = ISD::FP_TO_SINT; 13197 else 13198 Opcode = ISD::FP_TO_UINT; 13199 13200 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13201 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13202 return DAG.getNode(Opcode, dl, TargetVT, BV); 13203 } 13204 return SDValue(); 13205 } 13206 13207 /// Reduce the number of loads when building a vector. 13208 /// 13209 /// Building a vector out of multiple loads can be converted to a load 13210 /// of the vector type if the loads are consecutive. If the loads are 13211 /// consecutive but in descending order, a shuffle is added at the end 13212 /// to reorder the vector. 13213 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13214 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13215 "Should be called with a BUILD_VECTOR node"); 13216 13217 SDLoc dl(N); 13218 13219 // Return early for non byte-sized type, as they can't be consecutive. 13220 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13221 return SDValue(); 13222 13223 bool InputsAreConsecutiveLoads = true; 13224 bool InputsAreReverseConsecutive = true; 13225 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13226 SDValue FirstInput = N->getOperand(0); 13227 bool IsRoundOfExtLoad = false; 13228 13229 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13230 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13231 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13232 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13233 } 13234 // Not a build vector of (possibly fp_rounded) loads. 13235 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13236 N->getNumOperands() == 1) 13237 return SDValue(); 13238 13239 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13240 // If any inputs are fp_round(extload), they all must be. 13241 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13242 return SDValue(); 13243 13244 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13245 N->getOperand(i); 13246 if (NextInput.getOpcode() != ISD::LOAD) 13247 return SDValue(); 13248 13249 SDValue PreviousInput = 13250 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13251 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13252 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13253 13254 // If any inputs are fp_round(extload), they all must be. 13255 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13256 return SDValue(); 13257 13258 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13259 InputsAreConsecutiveLoads = false; 13260 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13261 InputsAreReverseConsecutive = false; 13262 13263 // Exit early if the loads are neither consecutive nor reverse consecutive. 13264 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13265 return SDValue(); 13266 } 13267 13268 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13269 "The loads cannot be both consecutive and reverse consecutive."); 13270 13271 SDValue FirstLoadOp = 13272 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13273 SDValue LastLoadOp = 13274 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13275 N->getOperand(N->getNumOperands()-1); 13276 13277 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13278 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13279 if (InputsAreConsecutiveLoads) { 13280 assert(LD1 && "Input needs to be a LoadSDNode."); 13281 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13282 LD1->getBasePtr(), LD1->getPointerInfo(), 13283 LD1->getAlignment()); 13284 } 13285 if (InputsAreReverseConsecutive) { 13286 assert(LDL && "Input needs to be a LoadSDNode."); 13287 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13288 LDL->getBasePtr(), LDL->getPointerInfo(), 13289 LDL->getAlignment()); 13290 SmallVector<int, 16> Ops; 13291 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13292 Ops.push_back(i); 13293 13294 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13295 DAG.getUNDEF(N->getValueType(0)), Ops); 13296 } 13297 return SDValue(); 13298 } 13299 13300 // This function adds the required vector_shuffle needed to get 13301 // the elements of the vector extract in the correct position 13302 // as specified by the CorrectElems encoding. 13303 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13304 SDValue Input, uint64_t Elems, 13305 uint64_t CorrectElems) { 13306 SDLoc dl(N); 13307 13308 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13309 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13310 13311 // Knowing the element indices being extracted from the original 13312 // vector and the order in which they're being inserted, just put 13313 // them at element indices required for the instruction. 13314 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13315 if (DAG.getDataLayout().isLittleEndian()) 13316 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13317 else 13318 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13319 CorrectElems = CorrectElems >> 8; 13320 Elems = Elems >> 8; 13321 } 13322 13323 SDValue Shuffle = 13324 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13325 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13326 13327 EVT VT = N->getValueType(0); 13328 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13329 13330 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13331 Input.getValueType().getVectorElementType(), 13332 VT.getVectorNumElements()); 13333 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13334 DAG.getValueType(ExtVT)); 13335 } 13336 13337 // Look for build vector patterns where input operands come from sign 13338 // extended vector_extract elements of specific indices. If the correct indices 13339 // aren't used, add a vector shuffle to fix up the indices and create 13340 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13341 // during instruction selection. 13342 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13343 // This array encodes the indices that the vector sign extend instructions 13344 // extract from when extending from one type to another for both BE and LE. 13345 // The right nibble of each byte corresponds to the LE incides. 13346 // and the left nibble of each byte corresponds to the BE incides. 13347 // For example: 0x3074B8FC byte->word 13348 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13349 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13350 // For example: 0x000070F8 byte->double word 13351 // For LE: the allowed indices are: 0x0,0x8 13352 // For BE: the allowed indices are: 0x7,0xF 13353 uint64_t TargetElems[] = { 13354 0x3074B8FC, // b->w 13355 0x000070F8, // b->d 13356 0x10325476, // h->w 13357 0x00003074, // h->d 13358 0x00001032, // w->d 13359 }; 13360 13361 uint64_t Elems = 0; 13362 int Index; 13363 SDValue Input; 13364 13365 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13366 if (!Op) 13367 return false; 13368 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13369 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13370 return false; 13371 13372 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13373 // of the right width. 13374 SDValue Extract = Op.getOperand(0); 13375 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13376 Extract = Extract.getOperand(0); 13377 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13378 return false; 13379 13380 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13381 if (!ExtOp) 13382 return false; 13383 13384 Index = ExtOp->getZExtValue(); 13385 if (Input && Input != Extract.getOperand(0)) 13386 return false; 13387 13388 if (!Input) 13389 Input = Extract.getOperand(0); 13390 13391 Elems = Elems << 8; 13392 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13393 Elems |= Index; 13394 13395 return true; 13396 }; 13397 13398 // If the build vector operands aren't sign extended vector extracts, 13399 // of the same input vector, then return. 13400 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13401 if (!isSExtOfVecExtract(N->getOperand(i))) { 13402 return SDValue(); 13403 } 13404 } 13405 13406 // If the vector extract indicies are not correct, add the appropriate 13407 // vector_shuffle. 13408 int TgtElemArrayIdx; 13409 int InputSize = Input.getValueType().getScalarSizeInBits(); 13410 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13411 if (InputSize + OutputSize == 40) 13412 TgtElemArrayIdx = 0; 13413 else if (InputSize + OutputSize == 72) 13414 TgtElemArrayIdx = 1; 13415 else if (InputSize + OutputSize == 48) 13416 TgtElemArrayIdx = 2; 13417 else if (InputSize + OutputSize == 80) 13418 TgtElemArrayIdx = 3; 13419 else if (InputSize + OutputSize == 96) 13420 TgtElemArrayIdx = 4; 13421 else 13422 return SDValue(); 13423 13424 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13425 CorrectElems = DAG.getDataLayout().isLittleEndian() 13426 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13427 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13428 if (Elems != CorrectElems) { 13429 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13430 } 13431 13432 // Regular lowering will catch cases where a shuffle is not needed. 13433 return SDValue(); 13434 } 13435 13436 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13437 DAGCombinerInfo &DCI) const { 13438 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13439 "Should be called with a BUILD_VECTOR node"); 13440 13441 SelectionDAG &DAG = DCI.DAG; 13442 SDLoc dl(N); 13443 13444 if (!Subtarget.hasVSX()) 13445 return SDValue(); 13446 13447 // The target independent DAG combiner will leave a build_vector of 13448 // float-to-int conversions intact. We can generate MUCH better code for 13449 // a float-to-int conversion of a vector of floats. 13450 SDValue FirstInput = N->getOperand(0); 13451 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13452 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13453 if (Reduced) 13454 return Reduced; 13455 } 13456 13457 // If we're building a vector out of consecutive loads, just load that 13458 // vector type. 13459 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13460 if (Reduced) 13461 return Reduced; 13462 13463 // If we're building a vector out of extended elements from another vector 13464 // we have P9 vector integer extend instructions. The code assumes legal 13465 // input types (i.e. it can't handle things like v4i16) so do not run before 13466 // legalization. 13467 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13468 Reduced = combineBVOfVecSExt(N, DAG); 13469 if (Reduced) 13470 return Reduced; 13471 } 13472 13473 13474 if (N->getValueType(0) != MVT::v2f64) 13475 return SDValue(); 13476 13477 // Looking for: 13478 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13479 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13480 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13481 return SDValue(); 13482 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13483 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13484 return SDValue(); 13485 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13486 return SDValue(); 13487 13488 SDValue Ext1 = FirstInput.getOperand(0); 13489 SDValue Ext2 = N->getOperand(1).getOperand(0); 13490 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13491 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13492 return SDValue(); 13493 13494 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13495 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13496 if (!Ext1Op || !Ext2Op) 13497 return SDValue(); 13498 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13499 Ext1.getOperand(0) != Ext2.getOperand(0)) 13500 return SDValue(); 13501 13502 int FirstElem = Ext1Op->getZExtValue(); 13503 int SecondElem = Ext2Op->getZExtValue(); 13504 int SubvecIdx; 13505 if (FirstElem == 0 && SecondElem == 1) 13506 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13507 else if (FirstElem == 2 && SecondElem == 3) 13508 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13509 else 13510 return SDValue(); 13511 13512 SDValue SrcVec = Ext1.getOperand(0); 13513 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13514 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13515 return DAG.getNode(NodeType, dl, MVT::v2f64, 13516 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13517 } 13518 13519 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13520 DAGCombinerInfo &DCI) const { 13521 assert((N->getOpcode() == ISD::SINT_TO_FP || 13522 N->getOpcode() == ISD::UINT_TO_FP) && 13523 "Need an int -> FP conversion node here"); 13524 13525 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13526 return SDValue(); 13527 13528 SelectionDAG &DAG = DCI.DAG; 13529 SDLoc dl(N); 13530 SDValue Op(N, 0); 13531 13532 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13533 // from the hardware. 13534 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13535 return SDValue(); 13536 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13537 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13538 return SDValue(); 13539 13540 SDValue FirstOperand(Op.getOperand(0)); 13541 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13542 (FirstOperand.getValueType() == MVT::i8 || 13543 FirstOperand.getValueType() == MVT::i16); 13544 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13545 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13546 bool DstDouble = Op.getValueType() == MVT::f64; 13547 unsigned ConvOp = Signed ? 