1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 static cl::opt<bool>
130     DisablePerfectShuffle("ppc-disable-perfect-shuffle",
131                           cl::desc("disable vector permute decomposition"),
132                           cl::init(true), cl::Hidden);
133 
134 STATISTIC(NumTailCalls, "Number of tail calls");
135 STATISTIC(NumSiblingCalls, "Number of sibling calls");
136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
138 
139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
140 
141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
142 
143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
144 
145 // FIXME: Remove this once the bug has been fixed!
146 extern cl::opt<bool> ANDIGlueBug;
147 
148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
149                                      const PPCSubtarget &STI)
150     : TargetLowering(TM), Subtarget(STI) {
151   // Initialize map that relates the PPC addressing modes to the computed flags
152   // of a load/store instruction. The map is used to determine the optimal
153   // addressing mode when selecting load and stores.
154   initializeAddrModeMap();
155   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
156   // arguments are at least 4/8 bytes aligned.
157   bool isPPC64 = Subtarget.isPPC64();
158   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
159 
160   // Set up the register classes.
161   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
162   if (!useSoftFloat()) {
163     if (hasSPE()) {
164       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
165       // EFPU2 APU only supports f32
166       if (!Subtarget.hasEFPU2())
167         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
168     } else {
169       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
170       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
171     }
172   }
173 
174   // Match BITREVERSE to customized fast code sequence in the td file.
175   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
176   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
177 
178   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
179   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
180 
181   // Custom lower inline assembly to check for special registers.
182   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
183   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
184 
185   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
186   for (MVT VT : MVT::integer_valuetypes()) {
187     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
188     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
189   }
190 
191   if (Subtarget.isISA3_0()) {
192     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
193     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
194     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
195     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
196   } else {
197     // No extending loads from f16 or HW conversions back and forth.
198     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
199     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
200     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
201     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
202     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
203     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
204     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
205     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
206   }
207 
208   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
209 
210   // PowerPC has pre-inc load and store's.
211   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
216   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
217   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
218   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
219   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
220   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
221   if (!Subtarget.hasSPE()) {
222     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
223     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
224     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
225     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
226   }
227 
228   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
229   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
230   for (MVT VT : ScalarIntVTs) {
231     setOperationAction(ISD::ADDC, VT, Legal);
232     setOperationAction(ISD::ADDE, VT, Legal);
233     setOperationAction(ISD::SUBC, VT, Legal);
234     setOperationAction(ISD::SUBE, VT, Legal);
235   }
236 
237   if (Subtarget.useCRBits()) {
238     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
239 
240     if (isPPC64 || Subtarget.hasFPCVT()) {
241       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
242       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
243                         isPPC64 ? MVT::i64 : MVT::i32);
244       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
245       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
246                         isPPC64 ? MVT::i64 : MVT::i32);
247 
248       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
249       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
250                          isPPC64 ? MVT::i64 : MVT::i32);
251       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
252       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
253                         isPPC64 ? MVT::i64 : MVT::i32);
254 
255       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
256       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
257                         isPPC64 ? MVT::i64 : MVT::i32);
258       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
259       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
260                         isPPC64 ? MVT::i64 : MVT::i32);
261 
262       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
263       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
264                         isPPC64 ? MVT::i64 : MVT::i32);
265       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
266       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
267                         isPPC64 ? MVT::i64 : MVT::i32);
268     } else {
269       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
270       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
271       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
272       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
273     }
274 
275     // PowerPC does not support direct load/store of condition registers.
276     setOperationAction(ISD::LOAD, MVT::i1, Custom);
277     setOperationAction(ISD::STORE, MVT::i1, Custom);
278 
279     // FIXME: Remove this once the ANDI glue bug is fixed:
280     if (ANDIGlueBug)
281       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
282 
283     for (MVT VT : MVT::integer_valuetypes()) {
284       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
285       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
286       setTruncStoreAction(VT, MVT::i1, Expand);
287     }
288 
289     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
290   }
291 
292   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
293   // PPC (the libcall is not available).
294   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
295   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
296   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
297   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
298 
299   // We do not currently implement these libm ops for PowerPC.
300   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
301   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
302   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
303   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
304   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
305   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
306 
307   // PowerPC has no SREM/UREM instructions unless we are on P9
308   // On P9 we may use a hardware instruction to compute the remainder.
309   // When the result of both the remainder and the division is required it is
310   // more efficient to compute the remainder from the result of the division
311   // rather than use the remainder instruction. The instructions are legalized
312   // directly because the DivRemPairsPass performs the transformation at the IR
313   // level.
314   if (Subtarget.isISA3_0()) {
315     setOperationAction(ISD::SREM, MVT::i32, Legal);
316     setOperationAction(ISD::UREM, MVT::i32, Legal);
317     setOperationAction(ISD::SREM, MVT::i64, Legal);
318     setOperationAction(ISD::UREM, MVT::i64, Legal);
319   } else {
320     setOperationAction(ISD::SREM, MVT::i32, Expand);
321     setOperationAction(ISD::UREM, MVT::i32, Expand);
322     setOperationAction(ISD::SREM, MVT::i64, Expand);
323     setOperationAction(ISD::UREM, MVT::i64, Expand);
324   }
325 
326   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
327   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
328   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
329   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
330   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
331   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
332   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
333   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
334   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
335 
336   // Handle constrained floating-point operations of scalar.
337   // TODO: Handle SPE specific operation.
338   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
339   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
340   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
341   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
342   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
343 
344   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
345   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
346   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
347   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
348 
349   if (!Subtarget.hasSPE()) {
350     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasVSX()) {
355     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFSQRT()) {
360     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
362   }
363 
364   if (Subtarget.hasFPRND()) {
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
369 
370     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
371     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
372     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
373     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
374   }
375 
376   // We don't support sin/cos/sqrt/fmod/pow
377   setOperationAction(ISD::FSIN , MVT::f64, Expand);
378   setOperationAction(ISD::FCOS , MVT::f64, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
380   setOperationAction(ISD::FREM , MVT::f64, Expand);
381   setOperationAction(ISD::FPOW , MVT::f64, Expand);
382   setOperationAction(ISD::FSIN , MVT::f32, Expand);
383   setOperationAction(ISD::FCOS , MVT::f32, Expand);
384   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
385   setOperationAction(ISD::FREM , MVT::f32, Expand);
386   setOperationAction(ISD::FPOW , MVT::f32, Expand);
387 
388   // MASS transformation for LLVM intrinsics with replicating fast-math flag
389   // to be consistent to PPCGenScalarMASSEntries pass
390   if (TM.getOptLevel() == CodeGenOpt::Aggressive &&
391       TM.Options.PPCGenScalarMASSEntries) {
392     setOperationAction(ISD::FSIN , MVT::f64, Custom);
393     setOperationAction(ISD::FCOS , MVT::f64, Custom);
394     setOperationAction(ISD::FPOW , MVT::f64, Custom);
395     setOperationAction(ISD::FLOG, MVT::f64, Custom);
396     setOperationAction(ISD::FLOG10, MVT::f64, Custom);
397     setOperationAction(ISD::FEXP, MVT::f64, Custom);
398     setOperationAction(ISD::FSIN , MVT::f32, Custom);
399     setOperationAction(ISD::FCOS , MVT::f32, Custom);
400     setOperationAction(ISD::FPOW , MVT::f32, Custom);
401     setOperationAction(ISD::FLOG, MVT::f32, Custom);
402     setOperationAction(ISD::FLOG10, MVT::f32, Custom);
403     setOperationAction(ISD::FEXP, MVT::f32, Custom);
404   }
405 
406   if (Subtarget.hasSPE()) {
407     setOperationAction(ISD::FMA  , MVT::f64, Expand);
408     setOperationAction(ISD::FMA  , MVT::f32, Expand);
409   } else {
410     setOperationAction(ISD::FMA  , MVT::f64, Legal);
411     setOperationAction(ISD::FMA  , MVT::f32, Legal);
412   }
413 
414   if (Subtarget.hasSPE())
415     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
416 
417   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
418 
419   // If we're enabling GP optimizations, use hardware square root
420   if (!Subtarget.hasFSQRT() &&
421       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
422         Subtarget.hasFRE()))
423     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
424 
425   if (!Subtarget.hasFSQRT() &&
426       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
427         Subtarget.hasFRES()))
428     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
429 
430   if (Subtarget.hasFCPSGN()) {
431     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
432     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
433   } else {
434     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
435     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
436   }
437 
438   if (Subtarget.hasFPRND()) {
439     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
440     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
441     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
442     setOperationAction(ISD::FROUND, MVT::f64, Legal);
443 
444     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
445     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
446     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
447     setOperationAction(ISD::FROUND, MVT::f32, Legal);
448   }
449 
450   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
451   // to speed up scalar BSWAP64.
452   // CTPOP or CTTZ were introduced in P8/P9 respectively
453   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
454   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
455     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
456   else
457     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
458   if (Subtarget.isISA3_0()) {
459     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
460     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
461   } else {
462     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
463     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
464   }
465 
466   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
467     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
468     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
469   } else {
470     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
471     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
472   }
473 
474   // PowerPC does not have ROTR
475   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
476   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
477 
478   if (!Subtarget.useCRBits()) {
479     // PowerPC does not have Select
480     setOperationAction(ISD::SELECT, MVT::i32, Expand);
481     setOperationAction(ISD::SELECT, MVT::i64, Expand);
482     setOperationAction(ISD::SELECT, MVT::f32, Expand);
483     setOperationAction(ISD::SELECT, MVT::f64, Expand);
484   }
485 
486   // PowerPC wants to turn select_cc of FP into fsel when possible.
487   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
488   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
489 
490   // PowerPC wants to optimize integer setcc a bit
491   if (!Subtarget.useCRBits())
492     setOperationAction(ISD::SETCC, MVT::i32, Custom);
493 
494   if (Subtarget.hasFPU()) {
495     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
496     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
497     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
498 
499     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
500     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
501     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
502   }
503 
504   // PowerPC does not have BRCOND which requires SetCC
505   if (!Subtarget.useCRBits())
506     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
507 
508   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
509 
510   if (Subtarget.hasSPE()) {
511     // SPE has built-in conversions
512     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
513     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
514     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
515     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
516     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
517     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
518 
519     // SPE supports signaling compare of f32/f64.
520     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
521     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
522   } else {
523     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
524     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
525     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526 
527     // PowerPC does not have [U|S]INT_TO_FP
528     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
529     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
530     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
531     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
532   }
533 
534   if (Subtarget.hasDirectMove() && isPPC64) {
535     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
536     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
537     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
538     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
539     if (TM.Options.UnsafeFPMath) {
540       setOperationAction(ISD::LRINT, MVT::f64, Legal);
541       setOperationAction(ISD::LRINT, MVT::f32, Legal);
542       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
543       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
544       setOperationAction(ISD::LROUND, MVT::f64, Legal);
545       setOperationAction(ISD::LROUND, MVT::f32, Legal);
546       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
547       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
548     }
549   } else {
550     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
551     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
552     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
553     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
554   }
555 
556   // We cannot sextinreg(i1).  Expand to shifts.
557   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
558 
559   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
560   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
561   // support continuation, user-level threading, and etc.. As a result, no
562   // other SjLj exception interfaces are implemented and please don't build
563   // your own exception handling based on them.
564   // LLVM/Clang supports zero-cost DWARF exception handling.
565   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
566   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
567 
568   // We want to legalize GlobalAddress and ConstantPool nodes into the
569   // appropriate instructions to materialize the address.
570   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
571   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
572   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
573   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
574   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
575   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
576   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
577   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
578   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
579   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
580 
581   // TRAP is legal.
582   setOperationAction(ISD::TRAP, MVT::Other, Legal);
583 
584   // TRAMPOLINE is custom lowered.
585   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
586   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
587 
588   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
589   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
590 
591   if (Subtarget.is64BitELFABI()) {
592     // VAARG always uses double-word chunks, so promote anything smaller.
593     setOperationAction(ISD::VAARG, MVT::i1, Promote);
594     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
595     setOperationAction(ISD::VAARG, MVT::i8, Promote);
596     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
597     setOperationAction(ISD::VAARG, MVT::i16, Promote);
598     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
599     setOperationAction(ISD::VAARG, MVT::i32, Promote);
600     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
601     setOperationAction(ISD::VAARG, MVT::Other, Expand);
602   } else if (Subtarget.is32BitELFABI()) {
603     // VAARG is custom lowered with the 32-bit SVR4 ABI.
604     setOperationAction(ISD::VAARG, MVT::Other, Custom);
605     setOperationAction(ISD::VAARG, MVT::i64, Custom);
606   } else
607     setOperationAction(ISD::VAARG, MVT::Other, Expand);
608 
609   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
610   if (Subtarget.is32BitELFABI())
611     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
612   else
613     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
614 
615   // Use the default implementation.
616   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
617   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
618   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
619   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
620   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
621   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
622   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
623   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
624   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
625 
626   // We want to custom lower some of our intrinsics.
627   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
628   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
629   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
630   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
631   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom);
632 
633   // To handle counter-based loop conditions.
634   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
635 
636   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
637   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
638   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
639   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
640 
641   // Comparisons that require checking two conditions.
642   if (Subtarget.hasSPE()) {
643     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
644     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
645     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
646     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
647   }
648   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
649   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
650   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
651   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
652   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
653   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
654   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
655   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
656   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
657   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
658   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
659   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
660 
661   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
662   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
663 
664   if (Subtarget.has64BitSupport()) {
665     // They also have instructions for converting between i64 and fp.
666     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
667     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
668     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
669     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
670     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
671     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
672     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
673     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
674     // This is just the low 32 bits of a (signed) fp->i64 conversion.
675     // We cannot do this with Promote because i64 is not a legal type.
676     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
677     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
678 
679     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
680       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
681       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
682     }
683   } else {
684     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
685     if (Subtarget.hasSPE()) {
686       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
687       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
688     } else {
689       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
690       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
691     }
692   }
693 
694   // With the instructions enabled under FPCVT, we can do everything.
695   if (Subtarget.hasFPCVT()) {
696     if (Subtarget.has64BitSupport()) {
697       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
698       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
699       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
700       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
701       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
702       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
703       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
704       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
705     }
706 
707     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
708     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
709     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
710     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
711     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
712     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
713     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
714     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
715   }
716 
717   if (Subtarget.use64BitRegs()) {
718     // 64-bit PowerPC implementations can support i64 types directly
719     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
720     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
721     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
722     // 64-bit PowerPC wants to expand i128 shifts itself.
723     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
724     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
725     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
726   } else {
727     // 32-bit PowerPC wants to expand i64 shifts itself.
728     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
729     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
730     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
731   }
732 
733   // PowerPC has better expansions for funnel shifts than the generic
734   // TargetLowering::expandFunnelShift.
735   if (Subtarget.has64BitSupport()) {
736     setOperationAction(ISD::FSHL, MVT::i64, Custom);
737     setOperationAction(ISD::FSHR, MVT::i64, Custom);
738   }
739   setOperationAction(ISD::FSHL, MVT::i32, Custom);
740   setOperationAction(ISD::FSHR, MVT::i32, Custom);
741 
742   if (Subtarget.hasVSX()) {
743     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
744     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
745     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
746     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
747   }
748 
749   if (Subtarget.hasAltivec()) {
750     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
751       setOperationAction(ISD::SADDSAT, VT, Legal);
752       setOperationAction(ISD::SSUBSAT, VT, Legal);
753       setOperationAction(ISD::UADDSAT, VT, Legal);
754       setOperationAction(ISD::USUBSAT, VT, Legal);
755     }
756     // First set operation action for all vector types to expand. Then we
757     // will selectively turn on ones that can be effectively codegen'd.
758     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
759       // add/sub are legal for all supported vector VT's.
760       setOperationAction(ISD::ADD, VT, Legal);
761       setOperationAction(ISD::SUB, VT, Legal);
762 
763       // For v2i64, these are only valid with P8Vector. This is corrected after
764       // the loop.
765       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
766         setOperationAction(ISD::SMAX, VT, Legal);
767         setOperationAction(ISD::SMIN, VT, Legal);
768         setOperationAction(ISD::UMAX, VT, Legal);
769         setOperationAction(ISD::UMIN, VT, Legal);
770       }
771       else {
772         setOperationAction(ISD::SMAX, VT, Expand);
773         setOperationAction(ISD::SMIN, VT, Expand);
774         setOperationAction(ISD::UMAX, VT, Expand);
775         setOperationAction(ISD::UMIN, VT, Expand);
776       }
777 
778       if (Subtarget.hasVSX()) {
779         setOperationAction(ISD::FMAXNUM, VT, Legal);
780         setOperationAction(ISD::FMINNUM, VT, Legal);
781       }
782 
783       // Vector instructions introduced in P8
784       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
785         setOperationAction(ISD::CTPOP, VT, Legal);
786         setOperationAction(ISD::CTLZ, VT, Legal);
787       }
788       else {
789         setOperationAction(ISD::CTPOP, VT, Expand);
790         setOperationAction(ISD::CTLZ, VT, Expand);
791       }
792 
793       // Vector instructions introduced in P9
794       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
795         setOperationAction(ISD::CTTZ, VT, Legal);
796       else
797         setOperationAction(ISD::CTTZ, VT, Expand);
798 
799       // We promote all shuffles to v16i8.
800       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
801       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
802 
803       // We promote all non-typed operations to v4i32.
804       setOperationAction(ISD::AND   , VT, Promote);
805       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
806       setOperationAction(ISD::OR    , VT, Promote);
807       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
808       setOperationAction(ISD::XOR   , VT, Promote);
809       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
810       setOperationAction(ISD::LOAD  , VT, Promote);
811       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
812       setOperationAction(ISD::SELECT, VT, Promote);
813       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
814       setOperationAction(ISD::VSELECT, VT, Legal);
815       setOperationAction(ISD::SELECT_CC, VT, Promote);
816       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
817       setOperationAction(ISD::STORE, VT, Promote);
818       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
819 
820       // No other operations are legal.
821       setOperationAction(ISD::MUL , VT, Expand);
822       setOperationAction(ISD::SDIV, VT, Expand);
823       setOperationAction(ISD::SREM, VT, Expand);
824       setOperationAction(ISD::UDIV, VT, Expand);
825       setOperationAction(ISD::UREM, VT, Expand);
826       setOperationAction(ISD::FDIV, VT, Expand);
827       setOperationAction(ISD::FREM, VT, Expand);
828       setOperationAction(ISD::FNEG, VT, Expand);
829       setOperationAction(ISD::FSQRT, VT, Expand);
830       setOperationAction(ISD::FLOG, VT, Expand);
831       setOperationAction(ISD::FLOG10, VT, Expand);
832       setOperationAction(ISD::FLOG2, VT, Expand);
833       setOperationAction(ISD::FEXP, VT, Expand);
834       setOperationAction(ISD::FEXP2, VT, Expand);
835       setOperationAction(ISD::FSIN, VT, Expand);
836       setOperationAction(ISD::FCOS, VT, Expand);
837       setOperationAction(ISD::FABS, VT, Expand);
838       setOperationAction(ISD::FFLOOR, VT, Expand);
839       setOperationAction(ISD::FCEIL,  VT, Expand);
840       setOperationAction(ISD::FTRUNC, VT, Expand);
841       setOperationAction(ISD::FRINT,  VT, Expand);
842       setOperationAction(ISD::FNEARBYINT, VT, Expand);
843       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
844       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
845       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
846       setOperationAction(ISD::MULHU, VT, Expand);
847       setOperationAction(ISD::MULHS, VT, Expand);
848       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
849       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
850       setOperationAction(ISD::UDIVREM, VT, Expand);
851       setOperationAction(ISD::SDIVREM, VT, Expand);
852       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
853       setOperationAction(ISD::FPOW, VT, Expand);
854       setOperationAction(ISD::BSWAP, VT, Expand);
855       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
856       setOperationAction(ISD::ROTL, VT, Expand);
857       setOperationAction(ISD::ROTR, VT, Expand);
858 
859       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
860         setTruncStoreAction(VT, InnerVT, Expand);
861         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
862         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
863         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
864       }
865     }
866     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
867     if (!Subtarget.hasP8Vector()) {
868       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
869       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
870       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
871       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
872     }
873 
874     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
875     // with merges, splats, etc.
876     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
877 
878     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
879     // are cheap, so handle them before they get expanded to scalar.
880     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
881     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
882     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
883     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
884     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
885 
886     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
887     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
888     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
889     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
890     setOperationAction(ISD::SELECT, MVT::v4i32,
891                        Subtarget.useCRBits() ? Legal : Expand);
892     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
893     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
894     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
895     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
896     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
897     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
898     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
899     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
900     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
901     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
902     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
903     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
904     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
905 
906     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
907     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
908     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
909     if (Subtarget.hasAltivec())
910       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
911         setOperationAction(ISD::ROTL, VT, Legal);
912     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
913     if (Subtarget.hasP8Altivec())
914       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
915 
916     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
917     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
918     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
919     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
920 
921     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
922     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
923 
924     if (Subtarget.hasVSX()) {
925       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
926       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
927       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
928     }
929 
930     if (Subtarget.hasP8Altivec())
931       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
932     else
933       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
934 
935     if (Subtarget.isISA3_1()) {
936       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
937       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
938       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
939       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
940       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
941       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
942       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
943       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
944       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
945       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
946       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
947       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
948       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
949       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
950       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
951       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
952       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
953       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
954     }
955 
956     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
957     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
958 
959     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
960     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
961 
962     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
963     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
964     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
965     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
966 
967     // Altivec does not contain unordered floating-point compare instructions
968     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
969     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
970     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
971     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
972 
973     if (Subtarget.hasVSX()) {
974       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
975       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
976       if (Subtarget.hasP8Vector()) {
977         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
978         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
979       }
980       if (Subtarget.hasDirectMove() && isPPC64) {
981         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
982         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
983         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
984         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
985         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
986         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
987         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
988         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
989       }
990       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
991 
992       // The nearbyint variants are not allowed to raise the inexact exception
993       // so we can only code-gen them with unsafe math.
994       if (TM.Options.UnsafeFPMath) {
995         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
996         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
997       }
998 
999       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1000       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1001       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1002       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1003       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1004       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
1005       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1006       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1007 
1008       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1009       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1010       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1011       setOperationAction(ISD::FROUND, MVT::f32, Legal);
1012       setOperationAction(ISD::FRINT, MVT::f32, Legal);
1013 
1014       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1015       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1016 
1017       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1018       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1019 
1020       // Share the Altivec comparison restrictions.
1021       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1022       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1023       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1024       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1025 
1026       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1027       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1028 
1029       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1030 
1031       if (Subtarget.hasP8Vector())
1032         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1033 
1034       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1035 
1036       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1037       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1038       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1039 
1040       if (Subtarget.hasP8Altivec()) {
1041         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1042         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1043         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1044 
1045         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1046         // SRL, but not for SRA because of the instructions available:
1047         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1048         // doing
1049         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1050         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1051         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1052 
1053         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1054       }
1055       else {
1056         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1057         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1058         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1059 
1060         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1061 
1062         // VSX v2i64 only supports non-arithmetic operations.
1063         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1064         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1065       }
1066 
1067       if (Subtarget.isISA3_1())
1068         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1069       else
1070         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1071 
1072       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1073       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1074       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1075       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1076 
1077       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1078 
1079       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1080       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1081       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1082       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1083       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1084       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1085       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1086       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1087 
1088       // Custom handling for partial vectors of integers converted to
1089       // floating point. We already have optimal handling for v2i32 through
1090       // the DAG combine, so those aren't necessary.
1091       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1092       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1093       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1094       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1095       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1096       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1097       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1098       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1099       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1100       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1101       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1102       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1103       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1104       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1105       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1106       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1107 
1108       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1109       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1110       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1111       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1112       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1113       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1114 
1115       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1116       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1117 
1118       // Handle constrained floating-point operations of vector.
1119       // The predictor is `hasVSX` because altivec instruction has
1120       // no exception but VSX vector instruction has.
1121       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1122       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1123       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1124       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1125       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1126       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1127       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1128       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1129       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1130       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1131       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1132       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1133       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1134 
1135       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1136       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1137       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1138       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1139       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1140       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1141       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1142       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1143       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1144       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1145       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1146       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1147       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1148 
1149       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1150       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1151 
1152       for (MVT FPT : MVT::fp_valuetypes())
1153         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1154 
1155       // Expand the SELECT to SELECT_CC
1156       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1157 
1158       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1159       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1160 
1161       // No implementation for these ops for PowerPC.
1162       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1163       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1164       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1165       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1166       setOperationAction(ISD::FREM, MVT::f128, Expand);
1167     }
1168 
1169     if (Subtarget.hasP8Altivec()) {
1170       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1171       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1172     }
1173 
1174     if (Subtarget.hasP9Vector()) {
1175       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1176       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1177 
1178       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1179       // SRL, but not for SRA because of the instructions available:
1180       // VS{RL} and VS{RL}O.
1181       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1182       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1183       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1184 
1185       setOperationAction(ISD::FADD, MVT::f128, Legal);
1186       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1187       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1188       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1189       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1190 
1191       setOperationAction(ISD::FMA, MVT::f128, Legal);
1192       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1193       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1194       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1195       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1196       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1197       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1198 
1199       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1200       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1201       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1202       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1203       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1204       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1205 
1206       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1207       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1208       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1209 
1210       // Handle constrained floating-point operations of fp128
1211       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1212       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1213       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1214       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1215       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1216       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1217       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1218       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1219       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1220       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1221       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1222       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1223       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1224       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1225       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1226       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1227       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1228       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1229       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1230       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1231     } else if (Subtarget.hasVSX()) {
1232       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1233       setOperationAction(ISD::STORE, MVT::f128, Promote);
1234 
1235       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1236       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1237 
1238       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1239       // fp_to_uint and int_to_fp.
1240       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1241       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1242 
1243       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1244       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1245       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1246       setOperationAction(ISD::FABS, MVT::f128, Expand);
1247       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1248       setOperationAction(ISD::FMA, MVT::f128, Expand);
1249       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1250 
1251       // Expand the fp_extend if the target type is fp128.
1252       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1253       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1254 
1255       // Expand the fp_round if the source type is fp128.
1256       for (MVT VT : {MVT::f32, MVT::f64}) {
1257         setOperationAction(ISD::FP_ROUND, VT, Custom);
1258         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1259       }
1260 
1261       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1262       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1263       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1264       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1265 
1266       // Lower following f128 select_cc pattern:
1267       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1268       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1269 
1270       // We need to handle f128 SELECT_CC with integer result type.
1271       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1272       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1273     }
1274 
1275     if (Subtarget.hasP9Altivec()) {
1276       if (Subtarget.isISA3_1()) {
1277         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1278         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1279         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1280         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1281       } else {
1282         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1283         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1284       }
1285       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1286       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1287       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1288       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1289       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1290       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1291       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1292     }
1293 
1294     if (Subtarget.hasP10Vector()) {
1295       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1296     }
1297   }
1298 
1299   if (Subtarget.pairedVectorMemops()) {
1300     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1301     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1302     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1303   }
1304   if (Subtarget.hasMMA()) {
1305     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1306     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1307     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1308     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1309   }
1310 
1311   if (Subtarget.has64BitSupport())
1312     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1313 
1314   if (Subtarget.isISA3_1())
1315     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1316 
1317   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1318 
1319   if (!isPPC64) {
1320     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1321     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1322   }
1323 
1324   if (shouldInlineQuadwordAtomics()) {
1325     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1326     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1327     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1328   }
1329 
1330   setBooleanContents(ZeroOrOneBooleanContent);
1331 
1332   if (Subtarget.hasAltivec()) {
1333     // Altivec instructions set fields to all zeros or all ones.
1334     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1335   }
1336 
1337   setLibcallName(RTLIB::MULO_I128, nullptr);
1338   if (!isPPC64) {
1339     // These libcalls are not available in 32-bit.
1340     setLibcallName(RTLIB::SHL_I128, nullptr);
1341     setLibcallName(RTLIB::SRL_I128, nullptr);
1342     setLibcallName(RTLIB::SRA_I128, nullptr);
1343     setLibcallName(RTLIB::MUL_I128, nullptr);
1344     setLibcallName(RTLIB::MULO_I64, nullptr);
1345   }
1346 
1347   if (!isPPC64)
1348     setMaxAtomicSizeInBitsSupported(32);
1349   else if (shouldInlineQuadwordAtomics())
1350     setMaxAtomicSizeInBitsSupported(128);
1351   else
1352     setMaxAtomicSizeInBitsSupported(64);
1353 
1354   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1355 
1356   // We have target-specific dag combine patterns for the following nodes:
1357   setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL,
1358                        ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR});
1359   if (Subtarget.hasFPCVT())
1360     setTargetDAGCombine(ISD::UINT_TO_FP);
1361   setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC});
1362   if (Subtarget.useCRBits())
1363     setTargetDAGCombine(ISD::BRCOND);
1364   setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN,
1365                        ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID});
1366 
1367   setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND});
1368 
1369   setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE});
1370 
1371   if (Subtarget.useCRBits()) {
1372     setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC});
1373   }
1374 
1375   if (Subtarget.hasP9Altivec()) {
1376     setTargetDAGCombine({ISD::ABS, ISD::VSELECT});
1377   }
1378 
1379   setLibcallName(RTLIB::LOG_F128, "logf128");
1380   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1381   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1382   setLibcallName(RTLIB::EXP_F128, "expf128");
1383   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1384   setLibcallName(RTLIB::SIN_F128, "sinf128");
1385   setLibcallName(RTLIB::COS_F128, "cosf128");
1386   setLibcallName(RTLIB::POW_F128, "powf128");
1387   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1388   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1389   setLibcallName(RTLIB::REM_F128, "fmodf128");
1390   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1391   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1392   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1393   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1394   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1395   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1396   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1397   setLibcallName(RTLIB::RINT_F128, "rintf128");
1398   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1399   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1400   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1401   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1402 
1403   // With 32 condition bits, we don't need to sink (and duplicate) compares
1404   // aggressively in CodeGenPrep.
1405   if (Subtarget.useCRBits()) {
1406     setHasMultipleConditionRegisters();
1407     setJumpIsExpensive();
1408   }
1409 
1410   setMinFunctionAlignment(Align(4));
1411 
1412   switch (Subtarget.getCPUDirective()) {
1413   default: break;
1414   case PPC::DIR_970:
1415   case PPC::DIR_A2:
1416   case PPC::DIR_E500:
1417   case PPC::DIR_E500mc:
1418   case PPC::DIR_E5500:
1419   case PPC::DIR_PWR4:
1420   case PPC::DIR_PWR5:
1421   case PPC::DIR_PWR5X:
1422   case PPC::DIR_PWR6:
1423   case PPC::DIR_PWR6X:
1424   case PPC::DIR_PWR7:
1425   case PPC::DIR_PWR8:
1426   case PPC::DIR_PWR9:
1427   case PPC::DIR_PWR10:
1428   case PPC::DIR_PWR_FUTURE:
1429     setPrefLoopAlignment(Align(16));
1430     setPrefFunctionAlignment(Align(16));
1431     break;
1432   }
1433 
1434   if (Subtarget.enableMachineScheduler())
1435     setSchedulingPreference(Sched::Source);
1436   else
1437     setSchedulingPreference(Sched::Hybrid);
1438 
1439   computeRegisterProperties(STI.getRegisterInfo());
1440 
1441   // The Freescale cores do better with aggressive inlining of memcpy and
1442   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1443   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1444       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1445     MaxStoresPerMemset = 32;
1446     MaxStoresPerMemsetOptSize = 16;
1447     MaxStoresPerMemcpy = 32;
1448     MaxStoresPerMemcpyOptSize = 8;
1449     MaxStoresPerMemmove = 32;
1450     MaxStoresPerMemmoveOptSize = 8;
1451   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1452     // The A2 also benefits from (very) aggressive inlining of memcpy and
1453     // friends. The overhead of a the function call, even when warm, can be
1454     // over one hundred cycles.
1455     MaxStoresPerMemset = 128;
1456     MaxStoresPerMemcpy = 128;
1457     MaxStoresPerMemmove = 128;
1458     MaxLoadsPerMemcmp = 128;
1459   } else {
1460     MaxLoadsPerMemcmp = 8;
1461     MaxLoadsPerMemcmpOptSize = 4;
1462   }
1463 
1464   IsStrictFPEnabled = true;
1465 
1466   // Let the subtarget (CPU) decide if a predictable select is more expensive
1467   // than the corresponding branch. This information is used in CGP to decide
1468   // when to convert selects into branches.
1469   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1470 }
1471 
1472 // *********************************** NOTE ************************************
1473 // For selecting load and store instructions, the addressing modes are defined
1474 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1475 // patterns to match the load the store instructions.
1476 //
1477 // The TD definitions for the addressing modes correspond to their respective
1478 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1479 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1480 // address mode flags of a particular node. Afterwards, the computed address
1481 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1482 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1483 // accordingly, based on the preferred addressing mode.
1484 //
1485 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1486 // MemOpFlags contains all the possible flags that can be used to compute the
1487 // optimal addressing mode for load and store instructions.
1488 // AddrMode contains all the possible load and store addressing modes available
1489 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1490 //
1491 // When adding new load and store instructions, it is possible that new address
1492 // flags may need to be added into MemOpFlags, and a new addressing mode will
1493 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1494 // of the minimal and main distinguishing address flags for the new load/store
1495 // instructions) will need to be added into initializeAddrModeMap() below.
1496 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1497 // need to be updated to account for selecting the optimal addressing mode.
1498 // *****************************************************************************
1499 /// Initialize the map that relates the different addressing modes of the load
1500 /// and store instructions to a set of flags. This ensures the load/store
1501 /// instruction is correctly matched during instruction selection.
1502 void PPCTargetLowering::initializeAddrModeMap() {
1503   AddrModesMap[PPC::AM_DForm] = {
1504       // LWZ, STW
1505       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1506       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1507       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1508       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1509       // LBZ, LHZ, STB, STH
1510       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1511       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1512       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1513       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1514       // LHA
1515       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1516       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1517       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1518       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1519       // LFS, LFD, STFS, STFD
1520       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1521       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1522       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1523       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1524   };
1525   AddrModesMap[PPC::AM_DSForm] = {
1526       // LWA
1527       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1528       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1529       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1530       // LD, STD
1531       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1532       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1533       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1534       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1535       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1536       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1537       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1538   };
1539   AddrModesMap[PPC::AM_DQForm] = {
1540       // LXV, STXV
1541       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1542       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1543       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1544   };
1545   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1546                                        PPC::MOF_SubtargetP10};
1547   // TODO: Add mapping for quadword load/store.
1548 }
1549 
1550 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1551 /// the desired ByVal argument alignment.
1552 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1553   if (MaxAlign == MaxMaxAlign)
1554     return;
1555   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1556     if (MaxMaxAlign >= 32 &&
1557         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1558       MaxAlign = Align(32);
1559     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1560              MaxAlign < 16)
1561       MaxAlign = Align(16);
1562   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1563     Align EltAlign;
1564     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1565     if (EltAlign > MaxAlign)
1566       MaxAlign = EltAlign;
1567   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1568     for (auto *EltTy : STy->elements()) {
1569       Align EltAlign;
1570       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1571       if (EltAlign > MaxAlign)
1572         MaxAlign = EltAlign;
1573       if (MaxAlign == MaxMaxAlign)
1574         break;
1575     }
1576   }
1577 }
1578 
1579 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1580 /// function arguments in the caller parameter area.
1581 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1582                                                   const DataLayout &DL) const {
1583   // 16byte and wider vectors are passed on 16byte boundary.
1584   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1585   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1586   if (Subtarget.hasAltivec())
1587     getMaxByValAlign(Ty, Alignment, Align(16));
1588   return Alignment.value();
1589 }
1590 
1591 bool PPCTargetLowering::useSoftFloat() const {
1592   return Subtarget.useSoftFloat();
1593 }
1594 
1595 bool PPCTargetLowering::hasSPE() const {
1596   return Subtarget.hasSPE();
1597 }
1598 
1599 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1600   return VT.isScalarInteger();
1601 }
1602 
1603 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1604   switch ((PPCISD::NodeType)Opcode) {
1605   case PPCISD::FIRST_NUMBER:    break;
1606   case PPCISD::FSEL:            return "PPCISD::FSEL";
1607   case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1608   case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1609   case PPCISD::FCFID:           return "PPCISD::FCFID";
1610   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1611   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1612   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1613   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1614   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1615   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1616   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1617   case PPCISD::FP_TO_UINT_IN_VSR:
1618                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1619   case PPCISD::FP_TO_SINT_IN_VSR:
1620                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1621   case PPCISD::FRE:             return "PPCISD::FRE";
1622   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1623   case PPCISD::FTSQRT:
1624     return "PPCISD::FTSQRT";
1625   case PPCISD::FSQRT:
1626     return "PPCISD::FSQRT";
1627   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1628   case PPCISD::VPERM:           return "PPCISD::VPERM";
1629   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1630   case PPCISD::XXSPLTI_SP_TO_DP:
1631     return "PPCISD::XXSPLTI_SP_TO_DP";
1632   case PPCISD::XXSPLTI32DX:
1633     return "PPCISD::XXSPLTI32DX";
1634   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1635   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1636   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1637   case PPCISD::CMPB:            return "PPCISD::CMPB";
1638   case PPCISD::Hi:              return "PPCISD::Hi";
1639   case PPCISD::Lo:              return "PPCISD::Lo";
1640   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1641   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1642   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1643   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1644   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1645   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1646   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1647   case PPCISD::SRL:             return "PPCISD::SRL";
1648   case PPCISD::SRA:             return "PPCISD::SRA";
1649   case PPCISD::SHL:             return "PPCISD::SHL";
1650   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1651   case PPCISD::CALL:            return "PPCISD::CALL";
1652   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1653   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1654   case PPCISD::CALL_RM:
1655     return "PPCISD::CALL_RM";
1656   case PPCISD::CALL_NOP_RM:
1657     return "PPCISD::CALL_NOP_RM";
1658   case PPCISD::CALL_NOTOC_RM:
1659     return "PPCISD::CALL_NOTOC_RM";
1660   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1661   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1662   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1663   case PPCISD::BCTRL_RM:
1664     return "PPCISD::BCTRL_RM";
1665   case PPCISD::BCTRL_LOAD_TOC_RM:
1666     return "PPCISD::BCTRL_LOAD_TOC_RM";
1667   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1668   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1669   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1670   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1671   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1672   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1673   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1674   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1675   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1676   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1677   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1678     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1679   case PPCISD::ANDI_rec_1_EQ_BIT:
1680     return "PPCISD::ANDI_rec_1_EQ_BIT";
1681   case PPCISD::ANDI_rec_1_GT_BIT:
1682     return "PPCISD::ANDI_rec_1_GT_BIT";
1683   case PPCISD::VCMP:            return "PPCISD::VCMP";
1684   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1685   case PPCISD::LBRX:            return "PPCISD::LBRX";
1686   case PPCISD::STBRX:           return "PPCISD::STBRX";
1687   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1688   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1689   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1690   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1691   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1692   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1693   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1694   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1695   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1696   case PPCISD::ST_VSR_SCAL_INT:
1697                                 return "PPCISD::ST_VSR_SCAL_INT";
1698   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1699   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1700   case PPCISD::BDZ:             return "PPCISD::BDZ";
1701   case PPCISD::MFFS:            return "PPCISD::MFFS";
1702   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1703   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1704   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1705   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1706   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1707   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1708   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1709   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1710   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1711   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1712   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1713   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1714   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1715   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1716   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1717   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1718   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1719   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1720   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1721   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1722   case PPCISD::PADDI_DTPREL:
1723     return "PPCISD::PADDI_DTPREL";
1724   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1725   case PPCISD::SC:              return "PPCISD::SC";
1726   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1727   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1728   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1729   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1730   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1731   case PPCISD::VABSD:           return "PPCISD::VABSD";
1732   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1733   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1734   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1735   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1736   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1737   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1738   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1739   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1740     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1741   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1742     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1743   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1744   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1745   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1746   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1747   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1748   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1749   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1750   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1751   case PPCISD::STRICT_FADDRTZ:
1752     return "PPCISD::STRICT_FADDRTZ";
1753   case PPCISD::STRICT_FCTIDZ:
1754     return "PPCISD::STRICT_FCTIDZ";
1755   case PPCISD::STRICT_FCTIWZ:
1756     return "PPCISD::STRICT_FCTIWZ";
1757   case PPCISD::STRICT_FCTIDUZ:
1758     return "PPCISD::STRICT_FCTIDUZ";
1759   case PPCISD::STRICT_FCTIWUZ:
1760     return "PPCISD::STRICT_FCTIWUZ";
1761   case PPCISD::STRICT_FCFID:
1762     return "PPCISD::STRICT_FCFID";
1763   case PPCISD::STRICT_FCFIDU:
1764     return "PPCISD::STRICT_FCFIDU";
1765   case PPCISD::STRICT_FCFIDS:
1766     return "PPCISD::STRICT_FCFIDS";
1767   case PPCISD::STRICT_FCFIDUS:
1768     return "PPCISD::STRICT_FCFIDUS";
1769   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1770   }
1771   return nullptr;
1772 }
1773 
1774 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1775                                           EVT VT) const {
1776   if (!VT.isVector())
1777     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1778 
1779   return VT.changeVectorElementTypeToInteger();
1780 }
1781 
1782 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1783   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1784   return true;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 // Node matching predicates, for use by the tblgen matching code.
1789 //===----------------------------------------------------------------------===//
1790 
1791 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1792 static bool isFloatingPointZero(SDValue Op) {
1793   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1794     return CFP->getValueAPF().isZero();
1795   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1796     // Maybe this has already been legalized into the constant pool?
1797     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1798       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1799         return CFP->getValueAPF().isZero();
1800   }
1801   return false;
1802 }
1803 
1804 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1805 /// true if Op is undef or if it matches the specified value.
1806 static bool isConstantOrUndef(int Op, int Val) {
1807   return Op < 0 || Op == Val;
1808 }
1809 
1810 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1811 /// VPKUHUM instruction.
1812 /// The ShuffleKind distinguishes between big-endian operations with
1813 /// two different inputs (0), either-endian operations with two identical
1814 /// inputs (1), and little-endian operations with two different inputs (2).
1815 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1816 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1817                                SelectionDAG &DAG) {
1818   bool IsLE = DAG.getDataLayout().isLittleEndian();
1819   if (ShuffleKind == 0) {
1820     if (IsLE)
1821       return false;
1822     for (unsigned i = 0; i != 16; ++i)
1823       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1824         return false;
1825   } else if (ShuffleKind == 2) {
1826     if (!IsLE)
1827       return false;
1828     for (unsigned i = 0; i != 16; ++i)
1829       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1830         return false;
1831   } else if (ShuffleKind == 1) {
1832     unsigned j = IsLE ? 0 : 1;
1833     for (unsigned i = 0; i != 8; ++i)
1834       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1835           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1836         return false;
1837   }
1838   return true;
1839 }
1840 
1841 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1842 /// VPKUWUM instruction.
1843 /// The ShuffleKind distinguishes between big-endian operations with
1844 /// two different inputs (0), either-endian operations with two identical
1845 /// inputs (1), and little-endian operations with two different inputs (2).
1846 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1847 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1848                                SelectionDAG &DAG) {
1849   bool IsLE = DAG.getDataLayout().isLittleEndian();
1850   if (ShuffleKind == 0) {
1851     if (IsLE)
1852       return false;
1853     for (unsigned i = 0; i != 16; i += 2)
1854       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1855           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1856         return false;
1857   } else if (ShuffleKind == 2) {
1858     if (!IsLE)
1859       return false;
1860     for (unsigned i = 0; i != 16; i += 2)
1861       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1862           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1863         return false;
1864   } else if (ShuffleKind == 1) {
1865     unsigned j = IsLE ? 0 : 2;
1866     for (unsigned i = 0; i != 8; i += 2)
1867       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1868           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1869           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1870           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1871         return false;
1872   }
1873   return true;
1874 }
1875 
1876 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1877 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1878 /// current subtarget.
1879 ///
1880 /// The ShuffleKind distinguishes between big-endian operations with
1881 /// two different inputs (0), either-endian operations with two identical
1882 /// inputs (1), and little-endian operations with two different inputs (2).
1883 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1884 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1885                                SelectionDAG &DAG) {
1886   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
1887   if (!Subtarget.hasP8Vector())
1888     return false;
1889 
1890   bool IsLE = DAG.getDataLayout().isLittleEndian();
1891   if (ShuffleKind == 0) {
1892     if (IsLE)
1893       return false;
1894     for (unsigned i = 0; i != 16; i += 4)
1895       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1896           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1897           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1898           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1899         return false;
1900   } else if (ShuffleKind == 2) {
1901     if (!IsLE)
1902       return false;
1903     for (unsigned i = 0; i != 16; i += 4)
1904       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1905           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1906           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1907           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1908         return false;
1909   } else if (ShuffleKind == 1) {
1910     unsigned j = IsLE ? 0 : 4;
1911     for (unsigned i = 0; i != 8; i += 4)
1912       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1913           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1914           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1915           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1916           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1917           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1918           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1919           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1920         return false;
1921   }
1922   return true;
1923 }
1924 
1925 /// isVMerge - Common function, used to match vmrg* shuffles.
1926 ///
1927 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1928                      unsigned LHSStart, unsigned RHSStart) {
1929   if (N->getValueType(0) != MVT::v16i8)
1930     return false;
1931   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1932          "Unsupported merge size!");
1933 
1934   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1935     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1936       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1937                              LHSStart+j+i*UnitSize) ||
1938           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1939                              RHSStart+j+i*UnitSize))
1940         return false;
1941     }
1942   return true;
1943 }
1944 
1945 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1946 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1947 /// The ShuffleKind distinguishes between big-endian merges with two
1948 /// different inputs (0), either-endian merges with two identical inputs (1),
1949 /// and little-endian merges with two different inputs (2).  For the latter,
1950 /// the input operands are swapped (see PPCInstrAltivec.td).
1951 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1952                              unsigned ShuffleKind, SelectionDAG &DAG) {
1953   if (DAG.getDataLayout().isLittleEndian()) {
1954     if (ShuffleKind == 1) // unary
1955       return isVMerge(N, UnitSize, 0, 0);
1956     else if (ShuffleKind == 2) // swapped
1957       return isVMerge(N, UnitSize, 0, 16);
1958     else
1959       return false;
1960   } else {
1961     if (ShuffleKind == 1) // unary
1962       return isVMerge(N, UnitSize, 8, 8);
1963     else if (ShuffleKind == 0) // normal
1964       return isVMerge(N, UnitSize, 8, 24);
1965     else
1966       return false;
1967   }
1968 }
1969 
1970 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1971 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1972 /// The ShuffleKind distinguishes between big-endian merges with two
1973 /// different inputs (0), either-endian merges with two identical inputs (1),
1974 /// and little-endian merges with two different inputs (2).  For the latter,
1975 /// the input operands are swapped (see PPCInstrAltivec.td).
1976 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1977                              unsigned ShuffleKind, SelectionDAG &DAG) {
1978   if (DAG.getDataLayout().isLittleEndian()) {
1979     if (ShuffleKind == 1) // unary
1980       return isVMerge(N, UnitSize, 8, 8);
1981     else if (ShuffleKind == 2) // swapped
1982       return isVMerge(N, UnitSize, 8, 24);
1983     else
1984       return false;
1985   } else {
1986     if (ShuffleKind == 1) // unary
1987       return isVMerge(N, UnitSize, 0, 0);
1988     else if (ShuffleKind == 0) // normal
1989       return isVMerge(N, UnitSize, 0, 16);
1990     else
1991       return false;
1992   }
1993 }
1994 
1995 /**
1996  * Common function used to match vmrgew and vmrgow shuffles
1997  *
1998  * The indexOffset determines whether to look for even or odd words in
1999  * the shuffle mask. This is based on the of the endianness of the target
2000  * machine.
2001  *   - Little Endian:
2002  *     - Use offset of 0 to check for odd elements
2003  *     - Use offset of 4 to check for even elements
2004  *   - Big Endian:
2005  *     - Use offset of 0 to check for even elements
2006  *     - Use offset of 4 to check for odd elements
2007  * A detailed description of the vector element ordering for little endian and
2008  * big endian can be found at
2009  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2010  * Targeting your applications - what little endian and big endian IBM XL C/C++
2011  * compiler differences mean to you
2012  *
2013  * The mask to the shuffle vector instruction specifies the indices of the
2014  * elements from the two input vectors to place in the result. The elements are
2015  * numbered in array-access order, starting with the first vector. These vectors
2016  * are always of type v16i8, thus each vector will contain 16 elements of size
2017  * 8. More info on the shuffle vector can be found in the
2018  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2019  * Language Reference.
2020  *
2021  * The RHSStartValue indicates whether the same input vectors are used (unary)
2022  * or two different input vectors are used, based on the following:
2023  *   - If the instruction uses the same vector for both inputs, the range of the
2024  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2025  *     be 0.
2026  *   - If the instruction has two different vectors then the range of the
2027  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2028  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2029  *     to 31 specify elements in the second vector).
2030  *
2031  * \param[in] N The shuffle vector SD Node to analyze
2032  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2033  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2034  * vector to the shuffle_vector instruction
2035  * \return true iff this shuffle vector represents an even or odd word merge
2036  */
2037 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2038                      unsigned RHSStartValue) {
2039   if (N->getValueType(0) != MVT::v16i8)
2040     return false;
2041 
2042   for (unsigned i = 0; i < 2; ++i)
2043     for (unsigned j = 0; j < 4; ++j)
2044       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2045                              i*RHSStartValue+j+IndexOffset) ||
2046           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2047                              i*RHSStartValue+j+IndexOffset+8))
2048         return false;
2049   return true;
2050 }
2051 
2052 /**
2053  * Determine if the specified shuffle mask is suitable for the vmrgew or
2054  * vmrgow instructions.
2055  *
2056  * \param[in] N The shuffle vector SD Node to analyze
2057  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2058  * \param[in] ShuffleKind Identify the type of merge:
2059  *   - 0 = big-endian merge with two different inputs;
2060  *   - 1 = either-endian merge with two identical inputs;
2061  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2062  *     little-endian merges).
2063  * \param[in] DAG The current SelectionDAG
2064  * \return true iff this shuffle mask
2065  */
2066 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2067                               unsigned ShuffleKind, SelectionDAG &DAG) {
2068   if (DAG.getDataLayout().isLittleEndian()) {
2069     unsigned indexOffset = CheckEven ? 4 : 0;
2070     if (ShuffleKind == 1) // Unary
2071       return isVMerge(N, indexOffset, 0);
2072     else if (ShuffleKind == 2) // swapped
2073       return isVMerge(N, indexOffset, 16);
2074     else
2075       return false;
2076   }
2077   else {
2078     unsigned indexOffset = CheckEven ? 0 : 4;
2079     if (ShuffleKind == 1) // Unary
2080       return isVMerge(N, indexOffset, 0);
2081     else if (ShuffleKind == 0) // Normal
2082       return isVMerge(N, indexOffset, 16);
2083     else
2084       return false;
2085   }
2086   return false;
2087 }
2088 
2089 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2090 /// amount, otherwise return -1.
2091 /// The ShuffleKind distinguishes between big-endian operations with two
2092 /// different inputs (0), either-endian operations with two identical inputs
2093 /// (1), and little-endian operations with two different inputs (2).  For the
2094 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2095 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2096                              SelectionDAG &DAG) {
2097   if (N->getValueType(0) != MVT::v16i8)
2098     return -1;
2099 
2100   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2101 
2102   // Find the first non-undef value in the shuffle mask.
2103   unsigned i;
2104   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2105     /*search*/;
2106 
2107   if (i == 16) return -1;  // all undef.
2108 
2109   // Otherwise, check to see if the rest of the elements are consecutively
2110   // numbered from this value.
2111   unsigned ShiftAmt = SVOp->getMaskElt(i);
2112   if (ShiftAmt < i) return -1;
2113 
2114   ShiftAmt -= i;
2115   bool isLE = DAG.getDataLayout().isLittleEndian();
2116 
2117   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2118     // Check the rest of the elements to see if they are consecutive.
2119     for (++i; i != 16; ++i)
2120       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2121         return -1;
2122   } else if (ShuffleKind == 1) {
2123     // Check the rest of the elements to see if they are consecutive.
2124     for (++i; i != 16; ++i)
2125       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2126         return -1;
2127   } else
2128     return -1;
2129 
2130   if (isLE)
2131     ShiftAmt = 16 - ShiftAmt;
2132 
2133   return ShiftAmt;
2134 }
2135 
2136 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2137 /// specifies a splat of a single element that is suitable for input to
2138 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2139 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2140   EVT VT = N->getValueType(0);
2141   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2142     return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1);
2143 
2144   assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2145          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2146 
2147   // The consecutive indices need to specify an element, not part of two
2148   // different elements.  So abandon ship early if this isn't the case.
2149   if (N->getMaskElt(0) % EltSize != 0)
2150     return false;
2151 
2152   // This is a splat operation if each element of the permute is the same, and
2153   // if the value doesn't reference the second vector.
2154   unsigned ElementBase = N->getMaskElt(0);
2155 
2156   // FIXME: Handle UNDEF elements too!
2157   if (ElementBase >= 16)
2158     return false;
2159 
2160   // Check that the indices are consecutive, in the case of a multi-byte element
2161   // splatted with a v16i8 mask.
2162   for (unsigned i = 1; i != EltSize; ++i)
2163     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2164       return false;
2165 
2166   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2167     if (N->getMaskElt(i) < 0) continue;
2168     for (unsigned j = 0; j != EltSize; ++j)
2169       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2170         return false;
2171   }
2172   return true;
2173 }
2174 
2175 /// Check that the mask is shuffling N byte elements. Within each N byte
2176 /// element of the mask, the indices could be either in increasing or
2177 /// decreasing order as long as they are consecutive.
2178 /// \param[in] N the shuffle vector SD Node to analyze
2179 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2180 /// Word/DoubleWord/QuadWord).
2181 /// \param[in] StepLen the delta indices number among the N byte element, if
2182 /// the mask is in increasing/decreasing order then it is 1/-1.
2183 /// \return true iff the mask is shuffling N byte elements.
2184 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2185                                    int StepLen) {
2186   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2187          "Unexpected element width.");
2188   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2189 
2190   unsigned NumOfElem = 16 / Width;
2191   unsigned MaskVal[16]; //  Width is never greater than 16
2192   for (unsigned i = 0; i < NumOfElem; ++i) {
2193     MaskVal[0] = N->getMaskElt(i * Width);
2194     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2195       return false;
2196     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2197       return false;
2198     }
2199 
2200     for (unsigned int j = 1; j < Width; ++j) {
2201       MaskVal[j] = N->getMaskElt(i * Width + j);
2202       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2203         return false;
2204       }
2205     }
2206   }
2207 
2208   return true;
2209 }
2210 
2211 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2212                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2213   if (!isNByteElemShuffleMask(N, 4, 1))
2214     return false;
2215 
2216   // Now we look at mask elements 0,4,8,12
2217   unsigned M0 = N->getMaskElt(0) / 4;
2218   unsigned M1 = N->getMaskElt(4) / 4;
2219   unsigned M2 = N->getMaskElt(8) / 4;
2220   unsigned M3 = N->getMaskElt(12) / 4;
2221   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2222   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2223 
2224   // Below, let H and L be arbitrary elements of the shuffle mask
2225   // where H is in the range [4,7] and L is in the range [0,3].
2226   // H, 1, 2, 3 or L, 5, 6, 7
2227   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2228       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2229     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2230     InsertAtByte = IsLE ? 12 : 0;
2231     Swap = M0 < 4;
2232     return true;
2233   }
2234   // 0, H, 2, 3 or 4, L, 6, 7
2235   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2236       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2237     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2238     InsertAtByte = IsLE ? 8 : 4;
2239     Swap = M1 < 4;
2240     return true;
2241   }
2242   // 0, 1, H, 3 or 4, 5, L, 7
2243   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2244       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2245     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2246     InsertAtByte = IsLE ? 4 : 8;
2247     Swap = M2 < 4;
2248     return true;
2249   }
2250   // 0, 1, 2, H or 4, 5, 6, L
2251   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2252       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2253     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2254     InsertAtByte = IsLE ? 0 : 12;
2255     Swap = M3 < 4;
2256     return true;
2257   }
2258 
2259   // If both vector operands for the shuffle are the same vector, the mask will
2260   // contain only elements from the first one and the second one will be undef.
2261   if (N->getOperand(1).isUndef()) {
2262     ShiftElts = 0;
2263     Swap = true;
2264     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2265     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2266       InsertAtByte = IsLE ? 12 : 0;
2267       return true;
2268     }
2269     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2270       InsertAtByte = IsLE ? 8 : 4;
2271       return true;
2272     }
2273     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2274       InsertAtByte = IsLE ? 4 : 8;
2275       return true;
2276     }
2277     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2278       InsertAtByte = IsLE ? 0 : 12;
2279       return true;
2280     }
2281   }
2282 
2283   return false;
2284 }
2285 
2286 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2287                                bool &Swap, bool IsLE) {
2288   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2289   // Ensure each byte index of the word is consecutive.
2290   if (!isNByteElemShuffleMask(N, 4, 1))
2291     return false;
2292 
2293   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2294   unsigned M0 = N->getMaskElt(0) / 4;
2295   unsigned M1 = N->getMaskElt(4) / 4;
2296   unsigned M2 = N->getMaskElt(8) / 4;
2297   unsigned M3 = N->getMaskElt(12) / 4;
2298 
2299   // If both vector operands for the shuffle are the same vector, the mask will
2300   // contain only elements from the first one and the second one will be undef.
2301   if (N->getOperand(1).isUndef()) {
2302     assert(M0 < 4 && "Indexing into an undef vector?");
2303     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2304       return false;
2305 
2306     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2307     Swap = false;
2308     return true;
2309   }
2310 
2311   // Ensure each word index of the ShuffleVector Mask is consecutive.
2312   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2313     return false;
2314 
2315   if (IsLE) {
2316     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2317       // Input vectors don't need to be swapped if the leading element
2318       // of the result is one of the 3 left elements of the second vector
2319       // (or if there is no shift to be done at all).
2320       Swap = false;
2321       ShiftElts = (8 - M0) % 8;
2322     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2323       // Input vectors need to be swapped if the leading element
2324       // of the result is one of the 3 left elements of the first vector
2325       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2326       Swap = true;
2327       ShiftElts = (4 - M0) % 4;
2328     }
2329 
2330     return true;
2331   } else {                                          // BE
2332     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2333       // Input vectors don't need to be swapped if the leading element
2334       // of the result is one of the 4 elements of the first vector.
2335       Swap = false;
2336       ShiftElts = M0;
2337     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2338       // Input vectors need to be swapped if the leading element
2339       // of the result is one of the 4 elements of the right vector.
2340       Swap = true;
2341       ShiftElts = M0 - 4;
2342     }
2343 
2344     return true;
2345   }
2346 }
2347 
2348 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2349   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2350 
2351   if (!isNByteElemShuffleMask(N, Width, -1))
2352     return false;
2353 
2354   for (int i = 0; i < 16; i += Width)
2355     if (N->getMaskElt(i) != i + Width - 1)
2356       return false;
2357 
2358   return true;
2359 }
2360 
2361 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2362   return isXXBRShuffleMaskHelper(N, 2);
2363 }
2364 
2365 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2366   return isXXBRShuffleMaskHelper(N, 4);
2367 }
2368 
2369 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2370   return isXXBRShuffleMaskHelper(N, 8);
2371 }
2372 
2373 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2374   return isXXBRShuffleMaskHelper(N, 16);
2375 }
2376 
2377 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2378 /// if the inputs to the instruction should be swapped and set \p DM to the
2379 /// value for the immediate.
2380 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2381 /// AND element 0 of the result comes from the first input (LE) or second input
2382 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2383 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2384 /// mask.
2385 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2386                                bool &Swap, bool IsLE) {
2387   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2388 
2389   // Ensure each byte index of the double word is consecutive.
2390   if (!isNByteElemShuffleMask(N, 8, 1))
2391     return false;
2392 
2393   unsigned M0 = N->getMaskElt(0) / 8;
2394   unsigned M1 = N->getMaskElt(8) / 8;
2395   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2396 
2397   // If both vector operands for the shuffle are the same vector, the mask will
2398   // contain only elements from the first one and the second one will be undef.
2399   if (N->getOperand(1).isUndef()) {
2400     if ((M0 | M1) < 2) {
2401       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2402       Swap = false;
2403       return true;
2404     } else
2405       return false;
2406   }
2407 
2408   if (IsLE) {
2409     if (M0 > 1 && M1 < 2) {
2410       Swap = false;
2411     } else if (M0 < 2 && M1 > 1) {
2412       M0 = (M0 + 2) % 4;
2413       M1 = (M1 + 2) % 4;
2414       Swap = true;
2415     } else
2416       return false;
2417 
2418     // Note: if control flow comes here that means Swap is already set above
2419     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2420     return true;
2421   } else { // BE
2422     if (M0 < 2 && M1 > 1) {
2423       Swap = false;
2424     } else if (M0 > 1 && M1 < 2) {
2425       M0 = (M0 + 2) % 4;
2426       M1 = (M1 + 2) % 4;
2427       Swap = true;
2428     } else
2429       return false;
2430 
2431     // Note: if control flow comes here that means Swap is already set above
2432     DM = (M0 << 1) + (M1 & 1);
2433     return true;
2434   }
2435 }
2436 
2437 
2438 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2439 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2440 /// elements are counted from the left of the vector register).
2441 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2442                                          SelectionDAG &DAG) {
2443   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2444   assert(isSplatShuffleMask(SVOp, EltSize));
2445   EVT VT = SVOp->getValueType(0);
2446 
2447   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2448     return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0)
2449                                                 : SVOp->getMaskElt(0);
2450 
2451   if (DAG.getDataLayout().isLittleEndian())
2452     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2453   else
2454     return SVOp->getMaskElt(0) / EltSize;
2455 }
2456 
2457 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2458 /// by using a vspltis[bhw] instruction of the specified element size, return
2459 /// the constant being splatted.  The ByteSize field indicates the number of
2460 /// bytes of each element [124] -> [bhw].
2461 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2462   SDValue OpVal;
2463 
2464   // If ByteSize of the splat is bigger than the element size of the
2465   // build_vector, then we have a case where we are checking for a splat where
2466   // multiple elements of the buildvector are folded together into a single
2467   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2468   unsigned EltSize = 16/N->getNumOperands();
2469   if (EltSize < ByteSize) {
2470     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2471     SDValue UniquedVals[4];
2472     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2473 
2474     // See if all of the elements in the buildvector agree across.
2475     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2476       if (N->getOperand(i).isUndef()) continue;
2477       // If the element isn't a constant, bail fully out.
2478       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2479 
2480       if (!UniquedVals[i&(Multiple-1)].getNode())
2481         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2482       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2483         return SDValue();  // no match.
2484     }
2485 
2486     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2487     // either constant or undef values that are identical for each chunk.  See
2488     // if these chunks can form into a larger vspltis*.
2489 
2490     // Check to see if all of the leading entries are either 0 or -1.  If
2491     // neither, then this won't fit into the immediate field.
2492     bool LeadingZero = true;
2493     bool LeadingOnes = true;
2494     for (unsigned i = 0; i != Multiple-1; ++i) {
2495       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2496 
2497       LeadingZero &= isNullConstant(UniquedVals[i]);
2498       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2499     }
2500     // Finally, check the least significant entry.
2501     if (LeadingZero) {
2502       if (!UniquedVals[Multiple-1].getNode())
2503         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2504       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2505       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2506         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2507     }
2508     if (LeadingOnes) {
2509       if (!UniquedVals[Multiple-1].getNode())
2510         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2511       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2512       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2513         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2514     }
2515 
2516     return SDValue();
2517   }
2518 
2519   // Check to see if this buildvec has a single non-undef value in its elements.
2520   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2521     if (N->getOperand(i).isUndef()) continue;
2522     if (!OpVal.getNode())
2523       OpVal = N->getOperand(i);
2524     else if (OpVal != N->getOperand(i))
2525       return SDValue();
2526   }
2527 
2528   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2529 
2530   unsigned ValSizeInBytes = EltSize;
2531   uint64_t Value = 0;
2532   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2533     Value = CN->getZExtValue();
2534   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2535     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2536     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2537   }
2538 
2539   // If the splat value is larger than the element value, then we can never do
2540   // this splat.  The only case that we could fit the replicated bits into our
2541   // immediate field for would be zero, and we prefer to use vxor for it.
2542   if (ValSizeInBytes < ByteSize) return SDValue();
2543 
2544   // If the element value is larger than the splat value, check if it consists
2545   // of a repeated bit pattern of size ByteSize.
2546   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2547     return SDValue();
2548 
2549   // Properly sign extend the value.
2550   int MaskVal = SignExtend32(Value, ByteSize * 8);
2551 
2552   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2553   if (MaskVal == 0) return SDValue();
2554 
2555   // Finally, if this value fits in a 5 bit sext field, return it
2556   if (SignExtend32<5>(MaskVal) == MaskVal)
2557     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2558   return SDValue();
2559 }
2560 
2561 //===----------------------------------------------------------------------===//
2562 //  Addressing Mode Selection
2563 //===----------------------------------------------------------------------===//
2564 
2565 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2566 /// or 64-bit immediate, and if the value can be accurately represented as a
2567 /// sign extension from a 16-bit value.  If so, this returns true and the
2568 /// immediate.
2569 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2570   if (!isa<ConstantSDNode>(N))
2571     return false;
2572 
2573   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2574   if (N->getValueType(0) == MVT::i32)
2575     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2576   else
2577     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2578 }
2579 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2580   return isIntS16Immediate(Op.getNode(), Imm);
2581 }
2582 
2583 /// Used when computing address flags for selecting loads and stores.
2584 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2585 /// An OR of two provably disjoint values is equivalent to an ADD.
2586 /// Most PPC load/store instructions compute the effective address as a sum,
2587 /// so doing this conversion is useful.
2588 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2589   if (N.getOpcode() != ISD::OR)
2590     return false;
2591   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2592   if (!LHSKnown.Zero.getBoolValue())
2593     return false;
2594   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2595   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2596 }
2597 
2598 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2599 /// be represented as an indexed [r+r] operation.
2600 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2601                                                SDValue &Index,
2602                                                SelectionDAG &DAG) const {
2603   for (SDNode *U : N->uses()) {
2604     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2605       if (Memop->getMemoryVT() == MVT::f64) {
2606           Base = N.getOperand(0);
2607           Index = N.getOperand(1);
2608           return true;
2609       }
2610     }
2611   }
2612   return false;
2613 }
2614 
2615 /// isIntS34Immediate - This method tests if value of node given can be
2616 /// accurately represented as a sign extension from a 34-bit value.  If so,
2617 /// this returns true and the immediate.
2618 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2619   if (!isa<ConstantSDNode>(N))
2620     return false;
2621 
2622   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2623   return isInt<34>(Imm);
2624 }
2625 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2626   return isIntS34Immediate(Op.getNode(), Imm);
2627 }
2628 
2629 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2630 /// can be represented as an indexed [r+r] operation.  Returns false if it
2631 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2632 /// non-zero and N can be represented by a base register plus a signed 16-bit
2633 /// displacement, make a more precise judgement by checking (displacement % \p
2634 /// EncodingAlignment).
2635 bool PPCTargetLowering::SelectAddressRegReg(
2636     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2637     MaybeAlign EncodingAlignment) const {
2638   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2639   // a [pc+imm].
2640   if (SelectAddressPCRel(N, Base))
2641     return false;
2642 
2643   int16_t Imm = 0;
2644   if (N.getOpcode() == ISD::ADD) {
2645     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2646     // SPE load/store can only handle 8-bit offsets.
2647     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2648         return true;
2649     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2650         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2651       return false; // r+i
2652     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2653       return false;    // r+i
2654 
2655     Base = N.getOperand(0);
2656     Index = N.getOperand(1);
2657     return true;
2658   } else if (N.getOpcode() == ISD::OR) {
2659     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2660         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2661       return false; // r+i can fold it if we can.
2662 
2663     // If this is an or of disjoint bitfields, we can codegen this as an add
2664     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2665     // disjoint.
2666     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2667 
2668     if (LHSKnown.Zero.getBoolValue()) {
2669       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2670       // If all of the bits are known zero on the LHS or RHS, the add won't
2671       // carry.
2672       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2673         Base = N.getOperand(0);
2674         Index = N.getOperand(1);
2675         return true;
2676       }
2677     }
2678   }
2679 
2680   return false;
2681 }
2682 
2683 // If we happen to be doing an i64 load or store into a stack slot that has
2684 // less than a 4-byte alignment, then the frame-index elimination may need to
2685 // use an indexed load or store instruction (because the offset may not be a
2686 // multiple of 4). The extra register needed to hold the offset comes from the
2687 // register scavenger, and it is possible that the scavenger will need to use
2688 // an emergency spill slot. As a result, we need to make sure that a spill slot
2689 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2690 // stack slot.
2691 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2692   // FIXME: This does not handle the LWA case.
2693   if (VT != MVT::i64)
2694     return;
2695 
2696   // NOTE: We'll exclude negative FIs here, which come from argument
2697   // lowering, because there are no known test cases triggering this problem
2698   // using packed structures (or similar). We can remove this exclusion if
2699   // we find such a test case. The reason why this is so test-case driven is
2700   // because this entire 'fixup' is only to prevent crashes (from the
2701   // register scavenger) on not-really-valid inputs. For example, if we have:
2702   //   %a = alloca i1
2703   //   %b = bitcast i1* %a to i64*
2704   //   store i64* a, i64 b
2705   // then the store should really be marked as 'align 1', but is not. If it
2706   // were marked as 'align 1' then the indexed form would have been
2707   // instruction-selected initially, and the problem this 'fixup' is preventing
2708   // won't happen regardless.
2709   if (FrameIdx < 0)
2710     return;
2711 
2712   MachineFunction &MF = DAG.getMachineFunction();
2713   MachineFrameInfo &MFI = MF.getFrameInfo();
2714 
2715   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2716     return;
2717 
2718   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2719   FuncInfo->setHasNonRISpills();
2720 }
2721 
2722 /// Returns true if the address N can be represented by a base register plus
2723 /// a signed 16-bit displacement [r+imm], and if it is not better
2724 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2725 /// displacements that are multiples of that value.
2726 bool PPCTargetLowering::SelectAddressRegImm(
2727     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2728     MaybeAlign EncodingAlignment) const {
2729   // FIXME dl should come from parent load or store, not from address
2730   SDLoc dl(N);
2731 
2732   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2733   // a [pc+imm].
2734   if (SelectAddressPCRel(N, Base))
2735     return false;
2736 
2737   // If this can be more profitably realized as r+r, fail.
2738   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2739     return false;
2740 
2741   if (N.getOpcode() == ISD::ADD) {
2742     int16_t imm = 0;
2743     if (isIntS16Immediate(N.getOperand(1), imm) &&
2744         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2745       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2746       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2747         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2748         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2749       } else {
2750         Base = N.getOperand(0);
2751       }
2752       return true; // [r+i]
2753     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2754       // Match LOAD (ADD (X, Lo(G))).
2755       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2756              && "Cannot handle constant offsets yet!");
2757       Disp = N.getOperand(1).getOperand(0);  // The global address.
2758       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2759              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2760              Disp.getOpcode() == ISD::TargetConstantPool ||
2761              Disp.getOpcode() == ISD::TargetJumpTable);
2762       Base = N.getOperand(0);
2763       return true;  // [&g+r]
2764     }
2765   } else if (N.getOpcode() == ISD::OR) {
2766     int16_t imm = 0;
2767     if (isIntS16Immediate(N.getOperand(1), imm) &&
2768         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2769       // If this is an or of disjoint bitfields, we can codegen this as an add
2770       // (for better address arithmetic) if the LHS and RHS of the OR are
2771       // provably disjoint.
2772       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2773 
2774       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2775         // If all of the bits are known zero on the LHS or RHS, the add won't
2776         // carry.
2777         if (FrameIndexSDNode *FI =
2778               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2779           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2780           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2781         } else {
2782           Base = N.getOperand(0);
2783         }
2784         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2785         return true;
2786       }
2787     }
2788   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2789     // Loading from a constant address.
2790 
2791     // If this address fits entirely in a 16-bit sext immediate field, codegen
2792     // this as "d, 0"
2793     int16_t Imm;
2794     if (isIntS16Immediate(CN, Imm) &&
2795         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2796       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2797       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2798                              CN->getValueType(0));
2799       return true;
2800     }
2801 
2802     // Handle 32-bit sext immediates with LIS + addr mode.
2803     if ((CN->getValueType(0) == MVT::i32 ||
2804          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2805         (!EncodingAlignment ||
2806          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2807       int Addr = (int)CN->getZExtValue();
2808 
2809       // Otherwise, break this down into an LIS + disp.
2810       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2811 
2812       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2813                                    MVT::i32);
2814       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2815       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2816       return true;
2817     }
2818   }
2819 
2820   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2821   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2822     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2823     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2824   } else
2825     Base = N;
2826   return true;      // [r+0]
2827 }
2828 
2829 /// Similar to the 16-bit case but for instructions that take a 34-bit
2830 /// displacement field (prefixed loads/stores).
2831 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2832                                               SDValue &Base,
2833                                               SelectionDAG &DAG) const {
2834   // Only on 64-bit targets.
2835   if (N.getValueType() != MVT::i64)
2836     return false;
2837 
2838   SDLoc dl(N);
2839   int64_t Imm = 0;
2840 
2841   if (N.getOpcode() == ISD::ADD) {
2842     if (!isIntS34Immediate(N.getOperand(1), Imm))
2843       return false;
2844     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2845     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2846       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2847     else
2848       Base = N.getOperand(0);
2849     return true;
2850   }
2851 
2852   if (N.getOpcode() == ISD::OR) {
2853     if (!isIntS34Immediate(N.getOperand(1), Imm))
2854       return false;
2855     // If this is an or of disjoint bitfields, we can codegen this as an add
2856     // (for better address arithmetic) if the LHS and RHS of the OR are
2857     // provably disjoint.
2858     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2859     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2860       return false;
2861     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2862       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2863     else
2864       Base = N.getOperand(0);
2865     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2866     return true;
2867   }
2868 
2869   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2870     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2871     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2872     return true;
2873   }
2874 
2875   return false;
2876 }
2877 
2878 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2879 /// represented as an indexed [r+r] operation.
2880 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2881                                                 SDValue &Index,
2882                                                 SelectionDAG &DAG) const {
2883   // Check to see if we can easily represent this as an [r+r] address.  This
2884   // will fail if it thinks that the address is more profitably represented as
2885   // reg+imm, e.g. where imm = 0.
2886   if (SelectAddressRegReg(N, Base, Index, DAG))
2887     return true;
2888 
2889   // If the address is the result of an add, we will utilize the fact that the
2890   // address calculation includes an implicit add.  However, we can reduce
2891   // register pressure if we do not materialize a constant just for use as the
2892   // index register.  We only get rid of the add if it is not an add of a
2893   // value and a 16-bit signed constant and both have a single use.
2894   int16_t imm = 0;
2895   if (N.getOpcode() == ISD::ADD &&
2896       (!isIntS16Immediate(N.getOperand(1), imm) ||
2897        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2898     Base = N.getOperand(0);
2899     Index = N.getOperand(1);
2900     return true;
2901   }
2902 
2903   // Otherwise, do it the hard way, using R0 as the base register.
2904   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2905                          N.getValueType());
2906   Index = N;
2907   return true;
2908 }
2909 
2910 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2911   Ty *PCRelCand = dyn_cast<Ty>(N);
2912   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2913 }
2914 
2915 /// Returns true if this address is a PC Relative address.
2916 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2917 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2918 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2919   // This is a materialize PC Relative node. Always select this as PC Relative.
2920   Base = N;
2921   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2922     return true;
2923   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2924       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2925       isValidPCRelNode<JumpTableSDNode>(N) ||
2926       isValidPCRelNode<BlockAddressSDNode>(N))
2927     return true;
2928   return false;
2929 }
2930 
2931 /// Returns true if we should use a direct load into vector instruction
2932 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2933 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2934 
2935   // If there are any other uses other than scalar to vector, then we should
2936   // keep it as a scalar load -> direct move pattern to prevent multiple
2937   // loads.
2938   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2939   if (!LD)
2940     return false;
2941 
2942   EVT MemVT = LD->getMemoryVT();
2943   if (!MemVT.isSimple())
2944     return false;
2945   switch(MemVT.getSimpleVT().SimpleTy) {
2946   case MVT::i64:
2947     break;
2948   case MVT::i32:
2949     if (!ST.hasP8Vector())
2950       return false;
2951     break;
2952   case MVT::i16:
2953   case MVT::i8:
2954     if (!ST.hasP9Vector())
2955       return false;
2956     break;
2957   default:
2958     return false;
2959   }
2960 
2961   SDValue LoadedVal(N, 0);
2962   if (!LoadedVal.hasOneUse())
2963     return false;
2964 
2965   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2966        UI != UE; ++UI)
2967     if (UI.getUse().get().getResNo() == 0 &&
2968         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2969         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2970       return false;
2971 
2972   return true;
2973 }
2974 
2975 /// getPreIndexedAddressParts - returns true by value, base pointer and
2976 /// offset pointer and addressing mode by reference if the node's address
2977 /// can be legally represented as pre-indexed load / store address.
2978 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2979                                                   SDValue &Offset,
2980                                                   ISD::MemIndexedMode &AM,
2981                                                   SelectionDAG &DAG) const {
2982   if (DisablePPCPreinc) return false;
2983 
2984   bool isLoad = true;
2985   SDValue Ptr;
2986   EVT VT;
2987   unsigned Alignment;
2988   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2989     Ptr = LD->getBasePtr();
2990     VT = LD->getMemoryVT();
2991     Alignment = LD->getAlignment();
2992   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2993     Ptr = ST->getBasePtr();
2994     VT  = ST->getMemoryVT();
2995     Alignment = ST->getAlignment();
2996     isLoad = false;
2997   } else
2998     return false;
2999 
3000   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
3001   // instructions because we can fold these into a more efficient instruction
3002   // instead, (such as LXSD).
3003   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3004     return false;
3005   }
3006 
3007   // PowerPC doesn't have preinc load/store instructions for vectors
3008   if (VT.isVector())
3009     return false;
3010 
3011   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3012     // Common code will reject creating a pre-inc form if the base pointer
3013     // is a frame index, or if N is a store and the base pointer is either
3014     // the same as or a predecessor of the value being stored.  Check for
3015     // those situations here, and try with swapped Base/Offset instead.
3016     bool Swap = false;
3017 
3018     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3019       Swap = true;
3020     else if (!isLoad) {
3021       SDValue Val = cast<StoreSDNode>(N)->getValue();
3022       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3023         Swap = true;
3024     }
3025 
3026     if (Swap)
3027       std::swap(Base, Offset);
3028 
3029     AM = ISD::PRE_INC;
3030     return true;
3031   }
3032 
3033   // LDU/STU can only handle immediates that are a multiple of 4.
3034   if (VT != MVT::i64) {
3035     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3036       return false;
3037   } else {
3038     // LDU/STU need an address with at least 4-byte alignment.
3039     if (Alignment < 4)
3040       return false;
3041 
3042     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3043       return false;
3044   }
3045 
3046   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3047     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3048     // sext i32 to i64 when addr mode is r+i.
3049     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3050         LD->getExtensionType() == ISD::SEXTLOAD &&
3051         isa<ConstantSDNode>(Offset))
3052       return false;
3053   }
3054 
3055   AM = ISD::PRE_INC;
3056   return true;
3057 }
3058 
3059 //===----------------------------------------------------------------------===//
3060 //  LowerOperation implementation
3061 //===----------------------------------------------------------------------===//
3062 
3063 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3064 /// and LoOpFlags to the target MO flags.
3065 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3066                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3067                                const GlobalValue *GV = nullptr) {
3068   HiOpFlags = PPCII::MO_HA;
3069   LoOpFlags = PPCII::MO_LO;
3070 
3071   // Don't use the pic base if not in PIC relocation model.
3072   if (IsPIC) {
3073     HiOpFlags |= PPCII::MO_PIC_FLAG;
3074     LoOpFlags |= PPCII::MO_PIC_FLAG;
3075   }
3076 }
3077 
3078 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3079                              SelectionDAG &DAG) {
3080   SDLoc DL(HiPart);
3081   EVT PtrVT = HiPart.getValueType();
3082   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3083 
3084   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3085   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3086 
3087   // With PIC, the first instruction is actually "GR+hi(&G)".
3088   if (isPIC)
3089     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3090                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3091 
3092   // Generate non-pic code that has direct accesses to the constant pool.
3093   // The address of the global is just (hi(&g)+lo(&g)).
3094   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3095 }
3096 
3097 static void setUsesTOCBasePtr(MachineFunction &MF) {
3098   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3099   FuncInfo->setUsesTOCBasePtr();
3100 }
3101 
3102 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3103   setUsesTOCBasePtr(DAG.getMachineFunction());
3104 }
3105 
3106 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3107                                        SDValue GA) const {
3108   const bool Is64Bit = Subtarget.isPPC64();
3109   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3110   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3111                         : Subtarget.isAIXABI()
3112                               ? DAG.getRegister(PPC::R2, VT)
3113                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3114   SDValue Ops[] = { GA, Reg };
3115   return DAG.getMemIntrinsicNode(
3116       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3117       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3118       MachineMemOperand::MOLoad);
3119 }
3120 
3121 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3122                                              SelectionDAG &DAG) const {
3123   EVT PtrVT = Op.getValueType();
3124   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3125   const Constant *C = CP->getConstVal();
3126 
3127   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3128   // The actual address of the GlobalValue is stored in the TOC.
3129   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3130     if (Subtarget.isUsingPCRelativeCalls()) {
3131       SDLoc DL(CP);
3132       EVT Ty = getPointerTy(DAG.getDataLayout());
3133       SDValue ConstPool = DAG.getTargetConstantPool(
3134           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3135       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3136     }
3137     setUsesTOCBasePtr(DAG);
3138     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3139     return getTOCEntry(DAG, SDLoc(CP), GA);
3140   }
3141 
3142   unsigned MOHiFlag, MOLoFlag;
3143   bool IsPIC = isPositionIndependent();
3144   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3145 
3146   if (IsPIC && Subtarget.isSVR4ABI()) {
3147     SDValue GA =
3148         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3149     return getTOCEntry(DAG, SDLoc(CP), GA);
3150   }
3151 
3152   SDValue CPIHi =
3153       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3154   SDValue CPILo =
3155       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3156   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3157 }
3158 
3159 // For 64-bit PowerPC, prefer the more compact relative encodings.
3160 // This trades 32 bits per jump table entry for one or two instructions
3161 // on the jump site.
3162 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3163   if (isJumpTableRelative())
3164     return MachineJumpTableInfo::EK_LabelDifference32;
3165 
3166   return TargetLowering::getJumpTableEncoding();
3167 }
3168 
3169 bool PPCTargetLowering::isJumpTableRelative() const {
3170   if (UseAbsoluteJumpTables)
3171     return false;
3172   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3173     return true;
3174   return TargetLowering::isJumpTableRelative();
3175 }
3176 
3177 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3178                                                     SelectionDAG &DAG) const {
3179   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3180     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3181 
3182   switch (getTargetMachine().getCodeModel()) {
3183   case CodeModel::Small:
3184   case CodeModel::Medium:
3185     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3186   default:
3187     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3188                        getPointerTy(DAG.getDataLayout()));
3189   }
3190 }
3191 
3192 const MCExpr *
3193 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3194                                                 unsigned JTI,
3195                                                 MCContext &Ctx) const {
3196   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3197     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3198 
3199   switch (getTargetMachine().getCodeModel()) {
3200   case CodeModel::Small:
3201   case CodeModel::Medium:
3202     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3203   default:
3204     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3205   }
3206 }
3207 
3208 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3209   EVT PtrVT = Op.getValueType();
3210   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3211 
3212   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3213   if (Subtarget.isUsingPCRelativeCalls()) {
3214     SDLoc DL(JT);
3215     EVT Ty = getPointerTy(DAG.getDataLayout());
3216     SDValue GA =
3217         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3218     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3219     return MatAddr;
3220   }
3221 
3222   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3223   // The actual address of the GlobalValue is stored in the TOC.
3224   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3225     setUsesTOCBasePtr(DAG);
3226     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3227     return getTOCEntry(DAG, SDLoc(JT), GA);
3228   }
3229 
3230   unsigned MOHiFlag, MOLoFlag;
3231   bool IsPIC = isPositionIndependent();
3232   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3233 
3234   if (IsPIC && Subtarget.isSVR4ABI()) {
3235     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3236                                         PPCII::MO_PIC_FLAG);
3237     return getTOCEntry(DAG, SDLoc(GA), GA);
3238   }
3239 
3240   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3241   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3242   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3243 }
3244 
3245 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3246                                              SelectionDAG &DAG) const {
3247   EVT PtrVT = Op.getValueType();
3248   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3249   const BlockAddress *BA = BASDN->getBlockAddress();
3250 
3251   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3252   if (Subtarget.isUsingPCRelativeCalls()) {
3253     SDLoc DL(BASDN);
3254     EVT Ty = getPointerTy(DAG.getDataLayout());
3255     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3256                                            PPCII::MO_PCREL_FLAG);
3257     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3258     return MatAddr;
3259   }
3260 
3261   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3262   // The actual BlockAddress is stored in the TOC.
3263   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3264     setUsesTOCBasePtr(DAG);
3265     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3266     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3267   }
3268 
3269   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3270   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3271     return getTOCEntry(
3272         DAG, SDLoc(BASDN),
3273         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3274 
3275   unsigned MOHiFlag, MOLoFlag;
3276   bool IsPIC = isPositionIndependent();
3277   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3278   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3279   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3280   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3281 }
3282 
3283 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3284                                               SelectionDAG &DAG) const {
3285   if (Subtarget.isAIXABI())
3286     return LowerGlobalTLSAddressAIX(Op, DAG);
3287 
3288   return LowerGlobalTLSAddressLinux(Op, DAG);
3289 }
3290 
3291 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3292                                                     SelectionDAG &DAG) const {
3293   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3294 
3295   if (DAG.getTarget().useEmulatedTLS())
3296     report_fatal_error("Emulated TLS is not yet supported on AIX");
3297 
3298   SDLoc dl(GA);
3299   const GlobalValue *GV = GA->getGlobal();
3300   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3301 
3302   // The general-dynamic model is the only access model supported for now, so
3303   // all the GlobalTLSAddress nodes are lowered with this model.
3304   // We need to generate two TOC entries, one for the variable offset, one for
3305   // the region handle. The global address for the TOC entry of the region
3306   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3307   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3308   SDValue VariableOffsetTGA =
3309       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3310   SDValue RegionHandleTGA =
3311       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3312   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3313   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3314   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3315                      RegionHandle);
3316 }
3317 
3318 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3319                                                       SelectionDAG &DAG) const {
3320   // FIXME: TLS addresses currently use medium model code sequences,
3321   // which is the most useful form.  Eventually support for small and
3322   // large models could be added if users need it, at the cost of
3323   // additional complexity.
3324   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3325   if (DAG.getTarget().useEmulatedTLS())
3326     return LowerToTLSEmulatedModel(GA, DAG);
3327 
3328   SDLoc dl(GA);
3329   const GlobalValue *GV = GA->getGlobal();
3330   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3331   bool is64bit = Subtarget.isPPC64();
3332   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3333   PICLevel::Level picLevel = M->getPICLevel();
3334 
3335   const TargetMachine &TM = getTargetMachine();
3336   TLSModel::Model Model = TM.getTLSModel(GV);
3337 
3338   if (Model == TLSModel::LocalExec) {
3339     if (Subtarget.isUsingPCRelativeCalls()) {
3340       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3341       SDValue TGA = DAG.getTargetGlobalAddress(
3342           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3343       SDValue MatAddr =
3344           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3345       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3346     }
3347 
3348     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3349                                                PPCII::MO_TPREL_HA);
3350     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3351                                                PPCII::MO_TPREL_LO);
3352     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3353                              : DAG.getRegister(PPC::R2, MVT::i32);
3354 
3355     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3356     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3357   }
3358 
3359   if (Model == TLSModel::InitialExec) {
3360     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3361     SDValue TGA = DAG.getTargetGlobalAddress(
3362         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3363     SDValue TGATLS = DAG.getTargetGlobalAddress(
3364         GV, dl, PtrVT, 0,
3365         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3366     SDValue TPOffset;
3367     if (IsPCRel) {
3368       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3369       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3370                              MachinePointerInfo());
3371     } else {
3372       SDValue GOTPtr;
3373       if (is64bit) {
3374         setUsesTOCBasePtr(DAG);
3375         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3376         GOTPtr =
3377             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3378       } else {
3379         if (!TM.isPositionIndependent())
3380           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3381         else if (picLevel == PICLevel::SmallPIC)
3382           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3383         else
3384           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3385       }
3386       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3387     }
3388     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3389   }
3390 
3391   if (Model == TLSModel::GeneralDynamic) {
3392     if (Subtarget.isUsingPCRelativeCalls()) {
3393       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3394                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3395       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3396     }
3397 
3398     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3399     SDValue GOTPtr;
3400     if (is64bit) {
3401       setUsesTOCBasePtr(DAG);
3402       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3403       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3404                                    GOTReg, TGA);
3405     } else {
3406       if (picLevel == PICLevel::SmallPIC)
3407         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3408       else
3409         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3410     }
3411     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3412                        GOTPtr, TGA, TGA);
3413   }
3414 
3415   if (Model == TLSModel::LocalDynamic) {
3416     if (Subtarget.isUsingPCRelativeCalls()) {
3417       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3418                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3419       SDValue MatPCRel =
3420           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3421       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3422     }
3423 
3424     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3425     SDValue GOTPtr;
3426     if (is64bit) {
3427       setUsesTOCBasePtr(DAG);
3428       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3429       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3430                            GOTReg, TGA);
3431     } else {
3432       if (picLevel == PICLevel::SmallPIC)
3433         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3434       else
3435         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3436     }
3437     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3438                                   PtrVT, GOTPtr, TGA, TGA);
3439     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3440                                       PtrVT, TLSAddr, TGA);
3441     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3442   }
3443 
3444   llvm_unreachable("Unknown TLS model!");
3445 }
3446 
3447 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3448                                               SelectionDAG &DAG) const {
3449   EVT PtrVT = Op.getValueType();
3450   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3451   SDLoc DL(GSDN);
3452   const GlobalValue *GV = GSDN->getGlobal();
3453 
3454   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3455   // The actual address of the GlobalValue is stored in the TOC.
3456   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3457     if (Subtarget.isUsingPCRelativeCalls()) {
3458       EVT Ty = getPointerTy(DAG.getDataLayout());
3459       if (isAccessedAsGotIndirect(Op)) {
3460         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3461                                                 PPCII::MO_PCREL_FLAG |
3462                                                     PPCII::MO_GOT_FLAG);
3463         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3464         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3465                                    MachinePointerInfo());
3466         return Load;
3467       } else {
3468         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3469                                                 PPCII::MO_PCREL_FLAG);
3470         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3471       }
3472     }
3473     setUsesTOCBasePtr(DAG);
3474     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3475     return getTOCEntry(DAG, DL, GA);
3476   }
3477 
3478   unsigned MOHiFlag, MOLoFlag;
3479   bool IsPIC = isPositionIndependent();
3480   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3481 
3482   if (IsPIC && Subtarget.isSVR4ABI()) {
3483     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3484                                             GSDN->getOffset(),
3485                                             PPCII::MO_PIC_FLAG);
3486     return getTOCEntry(DAG, DL, GA);
3487   }
3488 
3489   SDValue GAHi =
3490     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3491   SDValue GALo =
3492     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3493 
3494   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3495 }
3496 
3497 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3498   bool IsStrict = Op->isStrictFPOpcode();
3499   ISD::CondCode CC =
3500       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3501   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3502   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3503   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3504   EVT LHSVT = LHS.getValueType();
3505   SDLoc dl(Op);
3506 
3507   // Soften the setcc with libcall if it is fp128.
3508   if (LHSVT == MVT::f128) {
3509     assert(!Subtarget.hasP9Vector() &&
3510            "SETCC for f128 is already legal under Power9!");
3511     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3512                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3513     if (RHS.getNode())
3514       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3515                         DAG.getCondCode(CC));
3516     if (IsStrict)
3517       return DAG.getMergeValues({LHS, Chain}, dl);
3518     return LHS;
3519   }
3520 
3521   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3522 
3523   if (Op.getValueType() == MVT::v2i64) {
3524     // When the operands themselves are v2i64 values, we need to do something
3525     // special because VSX has no underlying comparison operations for these.
3526     if (LHS.getValueType() == MVT::v2i64) {
3527       // Equality can be handled by casting to the legal type for Altivec
3528       // comparisons, everything else needs to be expanded.
3529       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3530         return SDValue();
3531       SDValue SetCC32 = DAG.getSetCC(
3532           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3533           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3534       int ShuffV[] = {1, 0, 3, 2};
3535       SDValue Shuff =
3536           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3537       return DAG.getBitcast(MVT::v2i64,
3538                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3539                                         dl, MVT::v4i32, Shuff, SetCC32));
3540     }
3541 
3542     // We handle most of these in the usual way.
3543     return Op;
3544   }
3545 
3546   // If we're comparing for equality to zero, expose the fact that this is
3547   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3548   // fold the new nodes.
3549   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3550     return V;
3551 
3552   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3553     // Leave comparisons against 0 and -1 alone for now, since they're usually
3554     // optimized.  FIXME: revisit this when we can custom lower all setcc
3555     // optimizations.
3556     if (C->isAllOnes() || C->isZero())
3557       return SDValue();
3558   }
3559 
3560   // If we have an integer seteq/setne, turn it into a compare against zero
3561   // by xor'ing the rhs with the lhs, which is faster than setting a
3562   // condition register, reading it back out, and masking the correct bit.  The
3563   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3564   // the result to other bit-twiddling opportunities.
3565   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3566     EVT VT = Op.getValueType();
3567     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3568     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3569   }
3570   return SDValue();
3571 }
3572 
3573 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3574   SDNode *Node = Op.getNode();
3575   EVT VT = Node->getValueType(0);
3576   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3577   SDValue InChain = Node->getOperand(0);
3578   SDValue VAListPtr = Node->getOperand(1);
3579   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3580   SDLoc dl(Node);
3581 
3582   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3583 
3584   // gpr_index
3585   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3586                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3587   InChain = GprIndex.getValue(1);
3588 
3589   if (VT == MVT::i64) {
3590     // Check if GprIndex is even
3591     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3592                                  DAG.getConstant(1, dl, MVT::i32));
3593     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3594                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3595     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3596                                           DAG.getConstant(1, dl, MVT::i32));
3597     // Align GprIndex to be even if it isn't
3598     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3599                            GprIndex);
3600   }
3601 
3602   // fpr index is 1 byte after gpr
3603   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3604                                DAG.getConstant(1, dl, MVT::i32));
3605 
3606   // fpr
3607   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3608                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3609   InChain = FprIndex.getValue(1);
3610 
3611   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3612                                        DAG.getConstant(8, dl, MVT::i32));
3613 
3614   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3615                                         DAG.getConstant(4, dl, MVT::i32));
3616 
3617   // areas
3618   SDValue OverflowArea =
3619       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3620   InChain = OverflowArea.getValue(1);
3621 
3622   SDValue RegSaveArea =
3623       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3624   InChain = RegSaveArea.getValue(1);
3625 
3626   // select overflow_area if index > 8
3627   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3628                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3629 
3630   // adjustment constant gpr_index * 4/8
3631   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3632                                     VT.isInteger() ? GprIndex : FprIndex,
3633                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3634                                                     MVT::i32));
3635 
3636   // OurReg = RegSaveArea + RegConstant
3637   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3638                                RegConstant);
3639 
3640   // Floating types are 32 bytes into RegSaveArea
3641   if (VT.isFloatingPoint())
3642     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3643                          DAG.getConstant(32, dl, MVT::i32));
3644 
3645   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3646   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3647                                    VT.isInteger() ? GprIndex : FprIndex,
3648                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3649                                                    MVT::i32));
3650 
3651   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3652                               VT.isInteger() ? VAListPtr : FprPtr,
3653                               MachinePointerInfo(SV), MVT::i8);
3654 
3655   // determine if we should load from reg_save_area or overflow_area
3656   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3657 
3658   // increase overflow_area by 4/8 if gpr/fpr > 8
3659   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3660                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3661                                           dl, MVT::i32));
3662 
3663   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3664                              OverflowAreaPlusN);
3665 
3666   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3667                               MachinePointerInfo(), MVT::i32);
3668 
3669   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3670 }
3671 
3672 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3673   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3674 
3675   // We have to copy the entire va_list struct:
3676   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3677   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3678                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3679                        false, true, false, MachinePointerInfo(),
3680                        MachinePointerInfo());
3681 }
3682 
3683 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3684                                                   SelectionDAG &DAG) const {
3685   if (Subtarget.isAIXABI())
3686     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3687 
3688   return Op.getOperand(0);
3689 }
3690 
3691 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3692   MachineFunction &MF = DAG.getMachineFunction();
3693   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3694 
3695   assert((Op.getOpcode() == ISD::INLINEASM ||
3696           Op.getOpcode() == ISD::INLINEASM_BR) &&
3697          "Expecting Inline ASM node.");
3698 
3699   // If an LR store is already known to be required then there is not point in
3700   // checking this ASM as well.
3701   if (MFI.isLRStoreRequired())
3702     return Op;
3703 
3704   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3705   // type MVT::Glue. We want to ignore this last operand if that is the case.
3706   unsigned NumOps = Op.getNumOperands();
3707   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3708     --NumOps;
3709 
3710   // Check all operands that may contain the LR.
3711   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3712     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3713     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3714     ++i; // Skip the ID value.
3715 
3716     switch (InlineAsm::getKind(Flags)) {
3717     default:
3718       llvm_unreachable("Bad flags!");
3719     case InlineAsm::Kind_RegUse:
3720     case InlineAsm::Kind_Imm:
3721     case InlineAsm::Kind_Mem:
3722       i += NumVals;
3723       break;
3724     case InlineAsm::Kind_Clobber:
3725     case InlineAsm::Kind_RegDef:
3726     case InlineAsm::Kind_RegDefEarlyClobber: {
3727       for (; NumVals; --NumVals, ++i) {
3728         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3729         if (Reg != PPC::LR && Reg != PPC::LR8)
3730           continue;
3731         MFI.setLRStoreRequired();
3732         return Op;
3733       }
3734       break;
3735     }
3736     }
3737   }
3738 
3739   return Op;
3740 }
3741 
3742 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3743                                                 SelectionDAG &DAG) const {
3744   if (Subtarget.isAIXABI())
3745     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3746 
3747   SDValue Chain = Op.getOperand(0);
3748   SDValue Trmp = Op.getOperand(1); // trampoline
3749   SDValue FPtr = Op.getOperand(2); // nested function
3750   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3751   SDLoc dl(Op);
3752 
3753   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3754   bool isPPC64 = (PtrVT == MVT::i64);
3755   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3756 
3757   TargetLowering::ArgListTy Args;
3758   TargetLowering::ArgListEntry Entry;
3759 
3760   Entry.Ty = IntPtrTy;
3761   Entry.Node = Trmp; Args.push_back(Entry);
3762 
3763   // TrampSize == (isPPC64 ? 48 : 40);
3764   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3765                                isPPC64 ? MVT::i64 : MVT::i32);
3766   Args.push_back(Entry);
3767 
3768   Entry.Node = FPtr; Args.push_back(Entry);
3769   Entry.Node = Nest; Args.push_back(Entry);
3770 
3771   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3772   TargetLowering::CallLoweringInfo CLI(DAG);
3773   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3774       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3775       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3776 
3777   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3778   return CallResult.second;
3779 }
3780 
3781 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3782   MachineFunction &MF = DAG.getMachineFunction();
3783   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3784   EVT PtrVT = getPointerTy(MF.getDataLayout());
3785 
3786   SDLoc dl(Op);
3787 
3788   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3789     // vastart just stores the address of the VarArgsFrameIndex slot into the
3790     // memory location argument.
3791     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3792     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3793     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3794                         MachinePointerInfo(SV));
3795   }
3796 
3797   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3798   // We suppose the given va_list is already allocated.
3799   //
3800   // typedef struct {
3801   //  char gpr;     /* index into the array of 8 GPRs
3802   //                 * stored in the register save area
3803   //                 * gpr=0 corresponds to r3,
3804   //                 * gpr=1 to r4, etc.
3805   //                 */
3806   //  char fpr;     /* index into the array of 8 FPRs
3807   //                 * stored in the register save area
3808   //                 * fpr=0 corresponds to f1,
3809   //                 * fpr=1 to f2, etc.
3810   //                 */
3811   //  char *overflow_arg_area;
3812   //                /* location on stack that holds
3813   //                 * the next overflow argument
3814   //                 */
3815   //  char *reg_save_area;
3816   //               /* where r3:r10 and f1:f8 (if saved)
3817   //                * are stored
3818   //                */
3819   // } va_list[1];
3820 
3821   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3822   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3823   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3824                                             PtrVT);
3825   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3826                                  PtrVT);
3827 
3828   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3829   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3830 
3831   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3832   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3833 
3834   uint64_t FPROffset = 1;
3835   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3836 
3837   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3838 
3839   // Store first byte : number of int regs
3840   SDValue firstStore =
3841       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3842                         MachinePointerInfo(SV), MVT::i8);
3843   uint64_t nextOffset = FPROffset;
3844   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3845                                   ConstFPROffset);
3846 
3847   // Store second byte : number of float regs
3848   SDValue secondStore =
3849       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3850                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3851   nextOffset += StackOffset;
3852   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3853 
3854   // Store second word : arguments given on stack
3855   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3856                                     MachinePointerInfo(SV, nextOffset));
3857   nextOffset += FrameOffset;
3858   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3859 
3860   // Store third word : arguments given in registers
3861   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3862                       MachinePointerInfo(SV, nextOffset));
3863 }
3864 
3865 /// FPR - The set of FP registers that should be allocated for arguments
3866 /// on Darwin and AIX.
3867 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3868                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3869                                 PPC::F11, PPC::F12, PPC::F13};
3870 
3871 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3872 /// the stack.
3873 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3874                                        unsigned PtrByteSize) {
3875   unsigned ArgSize = ArgVT.getStoreSize();
3876   if (Flags.isByVal())
3877     ArgSize = Flags.getByValSize();
3878 
3879   // Round up to multiples of the pointer size, except for array members,
3880   // which are always packed.
3881   if (!Flags.isInConsecutiveRegs())
3882     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3883 
3884   return ArgSize;
3885 }
3886 
3887 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3888 /// on the stack.
3889 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3890                                          ISD::ArgFlagsTy Flags,
3891                                          unsigned PtrByteSize) {
3892   Align Alignment(PtrByteSize);
3893 
3894   // Altivec parameters are padded to a 16 byte boundary.
3895   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3896       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3897       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3898       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3899     Alignment = Align(16);
3900 
3901   // ByVal parameters are aligned as requested.
3902   if (Flags.isByVal()) {
3903     auto BVAlign = Flags.getNonZeroByValAlign();
3904     if (BVAlign > PtrByteSize) {
3905       if (BVAlign.value() % PtrByteSize != 0)
3906         llvm_unreachable(
3907             "ByVal alignment is not a multiple of the pointer size");
3908 
3909       Alignment = BVAlign;
3910     }
3911   }
3912 
3913   // Array members are always packed to their original alignment.
3914   if (Flags.isInConsecutiveRegs()) {
3915     // If the array member was split into multiple registers, the first
3916     // needs to be aligned to the size of the full type.  (Except for
3917     // ppcf128, which is only aligned as its f64 components.)
3918     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3919       Alignment = Align(OrigVT.getStoreSize());
3920     else
3921       Alignment = Align(ArgVT.getStoreSize());
3922   }
3923 
3924   return Alignment;
3925 }
3926 
3927 /// CalculateStackSlotUsed - Return whether this argument will use its
3928 /// stack slot (instead of being passed in registers).  ArgOffset,
3929 /// AvailableFPRs, and AvailableVRs must hold the current argument
3930 /// position, and will be updated to account for this argument.
3931 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3932                                    unsigned PtrByteSize, unsigned LinkageSize,
3933                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3934                                    unsigned &AvailableFPRs,
3935                                    unsigned &AvailableVRs) {
3936   bool UseMemory = false;
3937 
3938   // Respect alignment of argument on the stack.
3939   Align Alignment =
3940       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3941   ArgOffset = alignTo(ArgOffset, Alignment);
3942   // If there's no space left in the argument save area, we must
3943   // use memory (this check also catches zero-sized arguments).
3944   if (ArgOffset >= LinkageSize + ParamAreaSize)
3945     UseMemory = true;
3946 
3947   // Allocate argument on the stack.
3948   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3949   if (Flags.isInConsecutiveRegsLast())
3950     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3951   // If we overran the argument save area, we must use memory
3952   // (this check catches arguments passed partially in memory)
3953   if (ArgOffset > LinkageSize + ParamAreaSize)
3954     UseMemory = true;
3955 
3956   // However, if the argument is actually passed in an FPR or a VR,
3957   // we don't use memory after all.
3958   if (!Flags.isByVal()) {
3959     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3960       if (AvailableFPRs > 0) {
3961         --AvailableFPRs;
3962         return false;
3963       }
3964     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3965         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3966         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3967         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3968       if (AvailableVRs > 0) {
3969         --AvailableVRs;
3970         return false;
3971       }
3972   }
3973 
3974   return UseMemory;
3975 }
3976 
3977 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3978 /// ensure minimum alignment required for target.
3979 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3980                                      unsigned NumBytes) {
3981   return alignTo(NumBytes, Lowering->getStackAlign());
3982 }
3983 
3984 SDValue PPCTargetLowering::LowerFormalArguments(
3985     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3986     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3987     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3988   if (Subtarget.isAIXABI())
3989     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3990                                     InVals);
3991   if (Subtarget.is64BitELFABI())
3992     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3993                                        InVals);
3994   assert(Subtarget.is32BitELFABI());
3995   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3996                                      InVals);
3997 }
3998 
3999 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4000     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4001     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4002     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4003 
4004   // 32-bit SVR4 ABI Stack Frame Layout:
4005   //              +-----------------------------------+
4006   //        +-->  |            Back chain             |
4007   //        |     +-----------------------------------+
4008   //        |     | Floating-point register save area |
4009   //        |     +-----------------------------------+
4010   //        |     |    General register save area     |
4011   //        |     +-----------------------------------+
4012   //        |     |          CR save word             |
4013   //        |     +-----------------------------------+
4014   //        |     |         VRSAVE save word          |
4015   //        |     +-----------------------------------+
4016   //        |     |         Alignment padding         |
4017   //        |     +-----------------------------------+
4018   //        |     |     Vector register save area     |
4019   //        |     +-----------------------------------+
4020   //        |     |       Local variable space        |
4021   //        |     +-----------------------------------+
4022   //        |     |        Parameter list area        |
4023   //        |     +-----------------------------------+
4024   //        |     |           LR save word            |
4025   //        |     +-----------------------------------+
4026   // SP-->  +---  |            Back chain             |
4027   //              +-----------------------------------+
4028   //
4029   // Specifications:
4030   //   System V Application Binary Interface PowerPC Processor Supplement
4031   //   AltiVec Technology Programming Interface Manual
4032 
4033   MachineFunction &MF = DAG.getMachineFunction();
4034   MachineFrameInfo &MFI = MF.getFrameInfo();
4035   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4036 
4037   EVT PtrVT = getPointerTy(MF.getDataLayout());
4038   // Potential tail calls could cause overwriting of argument stack slots.
4039   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4040                        (CallConv == CallingConv::Fast));
4041   const Align PtrAlign(4);
4042 
4043   // Assign locations to all of the incoming arguments.
4044   SmallVector<CCValAssign, 16> ArgLocs;
4045   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4046                  *DAG.getContext());
4047 
4048   // Reserve space for the linkage area on the stack.
4049   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4050   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4051   if (useSoftFloat())
4052     CCInfo.PreAnalyzeFormalArguments(Ins);
4053 
4054   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4055   CCInfo.clearWasPPCF128();
4056 
4057   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4058     CCValAssign &VA = ArgLocs[i];
4059 
4060     // Arguments stored in registers.
4061     if (VA.isRegLoc()) {
4062       const TargetRegisterClass *RC;
4063       EVT ValVT = VA.getValVT();
4064 
4065       switch (ValVT.getSimpleVT().SimpleTy) {
4066         default:
4067           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4068         case MVT::i1:
4069         case MVT::i32:
4070           RC = &PPC::GPRCRegClass;
4071           break;
4072         case MVT::f32:
4073           if (Subtarget.hasP8Vector())
4074             RC = &PPC::VSSRCRegClass;
4075           else if (Subtarget.hasSPE())
4076             RC = &PPC::GPRCRegClass;
4077           else
4078             RC = &PPC::F4RCRegClass;
4079           break;
4080         case MVT::f64:
4081           if (Subtarget.hasVSX())
4082             RC = &PPC::VSFRCRegClass;
4083           else if (Subtarget.hasSPE())
4084             // SPE passes doubles in GPR pairs.
4085             RC = &PPC::GPRCRegClass;
4086           else
4087             RC = &PPC::F8RCRegClass;
4088           break;
4089         case MVT::v16i8:
4090         case MVT::v8i16:
4091         case MVT::v4i32:
4092           RC = &PPC::VRRCRegClass;
4093           break;
4094         case MVT::v4f32:
4095           RC = &PPC::VRRCRegClass;
4096           break;
4097         case MVT::v2f64:
4098         case MVT::v2i64:
4099           RC = &PPC::VRRCRegClass;
4100           break;
4101       }
4102 
4103       SDValue ArgValue;
4104       // Transform the arguments stored in physical registers into
4105       // virtual ones.
4106       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4107         assert(i + 1 < e && "No second half of double precision argument");
4108         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4109         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4110         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4111         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4112         if (!Subtarget.isLittleEndian())
4113           std::swap (ArgValueLo, ArgValueHi);
4114         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4115                                ArgValueHi);
4116       } else {
4117         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4118         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4119                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4120         if (ValVT == MVT::i1)
4121           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4122       }
4123 
4124       InVals.push_back(ArgValue);
4125     } else {
4126       // Argument stored in memory.
4127       assert(VA.isMemLoc());
4128 
4129       // Get the extended size of the argument type in stack
4130       unsigned ArgSize = VA.getLocVT().getStoreSize();
4131       // Get the actual size of the argument type
4132       unsigned ObjSize = VA.getValVT().getStoreSize();
4133       unsigned ArgOffset = VA.getLocMemOffset();
4134       // Stack objects in PPC32 are right justified.
4135       ArgOffset += ArgSize - ObjSize;
4136       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4137 
4138       // Create load nodes to retrieve arguments from the stack.
4139       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4140       InVals.push_back(
4141           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4142     }
4143   }
4144 
4145   // Assign locations to all of the incoming aggregate by value arguments.
4146   // Aggregates passed by value are stored in the local variable space of the
4147   // caller's stack frame, right above the parameter list area.
4148   SmallVector<CCValAssign, 16> ByValArgLocs;
4149   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4150                       ByValArgLocs, *DAG.getContext());
4151 
4152   // Reserve stack space for the allocations in CCInfo.
4153   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4154 
4155   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4156 
4157   // Area that is at least reserved in the caller of this function.
4158   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4159   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4160 
4161   // Set the size that is at least reserved in caller of this function.  Tail
4162   // call optimized function's reserved stack space needs to be aligned so that
4163   // taking the difference between two stack areas will result in an aligned
4164   // stack.
4165   MinReservedArea =
4166       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4167   FuncInfo->setMinReservedArea(MinReservedArea);
4168 
4169   SmallVector<SDValue, 8> MemOps;
4170 
4171   // If the function takes variable number of arguments, make a frame index for
4172   // the start of the first vararg value... for expansion of llvm.va_start.
4173   if (isVarArg) {
4174     static const MCPhysReg GPArgRegs[] = {
4175       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4176       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4177     };
4178     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4179 
4180     static const MCPhysReg FPArgRegs[] = {
4181       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4182       PPC::F8
4183     };
4184     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4185 
4186     if (useSoftFloat() || hasSPE())
4187        NumFPArgRegs = 0;
4188 
4189     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4190     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4191 
4192     // Make room for NumGPArgRegs and NumFPArgRegs.
4193     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4194                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4195 
4196     FuncInfo->setVarArgsStackOffset(
4197       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4198                             CCInfo.getNextStackOffset(), true));
4199 
4200     FuncInfo->setVarArgsFrameIndex(
4201         MFI.CreateStackObject(Depth, Align(8), false));
4202     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4203 
4204     // The fixed integer arguments of a variadic function are stored to the
4205     // VarArgsFrameIndex on the stack so that they may be loaded by
4206     // dereferencing the result of va_next.
4207     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4208       // Get an existing live-in vreg, or add a new one.
4209       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4210       if (!VReg)
4211         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4212 
4213       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4214       SDValue Store =
4215           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4216       MemOps.push_back(Store);
4217       // Increment the address by four for the next argument to store
4218       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4219       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4220     }
4221 
4222     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4223     // is set.
4224     // The double arguments are stored to the VarArgsFrameIndex
4225     // on the stack.
4226     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4227       // Get an existing live-in vreg, or add a new one.
4228       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4229       if (!VReg)
4230         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4231 
4232       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4233       SDValue Store =
4234           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4235       MemOps.push_back(Store);
4236       // Increment the address by eight for the next argument to store
4237       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4238                                          PtrVT);
4239       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4240     }
4241   }
4242 
4243   if (!MemOps.empty())
4244     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4245 
4246   return Chain;
4247 }
4248 
4249 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4250 // value to MVT::i64 and then truncate to the correct register size.
4251 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4252                                              EVT ObjectVT, SelectionDAG &DAG,
4253                                              SDValue ArgVal,
4254                                              const SDLoc &dl) const {
4255   if (Flags.isSExt())
4256     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4257                          DAG.getValueType(ObjectVT));
4258   else if (Flags.isZExt())
4259     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4260                          DAG.getValueType(ObjectVT));
4261 
4262   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4263 }
4264 
4265 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4266     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4267     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4268     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4269   // TODO: add description of PPC stack frame format, or at least some docs.
4270   //
4271   bool isELFv2ABI = Subtarget.isELFv2ABI();
4272   bool isLittleEndian = Subtarget.isLittleEndian();
4273   MachineFunction &MF = DAG.getMachineFunction();
4274   MachineFrameInfo &MFI = MF.getFrameInfo();
4275   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4276 
4277   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4278          "fastcc not supported on varargs functions");
4279 
4280   EVT PtrVT = getPointerTy(MF.getDataLayout());
4281   // Potential tail calls could cause overwriting of argument stack slots.
4282   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4283                        (CallConv == CallingConv::Fast));
4284   unsigned PtrByteSize = 8;
4285   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4286 
4287   static const MCPhysReg GPR[] = {
4288     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4289     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4290   };
4291   static const MCPhysReg VR[] = {
4292     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4293     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4294   };
4295 
4296   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4297   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4298   const unsigned Num_VR_Regs  = array_lengthof(VR);
4299 
4300   // Do a first pass over the arguments to determine whether the ABI
4301   // guarantees that our caller has allocated the parameter save area
4302   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4303   // in the ELFv2 ABI, it is true if this is a vararg function or if
4304   // any parameter is located in a stack slot.
4305 
4306   bool HasParameterArea = !isELFv2ABI || isVarArg;
4307   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4308   unsigned NumBytes = LinkageSize;
4309   unsigned AvailableFPRs = Num_FPR_Regs;
4310   unsigned AvailableVRs = Num_VR_Regs;
4311   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4312     if (Ins[i].Flags.isNest())
4313       continue;
4314 
4315     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4316                                PtrByteSize, LinkageSize, ParamAreaSize,
4317                                NumBytes, AvailableFPRs, AvailableVRs))
4318       HasParameterArea = true;
4319   }
4320 
4321   // Add DAG nodes to load the arguments or copy them out of registers.  On
4322   // entry to a function on PPC, the arguments start after the linkage area,
4323   // although the first ones are often in registers.
4324 
4325   unsigned ArgOffset = LinkageSize;
4326   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4327   SmallVector<SDValue, 8> MemOps;
4328   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4329   unsigned CurArgIdx = 0;
4330   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4331     SDValue ArgVal;
4332     bool needsLoad = false;
4333     EVT ObjectVT = Ins[ArgNo].VT;
4334     EVT OrigVT = Ins[ArgNo].ArgVT;
4335     unsigned ObjSize = ObjectVT.getStoreSize();
4336     unsigned ArgSize = ObjSize;
4337     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4338     if (Ins[ArgNo].isOrigArg()) {
4339       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4340       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4341     }
4342     // We re-align the argument offset for each argument, except when using the
4343     // fast calling convention, when we need to make sure we do that only when
4344     // we'll actually use a stack slot.
4345     unsigned CurArgOffset;
4346     Align Alignment;
4347     auto ComputeArgOffset = [&]() {
4348       /* Respect alignment of argument on the stack.  */
4349       Alignment =
4350           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4351       ArgOffset = alignTo(ArgOffset, Alignment);
4352       CurArgOffset = ArgOffset;
4353     };
4354 
4355     if (CallConv != CallingConv::Fast) {
4356       ComputeArgOffset();
4357 
4358       /* Compute GPR index associated with argument offset.  */
4359       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4360       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4361     }
4362 
4363     // FIXME the codegen can be much improved in some cases.
4364     // We do not have to keep everything in memory.
4365     if (Flags.isByVal()) {
4366       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4367 
4368       if (CallConv == CallingConv::Fast)
4369         ComputeArgOffset();
4370 
4371       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4372       ObjSize = Flags.getByValSize();
4373       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4374       // Empty aggregate parameters do not take up registers.  Examples:
4375       //   struct { } a;
4376       //   union  { } b;
4377       //   int c[0];
4378       // etc.  However, we have to provide a place-holder in InVals, so
4379       // pretend we have an 8-byte item at the current address for that
4380       // purpose.
4381       if (!ObjSize) {
4382         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4383         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4384         InVals.push_back(FIN);
4385         continue;
4386       }
4387 
4388       // Create a stack object covering all stack doublewords occupied
4389       // by the argument.  If the argument is (fully or partially) on
4390       // the stack, or if the argument is fully in registers but the
4391       // caller has allocated the parameter save anyway, we can refer
4392       // directly to the caller's stack frame.  Otherwise, create a
4393       // local copy in our own frame.
4394       int FI;
4395       if (HasParameterArea ||
4396           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4397         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4398       else
4399         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4400       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4401 
4402       // Handle aggregates smaller than 8 bytes.
4403       if (ObjSize < PtrByteSize) {
4404         // The value of the object is its address, which differs from the
4405         // address of the enclosing doubleword on big-endian systems.
4406         SDValue Arg = FIN;
4407         if (!isLittleEndian) {
4408           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4409           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4410         }
4411         InVals.push_back(Arg);
4412 
4413         if (GPR_idx != Num_GPR_Regs) {
4414           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4415           FuncInfo->addLiveInAttr(VReg, Flags);
4416           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4417           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4418           SDValue Store =
4419               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4420                                 MachinePointerInfo(&*FuncArg), ObjType);
4421           MemOps.push_back(Store);
4422         }
4423         // Whether we copied from a register or not, advance the offset
4424         // into the parameter save area by a full doubleword.
4425         ArgOffset += PtrByteSize;
4426         continue;
4427       }
4428 
4429       // The value of the object is its address, which is the address of
4430       // its first stack doubleword.
4431       InVals.push_back(FIN);
4432 
4433       // Store whatever pieces of the object are in registers to memory.
4434       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4435         if (GPR_idx == Num_GPR_Regs)
4436           break;
4437 
4438         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4439         FuncInfo->addLiveInAttr(VReg, Flags);
4440         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4441         SDValue Addr = FIN;
4442         if (j) {
4443           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4444           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4445         }
4446         unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4447         EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits);
4448         SDValue Store =
4449             DAG.getTruncStore(Val.getValue(1), dl, Val, Addr,
4450                               MachinePointerInfo(&*FuncArg, j), ObjType);
4451         MemOps.push_back(Store);
4452         ++GPR_idx;
4453       }
4454       ArgOffset += ArgSize;
4455       continue;
4456     }
4457 
4458     switch (ObjectVT.getSimpleVT().SimpleTy) {
4459     default: llvm_unreachable("Unhandled argument type!");
4460     case MVT::i1:
4461     case MVT::i32:
4462     case MVT::i64:
4463       if (Flags.isNest()) {
4464         // The 'nest' parameter, if any, is passed in R11.
4465         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4466         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4467 
4468         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4469           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4470 
4471         break;
4472       }
4473 
4474       // These can be scalar arguments or elements of an integer array type
4475       // passed directly.  Clang may use those instead of "byval" aggregate
4476       // types to avoid forcing arguments to memory unnecessarily.
4477       if (GPR_idx != Num_GPR_Regs) {
4478         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4479         FuncInfo->addLiveInAttr(VReg, Flags);
4480         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4481 
4482         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4483           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4484           // value to MVT::i64 and then truncate to the correct register size.
4485           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4486       } else {
4487         if (CallConv == CallingConv::Fast)
4488           ComputeArgOffset();
4489 
4490         needsLoad = true;
4491         ArgSize = PtrByteSize;
4492       }
4493       if (CallConv != CallingConv::Fast || needsLoad)
4494         ArgOffset += 8;
4495       break;
4496 
4497     case MVT::f32:
4498     case MVT::f64:
4499       // These can be scalar arguments or elements of a float array type
4500       // passed directly.  The latter are used to implement ELFv2 homogenous
4501       // float aggregates.
4502       if (FPR_idx != Num_FPR_Regs) {
4503         unsigned VReg;
4504 
4505         if (ObjectVT == MVT::f32)
4506           VReg = MF.addLiveIn(FPR[FPR_idx],
4507                               Subtarget.hasP8Vector()
4508                                   ? &PPC::VSSRCRegClass
4509                                   : &PPC::F4RCRegClass);
4510         else
4511           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4512                                                 ? &PPC::VSFRCRegClass
4513                                                 : &PPC::F8RCRegClass);
4514 
4515         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4516         ++FPR_idx;
4517       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4518         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4519         // once we support fp <-> gpr moves.
4520 
4521         // This can only ever happen in the presence of f32 array types,
4522         // since otherwise we never run out of FPRs before running out
4523         // of GPRs.
4524         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4525         FuncInfo->addLiveInAttr(VReg, Flags);
4526         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4527 
4528         if (ObjectVT == MVT::f32) {
4529           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4530             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4531                                  DAG.getConstant(32, dl, MVT::i32));
4532           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4533         }
4534 
4535         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4536       } else {
4537         if (CallConv == CallingConv::Fast)
4538           ComputeArgOffset();
4539 
4540         needsLoad = true;
4541       }
4542 
4543       // When passing an array of floats, the array occupies consecutive
4544       // space in the argument area; only round up to the next doubleword
4545       // at the end of the array.  Otherwise, each float takes 8 bytes.
4546       if (CallConv != CallingConv::Fast || needsLoad) {
4547         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4548         ArgOffset += ArgSize;
4549         if (Flags.isInConsecutiveRegsLast())
4550           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4551       }
4552       break;
4553     case MVT::v4f32:
4554     case MVT::v4i32:
4555     case MVT::v8i16:
4556     case MVT::v16i8:
4557     case MVT::v2f64:
4558     case MVT::v2i64:
4559     case MVT::v1i128:
4560     case MVT::f128:
4561       // These can be scalar arguments or elements of a vector array type
4562       // passed directly.  The latter are used to implement ELFv2 homogenous
4563       // vector aggregates.
4564       if (VR_idx != Num_VR_Regs) {
4565         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4566         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4567         ++VR_idx;
4568       } else {
4569         if (CallConv == CallingConv::Fast)
4570           ComputeArgOffset();
4571         needsLoad = true;
4572       }
4573       if (CallConv != CallingConv::Fast || needsLoad)
4574         ArgOffset += 16;
4575       break;
4576     }
4577 
4578     // We need to load the argument to a virtual register if we determined
4579     // above that we ran out of physical registers of the appropriate type.
4580     if (needsLoad) {
4581       if (ObjSize < ArgSize && !isLittleEndian)
4582         CurArgOffset += ArgSize - ObjSize;
4583       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4584       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4585       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4586     }
4587 
4588     InVals.push_back(ArgVal);
4589   }
4590 
4591   // Area that is at least reserved in the caller of this function.
4592   unsigned MinReservedArea;
4593   if (HasParameterArea)
4594     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4595   else
4596     MinReservedArea = LinkageSize;
4597 
4598   // Set the size that is at least reserved in caller of this function.  Tail
4599   // call optimized functions' reserved stack space needs to be aligned so that
4600   // taking the difference between two stack areas will result in an aligned
4601   // stack.