13548 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13549 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13550 SDValue WidthConst = 13551 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13552 dl, false); 13553 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13554 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13555 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13556 DAG.getVTList(MVT::f64, MVT::Other), 13557 Ops, MVT::i8, LDN->getMemOperand()); 13558 13559 // For signed conversion, we need to sign-extend the value in the VSR 13560 if (Signed) { 13561 SDValue ExtOps[] = { Ld, WidthConst }; 13562 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13563 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13564 } else 13565 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13566 } 13567 13568 13569 // For i32 intermediate values, unfortunately, the conversion functions 13570 // leave the upper 32 bits of the value are undefined. Within the set of 13571 // scalar instructions, we have no method for zero- or sign-extending the 13572 // value. Thus, we cannot handle i32 intermediate values here. 13573 if (Op.getOperand(0).getValueType() == MVT::i32) 13574 return SDValue(); 13575 13576 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13577 "UINT_TO_FP is supported only with FPCVT"); 13578 13579 // If we have FCFIDS, then use it when converting to single-precision. 13580 // Otherwise, convert to double-precision and then round. 13581 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13582 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13583 : PPCISD::FCFIDS) 13584 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13585 : PPCISD::FCFID); 13586 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13587 ? MVT::f32 13588 : MVT::f64; 13589 13590 // If we're converting from a float, to an int, and back to a float again, 13591 // then we don't need the store/load pair at all. 13592 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13593 Subtarget.hasFPCVT()) || 13594 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13595 SDValue Src = Op.getOperand(0).getOperand(0); 13596 if (Src.getValueType() == MVT::f32) { 13597 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13598 DCI.AddToWorklist(Src.getNode()); 13599 } else if (Src.getValueType() != MVT::f64) { 13600 // Make sure that we don't pick up a ppc_fp128 source value. 13601 return SDValue(); 13602 } 13603 13604 unsigned FCTOp = 13605 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13606 PPCISD::FCTIDUZ; 13607 13608 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13609 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13610 13611 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13612 FP = DAG.getNode(ISD::FP_ROUND, dl, 13613 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13614 DCI.AddToWorklist(FP.getNode()); 13615 } 13616 13617 return FP; 13618 } 13619 13620 return SDValue(); 13621 } 13622 13623 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13624 // builtins) into loads with swaps. 13625 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13626 DAGCombinerInfo &DCI) const { 13627 SelectionDAG &DAG = DCI.DAG; 13628 SDLoc dl(N); 13629 SDValue Chain; 13630 SDValue Base; 13631 MachineMemOperand *MMO; 13632 13633 switch (N->getOpcode()) { 13634 default: 13635 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13636 case ISD::LOAD: { 13637 LoadSDNode *LD = cast<LoadSDNode>(N); 13638 Chain = LD->getChain(); 13639 Base = LD->getBasePtr(); 13640 MMO = LD->getMemOperand(); 13641 // If the MMO suggests this isn't a load of a full vector, leave 13642 // things alone. For a built-in, we have to make the change for 13643 // correctness, so if there is a size problem that will be a bug. 13644 if (MMO->getSize() < 16) 13645 return SDValue(); 13646 break; 13647 } 13648 case ISD::INTRINSIC_W_CHAIN: { 13649 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13650 Chain = Intrin->getChain(); 13651 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13652 // us what we want. Get operand 2 instead. 13653 Base = Intrin->getOperand(2); 13654 MMO = Intrin->getMemOperand(); 13655 break; 13656 } 13657 } 13658 13659 MVT VecTy = N->getValueType(0).getSimpleVT(); 13660 13661 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13662 // aligned and the type is a vector with elements up to 4 bytes 13663 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13664 && VecTy.getScalarSizeInBits() <= 32 ) { 13665 return SDValue(); 13666 } 13667 13668 SDValue LoadOps[] = { Chain, Base }; 13669 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13670 DAG.getVTList(MVT::v2f64, MVT::Other), 13671 LoadOps, MVT::v2f64, MMO); 13672 13673 DCI.AddToWorklist(Load.getNode()); 13674 Chain = Load.getValue(1); 13675 SDValue Swap = DAG.getNode( 13676 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13677 DCI.AddToWorklist(Swap.getNode()); 13678 13679 // Add a bitcast if the resulting load type doesn't match v2f64. 13680 if (VecTy != MVT::v2f64) { 13681 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13682 DCI.AddToWorklist(N.getNode()); 13683 // Package {bitcast value, swap's chain} to match Load's shape. 13684 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13685 N, Swap.getValue(1)); 13686 } 13687 13688 return Swap; 13689 } 13690 13691 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13692 // builtins) into stores with swaps. 13693 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13694 DAGCombinerInfo &DCI) const { 13695 SelectionDAG &DAG = DCI.DAG; 13696 SDLoc dl(N); 13697 SDValue Chain; 13698 SDValue Base; 13699 unsigned SrcOpnd; 13700 MachineMemOperand *MMO; 13701 13702 switch (N->getOpcode()) { 13703 default: 13704 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13705 case ISD::STORE: { 13706 StoreSDNode *ST = cast<StoreSDNode>(N); 13707 Chain = ST->getChain(); 13708 Base = ST->getBasePtr(); 13709 MMO = ST->getMemOperand(); 13710 SrcOpnd = 1; 13711 // If the MMO suggests this isn't a store of a full vector, leave 13712 // things alone. For a built-in, we have to make the change for 13713 // correctness, so if there is a size problem that will be a bug. 13714 if (MMO->getSize() < 16) 13715 return SDValue(); 13716 break; 13717 } 13718 case ISD::INTRINSIC_VOID: { 13719 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13720 Chain = Intrin->getChain(); 13721 // Intrin->getBasePtr() oddly does not get what we want. 13722 Base = Intrin->getOperand(3); 13723 MMO = Intrin->getMemOperand(); 13724 SrcOpnd = 2; 13725 break; 13726 } 13727 } 13728 13729 SDValue Src = N->getOperand(SrcOpnd); 13730 MVT VecTy = Src.getValueType().getSimpleVT(); 13731 13732 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13733 // aligned and the type is a vector with elements up to 4 bytes 13734 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13735 && VecTy.getScalarSizeInBits() <= 32 ) { 13736 return SDValue(); 13737 } 13738 13739 // All stores are done as v2f64 and possible bit cast. 13740 if (VecTy != MVT::v2f64) { 13741 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13742 DCI.AddToWorklist(Src.getNode()); 13743 } 13744 13745 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13746 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13747 DCI.AddToWorklist(Swap.getNode()); 13748 Chain = Swap.getValue(1); 13749 SDValue StoreOps[] = { Chain, Swap, Base }; 13750 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13751 DAG.getVTList(MVT::Other), 13752 StoreOps, VecTy, MMO); 13753 DCI.AddToWorklist(Store.getNode()); 13754 return Store; 13755 } 13756 13757 // Handle DAG combine for STORE (FP_TO_INT F). 13758 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13759 DAGCombinerInfo &DCI) const { 13760 13761 SelectionDAG &DAG = DCI.DAG; 13762 SDLoc dl(N); 13763 unsigned Opcode = N->getOperand(1).getOpcode(); 13764 13765 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13766 && "Not a FP_TO_INT Instruction!"); 13767 13768 SDValue Val = N->getOperand(1).getOperand(0); 13769 EVT Op1VT = N->getOperand(1).getValueType(); 13770 EVT ResVT = Val.getValueType(); 13771 13772 // Floating point types smaller than 32 bits are not legal on Power. 13773 if (ResVT.getScalarSizeInBits() < 32) 13774 return SDValue(); 13775 13776 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13777 bool ValidTypeForStoreFltAsInt = 13778 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13779 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13780 13781 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 13782 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13783 return SDValue(); 13784 13785 // Extend f32 values to f64 13786 if (ResVT.getScalarSizeInBits() == 32) { 13787 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13788 DCI.AddToWorklist(Val.getNode()); 13789 } 13790 13791 // Set signed or unsigned conversion opcode. 13792 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13793 PPCISD::FP_TO_SINT_IN_VSR : 13794 PPCISD::FP_TO_UINT_IN_VSR; 13795 13796 Val = DAG.getNode(ConvOpcode, 13797 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13798 DCI.AddToWorklist(Val.getNode()); 13799 13800 // Set number of bytes being converted. 13801 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13802 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13803 DAG.getIntPtrConstant(ByteSize, dl, false), 13804 DAG.getValueType(Op1VT) }; 13805 13806 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13807 DAG.getVTList(MVT::Other), Ops, 13808 cast<StoreSDNode>(N)->getMemoryVT(), 13809 cast<StoreSDNode>(N)->getMemOperand()); 13810 13811 DCI.AddToWorklist(Val.getNode()); 13812 return Val; 13813 } 13814 13815 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13816 LSBaseSDNode *LSBase, 13817 DAGCombinerInfo &DCI) const { 13818 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13819 "Not a reverse memop pattern!"); 13820 13821 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13822 auto Mask = SVN->getMask(); 13823 int i = 0; 13824 auto I = Mask.rbegin(); 13825 auto E = Mask.rend(); 13826 13827 for (; I != E; ++I) { 13828 if (*I != i) 13829 return false; 13830 i++; 13831 } 13832 return true; 13833 }; 13834 13835 SelectionDAG &DAG = DCI.DAG; 13836 EVT VT = SVN->getValueType(0); 13837 13838 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13839 return SDValue(); 13840 13841 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13842 // See comment in PPCVSXSwapRemoval.cpp. 13843 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13844 if (!Subtarget.hasP9Vector()) 13845 return SDValue(); 13846 13847 if(!IsElementReverse(SVN)) 13848 return SDValue(); 13849 13850 if (LSBase->getOpcode() == ISD::LOAD) { 13851 SDLoc dl(SVN); 13852 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13853 return DAG.getMemIntrinsicNode( 13854 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13855 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13856 } 13857 13858 if (LSBase->getOpcode() == ISD::STORE) { 13859 SDLoc dl(LSBase); 13860 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13861 LSBase->getBasePtr()}; 13862 return DAG.getMemIntrinsicNode( 13863 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13864 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13865 } 13866 13867 llvm_unreachable("Expected a load or store node here"); 13868 } 13869 13870 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13871 DAGCombinerInfo &DCI) const { 13872 SelectionDAG &DAG = DCI.DAG; 13873 SDLoc dl(N); 13874 switch (N->getOpcode()) { 13875 default: break; 13876 case ISD::ADD: 13877 return combineADD(N, DCI); 13878 case ISD::SHL: 13879 return combineSHL(N, DCI); 13880 case ISD::SRA: 13881 return combineSRA(N, DCI); 13882 case ISD::SRL: 13883 return combineSRL(N, DCI); 13884 case ISD::MUL: 13885 return combineMUL(N, DCI); 13886 case PPCISD::SHL: 13887 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13888 return N->getOperand(0); 13889 break; 13890 case PPCISD::SRL: 13891 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13892 return N->getOperand(0); 13893 break; 13894 case PPCISD::SRA: 13895 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13896 if (C->isNullValue() || // 0 >>s V -> 0. 13897 C->isAllOnesValue()) // -1 >>s V -> -1. 