4602   MinReservedArea =
4603       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4604   FuncInfo->setMinReservedArea(MinReservedArea);
4605 
4606   // If the function takes variable number of arguments, make a frame index for
4607   // the start of the first vararg value... for expansion of llvm.va_start.
4608   // On ELFv2ABI spec, it writes:
4609   // C programs that are intended to be *portable* across different compilers
4610   // and architectures must use the header file <stdarg.h> to deal with variable
4611   // argument lists.
4612   if (isVarArg && MFI.hasVAStart()) {
4613     int Depth = ArgOffset;
4614 
4615     FuncInfo->setVarArgsFrameIndex(
4616       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4617     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4618 
4619     // If this function is vararg, store any remaining integer argument regs
4620     // to their spots on the stack so that they may be loaded by dereferencing
4621     // the result of va_next.
4622     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4623          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4624       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4625       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4626       SDValue Store =
4627           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4628       MemOps.push_back(Store);
4629       // Increment the address by four for the next argument to store
4630       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4631       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4632     }
4633   }
4634 
4635   if (!MemOps.empty())
4636     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4637 
4638   return Chain;
4639 }
4640 
4641 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4642 /// adjusted to accommodate the arguments for the tailcall.
4643 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4644                                    unsigned ParamSize) {
4645 
4646   if (!isTailCall) return 0;
4647 
4648   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4649   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4650   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4651   // Remember only if the new adjustment is bigger.
4652   if (SPDiff < FI->getTailCallSPDelta())
4653     FI->setTailCallSPDelta(SPDiff);
4654 
4655   return SPDiff;
4656 }
4657 
4658 static bool isFunctionGlobalAddress(SDValue Callee);
4659 
4660 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4661                               const TargetMachine &TM) {
4662   // It does not make sense to call callsShareTOCBase() with a caller that
4663   // is PC Relative since PC Relative callers do not have a TOC.
4664 #ifndef NDEBUG
4665   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4666   assert(!STICaller->isUsingPCRelativeCalls() &&
4667          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4668 #endif
4669 
4670   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4671   // don't have enough information to determine if the caller and callee share
4672   // the same  TOC base, so we have to pessimistically assume they don't for
4673   // correctness.
4674   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4675   if (!G)
4676     return false;
4677 
4678   const GlobalValue *GV = G->getGlobal();
4679 
4680   // If the callee is preemptable, then the static linker will use a plt-stub
4681   // which saves the toc to the stack, and needs a nop after the call
4682   // instruction to convert to a toc-restore.
4683   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4684     return false;
4685 
4686   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4687   // We may need a TOC restore in the situation where the caller requires a
4688   // valid TOC but the callee is PC Relative and does not.
4689   const Function *F = dyn_cast<Function>(GV);
4690   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4691 
4692   // If we have an Alias we can try to get the function from there.
4693   if (Alias) {
4694     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4695     F = dyn_cast<Function>(GlobalObj);
4696   }
4697 
4698   // If we still have no valid function pointer we do not have enough
4699   // information to determine if the callee uses PC Relative calls so we must
4700   // assume that it does.
4701   if (!F)
4702     return false;
4703 
4704   // If the callee uses PC Relative we cannot guarantee that the callee won't
4705   // clobber the TOC of the caller and so we must assume that the two
4706   // functions do not share a TOC base.
4707   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4708   if (STICallee->isUsingPCRelativeCalls())
4709     return false;
4710 
4711   // If the GV is not a strong definition then we need to assume it can be
4712   // replaced by another function at link time. The function that replaces
4713   // it may not share the same TOC as the caller since the callee may be
4714   // replaced by a PC Relative version of the same function.
4715   if (!GV->isStrongDefinitionForLinker())
4716     return false;
4717 
4718   // The medium and large code models are expected to provide a sufficiently
4719   // large TOC to provide all data addressing needs of a module with a
4720   // single TOC.
4721   if (CodeModel::Medium == TM.getCodeModel() ||
4722       CodeModel::Large == TM.getCodeModel())
4723     return true;
4724 
4725   // Any explicitly-specified sections and section prefixes must also match.
4726   // Also, if we're using -ffunction-sections, then each function is always in
4727   // a different section (the same is true for COMDAT functions).
4728   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4729       GV->getSection() != Caller->getSection())
4730     return false;
4731   if (const auto *F = dyn_cast<Function>(GV)) {
4732     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4733       return false;
4734   }
4735 
4736   return true;
4737 }
4738 
4739 static bool
4740 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4741                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4742   assert(Subtarget.is64BitELFABI());
4743 
4744   const unsigned PtrByteSize = 8;
4745   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4746 
4747   static const MCPhysReg GPR[] = {
4748     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4749     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4750   };
4751   static const MCPhysReg VR[] = {
4752     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4753     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4754   };
4755 
4756   const unsigned NumGPRs = array_lengthof(GPR);
4757   const unsigned NumFPRs = 13;
4758   const unsigned NumVRs = array_lengthof(VR);
4759   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4760 
4761   unsigned NumBytes = LinkageSize;
4762   unsigned AvailableFPRs = NumFPRs;
4763   unsigned AvailableVRs = NumVRs;
4764 
4765   for (const ISD::OutputArg& Param : Outs) {
4766     if (Param.Flags.isNest()) continue;
4767 
4768     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4769                                LinkageSize, ParamAreaSize, NumBytes,
4770                                AvailableFPRs, AvailableVRs))
4771       return true;
4772   }
4773   return false;
4774 }
4775 
4776 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4777   if (CB.arg_size() != CallerFn->arg_size())
4778     return false;
4779 
4780   auto CalleeArgIter = CB.arg_begin();
4781   auto CalleeArgEnd = CB.arg_end();
4782   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4783 
4784   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4785     const Value* CalleeArg = *CalleeArgIter;
4786     const Value* CallerArg = &(*CallerArgIter);
4787     if (CalleeArg == CallerArg)
4788       continue;
4789 
4790     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4791     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4792     //      }
4793     // 1st argument of callee is undef and has the same type as caller.
4794     if (CalleeArg->getType() == CallerArg->getType() &&
4795         isa<UndefValue>(CalleeArg))
4796       continue;
4797 
4798     return false;
4799   }
4800 
4801   return true;
4802 }
4803 
4804 // Returns true if TCO is possible between the callers and callees
4805 // calling conventions.
4806 static bool
4807 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4808                                     CallingConv::ID CalleeCC) {
4809   // Tail calls are possible with fastcc and ccc.
4810   auto isTailCallableCC  = [] (CallingConv::ID CC){
4811       return  CC == CallingConv::C || CC == CallingConv::Fast;
4812   };
4813   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4814     return false;
4815 
4816   // We can safely tail call both fastcc and ccc callees from a c calling
4817   // convention caller. If the caller is fastcc, we may have less stack space
4818   // than a non-fastcc caller with the same signature so disable tail-calls in
4819   // that case.
4820   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4821 }
4822 
4823 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4824     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4825     const SmallVectorImpl<ISD::OutputArg> &Outs,
4826     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4827   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4828 
4829   if (DisableSCO && !TailCallOpt) return false;
4830 
4831   // Variadic argument functions are not supported.
4832   if (isVarArg) return false;
4833 
4834   auto &Caller = DAG.getMachineFunction().getFunction();
4835   // Check that the calling conventions are compatible for tco.
4836   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4837     return false;
4838 
4839   // Caller contains any byval parameter is not supported.
4840   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4841     return false;
4842 
4843   // Callee contains any byval parameter is not supported, too.
4844   // Note: This is a quick work around, because in some cases, e.g.
4845   // caller's stack size > callee's stack size, we are still able to apply
4846   // sibling call optimization. For example, gcc is able to do SCO for caller1
4847   // in the following example, but not for caller2.
4848   //   struct test {
4849   //     long int a;
4850   //     char ary[56];
4851   //   } gTest;
4852   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4853   //     b->a = v.a;
4854   //     return 0;
4855   //   }
4856   //   void caller1(struct test a, struct test c, struct test *b) {
4857   //     callee(gTest, b); }
4858   //   void caller2(struct test *b) { callee(gTest, b); }
4859   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4860     return false;
4861 
4862   // If callee and caller use different calling conventions, we cannot pass
4863   // parameters on stack since offsets for the parameter area may be different.
4864   if (Caller.getCallingConv() != CalleeCC &&
4865       needStackSlotPassParameters(Subtarget, Outs))
4866     return false;
4867 
4868   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4869   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4870   // callee potentially have different TOC bases then we cannot tail call since
4871   // we need to restore the TOC pointer after the call.
4872   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4873   // We cannot guarantee this for indirect calls or calls to external functions.
4874   // When PC-Relative addressing is used, the concept of the TOC is no longer
4875   // applicable so this check is not required.
4876   // Check first for indirect calls.
4877   if (!Subtarget.isUsingPCRelativeCalls() &&
4878       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4879     return false;
4880 
4881   // Check if we share the TOC base.
4882   if (!Subtarget.isUsingPCRelativeCalls() &&
4883       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4884     return false;
4885 
4886   // TCO allows altering callee ABI, so we don't have to check further.
4887   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4888     return true;
4889 
4890   if (DisableSCO) return false;
4891 
4892   // If callee use the same argument list that caller is using, then we can
4893   // apply SCO on this case. If it is not, then we need to check if callee needs
4894   // stack for passing arguments.
4895   // PC Relative tail calls may not have a CallBase.
4896   // If there is no CallBase we cannot verify if we have the same argument
4897   // list so assume that we don't have the same argument list.
4898   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4899       needStackSlotPassParameters(Subtarget, Outs))
4900     return false;
4901   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4902     return false;
4903 
4904   return true;
4905 }
4906 
4907 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4908 /// for tail call optimization. Targets which want to do tail call
4909 /// optimization should implement this function.
4910 bool
4911 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4912                                                      CallingConv::ID CalleeCC,
4913                                                      bool isVarArg,
4914                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4915                                                      SelectionDAG& DAG) const {
4916   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4917     return false;
4918 
4919   // Variable argument functions are not supported.
4920   if (isVarArg)
4921     return false;
4922 
4923   MachineFunction &MF = DAG.getMachineFunction();
4924   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4925   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4926     // Functions containing by val parameters are not supported.
4927     for (unsigned i = 0; i != Ins.size(); i++) {
4928        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4929        if (Flags.isByVal()) return false;
4930     }
4931 
4932     // Non-PIC/GOT tail calls are supported.
4933     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4934       return true;
4935 
4936     // At the moment we can only do local tail calls (in same module, hidden
4937     // or protected) if we are generating PIC.
4938     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4939       return G->getGlobal()->hasHiddenVisibility()
4940           || G->getGlobal()->hasProtectedVisibility();
4941   }
4942 
4943   return false;
4944 }
4945 
4946 /// isCallCompatibleAddress - Return the immediate to use if the specified
4947 /// 32-bit value is representable in the immediate field of a BxA instruction.
4948 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4949   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4950   if (!C) return nullptr;
4951 
4952   int Addr = C->getZExtValue();
4953   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4954       SignExtend32<26>(Addr) != Addr)
4955     return nullptr;  // Top 6 bits have to be sext of immediate.
4956 
4957   return DAG
4958       .getConstant(
4959           (int)C->getZExtValue() >> 2, SDLoc(Op),
4960           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4961       .getNode();
4962 }
4963 
4964 namespace {
4965 
4966 struct TailCallArgumentInfo {
4967   SDValue Arg;
4968   SDValue FrameIdxOp;
4969   int FrameIdx = 0;
4970 
4971   TailCallArgumentInfo() = default;
4972 };
4973 
4974 } // end anonymous namespace
4975 
4976 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4977 static void StoreTailCallArgumentsToStackSlot(
4978     SelectionDAG &DAG, SDValue Chain,
4979     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4980     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4981   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4982     SDValue Arg = TailCallArgs[i].Arg;
4983     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4984     int FI = TailCallArgs[i].FrameIdx;
4985     // Store relative to framepointer.
4986     MemOpChains.push_back(DAG.getStore(
4987         Chain, dl, Arg, FIN,
4988         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4989   }
4990 }
4991 
4992 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4993 /// the appropriate stack slot for the tail call optimized function call.
4994 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4995                                              SDValue OldRetAddr, SDValue OldFP,
4996                                              int SPDiff, const SDLoc &dl) {
4997   if (SPDiff) {
4998     // Calculate the new stack slot for the return address.
4999     MachineFunction &MF = DAG.getMachineFunction();
5000     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5001     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5002     bool isPPC64 = Subtarget.isPPC64();
5003     int SlotSize = isPPC64 ? 8 : 4;
5004     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5005     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5006                                                          NewRetAddrLoc, true);
5007     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5008     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5009     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5010                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5011   }
5012   return Chain;
5013 }
5014 
5015 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5016 /// the position of the argument.
5017 static void
5018 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5019                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5020                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5021   int Offset = ArgOffset + SPDiff;
5022   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5023   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5024   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5025   SDValue FIN = DAG.getFrameIndex(FI, VT);
5026   TailCallArgumentInfo Info;
5027   Info.Arg = Arg;
5028   Info.FrameIdxOp = FIN;
5029   Info.FrameIdx = FI;
5030   TailCallArguments.push_back(Info);
5031 }
5032 
5033 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5034 /// stack slot. Returns the chain as result and the loaded frame pointers in
5035 /// LROpOut/FPOpout. Used when tail calling.
5036 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5037     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5038     SDValue &FPOpOut, const SDLoc &dl) const {
5039   if (SPDiff) {
5040     // Load the LR and FP stack slot for later adjusting.
5041     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5042     LROpOut = getReturnAddrFrameIndex(DAG);
5043     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5044     Chain = SDValue(LROpOut.getNode(), 1);
5045   }
5046   return Chain;
5047 }
5048 
5049 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5050 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5051 /// specified by the specific parameter attribute. The copy will be passed as
5052 /// a byval function parameter.
5053 /// Sometimes what we are copying is the end of a larger object, the part that
5054 /// does not fit in registers.
5055 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5056                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5057                                          SelectionDAG &DAG, const SDLoc &dl) {
5058   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5059   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5060                        Flags.getNonZeroByValAlign(), false, false, false,
5061                        MachinePointerInfo(), MachinePointerInfo());
5062 }
5063 
5064 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5065 /// tail calls.
5066 static void LowerMemOpCallTo(
5067     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5068     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5069     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5070     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5071   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5072   if (!isTailCall) {
5073     if (isVector) {
5074       SDValue StackPtr;
5075       if (isPPC64)
5076         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5077       else
5078         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5079       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5080                            DAG.getConstant(ArgOffset, dl, PtrVT));
5081     }
5082     MemOpChains.push_back(
5083         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5084     // Calculate and remember argument location.
5085   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5086                                   TailCallArguments);
5087 }
5088 
5089 static void
5090 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5091                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5092                 SDValue FPOp,
5093                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5094   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5095   // might overwrite each other in case of tail call optimization.
5096   SmallVector<SDValue, 8> MemOpChains2;
5097   // Do not flag preceding copytoreg stuff together with the following stuff.
5098   InFlag = SDValue();
5099   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5100                                     MemOpChains2, dl);
5101   if (!MemOpChains2.empty())
5102     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5103 
5104   // Store the return address to the appropriate stack slot.
5105   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5106 
5107   // Emit callseq_end just before tailcall node.
5108   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5109                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5110   InFlag = Chain.getValue(1);
5111 }
5112 
5113 // Is this global address that of a function that can be called by name? (as
5114 // opposed to something that must hold a descriptor for an indirect call).
5115 static bool isFunctionGlobalAddress(SDValue Callee) {
5116   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5117     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5118         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5119       return false;
5120 
5121     return G->getGlobal()->getValueType()->isFunctionTy();
5122   }
5123 
5124   return false;
5125 }
5126 
5127 SDValue PPCTargetLowering::LowerCallResult(
5128     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5129     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5130     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5131   SmallVector<CCValAssign, 16> RVLocs;
5132   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5133                     *DAG.getContext());
5134 
5135   CCRetInfo.AnalyzeCallResult(
5136       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5137                ? RetCC_PPC_Cold
5138                : RetCC_PPC);
5139 
5140   // Copy all of the result registers out of their specified physreg.
5141   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5142     CCValAssign &VA = RVLocs[i];
5143     assert(VA.isRegLoc() && "Can only return in registers!");
5144 
5145     SDValue Val;
5146 
5147     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5148       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5149                                       InFlag);
5150       Chain = Lo.getValue(1);
5151       InFlag = Lo.getValue(2);
5152       VA = RVLocs[++i]; // skip ahead to next loc
5153       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5154                                       InFlag);
5155       Chain = Hi.getValue(1);
5156       InFlag = Hi.getValue(2);
5157       if (!Subtarget.isLittleEndian())
5158         std::swap (Lo, Hi);
5159       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5160     } else {
5161       Val = DAG.getCopyFromReg(Chain, dl,
5162                                VA.getLocReg(), VA.getLocVT(), InFlag);
5163       Chain = Val.getValue(1);
5164       InFlag = Val.getValue(2);
5165     }
5166 
5167     switch (VA.getLocInfo()) {
5168     default: llvm_unreachable("Unknown loc info!");
5169     case CCValAssign::Full: break;
5170     case CCValAssign::AExt:
5171       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5172       break;
5173     case CCValAssign::ZExt:
5174       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5175                         DAG.getValueType(VA.getValVT()));
5176       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5177       break;
5178     case CCValAssign::SExt:
5179       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5180                         DAG.getValueType(VA.getValVT()));
5181       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5182       break;
5183     }
5184 
5185     InVals.push_back(Val);
5186   }
5187 
5188   return Chain;
5189 }
5190 
5191 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5192                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5193   // PatchPoint calls are not indirect.
5194   if (isPatchPoint)
5195     return false;
5196 
5197   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5198     return false;
5199 
5200   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5201   // becuase the immediate function pointer points to a descriptor instead of
5202   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5203   // pointer immediate points to the global entry point, while the BLA would
5204   // need to jump to the local entry point (see rL211174).
5205   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5206       isBLACompatibleAddress(Callee, DAG))
5207     return false;
5208 
5209   return true;
5210 }
5211 
5212 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5213 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5214   return Subtarget.isAIXABI() ||
5215          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5216 }
5217 
5218 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5219                               const Function &Caller, const SDValue &Callee,
5220                               const PPCSubtarget &Subtarget,
5221                               const TargetMachine &TM,
5222                               bool IsStrictFPCall = false) {
5223   if (CFlags.IsTailCall)
5224     return PPCISD::TC_RETURN;
5225 
5226   unsigned RetOpc = 0;
5227   // This is a call through a function pointer.
5228   if (CFlags.IsIndirect) {
5229     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5230     // indirect calls. The save of the caller's TOC pointer to the stack will be
5231     // inserted into the DAG as part of call lowering. The restore of the TOC
5232     // pointer is modeled by using a pseudo instruction for the call opcode that
5233     // represents the 2 instruction sequence of an indirect branch and link,
5234     // immediately followed by a load of the TOC pointer from the the stack save
5235     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5236     // as it is not saved or used.
5237     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5238                                                  : PPCISD::BCTRL;
5239   } else if (Subtarget.isUsingPCRelativeCalls()) {
5240     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5241     RetOpc = PPCISD::CALL_NOTOC;
5242   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5243     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5244     // immediately following the call instruction if the caller and callee may
5245     // have different TOC bases. At link time if the linker determines the calls
5246     // may not share a TOC base, the call is redirected to a trampoline inserted
5247     // by the linker. The trampoline will (among other things) save the callers
5248     // TOC pointer at an ABI designated offset in the linkage area and the
5249     // linker will rewrite the nop to be a load of the TOC pointer from the
5250     // linkage area into gpr2.
5251     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5252                                                     : PPCISD::CALL_NOP;
5253   else
5254     RetOpc = PPCISD::CALL;
5255   if (IsStrictFPCall) {
5256     switch (RetOpc) {
5257     default:
5258       llvm_unreachable("Unknown call opcode");
5259     case PPCISD::BCTRL_LOAD_TOC:
5260       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5261       break;
5262     case PPCISD::BCTRL:
5263       RetOpc = PPCISD::BCTRL_RM;
5264       break;
5265     case PPCISD::CALL_NOTOC:
5266       RetOpc = PPCISD::CALL_NOTOC_RM;
5267       break;
5268     case PPCISD::CALL:
5269       RetOpc = PPCISD::CALL_RM;
5270       break;
5271     case PPCISD::CALL_NOP:
5272       RetOpc = PPCISD::CALL_NOP_RM;
5273       break;
5274     }
5275   }
5276   return RetOpc;
5277 }
5278 
5279 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5280                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5281   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5282     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5283       return SDValue(Dest, 0);
5284 
5285   // Returns true if the callee is local, and false otherwise.
5286   auto isLocalCallee = [&]() {
5287     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5288     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5289     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5290 
5291     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5292            !isa_and_nonnull<GlobalIFunc>(GV);
5293   };
5294 
5295   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5296   // a static relocation model causes some versions of GNU LD (2.17.50, at
5297   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5298   // built with secure-PLT.
5299   bool UsePlt =
5300       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5301       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5302 
5303   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5304     const TargetMachine &TM = Subtarget.getTargetMachine();
5305     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5306     MCSymbolXCOFF *S =
5307         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5308 
5309     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5310     return DAG.getMCSymbol(S, PtrVT);
5311   };
5312 
5313   if (isFunctionGlobalAddress(Callee)) {
5314     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5315 
5316     if (Subtarget.isAIXABI()) {
5317       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5318       return getAIXFuncEntryPointSymbolSDNode(GV);
5319     }
5320     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5321                                       UsePlt ? PPCII::MO_PLT : 0);
5322   }
5323 
5324   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5325     const char *SymName = S->getSymbol();
5326     if (Subtarget.isAIXABI()) {
5327       // If there exists a user-declared function whose name is the same as the
5328       // ExternalSymbol's, then we pick up the user-declared version.
5329       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5330       if (const Function *F =
5331               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5332         return getAIXFuncEntryPointSymbolSDNode(F);
5333 
5334       // On AIX, direct function calls reference the symbol for the function's
5335       // entry point, which is named by prepending a "." before the function's
5336       // C-linkage name. A Qualname is returned here because an external
5337       // function entry point is a csect with XTY_ER property.
5338       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5339         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5340         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5341             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5342             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5343         return Sec->getQualNameSymbol();
5344       };
5345 
5346       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5347     }
5348     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5349                                        UsePlt ? PPCII::MO_PLT : 0);
5350   }
5351 
5352   // No transformation needed.
5353   assert(Callee.getNode() && "What no callee?");
5354   return Callee;
5355 }
5356 
5357 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5358   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5359          "Expected a CALLSEQ_STARTSDNode.");
5360 
5361   // The last operand is the chain, except when the node has glue. If the node
5362   // has glue, then the last operand is the glue, and the chain is the second
5363   // last operand.
5364   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5365   if (LastValue.getValueType() != MVT::Glue)
5366     return LastValue;
5367 
5368   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5369 }
5370 
5371 // Creates the node that moves a functions address into the count register
5372 // to prepare for an indirect call instruction.
5373 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5374                                 SDValue &Glue, SDValue &Chain,
5375                                 const SDLoc &dl) {
5376   SDValue MTCTROps[] = {Chain, Callee, Glue};
5377   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5378   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5379                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5380   // The glue is the second value produced.
5381   Glue = Chain.getValue(1);
5382 }
5383 
5384 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5385                                           SDValue &Glue, SDValue &Chain,
5386                                           SDValue CallSeqStart,
5387                                           const CallBase *CB, const SDLoc &dl,
5388                                           bool hasNest,
5389                                           const PPCSubtarget &Subtarget) {
5390   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5391   // entry point, but to the function descriptor (the function entry point
5392   // address is part of the function descriptor though).
5393   // The function descriptor is a three doubleword structure with the
5394   // following fields: function entry point, TOC base address and
5395   // environment pointer.
5396   // Thus for a call through a function pointer, the following actions need
5397   // to be performed:
5398   //   1. Save the TOC of the caller in the TOC save area of its stack
5399   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5400   //   2. Load the address of the function entry point from the function
5401   //      descriptor.
5402   //   3. Load the TOC of the callee from the function descriptor into r2.
5403   //   4. Load the environment pointer from the function descriptor into
5404   //      r11.
5405   //   5. Branch to the function entry point address.
5406   //   6. On return of the callee, the TOC of the caller needs to be
5407   //      restored (this is done in FinishCall()).
5408   //
5409   // The loads are scheduled at the beginning of the call sequence, and the
5410   // register copies are flagged together to ensure that no other
5411   // operations can be scheduled in between. E.g. without flagging the
5412   // copies together, a TOC access in the caller could be scheduled between
5413   // the assignment of the callee TOC and the branch to the callee, which leads
5414   // to incorrect code.
5415 
5416   // Start by loading the function address from the descriptor.
5417   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5418   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5419                       ? (MachineMemOperand::MODereferenceable |
5420                          MachineMemOperand::MOInvariant)
5421                       : MachineMemOperand::MONone;
5422 
5423   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5424 
5425   // Registers used in building the DAG.
5426   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5427   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5428 
5429   // Offsets of descriptor members.
5430   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5431   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5432 
5433   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5434   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5435 
5436   // One load for the functions entry point address.
5437   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5438                                     Alignment, MMOFlags);
5439 
5440   // One for loading the TOC anchor for the module that contains the called
5441   // function.
5442   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5443   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5444   SDValue TOCPtr =
5445       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5446                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5447 
5448   // One for loading the environment pointer.
5449   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5450   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5451   SDValue LoadEnvPtr =
5452       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5453                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5454 
5455 
5456   // Then copy the newly loaded TOC anchor to the TOC pointer.
5457   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5458   Chain = TOCVal.getValue(0);
5459   Glue = TOCVal.getValue(1);
5460 
5461   // If the function call has an explicit 'nest' parameter, it takes the
5462   // place of the environment pointer.
5463   assert((!hasNest || !Subtarget.isAIXABI()) &&
5464          "Nest parameter is not supported on AIX.");
5465   if (!hasNest) {
5466     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5467     Chain = EnvVal.getValue(0);
5468     Glue = EnvVal.getValue(1);
5469   }
5470 
5471   // The rest of the indirect call sequence is the same as the non-descriptor
5472   // DAG.
5473   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5474 }
5475 
5476 static void
5477 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5478                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5479                   SelectionDAG &DAG,
5480                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5481                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5482                   const PPCSubtarget &Subtarget) {
5483   const bool IsPPC64 = Subtarget.isPPC64();
5484   // MVT for a general purpose register.
5485   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5486 
5487   // First operand is always the chain.
5488   Ops.push_back(Chain);
5489 
5490   // If it's a direct call pass the callee as the second operand.
5491   if (!CFlags.IsIndirect)
5492     Ops.push_back(Callee);
5493   else {
5494     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5495 
5496     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5497     // on the stack (this would have been done in `LowerCall_64SVR4` or
5498     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5499     // represents both the indirect branch and a load that restores the TOC
5500     // pointer from the linkage area. The operand for the TOC restore is an add
5501     // of the TOC save offset to the stack pointer. This must be the second
5502     // operand: after the chain input but before any other variadic arguments.
5503     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5504     // saved or used.
5505     if (isTOCSaveRestoreRequired(Subtarget)) {
5506       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5507 
5508       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5509       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5510       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5511       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5512       Ops.push_back(AddTOC);
5513     }
5514 
5515     // Add the register used for the environment pointer.
5516     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5517       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5518                                     RegVT));
5519 
5520 
5521     // Add CTR register as callee so a bctr can be emitted later.
5522     if (CFlags.IsTailCall)
5523       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5524   }
5525 
5526   // If this is a tail call add stack pointer delta.
5527   if (CFlags.IsTailCall)
5528     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5529 
5530   // Add argument registers to the end of the list so that they are known live
5531   // into the call.
5532   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5533     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5534                                   RegsToPass[i].second.getValueType()));
5535 
5536   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5537   // no way to mark dependencies as implicit here.
5538   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5539   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5540        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5541     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5542 
5543   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5544   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5545     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5546 
5547   // Add a register mask operand representing the call-preserved registers.
5548   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5549   const uint32_t *Mask =
5550       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5551   assert(Mask && "Missing call preserved mask for calling convention");
5552   Ops.push_back(DAG.getRegisterMask(Mask));
5553 
5554   // If the glue is valid, it is the last operand.
5555   if (Glue.getNode())
5556     Ops.push_back(Glue);
5557 }
5558 
5559 SDValue PPCTargetLowering::FinishCall(
5560     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5561     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5562     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5563     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5564     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5565 
5566   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5567       Subtarget.isAIXABI())
5568     setUsesTOCBasePtr(DAG);
5569 
5570   unsigned CallOpc =
5571       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5572                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5573 
5574   if (!CFlags.IsIndirect)
5575     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5576   else if (Subtarget.usesFunctionDescriptors())
5577     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5578                                   dl, CFlags.HasNest, Subtarget);
5579   else
5580     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5581 
5582   // Build the operand list for the call instruction.
5583   SmallVector<SDValue, 8> Ops;
5584   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5585                     SPDiff, Subtarget);
5586 
5587   // Emit tail call.
5588   if (CFlags.IsTailCall) {
5589     // Indirect tail call when using PC Relative calls do not have the same
5590     // constraints.
5591     assert(((Callee.getOpcode() == ISD::Register &&
5592              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5593             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5594             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5595             isa<ConstantSDNode>(Callee) ||
5596             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5597            "Expecting a global address, external symbol, absolute value, "
5598            "register or an indirect tail call when PC Relative calls are "
5599            "used.");
5600     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5601     assert(CallOpc == PPCISD::TC_RETURN &&
5602            "Unexpected call opcode for a tail call.");
5603     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5604     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5605   }
5606 
5607   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5608   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5609   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5610   Glue = Chain.getValue(1);
5611 
5612   // When performing tail call optimization the callee pops its arguments off
5613   // the stack. Account for this here so these bytes can be pushed back on in
5614   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5615   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5616                          getTargetMachine().Options.GuaranteedTailCallOpt)
5617                             ? NumBytes
5618                             : 0;
5619 
5620   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5621                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5622                              Glue, dl);
5623   Glue = Chain.getValue(1);
5624 
5625   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5626                          DAG, InVals);
5627 }
5628 
5629 SDValue
5630 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5631                              SmallVectorImpl<SDValue> &InVals) const {
5632   SelectionDAG &DAG                     = CLI.DAG;
5633   SDLoc &dl                             = CLI.DL;
5634   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5635   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5636   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5637   SDValue Chain                         = CLI.Chain;
5638   SDValue Callee                        = CLI.Callee;
5639   bool &isTailCall                      = CLI.IsTailCall;
5640   CallingConv::ID CallConv              = CLI.CallConv;
5641   bool isVarArg                         = CLI.IsVarArg;
5642   bool isPatchPoint                     = CLI.IsPatchPoint;
5643   const CallBase *CB                    = CLI.CB;
5644 
5645   if (isTailCall) {
5646     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5647       isTailCall = false;
5648     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5649       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5650           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5651     else
5652       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5653                                                      Ins, DAG);
5654     if (isTailCall) {
5655       ++NumTailCalls;
5656       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5657         ++NumSiblingCalls;
5658 
5659       // PC Relative calls no longer guarantee that the callee is a Global
5660       // Address Node. The callee could be an indirect tail call in which
5661       // case the SDValue for the callee could be a load (to load the address
5662       // of a function pointer) or it may be a register copy (to move the
5663       // address of the callee from a function parameter into a virtual
5664       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5665       assert((Subtarget.isUsingPCRelativeCalls() ||
5666               isa<GlobalAddressSDNode>(Callee)) &&
5667              "Callee should be an llvm::Function object.");
5668 
5669       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5670                         << "\nTCO callee: ");
5671       LLVM_DEBUG(Callee.dump());
5672     }
5673   }
5674 
5675   if (!isTailCall && CB && CB->isMustTailCall())
5676     report_fatal_error("failed to perform tail call elimination on a call "
5677                        "site marked musttail");
5678 
5679   // When long calls (i.e. indirect calls) are always used, calls are always
5680   // made via function pointer. If we have a function name, first translate it
5681   // into a pointer.
5682   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5683       !isTailCall)
5684     Callee = LowerGlobalAddress(Callee, DAG);
5685 
5686   CallFlags CFlags(
5687       CallConv, isTailCall, isVarArg, isPatchPoint,
5688       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5689       // hasNest
5690       Subtarget.is64BitELFABI() &&
5691           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5692       CLI.NoMerge);
5693 
5694   if (Subtarget.isAIXABI())
5695     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5696                          InVals, CB);
5697 
5698   assert(Subtarget.isSVR4ABI());
5699   if (Subtarget.isPPC64())
5700     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5701                             InVals, CB);
5702   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5703                           InVals, CB);
5704 }
5705 
5706 SDValue PPCTargetLowering::LowerCall_32SVR4(
5707     SDValue Chain, SDValue Callee, CallFlags CFlags,
5708     const SmallVectorImpl<ISD::OutputArg> &Outs,
5709     const SmallVectorImpl<SDValue> &OutVals,
5710     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5711     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5712     const CallBase *CB) const {
5713   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5714   // of the 32-bit SVR4 ABI stack frame layout.
5715 
5716   const CallingConv::ID CallConv = CFlags.CallConv;
5717   const bool IsVarArg = CFlags.IsVarArg;
5718   const bool IsTailCall = CFlags.IsTailCall;
5719 
5720   assert((CallConv == CallingConv::C ||
5721           CallConv == CallingConv::Cold ||
5722           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5723 
5724   const Align PtrAlign(4);
5725 
5726   MachineFunction &MF = DAG.getMachineFunction();
5727 
5728   // Mark this function as potentially containing a function that contains a
5729   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5730   // and restoring the callers stack pointer in this functions epilog. This is
5731   // done because by tail calling the called function might overwrite the value
5732   // in this function's (MF) stack pointer stack slot 0(SP).
5733   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5734       CallConv == CallingConv::Fast)
5735     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5736 
5737   // Count how many bytes are to be pushed on the stack, including the linkage
5738   // area, parameter list area and the part of the local variable space which
5739   // contains copies of aggregates which are passed by value.
5740 
5741   // Assign locations to all of the outgoing arguments.
5742   SmallVector<CCValAssign, 16> ArgLocs;
5743   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5744 
5745   // Reserve space for the linkage area on the stack.
5746   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5747                        PtrAlign);
5748   if (useSoftFloat())
5749     CCInfo.PreAnalyzeCallOperands(Outs);
5750 
5751   if (IsVarArg) {
5752     // Handle fixed and variable vector arguments differently.
5753     // Fixed vector arguments go into registers as long as registers are
5754     // available. Variable vector arguments always go into memory.
5755     unsigned NumArgs = Outs.size();
5756 
5757     for (unsigned i = 0; i != NumArgs; ++i) {
5758       MVT ArgVT = Outs[i].VT;
5759       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5760       bool Result;
5761 
5762       if (Outs[i].IsFixed) {
5763         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5764                                CCInfo);
5765       } else {
5766         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5767                                       ArgFlags, CCInfo);
5768       }
5769 
5770       if (Result) {
5771 #ifndef NDEBUG
5772         errs() << "Call operand #" << i << " has unhandled type "
5773              << EVT(ArgVT).getEVTString() << "\n";
5774 #endif
5775         llvm_unreachable(nullptr);
5776       }
5777     }
5778   } else {
5779     // All arguments are treated the same.
5780     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5781   }
5782   CCInfo.clearWasPPCF128();
5783 
5784   // Assign locations to all of the outgoing aggregate by value arguments.
5785   SmallVector<CCValAssign, 16> ByValArgLocs;
5786   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5787 
5788   // Reserve stack space for the allocations in CCInfo.
5789   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5790 
5791   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5792 
5793   // Size of the linkage area, parameter list area and the part of the local
5794   // space variable where copies of aggregates which are passed by value are
5795   // stored.
5796   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5797 
5798   // Calculate by how many bytes the stack has to be adjusted in case of tail
5799   // call optimization.
5800   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5801 
5802   // Adjust the stack pointer for the new arguments...
5803   // These operations are automatically eliminated by the prolog/epilog pass
5804   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5805   SDValue CallSeqStart = Chain;
5806 
5807   // Load the return address and frame pointer so it can be moved somewhere else
5808   // later.
5809   SDValue LROp, FPOp;
5810   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5811 
5812   // Set up a copy of the stack pointer for use loading and storing any
5813   // arguments that may not fit in the registers available for argument
5814   // passing.
5815   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5816 
5817   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5818   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5819   SmallVector<SDValue, 8> MemOpChains;
5820 
5821   bool seenFloatArg = false;
5822   // Walk the register/memloc assignments, inserting copies/loads.
5823   // i - Tracks the index into the list of registers allocated for the call
5824   // RealArgIdx - Tracks the index into the list of actual function arguments
5825   // j - Tracks the index into the list of byval arguments
5826   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5827        i != e;
5828        ++i, ++RealArgIdx) {
5829     CCValAssign &VA = ArgLocs[i];
5830     SDValue Arg = OutVals[RealArgIdx];
5831     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5832 
5833     if (Flags.isByVal()) {
5834       // Argument is an aggregate which is passed by value, thus we need to
5835       // create a copy of it in the local variable space of the current stack
5836       // frame (which is the stack frame of the caller) and pass the address of
5837       // this copy to the callee.
5838       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5839       CCValAssign &ByValVA = ByValArgLocs[j++];
5840       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5841 
5842       // Memory reserved in the local variable space of the callers stack frame.
5843       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5844 
5845       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5846       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5847                            StackPtr, PtrOff);
5848 
5849       // Create a copy of the argument in the local area of the current
5850       // stack frame.
5851       SDValue MemcpyCall =
5852         CreateCopyOfByValArgument(Arg, PtrOff,
5853                                   CallSeqStart.getNode()->getOperand(0),
5854                                   Flags, DAG, dl);
5855 
5856       // This must go outside the CALLSEQ_START..END.
5857       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5858                                                      SDLoc(MemcpyCall));
5859       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5860                              NewCallSeqStart.getNode());
5861       Chain = CallSeqStart = NewCallSeqStart;
5862 
5863       // Pass the address of the aggregate copy on the stack either in a
5864       // physical register or in the parameter list area of the current stack
5865       // frame to the callee.
5866       Arg = PtrOff;
5867     }
5868 
5869     // When useCRBits() is true, there can be i1 arguments.
5870     // It is because getRegisterType(MVT::i1) => MVT::i1,
5871     // and for other integer types getRegisterType() => MVT::i32.
5872     // Extend i1 and ensure callee will get i32.
5873     if (Arg.getValueType() == MVT::i1)
5874       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5875                         dl, MVT::i32, Arg);
5876 
5877     if (VA.isRegLoc()) {
5878       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5879       // Put argument in a physical register.
5880       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5881         bool IsLE = Subtarget.isLittleEndian();
5882         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5883                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5884         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5885         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5886                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5887         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5888                              SVal.getValue(0)));
5889       } else
5890         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5891     } else {
5892       // Put argument in the parameter list area of the current stack frame.
5893       assert(VA.isMemLoc());
5894       unsigned LocMemOffset = VA.getLocMemOffset();
5895 
5896       if (!IsTailCall) {
5897         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5898         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5899                              StackPtr, PtrOff);
5900 
5901         MemOpChains.push_back(
5902             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5903       } else {
5904         // Calculate and remember argument location.
5905         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5906                                  TailCallArguments);
5907       }
5908     }
5909   }
5910 
5911   if (!MemOpChains.empty())
5912     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5913 
5914   // Build a sequence of copy-to-reg nodes chained together with token chain
5915   // and flag operands which copy the outgoing args into the appropriate regs.
5916   SDValue InFlag;
5917   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5918     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5919                              RegsToPass[i].second, InFlag);
5920     InFlag = Chain.getValue(1);
5921   }
5922 
5923   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5924   // registers.
5925   if (IsVarArg) {
5926     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5927     SDValue Ops[] = { Chain, InFlag };
5928 
5929     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5930                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5931 
5932     InFlag = Chain.getValue(1);
5933   }
5934 
5935   if (IsTailCall)
5936     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5937                     TailCallArguments);
5938 
5939   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5940                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5941 }
5942 
5943 // Copy an argument into memory, being careful to do this outside the
5944 // call sequence for the call to which the argument belongs.
5945 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5946     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5947     SelectionDAG &DAG, const SDLoc &dl) const {
5948   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5949                         CallSeqStart.getNode()->getOperand(0),
5950                         Flags, DAG, dl);
5951   // The MEMCPY must go outside the CALLSEQ_START..END.
5952   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5953   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5954                                                  SDLoc(MemcpyCall));
5955   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5956                          NewCallSeqStart.getNode());
5957   return NewCallSeqStart;
5958 }
5959 
5960 SDValue PPCTargetLowering::LowerCall_64SVR4(
5961     SDValue Chain, SDValue Callee, CallFlags CFlags,
5962     const SmallVectorImpl<ISD::OutputArg> &Outs,
5963     const SmallVectorImpl<SDValue> &OutVals,
5964     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5965     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5966     const CallBase *CB) const {
5967   bool isELFv2ABI = Subtarget.isELFv2ABI();
5968   bool isLittleEndian = Subtarget.isLittleEndian();
5969   unsigned NumOps = Outs.size();
5970   bool IsSibCall = false;
5971   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5972 
5973   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5974   unsigned PtrByteSize = 8;
5975 
5976   MachineFunction &MF = DAG.getMachineFunction();
5977 
5978   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5979     IsSibCall = true;
5980 
5981   // Mark this function as potentially containing a function that contains a
5982   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5983   // and restoring the callers stack pointer in this functions epilog. This is
5984   // done because by tail calling the called function might overwrite the value
5985   // in this function's (MF) stack pointer stack slot 0(SP).
5986   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5987     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5988 
5989   assert(!(IsFastCall && CFlags.IsVarArg) &&
5990          "fastcc not supported on varargs functions");
5991 
5992   // Count how many bytes are to be pushed on the stack, including the linkage
5993   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5994   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5995   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5996   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5997   unsigned NumBytes = LinkageSize;
5998   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5999 
6000   static const MCPhysReg GPR[] = {
6001     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6002     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6003   };
6004   static const MCPhysReg VR[] = {
6005     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6006     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6007   };
6008 
6009   const unsigned NumGPRs = array_lengthof(GPR);
6010   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6011   const unsigned NumVRs  = array_lengthof(VR);
6012 
6013   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6014   // can be passed to the callee in registers.
6015   // For the fast calling convention, there is another check below.
6016   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6017   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6018   if (!HasParameterArea) {
6019     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6020     unsigned AvailableFPRs = NumFPRs;
6021     unsigned AvailableVRs = NumVRs;
6022     unsigned NumBytesTmp = NumBytes;
6023     for (unsigned i = 0; i != NumOps; ++i) {
6024       if (Outs[i].Flags.isNest()) continue;
6025       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6026                                  PtrByteSize, LinkageSize, ParamAreaSize,
6027                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6028         HasParameterArea = true;
6029     }
6030   }
6031 
6032   // When using the fast calling convention, we don't provide backing for
6033   // arguments that will be in registers.
6034   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6035 
6036   // Avoid allocating parameter area for fastcc functions if all the arguments
6037   // can be passed in the registers.
6038   if (IsFastCall)
6039     HasParameterArea = false;
6040 
6041   // Add up all the space actually used.
6042   for (unsigned i = 0; i != NumOps; ++i) {
6043     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6044     EVT ArgVT = Outs[i].VT;
6045     EVT OrigVT = Outs[i].ArgVT;
6046 
6047     if (Flags.isNest())
6048       continue;
6049 
6050     if (IsFastCall) {
6051       if (Flags.isByVal()) {
6052         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6053         if (NumGPRsUsed > NumGPRs)
6054           HasParameterArea = true;
6055       } else {
6056         switch (ArgVT.getSimpleVT().SimpleTy) {
6057         default: llvm_unreachable("Unexpected ValueType for argument!");
6058         case MVT::i1:
6059         case MVT::i32:
6060         case MVT::i64:
6061           if (++NumGPRsUsed <= NumGPRs)
6062             continue;
6063           break;
6064         case MVT::v4i32:
6065         case MVT::v8i16:
6066         case MVT::v16i8:
6067         case MVT::v2f64:
6068         case MVT::v2i64:
6069         case MVT::v1i128:
6070         case MVT::f128:
6071           if (++NumVRsUsed <= NumVRs)
6072             continue;
6073           break;
6074         case MVT::v4f32:
6075           if (++NumVRsUsed <= NumVRs)
6076             continue;
6077           break;
6078         case MVT::f32:
6079         case MVT::f64:
6080           if (++NumFPRsUsed <= NumFPRs)
6081             continue;
6082           break;
6083         }
6084         HasParameterArea = true;
6085       }
6086     }
6087 
6088     /* Respect alignment of argument on the stack.  */
6089     auto Alignement =
6090         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6091     NumBytes = alignTo(NumBytes, Alignement);
6092 
6093     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6094     if (Flags.isInConsecutiveRegsLast())
6095       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6096   }
6097 
6098   unsigned NumBytesActuallyUsed = NumBytes;
6099 
6100   // In the old ELFv1 ABI,
6101   // the prolog code of the callee may store up to 8 GPR argument registers to
6102   // the stack, allowing va_start to index over them in memory if its varargs.
6103   // Because we cannot tell if this is needed on the caller side, we have to
6104   // conservatively assume that it is needed.  As such, make sure we have at
6105   // least enough stack space for the caller to store the 8 GPRs.
6106   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6107   // really requires memory operands, e.g. a vararg function.
6108   if (HasParameterArea)
6109     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6110   else
6111     NumBytes = LinkageSize;
6112 
6113   // Tail call needs the stack to be aligned.
6114   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6115     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6116 
6117   int SPDiff = 0;
6118 
6119   // Calculate by how many bytes the stack has to be adjusted in case of tail
6120   // call optimization.
6121   if (!IsSibCall)
6122     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6123 
6124   // To protect arguments on the stack from being clobbered in a tail call,
6125   // force all the loads to happen before doing any other lowering.
6126   if (CFlags.IsTailCall)
6127     Chain = DAG.getStackArgumentTokenFactor(Chain);
6128 
6129   // Adjust the stack pointer for the new arguments...
6130   // These operations are automatically eliminated by the prolog/epilog pass
6131   if (!IsSibCall)
6132     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6133   SDValue CallSeqStart = Chain;
6134 
6135   // Load the return address and frame pointer so it can be move somewhere else
6136   // later.
6137   SDValue LROp, FPOp;
6138   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6139 
6140   // Set up a copy of the stack pointer for use loading and storing any
6141   // arguments that may not fit in the registers available for argument
6142   // passing.
6143   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6144 
6145   // Figure out which arguments are going to go in registers, and which in
6146   // memory.  Also, if this is a vararg function, floating point operations
6147   // must be stored to our stack, and loaded into integer regs as well, if
6148   // any integer regs are available for argument passing.
6149   unsigned ArgOffset = LinkageSize;
6150 
6151   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6152   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6153 
6154   SmallVector<SDValue, 8> MemOpChains;
6155   for (unsigned i = 0; i != NumOps; ++i) {
6156     SDValue Arg = OutVals[i];
6157     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6158     EVT ArgVT = Outs[i].VT;
6159     EVT OrigVT = Outs[i].ArgVT;
6160 
6161     // PtrOff will be used to store the current argument to the stack if a
6162     // register cannot be found for it.
6163     SDValue PtrOff;
6164 
6165     // We re-align the argument offset for each argument, except when using the
6166     // fast calling convention, when we need to make sure we do that only when
6167     // we'll actually use a stack slot.
6168     auto ComputePtrOff = [&]() {
6169       /* Respect alignment of argument on the stack.  */
6170       auto Alignment =
6171           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6172       ArgOffset = alignTo(ArgOffset, Alignment);
6173 
6174       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6175 
6176       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6177     };
6178 
6179     if (!IsFastCall) {
6180       ComputePtrOff();
6181 
6182       /* Compute GPR index associated with argument offset.  */
6183       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6184       GPR_idx = std::min(GPR_idx, NumGPRs);
6185     }
6186 
6187     // Promote integers to 64-bit values.
6188     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6189       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6190       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6191       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6192     }
6193 
6194     // FIXME memcpy is used way more than necessary.  Correctness first.
6195     // Note: "by value" is code for passing a structure by value, not
6196     // basic types.
6197     if (Flags.isByVal()) {
6198       // Note: Size includes alignment padding, so
6199       //   struct x { short a; char b; }
6200       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6201       // These are the proper values we need for right-justifying the
6202       // aggregate in a parameter register.
6203       unsigned Size = Flags.getByValSize();
6204 
6205       // An empty aggregate parameter takes up no storage and no
6206       // registers.
6207       if (Size == 0)
6208         continue;
6209 
6210       if (IsFastCall)
6211         ComputePtrOff();
6212 
6213       // All aggregates smaller than 8 bytes must be passed right-justified.
6214       if (Size==1 || Size==2 || Size==4) {
6215         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6216         if (GPR_idx != NumGPRs) {
6217           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6218                                         MachinePointerInfo(), VT);
6219           MemOpChains.push_back(Load.getValue(1));
6220           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6221 
6222           ArgOffset += PtrByteSize;
6223           continue;
6224         }
6225       }
6226 
6227       if (GPR_idx == NumGPRs && Size < 8) {
6228         SDValue AddPtr = PtrOff;
6229         if (!isLittleEndian) {
6230           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6231                                           PtrOff.getValueType());
6232           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6233         }
6234         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6235                                                           CallSeqStart,
6236                                                           Flags, DAG, dl);
6237         ArgOffset += PtrByteSize;
6238         continue;
6239       }
6240       // Copy the object to parameter save area if it can not be entirely passed
6241       // by registers.
6242       // FIXME: we only need to copy the parts which need to be passed in
6243       // parameter save area. For the parts passed by registers, we don't need
6244       // to copy them to the stack although we need to allocate space for them
6245       // in parameter save area.
6246       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6247         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6248                                                           CallSeqStart,
6249                                                           Flags, DAG, dl);
6250 
6251       // When a register is available, pass a small aggregate right-justified.
6252       if (Size < 8 && GPR_idx != NumGPRs) {
6253         // The easiest way to get this right-justified in a register
6254         // is to copy the structure into the rightmost portion of a
6255         // local variable slot, then load the whole slot into the
6256         // register.
6257         // FIXME: The memcpy seems to produce pretty awful code for
6258         // small aggregates, particularly for packed ones.
6259         // FIXME: It would be preferable to use the slot in the
6260         // parameter save area instead of a new local variable.
6261         SDValue AddPtr = PtrOff;
6262         if (!isLittleEndian) {
6263           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6264           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6265         }
6266         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6267                                                           CallSeqStart,
6268                                                           Flags, DAG, dl);
6269 
6270         // Load the slot into the register.
6271         SDValue Load =
6272             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6273         MemOpChains.push_back(Load.getValue(1));
6274         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6275 
6276         // Done with this argument.
6277         ArgOffset += PtrByteSize;
6278         continue;
6279       }
6280 
6281       // For aggregates larger than PtrByteSize, copy the pieces of the
6282       // object that fit into registers from the parameter save area.
6283       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6284         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6285         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6286         if (GPR_idx != NumGPRs) {
6287           unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8;
6288           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits);
6289           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg,
6290                                         MachinePointerInfo(), ObjType);
6291 
6292           MemOpChains.push_back(Load.getValue(1));
6293           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6294           ArgOffset += PtrByteSize;
6295         } else {
6296           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6297           break;
6298         }
6299       }
6300       continue;
6301     }
6302 
6303     switch (Arg.getSimpleValueType().SimpleTy) {
6304     default: llvm_unreachable("Unexpected ValueType for argument!");
6305     case MVT::i1:
6306     case MVT::i32:
6307     case MVT::i64:
6308       if (Flags.isNest()) {
6309         // The 'nest' parameter, if any, is passed in R11.
6310         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6311         break;
6312       }
6313 
6314       // These can be scalar arguments or elements of an integer array type
6315       // passed directly.  Clang may use those instead of "byval" aggregate
6316       // types to avoid forcing arguments to memory unnecessarily.
6317       if (GPR_idx != NumGPRs) {
6318         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6319       } else {
6320         if (IsFastCall)
6321           ComputePtrOff();
6322 
6323         assert(HasParameterArea &&
6324                "Parameter area must exist to pass an argument in memory.");
6325         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6326                          true, CFlags.IsTailCall, false, MemOpChains,
6327                          TailCallArguments, dl);
6328         if (IsFastCall)
6329           ArgOffset += PtrByteSize;
6330       }
6331       if (!IsFastCall)
6332         ArgOffset += PtrByteSize;
6333       break;
6334     case MVT::f32:
6335     case MVT::f64: {
6336       // These can be scalar arguments or elements of a float array type
6337       // passed directly.  The latter are used to implement ELFv2 homogenous
6338       // float aggregates.
6339 
6340       // Named arguments go into FPRs first, and once they overflow, the
6341       // remaining arguments go into GPRs and then the parameter save area.
6342       // Unnamed arguments for vararg functions always go to GPRs and
6343       // then the parameter save area.  For now, put all arguments to vararg
6344       // routines always in both locations (FPR *and* GPR or stack slot).
6345       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6346       bool NeededLoad = false;
6347 
6348       // First load the argument into the next available FPR.
6349       if (FPR_idx != NumFPRs)
6350         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6351 
6352       // Next, load the argument into GPR or stack slot if needed.
6353       if (!NeedGPROrStack)
6354         ;
6355       else if (GPR_idx != NumGPRs && !IsFastCall) {
6356         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6357         // once we support fp <-> gpr moves.
6358 
6359         // In the non-vararg case, this can only ever happen in the
6360         // presence of f32 array types, since otherwise we never run
6361         // out of FPRs before running out of GPRs.
6362         SDValue ArgVal;
6363 
6364         // Double values are always passed in a single GPR.
6365         if (Arg.getValueType() != MVT::f32) {
6366           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6367 
6368         // Non-array float values are extended and passed in a GPR.
6369         } else if (!Flags.isInConsecutiveRegs()) {
6370           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6371           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6372 
6373         // If we have an array of floats, we collect every odd element
6374         // together with its predecessor into one GPR.
6375         } else if (ArgOffset % PtrByteSize != 0) {
6376           SDValue Lo, Hi;
6377           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6378           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6379           if (!isLittleEndian)
6380             std::swap(Lo, Hi);
6381           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6382 
6383         // The final element, if even, goes into the first half of a GPR.
6384         } else if (Flags.isInConsecutiveRegsLast()) {
6385           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6386           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6387           if (!isLittleEndian)
6388             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6389                                  DAG.getConstant(32, dl, MVT::i32));
6390 
6391         // Non-final even elements are skipped; they will be handled
6392         // together the with subsequent argument on the next go-around.
6393         } else
6394           ArgVal = SDValue();
6395 
6396         if (ArgVal.getNode())
6397           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6398       } else {
6399         if (IsFastCall)
6400           ComputePtrOff();
6401 
6402         // Single-precision floating-point values are mapped to the
6403         // second (rightmost) word of the stack doubleword.
6404         if (Arg.getValueType() == MVT::f32 &&
6405             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6406           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6407           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6408         }
6409 
6410         assert(HasParameterArea &&
6411                "Parameter area must exist to pass an argument in memory.");
6412         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6413                          true, CFlags.IsTailCall, false, MemOpChains,
6414                          TailCallArguments, dl);
6415 
6416         NeededLoad = true;
6417       }
6418       // When passing an array of floats, the array occupies consecutive
6419       // space in the argument area; only round up to the next doubleword
6420       // at the end of the array.  Otherwise, each float takes 8 bytes.
6421       if (!IsFastCall || NeededLoad) {
6422         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6423                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6424         if (Flags.isInConsecutiveRegsLast())
6425           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6426       }
6427       break;
6428     }
6429     case MVT::v4f32:
6430     case MVT::v4i32:
6431     case MVT::v8i16:
6432     case MVT::v16i8:
6433     case MVT::v2f64:
6434     case MVT::v2i64:
6435     case MVT::v1i128:
6436     case MVT::f128:
6437       // These can be scalar arguments or elements of a vector array type
6438       // passed directly.  The latter are used to implement ELFv2 homogenous
6439       // vector aggregates.
6440 
6441       // For a varargs call, named arguments go into VRs or on the stack as
6442       // usual; unnamed arguments always go to the stack or the corresponding
6443       // GPRs when within range.  For now, we always put the value in both
6444       // locations (or even all three).
6445       if (CFlags.IsVarArg) {
6446         assert(HasParameterArea &&
6447                "Parameter area must exist if we have a varargs call.");
6448         // We could elide this store in the case where the object fits
6449         // entirely in R registers.  Maybe later.
6450         SDValue Store =
6451             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6452         MemOpChains.push_back(Store);
6453         if (VR_idx != NumVRs) {
6454           SDValue Load =
6455               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6456           MemOpChains.push_back(Load.getValue(1));
6457           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6458         }
6459         ArgOffset += 16;
6460         for (unsigned i=0; i<16; i+=PtrByteSize) {
6461           if (GPR_idx == NumGPRs)
6462             break;
6463           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6464                                    DAG.getConstant(i, dl, PtrVT));
6465           SDValue Load =
6466               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6467           MemOpChains.push_back(Load.getValue(1));
6468           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6469         }
6470         break;
6471       }
6472 
6473       // Non-varargs Altivec params go into VRs or on the stack.
6474       if (VR_idx != NumVRs) {
6475         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6476       } else {
6477         if (IsFastCall)
6478           ComputePtrOff();
6479 
6480         assert(HasParameterArea &&
6481                "Parameter area must exist to pass an argument in memory.");
6482         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6483                          true, CFlags.IsTailCall, true, MemOpChains,
6484                          TailCallArguments, dl);
6485         if (IsFastCall)
6486           ArgOffset += 16;
6487       }
6488 
6489       if (!IsFastCall)
6490         ArgOffset += 16;
6491       break;
6492     }
6493   }
6494 
6495   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6496          "mismatch in size of parameter area");
6497   (void)NumBytesActuallyUsed;
6498 
6499   if (!MemOpChains.empty())
6500     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6501 
6502   // Check if this is an indirect call (MTCTR/BCTRL).
6503   // See prepareDescriptorIndirectCall and buildCallOperands for more
6504   // information about calls through function pointers in the 64-bit SVR4 ABI.
6505   if (CFlags.IsIndirect) {
6506     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6507     // caller in the TOC save area.
6508     if (isTOCSaveRestoreRequired(Subtarget)) {
6509       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6510       // Load r2 into a virtual register and store it to the TOC save area.
6511       setUsesTOCBasePtr(DAG);
6512       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6513       // TOC save area offset.
6514       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6515       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6516       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6517       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6518                            MachinePointerInfo::getStack(
6519                                DAG.getMachineFunction(), TOCSaveOffset));
6520     }
6521     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6522     // This does not mean the MTCTR instruction must use R12; it's easier
6523     // to model this as an extra parameter, so do that.
6524     if (isELFv2ABI && !CFlags.IsPatchPoint)
6525       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6526   }
6527 
6528   // Build a sequence of copy-to-reg nodes chained together with token chain
6529   // and flag operands which copy the outgoing args into the appropriate regs.
6530   SDValue InFlag;
6531   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6532     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6533                              RegsToPass[i].second, InFlag);
6534     InFlag = Chain.getValue(1);
6535   }
6536 
6537   if (CFlags.IsTailCall && !IsSibCall)
6538     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6539                     TailCallArguments);
6540 
6541   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6542                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6543 }
6544 
6545 // Returns true when the shadow of a general purpose argument register
6546 // in the parameter save area is aligned to at least 'RequiredAlign'.
6547 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6548   assert(RequiredAlign.value() <= 16 &&
6549          "Required alignment greater than stack alignment.");
6550   switch (Reg) {
6551   default:
6552     report_fatal_error("called on invalid register.");
6553   case PPC::R5:
6554   case PPC::R9:
6555   case PPC::X3:
6556   case PPC::X5:
6557   case PPC::X7:
6558   case PPC::X9:
6559     // These registers are 16 byte aligned which is the most strict aligment
6560     // we can support.
6561     return true;
6562   case PPC::R3:
6563   case PPC::R7:
6564   case PPC::X4:
6565   case PPC::X6:
6566   case PPC::X8:
6567   case PPC::X10:
6568     // The shadow of these registers in the PSA is 8 byte aligned.
6569     return RequiredAlign <= 8;
6570   case PPC::R4:
6571   case PPC::R6:
6572   case PPC::R8:
6573   case PPC::R10:
6574     return RequiredAlign <= 4;
6575   }
6576 }
6577 
6578 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6579                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6580                    CCState &S) {
6581   AIXCCState &State = static_cast<AIXCCState &>(S);
6582   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6583       State.getMachineFunction().getSubtarget());
6584   const bool IsPPC64 = Subtarget.isPPC64();
6585   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6586   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6587 
6588   if (ValVT == MVT::f128)
6589     report_fatal_error("f128 is unimplemented on AIX.");
6590 
6591   if (ArgFlags.isNest())
6592     report_fatal_error("Nest arguments are unimplemented.");
6593 
6594   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6595                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6596                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6597   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6598                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6599                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6600 
6601   static const MCPhysReg VR[] = {// Vector registers.
6602                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6603                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6604                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6605 
6606   if (ArgFlags.isByVal()) {
6607     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6608       report_fatal_error("Pass-by-value arguments with alignment greater than "
6609                          "register width are not supported.");
6610 
6611     const unsigned ByValSize = ArgFlags.getByValSize();
6612 
6613     // An empty aggregate parameter takes up no storage and no registers,
6614     // but needs a MemLoc for a stack slot for the formal arguments side.
6615     if (ByValSize == 0) {
6616       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6617                                        State.getNextStackOffset(), RegVT,
6618                                        LocInfo));
6619       return false;
6620     }
6621 
6622     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6623     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6624     for (const unsigned E = Offset + StackSize; Offset < E;
6625          Offset += PtrAlign.value()) {
6626       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6627         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6628       else {
6629         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6630                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6631                                          LocInfo));
6632         break;
6633       }
6634     }
6635     return false;
6636   }
6637 
6638   // Arguments always reserve parameter save area.
6639   switch (ValVT.SimpleTy) {
6640   default:
6641     report_fatal_error("Unhandled value type for argument.");
6642   case MVT::i64:
6643     // i64 arguments should have been split to i32 for PPC32.
6644     assert(IsPPC64 && "PPC32 should have split i64 values.");
6645     LLVM_FALLTHROUGH;
6646   case MVT::i1:
6647   case MVT::i32: {
6648     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6649     // AIX integer arguments are always passed in register width.