13898 return N->getOperand(0); 13899 } 13900 break; 13901 case ISD::SIGN_EXTEND: 13902 case ISD::ZERO_EXTEND: 13903 case ISD::ANY_EXTEND: 13904 return DAGCombineExtBoolTrunc(N, DCI); 13905 case ISD::TRUNCATE: 13906 return combineTRUNCATE(N, DCI); 13907 case ISD::SETCC: 13908 if (SDValue CSCC = combineSetCC(N, DCI)) 13909 return CSCC; 13910 LLVM_FALLTHROUGH; 13911 case ISD::SELECT_CC: 13912 return DAGCombineTruncBoolExt(N, DCI); 13913 case ISD::SINT_TO_FP: 13914 case ISD::UINT_TO_FP: 13915 return combineFPToIntToFP(N, DCI); 13916 case ISD::VECTOR_SHUFFLE: 13917 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13918 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13919 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13920 } 13921 break; 13922 case ISD::STORE: { 13923 13924 EVT Op1VT = N->getOperand(1).getValueType(); 13925 unsigned Opcode = N->getOperand(1).getOpcode(); 13926 13927 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13928 SDValue Val= combineStoreFPToInt(N, DCI); 13929 if (Val) 13930 return Val; 13931 } 13932 13933 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13934 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13935 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13936 if (Val) 13937 return Val; 13938 } 13939 13940 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13941 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13942 N->getOperand(1).getNode()->hasOneUse() && 13943 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13944 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13945 13946 // STBRX can only handle simple types and it makes no sense to store less 13947 // two bytes in byte-reversed order. 13948 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13949 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13950 break; 13951 13952 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13953 // Do an any-extend to 32-bits if this is a half-word input. 13954 if (BSwapOp.getValueType() == MVT::i16) 13955 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13956 13957 // If the type of BSWAP operand is wider than stored memory width 13958 // it need to be shifted to the right side before STBRX. 13959 if (Op1VT.bitsGT(mVT)) { 13960 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13961 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13962 DAG.getConstant(Shift, dl, MVT::i32)); 13963 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13964 if (Op1VT == MVT::i64) 13965 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13966 } 13967 13968 SDValue Ops[] = { 13969 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13970 }; 13971 return 13972 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13973 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13974 cast<StoreSDNode>(N)->getMemOperand()); 13975 } 13976 13977 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13978 // So it can increase the chance of CSE constant construction. 13979 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13980 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13981 // Need to sign-extended to 64-bits to handle negative values. 13982 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13983 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13984 MemVT.getSizeInBits()); 13985 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13986 13987 // DAG.getTruncStore() can't be used here because it doesn't accept 13988 // the general (base + offset) addressing mode. 13989 // So we use UpdateNodeOperands and setTruncatingStore instead. 13990 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13991 N->getOperand(3)); 13992 cast<StoreSDNode>(N)->setTruncatingStore(true); 13993 return SDValue(N, 0); 13994 } 13995 13996 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13997 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13998 if (Op1VT.isSimple()) { 13999 MVT StoreVT = Op1VT.getSimpleVT(); 14000 if (Subtarget.needsSwapsForVSXMemOps() && 14001 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14002 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14003 return expandVSXStoreForLE(N, DCI); 14004 } 14005 break; 14006 } 14007 case ISD::LOAD: { 14008 LoadSDNode *LD = cast<LoadSDNode>(N); 14009 EVT VT = LD->getValueType(0); 14010 14011 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14012 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14013 if (VT.isSimple()) { 14014 MVT LoadVT = VT.getSimpleVT(); 14015 if (Subtarget.needsSwapsForVSXMemOps() && 14016 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14017 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14018 return expandVSXLoadForLE(N, DCI); 14019 } 14020 14021 // We sometimes end up with a 64-bit integer load, from which we extract 14022 // two single-precision floating-point numbers. This happens with 14023 // std::complex<float>, and other similar structures, because of the way we 14024 // canonicalize structure copies. However, if we lack direct moves, 14025 // then the final bitcasts from the extracted integer values to the 14026 // floating-point numbers turn into store/load pairs. Even with direct moves, 14027 // just loading the two floating-point numbers is likely better. 14028 auto ReplaceTwoFloatLoad = [&]() { 14029 if (VT != MVT::i64) 14030 return false; 14031 14032 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14033 LD->isVolatile()) 14034 return false; 14035 14036 // We're looking for a sequence like this: 14037 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14038 // t16: i64 = srl t13, Constant:i32<32> 14039 // t17: i32 = truncate t16 14040 // t18: f32 = bitcast t17 14041 // t19: i32 = truncate t13 14042 // t20: f32 = bitcast t19 14043 14044 if (!LD->hasNUsesOfValue(2, 0)) 14045 return false; 14046 14047 auto UI = LD->use_begin(); 14048 while (UI.getUse().getResNo() != 0) ++UI; 14049 SDNode *Trunc = *UI++; 14050 while (UI.getUse().getResNo() != 0) ++UI; 14051 SDNode *RightShift = *UI; 14052 if (Trunc->getOpcode() != ISD::TRUNCATE) 14053 std::swap(Trunc, RightShift); 14054 14055 if (Trunc->getOpcode() != ISD::TRUNCATE || 14056 Trunc->getValueType(0) != MVT::i32 || 14057 !Trunc->hasOneUse()) 14058 return false; 14059 if (RightShift->getOpcode() != ISD::SRL || 14060 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14061 RightShift->getConstantOperandVal(1) != 32 || 14062 !RightShift->hasOneUse()) 14063 return false; 14064 14065 SDNode *Trunc2 = *RightShift->use_begin(); 14066 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14067 Trunc2->getValueType(0) != MVT::i32 || 14068 !Trunc2->hasOneUse()) 14069 return false; 14070 14071 SDNode *Bitcast = *Trunc->use_begin(); 14072 SDNode *Bitcast2 = *Trunc2->use_begin(); 14073 14074 if (Bitcast->getOpcode() != ISD::BITCAST || 14075 Bitcast->getValueType(0) != MVT::f32) 14076 return false; 14077 if (Bitcast2->getOpcode() != ISD::BITCAST || 14078 Bitcast2->getValueType(0) != MVT::f32) 14079 return false; 14080 14081 if (Subtarget.isLittleEndian()) 14082 std::swap(Bitcast, Bitcast2); 14083 14084 // Bitcast has the second float (in memory-layout order) and Bitcast2 14085 // has the first one. 14086 14087 SDValue BasePtr = LD->getBasePtr(); 14088 if (LD->isIndexed()) { 14089 assert(LD->getAddressingMode() == ISD::PRE_INC && 14090 "Non-pre-inc AM on PPC?"); 14091 BasePtr = 14092 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14093 LD->getOffset()); 14094 } 14095 14096 auto MMOFlags = 14097 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14098 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14099 LD->getPointerInfo(), LD->getAlignment(), 14100 MMOFlags, LD->getAAInfo()); 14101 SDValue AddPtr = 14102 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14103 BasePtr, DAG.getIntPtrConstant(4, dl)); 14104 SDValue FloatLoad2 = DAG.getLoad( 14105 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14106 LD->getPointerInfo().getWithOffset(4), 14107 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14108 14109 if (LD->isIndexed()) { 14110 // Note that DAGCombine should re-form any pre-increment load(s) from 14111 // what is produced here if that makes sense. 14112 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14113 } 14114 14115 DCI.CombineTo(Bitcast2, FloatLoad); 14116 DCI.CombineTo(Bitcast, FloatLoad2); 14117 14118 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14119 SDValue(FloatLoad2.getNode(), 1)); 14120 return true; 14121 }; 14122 14123 if (ReplaceTwoFloatLoad()) 14124 return SDValue(N, 0); 14125 14126 EVT MemVT = LD->getMemoryVT(); 14127 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14128 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14129 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14130 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14131 if (LD->isUnindexed() && VT.isVector() && 14132 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14133 // P8 and later hardware should just use LOAD. 14134 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14135 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14136 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14137 LD->getAlignment() >= ScalarABIAlignment)) && 14138 LD->getAlignment() < ABIAlignment) { 14139 // This is a type-legal unaligned Altivec or QPX load. 14140 SDValue Chain = LD->getChain(); 14141 SDValue Ptr = LD->getBasePtr(); 14142 bool isLittleEndian = Subtarget.isLittleEndian(); 14143 14144 // This implements the loading of unaligned vectors as described in 14145 // the venerable Apple Velocity Engine overview. Specifically: 14146 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14147 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14148 // 14149 // The general idea is to expand a sequence of one or more unaligned 14150 // loads into an alignment-based permutation-control instruction (lvsl 14151 // or lvsr), a series of regular vector loads (which always truncate 14152 // their input address to an aligned address), and a series of 14153 // permutations. The results of these permutations are the requested 14154 // loaded values. The trick is that the last "extra" load is not taken 14155 // from the address you might suspect (sizeof(vector) bytes after the 14156 // last requested load), but rather sizeof(vector) - 1 bytes after the 14157 // last requested vector. The point of this is to avoid a page fault if 14158 // the base address happened to be aligned. This works because if the 14159 // base address is aligned, then adding less than a full vector length 14160 // will cause the last vector in the sequence to be (re)loaded. 14161 // Otherwise, the next vector will be fetched as you might suspect was 14162 // necessary. 14163 14164 // We might be able to reuse the permutation generation from 14165 // a different base address offset from this one by an aligned amount. 14166 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14167 // optimization later. 14168 Intrinsic::ID Intr, IntrLD, IntrPerm; 14169 MVT PermCntlTy, PermTy, LDTy; 14170 if (Subtarget.hasAltivec()) { 14171 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14172 Intrinsic::ppc_altivec_lvsl; 14173 IntrLD = Intrinsic::ppc_altivec_lvx; 14174 IntrPerm = Intrinsic::ppc_altivec_vperm; 14175 PermCntlTy = MVT::v16i8; 14176 PermTy = MVT::v4i32; 14177 LDTy = MVT::v4i32; 14178 } else { 14179 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14180 Intrinsic::ppc_qpx_qvlpcls; 14181 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14182 Intrinsic::ppc_qpx_qvlfs; 14183 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14184 PermCntlTy = MVT::v4f64; 14185 PermTy = MVT::v4f64; 14186 LDTy = MemVT.getSimpleVT(); 14187 } 14188 14189 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14190 14191 // Create the new MMO for the new base load. It is like the original MMO, 14192 // but represents an area in memory almost twice the vector size centered 14193 // on the original address. If the address is unaligned, we might start 14194 // reading up to (sizeof(vector)-1) bytes below the address of the 14195 // original unaligned load. 14196 MachineFunction &MF = DAG.getMachineFunction(); 14197 MachineMemOperand *BaseMMO = 14198 MF.getMachineMemOperand(LD->getMemOperand(), 14199 -(long)MemVT.getStoreSize()+1, 14200 2*MemVT.getStoreSize()-1); 14201 14202 // Create the new base load. 14203 SDValue LDXIntID = 14204 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14205 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14206 SDValue BaseLoad = 14207 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14208 DAG.getVTList(PermTy, MVT::Other), 14209 BaseLoadOps, LDTy, BaseMMO); 14210 14211 // Note that the value of IncOffset (which is provided to the next 14212 // load's pointer info offset value, and thus used to calculate the 14213 // alignment), and the value of IncValue (which is actually used to 14214 // increment the pointer value) are different! This is because we 14215 // require the next load to appear to be aligned, even though it 14216 // is actually offset from the base pointer by a lesser amount. 14217 int IncOffset = VT.getSizeInBits() / 8; 14218 int IncValue = IncOffset; 14219 14220 // Walk (both up and down) the chain looking for another load at the real 14221 // (aligned) offset (the alignment of the other load does not matter in 14222 // this case). If found, then do not use the offset reduction trick, as 14223 // that will prevent the loads from being later combined (as they would 14224 // otherwise be duplicates). 14225 if (!findConsecutiveLoad(LD, DAG)) 14226 --IncValue; 14227 14228 SDValue Increment = 14229 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14230 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14231 14232 MachineMemOperand *ExtraMMO = 14233 MF.getMachineMemOperand(LD->getMemOperand(), 14234 1, 2*MemVT.getStoreSize()-1); 14235 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14236 SDValue ExtraLoad = 14237 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14238 DAG.getVTList(PermTy, MVT::Other), 14239 ExtraLoadOps, LDTy, ExtraMMO); 14240 14241 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14242 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14243 14244 // Because vperm has a big-endian bias, we must reverse the order 14245 // of the input vectors and complement the permute control vector 14246 // when generating little endian code. We have already handled the 14247 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14248 // and ExtraLoad here. 14249 SDValue Perm; 14250 if (isLittleEndian) 14251 Perm = BuildIntrinsicOp(IntrPerm, 14252 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14253 else 14254 Perm = BuildIntrinsicOp(IntrPerm, 14255 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14256 14257 if (VT != PermTy) 14258 Perm = Subtarget.hasAltivec() ? 14259 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14260 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14261 DAG.getTargetConstant(1, dl, MVT::i64)); 14262 // second argument is 1 because this rounding 14263 // is always exact. 14264 14265 // The output of the permutation is our loaded result, the TokenFactor is 14266 // our new chain. 14267 DCI.CombineTo(N, Perm, TF); 14268 return SDValue(N, 0); 14269 } 14270 } 14271 break; 14272 case ISD::INTRINSIC_WO_CHAIN: { 14273 bool isLittleEndian = Subtarget.isLittleEndian(); 14274 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14275 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14276 : Intrinsic::ppc_altivec_lvsl); 14277 if ((IID == Intr || 14278 IID == Intrinsic::ppc_qpx_qvlpcld || 14279 IID == Intrinsic::ppc_qpx_qvlpcls) && 14280 N->getOperand(1)->getOpcode() == ISD::ADD) { 14281 SDValue Add = N->getOperand(1); 14282 14283 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14284 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14285 14286 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14287 APInt::getAllOnesValue(Bits /* alignment */) 14288 .zext(Add.getScalarValueSizeInBits()))) { 14289 SDNode *BasePtr = Add->getOperand(0).getNode(); 14290 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14291 UE = BasePtr->use_end(); 14292 UI != UE; ++UI) { 14293 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14294 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14295 // We've found another LVSL/LVSR, and this address is an aligned 14296 // multiple of that one. The results will be the same, so use the 14297 // one we've just found instead. 14298 14299 return SDValue(*UI, 0); 14300 } 14301 } 14302 } 14303 14304 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14305 SDNode *BasePtr = Add->getOperand(0).getNode(); 14306 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14307 UE = BasePtr->use_end(); UI != UE; ++UI) { 14308 if (UI->getOpcode() == ISD::ADD && 14309 isa<ConstantSDNode>(UI->getOperand(1)) && 14310 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14311 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14312 (1ULL << Bits) == 0) { 14313 SDNode *OtherAdd = *UI; 14314 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14315 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14316 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14317 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14318 return SDValue(*VI, 0); 14319 } 14320 } 14321 } 14322 } 14323 } 14324 } 14325 14326 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14327 // Expose the vabsduw/h/b opportunity for down stream 14328 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14329 (IID == Intrinsic::ppc_altivec_vmaxsw || 14330 IID == Intrinsic::ppc_altivec_vmaxsh || 14331 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14332 SDValue V1 = N->getOperand(1); 14333 SDValue V2 = N->getOperand(2); 14334 if ((V1.getSimpleValueType() == MVT::v4i32 || 14335 V1.getSimpleValueType() == MVT::v8i16 || 14336 V1.getSimpleValueType() == MVT::v16i8) && 14337 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14338 // (0-a, a) 14339 if (V1.getOpcode() == ISD::SUB && 14340 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14341 V1.getOperand(1) == V2) { 14342 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14343 } 14344 // (a, 0-a) 14345 if (V2.getOpcode() == ISD::SUB && 14346 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14347 V2.getOperand(1) == V1) { 14348 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14349 } 14350 // (x-y, y-x) 14351 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14352 V1.getOperand(0) == V2.getOperand(1) && 14353 V1.getOperand(1) == V2.getOperand(0)) { 14354 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14355 } 14356 } 14357 } 14358 } 14359 14360 break; 14361 case ISD::INTRINSIC_W_CHAIN: 14362 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14363 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14364 if (Subtarget.needsSwapsForVSXMemOps()) { 14365 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14366 default: 14367 break; 14368 case Intrinsic::ppc_vsx_lxvw4x: 14369 case Intrinsic::ppc_vsx_lxvd2x: 14370 return expandVSXLoadForLE(N, DCI); 14371 } 14372 } 14373 break; 14374 case ISD::INTRINSIC_VOID: 14375 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14376 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14377 if (Subtarget.needsSwapsForVSXMemOps()) { 14378 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14379 default: 14380 break; 14381 case Intrinsic::ppc_vsx_stxvw4x: 14382 case Intrinsic::ppc_vsx_stxvd2x: 14383 return expandVSXStoreForLE(N, DCI); 14384 } 14385 } 14386 break; 14387 case ISD::BSWAP: 14388 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14389 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14390 N->getOperand(0).hasOneUse() && 14391 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14392 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14393 N->getValueType(0) == MVT::i64))) { 14394 SDValue Load = N->getOperand(0); 14395 LoadSDNode *LD = cast<LoadSDNode>(Load); 14396 // Create the byte-swapping load. 14397 SDValue Ops[] = { 14398 LD->getChain(), // Chain 14399 LD->getBasePtr(), // Ptr 14400 DAG.getValueType(N->getValueType(0)) // VT 14401 }; 14402 SDValue BSLoad = 14403 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14404 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14405 MVT::i64 : MVT::i32, MVT::Other), 14406 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14407 14408 // If this is an i16 load, insert the truncate. 14409 SDValue ResVal = BSLoad; 14410 if (N->getValueType(0) == MVT::i16) 14411 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14412 14413 // First, combine the bswap away. This makes the value produced by the 14414 // load dead. 14415 DCI.CombineTo(N, ResVal); 14416 14417 // Next, combine the load away, we give it a bogus result value but a real 14418 // chain result. The result value is dead because the bswap is dead. 14419 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14420 14421 // Return N so it doesn't get rechecked! 14422 return SDValue(N, 0); 14423 } 14424 break; 14425 case PPCISD::VCMP: 14426 // If a VCMPo node already exists with exactly the same operands as this 14427 // node, use its result instead of this node (VCMPo computes both a CR6 and 14428 // a normal output). 14429 // 14430 if (!N->getOperand(0).hasOneUse() && 14431 !N->getOperand(1).hasOneUse() && 14432 !N->getOperand(2).hasOneUse()) { 14433 14434 // Scan all of the users of the LHS, looking for VCMPo's that match. 14435 SDNode *VCMPoNode = nullptr; 14436 14437 SDNode *LHSN = N->getOperand(0).getNode(); 14438 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14439 UI != E; ++UI) 14440 if (UI->getOpcode() == PPCISD::VCMPo && 14441 UI->getOperand(1) == N->getOperand(1) && 14442 UI->getOperand(2) == N->getOperand(2) && 14443 UI->getOperand(0) == N->getOperand(0)) { 14444 VCMPoNode = *UI; 14445 break; 14446 } 14447 14448 // If there is no VCMPo node, or if the flag value has a single use, don't 14449 // transform this. 14450 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14451 break; 14452 14453 // Look at the (necessarily single) use of the flag value. If it has a 14454 // chain, this transformation is more complex. Note that multiple things 14455 // could use the value result, which we should ignore. 14456 SDNode *FlagUser = nullptr; 14457 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14458 FlagUser == nullptr; ++UI) { 14459 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14460 SDNode *User = *UI; 14461 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14462 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14463 FlagUser = User; 14464 break; 14465 } 14466 } 14467 } 14468 14469 // If the user is a MFOCRF instruction, we know this is safe. 14470 // Otherwise we give up for right now. 14471 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14472 return SDValue(VCMPoNode, 0); 14473 } 14474 break; 14475 case ISD::BRCOND: { 14476 SDValue Cond = N->getOperand(1); 14477 SDValue Target = N->getOperand(2); 14478 14479 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14480 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14481 Intrinsic::loop_decrement) { 14482 14483 // We now need to make the intrinsic dead (it cannot be instruction 14484 // selected). 14485 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14486 assert(Cond.getNode()->hasOneUse() && 14487 "Counter decrement has more than one use"); 14488 14489 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14490 N->getOperand(0), Target); 14491 } 14492 } 14493 break; 14494 case ISD::BR_CC: { 14495 // If this is a branch on an altivec predicate comparison, lower this so 14496 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14497 // lowering is done pre-legalize, because the legalizer lowers the predicate 14498 // compare down to code that is difficult to reassemble. 14499 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14500 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14501 14502 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14503 // value. If so, pass-through the AND to get to the intrinsic. 14504 if (LHS.getOpcode() == ISD::AND && 14505 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14506 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14507 Intrinsic::loop_decrement && 14508 isa<ConstantSDNode>(LHS.getOperand(1)) && 14509 !isNullConstant(LHS.getOperand(1))) 14510 LHS = LHS.getOperand(0); 14511 14512 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14513 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14514 Intrinsic::loop_decrement && 14515 isa<ConstantSDNode>(RHS)) { 14516 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14517 "Counter decrement comparison is not EQ or NE"); 14518 14519 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14520 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14521 (CC == ISD::SETNE && !Val); 14522 14523 // We now need to make the intrinsic dead (it cannot be instruction 14524 // selected). 14525 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14526 assert(LHS.getNode()->hasOneUse() && 14527 "Counter decrement has more than one use"); 14528 14529 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14530 N->getOperand(0), N->getOperand(4)); 14531 } 14532 14533 int CompareOpc; 14534 bool isDot; 14535 14536 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14537 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14538 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14539 assert(isDot && "Can't compare against a vector result!"); 14540 14541 // If this is a comparison against something other than 0/1, then we know 14542 // that the condition is never/always true. 14543 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14544 if (Val != 0 && Val != 1) { 14545 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14546 return N->getOperand(0); 14547 // Always !=, turn it into an unconditional branch. 14548 return DAG.getNode(ISD::BR, dl, MVT::Other, 14549 N->getOperand(0), N->getOperand(4)); 14550 } 14551 14552 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14553 14554 // Create the PPCISD altivec 'dot' comparison node. 14555 SDValue Ops[] = { 14556 LHS.getOperand(2), // LHS of compare 14557 LHS.getOperand(3), // RHS of compare 14558 DAG.getConstant(CompareOpc, dl, MVT::i32) 14559 }; 14560 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14561 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14562 14563 // Unpack the result based on how the target uses it. 14564 PPC::Predicate CompOpc; 14565 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14566 default: // Can't happen, don't crash on invalid number though. 14567 case 0: // Branch on the value of the EQ bit of CR6. 14568 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14569 break; 14570 case 1: // Branch on the inverted value of the EQ bit of CR6. 