6650     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6651       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6652                                   : CCValAssign::LocInfo::ZExt;
6653     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6654       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6655     else
6656       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6657 
6658     return false;
6659   }
6660   case MVT::f32:
6661   case MVT::f64: {
6662     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6663     const unsigned StoreSize = LocVT.getStoreSize();
6664     // Floats are always 4-byte aligned in the PSA on AIX.
6665     // This includes f64 in 64-bit mode for ABI compatibility.
6666     const unsigned Offset =
6667         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6668     unsigned FReg = State.AllocateReg(FPR);
6669     if (FReg)
6670       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6671 
6672     // Reserve and initialize GPRs or initialize the PSA as required.
6673     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6674       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6675         assert(FReg && "An FPR should be available when a GPR is reserved.");
6676         if (State.isVarArg()) {
6677           // Successfully reserved GPRs are only initialized for vararg calls.
6678           // Custom handling is required for:
6679           //   f64 in PPC32 needs to be split into 2 GPRs.
6680           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6681           State.addLoc(
6682               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6683         }
6684       } else {
6685         // If there are insufficient GPRs, the PSA needs to be initialized.
6686         // Initialization occurs even if an FPR was initialized for
6687         // compatibility with the AIX XL compiler. The full memory for the
6688         // argument will be initialized even if a prior word is saved in GPR.
6689         // A custom memLoc is used when the argument also passes in FPR so
6690         // that the callee handling can skip over it easily.
6691         State.addLoc(
6692             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6693                                              LocInfo)
6694                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6695         break;
6696       }
6697     }
6698 
6699     return false;
6700   }
6701   case MVT::v4f32:
6702   case MVT::v4i32:
6703   case MVT::v8i16:
6704   case MVT::v16i8:
6705   case MVT::v2i64:
6706   case MVT::v2f64:
6707   case MVT::v1i128: {
6708     const unsigned VecSize = 16;
6709     const Align VecAlign(VecSize);
6710 
6711     if (!State.isVarArg()) {
6712       // If there are vector registers remaining we don't consume any stack
6713       // space.
6714       if (unsigned VReg = State.AllocateReg(VR)) {
6715         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6716         return false;
6717       }
6718       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6719       // might be allocated in the portion of the PSA that is shadowed by the
6720       // GPRs.
6721       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6722       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6723       return false;
6724     }
6725 
6726     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6727     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6728 
6729     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6730     // Burn any underaligned registers and their shadowed stack space until
6731     // we reach the required alignment.
6732     while (NextRegIndex != GPRs.size() &&
6733            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6734       // Shadow allocate register and its stack shadow.
6735       unsigned Reg = State.AllocateReg(GPRs);
6736       State.AllocateStack(PtrSize, PtrAlign);
6737       assert(Reg && "Allocating register unexpectedly failed.");
6738       (void)Reg;
6739       NextRegIndex = State.getFirstUnallocated(GPRs);
6740     }
6741 
6742     // Vectors that are passed as fixed arguments are handled differently.
6743     // They are passed in VRs if any are available (unlike arguments passed
6744     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6745     // functions)
6746     if (State.isFixed(ValNo)) {
6747       if (unsigned VReg = State.AllocateReg(VR)) {
6748         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6749         // Shadow allocate GPRs and stack space even though we pass in a VR.
6750         for (unsigned I = 0; I != VecSize; I += PtrSize)
6751           State.AllocateReg(GPRs);
6752         State.AllocateStack(VecSize, VecAlign);
6753         return false;
6754       }
6755       // No vector registers remain so pass on the stack.
6756       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6757       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6758       return false;
6759     }
6760 
6761     // If all GPRS are consumed then we pass the argument fully on the stack.
6762     if (NextRegIndex == GPRs.size()) {
6763       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6764       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6765       return false;
6766     }
6767 
6768     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6769     // half of the argument, and then need to pass the remaining half on the
6770     // stack.
6771     if (GPRs[NextRegIndex] == PPC::R9) {
6772       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6773       State.addLoc(
6774           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6775 
6776       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6777       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6778       assert(FirstReg && SecondReg &&
6779              "Allocating R9 or R10 unexpectedly failed.");
6780       State.addLoc(
6781           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6782       State.addLoc(
6783           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6784       return false;
6785     }
6786 
6787     // We have enough GPRs to fully pass the vector argument, and we have
6788     // already consumed any underaligned registers. Start with the custom
6789     // MemLoc and then the custom RegLocs.
6790     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6791     State.addLoc(
6792         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6793     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6794       const unsigned Reg = State.AllocateReg(GPRs);
6795       assert(Reg && "Failed to allocated register for vararg vector argument");
6796       State.addLoc(
6797           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6798     }
6799     return false;
6800   }
6801   }
6802   return true;
6803 }
6804 
6805 // So far, this function is only used by LowerFormalArguments_AIX()
6806 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6807                                                     bool IsPPC64,
6808                                                     bool HasP8Vector,
6809                                                     bool HasVSX) {
6810   assert((IsPPC64 || SVT != MVT::i64) &&
6811          "i64 should have been split for 32-bit codegen.");
6812 
6813   switch (SVT) {
6814   default:
6815     report_fatal_error("Unexpected value type for formal argument");
6816   case MVT::i1:
6817   case MVT::i32:
6818   case MVT::i64:
6819     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6820   case MVT::f32:
6821     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6822   case MVT::f64:
6823     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6824   case MVT::v4f32:
6825   case MVT::v4i32:
6826   case MVT::v8i16:
6827   case MVT::v16i8:
6828   case MVT::v2i64:
6829   case MVT::v2f64:
6830   case MVT::v1i128:
6831     return &PPC::VRRCRegClass;
6832   }
6833 }
6834 
6835 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6836                                         SelectionDAG &DAG, SDValue ArgValue,
6837                                         MVT LocVT, const SDLoc &dl) {
6838   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6839   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6840 
6841   if (Flags.isSExt())
6842     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6843                            DAG.getValueType(ValVT));
6844   else if (Flags.isZExt())
6845     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6846                            DAG.getValueType(ValVT));
6847 
6848   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6849 }
6850 
6851 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6852   const unsigned LASize = FL->getLinkageSize();
6853 
6854   if (PPC::GPRCRegClass.contains(Reg)) {
6855     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6856            "Reg must be a valid argument register!");
6857     return LASize + 4 * (Reg - PPC::R3);
6858   }
6859 
6860   if (PPC::G8RCRegClass.contains(Reg)) {
6861     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6862            "Reg must be a valid argument register!");
6863     return LASize + 8 * (Reg - PPC::X3);
6864   }
6865 
6866   llvm_unreachable("Only general purpose registers expected.");
6867 }
6868 
6869 //   AIX ABI Stack Frame Layout:
6870 //
6871 //   Low Memory +--------------------------------------------+
6872 //   SP   +---> | Back chain                                 | ---+
6873 //        |     +--------------------------------------------+    |
6874 //        |     | Saved Condition Register                   |    |
6875 //        |     +--------------------------------------------+    |
6876 //        |     | Saved Linkage Register                     |    |
6877 //        |     +--------------------------------------------+    | Linkage Area
6878 //        |     | Reserved for compilers                     |    |
6879 //        |     +--------------------------------------------+    |
6880 //        |     | Reserved for binders                       |    |
6881 //        |     +--------------------------------------------+    |
6882 //        |     | Saved TOC pointer                          | ---+
6883 //        |     +--------------------------------------------+
6884 //        |     | Parameter save area                        |
6885 //        |     +--------------------------------------------+
6886 //        |     | Alloca space                               |
6887 //        |     +--------------------------------------------+
6888 //        |     | Local variable space                       |
6889 //        |     +--------------------------------------------+
6890 //        |     | Float/int conversion temporary             |
6891 //        |     +--------------------------------------------+
6892 //        |     | Save area for AltiVec registers            |
6893 //        |     +--------------------------------------------+
6894 //        |     | AltiVec alignment padding                  |
6895 //        |     +--------------------------------------------+
6896 //        |     | Save area for VRSAVE register              |
6897 //        |     +--------------------------------------------+
6898 //        |     | Save area for General Purpose registers    |
6899 //        |     +--------------------------------------------+
6900 //        |     | Save area for Floating Point registers     |
6901 //        |     +--------------------------------------------+
6902 //        +---- | Back chain                                 |
6903 // High Memory  +--------------------------------------------+
6904 //
6905 //  Specifications:
6906 //  AIX 7.2 Assembler Language Reference
6907 //  Subroutine linkage convention
6908 
6909 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6910     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6911     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6912     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6913 
6914   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6915           CallConv == CallingConv::Fast) &&
6916          "Unexpected calling convention!");
6917 
6918   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6919     report_fatal_error("Tail call support is unimplemented on AIX.");
6920 
6921   if (useSoftFloat())
6922     report_fatal_error("Soft float support is unimplemented on AIX.");
6923 
6924   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
6925 
6926   const bool IsPPC64 = Subtarget.isPPC64();
6927   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6928 
6929   // Assign locations to all of the incoming arguments.
6930   SmallVector<CCValAssign, 16> ArgLocs;
6931   MachineFunction &MF = DAG.getMachineFunction();
6932   MachineFrameInfo &MFI = MF.getFrameInfo();
6933   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6934   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6935 
6936   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6937   // Reserve space for the linkage area on the stack.
6938   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6939   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6940   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6941 
6942   SmallVector<SDValue, 8> MemOps;
6943 
6944   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6945     CCValAssign &VA = ArgLocs[I++];
6946     MVT LocVT = VA.getLocVT();
6947     MVT ValVT = VA.getValVT();
6948     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6949     // For compatibility with the AIX XL compiler, the float args in the
6950     // parameter save area are initialized even if the argument is available
6951     // in register.  The caller is required to initialize both the register
6952     // and memory, however, the callee can choose to expect it in either.
6953     // The memloc is dismissed here because the argument is retrieved from
6954     // the register.
6955     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6956       continue;
6957 
6958     auto HandleMemLoc = [&]() {
6959       const unsigned LocSize = LocVT.getStoreSize();
6960       const unsigned ValSize = ValVT.getStoreSize();
6961       assert((ValSize <= LocSize) &&
6962              "Object size is larger than size of MemLoc");
6963       int CurArgOffset = VA.getLocMemOffset();
6964       // Objects are right-justified because AIX is big-endian.
6965       if (LocSize > ValSize)
6966         CurArgOffset += LocSize - ValSize;
6967       // Potential tail calls could cause overwriting of argument stack slots.
6968       const bool IsImmutable =
6969           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6970             (CallConv == CallingConv::Fast));
6971       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6972       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6973       SDValue ArgValue =
6974           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6975       InVals.push_back(ArgValue);
6976     };
6977 
6978     // Vector arguments to VaArg functions are passed both on the stack, and
6979     // in any available GPRs. Load the value from the stack and add the GPRs
6980     // as live ins.
6981     if (VA.isMemLoc() && VA.needsCustom()) {
6982       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6983       assert(isVarArg && "Only use custom memloc for vararg.");
6984       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6985       // matching custom RegLocs.
6986       const unsigned OriginalValNo = VA.getValNo();
6987       (void)OriginalValNo;
6988 
6989       auto HandleCustomVecRegLoc = [&]() {
6990         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6991                "Missing custom RegLoc.");
6992         VA = ArgLocs[I++];
6993         assert(VA.getValVT().isVector() &&
6994                "Unexpected Val type for custom RegLoc.");
6995         assert(VA.getValNo() == OriginalValNo &&
6996                "ValNo mismatch between custom MemLoc and RegLoc.");
6997         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6998         MF.addLiveIn(VA.getLocReg(),
6999                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7000                                        Subtarget.hasVSX()));
7001       };
7002 
7003       HandleMemLoc();
7004       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7005       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7006       // R10.
7007       HandleCustomVecRegLoc();
7008       HandleCustomVecRegLoc();
7009 
7010       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7011       // we passed the vector in R5, R6, R7 and R8.
7012       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7013         assert(!IsPPC64 &&
7014                "Only 2 custom RegLocs expected for 64-bit codegen.");
7015         HandleCustomVecRegLoc();
7016         HandleCustomVecRegLoc();
7017       }
7018 
7019       continue;
7020     }
7021 
7022     if (VA.isRegLoc()) {
7023       if (VA.getValVT().isScalarInteger())
7024         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7025       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7026         switch (VA.getValVT().SimpleTy) {
7027         default:
7028           report_fatal_error("Unhandled value type for argument.");
7029         case MVT::f32:
7030           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7031           break;
7032         case MVT::f64:
7033           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7034           break;
7035         }
7036       } else if (VA.getValVT().isVector()) {
7037         switch (VA.getValVT().SimpleTy) {
7038         default:
7039           report_fatal_error("Unhandled value type for argument.");
7040         case MVT::v16i8:
7041           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7042           break;
7043         case MVT::v8i16:
7044           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7045           break;
7046         case MVT::v4i32:
7047         case MVT::v2i64:
7048         case MVT::v1i128:
7049           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7050           break;
7051         case MVT::v4f32:
7052         case MVT::v2f64:
7053           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7054           break;
7055         }
7056       }
7057     }
7058 
7059     if (Flags.isByVal() && VA.isMemLoc()) {
7060       const unsigned Size =
7061           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7062                   PtrByteSize);
7063       const int FI = MF.getFrameInfo().CreateFixedObject(
7064           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7065           /* IsAliased */ true);
7066       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7067       InVals.push_back(FIN);
7068 
7069       continue;
7070     }
7071 
7072     if (Flags.isByVal()) {
7073       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7074 
7075       const MCPhysReg ArgReg = VA.getLocReg();
7076       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7077 
7078       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7079         report_fatal_error("Over aligned byvals not supported yet.");
7080 
7081       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7082       const int FI = MF.getFrameInfo().CreateFixedObject(
7083           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7084           /* IsAliased */ true);
7085       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7086       InVals.push_back(FIN);
7087 
7088       // Add live ins for all the RegLocs for the same ByVal.
7089       const TargetRegisterClass *RegClass =
7090           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7091 
7092       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7093                                                unsigned Offset) {
7094         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7095         // Since the callers side has left justified the aggregate in the
7096         // register, we can simply store the entire register into the stack
7097         // slot.
7098         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7099         // The store to the fixedstack object is needed becuase accessing a
7100         // field of the ByVal will use a gep and load. Ideally we will optimize
7101         // to extracting the value from the register directly, and elide the
7102         // stores when the arguments address is not taken, but that will need to
7103         // be future work.
7104         SDValue Store = DAG.getStore(
7105             CopyFrom.getValue(1), dl, CopyFrom,
7106             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7107             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7108 
7109         MemOps.push_back(Store);
7110       };
7111 
7112       unsigned Offset = 0;
7113       HandleRegLoc(VA.getLocReg(), Offset);
7114       Offset += PtrByteSize;
7115       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7116            Offset += PtrByteSize) {
7117         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7118                "RegLocs should be for ByVal argument.");
7119 
7120         const CCValAssign RL = ArgLocs[I++];
7121         HandleRegLoc(RL.getLocReg(), Offset);
7122         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7123       }
7124 
7125       if (Offset != StackSize) {
7126         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7127                "Expected MemLoc for remaining bytes.");
7128         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7129         // Consume the MemLoc.The InVal has already been emitted, so nothing
7130         // more needs to be done.
7131         ++I;
7132       }
7133 
7134       continue;
7135     }
7136 
7137     if (VA.isRegLoc() && !VA.needsCustom()) {
7138       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7139       Register VReg =
7140           MF.addLiveIn(VA.getLocReg(),
7141                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7142                                          Subtarget.hasVSX()));
7143       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7144       if (ValVT.isScalarInteger() &&
7145           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7146         ArgValue =
7147             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7148       }
7149       InVals.push_back(ArgValue);
7150       continue;
7151     }
7152     if (VA.isMemLoc()) {
7153       HandleMemLoc();
7154       continue;
7155     }
7156   }
7157 
7158   // On AIX a minimum of 8 words is saved to the parameter save area.
7159   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7160   // Area that is at least reserved in the caller of this function.
7161   unsigned CallerReservedArea =
7162       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7163 
7164   // Set the size that is at least reserved in caller of this function. Tail
7165   // call optimized function's reserved stack space needs to be aligned so
7166   // that taking the difference between two stack areas will result in an
7167   // aligned stack.
7168   CallerReservedArea =
7169       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7170   FuncInfo->setMinReservedArea(CallerReservedArea);
7171 
7172   if (isVarArg) {
7173     FuncInfo->setVarArgsFrameIndex(
7174         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7175     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7176 
7177     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7178                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7179 
7180     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7181                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7182     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7183 
7184     // The fixed integer arguments of a variadic function are stored to the
7185     // VarArgsFrameIndex on the stack so that they may be loaded by
7186     // dereferencing the result of va_next.
7187     for (unsigned GPRIndex =
7188              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7189          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7190 
7191       const Register VReg =
7192           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7193                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7194 
7195       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7196       SDValue Store =
7197           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7198       MemOps.push_back(Store);
7199       // Increment the address for the next argument to store.
7200       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7201       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7202     }
7203   }
7204 
7205   if (!MemOps.empty())
7206     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7207 
7208   return Chain;
7209 }
7210 
7211 SDValue PPCTargetLowering::LowerCall_AIX(
7212     SDValue Chain, SDValue Callee, CallFlags CFlags,
7213     const SmallVectorImpl<ISD::OutputArg> &Outs,
7214     const SmallVectorImpl<SDValue> &OutVals,
7215     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7216     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7217     const CallBase *CB) const {
7218   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7219   // AIX ABI stack frame layout.
7220 
7221   assert((CFlags.CallConv == CallingConv::C ||
7222           CFlags.CallConv == CallingConv::Cold ||
7223           CFlags.CallConv == CallingConv::Fast) &&
7224          "Unexpected calling convention!");
7225 
7226   if (CFlags.IsPatchPoint)
7227     report_fatal_error("This call type is unimplemented on AIX.");
7228 
7229   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7230 
7231   MachineFunction &MF = DAG.getMachineFunction();
7232   SmallVector<CCValAssign, 16> ArgLocs;
7233   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7234                     *DAG.getContext());
7235 
7236   // Reserve space for the linkage save area (LSA) on the stack.
7237   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7238   //   [SP][CR][LR][2 x reserved][TOC].
7239   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7240   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7241   const bool IsPPC64 = Subtarget.isPPC64();
7242   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7243   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7244   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7245   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7246 
7247   // The prolog code of the callee may store up to 8 GPR argument registers to
7248   // the stack, allowing va_start to index over them in memory if the callee
7249   // is variadic.
7250   // Because we cannot tell if this is needed on the caller side, we have to
7251   // conservatively assume that it is needed.  As such, make sure we have at
7252   // least enough stack space for the caller to store the 8 GPRs.
7253   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7254   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7255                                      CCInfo.getNextStackOffset());
7256 
7257   // Adjust the stack pointer for the new arguments...
7258   // These operations are automatically eliminated by the prolog/epilog pass.
7259   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7260   SDValue CallSeqStart = Chain;
7261 
7262   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7263   SmallVector<SDValue, 8> MemOpChains;
7264 
7265   // Set up a copy of the stack pointer for loading and storing any
7266   // arguments that may not fit in the registers available for argument
7267   // passing.
7268   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7269                                    : DAG.getRegister(PPC::R1, MVT::i32);
7270 
7271   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7272     const unsigned ValNo = ArgLocs[I].getValNo();
7273     SDValue Arg = OutVals[ValNo];
7274     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7275 
7276     if (Flags.isByVal()) {
7277       const unsigned ByValSize = Flags.getByValSize();
7278 
7279       // Nothing to do for zero-sized ByVals on the caller side.
7280       if (!ByValSize) {
7281         ++I;
7282         continue;
7283       }
7284 
7285       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7286         return DAG.getExtLoad(
7287             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7288             (LoadOffset != 0)
7289                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7290                 : Arg,
7291             MachinePointerInfo(), VT);
7292       };
7293 
7294       unsigned LoadOffset = 0;
7295 
7296       // Initialize registers, which are fully occupied by the by-val argument.
7297       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7298         SDValue Load = GetLoad(PtrVT, LoadOffset);
7299         MemOpChains.push_back(Load.getValue(1));
7300         LoadOffset += PtrByteSize;
7301         const CCValAssign &ByValVA = ArgLocs[I++];
7302         assert(ByValVA.getValNo() == ValNo &&
7303                "Unexpected location for pass-by-value argument.");
7304         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7305       }
7306 
7307       if (LoadOffset == ByValSize)
7308         continue;
7309 
7310       // There must be one more loc to handle the remainder.
7311       assert(ArgLocs[I].getValNo() == ValNo &&
7312              "Expected additional location for by-value argument.");
7313 
7314       if (ArgLocs[I].isMemLoc()) {
7315         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7316         const CCValAssign &ByValVA = ArgLocs[I++];
7317         ISD::ArgFlagsTy MemcpyFlags = Flags;
7318         // Only memcpy the bytes that don't pass in register.
7319         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7320         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7321             (LoadOffset != 0)
7322                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7323                 : Arg,
7324             DAG.getObjectPtrOffset(dl, StackPtr,
7325                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7326             CallSeqStart, MemcpyFlags, DAG, dl);
7327         continue;
7328       }
7329 
7330       // Initialize the final register residue.
7331       // Any residue that occupies the final by-val arg register must be
7332       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7333       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7334       // 2 and 1 byte loads.
7335       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7336       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7337              "Unexpected register residue for by-value argument.");
7338       SDValue ResidueVal;
7339       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7340         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7341         const MVT VT =
7342             N == 1 ? MVT::i8
7343                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7344         SDValue Load = GetLoad(VT, LoadOffset);
7345         MemOpChains.push_back(Load.getValue(1));
7346         LoadOffset += N;
7347         Bytes += N;
7348 
7349         // By-val arguments are passed left-justfied in register.
7350         // Every load here needs to be shifted, otherwise a full register load
7351         // should have been used.
7352         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7353                "Unexpected load emitted during handling of pass-by-value "
7354                "argument.");
7355         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7356         EVT ShiftAmountTy =
7357             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7358         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7359         SDValue ShiftedLoad =
7360             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7361         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7362                                               ShiftedLoad)
7363                                 : ShiftedLoad;
7364       }
7365 
7366       const CCValAssign &ByValVA = ArgLocs[I++];
7367       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7368       continue;
7369     }
7370 
7371     CCValAssign &VA = ArgLocs[I++];
7372     const MVT LocVT = VA.getLocVT();
7373     const MVT ValVT = VA.getValVT();
7374 
7375     switch (VA.getLocInfo()) {
7376     default:
7377       report_fatal_error("Unexpected argument extension type.");
7378     case CCValAssign::Full:
7379       break;
7380     case CCValAssign::ZExt:
7381       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7382       break;
7383     case CCValAssign::SExt:
7384       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7385       break;
7386     }
7387 
7388     if (VA.isRegLoc() && !VA.needsCustom()) {
7389       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7390       continue;
7391     }
7392 
7393     // Vector arguments passed to VarArg functions need custom handling when
7394     // they are passed (at least partially) in GPRs.
7395     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7396       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7397       // Store value to its stack slot.
7398       SDValue PtrOff =
7399           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7400       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7401       SDValue Store =
7402           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7403       MemOpChains.push_back(Store);
7404       const unsigned OriginalValNo = VA.getValNo();
7405       // Then load the GPRs from the stack
7406       unsigned LoadOffset = 0;
7407       auto HandleCustomVecRegLoc = [&]() {
7408         assert(I != E && "Unexpected end of CCvalAssigns.");
7409         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7410                "Expected custom RegLoc.");
7411         CCValAssign RegVA = ArgLocs[I++];
7412         assert(RegVA.getValNo() == OriginalValNo &&
7413                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7414         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7415                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7416         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7417         MemOpChains.push_back(Load.getValue(1));
7418         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7419         LoadOffset += PtrByteSize;
7420       };
7421 
7422       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7423       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7424       // R10.
7425       HandleCustomVecRegLoc();
7426       HandleCustomVecRegLoc();
7427 
7428       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7429           ArgLocs[I].getValNo() == OriginalValNo) {
7430         assert(!IsPPC64 &&
7431                "Only 2 custom RegLocs expected for 64-bit codegen.");
7432         HandleCustomVecRegLoc();
7433         HandleCustomVecRegLoc();
7434       }
7435 
7436       continue;
7437     }
7438 
7439     if (VA.isMemLoc()) {
7440       SDValue PtrOff =
7441           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7442       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7443       MemOpChains.push_back(
7444           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7445 
7446       continue;
7447     }
7448 
7449     if (!ValVT.isFloatingPoint())
7450       report_fatal_error(
7451           "Unexpected register handling for calling convention.");
7452 
7453     // Custom handling is used for GPR initializations for vararg float
7454     // arguments.
7455     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7456            LocVT.isInteger() &&
7457            "Custom register handling only expected for VarArg.");
7458 
7459     SDValue ArgAsInt =
7460         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7461 
7462     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7463       // f32 in 32-bit GPR
7464       // f64 in 64-bit GPR
7465       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7466     else if (Arg.getValueType().getFixedSizeInBits() <
7467              LocVT.getFixedSizeInBits())
7468       // f32 in 64-bit GPR.
7469       RegsToPass.push_back(std::make_pair(
7470           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7471     else {
7472       // f64 in two 32-bit GPRs
7473       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7474       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7475              "Unexpected custom register for argument!");
7476       CCValAssign &GPR1 = VA;
7477       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7478                                      DAG.getConstant(32, dl, MVT::i8));
7479       RegsToPass.push_back(std::make_pair(
7480           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7481 
7482       if (I != E) {
7483         // If only 1 GPR was available, there will only be one custom GPR and
7484         // the argument will also pass in memory.
7485         CCValAssign &PeekArg = ArgLocs[I];
7486         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7487           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7488           CCValAssign &GPR2 = ArgLocs[I++];
7489           RegsToPass.push_back(std::make_pair(
7490               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7491         }
7492       }
7493     }
7494   }
7495 
7496   if (!MemOpChains.empty())
7497     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7498 
7499   // For indirect calls, we need to save the TOC base to the stack for
7500   // restoration after the call.
7501   if (CFlags.IsIndirect) {
7502     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7503     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7504     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7505     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7506     const unsigned TOCSaveOffset =
7507         Subtarget.getFrameLowering()->getTOCSaveOffset();
7508 
7509     setUsesTOCBasePtr(DAG);
7510     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7511     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7512     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7513     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7514     Chain = DAG.getStore(
7515         Val.getValue(1), dl, Val, AddPtr,
7516         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7517   }
7518 
7519   // Build a sequence of copy-to-reg nodes chained together with token chain
7520   // and flag operands which copy the outgoing args into the appropriate regs.
7521   SDValue InFlag;
7522   for (auto Reg : RegsToPass) {
7523     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7524     InFlag = Chain.getValue(1);
7525   }
7526 
7527   const int SPDiff = 0;
7528   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7529                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7530 }
7531 
7532 bool
7533 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7534                                   MachineFunction &MF, bool isVarArg,
7535                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7536                                   LLVMContext &Context) const {
7537   SmallVector<CCValAssign, 16> RVLocs;
7538   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7539   return CCInfo.CheckReturn(
7540       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7541                 ? RetCC_PPC_Cold
7542                 : RetCC_PPC);
7543 }
7544 
7545 SDValue
7546 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7547                                bool isVarArg,
7548                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7549                                const SmallVectorImpl<SDValue> &OutVals,
7550                                const SDLoc &dl, SelectionDAG &DAG) const {
7551   SmallVector<CCValAssign, 16> RVLocs;
7552   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7553                  *DAG.getContext());
7554   CCInfo.AnalyzeReturn(Outs,
7555                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7556                            ? RetCC_PPC_Cold
7557                            : RetCC_PPC);
7558 
7559   SDValue Flag;
7560   SmallVector<SDValue, 4> RetOps(1, Chain);
7561 
7562   // Copy the result values into the output registers.
7563   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7564     CCValAssign &VA = RVLocs[i];
7565     assert(VA.isRegLoc() && "Can only return in registers!");
7566 
7567     SDValue Arg = OutVals[RealResIdx];
7568 
7569     switch (VA.getLocInfo()) {
7570     default: llvm_unreachable("Unknown loc info!");
7571     case CCValAssign::Full: break;
7572     case CCValAssign::AExt:
7573       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7574       break;
7575     case CCValAssign::ZExt:
7576       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7577       break;
7578     case CCValAssign::SExt:
7579       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7580       break;
7581     }
7582     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7583       bool isLittleEndian = Subtarget.isLittleEndian();
7584       // Legalize ret f64 -> ret 2 x i32.
7585       SDValue SVal =
7586           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7587                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7588       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7589       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7590       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7591                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7592       Flag = Chain.getValue(1);
7593       VA = RVLocs[++i]; // skip ahead to next loc
7594       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7595     } else
7596       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7597     Flag = Chain.getValue(1);
7598     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7599   }
7600 
7601   RetOps[0] = Chain;  // Update chain.
7602 
7603   // Add the flag if we have it.
7604   if (Flag.getNode())
7605     RetOps.push_back(Flag);
7606 
7607   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7608 }
7609 
7610 SDValue
7611 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7612                                                 SelectionDAG &DAG) const {
7613   SDLoc dl(Op);
7614 
7615   // Get the correct type for integers.
7616   EVT IntVT = Op.getValueType();
7617 
7618   // Get the inputs.
7619   SDValue Chain = Op.getOperand(0);
7620   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7621   // Build a DYNAREAOFFSET node.
7622   SDValue Ops[2] = {Chain, FPSIdx};
7623   SDVTList VTs = DAG.getVTList(IntVT);
7624   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7625 }
7626 
7627 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7628                                              SelectionDAG &DAG) const {
7629   // When we pop the dynamic allocation we need to restore the SP link.
7630   SDLoc dl(Op);
7631 
7632   // Get the correct type for pointers.
7633   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7634 
7635   // Construct the stack pointer operand.
7636   bool isPPC64 = Subtarget.isPPC64();
7637   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7638   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7639 
7640   // Get the operands for the STACKRESTORE.
7641   SDValue Chain = Op.getOperand(0);
7642   SDValue SaveSP = Op.getOperand(1);
7643 
7644   // Load the old link SP.
7645   SDValue LoadLinkSP =
7646       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7647 
7648   // Restore the stack pointer.
7649   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7650 
7651   // Store the old link SP.
7652   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7653 }
7654 
7655 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7656   MachineFunction &MF = DAG.getMachineFunction();
7657   bool isPPC64 = Subtarget.isPPC64();
7658   EVT PtrVT = getPointerTy(MF.getDataLayout());
7659 
7660   // Get current frame pointer save index.  The users of this index will be
7661   // primarily DYNALLOC instructions.
7662   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7663   int RASI = FI->getReturnAddrSaveIndex();
7664 
7665   // If the frame pointer save index hasn't been defined yet.
7666   if (!RASI) {
7667     // Find out what the fix offset of the frame pointer save area.
7668     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7669     // Allocate the frame index for frame pointer save area.
7670     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7671     // Save the result.
7672     FI->setReturnAddrSaveIndex(RASI);
7673   }
7674   return DAG.getFrameIndex(RASI, PtrVT);
7675 }
7676 
7677 SDValue
7678 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7679   MachineFunction &MF = DAG.getMachineFunction();
7680   bool isPPC64 = Subtarget.isPPC64();
7681   EVT PtrVT = getPointerTy(MF.getDataLayout());
7682 
7683   // Get current frame pointer save index.  The users of this index will be
7684   // primarily DYNALLOC instructions.
7685   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7686   int FPSI = FI->getFramePointerSaveIndex();
7687 
7688   // If the frame pointer save index hasn't been defined yet.
7689   if (!FPSI) {
7690     // Find out what the fix offset of the frame pointer save area.
7691     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7692     // Allocate the frame index for frame pointer save area.
7693     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7694     // Save the result.
7695     FI->setFramePointerSaveIndex(FPSI);
7696   }
7697   return DAG.getFrameIndex(FPSI, PtrVT);
7698 }
7699 
7700 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7701                                                    SelectionDAG &DAG) const {
7702   MachineFunction &MF = DAG.getMachineFunction();
7703   // Get the inputs.
7704   SDValue Chain = Op.getOperand(0);
7705   SDValue Size  = Op.getOperand(1);
7706   SDLoc dl(Op);
7707 
7708   // Get the correct type for pointers.
7709   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7710   // Negate the size.
7711   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7712                                 DAG.getConstant(0, dl, PtrVT), Size);
7713   // Construct a node for the frame pointer save index.
7714   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7715   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7716   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7717   if (hasInlineStackProbe(MF))
7718     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7719   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7720 }
7721 
7722 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7723                                                      SelectionDAG &DAG) const {
7724   MachineFunction &MF = DAG.getMachineFunction();
7725 
7726   bool isPPC64 = Subtarget.isPPC64();
7727   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7728 
7729   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7730   return DAG.getFrameIndex(FI, PtrVT);
7731 }
7732 
7733 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7734                                                SelectionDAG &DAG) const {
7735   SDLoc DL(Op);
7736   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7737                      DAG.getVTList(MVT::i32, MVT::Other),
7738                      Op.getOperand(0), Op.getOperand(1));
7739 }
7740 
7741 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7742                                                 SelectionDAG &DAG) const {
7743   SDLoc DL(Op);
7744   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7745                      Op.getOperand(0), Op.getOperand(1));
7746 }
7747 
7748 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7749   if (Op.getValueType().isVector())
7750     return LowerVectorLoad(Op, DAG);
7751 
7752   assert(Op.getValueType() == MVT::i1 &&
7753          "Custom lowering only for i1 loads");
7754 
7755   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7756 
7757   SDLoc dl(Op);
7758   LoadSDNode *LD = cast<LoadSDNode>(Op);
7759 
7760   SDValue Chain = LD->getChain();
7761   SDValue BasePtr = LD->getBasePtr();
7762   MachineMemOperand *MMO = LD->getMemOperand();
7763 
7764   SDValue NewLD =
7765       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7766                      BasePtr, MVT::i8, MMO);
7767   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7768 
7769   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7770   return DAG.getMergeValues(Ops, dl);
7771 }
7772 
7773 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7774   if (Op.getOperand(1).getValueType().isVector())
7775     return LowerVectorStore(Op, DAG);
7776 
7777   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7778          "Custom lowering only for i1 stores");
7779 
7780   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7781 
7782   SDLoc dl(Op);
7783   StoreSDNode *ST = cast<StoreSDNode>(Op);
7784 
7785   SDValue Chain = ST->getChain();
7786   SDValue BasePtr = ST->getBasePtr();
7787   SDValue Value = ST->getValue();
7788   MachineMemOperand *MMO = ST->getMemOperand();
7789 
7790   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7791                       Value);
7792   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7793 }
7794 
7795 // FIXME: Remove this once the ANDI glue bug is fixed:
7796 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7797   assert(Op.getValueType() == MVT::i1 &&
7798          "Custom lowering only for i1 results");
7799 
7800   SDLoc DL(Op);
7801   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7802 }
7803 
7804 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7805                                                SelectionDAG &DAG) const {
7806 
7807   // Implements a vector truncate that fits in a vector register as a shuffle.
7808   // We want to legalize vector truncates down to where the source fits in
7809   // a vector register (and target is therefore smaller than vector register
7810   // size).  At that point legalization will try to custom lower the sub-legal
7811   // result and get here - where we can contain the truncate as a single target
7812   // operation.
7813 
7814   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7815   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7816   //
7817   // We will implement it for big-endian ordering as this (where x denotes
7818   // undefined):
7819   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7820   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7821   //
7822   // The same operation in little-endian ordering will be:
7823   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7824   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7825 
7826   EVT TrgVT = Op.getValueType();
7827   assert(TrgVT.isVector() && "Vector type expected.");
7828   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7829   EVT EltVT = TrgVT.getVectorElementType();
7830   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7831       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7832       !isPowerOf2_32(EltVT.getSizeInBits()))
7833     return SDValue();
7834 
7835   SDValue N1 = Op.getOperand(0);
7836   EVT SrcVT = N1.getValueType();
7837   unsigned SrcSize = SrcVT.getSizeInBits();
7838   if (SrcSize > 256 ||
7839       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7840       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7841     return SDValue();
7842   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7843     return SDValue();
7844 
7845   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7846   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7847 
7848   SDLoc DL(Op);
7849   SDValue Op1, Op2;
7850   if (SrcSize == 256) {
7851     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7852     EVT SplitVT =
7853         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7854     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7855     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7856                       DAG.getConstant(0, DL, VecIdxTy));
7857     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7858                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7859   }
7860   else {
7861     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7862     Op2 = DAG.getUNDEF(WideVT);
7863   }
7864 
7865   // First list the elements we want to keep.
7866   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7867   SmallVector<int, 16> ShuffV;
7868   if (Subtarget.isLittleEndian())
7869     for (unsigned i = 0; i < TrgNumElts; ++i)
7870       ShuffV.push_back(i * SizeMult);
7871   else
7872     for (unsigned i = 1; i <= TrgNumElts; ++i)
7873       ShuffV.push_back(i * SizeMult - 1);
7874 
7875   // Populate the remaining elements with undefs.
7876   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7877     // ShuffV.push_back(i + WideNumElts);
7878     ShuffV.push_back(WideNumElts + 1);
7879 
7880   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7881   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7882   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7883 }
7884 
7885 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7886 /// possible.
7887 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7888   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7889   EVT ResVT = Op.getValueType();
7890   EVT CmpVT = Op.getOperand(0).getValueType();
7891   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7892   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7893   SDLoc dl(Op);
7894 
7895   // Without power9-vector, we don't have native instruction for f128 comparison.
7896   // Following transformation to libcall is needed for setcc:
7897   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7898   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7899     SDValue Z = DAG.getSetCC(
7900         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7901         LHS, RHS, CC);
7902     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7903     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7904   }
7905 
7906   // Not FP, or using SPE? Not a fsel.
7907   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7908       Subtarget.hasSPE())
7909     return Op;
7910 
7911   SDNodeFlags Flags = Op.getNode()->getFlags();
7912 
7913   // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
7914   // presence of infinities.
7915   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7916     switch (CC) {
7917     default:
7918       break;
7919     case ISD::SETOGT:
7920     case ISD::SETGT:
7921       return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
7922     case ISD::SETOLT:
7923     case ISD::SETLT:
7924       return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
7925     }
7926   }
7927 
7928   // We might be able to do better than this under some circumstances, but in
7929   // general, fsel-based lowering of select is a finite-math-only optimization.
7930   // For more information, see section F.3 of the 2.06 ISA specification.
7931   // With ISA 3.0
7932   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7933       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7934     return Op;
7935 
7936   // If the RHS of the comparison is a 0.0, we don't need to do the
7937   // subtraction at all.
7938   SDValue Sel1;
7939   if (isFloatingPointZero(RHS))
7940     switch (CC) {
7941     default: break;       // SETUO etc aren't handled by fsel.
7942     case ISD::SETNE:
7943       std::swap(TV, FV);
7944       LLVM_FALLTHROUGH;
7945     case ISD::SETEQ:
7946       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7947         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7948       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7949       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7950         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7951       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7952                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7953     case ISD::SETULT:
7954     case ISD::SETLT:
7955       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7956       LLVM_FALLTHROUGH;
7957     case ISD::SETOGE:
7958     case ISD::SETGE:
7959       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7960         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7961       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7962     case ISD::SETUGT:
7963     case ISD::SETGT:
7964       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7965       LLVM_FALLTHROUGH;
7966     case ISD::SETOLE:
7967     case ISD::SETLE:
7968       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7969         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7970       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7971                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7972     }
7973 
7974   SDValue Cmp;
7975   switch (CC) {
7976   default: break;       // SETUO etc aren't handled by fsel.
7977   case ISD::SETNE:
7978     std::swap(TV, FV);
7979     LLVM_FALLTHROUGH;
7980   case ISD::SETEQ:
7981     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7982     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7983       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7984     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7985     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7986       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7987     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7988                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7989   case ISD::SETULT:
7990   case ISD::SETLT:
7991     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7992     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7993       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7994     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7995   case ISD::SETOGE:
7996   case ISD::SETGE:
7997     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7998     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7999       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8000     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8001   case ISD::SETUGT:
8002   case ISD::SETGT:
8003     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8004     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8005       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8006     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8007   case ISD::SETOLE:
8008   case ISD::SETLE:
8009     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8010     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8011       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8012     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8013   }
8014   return Op;
8015 }
8016 
8017 static unsigned getPPCStrictOpcode(unsigned Opc) {
8018   switch (Opc) {
8019   default:
8020     llvm_unreachable("No strict version of this opcode!");
8021   case PPCISD::FCTIDZ:
8022     return PPCISD::STRICT_FCTIDZ;
8023   case PPCISD::FCTIWZ:
8024     return PPCISD::STRICT_FCTIWZ;
8025   case PPCISD::FCTIDUZ:
8026     return PPCISD::STRICT_FCTIDUZ;
8027   case PPCISD::FCTIWUZ:
8028     return PPCISD::STRICT_FCTIWUZ;
8029   case PPCISD::FCFID:
8030     return PPCISD::STRICT_FCFID;
8031   case PPCISD::FCFIDU:
8032     return PPCISD::STRICT_FCFIDU;
8033   case PPCISD::FCFIDS:
8034     return PPCISD::STRICT_FCFIDS;
8035   case PPCISD::FCFIDUS:
8036     return PPCISD::STRICT_FCFIDUS;
8037   }
8038 }
8039 
8040 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8041                               const PPCSubtarget &Subtarget) {
8042   SDLoc dl(Op);
8043   bool IsStrict = Op->isStrictFPOpcode();
8044   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8045                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8046 
8047   // TODO: Any other flags to propagate?
8048   SDNodeFlags Flags;
8049   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8050 
8051   // For strict nodes, source is the second operand.
8052   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8053   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8054   assert(Src.getValueType().isFloatingPoint());
8055   if (Src.getValueType() == MVT::f32) {
8056     if (IsStrict) {
8057       Src =
8058           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8059                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8060       Chain = Src.getValue(1);
8061     } else
8062       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8063   }
8064   SDValue Conv;
8065   unsigned Opc = ISD::DELETED_NODE;
8066   switch (Op.getSimpleValueType().SimpleTy) {
8067   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8068   case MVT::i32:
8069     Opc = IsSigned ? PPCISD::FCTIWZ
8070                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8071     break;
8072   case MVT::i64:
8073     assert((IsSigned || Subtarget.hasFPCVT()) &&
8074            "i64 FP_TO_UINT is supported only with FPCVT");
8075     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8076   }
8077   if (IsStrict) {
8078     Opc = getPPCStrictOpcode(Opc);
8079     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8080                        {Chain, Src}, Flags);
8081   } else {
8082     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8083   }
8084   return Conv;
8085 }
8086 
8087 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8088                                                SelectionDAG &DAG,
8089                                                const SDLoc &dl) const {
8090   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8091   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8092                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8093   bool IsStrict = Op->isStrictFPOpcode();
8094 
8095   // Convert the FP value to an int value through memory.
8096   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8097                   (IsSigned || Subtarget.hasFPCVT());
8098   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8099   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8100   MachinePointerInfo MPI =
8101       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8102 
8103   // Emit a store to the stack slot.
8104   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8105   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8106   if (i32Stack) {
8107     MachineFunction &MF = DAG.getMachineFunction();
8108     Alignment = Align(4);
8109     MachineMemOperand *MMO =
8110         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8111     SDValue Ops[] = { Chain, Tmp, FIPtr };
8112     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8113               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8114   } else
8115     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8116 
8117   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8118   // add in a bias on big endian.
8119   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8120     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8121                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8122     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8123   }
8124 
8125   RLI.Chain = Chain;
8126   RLI.Ptr = FIPtr;
8127   RLI.MPI = MPI;
8128   RLI.Alignment = Alignment;
8129 }
8130 
8131 /// Custom lowers floating point to integer conversions to use
8132 /// the direct move instructions available in ISA 2.07 to avoid the
8133 /// need for load/store combinations.
8134 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8135                                                     SelectionDAG &DAG,
8136                                                     const SDLoc &dl) const {
8137   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8138   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8139   if (Op->isStrictFPOpcode())
8140     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8141   else
8142     return Mov;
8143 }
8144 
8145 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8146                                           const SDLoc &dl) const {
8147   bool IsStrict = Op->isStrictFPOpcode();
8148   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8149                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8150   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8151   EVT SrcVT = Src.getValueType();
8152   EVT DstVT = Op.getValueType();
8153 
8154   // FP to INT conversions are legal for f128.
8155   if (SrcVT == MVT::f128)
8156     return Subtarget.hasP9Vector() ? Op : SDValue();
8157 
8158   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8159   // PPC (the libcall is not available).
8160   if (SrcVT == MVT::ppcf128) {
8161     if (DstVT == MVT::i32) {
8162       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8163       // set other fast-math flags to FP operations in both strict and
8164       // non-strict cases. (FP_TO_SINT, FSUB)
8165       SDNodeFlags Flags;
8166       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8167 
8168       if (IsSigned) {
8169         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8170                                  DAG.getIntPtrConstant(0, dl));
8171         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8172                                  DAG.getIntPtrConstant(1, dl));
8173 
8174         // Add the two halves of the long double in round-to-zero mode, and use
8175         // a smaller FP_TO_SINT.
8176         if (IsStrict) {
8177           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8178                                     DAG.getVTList(MVT::f64, MVT::Other),
8179                                     {Op.getOperand(0), Lo, Hi}, Flags);
8180           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8181                              DAG.getVTList(MVT::i32, MVT::Other),
8182                              {Res.getValue(1), Res}, Flags);
8183         } else {
8184           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8185           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8186         }
8187       } else {
8188         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8189         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8190         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8191         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8192         if (IsStrict) {
8193           // Sel = Src < 0x80000000
8194           // FltOfs = select Sel, 0.0, 0x80000000
8195           // IntOfs = select Sel, 0, 0x80000000
8196           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8197           SDValue Chain = Op.getOperand(0);
8198           EVT SetCCVT =
8199               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8200           EVT DstSetCCVT =
8201               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8202           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8203                                      Chain, true);
8204           Chain = Sel.getValue(1);
8205 
8206           SDValue FltOfs = DAG.getSelect(
8207               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8208           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8209 
8210           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8211                                     DAG.getVTList(SrcVT, MVT::Other),
8212                                     {Chain, Src, FltOfs}, Flags);
8213           Chain = Val.getValue(1);
8214           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8215                                      DAG.getVTList(DstVT, MVT::Other),
8216                                      {Chain, Val}, Flags);
8217           Chain = SInt.getValue(1);
8218           SDValue IntOfs = DAG.getSelect(
8219               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8220           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8221           return DAG.getMergeValues({Result, Chain}, dl);
8222         } else {
8223           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8224           // FIXME: generated code sucks.
8225           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8226           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8227           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8228           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8229           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8230         }
8231       }
8232     }
8233 
8234     return SDValue();
8235   }
8236 
8237   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8238     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8239 
8240   ReuseLoadInfo RLI;
8241   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8242 
8243   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8244                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8245 }
8246 
8247 // We're trying to insert a regular store, S, and then a load, L. If the
8248 // incoming value, O, is a load, we might just be able to have our load use the
8249 // address used by O. However, we don't know if anything else will store to
8250 // that address before we can load from it. To prevent this situation, we need
8251 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8252 // the same chain operand as O, we create a token factor from the chain results
8253 // of O and L, and we replace all uses of O's chain result with that token
8254 // factor (see spliceIntoChain below for this last part).
8255 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8256                                             ReuseLoadInfo &RLI,
8257                                             SelectionDAG &DAG,
8258                                             ISD::LoadExtType ET) const {
8259   // Conservatively skip reusing for constrained FP nodes.
8260   if (Op->isStrictFPOpcode())
8261     return false;
8262 
8263   SDLoc dl(Op);
8264   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8265                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8266   if (ET == ISD::NON_EXTLOAD &&
8267       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8268       isOperationLegalOrCustom(Op.getOpcode(),
8269                                Op.getOperand(0).getValueType())) {
8270 
8271     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8272     return true;
8273   }
8274 
8275   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8276   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8277       LD->isNonTemporal())
8278     return false;
8279   if (LD->getMemoryVT() != MemVT)
8280     return false;
8281 
8282   // If the result of the load is an illegal type, then we can't build a
8283   // valid chain for reuse since the legalised loads and token factor node that
8284   // ties the legalised loads together uses a different output chain then the
8285   // illegal load.
8286   if (!isTypeLegal(LD->getValueType(0)))
8287     return false;
8288 
8289   RLI.Ptr = LD->getBasePtr();
8290   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8291     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8292            "Non-pre-inc AM on PPC?");
8293     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8294                           LD->getOffset());
8295   }
8296 
8297   RLI.Chain = LD->getChain();
8298   RLI.MPI = LD->getPointerInfo();
8299   RLI.IsDereferenceable = LD->isDereferenceable();
8300   RLI.IsInvariant = LD->isInvariant();
8301   RLI.Alignment = LD->getAlign();
8302   RLI.AAInfo = LD->getAAInfo();
8303   RLI.Ranges = LD->getRanges();
8304 
8305   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8306   return true;
8307 }
8308 
8309 // Given the head of the old chain, ResChain, insert a token factor containing
8310 // it and NewResChain, and make users of ResChain now be users of that token
8311 // factor.
8312 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8313 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8314                                         SDValue NewResChain,
8315                                         SelectionDAG &DAG) const {
8316   if (!ResChain)
8317     return;
8318 
8319   SDLoc dl(NewResChain);
8320 
8321   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8322                            NewResChain, DAG.getUNDEF(MVT::Other));
8323   assert(TF.getNode() != NewResChain.getNode() &&
8324          "A new TF really is required here");
8325 
8326   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8327   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8328 }
8329 
8330 /// Analyze profitability of direct move
8331 /// prefer float load to int load plus direct move
8332 /// when there is no integer use of int load
8333 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8334   SDNode *Origin = Op.getOperand(0).getNode();
8335   if (Origin->getOpcode() != ISD::LOAD)
8336     return true;
8337 
8338   // If there is no LXSIBZX/LXSIHZX, like Power8,
8339   // prefer direct move if the memory size is 1 or 2 bytes.
8340   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8341   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8342     return true;
8343 
8344   for (SDNode::use_iterator UI = Origin->use_begin(),
8345                             UE = Origin->use_end();
8346        UI != UE; ++UI) {
8347 
8348     // Only look at the users of the loaded value.
8349     if (UI.getUse().get().getResNo() != 0)
8350       continue;
8351 
8352     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8353         UI->getOpcode() != ISD::UINT_TO_FP &&
8354         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8355         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8356       return true;
8357   }
8358 
8359   return false;
8360 }
8361 
8362 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8363                               const PPCSubtarget &Subtarget,
8364                               SDValue Chain = SDValue()) {
8365   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8366                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8367   SDLoc dl(Op);
8368 
8369   // TODO: Any other flags to propagate?
8370   SDNodeFlags Flags;
8371   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8372 
8373   // If we have FCFIDS, then use it when converting to single-precision.
8374   // Otherwise, convert to double-precision and then round.
8375   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8376   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8377                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8378   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8379   if (Op->isStrictFPOpcode()) {
8380     if (!Chain)
8381       Chain = Op.getOperand(0);
8382     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8383                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8384   } else
8385     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8386 }
8387 
8388 /// Custom lowers integer to floating point conversions to use
8389 /// the direct move instructions available in ISA 2.07 to avoid the
8390 /// need for load/store combinations.
8391 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8392                                                     SelectionDAG &DAG,
8393                                                     const SDLoc &dl) const {
8394   assert((Op.getValueType() == MVT::f32 ||
8395           Op.getValueType() == MVT::f64) &&
8396          "Invalid floating point type as target of conversion");
8397   assert(Subtarget.hasFPCVT() &&
8398          "Int to FP conversions with direct moves require FPCVT");
8399   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8400   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8401   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8402                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8403   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8404   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8405   return convertIntToFP(Op, Mov, DAG, Subtarget);
8406 }
8407 
8408 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8409 
8410   EVT VecVT = Vec.getValueType();
8411   assert(VecVT.isVector() && "Expected a vector type.");
8412   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8413 
8414   EVT EltVT = VecVT.getVectorElementType();
8415   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8416   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8417 
8418   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8419   SmallVector<SDValue, 16> Ops(NumConcat);
8420   Ops[0] = Vec;
8421   SDValue UndefVec = DAG.getUNDEF(VecVT);
8422   for (unsigned i = 1; i < NumConcat; ++i)
8423     Ops[i] = UndefVec;
8424 
8425   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8426 }
8427 
8428 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8429                                                 const SDLoc &dl) const {
8430   bool IsStrict = Op->isStrictFPOpcode();
8431   unsigned Opc = Op.getOpcode();
8432   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8433   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8434           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8435          "Unexpected conversion type");
8436   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8437          "Supports conversions to v2f64/v4f32 only.");
8438 
8439   // TODO: Any other flags to propagate?
8440   SDNodeFlags Flags;
8441   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8442 
8443   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8444   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8445 
8446   SDValue Wide = widenVec(DAG, Src, dl);
8447   EVT WideVT = Wide.getValueType();
8448   unsigned WideNumElts = WideVT.getVectorNumElements();
8449   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8450 
8451   SmallVector<int, 16> ShuffV;
8452   for (unsigned i = 0; i < WideNumElts; ++i)
8453     ShuffV.push_back(i + WideNumElts);
8454 
8455   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8456   int SaveElts = FourEltRes ? 4 : 2;
8457   if (Subtarget.isLittleEndian())
8458     for (int i = 0; i < SaveElts; i++)
8459       ShuffV[i * Stride] = i;
8460   else
8461     for (int i = 1; i <= SaveElts; i++)
8462       ShuffV[i * Stride - 1] = i - 1;
8463 
8464   SDValue ShuffleSrc2 =
8465       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8466   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8467 
8468   SDValue Extend;
8469   if (SignedConv) {
8470     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8471     EVT ExtVT = Src.getValueType();
8472     if (Subtarget.hasP9Altivec())
8473       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8474                                IntermediateVT.getVectorNumElements());
8475 
8476     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8477                          DAG.getValueType(ExtVT));
8478   } else
8479     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8480 
8481   if (IsStrict)
8482     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8483                        {Op.getOperand(0), Extend}, Flags);
8484 
8485   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8486 }
8487 
8488 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8489                                           SelectionDAG &DAG) const {
8490   SDLoc dl(Op);
8491   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8492                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8493   bool IsStrict = Op->isStrictFPOpcode();
8494   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8495   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8496 
8497   // TODO: Any other flags to propagate?
8498   SDNodeFlags Flags;
8499   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8500 
8501   EVT InVT = Src.getValueType();
8502   EVT OutVT = Op.getValueType();
8503   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8504       isOperationCustom(Op.getOpcode(), InVT))
8505     return LowerINT_TO_FPVector(Op, DAG, dl);
8506 
8507   // Conversions to f128 are legal.
8508   if (Op.getValueType() == MVT::f128)
8509     return Subtarget.hasP9Vector() ? Op : SDValue();
8510 
8511   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8512   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8513     return SDValue();
8514 
8515   if (Src.getValueType() == MVT::i1) {
8516     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8517                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8518                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8519     if (IsStrict)
8520       return DAG.getMergeValues({Sel, Chain}, dl);
8521     else
8522       return Sel;
8523   }
8524 
8525   // If we have direct moves, we can do all the conversion, skip the store/load
8526   // however, without FPCVT we can't do most conversions.
8527   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8528       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8529     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8530 
8531   assert((IsSigned || Subtarget.hasFPCVT()) &&
8532          "UINT_TO_FP is supported only with FPCVT");
8533 
8534   if (Src.getValueType() == MVT::i64) {
8535     SDValue SINT = Src;
8536     // When converting to single-precision, we actually need to convert
8537     // to double-precision first and then round to single-precision.
8538     // To avoid double-rounding effects during that operation, we have
8539     // to prepare the input operand.  Bits that might be truncated when
8540     // converting to double-precision are replaced by a bit that won't
8541     // be lost at this stage, but is below the single-precision rounding
8542     // position.
8543     //
8544     // However, if -enable-unsafe-fp-math is in effect, accept double
8545     // rounding to avoid the extra overhead.
8546     if (Op.getValueType() == MVT::f32 &&
8547         !Subtarget.hasFPCVT() &&
8548         !DAG.getTarget().Options.UnsafeFPMath) {
8549 
8550       // Twiddle input to make sure the low 11 bits are zero.  (If this
8551       // is the case, we are guaranteed the value will fit into the 53 bit
8552       // mantissa of an IEEE double-precision value without rounding.)
8553       // If any of those low 11 bits were not zero originally, make sure
8554       // bit 12 (value 2048) is set instead, so that the final rounding
8555       // to single-precision gets the correct result.
8556       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8557                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8558       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8559                           Round, DAG.getConstant(2047, dl, MVT::i64));
8560       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8561       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8562                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8563 
8564       // However, we cannot use that value unconditionally: if the magnitude
8565       // of the input value is small, the bit-twiddling we did above might
8566       // end up visibly changing the output.  Fortunately, in that case, we
8567       // don't need to twiddle bits since the original input will convert
8568       // exactly to double-precision floating-point already.  Therefore,
8569       // construct a conditional to use the original value if the top 11
8570       // bits are all sign-bit copies, and use the rounded value computed
8571       // above otherwise.
8572       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8573                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8574       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8575                          Cond, DAG.getConstant(1, dl, MVT::i64));
8576       Cond = DAG.getSetCC(
8577           dl,
8578           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8579           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8580 
8581       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8582     }
8583 
8584     ReuseLoadInfo RLI;
8585     SDValue Bits;
8586 
8587     MachineFunction &MF = DAG.getMachineFunction();
8588     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8589       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8590                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8591       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8592     } else if (Subtarget.hasLFIWAX() &&
8593                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8594       MachineMemOperand *MMO =
8595         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8596                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8597       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8598       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8599                                      DAG.getVTList(MVT::f64, MVT::Other),
8600                                      Ops, MVT::i32, MMO);
8601       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8602     } else if (Subtarget.hasFPCVT() &&
8603                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8604       MachineMemOperand *MMO =
8605         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8606                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8607       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8608       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8609                                      DAG.getVTList(MVT::f64, MVT::Other),
8610                                      Ops, MVT::i32, MMO);
8611       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8612     } else if (((Subtarget.hasLFIWAX() &&
8613                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8614                 (Subtarget.hasFPCVT() &&
8615                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8616                SINT.getOperand(0).getValueType() == MVT::i32) {
8617       MachineFrameInfo &MFI = MF.getFrameInfo();
8618       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8619 
8620       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8621       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8622 
8623       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8624                                    MachinePointerInfo::getFixedStack(
8625                                        DAG.getMachineFunction(), FrameIdx));
8626       Chain = Store;
8627 
8628       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8629              "Expected an i32 store");
8630 
8631       RLI.Ptr = FIdx;
8632       RLI.Chain = Chain;
8633       RLI.MPI =
8634           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8635       RLI.Alignment = Align(4);
8636 
8637       MachineMemOperand *MMO =
8638         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8639                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8640       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8641       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8642                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8643                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8644                                      Ops, MVT::i32, MMO);
8645       Chain = Bits.getValue(1);
8646     } else
8647       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8648 
8649     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8650     if (IsStrict)
8651       Chain = FP.getValue(1);
8652 
8653     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8654       if (IsStrict)
8655         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8656                          DAG.getVTList(MVT::f32, MVT::Other),
8657                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8658       else
8659         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8660                          DAG.getIntPtrConstant(0, dl));
8661     }
8662     return FP;
8663   }
8664 
8665   assert(Src.getValueType() == MVT::i32 &&
8666          "Unhandled INT_TO_FP type in custom expander!");
8667   // Since we only generate this in 64-bit mode, we can take advantage of
8668   // 64-bit registers.  In particular, sign extend the input value into the
8669   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8670   // then lfd it and fcfid it.
8671   MachineFunction &MF = DAG.getMachineFunction();
8672   MachineFrameInfo &MFI = MF.getFrameInfo();
8673   EVT PtrVT = getPointerTy(MF.getDataLayout());
8674 
8675   SDValue Ld;
8676   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8677     ReuseLoadInfo RLI;
8678     bool ReusingLoad;
8679     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8680       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8681       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8682 
8683       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8684                                    MachinePointerInfo::getFixedStack(
8685                                        DAG.getMachineFunction(), FrameIdx));
8686       Chain = Store;
8687 
8688       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8689              "Expected an i32 store");
8690 
8691       RLI.Ptr = FIdx;
8692       RLI.Chain = Chain;
8693       RLI.MPI =
8694           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8695       RLI.Alignment = Align(4);
8696     }
8697 
8698     MachineMemOperand *MMO =
8699       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8700                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8701     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8702     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8703                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8704                                  MVT::i32, MMO);
8705     Chain = Ld.getValue(1);
8706     if (ReusingLoad)
8707       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8708   } else {
8709     assert(Subtarget.isPPC64() &&
8710            "i32->FP without LFIWAX supported only on PPC64");
8711 
8712     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8713     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8714 
8715     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8716 
8717     // STD the extended value into the stack slot.
8718     SDValue Store = DAG.getStore(
8719         Chain, dl, Ext64, FIdx,
8720         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8721     Chain = Store;
8722 
8723     // Load the value as a double.
8724     Ld = DAG.getLoad(
8725         MVT::f64, dl, Chain, FIdx,
8726         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8727     Chain = Ld.getValue(1);
8728   }
8729 
8730   // FCFID it and return it.
8731   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8732   if (IsStrict)
8733     Chain = FP.getValue(1);
8734   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8735     if (IsStrict)
8736       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8737                        DAG.getVTList(MVT::f32, MVT::Other),
8738                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8739     else
8740       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8741                        DAG.getIntPtrConstant(0, dl));
8742   }
8743   return FP;
8744 }
8745 
8746 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8747                                             SelectionDAG &DAG) const {
8748   SDLoc dl(Op);
8749   /*
8750    The rounding mode is in bits 30:31 of FPSR, and has the following
8751    settings:
8752      00 Round to nearest
8753      01 Round to 0
8754      10 Round to +inf
8755      11 Round to -inf
8756 
8757   FLT_ROUNDS, on the other hand, expects the following:
8758     -1 Undefined
8759      0 Round to 0
8760      1 Round to nearest
8761      2 Round to +inf
8762      3 Round to -inf
8763 
8764   To perform the conversion, we do:
8765     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8766   */
8767 
8768   MachineFunction &MF = DAG.getMachineFunction();
8769   EVT VT = Op.getValueType();
8770   EVT PtrVT = getPointerTy(MF.getDataLayout());
8771 
8772   // Save FP Control Word to register
8773   SDValue Chain = Op.getOperand(0);
8774   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8775   Chain = MFFS.getValue(1);
8776 
8777   SDValue CWD;
8778   if (isTypeLegal(MVT::i64)) {
8779     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8780                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8781   } else {
8782     // Save FP register to stack slot
8783     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8784     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8785     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8786 
8787     // Load FP Control Word from low 32 bits of stack slot.
8788     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8789            "Stack slot adjustment is valid only on big endian subtargets!");
8790     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8791     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8792     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8793     Chain = CWD.getValue(1);
8794   }
8795 
8796   // Transform as necessary
8797   SDValue CWD1 =
8798     DAG.getNode(ISD::AND, dl, MVT::i32,
8799                 CWD, DAG.getConstant(3, dl, MVT::i32));
8800   SDValue CWD2 =
8801     DAG.getNode(ISD::SRL, dl, MVT::i32,
8802                 DAG.getNode(ISD::AND, dl, MVT::i32,
8803                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8804                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8805                             DAG.getConstant(3, dl, MVT::i32)),
8806                 DAG.getConstant(1, dl, MVT::i32));
8807 
8808   SDValue RetVal =
8809     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8810 
8811   RetVal =
8812       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8813                   dl, VT, RetVal);
8814 
8815   return DAG.getMergeValues({RetVal, Chain}, dl);
8816 }
8817 
8818 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8819   EVT VT = Op.getValueType();
8820   unsigned BitWidth = VT.getSizeInBits();
8821   SDLoc dl(Op);
8822   assert(Op.getNumOperands() == 3 &&
8823          VT == Op.getOperand(1).getValueType() &&
8824          "Unexpected SHL!");
8825 
8826   // Expand into a bunch of logical ops.  Note that these ops
8827   // depend on the PPC behavior for oversized shift amounts.
8828   SDValue Lo = Op.getOperand(0);
8829   SDValue Hi = Op.getOperand(1);
8830   SDValue Amt = Op.getOperand(2);
8831   EVT AmtVT = Amt.getValueType();
8832 
8833   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8834                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8835   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8836   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8837   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8838   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8839                              DAG.getConstant(-BitWidth, dl, AmtVT));
8840   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8841   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8842   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8843   SDValue OutOps[] = { OutLo, OutHi };
8844   return DAG.getMergeValues(OutOps, dl);
8845 }
8846 
8847 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8848   EVT VT = Op.getValueType();
8849   SDLoc dl(Op);
8850   unsigned BitWidth = VT.getSizeInBits();
8851   assert(Op.getNumOperands() == 3 &&
8852          VT == Op.getOperand(1).getValueType() &&
8853          "Unexpected SRL!");
8854 
8855   // Expand into a bunch of logical ops.  Note that these ops
8856   // depend on the PPC behavior for oversized shift amounts.
8857   SDValue Lo = Op.getOperand(0);
8858   SDValue Hi = Op.getOperand(1);
8859   SDValue Amt = Op.getOperand(2);
8860   EVT AmtVT = Amt.getValueType();
8861 
8862   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8863                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8864   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8865   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8866   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8867   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8868                              DAG.getConstant(-BitWidth, dl, AmtVT));
8869   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8870   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8871   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8872   SDValue OutOps[] = { OutLo, OutHi };
8873   return DAG.getMergeValues(OutOps, dl);
8874 }
8875 
8876 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8877   SDLoc dl(Op);
8878   EVT VT = Op.getValueType();
8879   unsigned BitWidth = VT.getSizeInBits();
8880   assert(Op.getNumOperands() == 3 &&
8881          VT == Op.getOperand(1).getValueType() &&
8882          "Unexpected SRA!");
8883 
8884   // Expand into a bunch of logical ops, followed by a select_cc.
8885   SDValue Lo = Op.getOperand(0);
8886   SDValue Hi = Op.getOperand(1);
8887   SDValue Amt = Op.getOperand(2);
8888   EVT AmtVT = Amt.getValueType();
8889 
8890   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8891                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8892   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8893   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8894   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8895   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8896                              DAG.getConstant(-BitWidth, dl, AmtVT));
8897   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8898   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8899   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8900                                   Tmp4, Tmp6, ISD::SETLE);
8901   SDValue OutOps[] = { OutLo, OutHi };
8902   return DAG.getMergeValues(OutOps, dl);
8903 }
8904 
8905 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8906                                             SelectionDAG &DAG) const {
8907   SDLoc dl(Op);
8908   EVT VT = Op.getValueType();
8909   unsigned BitWidth = VT.getSizeInBits();
8910 
8911   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8912   SDValue X = Op.getOperand(0);
8913   SDValue Y = Op.getOperand(1);
8914   SDValue Z = Op.getOperand(2);
8915   EVT AmtVT = Z.getValueType();
8916 
8917   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8918   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8919   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8920   // on PowerPC shift by BW being well defined.
8921   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8922                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8923   SDValue SubZ =
8924       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8925   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8926   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8927   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8928 }
8929 
8930 //===----------------------------------------------------------------------===//
8931 // Vector related lowering.
8932 //
8933 
8934 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8935 /// element size of SplatSize. Cast the result to VT.
8936 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8937                                       SelectionDAG &DAG, const SDLoc &dl) {
8938   static const MVT VTys[] = { // canonical VT to use for each size.
8939     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8940   };
8941 
8942   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8943 
8944   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8945   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8946     SplatSize = 1;
8947     Val = 0xFF;
8948   }
8949 
8950   EVT CanonicalVT = VTys[SplatSize-1];
8951 
8952   // Build a canonical splat for this value.
8953   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8954 }
8955 
8956 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8957 /// specified intrinsic ID.
8958 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8959                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8960   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8961   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8962                      DAG.getConstant(IID, dl, MVT::i32), Op);
8963 }
8964 
8965 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8966 /// specified intrinsic ID.
8967 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8968                                 SelectionDAG &DAG, const SDLoc &dl,
8969                                 EVT DestVT = MVT::Other) {
8970   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8971   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8972                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8973 }
8974 
8975 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8976 /// specified intrinsic ID.
8977 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8978                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8979                                 EVT DestVT = MVT::Other) {
8980   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8981   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8982                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8983 }
8984 
8985 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8986 /// amount.  The result has the specified value type.
8987 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8988                            SelectionDAG &DAG, const SDLoc &dl) {
8989   // Force LHS/RHS to be the right type.
8990   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8991   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8992 
8993   int Ops[16];
8994   for (unsigned i = 0; i != 16; ++i)
8995     Ops[i] = i + Amt;
8996   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8997   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8998 }
8999 
9000 /// Do we have an efficient pattern in a .td file for this node?
9001 ///
9002 /// \param V - pointer to the BuildVectorSDNode being matched
9003 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9004 ///
9005 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9006 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9007 /// the opposite is true (expansion is beneficial) are:
9008 /// - The node builds a vector out of integers that are not 32 or 64-bits
9009 /// - The node builds a vector out of constants
9010 /// - The node is a "load-and-splat"
9011 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9012 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9013                                             bool HasDirectMove,
9014                                             bool HasP8Vector) {
9015   EVT VecVT = V->getValueType(0);
9016   bool RightType = VecVT == MVT::v2f64 ||
9017     (HasP8Vector && VecVT == MVT::v4f32) ||
9018     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9019   if (!RightType)
9020     return false;
9021 
9022   bool IsSplat = true;
9023   bool IsLoad = false;
9024   SDValue Op0 = V->getOperand(0);
9025 
9026   // This function is called in a block that confirms the node is not a constant
9027   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9028   // different constants.
9029   if (V->isConstant())
9030     return false;
9031   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9032     if (V->getOperand(i).isUndef())
9033       return false;
9034     // We want to expand nodes that represent load-and-splat even if the
9035     // loaded value is a floating point truncation or conversion to int.
9036     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9037         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9038          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9039         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9040          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9041         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9042          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9043       IsLoad = true;
9044     // If the operands are different or the input is not a load and has more
9045     // uses than just this BV node, then it isn't a splat.
9046     if (V->getOperand(i) != Op0 ||
9047         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9048       IsSplat = false;
9049   }
9050   return !(IsSplat && IsLoad);
9051 }
9052 
9053 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9054 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9055 
9056   SDLoc dl(Op);
9057   SDValue Op0 = Op->getOperand(0);
9058 
9059   if ((Op.getValueType() != MVT::f128) ||
9060       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9061       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9062       (Op0.getOperand(1).getValueType() != MVT::i64))
9063     return SDValue();
9064 
9065   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9066                      Op0.getOperand(1));
9067 }
9068 
9069 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9070   const SDValue *InputLoad = &Op;
9071   if (InputLoad->getOpcode() == ISD::BITCAST)
9072     InputLoad = &InputLoad->getOperand(0);
9073   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9074       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9075     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9076     InputLoad = &InputLoad->getOperand(0);
9077   }
9078   if (InputLoad->getOpcode() != ISD::LOAD)
9079     return nullptr;
9080   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9081   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9082 }
9083 
9084 // Convert the argument APFloat to a single precision APFloat if there is no
9085 // loss in information during the conversion to single precision APFloat and the
9086 // resulting number is not a denormal number. Return true if successful.
9087 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9088   APFloat APFloatToConvert = ArgAPFloat;
9089   bool LosesInfo = true;
9090   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9091                            &LosesInfo);
9092   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9093   if (Success)
9094     ArgAPFloat = APFloatToConvert;
9095   return Success;
9096 }
9097 
9098 // Bitcast the argument APInt to a double and convert it to a single precision
9099 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9100 // argument if there is no loss in information during the conversion from
9101 // double to single precision APFloat and the resulting number is not a denormal
9102 // number. Return true if successful.
9103 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9104   double DpValue = ArgAPInt.bitsToDouble();
9105   APFloat APFloatDp(DpValue);
9106   bool Success = convertToNonDenormSingle(APFloatDp);
9107   if (Success)
9108     ArgAPInt = APFloatDp.bitcastToAPInt();
9109   return Success;
9110 }
9111 
9112 // Nondestructive check for convertTonNonDenormSingle.
9113 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9114   // Only convert if it loses info, since XXSPLTIDP should
9115   // handle the other case.
9116   APFloat APFloatToConvert = ArgAPFloat;
9117   bool LosesInfo = true;
9118   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9119                            &LosesInfo);
9120 
9121   return (!LosesInfo && !APFloatToConvert.isDenormal());
9122 }
9123 
9124 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9125                              unsigned &Opcode) {
9126   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9127   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9128     return false;
9129 
9130   EVT Ty = Op->getValueType(0);
9131   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9132   // as we cannot handle extending loads for these types.
9133   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9134       ISD::isNON_EXTLoad(InputNode))
9135     return true;
9136 
9137   EVT MemVT = InputNode->getMemoryVT();
9138   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9139   // memory VT is the same vector element VT type.
9140   // The loads feeding into the v8i16 and v16i8 types will be extending because
9141   // scalar i8/i16 are not legal types.
9142   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9143       (MemVT == Ty.getVectorElementType()))
9144     return true;
9145 
9146   if (Ty == MVT::v2i64) {
9147     // Check the extend type, when the input type is i32, and the output vector
9148     // type is v2i64.
9149     if (MemVT == MVT::i32) {
9150       if (ISD::isZEXTLoad(InputNode))
9151         Opcode = PPCISD::ZEXT_LD_SPLAT;
9152       if (ISD::isSEXTLoad(InputNode))
9153         Opcode = PPCISD::SEXT_LD_SPLAT;
9154     }
9155     return true;
9156   }
9157   return false;
9158 }
9159 
9160 // If this is a case we can't handle, return null and let the default
9161 // expansion code take care of it.  If we CAN select this case, and if it
9162 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9163 // this case more efficiently than a constant pool load, lower it to the
9164 // sequence of ops that should be used.
9165 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9166                                              SelectionDAG &DAG) const {
9167   SDLoc dl(Op);
9168   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9169   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9170 
9171   // Check if this is a splat of a constant value.
9172   APInt APSplatBits, APSplatUndef;
9173   unsigned SplatBitSize;
9174   bool HasAnyUndefs;
9175   bool BVNIsConstantSplat =
9176       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9177                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9178 
9179   // If it is a splat of a double, check if we can shrink it to a 32 bit
9180   // non-denormal float which when converted back to double gives us the same
9181   // double. This is to exploit the XXSPLTIDP instruction.
9182   // If we lose precision, we use XXSPLTI32DX.
9183   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9184       Subtarget.hasPrefixInstrs()) {
9185     // Check the type first to short-circuit so we don't modify APSplatBits if
9186     // this block isn't executed.
9187     if ((Op->getValueType(0) == MVT::v2f64) &&
9188         convertToNonDenormSingle(APSplatBits)) {
9189       SDValue SplatNode = DAG.getNode(
9190           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9191           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9192       return DAG.getBitcast(Op.getValueType(), SplatNode);
9193     } else {
9194       // We may lose precision, so we have to use XXSPLTI32DX.
9195 
9196       uint32_t Hi =
9197           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9198       uint32_t Lo =
9199           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9200       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9201 
9202       if (!Hi || !Lo)
9203         // If either load is 0, then we should generate XXLXOR to set to 0.
9204         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9205 
9206       if (Hi)
9207         SplatNode = DAG.getNode(
9208             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9209             DAG.getTargetConstant(0, dl, MVT::i32),
9210             DAG.getTargetConstant(Hi, dl, MVT::i32));
9211 
9212       if (Lo)
9213         SplatNode =
9214             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9215                         DAG.getTargetConstant(1, dl, MVT::i32),
9216                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9217 
9218       return DAG.getBitcast(Op.getValueType(), SplatNode);
9219     }
9220   }
9221 
9222   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9223     unsigned NewOpcode = PPCISD::LD_SPLAT;
9224 
9225     // Handle load-and-splat patterns as we have instructions that will do this
9226     // in one go.
9227     if (DAG.isSplatValue(Op, true) &&
9228         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9229       const SDValue *InputLoad = &Op.getOperand(0);
9230       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9231 
9232       // If the input load is an extending load, it will be an i32 -> i64
9233       // extending load and isValidSplatLoad() will update NewOpcode.
9234       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9235       unsigned ElementSize =
9236           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9237 
9238       assert(((ElementSize == 2 * MemorySize)
9239                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9240                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9241                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9242              "Unmatched element size and opcode!\n");
9243 
9244       // Checking for a single use of this load, we have to check for vector
9245       // width (128 bits) / ElementSize uses (since each operand of the
9246       // BUILD_VECTOR is a separate use of the value.
9247       unsigned NumUsesOfInputLD = 128 / ElementSize;
9248       for (SDValue BVInOp : Op->ops())
9249         if (BVInOp.isUndef())
9250           NumUsesOfInputLD--;
9251 
9252       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9253       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9254       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9255       // 15", but funciton IsValidSplatLoad() now will only return true when
9256       // the data at index 0 is not nullptr. So we will not get into trouble for
9257       // these cases.
9258       //
9259       // case 1 - lfiwzx/lfiwax
9260       // 1.1: load result is i32 and is sign/zero extend to i64;
9261       // 1.2: build a v2i64 vector type with above loaded value;
9262       // 1.3: the vector has only one value at index 0, others are all undef;
9263       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9264       if (NumUsesOfInputLD == 1 &&
9265           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9266            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9267            Subtarget.hasLFIWAX()))
9268         return SDValue();
9269 
9270       // case 2 - lxvr[hb]x
9271       // 2.1: load result is at most i16;
9272       // 2.2: build a vector with above loaded value;
9273       // 2.3: the vector has only one value at index 0, others are all undef;
9274       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9275       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9276           Subtarget.isISA3_1() && ElementSize <= 16)
9277         return SDValue();
9278 
9279       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9280       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9281           Subtarget.hasVSX()) {
9282         SDValue Ops[] = {
9283           LD->getChain(),    // Chain
9284           LD->getBasePtr(),  // Ptr
9285           DAG.getValueType(Op.getValueType()) // VT
9286         };
9287         SDValue LdSplt = DAG.getMemIntrinsicNode(
9288             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9289             LD->getMemoryVT(), LD->getMemOperand());
9290         // Replace all uses of the output chain of the original load with the
9291         // output chain of the new load.
9292         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9293                                       LdSplt.getValue(1));
9294         return LdSplt;
9295       }
9296     }
9297 
9298     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9299     // 32-bits can be lowered to VSX instructions under certain conditions.
9300     // Without VSX, there is no pattern more efficient than expanding the node.
9301     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9302         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9303                                         Subtarget.hasP8Vector()))
9304       return Op;
9305     return SDValue();
9306   }
9307 
9308   uint64_t SplatBits = APSplatBits.getZExtValue();
9309   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9310   unsigned SplatSize = SplatBitSize / 8;
9311 
9312   // First, handle single instruction cases.
9313 
9314   // All zeros?
9315   if (SplatBits == 0) {
9316     // Canonicalize all zero vectors to be v4i32.
9317     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9318       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9319       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9320     }
9321     return Op;
9322   }
9323 
9324   // We have XXSPLTIW for constant splats four bytes wide.
9325   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9326   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9327   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9328   // turned into a 4-byte splat of 0xABABABAB.
9329   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9330     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9331                                   Op.getValueType(), DAG, dl);
9332 
9333   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9334     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9335                                   dl);
9336 
9337   // We have XXSPLTIB for constant splats one byte wide.
9338   if (Subtarget.hasP9Vector() && SplatSize == 1)
9339     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9340                                   dl);
9341 
9342   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9343   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9344                     (32-SplatBitSize));
9345   if (SextVal >= -16 && SextVal <= 15)
9346     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9347                                   dl);
9348 
9349   // Two instruction sequences.
9350 
9351   // If this value is in the range [-32,30] and is even, use:
9352   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9353   // If this value is in the range [17,31] and is odd, use:
9354   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9355   // If this value is in the range [-31,-17] and is odd, use:
9356   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9357   // Note the last two are three-instruction sequences.
9358   if (SextVal >= -32 && SextVal <= 31) {
9359     // To avoid having these optimizations undone by constant folding,
9360     // we convert to a pseudo that will be expanded later into one of
9361     // the above forms.
9362     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9363     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9364               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9365     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9366     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9367     if (VT == Op.getValueType())
9368       return RetVal;
9369     else
9370       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9371   }
9372 
9373   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9374   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9375   // for fneg/fabs.
9376   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9377     // Make -1 and vspltisw -1:
9378     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9379 
9380     // Make the VSLW intrinsic, computing 0x8000_0000.
9381     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9382                                    OnesV, DAG, dl);
9383 
9384     // xor by OnesV to invert it.
9385     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9386     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9387   }
9388 
9389   // Check to see if this is a wide variety of vsplti*, binop self cases.
9390   static const signed char SplatCsts[] = {
9391     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9392     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9393   };
9394 
9395   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9396     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9397     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9398     int i = SplatCsts[idx];
9399 
9400     // Figure out what shift amount will be used by altivec if shifted by i in
9401     // this splat size.
9402     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9403 
9404     // vsplti + shl self.
9405     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9406       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9407       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9408         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9409         Intrinsic::ppc_altivec_vslw
9410       };
9411       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9412       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9413     }
9414 
9415     // vsplti + srl self.
9416     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9417       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9418       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9419         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9420         Intrinsic::ppc_altivec_vsrw
9421       };
9422       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9423       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9424     }
9425 
9426     // vsplti + rol self.
9427     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9428                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9429       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9430       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9431         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9432         Intrinsic::ppc_altivec_vrlw
9433       };
9434       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9435       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9436     }
9437 
9438     // t = vsplti c, result = vsldoi t, t, 1
9439     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9440       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9441       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9442       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9443     }
9444     // t = vsplti c, result = vsldoi t, t, 2
9445     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9446       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9447       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9448       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9449     }
9450     // t = vsplti c, result = vsldoi t, t, 3
9451     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9452       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9453       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9454       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9455     }
9456   }
9457 
9458   return SDValue();
9459 }
9460 
9461 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9462 /// the specified operations to build the shuffle.
9463 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9464                                       SDValue RHS, SelectionDAG &DAG,
9465                                       const SDLoc &dl) {
9466   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9467   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9468   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9469 
9470   enum {
9471     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9472     OP_VMRGHW,
9473     OP_VMRGLW,
9474     OP_VSPLTISW0,
9475     OP_VSPLTISW1,
9476     OP_VSPLTISW2,
9477     OP_VSPLTISW3,
9478     OP_VSLDOI4,
9479     OP_VSLDOI8,
9480     OP_VSLDOI12
9481   };
9482 
9483   if (OpNum == OP_COPY) {
9484     if (LHSID == (1*9+2)*9+3) return LHS;
9485     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9486     return RHS;
9487   }
9488 
9489   SDValue OpLHS, OpRHS;
9490   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9491   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9492 
9493   int ShufIdxs[16];
9494   switch (OpNum) {
9495   default: llvm_unreachable("Unknown i32 permute!");
9496   case OP_VMRGHW:
9497     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9498     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9499     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9500     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9501     break;
9502   case OP_VMRGLW:
9503     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9504     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9505     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9506     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9507     break;
9508   case OP_VSPLTISW0:
9509     for (unsigned i = 0; i != 16; ++i)
9510       ShufIdxs[i] = (i&3)+0;
9511     break;
9512   case OP_VSPLTISW1:
9513     for (unsigned i = 0; i != 16; ++i)
9514       ShufIdxs[i] = (i&3)+4;
9515     break;
9516   case OP_VSPLTISW2:
9517     for (unsigned i = 0; i != 16; ++i)
9518       ShufIdxs[i] = (i&3)+8;
9519     break;
9520   case OP_VSPLTISW3:
9521     for (unsigned i = 0; i != 16; ++i)
9522       ShufIdxs[i] = (i&3)+12;
9523     break;
9524   case OP_VSLDOI4:
9525     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9526   case OP_VSLDOI8:
9527     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9528   case OP_VSLDOI12:
9529     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9530   }
9531   EVT VT = OpLHS.getValueType();
9532   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9533   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9534   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9535   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9536 }
9537 
9538 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9539 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9540 /// SDValue.
9541 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9542                                            SelectionDAG &DAG) const {
9543   const unsigned BytesInVector = 16;
9544   bool IsLE = Subtarget.isLittleEndian();
9545   SDLoc dl(N);
9546   SDValue V1 = N->getOperand(0);
9547   SDValue V2 = N->getOperand(1);
9548   unsigned ShiftElts = 0, InsertAtByte = 0;
9549   bool Swap = false;
9550 
9551   // Shifts required to get the byte we want at element 7.
9552   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9553                                    0, 15, 14, 13, 12, 11, 10, 9};
9554   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9555                                 1, 2,  3,  4,  5,  6,  7,  8};
9556 
9557   ArrayRef<int> Mask = N->getMask();
9558   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9559 
9560   // For each mask element, find out if we're just inserting something
9561   // from V2 into V1 or vice versa.
9562   // Possible permutations inserting an element from V2 into V1:
9563   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9564   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9565   //   ...
9566   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9567   // Inserting from V1 into V2 will be similar, except mask range will be
9568   // [16,31].
9569 
9570   bool FoundCandidate = false;
9571   // If both vector operands for the shuffle are the same vector, the mask
9572   // will contain only elements from the first one and the second one will be
9573   // undef.
9574   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9575   // Go through the mask of half-words to find an element that's being moved
9576   // from one vector to the other.
9577   for (unsigned i = 0; i < BytesInVector; ++i) {
9578     unsigned CurrentElement = Mask[i];
9579     // If 2nd operand is undefined, we should only look for element 7 in the
9580     // Mask.
9581     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9582       continue;
9583 
9584     bool OtherElementsInOrder = true;
9585     // Examine the other elements in the Mask to see if they're in original
9586     // order.
9587     for (unsigned j = 0; j < BytesInVector; ++j) {
9588       if (j == i)
9589         continue;
9590       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9591       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9592       // in which we always assume we're always picking from the 1st operand.
9593       int MaskOffset =
9594           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9595       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9596         OtherElementsInOrder = false;
9597         break;
9598       }
9599     }
9600     // If other elements are in original order, we record the number of shifts
9601     // we need to get the element we want into element 7. Also record which byte
9602     // in the vector we should insert into.
9603     if (OtherElementsInOrder) {
9604       // If 2nd operand is undefined, we assume no shifts and no swapping.
9605       if (V2.isUndef()) {
9606         ShiftElts = 0;
9607         Swap = false;
9608       } else {
9609         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9610         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9611                          : BigEndianShifts[CurrentElement & 0xF];
9612         Swap = CurrentElement < BytesInVector;
9613       }
9614       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9615       FoundCandidate = true;
9616       break;
9617     }
9618   }
9619 
9620   if (!FoundCandidate)
9621     return SDValue();
9622 
9623   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9624   // optionally with VECSHL if shift is required.
9625   if (Swap)
9626     std::swap(V1, V2);
9627   if (V2.isUndef())
9628     V2 = V1;
9629   if (ShiftElts) {
9630     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9631                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9632     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9633                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9634   }
9635   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9636                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9637 }
9638 
9639 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9640 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9641 /// SDValue.
9642 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9643                                            SelectionDAG &DAG) const {
9644   const unsigned NumHalfWords = 8;
9645   const unsigned BytesInVector = NumHalfWords * 2;
9646   // Check that the shuffle is on half-words.
9647   if (!isNByteElemShuffleMask(N, 2, 1))
9648     return SDValue();
9649 
9650   bool IsLE = Subtarget.isLittleEndian();
9651   SDLoc dl(N);
9652   SDValue V1 = N->getOperand(0);
9653   SDValue V2 = N->getOperand(1);
9654   unsigned ShiftElts = 0, InsertAtByte = 0;
9655   bool Swap = false;
9656 
9657   // Shifts required to get the half-word we want at element 3.
9658   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9659   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9660 
9661   uint32_t Mask = 0;
9662   uint32_t OriginalOrderLow = 0x1234567;
9663   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9664   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9665   // 32-bit space, only need 4-bit nibbles per element.
9666   for (unsigned i = 0; i < NumHalfWords; ++i) {
9667     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9668     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9669   }
9670 
9671   // For each mask element, find out if we're just inserting something
9672   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9673   // from V2 into V1:
9674   //   X, 1, 2, 3, 4, 5, 6, 7
9675   //   0, X, 2, 3, 4, 5, 6, 7
9676   //   0, 1, X, 3, 4, 5, 6, 7
9677   //   0, 1, 2, X, 4, 5, 6, 7
9678   //   0, 1, 2, 3, X, 5, 6, 7
9679   //   0, 1, 2, 3, 4, X, 6, 7
9680   //   0, 1, 2, 3, 4, 5, X, 7
9681   //   0, 1, 2, 3, 4, 5, 6, X
9682   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9683 
9684   bool FoundCandidate = false;
9685   // Go through the mask of half-words to find an element that's being moved
9686   // from one vector to the other.
9687   for (unsigned i = 0; i < NumHalfWords; ++i) {
9688     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9689     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9690     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9691     uint32_t TargetOrder = 0x0;
9692 
9693     // If both vector operands for the shuffle are the same vector, the mask
9694     // will contain only elements from the first one and the second one will be
9695     // undef.
9696     if (V2.isUndef()) {
9697       ShiftElts = 0;
9698       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9699       TargetOrder = OriginalOrderLow;
9700       Swap = false;
9701       // Skip if not the correct element or mask of other elements don't equal
9702       // to our expected order.
9703       if (MaskOneElt == VINSERTHSrcElem &&
9704           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9705         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9706         FoundCandidate = true;
9707         break;
9708       }
9709     } else { // If both operands are defined.
9710       // Target order is [8,15] if the current mask is between [0,7].
9711       TargetOrder =
9712           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9713       // Skip if mask of other elements don't equal our expected order.
9714       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9715         // We only need the last 3 bits for the number of shifts.
9716         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9717                          : BigEndianShifts[MaskOneElt & 0x7];
9718         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9719         Swap = MaskOneElt < NumHalfWords;
9720         FoundCandidate = true;
9721         break;
9722       }
9723     }
9724   }
9725 
9726   if (!FoundCandidate)
9727     return SDValue();
9728 
9729   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9730   // optionally with VECSHL if shift is required.
9731   if (Swap)
9732     std::swap(V1, V2);
9733   if (V2.isUndef())
9734     V2 = V1;
9735   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9736   if (ShiftElts) {
9737     // Double ShiftElts because we're left shifting on v16i8 type.
9738     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9739                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9740     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9741     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9742                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9743     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9744   }
9745   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9746   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9747                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9748   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9749 }
9750 
9751 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9752 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9753 /// return the default SDValue.
9754 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9755                                               SelectionDAG &DAG) const {
9756   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9757   // to v16i8. Peek through the bitcasts to get the actual operands.
9758   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9759   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9760 
9761   auto ShuffleMask = SVN->getMask();
9762   SDValue VecShuffle(SVN, 0);
9763   SDLoc DL(SVN);
9764 
9765   // Check that we have a four byte shuffle.
9766   if (!isNByteElemShuffleMask(SVN, 4, 1))
9767     return SDValue();
9768 
9769   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9770   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9771     std::swap(LHS, RHS);
9772     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9773     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9774   }
9775 
9776   // Ensure that the RHS is a vector of constants.
9777   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9778   if (!BVN)
9779     return SDValue();
9780 
9781   // Check if RHS is a splat of 4-bytes (or smaller).
9782   APInt APSplatValue, APSplatUndef;
9783   unsigned SplatBitSize;
9784   bool HasAnyUndefs;
9785   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9786                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9787       SplatBitSize > 32)
9788     return SDValue();
9789 
9790   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9791   // The instruction splats a constant C into two words of the source vector
9792   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9793   // Thus we check that the shuffle mask is the equivalent  of
9794   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9795   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9796   // within each word are consecutive, so we only need to check the first byte.
9797   SDValue Index;
9798   bool IsLE = Subtarget.isLittleEndian();
9799   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9800       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9801        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9802     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9803   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9804            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9805             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9806     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9807   else
9808     return SDValue();
9809 
9810   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9811   // for XXSPLTI32DX.
9812   unsigned SplatVal = APSplatValue.getZExtValue();
9813   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9814     SplatVal |= (SplatVal << SplatBitSize);
9815 
9816   SDValue SplatNode = DAG.getNode(
9817       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9818       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9819   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9820 }
9821 
9822 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9823 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9824 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9825 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9826 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9827   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9828   assert(Op.getValueType() == MVT::v1i128 &&
9829          "Only set v1i128 as custom, other type shouldn't reach here!");
9830   SDLoc dl(Op);
9831   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9832   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9833   unsigned SHLAmt = N1.getConstantOperandVal(0);
9834   if (SHLAmt % 8 == 0) {
9835     std::array<int, 16> Mask;
9836     std::iota(Mask.begin(), Mask.end(), 0);
9837     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9838     if (SDValue Shuffle =
9839             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9840                                  DAG.getUNDEF(MVT::v16i8), Mask))
9841       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9842   }
9843   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9844   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9845                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9846   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9847                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9848   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9849   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9850 }
9851 
9852 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9853 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9854 /// return the code it can be lowered into.  Worst case, it can always be
9855 /// lowered into a vperm.
9856 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9857                                                SelectionDAG &DAG) const {
9858   SDLoc dl(Op);
9859   SDValue V1 = Op.getOperand(0);
9860   SDValue V2 = Op.getOperand(1);
9861   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9862 
9863   // Any nodes that were combined in the target-independent combiner prior
9864   // to vector legalization will not be sent to the target combine. Try to
9865   // combine it here.
9866   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9867     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9868       return NewShuffle;
9869     Op = NewShuffle;
9870     SVOp = cast<ShuffleVectorSDNode>(Op);
9871     V1 = Op.getOperand(0);
9872     V2 = Op.getOperand(1);
9873   }
9874   EVT VT = Op.getValueType();
9875   bool isLittleEndian = Subtarget.isLittleEndian();
9876 
9877   unsigned ShiftElts, InsertAtByte;
9878   bool Swap = false;
9879 
9880   // If this is a load-and-splat, we can do that with a single instruction
9881   // in some cases. However if the load has multiple uses, we don't want to
9882   // combine it because that will just produce multiple loads.
9883   bool IsPermutedLoad = false;
9884   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9885   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9886       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9887       InputLoad->hasOneUse()) {
9888     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9889     int SplatIdx =
9890       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9891 
9892     // The splat index for permuted loads will be in the left half of the vector
9893     // which is strictly wider than the loaded value by 8 bytes. So we need to
9894     // adjust the splat index to point to the correct address in memory.
9895     if (IsPermutedLoad) {
9896       assert((isLittleEndian || IsFourByte) &&
9897              "Unexpected size for permuted load on big endian target");
9898       SplatIdx += IsFourByte ? 2 : 1;
9899       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9900              "Splat of a value outside of the loaded memory");
9901     }
9902 
9903     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9904     // For 4-byte load-and-splat, we need Power9.
9905     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9906       uint64_t Offset = 0;
9907       if (IsFourByte)
9908         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9909       else
9910         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9911 
9912       // If the width of the load is the same as the width of the splat,
9913       // loading with an offset would load the wrong memory.
9914       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9915         Offset = 0;
9916 
9917       SDValue BasePtr = LD->getBasePtr();
9918       if (Offset != 0)
9919         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9920                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9921       SDValue Ops[] = {
9922         LD->getChain(),    // Chain
9923         BasePtr,           // BasePtr
9924         DAG.getValueType(Op.getValueType()) // VT
9925       };
9926       SDVTList VTL =
9927         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9928       SDValue LdSplt =
9929         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9930                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9931       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9932       if (LdSplt.getValueType() != SVOp->getValueType(0))
9933         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9934       return LdSplt;
9935     }
9936   }
9937 
9938   // All v2i64 and v2f64 shuffles are legal
9939   if (VT == MVT::v2i64 || VT == MVT::v2f64)
9940     return Op;
9941 
9942   if (Subtarget.hasP9Vector() &&
9943       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9944                            isLittleEndian)) {
9945     if (Swap)
9946       std::swap(V1, V2);
9947     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9948     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9949     if (ShiftElts) {
9950       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9951                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9952       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9953                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9954       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9955     }
9956     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9957                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9958     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9959   }
9960 
9961   if (Subtarget.hasPrefixInstrs()) {
9962     SDValue SplatInsertNode;
9963     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9964       return SplatInsertNode;
9965   }
9966 
9967   if (Subtarget.hasP9Altivec()) {
9968     SDValue NewISDNode;
9969     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9970       return NewISDNode;
9971 
9972     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9973       return NewISDNode;
9974   }
9975 
9976   if (Subtarget.hasVSX() &&
9977       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9978     if (Swap)
9979       std::swap(V1, V2);
9980     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9981     SDValue Conv2 =
9982         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9983 
9984     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9985                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9986     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9987   }
9988 
9989   if (Subtarget.hasVSX() &&
9990     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9991     if (Swap)
9992       std::swap(V1, V2);
9993     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9994     SDValue Conv2 =
9995         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9996 
9997     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9998                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9999     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10000   }
10001 
10002   if (Subtarget.hasP9Vector()) {
10003      if (PPC::isXXBRHShuffleMask(SVOp)) {
10004       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10005       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10006       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10007     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10008       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10009       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10010       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10011     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10012       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10013       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10014       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10015     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10016       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10017       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10018       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10019     }
10020   }
10021 
10022   if (Subtarget.hasVSX()) {
10023     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10024       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10025 
10026       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10027       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10028                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10029       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10030     }
10031 
10032     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10033     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10034       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10035       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10036       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10037     }
10038   }
10039 
10040   // Cases that are handled by instructions that take permute immediates
10041   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10042   // selected by the instruction selector.
10043   if (V2.isUndef()) {
10044     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10045         PPC::isSplatShuffleMask(SVOp, 2) ||
10046         PPC::isSplatShuffleMask(SVOp, 4) ||
10047         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10048         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10049         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10050         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10051         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10052         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10053         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10054         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10055         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10056         (Subtarget.hasP8Altivec() && (
10057          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10058          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10059          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10060       return Op;
10061     }
10062   }
10063 
10064   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10065   // and produce a fixed permutation.  If any of these match, do not lower to
10066   // VPERM.
10067   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10068   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10069       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10070       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10071       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10072       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10073       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10074       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10075       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10076       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10077       (Subtarget.hasP8Altivec() && (
10078        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10079        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10080        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10081     return Op;
10082 
10083   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10084   // perfect shuffle table to emit an optimal matching sequence.
10085   ArrayRef<int> PermMask = SVOp->getMask();
10086 
10087   if (!DisablePerfectShuffle && !isLittleEndian) {
10088     unsigned PFIndexes[4];
10089     bool isFourElementShuffle = true;
10090     for (unsigned i = 0; i != 4 && isFourElementShuffle;
10091          ++i) {                           // Element number
10092       unsigned EltNo = 8;                 // Start out undef.
10093       for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
10094         if (PermMask[i * 4 + j] < 0)
10095           continue; // Undef, ignore it.
10096 
10097         unsigned ByteSource = PermMask[i * 4 + j];
10098         if ((ByteSource & 3) != j) {
10099           isFourElementShuffle = false;
10100           break;
10101         }
10102 
10103         if (EltNo == 8) {
10104           EltNo = ByteSource / 4;
10105         } else if (EltNo != ByteSource / 4) {
10106           isFourElementShuffle = false;
10107           break;
10108         }
10109       }
10110       PFIndexes[i] = EltNo;
10111     }
10112 
10113     // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10114     // perfect shuffle vector to determine if it is cost effective to do this as
10115     // discrete instructions, or whether we should use a vperm.
10116     // For now, we skip this for little endian until such time as we have a
10117     // little-endian perfect shuffle table.
10118     if (isFourElementShuffle) {
10119       // Compute the index in the perfect shuffle table.
10120       unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10121                               PFIndexes[2] * 9 + PFIndexes[3];
10122 
10123       unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10124       unsigned Cost = (PFEntry >> 30);
10125 
10126       // Determining when to avoid vperm is tricky.  Many things affect the cost
10127       // of vperm, particularly how many times the perm mask needs to be
10128       // computed. For example, if the perm mask can be hoisted out of a loop or
10129       // is already used (perhaps because there are multiple permutes with the
10130       // same shuffle mask?) the vperm has a cost of 1.  OTOH, hoisting the
10131       // permute mask out of the loop requires an extra register.
10132       //
10133       // As a compromise, we only emit discrete instructions if the shuffle can
10134       // be generated in 3 or fewer operations.  When we have loop information
10135       // available, if this block is within a loop, we should avoid using vperm
10136       // for 3-operation perms and use a constant pool load instead.
10137       if (Cost < 3)
10138         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10139     }
10140   }
10141 
10142   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10143   // vector that will get spilled to the constant pool.
10144   if (V2.isUndef()) V2 = V1;
10145 
10146   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10147   // that it is in input element units, not in bytes.  Convert now.
10148 
10149   // For little endian, the order of the input vectors is reversed, and
10150   // the permutation mask is complemented with respect to 31.  This is
10151   // necessary to produce proper semantics with the big-endian-biased vperm
10152   // instruction.
10153   EVT EltVT = V1.getValueType().getVectorElementType();
10154   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10155 
10156   SmallVector<SDValue, 16> ResultMask;
10157   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10158     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10159 
10160     for (unsigned j = 0; j != BytesPerElement; ++j)
10161       if (isLittleEndian)
10162         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10163                                              dl, MVT::i32));
10164       else
10165         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10166                                              MVT::i32));
10167   }
10168 
10169   ShufflesHandledWithVPERM++;
10170   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10171   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10172   LLVM_DEBUG(SVOp->dump());
10173   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10174   LLVM_DEBUG(VPermMask.dump());
10175 
10176   if (isLittleEndian)
10177     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10178                        V2, V1, VPermMask);
10179   else
10180     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10181                        V1, V2, VPermMask);
10182 }
10183 
10184 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10185 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10186 /// information about the intrinsic.
10187 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10188                                  bool &isDot, const PPCSubtarget &Subtarget) {
10189   unsigned IntrinsicID =
10190       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10191   CompareOpc = -1;
10192   isDot = false;
10193   switch (IntrinsicID) {
10194   default:
10195     return false;
10196   // Comparison predicates.
10197   case Intrinsic::ppc_altivec_vcmpbfp_p:
10198     CompareOpc = 966;
10199     isDot = true;
10200     break;
10201   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10202     CompareOpc = 198;
10203     isDot = true;
10204     break;
10205   case Intrinsic::ppc_altivec_vcmpequb_p:
10206     CompareOpc = 6;
10207     isDot = true;
10208     break;
10209   case Intrinsic::ppc_altivec_vcmpequh_p:
10210     CompareOpc = 70;
10211     isDot = true;
10212     break;
10213   case Intrinsic::ppc_altivec_vcmpequw_p:
10214     CompareOpc = 134;
10215     isDot = true;
10216     break;
10217   case Intrinsic::ppc_altivec_vcmpequd_p:
10218     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10219       CompareOpc = 199;
10220       isDot = true;
10221     } else
10222       return false;
10223     break;
10224   case Intrinsic::ppc_altivec_vcmpneb_p:
10225   case Intrinsic::ppc_altivec_vcmpneh_p:
10226   case Intrinsic::ppc_altivec_vcmpnew_p:
10227   case Intrinsic::ppc_altivec_vcmpnezb_p:
10228   case Intrinsic::ppc_altivec_vcmpnezh_p:
10229   case Intrinsic::ppc_altivec_vcmpnezw_p:
10230     if (Subtarget.hasP9Altivec()) {
10231       switch (IntrinsicID) {
10232       default:
10233         llvm_unreachable("Unknown comparison intrinsic.");
10234       case Intrinsic::ppc_altivec_vcmpneb_p:
10235         CompareOpc = 7;
10236         break;
10237       case Intrinsic::ppc_altivec_vcmpneh_p:
10238         CompareOpc = 71;
10239         break;
10240       case Intrinsic::ppc_altivec_vcmpnew_p:
10241         CompareOpc = 135;
10242         break;
10243       case Intrinsic::ppc_altivec_vcmpnezb_p:
10244         CompareOpc = 263;
10245         break;
10246       case Intrinsic::ppc_altivec_vcmpnezh_p:
10247         CompareOpc = 327;
10248         break;
10249       case Intrinsic::ppc_altivec_vcmpnezw_p:
10250         CompareOpc = 391;
10251         break;
10252       }
10253       isDot = true;
10254     } else
10255       return false;
10256     break;
10257   case Intrinsic::ppc_altivec_vcmpgefp_p:
10258     CompareOpc = 454;
10259     isDot = true;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10262     CompareOpc = 710;
10263     isDot = true;
10264     break;
10265   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10266     CompareOpc = 774;
10267     isDot = true;
10268     break;
10269   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10270     CompareOpc = 838;
10271     isDot = true;
10272     break;
10273   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10274     CompareOpc = 902;
10275     isDot = true;
10276     break;
10277   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10278     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10279       CompareOpc = 967;
10280       isDot = true;
10281     } else
10282       return false;
10283     break;
10284   case Intrinsic::ppc_altivec_vcmpgtub_p:
10285     CompareOpc = 518;
10286     isDot = true;
10287     break;
10288   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10289     CompareOpc = 582;
10290     isDot = true;
10291     break;
10292   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10293     CompareOpc = 646;
10294     isDot = true;
10295     break;
10296   case Intrinsic::ppc_altivec_vcmpgtud_p:
10297     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10298       CompareOpc = 711;
10299       isDot = true;
10300     } else
10301       return false;
10302     break;
10303 
10304   case Intrinsic::ppc_altivec_vcmpequq:
10305   case Intrinsic::ppc_altivec_vcmpgtsq:
10306   case Intrinsic::ppc_altivec_vcmpgtuq:
10307     if (!Subtarget.isISA3_1())
10308       return false;
10309     switch (IntrinsicID) {
10310     default:
10311       llvm_unreachable("Unknown comparison intrinsic.");
10312     case Intrinsic::ppc_altivec_vcmpequq:
10313       CompareOpc = 455;
10314       break;
10315     case Intrinsic::ppc_altivec_vcmpgtsq:
10316       CompareOpc = 903;
10317       break;
10318     case Intrinsic::ppc_altivec_vcmpgtuq:
10319       CompareOpc = 647;
10320       break;
10321     }
10322     break;
10323 
10324   // VSX predicate comparisons use the same infrastructure
10325   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10326   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10327   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10328   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10329   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10330   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10331     if (Subtarget.hasVSX()) {
10332       switch (IntrinsicID) {
10333       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10334         CompareOpc = 99;
10335         break;
10336       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10337         CompareOpc = 115;
10338         break;
10339       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10340         CompareOpc = 107;
10341         break;
10342       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10343         CompareOpc = 67;
10344         break;
10345       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10346         CompareOpc = 83;
10347         break;
10348       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10349         CompareOpc = 75;
10350         break;
10351       }
10352       isDot = true;
10353     } else
10354       return false;
10355     break;
10356 
10357   // Normal Comparisons.
10358   case Intrinsic::ppc_altivec_vcmpbfp:
10359     CompareOpc = 966;
10360     break;
10361   case Intrinsic::ppc_altivec_vcmpeqfp:
10362     CompareOpc = 198;
10363     break;
10364   case Intrinsic::ppc_altivec_vcmpequb:
10365     CompareOpc = 6;
10366     break;
10367   case Intrinsic::ppc_altivec_vcmpequh:
10368     CompareOpc = 70;
10369     break;
10370   case Intrinsic::ppc_altivec_vcmpequw:
10371     CompareOpc = 134;
10372     break;
10373   case Intrinsic::ppc_altivec_vcmpequd:
10374     if (Subtarget.hasP8Altivec())
10375       CompareOpc = 199;
10376     else
10377       return false;
10378     break;
10379   case Intrinsic::ppc_altivec_vcmpneb:
10380   case Intrinsic::ppc_altivec_vcmpneh:
10381   case Intrinsic::ppc_altivec_vcmpnew:
10382   case Intrinsic::ppc_altivec_vcmpnezb:
10383   case Intrinsic::ppc_altivec_vcmpnezh:
10384   case Intrinsic::ppc_altivec_vcmpnezw:
10385     if (Subtarget.hasP9Altivec())
10386       switch (IntrinsicID) {
10387       default:
10388         llvm_unreachable("Unknown comparison intrinsic.");
10389       case Intrinsic::ppc_altivec_vcmpneb:
10390         CompareOpc = 7;
10391         break;
10392       case Intrinsic::ppc_altivec_vcmpneh:
10393         CompareOpc = 71;
10394         break;
10395       case Intrinsic::ppc_altivec_vcmpnew:
10396         CompareOpc = 135;
10397         break;
10398       case Intrinsic::ppc_altivec_vcmpnezb:
10399         CompareOpc = 263;
10400         break;
10401       case Intrinsic::ppc_altivec_vcmpnezh:
10402         CompareOpc = 327;
10403         break;
10404       case Intrinsic::ppc_altivec_vcmpnezw:
10405         CompareOpc = 391;
10406         break;
10407       }
10408     else
10409       return false;
10410     break;
10411   case Intrinsic::ppc_altivec_vcmpgefp:
10412     CompareOpc = 454;
10413     break;
10414   case Intrinsic::ppc_altivec_vcmpgtfp:
10415     CompareOpc = 710;
10416     break;
10417   case Intrinsic::ppc_altivec_vcmpgtsb:
10418     CompareOpc = 774;
10419     break;
10420   case Intrinsic::ppc_altivec_vcmpgtsh:
10421     CompareOpc = 838;
10422     break;
10423   case Intrinsic::ppc_altivec_vcmpgtsw:
10424     CompareOpc = 902;
10425     break;
10426   case Intrinsic::ppc_altivec_vcmpgtsd:
10427     if (Subtarget.hasP8Altivec())
10428       CompareOpc = 967;
10429     else
10430       return false;
10431     break;
10432   case Intrinsic::ppc_altivec_vcmpgtub:
10433     CompareOpc = 518;
10434     break;
10435   case Intrinsic::ppc_altivec_vcmpgtuh:
10436     CompareOpc = 582;
10437     break;
10438   case Intrinsic::ppc_altivec_vcmpgtuw:
10439     CompareOpc = 646;
10440     break;
10441   case Intrinsic::ppc_altivec_vcmpgtud:
10442     if (Subtarget.hasP8Altivec())
10443       CompareOpc = 711;
10444     else
10445       return false;
10446     break;
10447   case Intrinsic::ppc_altivec_vcmpequq_p:
10448   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10449   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10450     if (!Subtarget.isISA3_1())
10451       return false;
10452     switch (IntrinsicID) {
10453     default:
10454       llvm_unreachable("Unknown comparison intrinsic.");
10455     case Intrinsic::ppc_altivec_vcmpequq_p:
10456       CompareOpc = 455;
10457       break;
10458     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10459       CompareOpc = 903;
10460       break;
10461     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10462       CompareOpc = 647;
10463       break;
10464     }
10465     isDot = true;
10466     break;
10467   }
10468   return true;
10469 }
10470 
10471 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10472 /// lower, do it, otherwise return null.
10473 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10474                                                    SelectionDAG &DAG) const {
10475   unsigned IntrinsicID =
10476     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10477 
10478   SDLoc dl(Op);
10479 
10480   switch (IntrinsicID) {
10481   case Intrinsic::thread_pointer:
10482     // Reads the thread pointer register, used for __builtin_thread_pointer.
10483     if (Subtarget.isPPC64())
10484       return DAG.getRegister(PPC::X13, MVT::i64);
10485     return DAG.getRegister(PPC::R2, MVT::i32);
10486 
10487   case Intrinsic::ppc_mma_disassemble_acc:
10488   case Intrinsic::ppc_vsx_disassemble_pair: {
10489     int NumVecs = 2;
10490     SDValue WideVec = Op.getOperand(1);
10491     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10492       NumVecs = 4;
10493       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10494     }
10495     SmallVector<SDValue, 4> RetOps;
10496     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10497       SDValue Extract = DAG.getNode(
10498           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10499           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10500                                                      : VecNo,
10501                           dl, getPointerTy(DAG.getDataLayout())));
10502       RetOps.push_back(Extract);
10503     }
10504     return DAG.getMergeValues(RetOps, dl);
10505   }
10506 
10507   case Intrinsic::ppc_unpack_longdouble: {
10508     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10509     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10510            "Argument of long double unpack must be 0 or 1!");
10511     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10512                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10513                                        Idx->getValueType(0)));
10514   }
10515 
10516   case Intrinsic::ppc_compare_exp_lt:
10517   case Intrinsic::ppc_compare_exp_gt:
10518   case Intrinsic::ppc_compare_exp_eq:
10519   case Intrinsic::ppc_compare_exp_uo: {
10520     unsigned Pred;
10521     switch (IntrinsicID) {
10522     case Intrinsic::ppc_compare_exp_lt:
10523       Pred = PPC::PRED_LT;
10524       break;
10525     case Intrinsic::ppc_compare_exp_gt:
10526       Pred = PPC::PRED_GT;
10527       break;
10528     case Intrinsic::ppc_compare_exp_eq:
10529       Pred = PPC::PRED_EQ;
10530       break;
10531     case Intrinsic::ppc_compare_exp_uo:
10532       Pred = PPC::PRED_UN;
10533       break;
10534     }
10535     return SDValue(
10536         DAG.getMachineNode(
10537             PPC::SELECT_CC_I4, dl, MVT::i32,
10538             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10539                                         Op.getOperand(1), Op.getOperand(2)),
10540                      0),
10541              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10542              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10543         0);
10544   }
10545   case Intrinsic::ppc_test_data_class_d:
10546   case Intrinsic::ppc_test_data_class_f: {
10547     unsigned CmprOpc = PPC::XSTSTDCDP;
10548     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10549       CmprOpc = PPC::XSTSTDCSP;
10550     return SDValue(
10551         DAG.getMachineNode(
10552             PPC::SELECT_CC_I4, dl, MVT::i32,
10553             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10554                                         Op.getOperand(1)),
10555                      0),
10556              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10557              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10558         0);
10559   }
10560   case Intrinsic::ppc_fnmsub: {
10561     EVT VT = Op.getOperand(1).getValueType();
10562     if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
10563       return DAG.getNode(
10564           ISD::FNEG, dl, VT,
10565           DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2),
10566                       DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3))));
10567     return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1),
10568                        Op.getOperand(2), Op.getOperand(3));
10569   }
10570   case Intrinsic::ppc_convert_f128_to_ppcf128:
10571   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10572     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10573                             ? RTLIB::CONVERT_PPCF128_F128
10574                             : RTLIB::CONVERT_F128_PPCF128;
10575     MakeLibCallOptions CallOptions;
10576     std::pair<SDValue, SDValue> Result =
10577         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10578                     dl, SDValue());
10579     return Result.first;
10580   }
10581   case Intrinsic::ppc_maxfe:
10582   case Intrinsic::ppc_maxfl:
10583   case Intrinsic::ppc_maxfs:
10584   case Intrinsic::ppc_minfe:
10585   case Intrinsic::ppc_minfl:
10586   case Intrinsic::ppc_minfs: {
10587     EVT VT = Op.getValueType();
10588     assert(
10589         all_of(Op->ops().drop_front(4),
10590                [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&
10591         "ppc_[max|min]f[e|l|s] must have uniform type arguments");
10592     (void)VT;
10593     ISD::CondCode CC = ISD::SETGT;
10594     if (IntrinsicID == Intrinsic::ppc_minfe ||
10595         IntrinsicID == Intrinsic::ppc_minfl ||
10596         IntrinsicID == Intrinsic::ppc_minfs)
10597       CC = ISD::SETLT;
10598     unsigned I = Op.getNumOperands() - 2, Cnt = I;
10599     SDValue Res = Op.getOperand(I);
10600     for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) {
10601       Res =
10602           DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC);
10603     }
10604     return Res;
10605   }
10606   }
10607 
10608   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10609   // opcode number of the comparison.
10610   int CompareOpc;
10611   bool isDot;
10612   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10613     return SDValue();    // Don't custom lower most intrinsics.
10614 
10615   // If this is a non-dot comparison, make the VCMP node and we are done.
10616   if (!isDot) {
10617     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10618                               Op.getOperand(1), Op.getOperand(2),
10619                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10620     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10621   }
10622 
10623   // Create the PPCISD altivec 'dot' comparison node.
10624   SDValue Ops[] = {
10625     Op.getOperand(2),  // LHS
10626     Op.getOperand(3),  // RHS
10627     DAG.getConstant(CompareOpc, dl, MVT::i32)
10628   };
10629   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10630   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10631 
10632   // Now that we have the comparison, emit a copy from the CR to a GPR.
10633   // This is flagged to the above dot comparison.
10634   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10635                                 DAG.getRegister(PPC::CR6, MVT::i32),
10636                                 CompNode.getValue(1));
10637 
10638   // Unpack the result based on how the target uses it.
10639   unsigned BitNo;   // Bit # of CR6.
10640   bool InvertBit;   // Invert result?
10641   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10642   default:  // Can't happen, don't crash on invalid number though.
10643   case 0:   // Return the value of the EQ bit of CR6.
10644     BitNo = 0; InvertBit = false;
10645     break;
10646   case 1:   // Return the inverted value of the EQ bit of CR6.
10647     BitNo = 0; InvertBit = true;
10648     break;
10649   case 2:   // Return the value of the LT bit of CR6.
10650     BitNo = 2; InvertBit = false;
10651     break;
10652   case 3:   // Return the inverted value of the LT bit of CR6.
10653     BitNo = 2; InvertBit = true;
10654     break;
10655   }
10656 
10657   // Shift the bit into the low position.
10658   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10659                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10660   // Isolate the bit.
10661   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10662                       DAG.getConstant(1, dl, MVT::i32));
10663 
10664   // If we are supposed to, toggle the bit.
10665   if (InvertBit)
10666     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10667                         DAG.getConstant(1, dl, MVT::i32));
10668   return Flags;
10669 }
10670 
10671 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10672                                                SelectionDAG &DAG) const {
10673   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10674   // the beginning of the argument list.
10675   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10676   SDLoc DL(Op);
10677   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10678   case Intrinsic::ppc_cfence: {
10679     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10680     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10681     SDValue Val = Op.getOperand(ArgStart + 1);
10682     EVT Ty = Val.getValueType();
10683     if (Ty == MVT::i128) {
10684       // FIXME: Testing one of two paired registers is sufficient to guarantee
10685       // ordering?
10686       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10687     }
10688     return SDValue(
10689         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10690                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10691                            Op.getOperand(0)),
10692         0);
10693   }
10694   default:
10695     break;
10696   }
10697   return SDValue();
10698 }
10699 
10700 // Lower scalar BSWAP64 to xxbrd.
10701 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10702   SDLoc dl(Op);
10703   if (!Subtarget.isPPC64())
10704     return Op;
10705   // MTVSRDD
10706   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10707                    Op.getOperand(0));
10708   // XXBRD
10709   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10710   // MFVSRD
10711   int VectorIndex = 0;
10712   if (Subtarget.isLittleEndian())
10713     VectorIndex = 1;
10714   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10715                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10716   return Op;
10717 }
10718 
10719 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10720 // compared to a value that is atomically loaded (atomic loads zero-extend).
10721 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10722                                                 SelectionDAG &DAG) const {
10723   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10724          "Expecting an atomic compare-and-swap here.");
10725   SDLoc dl(Op);
10726   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10727   EVT MemVT = AtomicNode->getMemoryVT();
10728   if (MemVT.getSizeInBits() >= 32)
10729     return Op;
10730 
10731   SDValue CmpOp = Op.getOperand(2);
10732   // If this is already correctly zero-extended, leave it alone.
10733   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10734   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10735     return Op;
10736 
10737   // Clear the high bits of the compare operand.
10738   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10739   SDValue NewCmpOp =
10740     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10741                 DAG.getConstant(MaskVal, dl, MVT::i32));
10742 
10743   // Replace the existing compare operand with the properly zero-extended one.
10744   SmallVector<SDValue, 4> Ops;
10745   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10746     Ops.push_back(AtomicNode->getOperand(i));
10747   Ops[2] = NewCmpOp;
10748   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10749   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10750   auto NodeTy =
10751     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10752   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10753 }
10754 
10755 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10756                                                   SelectionDAG &DAG) const {
10757   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10758   EVT MemVT = N->getMemoryVT();
10759   assert(MemVT.getSimpleVT() == MVT::i128 &&
10760          "Expect quadword atomic operations");
10761   SDLoc dl(N);
10762   unsigned Opc = N->getOpcode();
10763   switch (Opc) {
10764   case ISD::ATOMIC_LOAD: {
10765     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10766     // lowered to ppc instructions by pattern matching instruction selector.
10767     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10768     SmallVector<SDValue, 4> Ops{
10769         N->getOperand(0),
10770         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10771     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10772       Ops.push_back(N->getOperand(I));
10773     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10774                                                 Ops, MemVT, N->getMemOperand());
10775     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10776     SDValue ValHi =
10777         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10778     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10779                         DAG.getConstant(64, dl, MVT::i32));
10780     SDValue Val =
10781         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10782     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10783                        {Val, LoadedVal.getValue(2)});
10784   }
10785   case ISD::ATOMIC_STORE: {
10786     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10787     // lowered to ppc instructions by pattern matching instruction selector.
10788     SDVTList Tys = DAG.getVTList(MVT::Other);
10789     SmallVector<SDValue, 4> Ops{
10790         N->getOperand(0),
10791         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10792     SDValue Val = N->getOperand(2);
10793     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10794     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10795                                 DAG.getConstant(64, dl, MVT::i32));
10796     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10797     Ops.push_back(ValLo);
10798     Ops.push_back(ValHi);
10799     Ops.push_back(N->getOperand(1));
10800     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10801                                    N->getMemOperand());
10802   }
10803   default:
10804     llvm_unreachable("Unexpected atomic opcode");
10805   }
10806 }
10807 
10808 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10809                                                  SelectionDAG &DAG) const {
10810   SDLoc dl(Op);
10811   // Create a stack slot that is 16-byte aligned.
10812   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10813   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10814   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10815   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10816 
10817   // Store the input value into Value#0 of the stack slot.
10818   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10819                                MachinePointerInfo());
10820   // Load it out.
10821   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10822 }
10823 
10824 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10825                                                   SelectionDAG &DAG) const {
10826   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10827          "Should only be called for ISD::INSERT_VECTOR_ELT");
10828 
10829   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10830 
10831   EVT VT = Op.getValueType();
10832   SDLoc dl(Op);
10833   SDValue V1 = Op.getOperand(0);
10834   SDValue V2 = Op.getOperand(1);
10835 
10836   if (VT == MVT::v2f64 && C)
10837     return Op;
10838 
10839   if (Subtarget.hasP9Vector()) {
10840     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10841     // because on P10, it allows this specific insert_vector_elt load pattern to
10842     // utilize the refactored load and store infrastructure in order to exploit
10843     // prefixed loads.
10844     // On targets with inexpensive direct moves (Power9 and up), a
10845     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10846     // load since a single precision load will involve conversion to double
10847     // precision on the load followed by another conversion to single precision.
10848     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
10849         (isa<LoadSDNode>(V2))) {
10850       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
10851       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
10852       SDValue InsVecElt =
10853           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
10854                       BitcastLoad, Op.getOperand(2));
10855       return DAG.getBitcast(MVT::v4f32, InsVecElt);
10856     }
10857   }
10858 
10859   if (Subtarget.isISA3_1()) {
10860     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10861       return SDValue();
10862     // On P10, we have legal lowering for constant and variable indices for
10863     // all vectors.
10864     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10865         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10866       return Op;
10867   }
10868 
10869   // Before P10, we have legal lowering for constant indices but not for
10870   // variable ones.
10871   if (!C)
10872     return SDValue();
10873 
10874   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10875   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10876     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10877     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10878     unsigned InsertAtElement = C->getZExtValue();
10879     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10880     if (Subtarget.isLittleEndian()) {
10881       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10882     }
10883     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10884                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10885   }
10886   return Op;
10887 }
10888 
10889 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10890                                            SelectionDAG &DAG) const {
10891   SDLoc dl(Op);
10892   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10893   SDValue LoadChain = LN->getChain();
10894   SDValue BasePtr = LN->getBasePtr();
10895   EVT VT = Op.getValueType();
10896 
10897   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10898     return Op;
10899 
10900   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10901   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10902   // 2 or 4 vsx registers.