14571 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14572 break; 14573 case 2: // Branch on the value of the LT bit of CR6. 14574 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14575 break; 14576 case 3: // Branch on the inverted value of the LT bit of CR6. 14577 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14578 break; 14579 } 14580 14581 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14582 DAG.getConstant(CompOpc, dl, MVT::i32), 14583 DAG.getRegister(PPC::CR6, MVT::i32), 14584 N->getOperand(4), CompNode.getValue(1)); 14585 } 14586 break; 14587 } 14588 case ISD::BUILD_VECTOR: 14589 return DAGCombineBuildVector(N, DCI); 14590 case ISD::ABS: 14591 return combineABS(N, DCI); 14592 case ISD::VSELECT: 14593 return combineVSelect(N, DCI); 14594 } 14595 14596 return SDValue(); 14597 } 14598 14599 SDValue 14600 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14601 SelectionDAG &DAG, 14602 SmallVectorImpl<SDNode *> &Created) const { 14603 // fold (sdiv X, pow2) 14604 EVT VT = N->getValueType(0); 14605 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14606 return SDValue(); 14607 if ((VT != MVT::i32 && VT != MVT::i64) || 14608 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14609 return SDValue(); 14610 14611 SDLoc DL(N); 14612 SDValue N0 = N->getOperand(0); 14613 14614 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14615 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14616 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14617 14618 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14619 Created.push_back(Op.getNode()); 14620 14621 if (IsNegPow2) { 14622 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14623 Created.push_back(Op.getNode()); 14624 } 14625 14626 return Op; 14627 } 14628 14629 //===----------------------------------------------------------------------===// 14630 // Inline Assembly Support 14631 //===----------------------------------------------------------------------===// 14632 14633 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14634 KnownBits &Known, 14635 const APInt &DemandedElts, 14636 const SelectionDAG &DAG, 14637 unsigned Depth) const { 14638 Known.resetAll(); 14639 switch (Op.getOpcode()) { 14640 default: break; 14641 case PPCISD::LBRX: { 14642 // lhbrx is known to have the top bits cleared out. 14643 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14644 Known.Zero = 0xFFFF0000; 14645 break; 14646 } 14647 case ISD::INTRINSIC_WO_CHAIN: { 14648 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14649 default: break; 14650 case Intrinsic::ppc_altivec_vcmpbfp_p: 14651 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14652 case Intrinsic::ppc_altivec_vcmpequb_p: 14653 case Intrinsic::ppc_altivec_vcmpequh_p: 14654 case Intrinsic::ppc_altivec_vcmpequw_p: 14655 case Intrinsic::ppc_altivec_vcmpequd_p: 14656 case Intrinsic::ppc_altivec_vcmpgefp_p: 14657 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14658 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14659 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14660 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14661 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14662 case Intrinsic::ppc_altivec_vcmpgtub_p: 14663 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14664 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14665 case Intrinsic::ppc_altivec_vcmpgtud_p: 14666 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14667 break; 14668 } 14669 } 14670 } 14671 } 14672 14673 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14674 switch (Subtarget.getCPUDirective()) { 14675 default: break; 14676 case PPC::DIR_970: 14677 case PPC::DIR_PWR4: 14678 case PPC::DIR_PWR5: 14679 case PPC::DIR_PWR5X: 14680 case PPC::DIR_PWR6: 14681 case PPC::DIR_PWR6X: 14682 case PPC::DIR_PWR7: 14683 case PPC::DIR_PWR8: 14684 case PPC::DIR_PWR9: 14685 case PPC::DIR_PWR_FUTURE: { 14686 if (!ML) 14687 break; 14688 14689 if (!DisableInnermostLoopAlign32) { 14690 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14691 // so that we can decrease cache misses and branch-prediction misses. 14692 // Actual alignment of the loop will depend on the hotness check and other 14693 // logic in alignBlocks. 14694 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14695 return Align(32); 14696 } 14697 14698 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14699 14700 // For small loops (between 5 and 8 instructions), align to a 32-byte 14701 // boundary so that the entire loop fits in one instruction-cache line. 14702 uint64_t LoopSize = 0; 14703 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14704 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14705 LoopSize += TII->getInstSizeInBytes(*J); 14706 if (LoopSize > 32) 14707 break; 14708 } 14709 14710 if (LoopSize > 16 && LoopSize <= 32) 14711 return Align(32); 14712 14713 break; 14714 } 14715 } 14716 14717 return TargetLowering::getPrefLoopAlignment(ML); 14718 } 14719 14720 /// getConstraintType - Given a constraint, return the type of 14721 /// constraint it is for this target. 14722 PPCTargetLowering::ConstraintType 14723 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14724 if (Constraint.size() == 1) { 14725 switch (Constraint[0]) { 14726 default: break; 14727 case 'b': 14728 case 'r': 14729 case 'f': 14730 case 'd': 14731 case 'v': 14732 case 'y': 14733 return C_RegisterClass; 14734 case 'Z': 14735 // FIXME: While Z does indicate a memory constraint, it specifically 14736 // indicates an r+r address (used in conjunction with the 'y' modifier 14737 // in the replacement string). Currently, we're forcing the base 14738 // register to be r0 in the asm printer (which is interpreted as zero) 14739 // and forming the complete address in the second register. This is 14740 // suboptimal. 14741 return C_Memory; 14742 } 14743 } else if (Constraint == "wc") { // individual CR bits. 14744 return C_RegisterClass; 14745 } else if (Constraint == "wa" || Constraint == "wd" || 14746 Constraint == "wf" || Constraint == "ws" || 14747 Constraint == "wi" || Constraint == "ww") { 14748 return C_RegisterClass; // VSX registers. 14749 } 14750 return TargetLowering::getConstraintType(Constraint); 14751 } 14752 14753 /// Examine constraint type and operand type and determine a weight value. 14754 /// This object must already have been set up with the operand type 14755 /// and the current alternative constraint selected. 14756 TargetLowering::ConstraintWeight 14757 PPCTargetLowering::getSingleConstraintMatchWeight( 14758 AsmOperandInfo &info, const char *constraint) const { 14759 ConstraintWeight weight = CW_Invalid; 14760 Value *CallOperandVal = info.CallOperandVal; 14761 // If we don't have a value, we can't do a match, 14762 // but allow it at the lowest weight. 14763 if (!CallOperandVal) 14764 return CW_Default; 14765 Type *type = CallOperandVal->getType(); 14766 14767 // Look at the constraint type. 14768 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14769 return CW_Register; // an individual CR bit. 14770 else if ((StringRef(constraint) == "wa" || 14771 StringRef(constraint) == "wd" || 14772 StringRef(constraint) == "wf") && 14773 type->isVectorTy()) 14774 return CW_Register; 14775 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14776 return CW_Register; // just hold 64-bit integers data. 14777 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14778 return CW_Register; 14779 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14780 return CW_Register; 14781 14782 switch (*constraint) { 14783 default: 14784 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14785 break; 14786 case 'b': 14787 if (type->isIntegerTy()) 14788 weight = CW_Register; 14789 break; 14790 case 'f': 14791 if (type->isFloatTy()) 14792 weight = CW_Register; 14793 break; 14794 case 'd': 14795 if (type->isDoubleTy()) 14796 weight = CW_Register; 14797 break; 14798 case 'v': 14799 if (type->isVectorTy()) 14800 weight = CW_Register; 14801 break; 14802 case 'y': 14803 weight = CW_Register; 14804 break; 14805 case 'Z': 14806 weight = CW_Memory; 14807 break; 14808 } 14809 return weight; 14810 } 14811 14812 std::pair<unsigned, const TargetRegisterClass *> 14813 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14814 StringRef Constraint, 14815 MVT VT) const { 14816 if (Constraint.size() == 1) { 14817 // GCC RS6000 Constraint Letters 14818 switch (Constraint[0]) { 14819 case 'b': // R1-R31 14820 if (VT == MVT::i64 && Subtarget.isPPC64()) 14821 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14822 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14823 case 'r': // R0-R31 14824 if (VT == MVT::i64 && Subtarget.isPPC64()) 14825 return std::make_pair(0U, &PPC::G8RCRegClass); 14826 return std::make_pair(0U, &PPC::GPRCRegClass); 14827 // 'd' and 'f' constraints are both defined to be "the floating point 14828 // registers", where one is for 32-bit and the other for 64-bit. We don't 14829 // really care overly much here so just give them all the same reg classes. 14830 case 'd': 14831 case 'f': 14832 if (Subtarget.hasSPE()) { 14833 if (VT == MVT::f32 || VT == MVT::i32) 14834 return std::make_pair(0U, &PPC::GPRCRegClass); 14835 if (VT == MVT::f64 || VT == MVT::i64) 14836 return std::make_pair(0U, &PPC::SPERCRegClass); 14837 } else { 14838 if (VT == MVT::f32 || VT == MVT::i32) 14839 return std::make_pair(0U, &PPC::F4RCRegClass); 14840 if (VT == MVT::f64 || VT == MVT::i64) 14841 return std::make_pair(0U, &PPC::F8RCRegClass); 14842 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14843 return std::make_pair(0U, &PPC::QFRCRegClass); 14844 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14845 return std::make_pair(0U, &PPC::QSRCRegClass); 14846 } 14847 break; 14848 case 'v': 14849 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14850 return std::make_pair(0U, &PPC::QFRCRegClass); 14851 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14852 return std::make_pair(0U, &PPC::QSRCRegClass); 14853 if (Subtarget.hasAltivec()) 14854 return std::make_pair(0U, &PPC::VRRCRegClass); 14855 break; 14856 case 'y': // crrc 14857 return std::make_pair(0U, &PPC::CRRCRegClass); 14858 } 14859 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14860 // An individual CR bit. 14861 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14862 } else if ((Constraint == "wa" || Constraint == "wd" || 14863 Constraint == "wf" || Constraint == "wi") && 14864 Subtarget.hasVSX()) { 14865 return std::make_pair(0U, &PPC::VSRCRegClass); 14866 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14867 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14868 return std::make_pair(0U, &PPC::VSSRCRegClass); 14869 else 14870 return std::make_pair(0U, &PPC::VSFRCRegClass); 14871 } 14872 14873 // If we name a VSX register, we can't defer to the base class because it 14874 // will not recognize the correct register (their names will be VSL{0-31} 14875 // and V{0-31} so they won't match). So we match them here. 14876 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14877 int VSNum = atoi(Constraint.data() + 3); 14878 assert(VSNum >= 0 && VSNum <= 63 && 14879 "Attempted to access a vsr out of range"); 14880 if (VSNum < 32) 14881 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14882 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14883 } 14884 std::pair<unsigned, const TargetRegisterClass *> R = 14885 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14886 14887 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14888 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14889 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14890 // register. 14891 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14892 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14893 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14894 PPC::GPRCRegClass.contains(R.first)) 14895 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14896 PPC::sub_32, &PPC::G8RCRegClass), 14897 &PPC::G8RCRegClass); 14898 14899 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14900 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14901 R.first = PPC::CR0; 14902 R.second = &PPC::CRRCRegClass; 14903 } 14904 14905 return R; 14906 } 14907 14908 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14909 /// vector. If it is invalid, don't add anything to Ops. 14910 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14911 std::string &Constraint, 14912 std::vector<SDValue>&Ops, 14913 SelectionDAG &DAG) const { 14914 SDValue Result; 14915 14916 // Only support length 1 constraints. 14917 if (Constraint.length() > 1) return; 14918 14919 char Letter = Constraint[0]; 14920 switch (Letter) { 14921 default: break; 14922 case 'I': 14923 case 'J': 14924 case 'K': 14925 case 'L': 14926 case 'M': 14927 case 'N': 14928 case 'O': 14929 case 'P': { 14930 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14931 if (!CST) return; // Must be an immediate to match. 14932 SDLoc dl(Op); 14933 int64_t Value = CST->getSExtValue(); 14934 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14935 // numbers are printed as such. 14936 switch (Letter) { 14937 default: llvm_unreachable("Unknown constraint letter!"); 14938 case 'I': // "I" is a signed 16-bit constant. 