10903   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10904          "Type unsupported without MMA");
10905   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10906          "Type unsupported without paired vector support");
10907   Align Alignment = LN->getAlign();
10908   SmallVector<SDValue, 4> Loads;
10909   SmallVector<SDValue, 4> LoadChains;
10910   unsigned NumVecs = VT.getSizeInBits() / 128;
10911   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10912     SDValue Load =
10913         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10914                     LN->getPointerInfo().getWithOffset(Idx * 16),
10915                     commonAlignment(Alignment, Idx * 16),
10916                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10917     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10918                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10919     Loads.push_back(Load);
10920     LoadChains.push_back(Load.getValue(1));
10921   }
10922   if (Subtarget.isLittleEndian()) {
10923     std::reverse(Loads.begin(), Loads.end());
10924     std::reverse(LoadChains.begin(), LoadChains.end());
10925   }
10926   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10927   SDValue Value =
10928       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10929                   dl, VT, Loads);
10930   SDValue RetOps[] = {Value, TF};
10931   return DAG.getMergeValues(RetOps, dl);
10932 }
10933 
10934 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10935                                             SelectionDAG &DAG) const {
10936   SDLoc dl(Op);
10937   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10938   SDValue StoreChain = SN->getChain();
10939   SDValue BasePtr = SN->getBasePtr();
10940   SDValue Value = SN->getValue();
10941   EVT StoreVT = Value.getValueType();
10942 
10943   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10944     return Op;
10945 
10946   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10947   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10948   // underlying registers individually.
10949   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10950          "Type unsupported without MMA");
10951   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10952          "Type unsupported without paired vector support");
10953   Align Alignment = SN->getAlign();
10954   SmallVector<SDValue, 4> Stores;
10955   unsigned NumVecs = 2;
10956   if (StoreVT == MVT::v512i1) {
10957     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10958     NumVecs = 4;
10959   }
10960   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10961     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10962     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10963                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10964     SDValue Store =
10965         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10966                      SN->getPointerInfo().getWithOffset(Idx * 16),
10967                      commonAlignment(Alignment, Idx * 16),
10968                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10969     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10970                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10971     Stores.push_back(Store);
10972   }
10973   SDValue TF = DAG.getTokenFactor(dl, Stores);
10974   return TF;
10975 }
10976 
10977 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10978   SDLoc dl(Op);
10979   if (Op.getValueType() == MVT::v4i32) {
10980     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10981 
10982     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10983     // +16 as shift amt.
10984     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10985     SDValue RHSSwap =   // = vrlw RHS, 16
10986       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10987 
10988     // Shrinkify inputs to v8i16.
10989     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10990     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10991     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10992 
10993     // Low parts multiplied together, generating 32-bit results (we ignore the
10994     // top parts).
10995     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10996                                         LHS, RHS, DAG, dl, MVT::v4i32);
10997 
10998     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10999                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
11000     // Shift the high parts up 16 bits.
11001     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
11002                               Neg16, DAG, dl);
11003     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
11004   } else if (Op.getValueType() == MVT::v16i8) {
11005     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11006     bool isLittleEndian = Subtarget.isLittleEndian();
11007 
11008     // Multiply the even 8-bit parts, producing 16-bit sums.
11009     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
11010                                            LHS, RHS, DAG, dl, MVT::v8i16);
11011     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
11012 
11013     // Multiply the odd 8-bit parts, producing 16-bit sums.
11014     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
11015                                           LHS, RHS, DAG, dl, MVT::v8i16);
11016     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
11017 
11018     // Merge the results together.  Because vmuleub and vmuloub are
11019     // instructions with a big-endian bias, we must reverse the
11020     // element numbering and reverse the meaning of "odd" and "even"
11021     // when generating little endian code.
11022     int Ops[16];
11023     for (unsigned i = 0; i != 8; ++i) {
11024       if (isLittleEndian) {
11025         Ops[i*2  ] = 2*i;
11026         Ops[i*2+1] = 2*i+16;
11027       } else {
11028         Ops[i*2  ] = 2*i+1;
11029         Ops[i*2+1] = 2*i+1+16;
11030       }
11031     }
11032     if (isLittleEndian)
11033       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11034     else
11035       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11036   } else {
11037     llvm_unreachable("Unknown mul to lower!");
11038   }
11039 }
11040 
11041 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11042   bool IsStrict = Op->isStrictFPOpcode();
11043   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
11044       !Subtarget.hasP9Vector())
11045     return SDValue();
11046 
11047   return Op;
11048 }
11049 
11050 // Custom lowering for fpext vf32 to v2f64
11051 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11052 
11053   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11054          "Should only be called for ISD::FP_EXTEND");
11055 
11056   // FIXME: handle extends from half precision float vectors on P9.
11057   // We only want to custom lower an extend from v2f32 to v2f64.
11058   if (Op.getValueType() != MVT::v2f64 ||
11059       Op.getOperand(0).getValueType() != MVT::v2f32)
11060     return SDValue();
11061 
11062   SDLoc dl(Op);
11063   SDValue Op0 = Op.getOperand(0);
11064 
11065   switch (Op0.getOpcode()) {
11066   default:
11067     return SDValue();
11068   case ISD::EXTRACT_SUBVECTOR: {
11069     assert(Op0.getNumOperands() == 2 &&
11070            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11071            "Node should have 2 operands with second one being a constant!");
11072 
11073     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11074       return SDValue();
11075 
11076     // Custom lower is only done for high or low doubleword.
11077     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11078     if (Idx % 2 != 0)
11079       return SDValue();
11080 
11081     // Since input is v4f32, at this point Idx is either 0 or 2.
11082     // Shift to get the doubleword position we want.
11083     int DWord = Idx >> 1;
11084 
11085     // High and low word positions are different on little endian.
11086     if (Subtarget.isLittleEndian())
11087       DWord ^= 0x1;
11088 
11089     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11090                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11091   }
11092   case ISD::FADD:
11093   case ISD::FMUL:
11094   case ISD::FSUB: {
11095     SDValue NewLoad[2];
11096     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11097       // Ensure both input are loads.
11098       SDValue LdOp = Op0.getOperand(i);
11099       if (LdOp.getOpcode() != ISD::LOAD)
11100         return SDValue();
11101       // Generate new load node.
11102       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11103       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11104       NewLoad[i] = DAG.getMemIntrinsicNode(
11105           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11106           LD->getMemoryVT(), LD->getMemOperand());
11107     }
11108     SDValue NewOp =
11109         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11110                     NewLoad[1], Op0.getNode()->getFlags());
11111     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11112                        DAG.getConstant(0, dl, MVT::i32));
11113   }
11114   case ISD::LOAD: {
11115     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11116     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11117     SDValue NewLd = DAG.getMemIntrinsicNode(
11118         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11119         LD->getMemoryVT(), LD->getMemOperand());
11120     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11121                        DAG.getConstant(0, dl, MVT::i32));
11122   }
11123   }
11124   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11125 }
11126 
11127 /// LowerOperation - Provide custom lowering hooks for some operations.
11128 ///
11129 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11130   switch (Op.getOpcode()) {
11131   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11132   case ISD::FPOW:               return lowerPow(Op, DAG);
11133   case ISD::FSIN:               return lowerSin(Op, DAG);
11134   case ISD::FCOS:               return lowerCos(Op, DAG);
11135   case ISD::FLOG:               return lowerLog(Op, DAG);
11136   case ISD::FLOG10:             return lowerLog10(Op, DAG);
11137   case ISD::FEXP:               return lowerExp(Op, DAG);
11138   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11139   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11140   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11141   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11142   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11143   case ISD::STRICT_FSETCC:
11144   case ISD::STRICT_FSETCCS:
11145   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11146   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11147   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11148 
11149   case ISD::INLINEASM:
11150   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11151   // Variable argument lowering.
11152   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11153   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11154   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11155 
11156   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11157   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11158   case ISD::GET_DYNAMIC_AREA_OFFSET:
11159     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11160 
11161   // Exception handling lowering.
11162   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11163   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11164   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11165 
11166   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11167   case ISD::STORE:              return LowerSTORE(Op, DAG);
11168   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11169   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11170   case ISD::STRICT_FP_TO_UINT:
11171   case ISD::STRICT_FP_TO_SINT:
11172   case ISD::FP_TO_UINT:
11173   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11174   case ISD::STRICT_UINT_TO_FP:
11175   case ISD::STRICT_SINT_TO_FP:
11176   case ISD::UINT_TO_FP:
11177   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11178   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11179 
11180   // Lower 64-bit shifts.
11181   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11182   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11183   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11184 
11185   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11186   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11187 
11188   // Vector-related lowering.
11189   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11190   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11191   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11192   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11193   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11194   case ISD::MUL:                return LowerMUL(Op, DAG);
11195   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11196   case ISD::STRICT_FP_ROUND:
11197   case ISD::FP_ROUND:
11198     return LowerFP_ROUND(Op, DAG);
11199   case ISD::ROTL:               return LowerROTL(Op, DAG);
11200 
11201   // For counter-based loop handling.
11202   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11203 
11204   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11205 
11206   // Frame & Return address.
11207   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11208   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11209 
11210   case ISD::INTRINSIC_VOID:
11211     return LowerINTRINSIC_VOID(Op, DAG);
11212   case ISD::BSWAP:
11213     return LowerBSWAP(Op, DAG);
11214   case ISD::ATOMIC_CMP_SWAP:
11215     return LowerATOMIC_CMP_SWAP(Op, DAG);
11216   case ISD::ATOMIC_STORE:
11217     return LowerATOMIC_LOAD_STORE(Op, DAG);
11218   }
11219 }
11220 
11221 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11222                                            SmallVectorImpl<SDValue>&Results,
11223                                            SelectionDAG &DAG) const {
11224   SDLoc dl(N);
11225   switch (N->getOpcode()) {
11226   default:
11227     llvm_unreachable("Do not know how to custom type legalize this operation!");
11228   case ISD::ATOMIC_LOAD: {
11229     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11230     Results.push_back(Res);
11231     Results.push_back(Res.getValue(1));
11232     break;
11233   }
11234   case ISD::READCYCLECOUNTER: {
11235     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11236     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11237 
11238     Results.push_back(
11239         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11240     Results.push_back(RTB.getValue(2));
11241     break;
11242   }
11243   case ISD::INTRINSIC_W_CHAIN: {
11244     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11245         Intrinsic::loop_decrement)
11246       break;
11247 
11248     assert(N->getValueType(0) == MVT::i1 &&
11249            "Unexpected result type for CTR decrement intrinsic");
11250     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11251                                  N->getValueType(0));
11252     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11253     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11254                                  N->getOperand(1));
11255 
11256     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11257     Results.push_back(NewInt.getValue(1));
11258     break;
11259   }
11260   case ISD::INTRINSIC_WO_CHAIN: {
11261     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11262     case Intrinsic::ppc_pack_longdouble:
11263       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11264                                     N->getOperand(2), N->getOperand(1)));
11265       break;
11266     case Intrinsic::ppc_maxfe:
11267     case Intrinsic::ppc_minfe:
11268     case Intrinsic::ppc_fnmsub:
11269     case Intrinsic::ppc_convert_f128_to_ppcf128:
11270       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11271       break;
11272     }
11273     break;
11274   }
11275   case ISD::VAARG: {
11276     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11277       return;
11278 
11279     EVT VT = N->getValueType(0);
11280 
11281     if (VT == MVT::i64) {
11282       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11283 
11284       Results.push_back(NewNode);
11285       Results.push_back(NewNode.getValue(1));
11286     }
11287     return;
11288   }
11289   case ISD::STRICT_FP_TO_SINT:
11290   case ISD::STRICT_FP_TO_UINT:
11291   case ISD::FP_TO_SINT:
11292   case ISD::FP_TO_UINT: {
11293     // LowerFP_TO_INT() can only handle f32 and f64.
11294     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11295         MVT::ppcf128)
11296       return;
11297     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11298     Results.push_back(LoweredValue);
11299     if (N->isStrictFPOpcode())
11300       Results.push_back(LoweredValue.getValue(1));
11301     return;
11302   }
11303   case ISD::TRUNCATE: {
11304     if (!N->getValueType(0).isVector())
11305       return;
11306     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11307     if (Lowered)
11308       Results.push_back(Lowered);
11309     return;
11310   }
11311   case ISD::FSHL:
11312   case ISD::FSHR:
11313     // Don't handle funnel shifts here.
11314     return;
11315   case ISD::BITCAST:
11316     // Don't handle bitcast here.
11317     return;
11318   case ISD::FP_EXTEND:
11319     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11320     if (Lowered)
11321       Results.push_back(Lowered);
11322     return;
11323   }
11324 }
11325 
11326 //===----------------------------------------------------------------------===//
11327 //  Other Lowering Code
11328 //===----------------------------------------------------------------------===//
11329 
11330 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11331   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11332   Function *Func = Intrinsic::getDeclaration(M, Id);
11333   return Builder.CreateCall(Func, {});
11334 }
11335 
11336 // The mappings for emitLeading/TrailingFence is taken from
11337 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11338 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11339                                                  Instruction *Inst,
11340                                                  AtomicOrdering Ord) const {
11341   if (Ord == AtomicOrdering::SequentiallyConsistent)
11342     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11343   if (isReleaseOrStronger(Ord))
11344     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11345   return nullptr;
11346 }
11347 
11348 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11349                                                   Instruction *Inst,
11350                                                   AtomicOrdering Ord) const {
11351   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11352     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11353     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11354     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11355     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11356       return Builder.CreateCall(
11357           Intrinsic::getDeclaration(
11358               Builder.GetInsertBlock()->getParent()->getParent(),
11359               Intrinsic::ppc_cfence, {Inst->getType()}),
11360           {Inst});
11361     // FIXME: Can use isync for rmw operation.
11362     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11363   }
11364   return nullptr;
11365 }
11366 
11367 MachineBasicBlock *
11368 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11369                                     unsigned AtomicSize,
11370                                     unsigned BinOpcode,
11371                                     unsigned CmpOpcode,
11372                                     unsigned CmpPred) const {
11373   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11374   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11375 
11376   auto LoadMnemonic = PPC::LDARX;
11377   auto StoreMnemonic = PPC::STDCX;
11378   switch (AtomicSize) {
11379   default:
11380     llvm_unreachable("Unexpected size of atomic entity");
11381   case 1:
11382     LoadMnemonic = PPC::LBARX;
11383     StoreMnemonic = PPC::STBCX;
11384     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11385     break;
11386   case 2:
11387     LoadMnemonic = PPC::LHARX;
11388     StoreMnemonic = PPC::STHCX;
11389     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11390     break;
11391   case 4:
11392     LoadMnemonic = PPC::LWARX;
11393     StoreMnemonic = PPC::STWCX;
11394     break;
11395   case 8:
11396     LoadMnemonic = PPC::LDARX;
11397     StoreMnemonic = PPC::STDCX;
11398     break;
11399   }
11400 
11401   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11402   MachineFunction *F = BB->getParent();
11403   MachineFunction::iterator It = ++BB->getIterator();
11404 
11405   Register dest = MI.getOperand(0).getReg();
11406   Register ptrA = MI.getOperand(1).getReg();
11407   Register ptrB = MI.getOperand(2).getReg();
11408   Register incr = MI.getOperand(3).getReg();
11409   DebugLoc dl = MI.getDebugLoc();
11410 
11411   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11412   MachineBasicBlock *loop2MBB =
11413     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11414   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11415   F->insert(It, loopMBB);
11416   if (CmpOpcode)
11417     F->insert(It, loop2MBB);
11418   F->insert(It, exitMBB);
11419   exitMBB->splice(exitMBB->begin(), BB,
11420                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11421   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11422 
11423   MachineRegisterInfo &RegInfo = F->getRegInfo();
11424   Register TmpReg = (!BinOpcode) ? incr :
11425     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11426                                            : &PPC::GPRCRegClass);
11427 
11428   //  thisMBB:
11429   //   ...
11430   //   fallthrough --> loopMBB
11431   BB->addSuccessor(loopMBB);
11432 
11433   //  loopMBB:
11434   //   l[wd]arx dest, ptr
11435   //   add r0, dest, incr
11436   //   st[wd]cx. r0, ptr
11437   //   bne- loopMBB
11438   //   fallthrough --> exitMBB
11439 
11440   // For max/min...
11441   //  loopMBB:
11442   //   l[wd]arx dest, ptr
11443   //   cmpl?[wd] incr, dest
11444   //   bgt exitMBB
11445   //  loop2MBB:
11446   //   st[wd]cx. dest, ptr
11447   //   bne- loopMBB
11448   //   fallthrough --> exitMBB
11449 
11450   BB = loopMBB;
11451   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11452     .addReg(ptrA).addReg(ptrB);
11453   if (BinOpcode)
11454     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11455   if (CmpOpcode) {
11456     // Signed comparisons of byte or halfword values must be sign-extended.
11457     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11458       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11459       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11460               ExtReg).addReg(dest);
11461       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11462         .addReg(incr).addReg(ExtReg);
11463     } else
11464       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11465         .addReg(incr).addReg(dest);
11466 
11467     BuildMI(BB, dl, TII->get(PPC::BCC))
11468       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11469     BB->addSuccessor(loop2MBB);
11470     BB->addSuccessor(exitMBB);
11471     BB = loop2MBB;
11472   }
11473   BuildMI(BB, dl, TII->get(StoreMnemonic))
11474     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11475   BuildMI(BB, dl, TII->get(PPC::BCC))
11476     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11477   BB->addSuccessor(loopMBB);
11478   BB->addSuccessor(exitMBB);
11479 
11480   //  exitMBB:
11481   //   ...
11482   BB = exitMBB;
11483   return BB;
11484 }
11485 
11486 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11487   switch(MI.getOpcode()) {
11488   default:
11489     return false;
11490   case PPC::COPY:
11491     return TII->isSignExtended(MI);
11492   case PPC::LHA:
11493   case PPC::LHA8:
11494   case PPC::LHAU:
11495   case PPC::LHAU8:
11496   case PPC::LHAUX:
11497   case PPC::LHAUX8:
11498   case PPC::LHAX:
11499   case PPC::LHAX8:
11500   case PPC::LWA:
11501   case PPC::LWAUX:
11502   case PPC::LWAX:
11503   case PPC::LWAX_32:
11504   case PPC::LWA_32:
11505   case PPC::PLHA:
11506   case PPC::PLHA8:
11507   case PPC::PLHA8pc:
11508   case PPC::PLHApc:
11509   case PPC::PLWA:
11510   case PPC::PLWA8:
11511   case PPC::PLWA8pc:
11512   case PPC::PLWApc:
11513   case PPC::EXTSB:
11514   case PPC::EXTSB8:
11515   case PPC::EXTSB8_32_64:
11516   case PPC::EXTSB8_rec:
11517   case PPC::EXTSB_rec:
11518   case PPC::EXTSH:
11519   case PPC::EXTSH8:
11520   case PPC::EXTSH8_32_64:
11521   case PPC::EXTSH8_rec:
11522   case PPC::EXTSH_rec:
11523   case PPC::EXTSW:
11524   case PPC::EXTSWSLI:
11525   case PPC::EXTSWSLI_32_64:
11526   case PPC::EXTSWSLI_32_64_rec:
11527   case PPC::EXTSWSLI_rec:
11528   case PPC::EXTSW_32:
11529   case PPC::EXTSW_32_64:
11530   case PPC::EXTSW_32_64_rec:
11531   case PPC::EXTSW_rec:
11532   case PPC::SRAW:
11533   case PPC::SRAWI:
11534   case PPC::SRAWI_rec:
11535   case PPC::SRAW_rec:
11536     return true;
11537   }
11538   return false;
11539 }
11540 
11541 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11542     MachineInstr &MI, MachineBasicBlock *BB,
11543     bool is8bit, // operation
11544     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11545   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11546   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11547 
11548   // If this is a signed comparison and the value being compared is not known
11549   // to be sign extended, sign extend it here.
11550   DebugLoc dl = MI.getDebugLoc();
11551   MachineFunction *F = BB->getParent();
11552   MachineRegisterInfo &RegInfo = F->getRegInfo();
11553   Register incr = MI.getOperand(3).getReg();
11554   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11555     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11556 
11557   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11558     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11559     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11560         .addReg(MI.getOperand(3).getReg());
11561     MI.getOperand(3).setReg(ValueReg);
11562   }
11563   // If we support part-word atomic mnemonics, just use them
11564   if (Subtarget.hasPartwordAtomics())
11565     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11566                             CmpPred);
11567 
11568   // In 64 bit mode we have to use 64 bits for addresses, even though the
11569   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11570   // registers without caring whether they're 32 or 64, but here we're
11571   // doing actual arithmetic on the addresses.
11572   bool is64bit = Subtarget.isPPC64();
11573   bool isLittleEndian = Subtarget.isLittleEndian();
11574   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11575 
11576   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11577   MachineFunction::iterator It = ++BB->getIterator();
11578 
11579   Register dest = MI.getOperand(0).getReg();
11580   Register ptrA = MI.getOperand(1).getReg();
11581   Register ptrB = MI.getOperand(2).getReg();
11582 
11583   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11584   MachineBasicBlock *loop2MBB =
11585       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11586   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11587   F->insert(It, loopMBB);
11588   if (CmpOpcode)
11589     F->insert(It, loop2MBB);
11590   F->insert(It, exitMBB);
11591   exitMBB->splice(exitMBB->begin(), BB,
11592                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11593   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11594 
11595   const TargetRegisterClass *RC =
11596       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11597   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11598 
11599   Register PtrReg = RegInfo.createVirtualRegister(RC);
11600   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11601   Register ShiftReg =
11602       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11603   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11604   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11605   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11606   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11607   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11608   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11609   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11610   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11611   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11612   Register Ptr1Reg;
11613   Register TmpReg =
11614       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11615 
11616   //  thisMBB:
11617   //   ...
11618   //   fallthrough --> loopMBB
11619   BB->addSuccessor(loopMBB);
11620 
11621   // The 4-byte load must be aligned, while a char or short may be
11622   // anywhere in the word.  Hence all this nasty bookkeeping code.
11623   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11624   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11625   //   xori shift, shift1, 24 [16]
11626   //   rlwinm ptr, ptr1, 0, 0, 29
11627   //   slw incr2, incr, shift
11628   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11629   //   slw mask, mask2, shift
11630   //  loopMBB:
11631   //   lwarx tmpDest, ptr
11632   //   add tmp, tmpDest, incr2
11633   //   andc tmp2, tmpDest, mask
11634   //   and tmp3, tmp, mask
11635   //   or tmp4, tmp3, tmp2
11636   //   stwcx. tmp4, ptr
11637   //   bne- loopMBB
11638   //   fallthrough --> exitMBB
11639   //   srw SrwDest, tmpDest, shift
11640   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11641   if (ptrA != ZeroReg) {
11642     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11643     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11644         .addReg(ptrA)
11645         .addReg(ptrB);
11646   } else {
11647     Ptr1Reg = ptrB;
11648   }
11649   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11650   // mode.
11651   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11652       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11653       .addImm(3)
11654       .addImm(27)
11655       .addImm(is8bit ? 28 : 27);
11656   if (!isLittleEndian)
11657     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11658         .addReg(Shift1Reg)
11659         .addImm(is8bit ? 24 : 16);
11660   if (is64bit)
11661     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11662         .addReg(Ptr1Reg)
11663         .addImm(0)
11664         .addImm(61);
11665   else
11666     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11667         .addReg(Ptr1Reg)
11668         .addImm(0)
11669         .addImm(0)
11670         .addImm(29);
11671   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11672   if (is8bit)
11673     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11674   else {
11675     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11676     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11677         .addReg(Mask3Reg)
11678         .addImm(65535);
11679   }
11680   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11681       .addReg(Mask2Reg)
11682       .addReg(ShiftReg);
11683 
11684   BB = loopMBB;
11685   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11686       .addReg(ZeroReg)
11687       .addReg(PtrReg);
11688   if (BinOpcode)
11689     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11690         .addReg(Incr2Reg)
11691         .addReg(TmpDestReg);
11692   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11693       .addReg(TmpDestReg)
11694       .addReg(MaskReg);
11695   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11696   if (CmpOpcode) {
11697     // For unsigned comparisons, we can directly compare the shifted values.
11698     // For signed comparisons we shift and sign extend.
11699     Register SReg = RegInfo.createVirtualRegister(GPRC);
11700     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11701         .addReg(TmpDestReg)
11702         .addReg(MaskReg);
11703     unsigned ValueReg = SReg;
11704     unsigned CmpReg = Incr2Reg;
11705     if (CmpOpcode == PPC::CMPW) {
11706       ValueReg = RegInfo.createVirtualRegister(GPRC);
11707       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11708           .addReg(SReg)
11709           .addReg(ShiftReg);
11710       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11711       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11712           .addReg(ValueReg);
11713       ValueReg = ValueSReg;
11714       CmpReg = incr;
11715     }
11716     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11717         .addReg(CmpReg)
11718         .addReg(ValueReg);
11719     BuildMI(BB, dl, TII->get(PPC::BCC))
11720         .addImm(CmpPred)
11721         .addReg(PPC::CR0)
11722         .addMBB(exitMBB);
11723     BB->addSuccessor(loop2MBB);
11724     BB->addSuccessor(exitMBB);
11725     BB = loop2MBB;
11726   }
11727   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11728   BuildMI(BB, dl, TII->get(PPC::STWCX))
11729       .addReg(Tmp4Reg)
11730       .addReg(ZeroReg)
11731       .addReg(PtrReg);
11732   BuildMI(BB, dl, TII->get(PPC::BCC))
11733       .addImm(PPC::PRED_NE)
11734       .addReg(PPC::CR0)
11735       .addMBB(loopMBB);
11736   BB->addSuccessor(loopMBB);
11737   BB->addSuccessor(exitMBB);
11738 
11739   //  exitMBB:
11740   //   ...
11741   BB = exitMBB;
11742   // Since the shift amount is not a constant, we need to clear
11743   // the upper bits with a separate RLWINM.
11744   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11745       .addReg(SrwDestReg)
11746       .addImm(0)
11747       .addImm(is8bit ? 24 : 16)
11748       .addImm(31);
11749   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11750       .addReg(TmpDestReg)
11751       .addReg(ShiftReg);
11752   return BB;
11753 }
11754 
11755 llvm::MachineBasicBlock *
11756 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11757                                     MachineBasicBlock *MBB) const {
11758   DebugLoc DL = MI.getDebugLoc();
11759   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11760   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11761 
11762   MachineFunction *MF = MBB->getParent();
11763   MachineRegisterInfo &MRI = MF->getRegInfo();
11764 
11765   const BasicBlock *BB = MBB->getBasicBlock();
11766   MachineFunction::iterator I = ++MBB->getIterator();
11767 
11768   Register DstReg = MI.getOperand(0).getReg();
11769   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11770   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11771   Register mainDstReg = MRI.createVirtualRegister(RC);
11772   Register restoreDstReg = MRI.createVirtualRegister(RC);
11773 
11774   MVT PVT = getPointerTy(MF->getDataLayout());
11775   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11776          "Invalid Pointer Size!");
11777   // For v = setjmp(buf), we generate
11778   //
11779   // thisMBB:
11780   //  SjLjSetup mainMBB
11781   //  bl mainMBB
11782   //  v_restore = 1
11783   //  b sinkMBB
11784   //
11785   // mainMBB:
11786   //  buf[LabelOffset] = LR
11787   //  v_main = 0
11788   //
11789   // sinkMBB:
11790   //  v = phi(main, restore)
11791   //
11792 
11793   MachineBasicBlock *thisMBB = MBB;
11794   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11795   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11796   MF->insert(I, mainMBB);
11797   MF->insert(I, sinkMBB);
11798 
11799   MachineInstrBuilder MIB;
11800 
11801   // Transfer the remainder of BB and its successor edges to sinkMBB.
11802   sinkMBB->splice(sinkMBB->begin(), MBB,
11803                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11804   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11805 
11806   // Note that the structure of the jmp_buf used here is not compatible
11807   // with that used by libc, and is not designed to be. Specifically, it
11808   // stores only those 'reserved' registers that LLVM does not otherwise
11809   // understand how to spill. Also, by convention, by the time this
11810   // intrinsic is called, Clang has already stored the frame address in the
11811   // first slot of the buffer and stack address in the third. Following the
11812   // X86 target code, we'll store the jump address in the second slot. We also
11813   // need to save the TOC pointer (R2) to handle jumps between shared
11814   // libraries, and that will be stored in the fourth slot. The thread
11815   // identifier (R13) is not affected.
11816 
11817   // thisMBB:
11818   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11819   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11820   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11821 
11822   // Prepare IP either in reg.
11823   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11824   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11825   Register BufReg = MI.getOperand(1).getReg();
11826 
11827   if (Subtarget.is64BitELFABI()) {
11828     setUsesTOCBasePtr(*MBB->getParent());
11829     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11830               .addReg(PPC::X2)
11831               .addImm(TOCOffset)
11832               .addReg(BufReg)
11833               .cloneMemRefs(MI);
11834   }
11835 
11836   // Naked functions never have a base pointer, and so we use r1. For all
11837   // other functions, this decision must be delayed until during PEI.
11838   unsigned BaseReg;
11839   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11840     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11841   else
11842     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11843 
11844   MIB = BuildMI(*thisMBB, MI, DL,
11845                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11846             .addReg(BaseReg)
11847             .addImm(BPOffset)
11848             .addReg(BufReg)
11849             .cloneMemRefs(MI);
11850 
11851   // Setup
11852   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11853   MIB.addRegMask(TRI->getNoPreservedMask());
11854 
11855   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11856 
11857   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11858           .addMBB(mainMBB);
11859   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11860 
11861   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11862   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11863 
11864   // mainMBB:
11865   //  mainDstReg = 0
11866   MIB =
11867       BuildMI(mainMBB, DL,
11868               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11869 
11870   // Store IP
11871   if (Subtarget.isPPC64()) {
11872     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11873             .addReg(LabelReg)
11874             .addImm(LabelOffset)
11875             .addReg(BufReg);
11876   } else {
11877     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11878             .addReg(LabelReg)
11879             .addImm(LabelOffset)
11880             .addReg(BufReg);
11881   }
11882   MIB.cloneMemRefs(MI);
11883 
11884   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11885   mainMBB->addSuccessor(sinkMBB);
11886 
11887   // sinkMBB:
11888   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11889           TII->get(PPC::PHI), DstReg)
11890     .addReg(mainDstReg).addMBB(mainMBB)
11891     .addReg(restoreDstReg).addMBB(thisMBB);
11892 
11893   MI.eraseFromParent();
11894   return sinkMBB;
11895 }
11896 
11897 MachineBasicBlock *
11898 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11899                                      MachineBasicBlock *MBB) const {
11900   DebugLoc DL = MI.getDebugLoc();
11901   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11902 
11903   MachineFunction *MF = MBB->getParent();
11904   MachineRegisterInfo &MRI = MF->getRegInfo();
11905 
11906   MVT PVT = getPointerTy(MF->getDataLayout());
11907   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11908          "Invalid Pointer Size!");
11909 
11910   const TargetRegisterClass *RC =
11911     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11912   Register Tmp = MRI.createVirtualRegister(RC);
11913   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11914   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11915   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11916   unsigned BP =
11917       (PVT == MVT::i64)
11918           ? PPC::X30
11919           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11920                                                               : PPC::R30);
11921 
11922   MachineInstrBuilder MIB;
11923 
11924   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11925   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11926   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11927   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11928 
11929   Register BufReg = MI.getOperand(0).getReg();
11930 
11931   // Reload FP (the jumped-to function may not have had a
11932   // frame pointer, and if so, then its r31 will be restored
11933   // as necessary).
11934   if (PVT == MVT::i64) {
11935     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11936             .addImm(0)
11937             .addReg(BufReg);
11938   } else {
11939     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11940             .addImm(0)
11941             .addReg(BufReg);
11942   }
11943   MIB.cloneMemRefs(MI);
11944 
11945   // Reload IP
11946   if (PVT == MVT::i64) {
11947     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11948             .addImm(LabelOffset)
11949             .addReg(BufReg);
11950   } else {
11951     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11952             .addImm(LabelOffset)
11953             .addReg(BufReg);
11954   }
11955   MIB.cloneMemRefs(MI);
11956 
11957   // Reload SP
11958   if (PVT == MVT::i64) {
11959     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11960             .addImm(SPOffset)
11961             .addReg(BufReg);
11962   } else {
11963     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11964             .addImm(SPOffset)
11965             .addReg(BufReg);
11966   }
11967   MIB.cloneMemRefs(MI);
11968 
11969   // Reload BP
11970   if (PVT == MVT::i64) {
11971     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11972             .addImm(BPOffset)
11973             .addReg(BufReg);
11974   } else {
11975     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11976             .addImm(BPOffset)
11977             .addReg(BufReg);
11978   }
11979   MIB.cloneMemRefs(MI);
11980 
11981   // Reload TOC
11982   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11983     setUsesTOCBasePtr(*MBB->getParent());
11984     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11985               .addImm(TOCOffset)
11986               .addReg(BufReg)
11987               .cloneMemRefs(MI);
11988   }
11989 
11990   // Jump
11991   BuildMI(*MBB, MI, DL,
11992           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11993   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11994 
11995   MI.eraseFromParent();
11996   return MBB;
11997 }
11998 
11999 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
12000   // If the function specifically requests inline stack probes, emit them.
12001   if (MF.getFunction().hasFnAttribute("probe-stack"))
12002     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
12003            "inline-asm";
12004   return false;
12005 }
12006 
12007 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
12008   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
12009   unsigned StackAlign = TFI->getStackAlignment();
12010   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
12011          "Unexpected stack alignment");
12012   // The default stack probe size is 4096 if the function has no
12013   // stack-probe-size attribute.
12014   unsigned StackProbeSize = 4096;
12015   const Function &Fn = MF.getFunction();
12016   if (Fn.hasFnAttribute("stack-probe-size"))
12017     Fn.getFnAttribute("stack-probe-size")
12018         .getValueAsString()
12019         .getAsInteger(0, StackProbeSize);
12020   // Round down to the stack alignment.
12021   StackProbeSize &= ~(StackAlign - 1);
12022   return StackProbeSize ? StackProbeSize : StackAlign;
12023 }
12024 
12025 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
12026 // into three phases. In the first phase, it uses pseudo instruction
12027 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
12028 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
12029 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
12030 // MaxCallFrameSize so that it can calculate correct data area pointer.
12031 MachineBasicBlock *
12032 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
12033                                     MachineBasicBlock *MBB) const {
12034   const bool isPPC64 = Subtarget.isPPC64();
12035   MachineFunction *MF = MBB->getParent();
12036   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12037   DebugLoc DL = MI.getDebugLoc();
12038   const unsigned ProbeSize = getStackProbeSize(*MF);
12039   const BasicBlock *ProbedBB = MBB->getBasicBlock();
12040   MachineRegisterInfo &MRI = MF->getRegInfo();
12041   // The CFG of probing stack looks as
12042   //         +-----+
12043   //         | MBB |
12044   //         +--+--+
12045   //            |
12046   //       +----v----+
12047   //  +--->+ TestMBB +---+
12048   //  |    +----+----+   |
12049   //  |         |        |
12050   //  |   +-----v----+   |
12051   //  +---+ BlockMBB |   |
12052   //      +----------+   |
12053   //                     |
12054   //       +---------+   |
12055   //       | TailMBB +<--+
12056   //       +---------+
12057   // In MBB, calculate previous frame pointer and final stack pointer.
12058   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12059   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12060   // TailMBB is spliced via \p MI.
12061   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12062   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12063   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12064 
12065   MachineFunction::iterator MBBIter = ++MBB->getIterator();
12066   MF->insert(MBBIter, TestMBB);
12067   MF->insert(MBBIter, BlockMBB);
12068   MF->insert(MBBIter, TailMBB);
12069 
12070   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12071   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12072 
12073   Register DstReg = MI.getOperand(0).getReg();
12074   Register NegSizeReg = MI.getOperand(1).getReg();
12075   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12076   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12077   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12078   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12079 
12080   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12081   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12082   // NegSize.
12083   unsigned ProbeOpc;
12084   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12085     ProbeOpc =
12086         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12087   else
12088     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12089     // and NegSizeReg will be allocated in the same phyreg to avoid
12090     // redundant copy when NegSizeReg has only one use which is current MI and
12091     // will be replaced by PREPARE_PROBED_ALLOCA then.
12092     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12093                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12094   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12095       .addDef(ActualNegSizeReg)
12096       .addReg(NegSizeReg)
12097       .add(MI.getOperand(2))
12098       .add(MI.getOperand(3));
12099 
12100   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12101   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12102           FinalStackPtr)
12103       .addReg(SPReg)
12104       .addReg(ActualNegSizeReg);
12105 
12106   // Materialize a scratch register for update.
12107   int64_t NegProbeSize = -(int64_t)ProbeSize;
12108   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12109   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12110   if (!isInt<16>(NegProbeSize)) {
12111     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12112     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12113         .addImm(NegProbeSize >> 16);
12114     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12115             ScratchReg)
12116         .addReg(TempReg)
12117         .addImm(NegProbeSize & 0xFFFF);
12118   } else
12119     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12120         .addImm(NegProbeSize);
12121 
12122   {
12123     // Probing leading residual part.
12124     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12125     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12126         .addReg(ActualNegSizeReg)
12127         .addReg(ScratchReg);
12128     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12129     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12130         .addReg(Div)
12131         .addReg(ScratchReg);
12132     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12133     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12134         .addReg(Mul)
12135         .addReg(ActualNegSizeReg);
12136     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12137         .addReg(FramePointer)
12138         .addReg(SPReg)
12139         .addReg(NegMod);
12140   }
12141 
12142   {
12143     // Remaining part should be multiple of ProbeSize.
12144     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12145     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12146         .addReg(SPReg)
12147         .addReg(FinalStackPtr);
12148     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12149         .addImm(PPC::PRED_EQ)
12150         .addReg(CmpResult)
12151         .addMBB(TailMBB);
12152     TestMBB->addSuccessor(BlockMBB);
12153     TestMBB->addSuccessor(TailMBB);
12154   }
12155 
12156   {
12157     // Touch the block.
12158     // |P...|P...|P...
12159     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12160         .addReg(FramePointer)
12161         .addReg(SPReg)
12162         .addReg(ScratchReg);
12163     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12164     BlockMBB->addSuccessor(TestMBB);
12165   }
12166 
12167   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12168   // DYNAREAOFFSET pseudo instruction to get the future result.
12169   Register MaxCallFrameSizeReg =
12170       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12171   BuildMI(TailMBB, DL,
12172           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12173           MaxCallFrameSizeReg)
12174       .add(MI.getOperand(2))
12175       .add(MI.getOperand(3));
12176   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12177       .addReg(SPReg)
12178       .addReg(MaxCallFrameSizeReg);
12179 
12180   // Splice instructions after MI to TailMBB.
12181   TailMBB->splice(TailMBB->end(), MBB,
12182                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12183   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12184   MBB->addSuccessor(TestMBB);
12185 
12186   // Delete the pseudo instruction.
12187   MI.eraseFromParent();
12188 
12189   ++NumDynamicAllocaProbed;
12190   return TailMBB;
12191 }
12192 
12193 MachineBasicBlock *
12194 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12195                                                MachineBasicBlock *BB) const {
12196   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12197       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12198     if (Subtarget.is64BitELFABI() &&
12199         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12200         !Subtarget.isUsingPCRelativeCalls()) {
12201       // Call lowering should have added an r2 operand to indicate a dependence
12202       // on the TOC base pointer value. It can't however, because there is no
12203       // way to mark the dependence as implicit there, and so the stackmap code
12204       // will confuse it with a regular operand. Instead, add the dependence
12205       // here.
12206       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12207     }
12208 
12209     return emitPatchPoint(MI, BB);
12210   }
12211 
12212   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12213       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12214     return emitEHSjLjSetJmp(MI, BB);
12215   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12216              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12217     return emitEHSjLjLongJmp(MI, BB);
12218   }
12219 
12220   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12221 
12222   // To "insert" these instructions we actually have to insert their
12223   // control-flow patterns.
12224   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12225   MachineFunction::iterator It = ++BB->getIterator();
12226 
12227   MachineFunction *F = BB->getParent();
12228   MachineRegisterInfo &MRI = F->getRegInfo();
12229 
12230   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12231       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12232       MI.getOpcode() == PPC::SELECT_I8) {
12233     SmallVector<MachineOperand, 2> Cond;
12234     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12235         MI.getOpcode() == PPC::SELECT_CC_I8)
12236       Cond.push_back(MI.getOperand(4));
12237     else
12238       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12239     Cond.push_back(MI.getOperand(1));
12240 
12241     DebugLoc dl = MI.getDebugLoc();
12242     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12243                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12244   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12245              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12246              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12247              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12248              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12249              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12250              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12251              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12252              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12253              MI.getOpcode() == PPC::SELECT_F4 ||
12254              MI.getOpcode() == PPC::SELECT_F8 ||
12255              MI.getOpcode() == PPC::SELECT_F16 ||
12256              MI.getOpcode() == PPC::SELECT_SPE ||
12257              MI.getOpcode() == PPC::SELECT_SPE4 ||
12258              MI.getOpcode() == PPC::SELECT_VRRC ||
12259              MI.getOpcode() == PPC::SELECT_VSFRC ||
12260              MI.getOpcode() == PPC::SELECT_VSSRC ||
12261              MI.getOpcode() == PPC::SELECT_VSRC) {
12262     // The incoming instruction knows the destination vreg to set, the
12263     // condition code register to branch on, the true/false values to
12264     // select between, and a branch opcode to use.
12265 
12266     //  thisMBB:
12267     //  ...
12268     //   TrueVal = ...
12269     //   cmpTY ccX, r1, r2
12270     //   bCC copy1MBB
12271     //   fallthrough --> copy0MBB
12272     MachineBasicBlock *thisMBB = BB;
12273     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12274     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12275     DebugLoc dl = MI.getDebugLoc();
12276     F->insert(It, copy0MBB);
12277     F->insert(It, sinkMBB);
12278 
12279     // Transfer the remainder of BB and its successor edges to sinkMBB.
12280     sinkMBB->splice(sinkMBB->begin(), BB,
12281                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12282     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12283 
12284     // Next, add the true and fallthrough blocks as its successors.
12285     BB->addSuccessor(copy0MBB);
12286     BB->addSuccessor(sinkMBB);
12287 
12288     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12289         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12290         MI.getOpcode() == PPC::SELECT_F16 ||
12291         MI.getOpcode() == PPC::SELECT_SPE4 ||
12292         MI.getOpcode() == PPC::SELECT_SPE ||
12293         MI.getOpcode() == PPC::SELECT_VRRC ||
12294         MI.getOpcode() == PPC::SELECT_VSFRC ||
12295         MI.getOpcode() == PPC::SELECT_VSSRC ||
12296         MI.getOpcode() == PPC::SELECT_VSRC) {
12297       BuildMI(BB, dl, TII->get(PPC::BC))
12298           .addReg(MI.getOperand(1).getReg())
12299           .addMBB(sinkMBB);
12300     } else {
12301       unsigned SelectPred = MI.getOperand(4).getImm();
12302       BuildMI(BB, dl, TII->get(PPC::BCC))
12303           .addImm(SelectPred)
12304           .addReg(MI.getOperand(1).getReg())
12305           .addMBB(sinkMBB);
12306     }
12307 
12308     //  copy0MBB:
12309     //   %FalseValue = ...
12310     //   # fallthrough to sinkMBB
12311     BB = copy0MBB;
12312 
12313     // Update machine-CFG edges
12314     BB->addSuccessor(sinkMBB);
12315 
12316     //  sinkMBB:
12317     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12318     //  ...
12319     BB = sinkMBB;
12320     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12321         .addReg(MI.getOperand(3).getReg())
12322         .addMBB(copy0MBB)
12323         .addReg(MI.getOperand(2).getReg())
12324         .addMBB(thisMBB);
12325   } else if (MI.getOpcode() == PPC::ReadTB) {
12326     // To read the 64-bit time-base register on a 32-bit target, we read the
12327     // two halves. Should the counter have wrapped while it was being read, we
12328     // need to try again.
12329     // ...
12330     // readLoop:
12331     // mfspr Rx,TBU # load from TBU
12332     // mfspr Ry,TB  # load from TB
12333     // mfspr Rz,TBU # load from TBU
12334     // cmpw crX,Rx,Rz # check if 'old'='new'
12335     // bne readLoop   # branch if they're not equal
12336     // ...
12337 
12338     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12339     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12340     DebugLoc dl = MI.getDebugLoc();
12341     F->insert(It, readMBB);
12342     F->insert(It, sinkMBB);
12343 
12344     // Transfer the remainder of BB and its successor edges to sinkMBB.
12345     sinkMBB->splice(sinkMBB->begin(), BB,
12346                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12347     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12348 
12349     BB->addSuccessor(readMBB);
12350     BB = readMBB;
12351 
12352     MachineRegisterInfo &RegInfo = F->getRegInfo();
12353     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12354     Register LoReg = MI.getOperand(0).getReg();
12355     Register HiReg = MI.getOperand(1).getReg();
12356 
12357     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12358     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12359     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12360 
12361     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12362 
12363     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12364         .addReg(HiReg)
12365         .addReg(ReadAgainReg);
12366     BuildMI(BB, dl, TII->get(PPC::BCC))
12367         .addImm(PPC::PRED_NE)
12368         .addReg(CmpReg)
12369         .addMBB(readMBB);
12370 
12371     BB->addSuccessor(readMBB);
12372     BB->addSuccessor(sinkMBB);
12373   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12374     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12375   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12376     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12377   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12378     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12380     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12381 
12382   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12383     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12384   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12385     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12387     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12389     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12390 
12391   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12392     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12393   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12394     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12396     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12398     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12399 
12400   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12401     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12402   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12403     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12405     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12407     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12408 
12409   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12410     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12411   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12412     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12413   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12414     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12415   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12416     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12417 
12418   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12419     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12420   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12421     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12422   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12423     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12424   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12425     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12426 
12427   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12428     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12429   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12430     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12431   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12432     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12433   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12434     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12435 
12436   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12437     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12438   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12439     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12440   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12441     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12442   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12443     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12444 
12445   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12446     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12447   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12448     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12449   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12450     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12451   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12452     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12453 
12454   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12455     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12456   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12457     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12458   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12459     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12460   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12461     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12462 
12463   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12464     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12465   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12466     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12467   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12468     BB = EmitAtomicBinary(MI, BB, 4, 0);
12469   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12470     BB = EmitAtomicBinary(MI, BB, 8, 0);
12471   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12472            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12473            (Subtarget.hasPartwordAtomics() &&
12474             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12475            (Subtarget.hasPartwordAtomics() &&
12476             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12477     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12478 
12479     auto LoadMnemonic = PPC::LDARX;
12480     auto StoreMnemonic = PPC::STDCX;
12481     switch (MI.getOpcode()) {
12482     default:
12483       llvm_unreachable("Compare and swap of unknown size");
12484     case PPC::ATOMIC_CMP_SWAP_I8:
12485       LoadMnemonic = PPC::LBARX;
12486       StoreMnemonic = PPC::STBCX;
12487       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12488       break;
12489     case PPC::ATOMIC_CMP_SWAP_I16:
12490       LoadMnemonic = PPC::LHARX;
12491       StoreMnemonic = PPC::STHCX;
12492       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12493       break;
12494     case PPC::ATOMIC_CMP_SWAP_I32:
12495       LoadMnemonic = PPC::LWARX;
12496       StoreMnemonic = PPC::STWCX;
12497       break;
12498     case PPC::ATOMIC_CMP_SWAP_I64:
12499       LoadMnemonic = PPC::LDARX;
12500       StoreMnemonic = PPC::STDCX;
12501       break;
12502     }
12503     Register dest = MI.getOperand(0).getReg();
12504     Register ptrA = MI.getOperand(1).getReg();
12505     Register ptrB = MI.getOperand(2).getReg();
12506     Register oldval = MI.getOperand(3).getReg();
12507     Register newval = MI.getOperand(4).getReg();
12508     DebugLoc dl = MI.getDebugLoc();
12509 
12510     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12511     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12512     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12513     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12514     F->insert(It, loop1MBB);
12515     F->insert(It, loop2MBB);
12516     F->insert(It, midMBB);
12517     F->insert(It, exitMBB);
12518     exitMBB->splice(exitMBB->begin(), BB,
12519                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12520     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12521 
12522     //  thisMBB:
12523     //   ...
12524     //   fallthrough --> loopMBB
12525     BB->addSuccessor(loop1MBB);
12526 
12527     // loop1MBB:
12528     //   l[bhwd]arx dest, ptr
12529     //   cmp[wd] dest, oldval
12530     //   bne- midMBB
12531     // loop2MBB:
12532     //   st[bhwd]cx. newval, ptr
12533     //   bne- loopMBB
12534     //   b exitBB
12535     // midMBB:
12536     //   st[bhwd]cx. dest, ptr
12537     // exitBB:
12538     BB = loop1MBB;
12539     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12540     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12541         .addReg(oldval)
12542         .addReg(dest);
12543     BuildMI(BB, dl, TII->get(PPC::BCC))
12544         .addImm(PPC::PRED_NE)
12545         .addReg(PPC::CR0)
12546         .addMBB(midMBB);
12547     BB->addSuccessor(loop2MBB);
12548     BB->addSuccessor(midMBB);
12549 
12550     BB = loop2MBB;
12551     BuildMI(BB, dl, TII->get(StoreMnemonic))
12552         .addReg(newval)
12553         .addReg(ptrA)
12554         .addReg(ptrB);
12555     BuildMI(BB, dl, TII->get(PPC::BCC))
12556         .addImm(PPC::PRED_NE)
12557         .addReg(PPC::CR0)
12558         .addMBB(loop1MBB);
12559     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12560     BB->addSuccessor(loop1MBB);
12561     BB->addSuccessor(exitMBB);
12562 
12563     BB = midMBB;
12564     BuildMI(BB, dl, TII->get(StoreMnemonic))
12565         .addReg(dest)
12566         .addReg(ptrA)
12567         .addReg(ptrB);
12568     BB->addSuccessor(exitMBB);
12569 
12570     //  exitMBB:
12571     //   ...
12572     BB = exitMBB;
12573   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12574              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12575     // We must use 64-bit registers for addresses when targeting 64-bit,
12576     // since we're actually doing arithmetic on them.  Other registers
12577     // can be 32-bit.
12578     bool is64bit = Subtarget.isPPC64();
12579     bool isLittleEndian = Subtarget.isLittleEndian();
12580     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12581 
12582     Register dest = MI.getOperand(0).getReg();
12583     Register ptrA = MI.getOperand(1).getReg();
12584     Register ptrB = MI.getOperand(2).getReg();
12585     Register oldval = MI.getOperand(3).getReg();
12586     Register newval = MI.getOperand(4).getReg();
12587     DebugLoc dl = MI.getDebugLoc();
12588 
12589     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12590     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12591     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12592     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12593     F->insert(It, loop1MBB);
12594     F->insert(It, loop2MBB);
12595     F->insert(It, midMBB);
12596     F->insert(It, exitMBB);
12597     exitMBB->splice(exitMBB->begin(), BB,
12598                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12599     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12600 
12601     MachineRegisterInfo &RegInfo = F->getRegInfo();
12602     const TargetRegisterClass *RC =
12603         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12604     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12605 
12606     Register PtrReg = RegInfo.createVirtualRegister(RC);
12607     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12608     Register ShiftReg =
12609         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12610     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12611     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12612     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12613     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12614     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12615     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12616     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12617     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12618     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12619     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12620     Register Ptr1Reg;
12621     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12622     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12623     //  thisMBB:
12624     //   ...
12625     //   fallthrough --> loopMBB
12626     BB->addSuccessor(loop1MBB);
12627 
12628     // The 4-byte load must be aligned, while a char or short may be
12629     // anywhere in the word.  Hence all this nasty bookkeeping code.
12630     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12631     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12632     //   xori shift, shift1, 24 [16]
12633     //   rlwinm ptr, ptr1, 0, 0, 29
12634     //   slw newval2, newval, shift
12635     //   slw oldval2, oldval,shift
12636     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12637     //   slw mask, mask2, shift
12638     //   and newval3, newval2, mask
12639     //   and oldval3, oldval2, mask
12640     // loop1MBB:
12641     //   lwarx tmpDest, ptr
12642     //   and tmp, tmpDest, mask
12643     //   cmpw tmp, oldval3
12644     //   bne- midMBB
12645     // loop2MBB:
12646     //   andc tmp2, tmpDest, mask
12647     //   or tmp4, tmp2, newval3
12648     //   stwcx. tmp4, ptr
12649     //   bne- loop1MBB
12650     //   b exitBB
12651     // midMBB:
12652     //   stwcx. tmpDest, ptr
12653     // exitBB:
12654     //   srw dest, tmpDest, shift
12655     if (ptrA != ZeroReg) {
12656       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12657       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12658           .addReg(ptrA)
12659           .addReg(ptrB);
12660     } else {
12661       Ptr1Reg = ptrB;
12662     }
12663 
12664     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12665     // mode.
12666     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12667         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12668         .addImm(3)
12669         .addImm(27)
12670         .addImm(is8bit ? 28 : 27);
12671     if (!isLittleEndian)
12672       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12673           .addReg(Shift1Reg)
12674           .addImm(is8bit ? 24 : 16);
12675     if (is64bit)
12676       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12677           .addReg(Ptr1Reg)
12678           .addImm(0)
12679           .addImm(61);
12680     else
12681       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12682           .addReg(Ptr1Reg)
12683           .addImm(0)
12684           .addImm(0)
12685           .addImm(29);
12686     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12687         .addReg(newval)
12688         .addReg(ShiftReg);
12689     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12690         .addReg(oldval)
12691         .addReg(ShiftReg);
12692     if (is8bit)
12693       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12694     else {
12695       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12696       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12697           .addReg(Mask3Reg)
12698           .addImm(65535);
12699     }
12700     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12701         .addReg(Mask2Reg)
12702         .addReg(ShiftReg);
12703     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12704         .addReg(NewVal2Reg)
12705         .addReg(MaskReg);
12706     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12707         .addReg(OldVal2Reg)
12708         .addReg(MaskReg);
12709 
12710     BB = loop1MBB;
12711     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12712         .addReg(ZeroReg)
12713         .addReg(PtrReg);
12714     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12715         .addReg(TmpDestReg)
12716         .addReg(MaskReg);
12717     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12718         .addReg(TmpReg)
12719         .addReg(OldVal3Reg);
12720     BuildMI(BB, dl, TII->get(PPC::BCC))
12721         .addImm(PPC::PRED_NE)
12722         .addReg(PPC::CR0)
12723         .addMBB(midMBB);
12724     BB->addSuccessor(loop2MBB);
12725     BB->addSuccessor(midMBB);
12726 
12727     BB = loop2MBB;
12728     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12729         .addReg(TmpDestReg)
12730         .addReg(MaskReg);
12731     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12732         .addReg(Tmp2Reg)
12733         .addReg(NewVal3Reg);
12734     BuildMI(BB, dl, TII->get(PPC::STWCX))
12735         .addReg(Tmp4Reg)
12736         .addReg(ZeroReg)
12737         .addReg(PtrReg);
12738     BuildMI(BB, dl, TII->get(PPC::BCC))
12739         .addImm(PPC::PRED_NE)
12740         .addReg(PPC::CR0)
12741         .addMBB(loop1MBB);
12742     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12743     BB->addSuccessor(loop1MBB);
12744     BB->addSuccessor(exitMBB);
12745 
12746     BB = midMBB;
12747     BuildMI(BB, dl, TII->get(PPC::STWCX))
12748         .addReg(TmpDestReg)
12749         .addReg(ZeroReg)
12750         .addReg(PtrReg);
12751     BB->addSuccessor(exitMBB);
12752 
12753     //  exitMBB:
12754     //   ...
12755     BB = exitMBB;
12756     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12757         .addReg(TmpReg)
12758         .addReg(ShiftReg);
12759   } else if (MI.getOpcode() == PPC::FADDrtz) {
12760     // This pseudo performs an FADD with rounding mode temporarily forced
12761     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12762     // is not modeled at the SelectionDAG level.
12763     Register Dest = MI.getOperand(0).getReg();
12764     Register Src1 = MI.getOperand(1).getReg();
12765     Register Src2 = MI.getOperand(2).getReg();
12766     DebugLoc dl = MI.getDebugLoc();
12767 
12768     MachineRegisterInfo &RegInfo = F->getRegInfo();
12769     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12770 
12771     // Save FPSCR value.
12772     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12773 
12774     // Set rounding mode to round-to-zero.
12775     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12776         .addImm(31)
12777         .addReg(PPC::RM, RegState::ImplicitDefine);
12778 
12779     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12780         .addImm(30)
12781         .addReg(PPC::RM, RegState::ImplicitDefine);
12782 
12783     // Perform addition.
12784     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12785                    .addReg(Src1)
12786                    .addReg(Src2);
12787     if (MI.getFlag(MachineInstr::NoFPExcept))
12788       MIB.setMIFlag(MachineInstr::NoFPExcept);
12789 
12790     // Restore FPSCR value.
12791     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12792   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12793              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12794              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12795              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12796     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12797                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12798                           ? PPC::ANDI8_rec
12799                           : PPC::ANDI_rec;
12800     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12801                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12802 
12803     MachineRegisterInfo &RegInfo = F->getRegInfo();
12804     Register Dest = RegInfo.createVirtualRegister(
12805         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12806 
12807     DebugLoc Dl = MI.getDebugLoc();
12808     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12809         .addReg(MI.getOperand(1).getReg())
12810         .addImm(1);
12811     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12812             MI.getOperand(0).getReg())
12813         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12814   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12815     DebugLoc Dl = MI.getDebugLoc();
12816     MachineRegisterInfo &RegInfo = F->getRegInfo();
12817     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12818     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12819     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12820             MI.getOperand(0).getReg())
12821         .addReg(CRReg);
12822   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12823     DebugLoc Dl = MI.getDebugLoc();
12824     unsigned Imm = MI.getOperand(1).getImm();
12825     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12826     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12827             MI.getOperand(0).getReg())
12828         .addReg(PPC::CR0EQ);
12829   } else if (MI.getOpcode() == PPC::SETRNDi) {
12830     DebugLoc dl = MI.getDebugLoc();
12831     Register OldFPSCRReg = MI.getOperand(0).getReg();
12832 
12833     // Save FPSCR value.
12834     if (MRI.use_empty(OldFPSCRReg))
12835       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12836     else
12837       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12838 
12839     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12840     // the following settings:
12841     //   00 Round to nearest
12842     //   01 Round to 0
12843     //   10 Round to +inf
12844     //   11 Round to -inf
12845 
12846     // When the operand is immediate, using the two least significant bits of
12847     // the immediate to set the bits 62:63 of FPSCR.
12848     unsigned Mode = MI.getOperand(1).getImm();
12849     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12850         .addImm(31)
12851         .addReg(PPC::RM, RegState::ImplicitDefine);
12852 
12853     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12854         .addImm(30)
12855         .addReg(PPC::RM, RegState::ImplicitDefine);
12856   } else if (MI.getOpcode() == PPC::SETRND) {
12857     DebugLoc dl = MI.getDebugLoc();
12858 
12859     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12860     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12861     // If the target doesn't have DirectMove, we should use stack to do the
12862     // conversion, because the target doesn't have the instructions like mtvsrd
12863     // or mfvsrd to do this conversion directly.
12864     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12865       if (Subtarget.hasDirectMove()) {
12866         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12867           .addReg(SrcReg);
12868       } else {
12869         // Use stack to do the register copy.
12870         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12871         MachineRegisterInfo &RegInfo = F->getRegInfo();
12872         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12873         if (RC == &PPC::F8RCRegClass) {
12874           // Copy register from F8RCRegClass to G8RCRegclass.
12875           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12876                  "Unsupported RegClass.");
12877 
12878           StoreOp = PPC::STFD;
12879           LoadOp = PPC::LD;
12880         } else {
12881           // Copy register from G8RCRegClass to F8RCRegclass.
12882           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12883                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12884                  "Unsupported RegClass.");
12885         }
12886 
12887         MachineFrameInfo &MFI = F->getFrameInfo();
12888         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12889 
12890         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12891             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12892             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12893             MFI.getObjectAlign(FrameIdx));
12894 
12895         // Store the SrcReg into the stack.
12896         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12897           .addReg(SrcReg)
12898           .addImm(0)
12899           .addFrameIndex(FrameIdx)
12900           .addMemOperand(MMOStore);
12901 
12902         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12903             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12904             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12905             MFI.getObjectAlign(FrameIdx));
12906 
12907         // Load from the stack where SrcReg is stored, and save to DestReg,
12908         // so we have done the RegClass conversion from RegClass::SrcReg to
12909         // RegClass::DestReg.
12910         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12911           .addImm(0)
12912           .addFrameIndex(FrameIdx)
12913           .addMemOperand(MMOLoad);
12914       }
12915     };
12916 
12917     Register OldFPSCRReg = MI.getOperand(0).getReg();
12918 
12919     // Save FPSCR value.
12920     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12921 
12922     // When the operand is gprc register, use two least significant bits of the
12923     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12924     //
12925     // copy OldFPSCRTmpReg, OldFPSCRReg
12926     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12927     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12928     // copy NewFPSCRReg, NewFPSCRTmpReg
12929     // mtfsf 255, NewFPSCRReg
12930     MachineOperand SrcOp = MI.getOperand(1);
12931     MachineRegisterInfo &RegInfo = F->getRegInfo();
12932     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12933 
12934     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12935 
12936     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12937     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12938 
12939     // The first operand of INSERT_SUBREG should be a register which has
12940     // subregisters, we only care about its RegClass, so we should use an
12941     // IMPLICIT_DEF register.
12942     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12943     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12944       .addReg(ImDefReg)
12945       .add(SrcOp)
12946       .addImm(1);
12947 
12948     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12949     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12950       .addReg(OldFPSCRTmpReg)
12951       .addReg(ExtSrcReg)
12952       .addImm(0)
12953       .addImm(62);
12954 
12955     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12956     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12957 
12958     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12959     // bits of FPSCR.
12960     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12961       .addImm(255)
12962       .addReg(NewFPSCRReg)
12963       .addImm(0)
12964       .addImm(0);
12965   } else if (MI.getOpcode() == PPC::SETFLM) {
12966     DebugLoc Dl = MI.getDebugLoc();
12967 
12968     // Result of setflm is previous FPSCR content, so we need to save it first.
12969     Register OldFPSCRReg = MI.getOperand(0).getReg();
12970     if (MRI.use_empty(OldFPSCRReg))
12971       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12972     else
12973       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12974 
12975     // Put bits in 32:63 to FPSCR.