14939 if (isInt<16>(Value)) 14940 Result = DAG.getTargetConstant(Value, dl, TCVT); 14941 break; 14942 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14943 if (isShiftedUInt<16, 16>(Value)) 14944 Result = DAG.getTargetConstant(Value, dl, TCVT); 14945 break; 14946 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14947 if (isShiftedInt<16, 16>(Value)) 14948 Result = DAG.getTargetConstant(Value, dl, TCVT); 14949 break; 14950 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14951 if (isUInt<16>(Value)) 14952 Result = DAG.getTargetConstant(Value, dl, TCVT); 14953 break; 14954 case 'M': // "M" is a constant that is greater than 31. 14955 if (Value > 31) 14956 Result = DAG.getTargetConstant(Value, dl, TCVT); 14957 break; 14958 case 'N': // "N" is a positive constant that is an exact power of two. 14959 if (Value > 0 && isPowerOf2_64(Value)) 14960 Result = DAG.getTargetConstant(Value, dl, TCVT); 14961 break; 14962 case 'O': // "O" is the constant zero. 14963 if (Value == 0) 14964 Result = DAG.getTargetConstant(Value, dl, TCVT); 14965 break; 14966 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14967 if (isInt<16>(-Value)) 14968 Result = DAG.getTargetConstant(Value, dl, TCVT); 14969 break; 14970 } 14971 break; 14972 } 14973 } 14974 14975 if (Result.getNode()) { 14976 Ops.push_back(Result); 14977 return; 14978 } 14979 14980 // Handle standard constraint letters. 14981 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14982 } 14983 14984 // isLegalAddressingMode - Return true if the addressing mode represented 14985 // by AM is legal for this target, for a load/store of the specified type. 14986 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14987 const AddrMode &AM, Type *Ty, 14988 unsigned AS, Instruction *I) const { 14989 // PPC does not allow r+i addressing modes for vectors! 14990 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14991 return false; 14992 14993 // PPC allows a sign-extended 16-bit immediate field. 14994 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14995 return false; 14996 14997 // No global is ever allowed as a base. 14998 if (AM.BaseGV) 14999 return false; 15000 15001 // PPC only support r+r, 15002 switch (AM.Scale) { 15003 case 0: // "r+i" or just "i", depending on HasBaseReg. 15004 break; 15005 case 1: 15006 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15007 return false; 15008 // Otherwise we have r+r or r+i. 15009 break; 15010 case 2: 15011 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15012 return false; 15013 // Allow 2*r as r+r. 15014 break; 15015 default: 15016 // No other scales are supported. 15017 return false; 15018 } 15019 15020 return true; 15021 } 15022 15023 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15024 SelectionDAG &DAG) const { 15025 MachineFunction &MF = DAG.getMachineFunction(); 15026 MachineFrameInfo &MFI = MF.getFrameInfo(); 15027 MFI.setReturnAddressIsTaken(true); 15028 15029 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15030 return SDValue(); 15031 15032 SDLoc dl(Op); 15033 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15034 15035 // Make sure the function does not optimize away the store of the RA to 15036 // the stack. 15037 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15038 FuncInfo->setLRStoreRequired(); 15039 bool isPPC64 = Subtarget.isPPC64(); 15040 auto PtrVT = getPointerTy(MF.getDataLayout()); 15041 15042 if (Depth > 0) { 15043 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15044 SDValue Offset = 15045 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15046 isPPC64 ? MVT::i64 : MVT::i32); 15047 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15048 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15049 MachinePointerInfo()); 15050 } 15051 15052 // Just load the return address off the stack. 15053 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15054 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15055 MachinePointerInfo()); 15056 } 15057 15058 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15059 SelectionDAG &DAG) const { 15060 SDLoc dl(Op); 15061 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15062 15063 MachineFunction &MF = DAG.getMachineFunction(); 15064 MachineFrameInfo &MFI = MF.getFrameInfo(); 15065 MFI.setFrameAddressIsTaken(true); 15066 15067 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15068 bool isPPC64 = PtrVT == MVT::i64; 15069 15070 // Naked functions never have a frame pointer, and so we use r1. For all 15071 // other functions, this decision must be delayed until during PEI. 15072 unsigned FrameReg; 15073 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15074 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15075 else 15076 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15077 15078 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15079 PtrVT); 15080 while (Depth--) 15081 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15082 FrameAddr, MachinePointerInfo()); 15083 return FrameAddr; 15084 } 15085 15086 // FIXME? Maybe this could be a TableGen attribute on some registers and 15087 // this table could be generated automatically from RegInfo. 15088 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15089 const MachineFunction &MF) const { 15090 bool isPPC64 = Subtarget.isPPC64(); 15091 15092 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15093 if (!is64Bit && VT != LLT::scalar(32)) 15094 report_fatal_error("Invalid register global variable type"); 15095 15096 Register Reg = StringSwitch<Register>(RegName) 15097 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15098 .Case("r2", isPPC64 ? Register() : PPC::R2) 15099 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15100 .Default(Register()); 15101 15102 if (Reg) 15103 return Reg; 15104 report_fatal_error("Invalid register name global variable"); 15105 } 15106 15107 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15108 // 32-bit SVR4 ABI access everything as got-indirect. 15109 if (Subtarget.is32BitELFABI()) 15110 return true; 15111 15112 // AIX accesses everything indirectly through the TOC, which is similar to 15113 // the GOT. 15114 if (Subtarget.isAIXABI()) 15115 return true; 15116 15117 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15118 // If it is small or large code model, module locals are accessed 15119 // indirectly by loading their address from .toc/.got. 15120 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15121 return true; 15122 15123 // JumpTable and BlockAddress are accessed as got-indirect. 15124 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15125 return true; 15126 15127 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15128 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15129 15130 return false; 15131 } 15132 15133 bool 15134 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15135 // The PowerPC target isn't yet aware of offsets. 15136 return false; 15137 } 15138 15139 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15140 const CallInst &I, 15141 MachineFunction &MF, 15142 unsigned Intrinsic) const { 15143 switch (Intrinsic) { 15144 case Intrinsic::ppc_qpx_qvlfd: 15145 case Intrinsic::ppc_qpx_qvlfs: 15146 case Intrinsic::ppc_qpx_qvlfcd: 15147 case Intrinsic::ppc_qpx_qvlfcs: 15148 case Intrinsic::ppc_qpx_qvlfiwa: 15149 case Intrinsic::ppc_qpx_qvlfiwz: 15150 case Intrinsic::ppc_altivec_lvx: 15151 case Intrinsic::ppc_altivec_lvxl: 15152 case Intrinsic::ppc_altivec_lvebx: 15153 case Intrinsic::ppc_altivec_lvehx: 15154 case Intrinsic::ppc_altivec_lvewx: 15155 case Intrinsic::ppc_vsx_lxvd2x: 15156 case Intrinsic::ppc_vsx_lxvw4x: { 15157 EVT VT; 15158 switch (Intrinsic) { 15159 case Intrinsic::ppc_altivec_lvebx: 15160 VT = MVT::i8; 15161 break; 15162 case Intrinsic::ppc_altivec_lvehx: 15163 VT = MVT::i16; 15164 break; 15165 case Intrinsic::ppc_altivec_lvewx: 15166 VT = MVT::i32; 15167 break; 15168 case Intrinsic::ppc_vsx_lxvd2x: 15169 VT = MVT::v2f64; 15170 break; 15171 case Intrinsic::ppc_qpx_qvlfd: 15172 VT = MVT::v4f64; 15173 break; 15174 case Intrinsic::ppc_qpx_qvlfs: 15175 VT = MVT::v4f32; 15176 break; 15177 case Intrinsic::ppc_qpx_qvlfcd: 15178 VT = MVT::v2f64; 15179 break; 15180 case Intrinsic::ppc_qpx_qvlfcs: 15181 VT = MVT::v2f32; 15182 break; 15183 default: 15184 VT = MVT::v4i32; 15185 break; 15186 } 15187 15188 Info.opc = ISD::INTRINSIC_W_CHAIN; 15189 Info.memVT = VT; 15190 Info.ptrVal = I.getArgOperand(0); 15191 Info.offset = -VT.getStoreSize()+1; 15192 Info.size = 2*VT.getStoreSize()-1; 15193 Info.align = Align(1); 15194 Info.flags = MachineMemOperand::MOLoad; 15195 return true; 15196 } 15197 case Intrinsic::ppc_qpx_qvlfda: 15198 case Intrinsic::ppc_qpx_qvlfsa: 15199 case Intrinsic::ppc_qpx_qvlfcda: 15200 case Intrinsic::ppc_qpx_qvlfcsa: 15201 case Intrinsic::ppc_qpx_qvlfiwaa: 15202 case Intrinsic::ppc_qpx_qvlfiwza: { 15203 EVT VT; 15204 switch (Intrinsic) { 15205 case Intrinsic::ppc_qpx_qvlfda: 15206 VT = MVT::v4f64; 15207 break; 15208 case Intrinsic::ppc_qpx_qvlfsa: 15209 VT = MVT::v4f32; 15210 break; 15211 case Intrinsic::ppc_qpx_qvlfcda: 15212 VT = MVT::v2f64; 15213 break; 15214 case Intrinsic::ppc_qpx_qvlfcsa: 15215 VT = MVT::v2f32; 15216 break; 15217 default: 15218 VT = MVT::v4i32; 15219 break; 15220 } 15221 15222 Info.opc = ISD::INTRINSIC_W_CHAIN; 15223 Info.memVT = VT; 15224 Info.ptrVal = I.getArgOperand(0); 15225 Info.offset = 0; 15226 Info.size = VT.getStoreSize(); 15227 Info.align = Align(1); 15228 Info.flags = MachineMemOperand::MOLoad; 15229 return true; 15230 } 15231 case Intrinsic::ppc_qpx_qvstfd: 15232 case Intrinsic::ppc_qpx_qvstfs: 15233 case Intrinsic::ppc_qpx_qvstfcd: 15234 case Intrinsic::ppc_qpx_qvstfcs: 15235 case Intrinsic::ppc_qpx_qvstfiw: 15236 case Intrinsic::ppc_altivec_stvx: 15237 case Intrinsic::ppc_altivec_stvxl: 15238 case Intrinsic::ppc_altivec_stvebx: 15239 case Intrinsic::ppc_altivec_stvehx: 15240 case Intrinsic::ppc_altivec_stvewx: 15241 case Intrinsic::ppc_vsx_stxvd2x: 15242 case Intrinsic::ppc_vsx_stxvw4x: { 15243 EVT VT; 15244 switch (Intrinsic) { 15245 case Intrinsic::ppc_altivec_stvebx: 15246 VT = MVT::i8; 15247 break; 15248 case Intrinsic::ppc_altivec_stvehx: 15249 VT = MVT::i16; 15250 break; 15251 case Intrinsic::ppc_altivec_stvewx: 15252 VT = MVT::i32; 15253 break; 15254 case Intrinsic::ppc_vsx_stxvd2x: 15255 VT = MVT::v2f64; 15256 break; 15257 case Intrinsic::ppc_qpx_qvstfd: 15258 VT = MVT::v4f64; 15259 break; 15260 case Intrinsic::ppc_qpx_qvstfs: 15261 VT = MVT::v4f32; 15262 break; 15263 case Intrinsic::ppc_qpx_qvstfcd: 15264 VT = MVT::v2f64; 15265 break; 15266 case Intrinsic::ppc_qpx_qvstfcs: 15267 VT = MVT::v2f32; 15268 break; 15269 default: 15270 VT = MVT::v4i32; 15271 break; 15272 } 15273 15274 Info.opc = ISD::INTRINSIC_VOID; 15275 Info.memVT = VT; 15276 Info.ptrVal = I.getArgOperand(1); 15277 Info.offset = -VT.getStoreSize()+1; 15278 Info.size = 2*VT.getStoreSize()-1; 15279 Info.align = Align(1); 15280 Info.flags = MachineMemOperand::MOStore; 15281 return true; 15282 } 15283 case Intrinsic::ppc_qpx_qvstfda: 15284 case Intrinsic::ppc_qpx_qvstfsa: 15285 case Intrinsic::ppc_qpx_qvstfcda: 15286 case Intrinsic::ppc_qpx_qvstfcsa: 15287 case Intrinsic::ppc_qpx_qvstfiwa: { 15288 EVT VT; 15289 switch (Intrinsic) { 15290 case Intrinsic::ppc_qpx_qvstfda: 15291 VT = MVT::v4f64; 15292 break; 15293 case Intrinsic::ppc_qpx_qvstfsa: 15294 VT = MVT::v4f32; 15295 break; 15296 case Intrinsic::ppc_qpx_qvstfcda: 15297 VT = MVT::v2f64; 15298 break; 15299 case Intrinsic::ppc_qpx_qvstfcsa: 15300 VT = MVT::v2f32; 15301 break; 15302 default: 15303 VT = MVT::v4i32; 15304 break; 15305 } 15306 15307 Info.opc = ISD::INTRINSIC_VOID; 15308 Info.memVT = VT; 15309 Info.ptrVal = I.getArgOperand(1); 15310 Info.offset = 0; 15311 Info.size = VT.getStoreSize(); 15312 Info.align = Align(1); 15313 Info.flags = MachineMemOperand::MOStore; 15314 return true; 15315 } 15316 default: 15317 break; 15318 } 15319 15320 return false; 15321 } 15322 15323 /// It returns EVT::Other if the type should be determined using generic 15324 /// target-independent logic. 15325 EVT PPCTargetLowering::getOptimalMemOpType( 15326 const MemOp &Op, const AttributeList &FuncAttributes) const { 15327 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15328 // When expanding a memset, require at least two QPX instructions to cover 15329 // the cost of loading the value to be stored from the constant pool. 15330 if (Subtarget.hasQPX() && Op.size() >= 32 && 15331 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15332 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15333 return MVT::v4f64; 15334 } 15335 15336 // We should use Altivec/VSX loads and stores when available. For unaligned 15337 // addresses, unaligned VSX loads are only fast starting with the P8. 15338 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15339 (Op.isAligned(Align(16)) || 15340 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15341 return MVT::v4i32; 15342 } 15343 15344 if (Subtarget.isPPC64()) { 15345 return MVT::i64; 15346 } 15347 15348 return MVT::i32; 15349 } 15350 15351 /// Returns true if it is beneficial to convert a load of a constant 15352 /// to just the constant itself. 