12976     Register NewFPSCRReg = MI.getOperand(1).getReg();
12977     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12978         .addImm(255)
12979         .addReg(NewFPSCRReg)
12980         .addImm(0)
12981         .addImm(0);
12982   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12983              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12984     return emitProbedAlloca(MI, BB);
12985   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12986     DebugLoc DL = MI.getDebugLoc();
12987     Register Src = MI.getOperand(2).getReg();
12988     Register Lo = MI.getOperand(0).getReg();
12989     Register Hi = MI.getOperand(1).getReg();
12990     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12991         .addDef(Lo)
12992         .addUse(Src, 0, PPC::sub_gp8_x1);
12993     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12994         .addDef(Hi)
12995         .addUse(Src, 0, PPC::sub_gp8_x0);
12996   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12997              MI.getOpcode() == PPC::STQX_PSEUDO) {
12998     DebugLoc DL = MI.getDebugLoc();
12999     // Ptr is used as the ptr_rc_no_r0 part
13000     // of LQ/STQ's memory operand and adding result of RA and RB,
13001     // so it has to be g8rc_and_g8rc_nox0.
13002     Register Ptr =
13003         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
13004     Register Val = MI.getOperand(0).getReg();
13005     Register RA = MI.getOperand(1).getReg();
13006     Register RB = MI.getOperand(2).getReg();
13007     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
13008     BuildMI(*BB, MI, DL,
13009             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
13010                                               : TII->get(PPC::STQ))
13011         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
13012         .addImm(0)
13013         .addReg(Ptr);
13014   } else {
13015     llvm_unreachable("Unexpected instr type to insert");
13016   }
13017 
13018   MI.eraseFromParent(); // The pseudo instruction is gone now.
13019   return BB;
13020 }
13021 
13022 //===----------------------------------------------------------------------===//
13023 // Target Optimization Hooks
13024 //===----------------------------------------------------------------------===//
13025 
13026 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
13027   // For the estimates, convergence is quadratic, so we essentially double the
13028   // number of digits correct after every iteration. For both FRE and FRSQRTE,
13029   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
13030   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
13031   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
13032   if (VT.getScalarType() == MVT::f64)
13033     RefinementSteps++;
13034   return RefinementSteps;
13035 }
13036 
13037 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
13038                                             const DenormalMode &Mode) const {
13039   // We only have VSX Vector Test for software Square Root.
13040   EVT VT = Op.getValueType();
13041   if (!isTypeLegal(MVT::i1) ||
13042       (VT != MVT::f64 &&
13043        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
13044     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
13045 
13046   SDLoc DL(Op);
13047   // The output register of FTSQRT is CR field.
13048   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
13049   // ftsqrt BF,FRB
13050   // Let e_b be the unbiased exponent of the double-precision
13051   // floating-point operand in register FRB.
13052   // fe_flag is set to 1 if either of the following conditions occurs.
13053   //   - The double-precision floating-point operand in register FRB is a zero,
13054   //     a NaN, or an infinity, or a negative value.
13055   //   - e_b is less than or equal to -970.
13056   // Otherwise fe_flag is set to 0.
13057   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13058   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13059   // exponent is less than -970)
13060   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13061   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13062                                     FTSQRT, SRIdxVal),
13063                  0);
13064 }
13065 
13066 SDValue
13067 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13068                                                SelectionDAG &DAG) const {
13069   // We only have VSX Vector Square Root.
13070   EVT VT = Op.getValueType();
13071   if (VT != MVT::f64 &&
13072       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13073     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13074 
13075   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13076 }
13077 
13078 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13079                                            int Enabled, int &RefinementSteps,
13080                                            bool &UseOneConstNR,
13081                                            bool Reciprocal) const {
13082   EVT VT = Operand.getValueType();
13083   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13084       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13085       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13086       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13087     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13088       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13089 
13090     // The Newton-Raphson computation with a single constant does not provide
13091     // enough accuracy on some CPUs.
13092     UseOneConstNR = !Subtarget.needsTwoConstNR();
13093     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13094   }
13095   return SDValue();
13096 }
13097 
13098 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13099                                             int Enabled,
13100                                             int &RefinementSteps) const {
13101   EVT VT = Operand.getValueType();
13102   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13103       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13104       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13105       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13106     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13107       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13108     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13109   }
13110   return SDValue();
13111 }
13112 
13113 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13114   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13115   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13116   // enabled for division), this functionality is redundant with the default
13117   // combiner logic (once the division -> reciprocal/multiply transformation
13118   // has taken place). As a result, this matters more for older cores than for
13119   // newer ones.
13120 
13121   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13122   // reciprocal if there are two or more FDIVs (for embedded cores with only
13123   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13124   switch (Subtarget.getCPUDirective()) {
13125   default:
13126     return 3;
13127   case PPC::DIR_440:
13128   case PPC::DIR_A2:
13129   case PPC::DIR_E500:
13130   case PPC::DIR_E500mc:
13131   case PPC::DIR_E5500:
13132     return 2;
13133   }
13134 }
13135 
13136 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13137 // collapsed, and so we need to look through chains of them.
13138 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13139                                      int64_t& Offset, SelectionDAG &DAG) {
13140   if (DAG.isBaseWithConstantOffset(Loc)) {
13141     Base = Loc.getOperand(0);
13142     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13143 
13144     // The base might itself be a base plus an offset, and if so, accumulate
13145     // that as well.
13146     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13147   }
13148 }
13149 
13150 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13151                             unsigned Bytes, int Dist,
13152                             SelectionDAG &DAG) {
13153   if (VT.getSizeInBits() / 8 != Bytes)
13154     return false;
13155 
13156   SDValue BaseLoc = Base->getBasePtr();
13157   if (Loc.getOpcode() == ISD::FrameIndex) {
13158     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13159       return false;
13160     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13161     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13162     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13163     int FS  = MFI.getObjectSize(FI);
13164     int BFS = MFI.getObjectSize(BFI);
13165     if (FS != BFS || FS != (int)Bytes) return false;
13166     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13167   }
13168 
13169   SDValue Base1 = Loc, Base2 = BaseLoc;
13170   int64_t Offset1 = 0, Offset2 = 0;
13171   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13172   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13173   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13174     return true;
13175 
13176   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13177   const GlobalValue *GV1 = nullptr;
13178   const GlobalValue *GV2 = nullptr;
13179   Offset1 = 0;
13180   Offset2 = 0;
13181   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13182   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13183   if (isGA1 && isGA2 && GV1 == GV2)
13184     return Offset1 == (Offset2 + Dist*Bytes);
13185   return false;
13186 }
13187 
13188 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13189 // not enforce equality of the chain operands.
13190 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13191                             unsigned Bytes, int Dist,
13192                             SelectionDAG &DAG) {
13193   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13194     EVT VT = LS->getMemoryVT();
13195     SDValue Loc = LS->getBasePtr();
13196     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13197   }
13198 
13199   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13200     EVT VT;
13201     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13202     default: return false;
13203     case Intrinsic::ppc_altivec_lvx:
13204     case Intrinsic::ppc_altivec_lvxl:
13205     case Intrinsic::ppc_vsx_lxvw4x:
13206     case Intrinsic::ppc_vsx_lxvw4x_be:
13207       VT = MVT::v4i32;
13208       break;
13209     case Intrinsic::ppc_vsx_lxvd2x:
13210     case Intrinsic::ppc_vsx_lxvd2x_be:
13211       VT = MVT::v2f64;
13212       break;
13213     case Intrinsic::ppc_altivec_lvebx:
13214       VT = MVT::i8;
13215       break;
13216     case Intrinsic::ppc_altivec_lvehx:
13217       VT = MVT::i16;
13218       break;
13219     case Intrinsic::ppc_altivec_lvewx:
13220       VT = MVT::i32;
13221       break;
13222     }
13223 
13224     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13225   }
13226 
13227   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13228     EVT VT;
13229     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13230     default: return false;
13231     case Intrinsic::ppc_altivec_stvx:
13232     case Intrinsic::ppc_altivec_stvxl:
13233     case Intrinsic::ppc_vsx_stxvw4x:
13234       VT = MVT::v4i32;
13235       break;
13236     case Intrinsic::ppc_vsx_stxvd2x:
13237       VT = MVT::v2f64;
13238       break;
13239     case Intrinsic::ppc_vsx_stxvw4x_be:
13240       VT = MVT::v4i32;
13241       break;
13242     case Intrinsic::ppc_vsx_stxvd2x_be:
13243       VT = MVT::v2f64;
13244       break;
13245     case Intrinsic::ppc_altivec_stvebx:
13246       VT = MVT::i8;
13247       break;
13248     case Intrinsic::ppc_altivec_stvehx:
13249       VT = MVT::i16;
13250       break;
13251     case Intrinsic::ppc_altivec_stvewx:
13252       VT = MVT::i32;
13253       break;
13254     }
13255 
13256     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13257   }
13258 
13259   return false;
13260 }
13261 
13262 // Return true is there is a nearyby consecutive load to the one provided
13263 // (regardless of alignment). We search up and down the chain, looking though
13264 // token factors and other loads (but nothing else). As a result, a true result
13265 // indicates that it is safe to create a new consecutive load adjacent to the
13266 // load provided.
13267 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13268   SDValue Chain = LD->getChain();
13269   EVT VT = LD->getMemoryVT();
13270 
13271   SmallSet<SDNode *, 16> LoadRoots;
13272   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13273   SmallSet<SDNode *, 16> Visited;
13274 
13275   // First, search up the chain, branching to follow all token-factor operands.
13276   // If we find a consecutive load, then we're done, otherwise, record all
13277   // nodes just above the top-level loads and token factors.
13278   while (!Queue.empty()) {
13279     SDNode *ChainNext = Queue.pop_back_val();
13280     if (!Visited.insert(ChainNext).second)
13281       continue;
13282 
13283     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13284       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13285         return true;
13286 
13287       if (!Visited.count(ChainLD->getChain().getNode()))
13288         Queue.push_back(ChainLD->getChain().getNode());
13289     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13290       for (const SDUse &O : ChainNext->ops())
13291         if (!Visited.count(O.getNode()))
13292           Queue.push_back(O.getNode());
13293     } else
13294       LoadRoots.insert(ChainNext);
13295   }
13296 
13297   // Second, search down the chain, starting from the top-level nodes recorded
13298   // in the first phase. These top-level nodes are the nodes just above all
13299   // loads and token factors. Starting with their uses, recursively look though
13300   // all loads (just the chain uses) and token factors to find a consecutive
13301   // load.
13302   Visited.clear();
13303   Queue.clear();
13304 
13305   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13306        IE = LoadRoots.end(); I != IE; ++I) {
13307     Queue.push_back(*I);
13308 
13309     while (!Queue.empty()) {
13310       SDNode *LoadRoot = Queue.pop_back_val();
13311       if (!Visited.insert(LoadRoot).second)
13312         continue;
13313 
13314       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13315         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13316           return true;
13317 
13318       for (SDNode *U : LoadRoot->uses())
13319         if (((isa<MemSDNode>(U) &&
13320               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13321              U->getOpcode() == ISD::TokenFactor) &&
13322             !Visited.count(U))
13323           Queue.push_back(U);
13324     }
13325   }
13326 
13327   return false;
13328 }
13329 
13330 /// This function is called when we have proved that a SETCC node can be replaced
13331 /// by subtraction (and other supporting instructions) so that the result of
13332 /// comparison is kept in a GPR instead of CR. This function is purely for
13333 /// codegen purposes and has some flags to guide the codegen process.
13334 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13335                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13336   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13337 
13338   // Zero extend the operands to the largest legal integer. Originally, they
13339   // must be of a strictly smaller size.
13340   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13341                          DAG.getConstant(Size, DL, MVT::i32));
13342   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13343                          DAG.getConstant(Size, DL, MVT::i32));
13344 
13345   // Swap if needed. Depends on the condition code.
13346   if (Swap)
13347     std::swap(Op0, Op1);
13348 
13349   // Subtract extended integers.
13350   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13351 
13352   // Move the sign bit to the least significant position and zero out the rest.
13353   // Now the least significant bit carries the result of original comparison.
13354   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13355                              DAG.getConstant(Size - 1, DL, MVT::i32));
13356   auto Final = Shifted;
13357 
13358   // Complement the result if needed. Based on the condition code.
13359   if (Complement)
13360     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13361                         DAG.getConstant(1, DL, MVT::i64));
13362 
13363   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13364 }
13365 
13366 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13367                                                   DAGCombinerInfo &DCI) const {
13368   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13369 
13370   SelectionDAG &DAG = DCI.DAG;
13371   SDLoc DL(N);
13372 
13373   // Size of integers being compared has a critical role in the following
13374   // analysis, so we prefer to do this when all types are legal.
13375   if (!DCI.isAfterLegalizeDAG())
13376     return SDValue();
13377 
13378   // If all users of SETCC extend its value to a legal integer type
13379   // then we replace SETCC with a subtraction
13380   for (const SDNode *U : N->uses())
13381     if (U->getOpcode() != ISD::ZERO_EXTEND)
13382       return SDValue();
13383 
13384   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13385   auto OpSize = N->getOperand(0).getValueSizeInBits();
13386 
13387   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13388 
13389   if (OpSize < Size) {
13390     switch (CC) {
13391     default: break;
13392     case ISD::SETULT:
13393       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13394     case ISD::SETULE:
13395       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13396     case ISD::SETUGT:
13397       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13398     case ISD::SETUGE:
13399       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13400     }
13401   }
13402 
13403   return SDValue();
13404 }
13405 
13406 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13407                                                   DAGCombinerInfo &DCI) const {
13408   SelectionDAG &DAG = DCI.DAG;
13409   SDLoc dl(N);
13410 
13411   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13412   // If we're tracking CR bits, we need to be careful that we don't have:
13413   //   trunc(binary-ops(zext(x), zext(y)))
13414   // or
13415   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13416   // such that we're unnecessarily moving things into GPRs when it would be
13417   // better to keep them in CR bits.
13418 
13419   // Note that trunc here can be an actual i1 trunc, or can be the effective
13420   // truncation that comes from a setcc or select_cc.
13421   if (N->getOpcode() == ISD::TRUNCATE &&
13422       N->getValueType(0) != MVT::i1)
13423     return SDValue();
13424 
13425   if (N->getOperand(0).getValueType() != MVT::i32 &&
13426       N->getOperand(0).getValueType() != MVT::i64)
13427     return SDValue();
13428 
13429   if (N->getOpcode() == ISD::SETCC ||
13430       N->getOpcode() == ISD::SELECT_CC) {
13431     // If we're looking at a comparison, then we need to make sure that the
13432     // high bits (all except for the first) don't matter the result.
13433     ISD::CondCode CC =
13434       cast<CondCodeSDNode>(N->getOperand(
13435         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13436     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13437 
13438     if (ISD::isSignedIntSetCC(CC)) {
13439       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13440           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13441         return SDValue();
13442     } else if (ISD::isUnsignedIntSetCC(CC)) {
13443       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13444                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13445           !DAG.MaskedValueIsZero(N->getOperand(1),
13446                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13447         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13448                                              : SDValue());
13449     } else {
13450       // This is neither a signed nor an unsigned comparison, just make sure
13451       // that the high bits are equal.
13452       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13453       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13454 
13455       // We don't really care about what is known about the first bit (if
13456       // anything), so pretend that it is known zero for both to ensure they can
13457       // be compared as constants.
13458       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13459       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13460 
13461       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13462           Op1Known.getConstant() != Op2Known.getConstant())
13463         return SDValue();
13464     }
13465   }
13466 
13467   // We now know that the higher-order bits are irrelevant, we just need to
13468   // make sure that all of the intermediate operations are bit operations, and
13469   // all inputs are extensions.
13470   if (N->getOperand(0).getOpcode() != ISD::AND &&
13471       N->getOperand(0).getOpcode() != ISD::OR  &&
13472       N->getOperand(0).getOpcode() != ISD::XOR &&
13473       N->getOperand(0).getOpcode() != ISD::SELECT &&
13474       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13475       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13476       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13477       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13478       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13479     return SDValue();
13480 
13481   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13482       N->getOperand(1).getOpcode() != ISD::AND &&
13483       N->getOperand(1).getOpcode() != ISD::OR  &&
13484       N->getOperand(1).getOpcode() != ISD::XOR &&
13485       N->getOperand(1).getOpcode() != ISD::SELECT &&
13486       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13487       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13488       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13489       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13490       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13491     return SDValue();
13492 
13493   SmallVector<SDValue, 4> Inputs;
13494   SmallVector<SDValue, 8> BinOps, PromOps;
13495   SmallPtrSet<SDNode *, 16> Visited;
13496 
13497   for (unsigned i = 0; i < 2; ++i) {
13498     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13499           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13500           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13501           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13502         isa<ConstantSDNode>(N->getOperand(i)))
13503       Inputs.push_back(N->getOperand(i));
13504     else
13505       BinOps.push_back(N->getOperand(i));
13506 
13507     if (N->getOpcode() == ISD::TRUNCATE)
13508       break;
13509   }
13510 
13511   // Visit all inputs, collect all binary operations (and, or, xor and
13512   // select) that are all fed by extensions.
13513   while (!BinOps.empty()) {
13514     SDValue BinOp = BinOps.pop_back_val();
13515 
13516     if (!Visited.insert(BinOp.getNode()).second)
13517       continue;
13518 
13519     PromOps.push_back(BinOp);
13520 
13521     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13522       // The condition of the select is not promoted.
13523       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13524         continue;
13525       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13526         continue;
13527 
13528       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13529             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13530             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13531            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13532           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13533         Inputs.push_back(BinOp.getOperand(i));
13534       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13535                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13536                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13537                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13538                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13539                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13540                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13541                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13542                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13543         BinOps.push_back(BinOp.getOperand(i));
13544       } else {
13545         // We have an input that is not an extension or another binary
13546         // operation; we'll abort this transformation.
13547         return SDValue();
13548       }
13549     }
13550   }
13551 
13552   // Make sure that this is a self-contained cluster of operations (which
13553   // is not quite the same thing as saying that everything has only one
13554   // use).
13555   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13556     if (isa<ConstantSDNode>(Inputs[i]))
13557       continue;
13558 
13559     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13560       if (User != N && !Visited.count(User))
13561         return SDValue();
13562 
13563       // Make sure that we're not going to promote the non-output-value
13564       // operand(s) or SELECT or SELECT_CC.
13565       // FIXME: Although we could sometimes handle this, and it does occur in
13566       // practice that one of the condition inputs to the select is also one of
13567       // the outputs, we currently can't deal with this.
13568       if (User->getOpcode() == ISD::SELECT) {
13569         if (User->getOperand(0) == Inputs[i])
13570           return SDValue();
13571       } else if (User->getOpcode() == ISD::SELECT_CC) {
13572         if (User->getOperand(0) == Inputs[i] ||
13573             User->getOperand(1) == Inputs[i])
13574           return SDValue();
13575       }
13576     }
13577   }
13578 
13579   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13580     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13581       if (User != N && !Visited.count(User))
13582         return SDValue();
13583 
13584       // Make sure that we're not going to promote the non-output-value
13585       // operand(s) or SELECT or SELECT_CC.
13586       // FIXME: Although we could sometimes handle this, and it does occur in
13587       // practice that one of the condition inputs to the select is also one of
13588       // the outputs, we currently can't deal with this.
13589       if (User->getOpcode() == ISD::SELECT) {
13590         if (User->getOperand(0) == PromOps[i])
13591           return SDValue();
13592       } else if (User->getOpcode() == ISD::SELECT_CC) {
13593         if (User->getOperand(0) == PromOps[i] ||
13594             User->getOperand(1) == PromOps[i])
13595           return SDValue();
13596       }
13597     }
13598   }
13599 
13600   // Replace all inputs with the extension operand.
13601   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13602     // Constants may have users outside the cluster of to-be-promoted nodes,
13603     // and so we need to replace those as we do the promotions.
13604     if (isa<ConstantSDNode>(Inputs[i]))
13605       continue;
13606     else
13607       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13608   }
13609 
13610   std::list<HandleSDNode> PromOpHandles;
13611   for (auto &PromOp : PromOps)
13612     PromOpHandles.emplace_back(PromOp);
13613 
13614   // Replace all operations (these are all the same, but have a different
13615   // (i1) return type). DAG.getNode will validate that the types of
13616   // a binary operator match, so go through the list in reverse so that
13617   // we've likely promoted both operands first. Any intermediate truncations or
13618   // extensions disappear.
13619   while (!PromOpHandles.empty()) {
13620     SDValue PromOp = PromOpHandles.back().getValue();
13621     PromOpHandles.pop_back();
13622 
13623     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13624         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13625         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13626         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13627       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13628           PromOp.getOperand(0).getValueType() != MVT::i1) {
13629         // The operand is not yet ready (see comment below).
13630         PromOpHandles.emplace_front(PromOp);
13631         continue;
13632       }
13633 
13634       SDValue RepValue = PromOp.getOperand(0);
13635       if (isa<ConstantSDNode>(RepValue))
13636         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13637 
13638       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13639       continue;
13640     }
13641 
13642     unsigned C;
13643     switch (PromOp.getOpcode()) {
13644     default:             C = 0; break;
13645     case ISD::SELECT:    C = 1; break;
13646     case ISD::SELECT_CC: C = 2; break;
13647     }
13648 
13649     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13650          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13651         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13652          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13653       // The to-be-promoted operands of this node have not yet been
13654       // promoted (this should be rare because we're going through the
13655       // list backward, but if one of the operands has several users in
13656       // this cluster of to-be-promoted nodes, it is possible).
13657       PromOpHandles.emplace_front(PromOp);
13658       continue;
13659     }
13660 
13661     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13662                                 PromOp.getNode()->op_end());
13663 
13664     // If there are any constant inputs, make sure they're replaced now.
13665     for (unsigned i = 0; i < 2; ++i)
13666       if (isa<ConstantSDNode>(Ops[C+i]))
13667         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13668 
13669     DAG.ReplaceAllUsesOfValueWith(PromOp,
13670       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13671   }
13672 
13673   // Now we're left with the initial truncation itself.
13674   if (N->getOpcode() == ISD::TRUNCATE)
13675     return N->getOperand(0);
13676 
13677   // Otherwise, this is a comparison. The operands to be compared have just
13678   // changed type (to i1), but everything else is the same.
13679   return SDValue(N, 0);
13680 }
13681 
13682 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13683                                                   DAGCombinerInfo &DCI) const {
13684   SelectionDAG &DAG = DCI.DAG;
13685   SDLoc dl(N);
13686 
13687   // If we're tracking CR bits, we need to be careful that we don't have:
13688   //   zext(binary-ops(trunc(x), trunc(y)))
13689   // or
13690   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13691   // such that we're unnecessarily moving things into CR bits that can more
13692   // efficiently stay in GPRs. Note that if we're not certain that the high
13693   // bits are set as required by the final extension, we still may need to do
13694   // some masking to get the proper behavior.
13695 
13696   // This same functionality is important on PPC64 when dealing with
13697   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13698   // the return values of functions. Because it is so similar, it is handled
13699   // here as well.
13700 
13701   if (N->getValueType(0) != MVT::i32 &&
13702       N->getValueType(0) != MVT::i64)
13703     return SDValue();
13704 
13705   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13706         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13707     return SDValue();
13708 
13709   if (N->getOperand(0).getOpcode() != ISD::AND &&
13710       N->getOperand(0).getOpcode() != ISD::OR  &&
13711       N->getOperand(0).getOpcode() != ISD::XOR &&
13712       N->getOperand(0).getOpcode() != ISD::SELECT &&
13713       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13714     return SDValue();
13715 
13716   SmallVector<SDValue, 4> Inputs;
13717   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13718   SmallPtrSet<SDNode *, 16> Visited;
13719 
13720   // Visit all inputs, collect all binary operations (and, or, xor and
13721   // select) that are all fed by truncations.
13722   while (!BinOps.empty()) {
13723     SDValue BinOp = BinOps.pop_back_val();
13724 
13725     if (!Visited.insert(BinOp.getNode()).second)
13726       continue;
13727 
13728     PromOps.push_back(BinOp);
13729 
13730     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13731       // The condition of the select is not promoted.
13732       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13733         continue;
13734       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13735         continue;
13736 
13737       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13738           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13739         Inputs.push_back(BinOp.getOperand(i));
13740       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13741                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13742                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13743                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13744                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13745         BinOps.push_back(BinOp.getOperand(i));
13746       } else {
13747         // We have an input that is not a truncation or another binary
13748         // operation; we'll abort this transformation.
13749         return SDValue();
13750       }
13751     }
13752   }
13753 
13754   // The operands of a select that must be truncated when the select is
13755   // promoted because the operand is actually part of the to-be-promoted set.
13756   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13757 
13758   // Make sure that this is a self-contained cluster of operations (which
13759   // is not quite the same thing as saying that everything has only one
13760   // use).
13761   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13762     if (isa<ConstantSDNode>(Inputs[i]))
13763       continue;
13764 
13765     for (SDNode *User : Inputs[i].getNode()->uses()) {
13766       if (User != N && !Visited.count(User))
13767         return SDValue();
13768 
13769       // If we're going to promote the non-output-value operand(s) or SELECT or
13770       // SELECT_CC, record them for truncation.
13771       if (User->getOpcode() == ISD::SELECT) {
13772         if (User->getOperand(0) == Inputs[i])
13773           SelectTruncOp[0].insert(std::make_pair(User,
13774                                     User->getOperand(0).getValueType()));
13775       } else if (User->getOpcode() == ISD::SELECT_CC) {
13776         if (User->getOperand(0) == Inputs[i])
13777           SelectTruncOp[0].insert(std::make_pair(User,
13778                                     User->getOperand(0).getValueType()));
13779         if (User->getOperand(1) == Inputs[i])
13780           SelectTruncOp[1].insert(std::make_pair(User,
13781                                     User->getOperand(1).getValueType()));
13782       }
13783     }
13784   }
13785 
13786   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13787     for (SDNode *User : PromOps[i].getNode()->uses()) {
13788       if (User != N && !Visited.count(User))
13789         return SDValue();
13790 
13791       // If we're going to promote the non-output-value operand(s) or SELECT or
13792       // SELECT_CC, record them for truncation.
13793       if (User->getOpcode() == ISD::SELECT) {
13794         if (User->getOperand(0) == PromOps[i])
13795           SelectTruncOp[0].insert(std::make_pair(User,
13796                                     User->getOperand(0).getValueType()));
13797       } else if (User->getOpcode() == ISD::SELECT_CC) {
13798         if (User->getOperand(0) == PromOps[i])
13799           SelectTruncOp[0].insert(std::make_pair(User,
13800                                     User->getOperand(0).getValueType()));
13801         if (User->getOperand(1) == PromOps[i])
13802           SelectTruncOp[1].insert(std::make_pair(User,
13803                                     User->getOperand(1).getValueType()));
13804       }
13805     }
13806   }
13807 
13808   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13809   bool ReallyNeedsExt = false;
13810   if (N->getOpcode() != ISD::ANY_EXTEND) {
13811     // If all of the inputs are not already sign/zero extended, then
13812     // we'll still need to do that at the end.
13813     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13814       if (isa<ConstantSDNode>(Inputs[i]))
13815         continue;
13816 
13817       unsigned OpBits =
13818         Inputs[i].getOperand(0).getValueSizeInBits();
13819       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13820 
13821       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13822            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13823                                   APInt::getHighBitsSet(OpBits,
13824                                                         OpBits-PromBits))) ||
13825           (N->getOpcode() == ISD::SIGN_EXTEND &&
13826            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13827              (OpBits-(PromBits-1)))) {
13828         ReallyNeedsExt = true;
13829         break;
13830       }
13831     }
13832   }
13833 
13834   // Replace all inputs, either with the truncation operand, or a
13835   // truncation or extension to the final output type.
13836   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13837     // Constant inputs need to be replaced with the to-be-promoted nodes that
13838     // use them because they might have users outside of the cluster of
13839     // promoted nodes.
13840     if (isa<ConstantSDNode>(Inputs[i]))
13841       continue;
13842 
13843     SDValue InSrc = Inputs[i].getOperand(0);
13844     if (Inputs[i].getValueType() == N->getValueType(0))
13845       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13846     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13847       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13848         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13849     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13850       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13851         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13852     else
13853       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13854         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13855   }
13856 
13857   std::list<HandleSDNode> PromOpHandles;
13858   for (auto &PromOp : PromOps)
13859     PromOpHandles.emplace_back(PromOp);
13860 
13861   // Replace all operations (these are all the same, but have a different
13862   // (promoted) return type). DAG.getNode will validate that the types of
13863   // a binary operator match, so go through the list in reverse so that
13864   // we've likely promoted both operands first.
13865   while (!PromOpHandles.empty()) {
13866     SDValue PromOp = PromOpHandles.back().getValue();
13867     PromOpHandles.pop_back();
13868 
13869     unsigned C;
13870     switch (PromOp.getOpcode()) {
13871     default:             C = 0; break;
13872     case ISD::SELECT:    C = 1; break;
13873     case ISD::SELECT_CC: C = 2; break;
13874     }
13875 
13876     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13877          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13878         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13879          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13880       // The to-be-promoted operands of this node have not yet been
13881       // promoted (this should be rare because we're going through the
13882       // list backward, but if one of the operands has several users in
13883       // this cluster of to-be-promoted nodes, it is possible).
13884       PromOpHandles.emplace_front(PromOp);
13885       continue;
13886     }
13887 
13888     // For SELECT and SELECT_CC nodes, we do a similar check for any
13889     // to-be-promoted comparison inputs.
13890     if (PromOp.getOpcode() == ISD::SELECT ||
13891         PromOp.getOpcode() == ISD::SELECT_CC) {
13892       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13893            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13894           (SelectTruncOp[1].count(PromOp.getNode()) &&
13895            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13896         PromOpHandles.emplace_front(PromOp);
13897         continue;
13898       }
13899     }
13900 
13901     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13902                                 PromOp.getNode()->op_end());
13903 
13904     // If this node has constant inputs, then they'll need to be promoted here.
13905     for (unsigned i = 0; i < 2; ++i) {
13906       if (!isa<ConstantSDNode>(Ops[C+i]))
13907         continue;
13908       if (Ops[C+i].getValueType() == N->getValueType(0))
13909         continue;
13910 
13911       if (N->getOpcode() == ISD::SIGN_EXTEND)
13912         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13913       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13914         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13915       else
13916         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13917     }
13918 
13919     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13920     // truncate them again to the original value type.
13921     if (PromOp.getOpcode() == ISD::SELECT ||
13922         PromOp.getOpcode() == ISD::SELECT_CC) {
13923       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13924       if (SI0 != SelectTruncOp[0].end())
13925         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13926       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13927       if (SI1 != SelectTruncOp[1].end())
13928         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13929     }
13930 
13931     DAG.ReplaceAllUsesOfValueWith(PromOp,
13932       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13933   }
13934 
13935   // Now we're left with the initial extension itself.
13936   if (!ReallyNeedsExt)
13937     return N->getOperand(0);
13938 
13939   // To zero extend, just mask off everything except for the first bit (in the
13940   // i1 case).
13941   if (N->getOpcode() == ISD::ZERO_EXTEND)
13942     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13943                        DAG.getConstant(APInt::getLowBitsSet(
13944                                          N->getValueSizeInBits(0), PromBits),
13945                                        dl, N->getValueType(0)));
13946 
13947   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13948          "Invalid extension type");
13949   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13950   SDValue ShiftCst =
13951       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13952   return DAG.getNode(
13953       ISD::SRA, dl, N->getValueType(0),
13954       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13955       ShiftCst);
13956 }
13957 
13958 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13959                                         DAGCombinerInfo &DCI) const {
13960   assert(N->getOpcode() == ISD::SETCC &&
13961          "Should be called with a SETCC node");
13962 
13963   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13964   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13965     SDValue LHS = N->getOperand(0);
13966     SDValue RHS = N->getOperand(1);
13967 
13968     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13969     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13970         LHS.hasOneUse())
13971       std::swap(LHS, RHS);
13972 
13973     // x == 0-y --> x+y == 0
13974     // x != 0-y --> x+y != 0
13975     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13976         RHS.hasOneUse()) {
13977       SDLoc DL(N);
13978       SelectionDAG &DAG = DCI.DAG;
13979       EVT VT = N->getValueType(0);
13980       EVT OpVT = LHS.getValueType();
13981       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13982       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13983     }
13984   }
13985 
13986   return DAGCombineTruncBoolExt(N, DCI);
13987 }
13988 
13989 // Is this an extending load from an f32 to an f64?
13990 static bool isFPExtLoad(SDValue Op) {
13991   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13992     return LD->getExtensionType() == ISD::EXTLOAD &&
13993       Op.getValueType() == MVT::f64;
13994   return false;
13995 }
13996 
13997 /// Reduces the number of fp-to-int conversion when building a vector.
13998 ///
13999 /// If this vector is built out of floating to integer conversions,
14000 /// transform it to a vector built out of floating point values followed by a
14001 /// single floating to integer conversion of the vector.
14002 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
14003 /// becomes (fptosi (build_vector ($A, $B, ...)))
14004 SDValue PPCTargetLowering::
14005 combineElementTruncationToVectorTruncation(SDNode *N,
14006                                            DAGCombinerInfo &DCI) const {
14007   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14008          "Should be called with a BUILD_VECTOR node");
14009 
14010   SelectionDAG &DAG = DCI.DAG;
14011   SDLoc dl(N);
14012 
14013   SDValue FirstInput = N->getOperand(0);
14014   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
14015          "The input operand must be an fp-to-int conversion.");
14016 
14017   // This combine happens after legalization so the fp_to_[su]i nodes are
14018   // already converted to PPCSISD nodes.
14019   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
14020   if (FirstConversion == PPCISD::FCTIDZ ||
14021       FirstConversion == PPCISD::FCTIDUZ ||
14022       FirstConversion == PPCISD::FCTIWZ ||
14023       FirstConversion == PPCISD::FCTIWUZ) {
14024     bool IsSplat = true;
14025     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
14026       FirstConversion == PPCISD::FCTIWUZ;
14027     EVT SrcVT = FirstInput.getOperand(0).getValueType();
14028     SmallVector<SDValue, 4> Ops;
14029     EVT TargetVT = N->getValueType(0);
14030     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14031       SDValue NextOp = N->getOperand(i);
14032       if (NextOp.getOpcode() != PPCISD::MFVSR)
14033         return SDValue();
14034       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
14035       if (NextConversion != FirstConversion)
14036         return SDValue();
14037       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
14038       // This is not valid if the input was originally double precision. It is
14039       // also not profitable to do unless this is an extending load in which
14040       // case doing this combine will allow us to combine consecutive loads.
14041       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
14042         return SDValue();
14043       if (N->getOperand(i) != FirstInput)
14044         IsSplat = false;
14045     }
14046 
14047     // If this is a splat, we leave it as-is since there will be only a single
14048     // fp-to-int conversion followed by a splat of the integer. This is better
14049     // for 32-bit and smaller ints and neutral for 64-bit ints.
14050     if (IsSplat)
14051       return SDValue();
14052 
14053     // Now that we know we have the right type of node, get its operands
14054     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14055       SDValue In = N->getOperand(i).getOperand(0);
14056       if (Is32Bit) {
14057         // For 32-bit values, we need to add an FP_ROUND node (if we made it
14058         // here, we know that all inputs are extending loads so this is safe).
14059         if (In.isUndef())
14060           Ops.push_back(DAG.getUNDEF(SrcVT));
14061         else {
14062           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
14063                                       MVT::f32, In.getOperand(0),
14064                                       DAG.getIntPtrConstant(1, dl));
14065           Ops.push_back(Trunc);
14066         }
14067       } else
14068         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14069     }
14070 
14071     unsigned Opcode;
14072     if (FirstConversion == PPCISD::FCTIDZ ||
14073         FirstConversion == PPCISD::FCTIWZ)
14074       Opcode = ISD::FP_TO_SINT;
14075     else
14076       Opcode = ISD::FP_TO_UINT;
14077 
14078     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14079     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14080     return DAG.getNode(Opcode, dl, TargetVT, BV);
14081   }
14082   return SDValue();
14083 }
14084 
14085 /// Reduce the number of loads when building a vector.
14086 ///
14087 /// Building a vector out of multiple loads can be converted to a load
14088 /// of the vector type if the loads are consecutive. If the loads are
14089 /// consecutive but in descending order, a shuffle is added at the end
14090 /// to reorder the vector.
14091 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14092   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14093          "Should be called with a BUILD_VECTOR node");
14094 
14095   SDLoc dl(N);
14096 
14097   // Return early for non byte-sized type, as they can't be consecutive.
14098   if (!N->getValueType(0).getVectorElementType().isByteSized())
14099     return SDValue();
14100 
14101   bool InputsAreConsecutiveLoads = true;
14102   bool InputsAreReverseConsecutive = true;
14103   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14104   SDValue FirstInput = N->getOperand(0);
14105   bool IsRoundOfExtLoad = false;
14106 
14107   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14108       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14109     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
14110     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
14111   }
14112   // Not a build vector of (possibly fp_rounded) loads.
14113   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14114       N->getNumOperands() == 1)
14115     return SDValue();
14116 
14117   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14118     // If any inputs are fp_round(extload), they all must be.
14119     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14120       return SDValue();
14121 
14122     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14123       N->getOperand(i);
14124     if (NextInput.getOpcode() != ISD::LOAD)
14125       return SDValue();
14126 
14127     SDValue PreviousInput =
14128       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14129     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14130     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14131 
14132     // If any inputs are fp_round(extload), they all must be.
14133     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14134       return SDValue();
14135 
14136     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14137       InputsAreConsecutiveLoads = false;
14138     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14139       InputsAreReverseConsecutive = false;
14140 
14141     // Exit early if the loads are neither consecutive nor reverse consecutive.
14142     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14143       return SDValue();
14144   }
14145 
14146   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14147          "The loads cannot be both consecutive and reverse consecutive.");
14148 
14149   SDValue FirstLoadOp =
14150     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14151   SDValue LastLoadOp =
14152     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14153                        N->getOperand(N->getNumOperands()-1);
14154 
14155   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14156   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14157   if (InputsAreConsecutiveLoads) {
14158     assert(LD1 && "Input needs to be a LoadSDNode.");
14159     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14160                        LD1->getBasePtr(), LD1->getPointerInfo(),
14161                        LD1->getAlignment());
14162   }
14163   if (InputsAreReverseConsecutive) {
14164     assert(LDL && "Input needs to be a LoadSDNode.");
14165     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14166                                LDL->getBasePtr(), LDL->getPointerInfo(),
14167                                LDL->getAlignment());
14168     SmallVector<int, 16> Ops;
14169     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14170       Ops.push_back(i);
14171 
14172     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14173                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14174   }
14175   return SDValue();
14176 }
14177 
14178 // This function adds the required vector_shuffle needed to get
14179 // the elements of the vector extract in the correct position
14180 // as specified by the CorrectElems encoding.
14181 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14182                                       SDValue Input, uint64_t Elems,
14183                                       uint64_t CorrectElems) {
14184   SDLoc dl(N);
14185 
14186   unsigned NumElems = Input.getValueType().getVectorNumElements();
14187   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14188 
14189   // Knowing the element indices being extracted from the original
14190   // vector and the order in which they're being inserted, just put
14191   // them at element indices required for the instruction.
14192   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14193     if (DAG.getDataLayout().isLittleEndian())
14194       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14195     else
14196       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14197     CorrectElems = CorrectElems >> 8;
14198     Elems = Elems >> 8;
14199   }
14200 
14201   SDValue Shuffle =
14202       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14203                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14204 
14205   EVT VT = N->getValueType(0);
14206   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14207 
14208   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14209                                Input.getValueType().getVectorElementType(),
14210                                VT.getVectorNumElements());
14211   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14212                      DAG.getValueType(ExtVT));
14213 }
14214 
14215 // Look for build vector patterns where input operands come from sign
14216 // extended vector_extract elements of specific indices. If the correct indices
14217 // aren't used, add a vector shuffle to fix up the indices and create
14218 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14219 // during instruction selection.
14220 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14221   // This array encodes the indices that the vector sign extend instructions
14222   // extract from when extending from one type to another for both BE and LE.
14223   // The right nibble of each byte corresponds to the LE incides.
14224   // and the left nibble of each byte corresponds to the BE incides.
14225   // For example: 0x3074B8FC  byte->word
14226   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14227   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14228   // For example: 0x000070F8  byte->double word
14229   // For LE: the allowed indices are: 0x0,0x8
14230   // For BE: the allowed indices are: 0x7,0xF
14231   uint64_t TargetElems[] = {
14232       0x3074B8FC, // b->w
14233       0x000070F8, // b->d
14234       0x10325476, // h->w
14235       0x00003074, // h->d
14236       0x00001032, // w->d
14237   };
14238 
14239   uint64_t Elems = 0;
14240   int Index;
14241   SDValue Input;
14242 
14243   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14244     if (!Op)
14245       return false;
14246     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14247         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14248       return false;
14249 
14250     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14251     // of the right width.
14252     SDValue Extract = Op.getOperand(0);
14253     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14254       Extract = Extract.getOperand(0);
14255     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14256       return false;
14257 
14258     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14259     if (!ExtOp)
14260       return false;
14261 
14262     Index = ExtOp->getZExtValue();
14263     if (Input && Input != Extract.getOperand(0))
14264       return false;
14265 
14266     if (!Input)
14267       Input = Extract.getOperand(0);
14268 
14269     Elems = Elems << 8;
14270     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14271     Elems |= Index;
14272 
14273     return true;
14274   };
14275 
14276   // If the build vector operands aren't sign extended vector extracts,
14277   // of the same input vector, then return.
14278   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14279     if (!isSExtOfVecExtract(N->getOperand(i))) {
14280       return SDValue();
14281     }
14282   }
14283 
14284   // If the vector extract indicies are not correct, add the appropriate
14285   // vector_shuffle.
14286   int TgtElemArrayIdx;
14287   int InputSize = Input.getValueType().getScalarSizeInBits();
14288   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14289   if (InputSize + OutputSize == 40)
14290     TgtElemArrayIdx = 0;
14291   else if (InputSize + OutputSize == 72)
14292     TgtElemArrayIdx = 1;
14293   else if (InputSize + OutputSize == 48)
14294     TgtElemArrayIdx = 2;
14295   else if (InputSize + OutputSize == 80)
14296     TgtElemArrayIdx = 3;
14297   else if (InputSize + OutputSize == 96)
14298     TgtElemArrayIdx = 4;
14299   else
14300     return SDValue();
14301 
14302   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14303   CorrectElems = DAG.getDataLayout().isLittleEndian()
14304                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14305                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14306   if (Elems != CorrectElems) {
14307     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14308   }
14309 
14310   // Regular lowering will catch cases where a shuffle is not needed.
14311   return SDValue();
14312 }
14313 
14314 // Look for the pattern of a load from a narrow width to i128, feeding
14315 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14316 // (LXVRZX). This node represents a zero extending load that will be matched
14317 // to the Load VSX Vector Rightmost instructions.
14318 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14319   SDLoc DL(N);
14320 
14321   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14322   if (N->getValueType(0) != MVT::v1i128)
14323     return SDValue();
14324 
14325   SDValue Operand = N->getOperand(0);
14326   // Proceed with the transformation if the operand to the BUILD_VECTOR
14327   // is a load instruction.
14328   if (Operand.getOpcode() != ISD::LOAD)
14329     return SDValue();
14330 
14331   auto *LD = cast<LoadSDNode>(Operand);
14332   EVT MemoryType = LD->getMemoryVT();
14333 
14334   // This transformation is only valid if the we are loading either a byte,
14335   // halfword, word, or doubleword.
14336   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14337                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14338 
14339   // Ensure that the load from the narrow width is being zero extended to i128.
14340   if (!ValidLDType ||
14341       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14342        LD->getExtensionType() != ISD::EXTLOAD))
14343     return SDValue();
14344 
14345   SDValue LoadOps[] = {
14346       LD->getChain(), LD->getBasePtr(),
14347       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14348 
14349   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14350                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14351                                  LoadOps, MemoryType, LD->getMemOperand());
14352 }
14353 
14354 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14355                                                  DAGCombinerInfo &DCI) const {
14356   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14357          "Should be called with a BUILD_VECTOR node");
14358 
14359   SelectionDAG &DAG = DCI.DAG;
14360   SDLoc dl(N);
14361 
14362   if (!Subtarget.hasVSX())
14363     return SDValue();
14364 
14365   // The target independent DAG combiner will leave a build_vector of
14366   // float-to-int conversions intact. We can generate MUCH better code for
14367   // a float-to-int conversion of a vector of floats.
14368   SDValue FirstInput = N->getOperand(0);
14369   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14370     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14371     if (Reduced)
14372       return Reduced;
14373   }
14374 
14375   // If we're building a vector out of consecutive loads, just load that
14376   // vector type.
14377   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14378   if (Reduced)
14379     return Reduced;
14380 
14381   // If we're building a vector out of extended elements from another vector
14382   // we have P9 vector integer extend instructions. The code assumes legal
14383   // input types (i.e. it can't handle things like v4i16) so do not run before
14384   // legalization.
14385   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14386     Reduced = combineBVOfVecSExt(N, DAG);
14387     if (Reduced)
14388       return Reduced;
14389   }
14390 
14391   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14392   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14393   // is a load from <valid narrow width> to i128.
14394   if (Subtarget.isISA3_1()) {
14395     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14396     if (BVOfZLoad)
14397       return BVOfZLoad;
14398   }
14399 
14400   if (N->getValueType(0) != MVT::v2f64)
14401     return SDValue();
14402 
14403   // Looking for:
14404   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14405   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14406       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14407     return SDValue();
14408   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14409       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14410     return SDValue();
14411   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14412     return SDValue();
14413 
14414   SDValue Ext1 = FirstInput.getOperand(0);
14415   SDValue Ext2 = N->getOperand(1).getOperand(0);
14416   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14417      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14418     return SDValue();
14419 
14420   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14421   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14422   if (!Ext1Op || !Ext2Op)
14423     return SDValue();
14424   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14425       Ext1.getOperand(0) != Ext2.getOperand(0))
14426     return SDValue();
14427 
14428   int FirstElem = Ext1Op->getZExtValue();
14429   int SecondElem = Ext2Op->getZExtValue();
14430   int SubvecIdx;
14431   if (FirstElem == 0 && SecondElem == 1)
14432     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14433   else if (FirstElem == 2 && SecondElem == 3)
14434     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14435   else
14436     return SDValue();
14437 
14438   SDValue SrcVec = Ext1.getOperand(0);
14439   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14440     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14441   return DAG.getNode(NodeType, dl, MVT::v2f64,
14442                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14443 }
14444 
14445 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14446                                               DAGCombinerInfo &DCI) const {
14447   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14448           N->getOpcode() == ISD::UINT_TO_FP) &&
14449          "Need an int -> FP conversion node here");
14450 
14451   if (useSoftFloat() || !Subtarget.has64BitSupport())
14452     return SDValue();
14453 
14454   SelectionDAG &DAG = DCI.DAG;
14455   SDLoc dl(N);
14456   SDValue Op(N, 0);
14457 
14458   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14459   // from the hardware.
14460   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14461     return SDValue();
14462   if (!Op.getOperand(0).getValueType().isSimple())
14463     return SDValue();
14464   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14465       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14466     return SDValue();
14467 
14468   SDValue FirstOperand(Op.getOperand(0));
14469   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14470     (FirstOperand.getValueType() == MVT::i8 ||
14471      FirstOperand.getValueType() == MVT::i16);
14472   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14473     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14474     bool DstDouble = Op.getValueType() == MVT::f64;
14475     unsigned ConvOp = Signed ?
14476       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14477       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14478     SDValue WidthConst =
14479       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14480                             dl, false);
14481     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14482     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14483     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14484                                          DAG.getVTList(MVT::f64, MVT::Other),
14485                                          Ops, MVT::i8, LDN->getMemOperand());
14486 
14487     // For signed conversion, we need to sign-extend the value in the VSR
14488     if (Signed) {
14489       SDValue ExtOps[] = { Ld, WidthConst };
14490       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14491       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14492     } else
14493       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14494   }
14495 
14496 
14497   // For i32 intermediate values, unfortunately, the conversion functions
14498   // leave the upper 32 bits of the value are undefined. Within the set of
14499   // scalar instructions, we have no method for zero- or sign-extending the
14500   // value. Thus, we cannot handle i32 intermediate values here.
14501   if (Op.getOperand(0).getValueType() == MVT::i32)
14502     return SDValue();
14503 
14504   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14505          "UINT_TO_FP is supported only with FPCVT");
14506 
14507   // If we have FCFIDS, then use it when converting to single-precision.
14508   // Otherwise, convert to double-precision and then round.
14509   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14510                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14511                                                             : PPCISD::FCFIDS)
14512                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14513                                                             : PPCISD::FCFID);
14514   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14515                   ? MVT::f32
14516                   : MVT::f64;
14517 
14518   // If we're converting from a float, to an int, and back to a float again,
14519   // then we don't need the store/load pair at all.
14520   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14521        Subtarget.hasFPCVT()) ||
14522       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14523     SDValue Src = Op.getOperand(0).getOperand(0);
14524     if (Src.getValueType() == MVT::f32) {
14525       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14526       DCI.AddToWorklist(Src.getNode());
14527     } else if (Src.getValueType() != MVT::f64) {
14528       // Make sure that we don't pick up a ppc_fp128 source value.
14529       return SDValue();
14530     }
14531 
14532     unsigned FCTOp =
14533       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14534                                                         PPCISD::FCTIDUZ;
14535 
14536     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14537     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14538 
14539     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14540       FP = DAG.getNode(ISD::FP_ROUND, dl,
14541                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14542       DCI.AddToWorklist(FP.getNode());
14543     }
14544 
14545     return FP;
14546   }
14547 
14548   return SDValue();
14549 }
14550 
14551 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14552 // builtins) into loads with swaps.
14553 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14554                                               DAGCombinerInfo &DCI) const {
14555   SelectionDAG &DAG = DCI.DAG;
14556   SDLoc dl(N);
14557   SDValue Chain;
14558   SDValue Base;
14559   MachineMemOperand *MMO;
14560 
14561   switch (N->getOpcode()) {
14562   default:
14563     llvm_unreachable("Unexpected opcode for little endian VSX load");
14564   case ISD::LOAD: {
14565     LoadSDNode *LD = cast<LoadSDNode>(N);
14566     Chain = LD->getChain();
14567     Base = LD->getBasePtr();
14568     MMO = LD->getMemOperand();
14569     // If the MMO suggests this isn't a load of a full vector, leave
14570     // things alone.  For a built-in, we have to make the change for
14571     // correctness, so if there is a size problem that will be a bug.
14572     if (MMO->getSize() < 16)
14573       return SDValue();
14574     break;
14575   }
14576   case ISD::INTRINSIC_W_CHAIN: {
14577     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14578     Chain = Intrin->getChain();
14579     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14580     // us what we want. Get operand 2 instead.
14581     Base = Intrin->getOperand(2);
14582     MMO = Intrin->getMemOperand();
14583     break;
14584   }
14585   }
14586 
14587   MVT VecTy = N->getValueType(0).getSimpleVT();
14588 
14589   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14590   // aligned and the type is a vector with elements up to 4 bytes
14591   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14592       VecTy.getScalarSizeInBits() <= 32) {
14593     return SDValue();
14594   }
14595 
14596   SDValue LoadOps[] = { Chain, Base };
14597   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14598                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14599                                          LoadOps, MVT::v2f64, MMO);
14600 
14601   DCI.AddToWorklist(Load.getNode());
14602   Chain = Load.getValue(1);
14603   SDValue Swap = DAG.getNode(
14604       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14605   DCI.AddToWorklist(Swap.getNode());
14606 
14607   // Add a bitcast if the resulting load type doesn't match v2f64.
14608   if (VecTy != MVT::v2f64) {
14609     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14610     DCI.AddToWorklist(N.getNode());
14611     // Package {bitcast value, swap's chain} to match Load's shape.
14612     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14613                        N, Swap.getValue(1));
14614   }
14615 
14616   return Swap;
14617 }
14618 
14619 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14620 // builtins) into stores with swaps.
14621 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14622                                                DAGCombinerInfo &DCI) const {
14623   SelectionDAG &DAG = DCI.DAG;
14624   SDLoc dl(N);
14625   SDValue Chain;
14626   SDValue Base;
14627   unsigned SrcOpnd;
14628   MachineMemOperand *MMO;
14629 
14630   switch (N->getOpcode()) {
14631   default:
14632     llvm_unreachable("Unexpected opcode for little endian VSX store");
14633   case ISD::STORE: {
14634     StoreSDNode *ST = cast<StoreSDNode>(N);
14635     Chain = ST->getChain();
14636     Base = ST->getBasePtr();
14637     MMO = ST->getMemOperand();
14638     SrcOpnd = 1;
14639     // If the MMO suggests this isn't a store of a full vector, leave
14640     // things alone.  For a built-in, we have to make the change for
14641     // correctness, so if there is a size problem that will be a bug.
14642     if (MMO->getSize() < 16)
14643       return SDValue();
14644     break;
14645   }
14646   case ISD::INTRINSIC_VOID: {
14647     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14648     Chain = Intrin->getChain();
14649     // Intrin->getBasePtr() oddly does not get what we want.
14650     Base = Intrin->getOperand(3);
14651     MMO = Intrin->getMemOperand();
14652     SrcOpnd = 2;
14653     break;
14654   }
14655   }
14656 
14657   SDValue Src = N->getOperand(SrcOpnd);
14658   MVT VecTy = Src.getValueType().getSimpleVT();
14659 
14660   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14661   // aligned and the type is a vector with elements up to 4 bytes
14662   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14663       VecTy.getScalarSizeInBits() <= 32) {
14664     return SDValue();
14665   }
14666 
14667   // All stores are done as v2f64 and possible bit cast.
14668   if (VecTy != MVT::v2f64) {
14669     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14670     DCI.AddToWorklist(Src.getNode());
14671   }
14672 
14673   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14674                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14675   DCI.AddToWorklist(Swap.getNode());
14676   Chain = Swap.getValue(1);
14677   SDValue StoreOps[] = { Chain, Swap, Base };
14678   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14679                                           DAG.getVTList(MVT::Other),
14680                                           StoreOps, VecTy, MMO);
14681   DCI.AddToWorklist(Store.getNode());
14682   return Store;
14683 }
14684 
14685 // Handle DAG combine for STORE (FP_TO_INT F).
14686 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14687                                                DAGCombinerInfo &DCI) const {
14688 
14689   SelectionDAG &DAG = DCI.DAG;
14690   SDLoc dl(N);
14691   unsigned Opcode = N->getOperand(1).getOpcode();
14692 
14693   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14694          && "Not a FP_TO_INT Instruction!");
14695 
14696   SDValue Val = N->getOperand(1).getOperand(0);
14697   EVT Op1VT = N->getOperand(1).getValueType();
14698   EVT ResVT = Val.getValueType();
14699 
14700   if (!isTypeLegal(ResVT))
14701     return SDValue();
14702 
14703   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14704   bool ValidTypeForStoreFltAsInt =
14705         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14706          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14707 
14708   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14709     return SDValue();
14710 
14711   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14712       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14713     return SDValue();
14714 
14715   // Extend f32 values to f64
14716   if (ResVT.getScalarSizeInBits() == 32) {
14717     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14718     DCI.AddToWorklist(Val.getNode());
14719   }
14720 
14721   // Set signed or unsigned conversion opcode.
14722   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14723                           PPCISD::FP_TO_SINT_IN_VSR :
14724                           PPCISD::FP_TO_UINT_IN_VSR;
14725 
14726   Val = DAG.getNode(ConvOpcode,
14727                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14728   DCI.AddToWorklist(Val.getNode());
14729 
14730   // Set number of bytes being converted.
14731   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14732   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14733                     DAG.getIntPtrConstant(ByteSize, dl, false),
14734                     DAG.getValueType(Op1VT) };
14735 
14736   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14737           DAG.getVTList(MVT::Other), Ops,
14738           cast<StoreSDNode>(N)->getMemoryVT(),
14739           cast<StoreSDNode>(N)->getMemOperand());
14740 
14741   DCI.AddToWorklist(Val.getNode());
14742   return Val;
14743 }
14744 
14745 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14746   // Check that the source of the element keeps flipping
14747   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14748   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14749   for (int i = 1, e = Mask.size(); i < e; i++) {
14750     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14751       return false;
14752     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14753       return false;
14754     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14755   }
14756   return true;
14757 }
14758 
14759 static bool isSplatBV(SDValue Op) {
14760   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14761     return false;
14762   SDValue FirstOp;
14763 
14764   // Find first non-undef input.
14765   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14766     FirstOp = Op.getOperand(i);
14767     if (!FirstOp.isUndef())
14768       break;
14769   }
14770 
14771   // All inputs are undef or the same as the first non-undef input.
14772   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14773     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14774       return false;
14775   return true;
14776 }
14777 
14778 static SDValue isScalarToVec(SDValue Op) {
14779   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14780     return Op;
14781   if (Op.getOpcode() != ISD::BITCAST)
14782     return SDValue();
14783   Op = Op.getOperand(0);
14784   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14785     return Op;
14786   return SDValue();
14787 }
14788 
14789 // Fix up the shuffle mask to account for the fact that the result of
14790 // scalar_to_vector is not in lane zero. This just takes all values in
14791 // the ranges specified by the min/max indices and adds the number of
14792 // elements required to ensure each element comes from the respective
14793 // position in the valid lane.
14794 // On little endian, that's just the corresponding element in the other
14795 // half of the vector. On big endian, it is in the same half but right
14796 // justified rather than left justified in that half.
14797 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14798                                             int LHSMaxIdx, int RHSMinIdx,
14799                                             int RHSMaxIdx, int HalfVec,
14800                                             unsigned ValidLaneWidth,
14801                                             const PPCSubtarget &Subtarget) {
14802   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14803     int Idx = ShuffV[i];
14804     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14805       ShuffV[i] +=
14806           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14807   }
14808 }
14809 
14810 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14811 // the original is:
14812 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14813 // In such a case, just change the shuffle mask to extract the element
14814 // from the permuted index.
14815 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14816                                const PPCSubtarget &Subtarget) {
14817   SDLoc dl(OrigSToV);
14818   EVT VT = OrigSToV.getValueType();
14819   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14820          "Expecting a SCALAR_TO_VECTOR here");
14821   SDValue Input = OrigSToV.getOperand(0);
14822 
14823   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14824     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14825     SDValue OrigVector = Input.getOperand(0);
14826 
14827     // Can't handle non-const element indices or different vector types
14828     // for the input to the extract and the output of the scalar_to_vector.
14829     if (Idx && VT == OrigVector.getValueType()) {
14830       unsigned NumElts = VT.getVectorNumElements();
14831       assert(
14832           NumElts > 1 &&
14833           "Cannot produce a permuted scalar_to_vector for one element vector");
14834       SmallVector<int, 16> NewMask(NumElts, -1);
14835       unsigned ResultInElt = NumElts / 2;
14836       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14837       NewMask[ResultInElt] = Idx->getZExtValue();
14838       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14839     }
14840   }
14841   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14842                      OrigSToV.getOperand(0));
14843 }
14844 
14845 // On little endian subtargets, combine shuffles such as:
14846 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14847 // into:
14848 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14849 // because the latter can be matched to a single instruction merge.
14850 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14851 // to put the value into element zero. Adjust the shuffle mask so that the
14852 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14853 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14854 // nodes with elements smaller than doubleword because all the ways
14855 // of getting scalar data into a vector register put the value in the
14856 // rightmost element of the left half of the vector.
14857 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14858                                                 SelectionDAG &DAG) const {
14859   SDValue LHS = SVN->getOperand(0);
14860   SDValue RHS = SVN->getOperand(1);
14861   auto Mask = SVN->getMask();
14862   int NumElts = LHS.getValueType().getVectorNumElements();
14863   SDValue Res(SVN, 0);
14864   SDLoc dl(SVN);
14865   bool IsLittleEndian = Subtarget.isLittleEndian();
14866 
14867   // On big endian targets this is only useful for subtargets with direct moves.
14868   // On little endian targets it would be useful for all subtargets with VSX.
14869   // However adding special handling for LE subtargets without direct moves
14870   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14871   // which includes direct moves.
14872   if (!Subtarget.hasDirectMove())
14873     return Res;
14874 
14875   // If this is not a shuffle of a shuffle and the first element comes from
14876   // the second vector, canonicalize to the commuted form. This will make it
14877   // more likely to match one of the single instruction patterns.
14878   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14879       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14880     std::swap(LHS, RHS);
14881     Res = DAG.getCommutedVectorShuffle(*SVN);
14882     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14883   }
14884 
14885   // Adjust the shuffle mask if either input vector comes from a
14886   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14887   // form (to prevent the need for a swap).
14888   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14889   SDValue SToVLHS = isScalarToVec(LHS);
14890   SDValue SToVRHS = isScalarToVec(RHS);
14891   if (SToVLHS || SToVRHS) {
14892     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14893                             : SToVRHS.getValueType().getVectorNumElements();
14894     int NumEltsOut = ShuffV.size();
14895     // The width of the "valid lane" (i.e. the lane that contains the value that
14896     // is vectorized) needs to be expressed in terms of the number of elements
14897     // of the shuffle. It is thereby the ratio of the values before and after
14898     // any bitcast.
14899     unsigned ValidLaneWidth =
14900         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14901                       LHS.getValueType().getScalarSizeInBits()
14902                 : SToVRHS.getValueType().getScalarSizeInBits() /
14903                       RHS.getValueType().getScalarSizeInBits();
14904 
14905     // Initially assume that neither input is permuted. These will be adjusted
14906     // accordingly if either input is.
14907     int LHSMaxIdx = -1;
14908     int RHSMinIdx = -1;
14909     int RHSMaxIdx = -1;
14910     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14911 
14912     // Get the permuted scalar to vector nodes for the source(s) that come from
14913     // ISD::SCALAR_TO_VECTOR.
14914     // On big endian systems, this only makes sense for element sizes smaller
14915     // than 64 bits since for 64-bit elements, all instructions already put
14916     // the value into element zero. Since scalar size of LHS and RHS may differ
14917     // after isScalarToVec, this should be checked using their own sizes.
14918     if (SToVLHS) {
14919       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14920         return Res;
14921       // Set up the values for the shuffle vector fixup.
14922       LHSMaxIdx = NumEltsOut / NumEltsIn;
14923       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14924       if (SToVLHS.getValueType() != LHS.getValueType())
14925         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14926       LHS = SToVLHS;
14927     }
14928     if (SToVRHS) {
14929       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14930         return Res;
14931       RHSMinIdx = NumEltsOut;
14932       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14933       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14934       if (SToVRHS.getValueType() != RHS.getValueType())
14935         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14936       RHS = SToVRHS;
14937     }
14938 
14939     // Fix up the shuffle mask to reflect where the desired element actually is.