15353 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15354 Type *Ty) const { 15355 assert(Ty->isIntegerTy()); 15356 15357 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15358 return !(BitSize == 0 || BitSize > 64); 15359 } 15360 15361 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15362 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15363 return false; 15364 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15365 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15366 return NumBits1 == 64 && NumBits2 == 32; 15367 } 15368 15369 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15370 if (!VT1.isInteger() || !VT2.isInteger()) 15371 return false; 15372 unsigned NumBits1 = VT1.getSizeInBits(); 15373 unsigned NumBits2 = VT2.getSizeInBits(); 15374 return NumBits1 == 64 && NumBits2 == 32; 15375 } 15376 15377 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15378 // Generally speaking, zexts are not free, but they are free when they can be 15379 // folded with other operations. 15380 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15381 EVT MemVT = LD->getMemoryVT(); 15382 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15383 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15384 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15385 LD->getExtensionType() == ISD::ZEXTLOAD)) 15386 return true; 15387 } 15388 15389 // FIXME: Add other cases... 15390 // - 32-bit shifts with a zext to i64 15391 // - zext after ctlz, bswap, etc. 15392 // - zext after and by a constant mask 15393 15394 return TargetLowering::isZExtFree(Val, VT2); 15395 } 15396 15397 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15398 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15399 "invalid fpext types"); 15400 // Extending to float128 is not free. 15401 if (DestVT == MVT::f128) 15402 return false; 15403 return true; 15404 } 15405 15406 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15407 return isInt<16>(Imm) || isUInt<16>(Imm); 15408 } 15409 15410 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15411 return isInt<16>(Imm) || isUInt<16>(Imm); 15412 } 15413 15414 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15415 unsigned, 15416 unsigned, 15417 MachineMemOperand::Flags, 15418 bool *Fast) const { 15419 if (DisablePPCUnaligned) 15420 return false; 15421 15422 // PowerPC supports unaligned memory access for simple non-vector types. 15423 // Although accessing unaligned addresses is not as efficient as accessing 15424 // aligned addresses, it is generally more efficient than manual expansion, 15425 // and generally only traps for software emulation when crossing page 15426 // boundaries. 15427 15428 if (!VT.isSimple()) 15429 return false; 15430 15431 if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess()) 15432 return false; 15433 15434 if (VT.getSimpleVT().isVector()) { 15435 if (Subtarget.hasVSX()) { 15436 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15437 VT != MVT::v4f32 && VT != MVT::v4i32) 15438 return false; 15439 } else { 15440 return false; 15441 } 15442 } 15443 15444 if (VT == MVT::ppcf128) 15445 return false; 15446 15447 if (Fast) 15448 *Fast = true; 15449 15450 return true; 15451 } 15452 15453 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15454 EVT VT) const { 15455 return isFMAFasterThanFMulAndFAdd( 15456 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15457 } 15458 15459 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15460 Type *Ty) const { 15461 switch (Ty->getScalarType()->getTypeID()) { 15462 case Type::FloatTyID: 15463 case Type::DoubleTyID: 15464 return true; 15465 case Type::FP128TyID: 15466 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15467 default: 15468 return false; 15469 } 15470 } 15471 15472 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15473 // FIXME: add more patterns which are profitable to hoist. 15474 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15475 if (I->getOpcode() != Instruction::FMul) 15476 return true; 15477 15478 if (!I->hasOneUse()) 15479 return true; 15480 15481 Instruction *User = I->user_back(); 15482 assert(User && "A single use instruction with no uses."); 15483 15484 if (User->getOpcode() != Instruction::FSub && 15485 User->getOpcode() != Instruction::FAdd) 15486 return true; 15487 15488 const TargetOptions &Options = getTargetMachine().Options; 15489 const Function *F = I->getFunction(); 15490 const DataLayout &DL = F->getParent()->getDataLayout(); 15491 Type *Ty = User->getOperand(0)->getType(); 15492 15493 return !( 15494 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15495 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15496 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15497 } 15498 15499 const MCPhysReg * 15500 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15501 // LR is a callee-save register, but we must treat it as clobbered by any call 15502 // site. Hence we include LR in the scratch registers, which are in turn added 15503 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15504 // to CTR, which is used by any indirect call. 15505 static const MCPhysReg ScratchRegs[] = { 15506 PPC::X12, PPC::LR8, PPC::CTR8, 0 15507 }; 15508 15509 return ScratchRegs; 15510 } 15511 15512 unsigned PPCTargetLowering::getExceptionPointerRegister( 15513 const Constant *PersonalityFn) const { 15514 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15515 } 15516 15517 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15518 const Constant *PersonalityFn) const { 15519 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15520 } 15521 15522 bool 15523 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15524 EVT VT , unsigned DefinedValues) const { 15525 if (VT == MVT::v2i64) 15526 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15527 15528 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15529 return true; 15530 15531 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15532 } 15533 15534 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15535 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15536 return TargetLowering::getSchedulingPreference(N); 15537 15538 return Sched::ILP; 15539 } 15540 15541 // Create a fast isel object. 15542 FastISel * 15543 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15544 const TargetLibraryInfo *LibInfo) const { 15545 return PPC::createFastISel(FuncInfo, LibInfo); 15546 } 15547 15548 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15549 if (!Subtarget.isPPC64()) return; 15550 15551 // Update IsSplitCSR in PPCFunctionInfo 15552 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15553 PFI->setIsSplitCSR(true); 15554 } 15555 15556 void PPCTargetLowering::insertCopiesSplitCSR( 15557 MachineBasicBlock *Entry, 15558 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15559 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15560 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15561 if (!IStart) 15562 return; 15563 15564 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15565 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15566 MachineBasicBlock::iterator MBBI = Entry->begin(); 15567 for (const MCPhysReg *I = IStart; *I; ++I) { 15568 const TargetRegisterClass *RC = nullptr; 15569 if (PPC::G8RCRegClass.contains(*I)) 15570 RC = &PPC::G8RCRegClass; 15571 else if (PPC::F8RCRegClass.contains(*I)) 15572 RC = &PPC::F8RCRegClass; 15573 else if (PPC::CRRCRegClass.contains(*I)) 15574 RC = &PPC::CRRCRegClass; 15575 else if (PPC::VRRCRegClass.contains(*I)) 15576 RC = &PPC::VRRCRegClass; 15577 else 15578 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15579 15580 Register NewVR = MRI->createVirtualRegister(RC); 15581 // Create copy from CSR to a virtual register. 15582 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15583 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15584 // nounwind. If we want to generalize this later, we may need to emit 15585 // CFI pseudo-instructions. 15586 assert(Entry->getParent()->getFunction().hasFnAttribute( 15587 Attribute::NoUnwind) && 15588 "Function should be nounwind in insertCopiesSplitCSR!"); 15589 Entry->addLiveIn(*I); 15590 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15591 .addReg(*I); 15592 15593 // Insert the copy-back instructions right before the terminator. 15594 for (auto *Exit : Exits) 15595 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15596 TII->get(TargetOpcode::COPY), *I) 15597 .addReg(NewVR); 15598 } 15599 } 15600 15601 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15602 bool PPCTargetLowering::useLoadStackGuardNode() const { 15603 if (!Subtarget.isTargetLinux()) 15604 return TargetLowering::useLoadStackGuardNode(); 15605 return true; 15606 } 15607 15608 // Override to disable global variable loading on Linux. 15609 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15610 if (!Subtarget.isTargetLinux()) 15611 return TargetLowering::insertSSPDeclarations(M); 15612 } 15613 15614 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15615 bool ForCodeSize) const { 15616 if (!VT.isSimple() || !Subtarget.hasVSX()) 15617 return false; 15618 15619 switch(VT.getSimpleVT().SimpleTy) { 15620 default: 15621 // For FP types that are currently not supported by PPC backend, return 15622 // false. Examples: f16, f80. 15623 return false; 15624 case MVT::f32: 15625 case MVT::f64: 15626 case MVT::ppcf128: 15627 return Imm.isPosZero(); 15628 } 15629 } 15630 15631 // For vector shift operation op, fold 15632 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15633 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15634 SelectionDAG &DAG) { 15635 SDValue N0 = N->getOperand(0); 15636 SDValue N1 = N->getOperand(1); 15637 EVT VT = N0.getValueType(); 15638 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15639 unsigned Opcode = N->getOpcode(); 15640 unsigned TargetOpcode; 15641 15642 switch (Opcode) { 15643 default: 15644 llvm_unreachable("Unexpected shift operation"); 15645 case ISD::SHL: 15646 TargetOpcode = PPCISD::SHL; 15647 break; 15648 case ISD::SRL: 15649 TargetOpcode = PPCISD::SRL; 15650 break; 15651 case ISD::SRA: 15652 TargetOpcode = PPCISD::SRA; 15653 break; 15654 } 15655 15656 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15657 N1->getOpcode() == ISD::AND) 15658 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15659 if (Mask->getZExtValue() == OpSizeInBits - 1) 15660 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15661 15662 return SDValue(); 15663 } 15664 15665 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15666 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15667 return Value; 15668 15669 SDValue N0 = N->getOperand(0); 15670 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15671 if (!Subtarget.isISA3_0() || 15672 N0.getOpcode() != ISD::SIGN_EXTEND || 15673 N0.getOperand(0).getValueType() != MVT::i32 || 15674 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15675 return SDValue(); 15676 15677 // We can't save an operation here if the value is already extended, and 15678 // the existing shift is easier to combine. 15679 SDValue ExtsSrc = N0.getOperand(0); 15680 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15681 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15682 return SDValue(); 15683 15684 SDLoc DL(N0); 15685 SDValue ShiftBy = SDValue(CN1, 0); 15686 // We want the shift amount to be i32 on the extswli, but the shift could 15687 // have an i64. 15688 if (ShiftBy.getValueType() == MVT::i64) 15689 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15690 15691 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15692 ShiftBy); 15693 } 15694 15695 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15696 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15697 return Value; 15698 15699 return SDValue(); 15700 } 15701 15702 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15703 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15704 return Value; 15705 15706 return SDValue(); 15707 } 15708 15709 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15710 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15711 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15712 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15713 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15714 const PPCSubtarget &Subtarget) { 15715 if (!Subtarget.isPPC64()) 15716 return SDValue(); 15717 15718 SDValue LHS = N->getOperand(0); 15719 SDValue RHS = N->getOperand(1); 15720 15721 auto isZextOfCompareWithConstant = [](SDValue Op) { 15722 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15723 Op.getValueType() != MVT::i64) 15724 return false; 15725 15726 SDValue Cmp = Op.getOperand(0); 15727 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15728 Cmp.getOperand(0).getValueType() != MVT::i64) 15729 return false; 15730 15731 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15732 int64_t NegConstant = 0 - Constant->getSExtValue(); 15733 // Due to the limitations of the addi instruction, 15734 // -C is required to be [-32768, 32767]. 15735 return isInt<16>(NegConstant); 15736 } 15737 15738 return false; 15739 }; 15740 15741 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15742 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15743 15744 // If there is a pattern, canonicalize a zext operand to the RHS. 15745 if (LHSHasPattern && !RHSHasPattern) 15746 std::swap(LHS, RHS); 15747 else if (!LHSHasPattern && !RHSHasPattern) 15748 return SDValue(); 15749 15750 SDLoc DL(N); 15751 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15752 SDValue Cmp = RHS.getOperand(0); 15753 SDValue Z = Cmp.getOperand(0); 15754 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15755 15756 assert(Constant && "Constant Should not be a null pointer."); 15757 int64_t NegConstant = 0 - Constant->getSExtValue(); 15758 15759 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15760 default: break; 15761 case ISD::SETNE: { 15762 // when C == 0 15763 // --> addze X, (addic Z, -1).carry 15764 // / 15765 // add X, (zext(setne Z, C))-- 15766 // \ when -32768 <= -C <= 32767 && C != 0 15767 // --> addze X, (addic (addi Z, -C), -1).carry 15768 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15769 DAG.getConstant(NegConstant, DL, MVT::i64)); 15770 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15771 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15772 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15773 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15774 SDValue(Addc.getNode(), 1)); 15775 } 15776 case ISD::SETEQ: { 15777 // when C == 0 15778 // --> addze X, (subfic Z, 0).carry 15779 // / 15780 // add X, (zext(sete Z, C))-- 15781 // \ when -32768 <= -C <= 32767 && C != 0 15782 // --> addze X, (subfic (addi Z, -C), 0).carry 15783 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15784 DAG.getConstant(NegConstant, DL, MVT::i64)); 15785 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15786 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15787 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15788 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15789 SDValue(Subc.getNode(), 1)); 15790 } 15791 } 15792 15793 return SDValue(); 15794 } 15795 15796 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15797 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15798 return Value; 15799 15800 return SDValue(); 15801 } 15802 15803 // Detect TRUNCATE operations on bitcasts of float128 values. 15804 // What we are looking for here is the situtation where we extract a subset 15805 // of bits from a 128 bit float. 15806 // This can be of two forms: 15807 // 1) BITCAST of f128 feeding TRUNCATE 15808 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15809 // The reason this is required is because we do not have a legal i128 type 15810 // and so we want to prevent having to store the f128 and then reload part 15811 // of it. 15812 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15813 DAGCombinerInfo &DCI) const { 15814 // If we are using CRBits then try that first. 15815 if (Subtarget.useCRBits()) { 15816 // Check if CRBits did anything and return that if it did. 15817 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15818 return CRTruncValue; 15819 } 15820 15821 SDLoc dl(N); 15822 SDValue Op0 = N->getOperand(0); 15823 15824 // Looking for a truncate of i128 to i64. 15825 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15826 return SDValue(); 15827 15828 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15829 15830 // SRL feeding TRUNCATE. 15831 if (Op0.getOpcode() == ISD::SRL) { 15832 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15833 // The right shift has to be by 64 bits. 15834 if (!ConstNode || ConstNode->getZExtValue() != 64) 15835 return SDValue(); 15836 15837 // Switch the element number to extract. 15838 EltToExtract = EltToExtract ? 0 : 1; 15839 // Update Op0 past the SRL. 15840 Op0 = Op0.getOperand(0); 15841 } 15842 15843 // BITCAST feeding a TRUNCATE possibly via SRL. 15844 if (Op0.getOpcode() == ISD::BITCAST && 15845 Op0.getValueType() == MVT::i128 && 15846 Op0.getOperand(0).getValueType() == MVT::f128) { 15847 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15848 return DCI.DAG.getNode( 15849 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15850 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15851 } 15852 return SDValue(); 15853 } 15854 15855 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15856 SelectionDAG &DAG = DCI.DAG; 15857 15858 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15859 if (!ConstOpOrElement) 15860 return SDValue(); 15861 15862 // An imul is usually smaller than the alternative sequence for legal type. 15863 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15864 isOperationLegal(ISD::MUL, N->getValueType(0))) 15865 return SDValue(); 15866 15867 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15868 switch (this->Subtarget.getCPUDirective()) { 15869 default: 15870 // TODO: enhance the condition for subtarget before pwr8 15871 return false; 15872 case PPC::DIR_PWR8: 15873 // type mul add shl 15874 // scalar 4 1 1 15875 // vector 7 2 2 15876 return true; 15877 case PPC::DIR_PWR9: 15878 case PPC::DIR_PWR_FUTURE: 15879 // type mul add shl 15880 // scalar 5 2 2 15881 // vector 7 2 2 15882 15883 // The cycle RATIO of related operations are showed as a table above. 15884 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15885 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15886 // are 4, it is always profitable; but for 3 instrs patterns 15887 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15888 // So we should only do it for vector type. 15889 return IsAddOne && IsNeg ? VT.isVector() : true; 15890 } 15891 }; 15892 15893 EVT VT = N->getValueType(0); 15894 SDLoc DL(N); 15895 15896 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15897 bool IsNeg = MulAmt.isNegative(); 15898 APInt MulAmtAbs = MulAmt.abs(); 15899 15900 if ((MulAmtAbs - 1).isPowerOf2()) { 15901 // (mul x, 2^N + 1) => (add (shl x, N), x) 15902 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15903 15904 if (!IsProfitable(IsNeg, true, VT)) 15905 return SDValue(); 15906 15907 SDValue Op0 = N->getOperand(0); 15908 SDValue Op1 = 15909 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15910 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15911 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15912 15913 if (!IsNeg) 15914 return Res; 15915 15916 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15917 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15918 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15919 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15920 15921 if (!IsProfitable(IsNeg, false, VT)) 15922 return SDValue(); 15923 15924 SDValue Op0 = N->getOperand(0); 15925 SDValue Op1 = 15926 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15927 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15928 15929 if (!IsNeg) 15930 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15931 else 15932 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15933 15934 } else { 15935 return SDValue(); 15936 } 15937 } 15938 15939 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15940 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15941 if (!Subtarget.is64BitELFABI()) 15942 return false; 15943 15944 // If not a tail call then no need to proceed. 15945 if (!CI->isTailCall()) 15946 return false; 15947 15948 // If sibling calls have been disabled and tail-calls aren't guaranteed 15949 // there is no reason to duplicate. 15950 auto &TM = getTargetMachine(); 15951 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15952 return false; 15953 15954 // Can't tail call a function called indirectly, or if it has variadic args. 15955 const Function *Callee = CI->getCalledFunction(); 15956 if (!Callee || Callee->isVarArg()) 15957 return false; 15958 15959 // Make sure the callee and caller calling conventions are eligible for tco. 15960 const Function *Caller = CI->getParent()->getParent(); 15961 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15962 CI->getCallingConv())) 15963 return false; 15964 15965 // If the function is local then we have a good chance at tail-calling it 15966 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15967 } 15968 15969 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15970 if (!Subtarget.hasVSX()) 15971 return false; 15972 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15973 return true; 15974 return VT == MVT::f32 || VT == MVT::f64 || 15975 VT == MVT::v4f32 || VT == MVT::v2f64; 15976 } 15977 15978 bool PPCTargetLowering:: 15979 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15980 const Value *Mask = AndI.getOperand(1); 15981 // If the mask is suitable for andi. or andis. we should sink the and. 15982 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15983 // Can't handle constants wider than 64-bits. 15984 if (CI->getBitWidth() > 64) 15985 return false; 15986 int64_t ConstVal = CI->getZExtValue(); 15987 return isUInt<16>(ConstVal) || 15988 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15989 } 15990 15991 // For non-constant masks, we can always use the record-form and. 15992 return true; 15993 } 15994 15995 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15996 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15997 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15998 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15999 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16000 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16001 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16002 assert(Subtarget.hasP9Altivec() && 16003 "Only combine this when P9 altivec supported!"); 16004 EVT VT = N->getValueType(0); 16005 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16006 return SDValue(); 16007 16008 SelectionDAG &DAG = DCI.DAG; 16009 SDLoc dl(N); 16010 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16011 // Even for signed integers, if it's known to be positive (as signed 16012 // integer) due to zero-extended inputs. 16013 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16014 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16015 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16016 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16017 (SubOpcd1 == ISD::ZERO_EXTEND || 16018 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16019 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16020 N->getOperand(0)->getOperand(0), 16021 N->getOperand(0)->getOperand(1), 16022 DAG.getTargetConstant(0, dl, MVT::i32)); 16023 } 16024 16025 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16026 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16027 N->getOperand(0).hasOneUse()) { 16028 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16029 N->getOperand(0)->getOperand(0), 16030 N->getOperand(0)->getOperand(1), 16031 DAG.getTargetConstant(1, dl, MVT::i32)); 16032 } 16033 } 16034 16035 return SDValue(); 16036 } 16037 16038 // For type v4i32/v8ii16/v16i8, transform 16039 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16040 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16041 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16042 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16043 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16044 DAGCombinerInfo &DCI) const { 16045 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16046 assert(Subtarget.hasP9Altivec() && 16047 "Only combine this when P9 altivec supported!"); 16048 16049 SelectionDAG &DAG = DCI.DAG; 16050 SDLoc dl(N); 16051 SDValue Cond = N->getOperand(0); 16052 SDValue TrueOpnd = N->getOperand(1); 16053 SDValue FalseOpnd = N->getOperand(2); 16054 EVT VT = N->getOperand(1).getValueType(); 16055 16056 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16057 FalseOpnd.getOpcode() != ISD::SUB) 16058 return SDValue(); 16059 16060 // ABSD only available for type v4i32/v8i16/v16i8 16061 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16062 return SDValue(); 16063 16064 // At least to save one more dependent computation 16065 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16066 return SDValue(); 16067 16068 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16069 16070 // Can only handle unsigned comparison here 16071 switch (CC) { 16072 default: 16073 return SDValue(); 16074 case ISD::SETUGT: 16075 case ISD::SETUGE: 16076 break; 16077 case ISD::SETULT: 16078 case ISD::SETULE: 16079 std::swap(TrueOpnd, FalseOpnd); 16080 break; 16081 } 16082 16083 SDValue CmpOpnd1 = Cond.getOperand(0); 16084 SDValue CmpOpnd2 = Cond.getOperand(1); 16085 16086 // SETCC CmpOpnd1 CmpOpnd2 cond 16087 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16088 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16089 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16090 TrueOpnd.getOperand(1) == CmpOpnd2 && 16091 FalseOpnd.getOperand(0) == CmpOpnd2 && 16092 FalseOpnd.getOperand(1) == CmpOpnd1) { 16093 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16094 CmpOpnd1, CmpOpnd2, 16095 DAG.getTargetConstant(0, dl, MVT::i32)); 16096 } 16097 16098 return SDValue(); 16099 } 16100