14940     // The minimum and maximum indices that correspond to element zero for both
14941     // the LHS and RHS are computed and will control which shuffle mask entries
14942     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14943     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14944     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14945                                     HalfVec, ValidLaneWidth, Subtarget);
14946     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14947 
14948     // We may have simplified away the shuffle. We won't be able to do anything
14949     // further with it here.
14950     if (!isa<ShuffleVectorSDNode>(Res))
14951       return Res;
14952     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14953   }
14954 
14955   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14956   // The common case after we commuted the shuffle is that the RHS is a splat
14957   // and we have elements coming in from the splat at indices that are not
14958   // conducive to using a merge.
14959   // Example:
14960   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14961   if (!isSplatBV(TheSplat))
14962     return Res;
14963 
14964   // We are looking for a mask such that all even elements are from
14965   // one vector and all odd elements from the other.
14966   if (!isAlternatingShuffMask(Mask, NumElts))
14967     return Res;
14968 
14969   // Adjust the mask so we are pulling in the same index from the splat
14970   // as the index from the interesting vector in consecutive elements.
14971   if (IsLittleEndian) {
14972     // Example (even elements from first vector):
14973     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14974     if (Mask[0] < NumElts)
14975       for (int i = 1, e = Mask.size(); i < e; i += 2)
14976         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14977     // Example (odd elements from first vector):
14978     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14979     else
14980       for (int i = 0, e = Mask.size(); i < e; i += 2)
14981         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14982   } else {
14983     // Example (even elements from first vector):
14984     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14985     if (Mask[0] < NumElts)
14986       for (int i = 0, e = Mask.size(); i < e; i += 2)
14987         ShuffV[i] = ShuffV[i + 1] - NumElts;
14988     // Example (odd elements from first vector):
14989     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14990     else
14991       for (int i = 1, e = Mask.size(); i < e; i += 2)
14992         ShuffV[i] = ShuffV[i - 1] - NumElts;
14993   }
14994 
14995   // If the RHS has undefs, we need to remove them since we may have created
14996   // a shuffle that adds those instead of the splat value.
14997   SDValue SplatVal =
14998       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14999   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
15000 
15001   if (IsLittleEndian)
15002     RHS = TheSplat;
15003   else
15004     LHS = TheSplat;
15005   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15006 }
15007 
15008 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
15009                                                 LSBaseSDNode *LSBase,
15010                                                 DAGCombinerInfo &DCI) const {
15011   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
15012         "Not a reverse memop pattern!");
15013 
15014   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
15015     auto Mask = SVN->getMask();
15016     int i = 0;
15017     auto I = Mask.rbegin();
15018     auto E = Mask.rend();
15019 
15020     for (; I != E; ++I) {
15021       if (*I != i)
15022         return false;
15023       i++;
15024     }
15025     return true;
15026   };
15027 
15028   SelectionDAG &DAG = DCI.DAG;
15029   EVT VT = SVN->getValueType(0);
15030 
15031   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
15032     return SDValue();
15033 
15034   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
15035   // See comment in PPCVSXSwapRemoval.cpp.
15036   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
15037   if (!Subtarget.hasP9Vector())
15038     return SDValue();
15039 
15040   if(!IsElementReverse(SVN))
15041     return SDValue();
15042 
15043   if (LSBase->getOpcode() == ISD::LOAD) {
15044     // If the load return value 0 has more than one user except the
15045     // shufflevector instruction, it is not profitable to replace the
15046     // shufflevector with a reverse load.
15047     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
15048          UI != UE; ++UI)
15049       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
15050         return SDValue();
15051 
15052     SDLoc dl(LSBase);
15053     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15054     return DAG.getMemIntrinsicNode(
15055         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15056         LSBase->getMemoryVT(), LSBase->getMemOperand());
15057   }
15058 
15059   if (LSBase->getOpcode() == ISD::STORE) {
15060     // If there are other uses of the shuffle, the swap cannot be avoided.
15061     // Forcing the use of an X-Form (since swapped stores only have
15062     // X-Forms) without removing the swap is unprofitable.
15063     if (!SVN->hasOneUse())
15064       return SDValue();
15065 
15066     SDLoc dl(LSBase);
15067     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15068                           LSBase->getBasePtr()};
15069     return DAG.getMemIntrinsicNode(
15070         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15071         LSBase->getMemoryVT(), LSBase->getMemOperand());
15072   }
15073 
15074   llvm_unreachable("Expected a load or store node here");
15075 }
15076 
15077 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15078                                              DAGCombinerInfo &DCI) const {
15079   SelectionDAG &DAG = DCI.DAG;
15080   SDLoc dl(N);
15081   switch (N->getOpcode()) {
15082   default: break;
15083   case ISD::ADD:
15084     return combineADD(N, DCI);
15085   case ISD::SHL:
15086     return combineSHL(N, DCI);
15087   case ISD::SRA:
15088     return combineSRA(N, DCI);
15089   case ISD::SRL:
15090     return combineSRL(N, DCI);
15091   case ISD::MUL:
15092     return combineMUL(N, DCI);
15093   case ISD::FMA:
15094   case PPCISD::FNMSUB:
15095     return combineFMALike(N, DCI);
15096   case PPCISD::SHL:
15097     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15098         return N->getOperand(0);
15099     break;
15100   case PPCISD::SRL:
15101     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15102         return N->getOperand(0);
15103     break;
15104   case PPCISD::SRA:
15105     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15106       if (C->isZero() ||  //  0 >>s V -> 0.
15107           C->isAllOnes()) // -1 >>s V -> -1.
15108         return N->getOperand(0);
15109     }
15110     break;
15111   case ISD::SIGN_EXTEND:
15112   case ISD::ZERO_EXTEND:
15113   case ISD::ANY_EXTEND:
15114     return DAGCombineExtBoolTrunc(N, DCI);
15115   case ISD::TRUNCATE:
15116     return combineTRUNCATE(N, DCI);
15117   case ISD::SETCC:
15118     if (SDValue CSCC = combineSetCC(N, DCI))
15119       return CSCC;
15120     LLVM_FALLTHROUGH;
15121   case ISD::SELECT_CC:
15122     return DAGCombineTruncBoolExt(N, DCI);
15123   case ISD::SINT_TO_FP:
15124   case ISD::UINT_TO_FP:
15125     return combineFPToIntToFP(N, DCI);
15126   case ISD::VECTOR_SHUFFLE:
15127     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15128       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15129       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15130     }
15131     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15132   case ISD::STORE: {
15133 
15134     EVT Op1VT = N->getOperand(1).getValueType();
15135     unsigned Opcode = N->getOperand(1).getOpcode();
15136 
15137     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15138       SDValue Val= combineStoreFPToInt(N, DCI);
15139       if (Val)
15140         return Val;
15141     }
15142 
15143     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15144       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15145       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15146       if (Val)
15147         return Val;
15148     }
15149 
15150     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15151     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15152         N->getOperand(1).getNode()->hasOneUse() &&
15153         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15154          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15155 
15156       // STBRX can only handle simple types and it makes no sense to store less
15157       // two bytes in byte-reversed order.
15158       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15159       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15160         break;
15161 
15162       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15163       // Do an any-extend to 32-bits if this is a half-word input.
15164       if (BSwapOp.getValueType() == MVT::i16)
15165         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15166 
15167       // If the type of BSWAP operand is wider than stored memory width
15168       // it need to be shifted to the right side before STBRX.
15169       if (Op1VT.bitsGT(mVT)) {
15170         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15171         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15172                               DAG.getConstant(Shift, dl, MVT::i32));
15173         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15174         if (Op1VT == MVT::i64)
15175           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15176       }
15177 
15178       SDValue Ops[] = {
15179         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15180       };
15181       return
15182         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15183                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15184                                 cast<StoreSDNode>(N)->getMemOperand());
15185     }
15186 
15187     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15188     // So it can increase the chance of CSE constant construction.
15189     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15190         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15191       // Need to sign-extended to 64-bits to handle negative values.
15192       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15193       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15194                                     MemVT.getSizeInBits());
15195       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15196 
15197       // DAG.getTruncStore() can't be used here because it doesn't accept
15198       // the general (base + offset) addressing mode.
15199       // So we use UpdateNodeOperands and setTruncatingStore instead.
15200       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15201                              N->getOperand(3));
15202       cast<StoreSDNode>(N)->setTruncatingStore(true);
15203       return SDValue(N, 0);
15204     }
15205 
15206     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15207     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15208     if (Op1VT.isSimple()) {
15209       MVT StoreVT = Op1VT.getSimpleVT();
15210       if (Subtarget.needsSwapsForVSXMemOps() &&
15211           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15212            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15213         return expandVSXStoreForLE(N, DCI);
15214     }
15215     break;
15216   }
15217   case ISD::LOAD: {
15218     LoadSDNode *LD = cast<LoadSDNode>(N);
15219     EVT VT = LD->getValueType(0);
15220 
15221     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15222     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15223     if (VT.isSimple()) {
15224       MVT LoadVT = VT.getSimpleVT();
15225       if (Subtarget.needsSwapsForVSXMemOps() &&
15226           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15227            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15228         return expandVSXLoadForLE(N, DCI);
15229     }
15230 
15231     // We sometimes end up with a 64-bit integer load, from which we extract
15232     // two single-precision floating-point numbers. This happens with
15233     // std::complex<float>, and other similar structures, because of the way we
15234     // canonicalize structure copies. However, if we lack direct moves,
15235     // then the final bitcasts from the extracted integer values to the
15236     // floating-point numbers turn into store/load pairs. Even with direct moves,
15237     // just loading the two floating-point numbers is likely better.
15238     auto ReplaceTwoFloatLoad = [&]() {
15239       if (VT != MVT::i64)
15240         return false;
15241 
15242       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15243           LD->isVolatile())
15244         return false;
15245 
15246       //  We're looking for a sequence like this:
15247       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15248       //      t16: i64 = srl t13, Constant:i32<32>
15249       //    t17: i32 = truncate t16
15250       //  t18: f32 = bitcast t17
15251       //    t19: i32 = truncate t13
15252       //  t20: f32 = bitcast t19
15253 
15254       if (!LD->hasNUsesOfValue(2, 0))
15255         return false;
15256 
15257       auto UI = LD->use_begin();
15258       while (UI.getUse().getResNo() != 0) ++UI;
15259       SDNode *Trunc = *UI++;
15260       while (UI.getUse().getResNo() != 0) ++UI;
15261       SDNode *RightShift = *UI;
15262       if (Trunc->getOpcode() != ISD::TRUNCATE)
15263         std::swap(Trunc, RightShift);
15264 
15265       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15266           Trunc->getValueType(0) != MVT::i32 ||
15267           !Trunc->hasOneUse())
15268         return false;
15269       if (RightShift->getOpcode() != ISD::SRL ||
15270           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15271           RightShift->getConstantOperandVal(1) != 32 ||
15272           !RightShift->hasOneUse())
15273         return false;
15274 
15275       SDNode *Trunc2 = *RightShift->use_begin();
15276       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15277           Trunc2->getValueType(0) != MVT::i32 ||
15278           !Trunc2->hasOneUse())
15279         return false;
15280 
15281       SDNode *Bitcast = *Trunc->use_begin();
15282       SDNode *Bitcast2 = *Trunc2->use_begin();
15283 
15284       if (Bitcast->getOpcode() != ISD::BITCAST ||
15285           Bitcast->getValueType(0) != MVT::f32)
15286         return false;
15287       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15288           Bitcast2->getValueType(0) != MVT::f32)
15289         return false;
15290 
15291       if (Subtarget.isLittleEndian())
15292         std::swap(Bitcast, Bitcast2);
15293 
15294       // Bitcast has the second float (in memory-layout order) and Bitcast2
15295       // has the first one.
15296 
15297       SDValue BasePtr = LD->getBasePtr();
15298       if (LD->isIndexed()) {
15299         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15300                "Non-pre-inc AM on PPC?");
15301         BasePtr =
15302           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15303                       LD->getOffset());
15304       }
15305 
15306       auto MMOFlags =
15307           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15308       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15309                                       LD->getPointerInfo(), LD->getAlignment(),
15310                                       MMOFlags, LD->getAAInfo());
15311       SDValue AddPtr =
15312         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15313                     BasePtr, DAG.getIntPtrConstant(4, dl));
15314       SDValue FloatLoad2 = DAG.getLoad(
15315           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15316           LD->getPointerInfo().getWithOffset(4),
15317           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15318 
15319       if (LD->isIndexed()) {
15320         // Note that DAGCombine should re-form any pre-increment load(s) from
15321         // what is produced here if that makes sense.
15322         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15323       }
15324 
15325       DCI.CombineTo(Bitcast2, FloatLoad);
15326       DCI.CombineTo(Bitcast, FloatLoad2);
15327 
15328       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15329                                     SDValue(FloatLoad2.getNode(), 1));
15330       return true;
15331     };
15332 
15333     if (ReplaceTwoFloatLoad())
15334       return SDValue(N, 0);
15335 
15336     EVT MemVT = LD->getMemoryVT();
15337     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15338     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15339     if (LD->isUnindexed() && VT.isVector() &&
15340         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15341           // P8 and later hardware should just use LOAD.
15342           !Subtarget.hasP8Vector() &&
15343           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15344            VT == MVT::v4f32))) &&
15345         LD->getAlign() < ABIAlignment) {
15346       // This is a type-legal unaligned Altivec load.
15347       SDValue Chain = LD->getChain();
15348       SDValue Ptr = LD->getBasePtr();
15349       bool isLittleEndian = Subtarget.isLittleEndian();
15350 
15351       // This implements the loading of unaligned vectors as described in
15352       // the venerable Apple Velocity Engine overview. Specifically:
15353       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15354       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15355       //
15356       // The general idea is to expand a sequence of one or more unaligned
15357       // loads into an alignment-based permutation-control instruction (lvsl
15358       // or lvsr), a series of regular vector loads (which always truncate
15359       // their input address to an aligned address), and a series of
15360       // permutations.  The results of these permutations are the requested
15361       // loaded values.  The trick is that the last "extra" load is not taken
15362       // from the address you might suspect (sizeof(vector) bytes after the
15363       // last requested load), but rather sizeof(vector) - 1 bytes after the
15364       // last requested vector. The point of this is to avoid a page fault if
15365       // the base address happened to be aligned. This works because if the
15366       // base address is aligned, then adding less than a full vector length
15367       // will cause the last vector in the sequence to be (re)loaded.
15368       // Otherwise, the next vector will be fetched as you might suspect was
15369       // necessary.
15370 
15371       // We might be able to reuse the permutation generation from
15372       // a different base address offset from this one by an aligned amount.
15373       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15374       // optimization later.
15375       Intrinsic::ID Intr, IntrLD, IntrPerm;
15376       MVT PermCntlTy, PermTy, LDTy;
15377       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15378                             : Intrinsic::ppc_altivec_lvsl;
15379       IntrLD = Intrinsic::ppc_altivec_lvx;
15380       IntrPerm = Intrinsic::ppc_altivec_vperm;
15381       PermCntlTy = MVT::v16i8;
15382       PermTy = MVT::v4i32;
15383       LDTy = MVT::v4i32;
15384 
15385       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15386 
15387       // Create the new MMO for the new base load. It is like the original MMO,
15388       // but represents an area in memory almost twice the vector size centered
15389       // on the original address. If the address is unaligned, we might start
15390       // reading up to (sizeof(vector)-1) bytes below the address of the
15391       // original unaligned load.
15392       MachineFunction &MF = DAG.getMachineFunction();
15393       MachineMemOperand *BaseMMO =
15394         MF.getMachineMemOperand(LD->getMemOperand(),
15395                                 -(long)MemVT.getStoreSize()+1,
15396                                 2*MemVT.getStoreSize()-1);
15397 
15398       // Create the new base load.
15399       SDValue LDXIntID =
15400           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15401       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15402       SDValue BaseLoad =
15403         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15404                                 DAG.getVTList(PermTy, MVT::Other),
15405                                 BaseLoadOps, LDTy, BaseMMO);
15406 
15407       // Note that the value of IncOffset (which is provided to the next
15408       // load's pointer info offset value, and thus used to calculate the
15409       // alignment), and the value of IncValue (which is actually used to
15410       // increment the pointer value) are different! This is because we
15411       // require the next load to appear to be aligned, even though it
15412       // is actually offset from the base pointer by a lesser amount.
15413       int IncOffset = VT.getSizeInBits() / 8;
15414       int IncValue = IncOffset;
15415 
15416       // Walk (both up and down) the chain looking for another load at the real
15417       // (aligned) offset (the alignment of the other load does not matter in
15418       // this case). If found, then do not use the offset reduction trick, as
15419       // that will prevent the loads from being later combined (as they would
15420       // otherwise be duplicates).
15421       if (!findConsecutiveLoad(LD, DAG))
15422         --IncValue;
15423 
15424       SDValue Increment =
15425           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15426       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15427 
15428       MachineMemOperand *ExtraMMO =
15429         MF.getMachineMemOperand(LD->getMemOperand(),
15430                                 1, 2*MemVT.getStoreSize()-1);
15431       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15432       SDValue ExtraLoad =
15433         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15434                                 DAG.getVTList(PermTy, MVT::Other),
15435                                 ExtraLoadOps, LDTy, ExtraMMO);
15436 
15437       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15438         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15439 
15440       // Because vperm has a big-endian bias, we must reverse the order
15441       // of the input vectors and complement the permute control vector
15442       // when generating little endian code.  We have already handled the
15443       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15444       // and ExtraLoad here.
15445       SDValue Perm;
15446       if (isLittleEndian)
15447         Perm = BuildIntrinsicOp(IntrPerm,
15448                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15449       else
15450         Perm = BuildIntrinsicOp(IntrPerm,
15451                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15452 
15453       if (VT != PermTy)
15454         Perm = Subtarget.hasAltivec()
15455                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15456                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15457                                  DAG.getTargetConstant(1, dl, MVT::i64));
15458                                // second argument is 1 because this rounding
15459                                // is always exact.
15460 
15461       // The output of the permutation is our loaded result, the TokenFactor is
15462       // our new chain.
15463       DCI.CombineTo(N, Perm, TF);
15464       return SDValue(N, 0);
15465     }
15466     }
15467     break;
15468     case ISD::INTRINSIC_WO_CHAIN: {
15469       bool isLittleEndian = Subtarget.isLittleEndian();
15470       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15471       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15472                                            : Intrinsic::ppc_altivec_lvsl);
15473       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15474         SDValue Add = N->getOperand(1);
15475 
15476         int Bits = 4 /* 16 byte alignment */;
15477 
15478         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15479                                   APInt::getAllOnes(Bits /* alignment */)
15480                                       .zext(Add.getScalarValueSizeInBits()))) {
15481           SDNode *BasePtr = Add->getOperand(0).getNode();
15482           for (SDNode *U : BasePtr->uses()) {
15483             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15484                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15485               // We've found another LVSL/LVSR, and this address is an aligned
15486               // multiple of that one. The results will be the same, so use the
15487               // one we've just found instead.
15488 
15489               return SDValue(U, 0);
15490             }
15491           }
15492         }
15493 
15494         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15495           SDNode *BasePtr = Add->getOperand(0).getNode();
15496           for (SDNode *U : BasePtr->uses()) {
15497             if (U->getOpcode() == ISD::ADD &&
15498                 isa<ConstantSDNode>(U->getOperand(1)) &&
15499                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15500                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15501                         (1ULL << Bits) ==
15502                     0) {
15503               SDNode *OtherAdd = U;
15504               for (SDNode *V : OtherAdd->uses()) {
15505                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15506                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15507                         IID) {
15508                   return SDValue(V, 0);
15509                 }
15510               }
15511             }
15512           }
15513         }
15514       }
15515 
15516       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15517       // Expose the vabsduw/h/b opportunity for down stream
15518       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15519           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15520            IID == Intrinsic::ppc_altivec_vmaxsh ||
15521            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15522         SDValue V1 = N->getOperand(1);
15523         SDValue V2 = N->getOperand(2);
15524         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15525              V1.getSimpleValueType() == MVT::v8i16 ||
15526              V1.getSimpleValueType() == MVT::v16i8) &&
15527             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15528           // (0-a, a)
15529           if (V1.getOpcode() == ISD::SUB &&
15530               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15531               V1.getOperand(1) == V2) {
15532             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15533           }
15534           // (a, 0-a)
15535           if (V2.getOpcode() == ISD::SUB &&
15536               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15537               V2.getOperand(1) == V1) {
15538             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15539           }
15540           // (x-y, y-x)
15541           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15542               V1.getOperand(0) == V2.getOperand(1) &&
15543               V1.getOperand(1) == V2.getOperand(0)) {
15544             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15545           }
15546         }
15547       }
15548     }
15549 
15550     break;
15551   case ISD::INTRINSIC_W_CHAIN:
15552     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15553     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15554     if (Subtarget.needsSwapsForVSXMemOps()) {
15555       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15556       default:
15557         break;
15558       case Intrinsic::ppc_vsx_lxvw4x:
15559       case Intrinsic::ppc_vsx_lxvd2x:
15560         return expandVSXLoadForLE(N, DCI);
15561       }
15562     }
15563     break;
15564   case ISD::INTRINSIC_VOID:
15565     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15566     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15567     if (Subtarget.needsSwapsForVSXMemOps()) {
15568       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15569       default:
15570         break;
15571       case Intrinsic::ppc_vsx_stxvw4x:
15572       case Intrinsic::ppc_vsx_stxvd2x:
15573         return expandVSXStoreForLE(N, DCI);
15574       }
15575     }
15576     break;
15577   case ISD::BSWAP: {
15578     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15579     // For subtargets without LDBRX, we can still do better than the default
15580     // expansion even for 64-bit BSWAP (LOAD).
15581     bool Is64BitBswapOn64BitTgt =
15582         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15583     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15584                                N->getOperand(0).hasOneUse();
15585     if (IsSingleUseNormalLd &&
15586         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15587          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15588       SDValue Load = N->getOperand(0);
15589       LoadSDNode *LD = cast<LoadSDNode>(Load);
15590       // Create the byte-swapping load.
15591       SDValue Ops[] = {
15592         LD->getChain(),    // Chain
15593         LD->getBasePtr(),  // Ptr
15594         DAG.getValueType(N->getValueType(0)) // VT
15595       };
15596       SDValue BSLoad =
15597         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15598                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15599                                               MVT::i64 : MVT::i32, MVT::Other),
15600                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15601 
15602       // If this is an i16 load, insert the truncate.
15603       SDValue ResVal = BSLoad;
15604       if (N->getValueType(0) == MVT::i16)
15605         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15606 
15607       // First, combine the bswap away.  This makes the value produced by the
15608       // load dead.
15609       DCI.CombineTo(N, ResVal);
15610 
15611       // Next, combine the load away, we give it a bogus result value but a real
15612       // chain result.  The result value is dead because the bswap is dead.
15613       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15614 
15615       // Return N so it doesn't get rechecked!
15616       return SDValue(N, 0);
15617     }
15618     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15619     // before legalization so that the BUILD_PAIR is handled correctly.
15620     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15621         !IsSingleUseNormalLd)
15622       return SDValue();
15623     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15624 
15625     // Can't split volatile or atomic loads.
15626     if (!LD->isSimple())
15627       return SDValue();
15628     SDValue BasePtr = LD->getBasePtr();
15629     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15630                              LD->getPointerInfo(), LD->getAlignment());
15631     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15632     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15633                           DAG.getIntPtrConstant(4, dl));
15634     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15635         LD->getMemOperand(), 4, 4);
15636     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15637     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15638     SDValue Res;
15639     if (Subtarget.isLittleEndian())
15640       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15641     else
15642       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15643     SDValue TF =
15644         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15645                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15646     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15647     return Res;
15648   }
15649   case PPCISD::VCMP:
15650     // If a VCMP_rec node already exists with exactly the same operands as this
15651     // node, use its result instead of this node (VCMP_rec computes both a CR6
15652     // and a normal output).
15653     //
15654     if (!N->getOperand(0).hasOneUse() &&
15655         !N->getOperand(1).hasOneUse() &&
15656         !N->getOperand(2).hasOneUse()) {
15657 
15658       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15659       SDNode *VCMPrecNode = nullptr;
15660 
15661       SDNode *LHSN = N->getOperand(0).getNode();
15662       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15663            UI != E; ++UI)
15664         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15665             UI->getOperand(1) == N->getOperand(1) &&
15666             UI->getOperand(2) == N->getOperand(2) &&
15667             UI->getOperand(0) == N->getOperand(0)) {
15668           VCMPrecNode = *UI;
15669           break;
15670         }
15671 
15672       // If there is no VCMP_rec node, or if the flag value has a single use,
15673       // don't transform this.
15674       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15675         break;
15676 
15677       // Look at the (necessarily single) use of the flag value.  If it has a
15678       // chain, this transformation is more complex.  Note that multiple things
15679       // could use the value result, which we should ignore.
15680       SDNode *FlagUser = nullptr;
15681       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15682            FlagUser == nullptr; ++UI) {
15683         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15684         SDNode *User = *UI;
15685         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15686           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15687             FlagUser = User;
15688             break;
15689           }
15690         }
15691       }
15692 
15693       // If the user is a MFOCRF instruction, we know this is safe.
15694       // Otherwise we give up for right now.
15695       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15696         return SDValue(VCMPrecNode, 0);
15697     }
15698     break;
15699   case ISD::BRCOND: {
15700     SDValue Cond = N->getOperand(1);
15701     SDValue Target = N->getOperand(2);
15702 
15703     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15704         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15705           Intrinsic::loop_decrement) {
15706 
15707       // We now need to make the intrinsic dead (it cannot be instruction
15708       // selected).
15709       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15710       assert(Cond.getNode()->hasOneUse() &&
15711              "Counter decrement has more than one use");
15712 
15713       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15714                          N->getOperand(0), Target);
15715     }
15716   }
15717   break;
15718   case ISD::BR_CC: {
15719     // If this is a branch on an altivec predicate comparison, lower this so
15720     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15721     // lowering is done pre-legalize, because the legalizer lowers the predicate
15722     // compare down to code that is difficult to reassemble.
15723     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15724     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15725 
15726     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15727     // value. If so, pass-through the AND to get to the intrinsic.
15728     if (LHS.getOpcode() == ISD::AND &&
15729         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15730         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15731           Intrinsic::loop_decrement &&
15732         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15733         !isNullConstant(LHS.getOperand(1)))
15734       LHS = LHS.getOperand(0);
15735 
15736     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15737         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15738           Intrinsic::loop_decrement &&
15739         isa<ConstantSDNode>(RHS)) {
15740       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15741              "Counter decrement comparison is not EQ or NE");
15742 
15743       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15744       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15745                     (CC == ISD::SETNE && !Val);
15746 
15747       // We now need to make the intrinsic dead (it cannot be instruction
15748       // selected).
15749       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15750       assert(LHS.getNode()->hasOneUse() &&
15751              "Counter decrement has more than one use");
15752 
15753       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15754                          N->getOperand(0), N->getOperand(4));
15755     }
15756 
15757     int CompareOpc;
15758     bool isDot;
15759 
15760     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15761         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15762         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15763       assert(isDot && "Can't compare against a vector result!");
15764 
15765       // If this is a comparison against something other than 0/1, then we know
15766       // that the condition is never/always true.
15767       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15768       if (Val != 0 && Val != 1) {
15769         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15770           return N->getOperand(0);
15771         // Always !=, turn it into an unconditional branch.
15772         return DAG.getNode(ISD::BR, dl, MVT::Other,
15773                            N->getOperand(0), N->getOperand(4));
15774       }
15775 
15776       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15777 
15778       // Create the PPCISD altivec 'dot' comparison node.
15779       SDValue Ops[] = {
15780         LHS.getOperand(2),  // LHS of compare
15781         LHS.getOperand(3),  // RHS of compare
15782         DAG.getConstant(CompareOpc, dl, MVT::i32)
15783       };
15784       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15785       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15786 
15787       // Unpack the result based on how the target uses it.
15788       PPC::Predicate CompOpc;
15789       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15790       default:  // Can't happen, don't crash on invalid number though.
15791       case 0:   // Branch on the value of the EQ bit of CR6.
15792         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15793         break;
15794       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15795         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15796         break;
15797       case 2:   // Branch on the value of the LT bit of CR6.
15798         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15799         break;
15800       case 3:   // Branch on the inverted value of the LT bit of CR6.
15801         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15802         break;
15803       }
15804 
15805       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15806                          DAG.getConstant(CompOpc, dl, MVT::i32),
15807                          DAG.getRegister(PPC::CR6, MVT::i32),
15808                          N->getOperand(4), CompNode.getValue(1));
15809     }
15810     break;
15811   }
15812   case ISD::BUILD_VECTOR:
15813     return DAGCombineBuildVector(N, DCI);
15814   case ISD::ABS:
15815     return combineABS(N, DCI);
15816   case ISD::VSELECT:
15817     return combineVSelect(N, DCI);
15818   }
15819 
15820   return SDValue();
15821 }
15822 
15823 SDValue
15824 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15825                                  SelectionDAG &DAG,
15826                                  SmallVectorImpl<SDNode *> &Created) const {
15827   // fold (sdiv X, pow2)
15828   EVT VT = N->getValueType(0);
15829   if (VT == MVT::i64 && !Subtarget.isPPC64())
15830     return SDValue();
15831   if ((VT != MVT::i32 && VT != MVT::i64) ||
15832       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15833     return SDValue();
15834 
15835   SDLoc DL(N);
15836   SDValue N0 = N->getOperand(0);
15837 
15838   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15839   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15840   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15841 
15842   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15843   Created.push_back(Op.getNode());
15844 
15845   if (IsNegPow2) {
15846     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15847     Created.push_back(Op.getNode());
15848   }
15849 
15850   return Op;
15851 }
15852 
15853 //===----------------------------------------------------------------------===//
15854 // Inline Assembly Support
15855 //===----------------------------------------------------------------------===//
15856 
15857 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15858                                                       KnownBits &Known,
15859                                                       const APInt &DemandedElts,
15860                                                       const SelectionDAG &DAG,
15861                                                       unsigned Depth) const {
15862   Known.resetAll();
15863   switch (Op.getOpcode()) {
15864   default: break;
15865   case PPCISD::LBRX: {
15866     // lhbrx is known to have the top bits cleared out.
15867     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15868       Known.Zero = 0xFFFF0000;
15869     break;
15870   }
15871   case ISD::INTRINSIC_WO_CHAIN: {
15872     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15873     default: break;
15874     case Intrinsic::ppc_altivec_vcmpbfp_p:
15875     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15876     case Intrinsic::ppc_altivec_vcmpequb_p:
15877     case Intrinsic::ppc_altivec_vcmpequh_p:
15878     case Intrinsic::ppc_altivec_vcmpequw_p:
15879     case Intrinsic::ppc_altivec_vcmpequd_p:
15880     case Intrinsic::ppc_altivec_vcmpequq_p:
15881     case Intrinsic::ppc_altivec_vcmpgefp_p:
15882     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15883     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15884     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15885     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15886     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15887     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15888     case Intrinsic::ppc_altivec_vcmpgtub_p:
15889     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15890     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15891     case Intrinsic::ppc_altivec_vcmpgtud_p:
15892     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15893       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15894       break;
15895     }
15896     break;
15897   }
15898   case ISD::INTRINSIC_W_CHAIN: {
15899     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15900     default:
15901       break;
15902     case Intrinsic::ppc_load2r:
15903       // Top bits are cleared for load2r (which is the same as lhbrx).
15904       Known.Zero = 0xFFFF0000;
15905       break;
15906     }
15907     break;
15908   }
15909   }
15910 }
15911 
15912 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15913   switch (Subtarget.getCPUDirective()) {
15914   default: break;
15915   case PPC::DIR_970:
15916   case PPC::DIR_PWR4:
15917   case PPC::DIR_PWR5:
15918   case PPC::DIR_PWR5X:
15919   case PPC::DIR_PWR6:
15920   case PPC::DIR_PWR6X:
15921   case PPC::DIR_PWR7:
15922   case PPC::DIR_PWR8:
15923   case PPC::DIR_PWR9:
15924   case PPC::DIR_PWR10:
15925   case PPC::DIR_PWR_FUTURE: {
15926     if (!ML)
15927       break;
15928 
15929     if (!DisableInnermostLoopAlign32) {
15930       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15931       // so that we can decrease cache misses and branch-prediction misses.
15932       // Actual alignment of the loop will depend on the hotness check and other
15933       // logic in alignBlocks.
15934       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15935         return Align(32);
15936     }
15937 
15938     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15939 
15940     // For small loops (between 5 and 8 instructions), align to a 32-byte
15941     // boundary so that the entire loop fits in one instruction-cache line.
15942     uint64_t LoopSize = 0;
15943     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15944       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15945         LoopSize += TII->getInstSizeInBytes(*J);
15946         if (LoopSize > 32)
15947           break;
15948       }
15949 
15950     if (LoopSize > 16 && LoopSize <= 32)
15951       return Align(32);
15952 
15953     break;
15954   }
15955   }
15956 
15957   return TargetLowering::getPrefLoopAlignment(ML);
15958 }
15959 
15960 /// getConstraintType - Given a constraint, return the type of
15961 /// constraint it is for this target.
15962 PPCTargetLowering::ConstraintType
15963 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15964   if (Constraint.size() == 1) {
15965     switch (Constraint[0]) {
15966     default: break;
15967     case 'b':
15968     case 'r':
15969     case 'f':
15970     case 'd':
15971     case 'v':
15972     case 'y':
15973       return C_RegisterClass;
15974     case 'Z':
15975       // FIXME: While Z does indicate a memory constraint, it specifically
15976       // indicates an r+r address (used in conjunction with the 'y' modifier
15977       // in the replacement string). Currently, we're forcing the base
15978       // register to be r0 in the asm printer (which is interpreted as zero)
15979       // and forming the complete address in the second register. This is
15980       // suboptimal.
15981       return C_Memory;
15982     }
15983   } else if (Constraint == "wc") { // individual CR bits.
15984     return C_RegisterClass;
15985   } else if (Constraint == "wa" || Constraint == "wd" ||
15986              Constraint == "wf" || Constraint == "ws" ||
15987              Constraint == "wi" || Constraint == "ww") {
15988     return C_RegisterClass; // VSX registers.
15989   }
15990   return TargetLowering::getConstraintType(Constraint);
15991 }
15992 
15993 /// Examine constraint type and operand type and determine a weight value.
15994 /// This object must already have been set up with the operand type
15995 /// and the current alternative constraint selected.
15996 TargetLowering::ConstraintWeight
15997 PPCTargetLowering::getSingleConstraintMatchWeight(
15998     AsmOperandInfo &info, const char *constraint) const {
15999   ConstraintWeight weight = CW_Invalid;
16000   Value *CallOperandVal = info.CallOperandVal;
16001     // If we don't have a value, we can't do a match,
16002     // but allow it at the lowest weight.
16003   if (!CallOperandVal)
16004     return CW_Default;
16005   Type *type = CallOperandVal->getType();
16006 
16007   // Look at the constraint type.
16008   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
16009     return CW_Register; // an individual CR bit.
16010   else if ((StringRef(constraint) == "wa" ||
16011             StringRef(constraint) == "wd" ||
16012             StringRef(constraint) == "wf") &&
16013            type->isVectorTy())
16014     return CW_Register;
16015   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
16016     return CW_Register; // just hold 64-bit integers data.
16017   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
16018     return CW_Register;
16019   else if (StringRef(constraint) == "ww" && type->isFloatTy())
16020     return CW_Register;
16021 
16022   switch (*constraint) {
16023   default:
16024     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16025     break;
16026   case 'b':
16027     if (type->isIntegerTy())
16028       weight = CW_Register;
16029     break;
16030   case 'f':
16031     if (type->isFloatTy())
16032       weight = CW_Register;
16033     break;
16034   case 'd':
16035     if (type->isDoubleTy())
16036       weight = CW_Register;
16037     break;
16038   case 'v':
16039     if (type->isVectorTy())
16040       weight = CW_Register;
16041     break;
16042   case 'y':
16043     weight = CW_Register;
16044     break;
16045   case 'Z':
16046     weight = CW_Memory;
16047     break;
16048   }
16049   return weight;
16050 }
16051 
16052 std::pair<unsigned, const TargetRegisterClass *>
16053 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16054                                                 StringRef Constraint,
16055                                                 MVT VT) const {
16056   if (Constraint.size() == 1) {
16057     // GCC RS6000 Constraint Letters
16058     switch (Constraint[0]) {
16059     case 'b':   // R1-R31
16060       if (VT == MVT::i64 && Subtarget.isPPC64())
16061         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16062       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16063     case 'r':   // R0-R31
16064       if (VT == MVT::i64 && Subtarget.isPPC64())
16065         return std::make_pair(0U, &PPC::G8RCRegClass);
16066       return std::make_pair(0U, &PPC::GPRCRegClass);
16067     // 'd' and 'f' constraints are both defined to be "the floating point
16068     // registers", where one is for 32-bit and the other for 64-bit. We don't
16069     // really care overly much here so just give them all the same reg classes.
16070     case 'd':
16071     case 'f':
16072       if (Subtarget.hasSPE()) {
16073         if (VT == MVT::f32 || VT == MVT::i32)
16074           return std::make_pair(0U, &PPC::GPRCRegClass);
16075         if (VT == MVT::f64 || VT == MVT::i64)
16076           return std::make_pair(0U, &PPC::SPERCRegClass);
16077       } else {
16078         if (VT == MVT::f32 || VT == MVT::i32)
16079           return std::make_pair(0U, &PPC::F4RCRegClass);
16080         if (VT == MVT::f64 || VT == MVT::i64)
16081           return std::make_pair(0U, &PPC::F8RCRegClass);
16082       }
16083       break;
16084     case 'v':
16085       if (Subtarget.hasAltivec() && VT.isVector())
16086         return std::make_pair(0U, &PPC::VRRCRegClass);
16087       else if (Subtarget.hasVSX())
16088         // Scalars in Altivec registers only make sense with VSX.
16089         return std::make_pair(0U, &PPC::VFRCRegClass);
16090       break;
16091     case 'y':   // crrc
16092       return std::make_pair(0U, &PPC::CRRCRegClass);
16093     }
16094   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16095     // An individual CR bit.
16096     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16097   } else if ((Constraint == "wa" || Constraint == "wd" ||
16098              Constraint == "wf" || Constraint == "wi") &&
16099              Subtarget.hasVSX()) {
16100     // A VSX register for either a scalar (FP) or vector. There is no
16101     // support for single precision scalars on subtargets prior to Power8.
16102     if (VT.isVector())
16103       return std::make_pair(0U, &PPC::VSRCRegClass);
16104     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16105       return std::make_pair(0U, &PPC::VSSRCRegClass);
16106     return std::make_pair(0U, &PPC::VSFRCRegClass);
16107   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16108     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16109       return std::make_pair(0U, &PPC::VSSRCRegClass);
16110     else
16111       return std::make_pair(0U, &PPC::VSFRCRegClass);
16112   } else if (Constraint == "lr") {
16113     if (VT == MVT::i64)
16114       return std::make_pair(0U, &PPC::LR8RCRegClass);
16115     else
16116       return std::make_pair(0U, &PPC::LRRCRegClass);
16117   }
16118 
16119   // Handle special cases of physical registers that are not properly handled
16120   // by the base class.
16121   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16122     // If we name a VSX register, we can't defer to the base class because it
16123     // will not recognize the correct register (their names will be VSL{0-31}
16124     // and V{0-31} so they won't match). So we match them here.
16125     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16126       int VSNum = atoi(Constraint.data() + 3);
16127       assert(VSNum >= 0 && VSNum <= 63 &&
16128              "Attempted to access a vsr out of range");
16129       if (VSNum < 32)
16130         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16131       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16132     }
16133 
16134     // For float registers, we can't defer to the base class as it will match
16135     // the SPILLTOVSRRC class.
16136     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16137       int RegNum = atoi(Constraint.data() + 2);
16138       if (RegNum > 31 || RegNum < 0)
16139         report_fatal_error("Invalid floating point register number");
16140       if (VT == MVT::f32 || VT == MVT::i32)
16141         return Subtarget.hasSPE()
16142                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16143                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16144       if (VT == MVT::f64 || VT == MVT::i64)
16145         return Subtarget.hasSPE()
16146                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16147                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16148     }
16149   }
16150 
16151   std::pair<unsigned, const TargetRegisterClass *> R =
16152       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16153 
16154   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16155   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16156   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16157   // register.
16158   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16159   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16160   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16161       PPC::GPRCRegClass.contains(R.first))
16162     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16163                             PPC::sub_32, &PPC::G8RCRegClass),
16164                           &PPC::G8RCRegClass);
16165 
16166   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16167   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16168     R.first = PPC::CR0;
16169     R.second = &PPC::CRRCRegClass;
16170   }
16171   // FIXME: This warning should ideally be emitted in the front end.
16172   const auto &TM = getTargetMachine();
16173   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16174     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16175          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16176         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16177       errs() << "warning: vector registers 20 to 32 are reserved in the "
16178                 "default AIX AltiVec ABI and cannot be used\n";
16179   }
16180 
16181   return R;
16182 }
16183 
16184 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16185 /// vector.  If it is invalid, don't add anything to Ops.
16186 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16187                                                      std::string &Constraint,
16188                                                      std::vector<SDValue>&Ops,
16189                                                      SelectionDAG &DAG) const {
16190   SDValue Result;
16191 
16192   // Only support length 1 constraints.
16193   if (Constraint.length() > 1) return;
16194 
16195   char Letter = Constraint[0];
16196   switch (Letter) {
16197   default: break;
16198   case 'I':
16199   case 'J':
16200   case 'K':
16201   case 'L':
16202   case 'M':
16203   case 'N':
16204   case 'O':
16205   case 'P': {
16206     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16207     if (!CST) return; // Must be an immediate to match.
16208     SDLoc dl(Op);
16209     int64_t Value = CST->getSExtValue();
16210     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16211                          // numbers are printed as such.
16212     switch (Letter) {
16213     default: llvm_unreachable("Unknown constraint letter!");
16214     case 'I':  // "I" is a signed 16-bit constant.
16215       if (isInt<16>(Value))
16216         Result = DAG.getTargetConstant(Value, dl, TCVT);
16217       break;
16218     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16219       if (isShiftedUInt<16, 16>(Value))
16220         Result = DAG.getTargetConstant(Value, dl, TCVT);
16221       break;
16222     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16223       if (isShiftedInt<16, 16>(Value))
16224         Result = DAG.getTargetConstant(Value, dl, TCVT);
16225       break;
16226     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16227       if (isUInt<16>(Value))
16228         Result = DAG.getTargetConstant(Value, dl, TCVT);
16229       break;
16230     case 'M':  // "M" is a constant that is greater than 31.
16231       if (Value > 31)
16232         Result = DAG.getTargetConstant(Value, dl, TCVT);
16233       break;
16234     case 'N':  // "N" is a positive constant that is an exact power of two.
16235       if (Value > 0 && isPowerOf2_64(Value))
16236         Result = DAG.getTargetConstant(Value, dl, TCVT);
16237       break;
16238     case 'O':  // "O" is the constant zero.
16239       if (Value == 0)
16240         Result = DAG.getTargetConstant(Value, dl, TCVT);
16241       break;
16242     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16243       if (isInt<16>(-Value))
16244         Result = DAG.getTargetConstant(Value, dl, TCVT);
16245       break;
16246     }
16247     break;
16248   }
16249   }
16250 
16251   if (Result.getNode()) {
16252     Ops.push_back(Result);
16253     return;
16254   }
16255 
16256   // Handle standard constraint letters.
16257   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16258 }
16259 
16260 // isLegalAddressingMode - Return true if the addressing mode represented
16261 // by AM is legal for this target, for a load/store of the specified type.
16262 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16263                                               const AddrMode &AM, Type *Ty,
16264                                               unsigned AS,
16265                                               Instruction *I) const {
16266   // Vector type r+i form is supported since power9 as DQ form. We don't check
16267   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16268   // imm form is preferred and the offset can be adjusted to use imm form later
16269   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16270   // max offset to check legal addressing mode, we should be a little aggressive
16271   // to contain other offsets for that LSRUse.
16272   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16273     return false;
16274 
16275   // PPC allows a sign-extended 16-bit immediate field.
16276   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16277     return false;
16278 
16279   // No global is ever allowed as a base.
16280   if (AM.BaseGV)
16281     return false;
16282 
16283   // PPC only support r+r,
16284   switch (AM.Scale) {
16285   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16286     break;
16287   case 1:
16288     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16289       return false;
16290     // Otherwise we have r+r or r+i.
16291     break;
16292   case 2:
16293     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16294       return false;
16295     // Allow 2*r as r+r.
16296     break;
16297   default:
16298     // No other scales are supported.
16299     return false;
16300   }
16301 
16302   return true;
16303 }
16304 
16305 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16306                                            SelectionDAG &DAG) const {
16307   MachineFunction &MF = DAG.getMachineFunction();
16308   MachineFrameInfo &MFI = MF.getFrameInfo();
16309   MFI.setReturnAddressIsTaken(true);
16310 
16311   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16312     return SDValue();
16313 
16314   SDLoc dl(Op);
16315   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16316 
16317   // Make sure the function does not optimize away the store of the RA to
16318   // the stack.
16319   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16320   FuncInfo->setLRStoreRequired();
16321   bool isPPC64 = Subtarget.isPPC64();
16322   auto PtrVT = getPointerTy(MF.getDataLayout());
16323 
16324   if (Depth > 0) {
16325     // The link register (return address) is saved in the caller's frame
16326     // not the callee's stack frame. So we must get the caller's frame
16327     // address and load the return address at the LR offset from there.
16328     SDValue FrameAddr =
16329         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16330                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16331     SDValue Offset =
16332         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16333                         isPPC64 ? MVT::i64 : MVT::i32);
16334     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16335                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16336                        MachinePointerInfo());
16337   }
16338 
16339   // Just load the return address off the stack.
16340   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16341   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16342                      MachinePointerInfo());
16343 }
16344 
16345 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16346                                           SelectionDAG &DAG) const {
16347   SDLoc dl(Op);
16348   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16349 
16350   MachineFunction &MF = DAG.getMachineFunction();
16351   MachineFrameInfo &MFI = MF.getFrameInfo();
16352   MFI.setFrameAddressIsTaken(true);
16353 
16354   EVT PtrVT = getPointerTy(MF.getDataLayout());
16355   bool isPPC64 = PtrVT == MVT::i64;
16356 
16357   // Naked functions never have a frame pointer, and so we use r1. For all
16358   // other functions, this decision must be delayed until during PEI.
16359   unsigned FrameReg;
16360   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16361     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16362   else
16363     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16364 
16365   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16366                                          PtrVT);
16367   while (Depth--)
16368     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16369                             FrameAddr, MachinePointerInfo());
16370   return FrameAddr;
16371 }
16372 
16373 // FIXME? Maybe this could be a TableGen attribute on some registers and
16374 // this table could be generated automatically from RegInfo.
16375 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16376                                               const MachineFunction &MF) const {
16377   bool isPPC64 = Subtarget.isPPC64();
16378 
16379   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16380   if (!is64Bit && VT != LLT::scalar(32))
16381     report_fatal_error("Invalid register global variable type");
16382 
16383   Register Reg = StringSwitch<Register>(RegName)
16384                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16385                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16386                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16387                      .Default(Register());
16388 
16389   if (Reg)
16390     return Reg;
16391   report_fatal_error("Invalid register name global variable");
16392 }
16393 
16394 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16395   // 32-bit SVR4 ABI access everything as got-indirect.
16396   if (Subtarget.is32BitELFABI())
16397     return true;
16398 
16399   // AIX accesses everything indirectly through the TOC, which is similar to
16400   // the GOT.
16401   if (Subtarget.isAIXABI())
16402     return true;
16403 
16404   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16405   // If it is small or large code model, module locals are accessed
16406   // indirectly by loading their address from .toc/.got.
16407   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16408     return true;
16409 
16410   // JumpTable and BlockAddress are accessed as got-indirect.
16411   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16412     return true;
16413 
16414   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16415     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16416 
16417   return false;
16418 }
16419 
16420 bool
16421 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16422   // The PowerPC target isn't yet aware of offsets.
16423   return false;
16424 }
16425 
16426 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16427                                            const CallInst &I,
16428                                            MachineFunction &MF,
16429                                            unsigned Intrinsic) const {
16430   switch (Intrinsic) {
16431   case Intrinsic::ppc_atomicrmw_xchg_i128:
16432   case Intrinsic::ppc_atomicrmw_add_i128:
16433   case Intrinsic::ppc_atomicrmw_sub_i128:
16434   case Intrinsic::ppc_atomicrmw_nand_i128:
16435   case Intrinsic::ppc_atomicrmw_and_i128:
16436   case Intrinsic::ppc_atomicrmw_or_i128:
16437   case Intrinsic::ppc_atomicrmw_xor_i128:
16438   case Intrinsic::ppc_cmpxchg_i128:
16439     Info.opc = ISD::INTRINSIC_W_CHAIN;
16440     Info.memVT = MVT::i128;
16441     Info.ptrVal = I.getArgOperand(0);
16442     Info.offset = 0;
16443     Info.align = Align(16);
16444     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16445                  MachineMemOperand::MOVolatile;
16446     return true;
16447   case Intrinsic::ppc_atomic_load_i128:
16448     Info.opc = ISD::INTRINSIC_W_CHAIN;
16449     Info.memVT = MVT::i128;
16450     Info.ptrVal = I.getArgOperand(0);
16451     Info.offset = 0;
16452     Info.align = Align(16);
16453     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16454     return true;
16455   case Intrinsic::ppc_atomic_store_i128:
16456     Info.opc = ISD::INTRINSIC_VOID;
16457     Info.memVT = MVT::i128;
16458     Info.ptrVal = I.getArgOperand(2);
16459     Info.offset = 0;
16460     Info.align = Align(16);
16461     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16462     return true;
16463   case Intrinsic::ppc_altivec_lvx:
16464   case Intrinsic::ppc_altivec_lvxl:
16465   case Intrinsic::ppc_altivec_lvebx:
16466   case Intrinsic::ppc_altivec_lvehx:
16467   case Intrinsic::ppc_altivec_lvewx:
16468   case Intrinsic::ppc_vsx_lxvd2x:
16469   case Intrinsic::ppc_vsx_lxvw4x:
16470   case Intrinsic::ppc_vsx_lxvd2x_be:
16471   case Intrinsic::ppc_vsx_lxvw4x_be:
16472   case Intrinsic::ppc_vsx_lxvl:
16473   case Intrinsic::ppc_vsx_lxvll: {
16474     EVT VT;
16475     switch (Intrinsic) {
16476     case Intrinsic::ppc_altivec_lvebx:
16477       VT = MVT::i8;
16478       break;
16479     case Intrinsic::ppc_altivec_lvehx:
16480       VT = MVT::i16;
16481       break;
16482     case Intrinsic::ppc_altivec_lvewx:
16483       VT = MVT::i32;
16484       break;
16485     case Intrinsic::ppc_vsx_lxvd2x:
16486     case Intrinsic::ppc_vsx_lxvd2x_be:
16487       VT = MVT::v2f64;
16488       break;
16489     default:
16490       VT = MVT::v4i32;
16491       break;
16492     }
16493 
16494     Info.opc = ISD::INTRINSIC_W_CHAIN;
16495     Info.memVT = VT;
16496     Info.ptrVal = I.getArgOperand(0);
16497     Info.offset = -VT.getStoreSize()+1;
16498     Info.size = 2*VT.getStoreSize()-1;
16499     Info.align = Align(1);
16500     Info.flags = MachineMemOperand::MOLoad;
16501     return true;
16502   }
16503   case Intrinsic::ppc_altivec_stvx:
16504   case Intrinsic::ppc_altivec_stvxl:
16505   case Intrinsic::ppc_altivec_stvebx:
16506   case Intrinsic::ppc_altivec_stvehx:
16507   case Intrinsic::ppc_altivec_stvewx:
16508   case Intrinsic::ppc_vsx_stxvd2x:
16509   case Intrinsic::ppc_vsx_stxvw4x:
16510   case Intrinsic::ppc_vsx_stxvd2x_be:
16511   case Intrinsic::ppc_vsx_stxvw4x_be:
16512   case Intrinsic::ppc_vsx_stxvl:
16513   case Intrinsic::ppc_vsx_stxvll: {
16514     EVT VT;
16515     switch (Intrinsic) {
16516     case Intrinsic::ppc_altivec_stvebx:
16517       VT = MVT::i8;
16518       break;
16519     case Intrinsic::ppc_altivec_stvehx:
16520       VT = MVT::i16;
16521       break;
16522     case Intrinsic::ppc_altivec_stvewx:
16523       VT = MVT::i32;
16524       break;
16525     case Intrinsic::ppc_vsx_stxvd2x:
16526     case Intrinsic::ppc_vsx_stxvd2x_be:
16527       VT = MVT::v2f64;
16528       break;
16529     default:
16530       VT = MVT::v4i32;
16531       break;
16532     }
16533 
16534     Info.opc = ISD::INTRINSIC_VOID;
16535     Info.memVT = VT;
16536     Info.ptrVal = I.getArgOperand(1);
16537     Info.offset = -VT.getStoreSize()+1;
16538     Info.size = 2*VT.getStoreSize()-1;
16539     Info.align = Align(1);
16540     Info.flags = MachineMemOperand::MOStore;
16541     return true;
16542   }
16543   default:
16544     break;
16545   }
16546 
16547   return false;
16548 }
16549 
16550 /// It returns EVT::Other if the type should be determined using generic
16551 /// target-independent logic.
16552 EVT PPCTargetLowering::getOptimalMemOpType(
16553     const MemOp &Op, const AttributeList &FuncAttributes) const {
16554   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16555     // We should use Altivec/VSX loads and stores when available. For unaligned
16556     // addresses, unaligned VSX loads are only fast starting with the P8.
16557     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16558         (Op.isAligned(Align(16)) ||
16559          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16560       return MVT::v4i32;
16561   }
16562 
16563   if (Subtarget.isPPC64()) {
16564     return MVT::i64;
16565   }
16566 
16567   return MVT::i32;
16568 }
16569 
16570 /// Returns true if it is beneficial to convert a load of a constant
16571 /// to just the constant itself.
16572 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16573                                                           Type *Ty) const {
16574   assert(Ty->isIntegerTy());
16575 
16576   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16577   return !(BitSize == 0 || BitSize > 64);
16578 }
16579 
16580 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16581   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16582     return false;
16583   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16584   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16585   return NumBits1 == 64 && NumBits2 == 32;
16586 }
16587 
16588 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16589   if (!VT1.isInteger() || !VT2.isInteger())
16590     return false;
16591   unsigned NumBits1 = VT1.getSizeInBits();
16592   unsigned NumBits2 = VT2.getSizeInBits();
16593   return NumBits1 == 64 && NumBits2 == 32;
16594 }
16595 
16596 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16597   // Generally speaking, zexts are not free, but they are free when they can be
16598   // folded with other operations.
16599   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16600     EVT MemVT = LD->getMemoryVT();
16601     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16602          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16603         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16604          LD->getExtensionType() == ISD::ZEXTLOAD))
16605       return true;
16606   }
16607 
16608   // FIXME: Add other cases...
16609   //  - 32-bit shifts with a zext to i64
16610   //  - zext after ctlz, bswap, etc.
16611   //  - zext after and by a constant mask
16612 
16613   return TargetLowering::isZExtFree(Val, VT2);
16614 }
16615 
16616 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16617   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16618          "invalid fpext types");
16619   // Extending to float128 is not free.
16620   if (DestVT == MVT::f128)
16621     return false;
16622   return true;
16623 }
16624 
16625 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16626   return isInt<16>(Imm) || isUInt<16>(Imm);
16627 }
16628 
16629 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16630   return isInt<16>(Imm) || isUInt<16>(Imm);
16631 }
16632 
16633 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16634                                                        MachineMemOperand::Flags,
16635                                                        bool *Fast) const {
16636   if (DisablePPCUnaligned)
16637     return false;
16638 
16639   // PowerPC supports unaligned memory access for simple non-vector types.
16640   // Although accessing unaligned addresses is not as efficient as accessing
16641   // aligned addresses, it is generally more efficient than manual expansion,
16642   // and generally only traps for software emulation when crossing page
16643   // boundaries.
16644 
16645   if (!VT.isSimple())
16646     return false;
16647 
16648   if (VT.isFloatingPoint() && !VT.isVector() &&
16649       !Subtarget.allowsUnalignedFPAccess())
16650     return false;
16651 
16652   if (VT.getSimpleVT().isVector()) {
16653     if (Subtarget.hasVSX()) {
16654       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16655           VT != MVT::v4f32 && VT != MVT::v4i32)
16656         return false;
16657     } else {
16658       return false;
16659     }
16660   }
16661 
16662   if (VT == MVT::ppcf128)
16663     return false;
16664 
16665   if (Fast)
16666     *Fast = true;
16667 
16668   return true;
16669 }
16670 
16671 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16672                                                SDValue C) const {
16673   // Check integral scalar types.
16674   if (!VT.isScalarInteger())
16675     return false;
16676   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16677     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16678       return false;
16679     // This transformation will generate >= 2 operations. But the following
16680     // cases will generate <= 2 instructions during ISEL. So exclude them.
16681     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16682     // HW instruction, ie. MULLI
16683     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16684     // instruction is needed than case 1, ie. MULLI and RLDICR
16685     int64_t Imm = ConstNode->getSExtValue();
16686     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16687     Imm >>= Shift;
16688     if (isInt<16>(Imm))
16689       return false;
16690     uint64_t UImm = static_cast<uint64_t>(Imm);
16691     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16692         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16693       return true;
16694   }
16695   return false;
16696 }
16697 
16698 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16699                                                    EVT VT) const {
16700   return isFMAFasterThanFMulAndFAdd(
16701       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16702 }
16703 
16704 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16705                                                    Type *Ty) const {
16706   switch (Ty->getScalarType()->getTypeID()) {
16707   case Type::FloatTyID:
16708   case Type::DoubleTyID:
16709     return true;
16710   case Type::FP128TyID:
16711     return Subtarget.hasP9Vector();
16712   default:
16713     return false;
16714   }
16715 }
16716 
16717 // FIXME: add more patterns which are not profitable to hoist.
16718 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16719   if (!I->hasOneUse())
16720     return true;
16721 
16722   Instruction *User = I->user_back();
16723   assert(User && "A single use instruction with no uses.");
16724 
16725   switch (I->getOpcode()) {
16726   case Instruction::FMul: {
16727     // Don't break FMA, PowerPC prefers FMA.
16728     if (User->getOpcode() != Instruction::FSub &&
16729         User->getOpcode() != Instruction::FAdd)
16730       return true;
16731 
16732     const TargetOptions &Options = getTargetMachine().Options;
16733     const Function *F = I->getFunction();
16734     const DataLayout &DL = F->getParent()->getDataLayout();
16735     Type *Ty = User->getOperand(0)->getType();
16736 
16737     return !(
16738         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16739         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16740         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16741   }
16742   case Instruction::Load: {
16743     // Don't break "store (load float*)" pattern, this pattern will be combined
16744     // to "store (load int32)" in later InstCombine pass. See function
16745     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16746     // cycles than loading a 32 bit integer.
16747     LoadInst *LI = cast<LoadInst>(I);
16748     // For the loads that combineLoadToOperationType does nothing, like
16749     // ordered load, it should be profitable to hoist them.
16750     // For swifterror load, it can only be used for pointer to pointer type, so
16751     // later type check should get rid of this case.
16752     if (!LI->isUnordered())
16753       return true;
16754 
16755     if (User->getOpcode() != Instruction::Store)
16756       return true;
16757 
16758     if (I->getType()->getTypeID() != Type::FloatTyID)
16759       return true;
16760 
16761     return false;
16762   }
16763   default:
16764     return true;
16765   }
16766   return true;
16767 }
16768 
16769 const MCPhysReg *
16770 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16771   // LR is a callee-save register, but we must treat it as clobbered by any call
16772   // site. Hence we include LR in the scratch registers, which are in turn added
16773   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16774   // to CTR, which is used by any indirect call.
16775   static const MCPhysReg ScratchRegs[] = {
16776     PPC::X12, PPC::LR8, PPC::CTR8, 0
16777   };
16778 
16779   return ScratchRegs;
16780 }
16781 
16782 Register PPCTargetLowering::getExceptionPointerRegister(
16783     const Constant *PersonalityFn) const {
16784   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16785 }
16786 
16787 Register PPCTargetLowering::getExceptionSelectorRegister(
16788     const Constant *PersonalityFn) const {
16789   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16790 }
16791 
16792 bool
16793 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16794                      EVT VT , unsigned DefinedValues) const {
16795   if (VT == MVT::v2i64)
16796     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16797 
16798   if (Subtarget.hasVSX())
16799     return true;
16800 
16801   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16802 }
16803 
16804 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16805   if (DisableILPPref || Subtarget.enableMachineScheduler())
16806     return TargetLowering::getSchedulingPreference(N);
16807 
16808   return Sched::ILP;
16809 }
16810 
16811 // Create a fast isel object.
16812 FastISel *
16813 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16814                                   const TargetLibraryInfo *LibInfo) const {
16815   return PPC::createFastISel(FuncInfo, LibInfo);
16816 }
16817 
16818 // 'Inverted' means the FMA opcode after negating one multiplicand.
16819 // For example, (fma -a b c) = (fnmsub a b c)
16820 static unsigned invertFMAOpcode(unsigned Opc) {
16821   switch (Opc) {
16822   default:
16823     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16824   case ISD::FMA:
16825     return PPCISD::FNMSUB;
16826   case PPCISD::FNMSUB:
16827     return ISD::FMA;
16828   }
16829 }
16830 
16831 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16832                                                 bool LegalOps, bool OptForSize,
16833                                                 NegatibleCost &Cost,
16834                                                 unsigned Depth) const {
16835   if (Depth > SelectionDAG::MaxRecursionDepth)
16836     return SDValue();
16837 
16838   unsigned Opc = Op.getOpcode();
16839   EVT VT = Op.getValueType();
16840   SDNodeFlags Flags = Op.getNode()->getFlags();
16841 
16842   switch (Opc) {
16843   case PPCISD::FNMSUB:
16844     if (!Op.hasOneUse() || !isTypeLegal(VT))
16845       break;
16846 
16847     const TargetOptions &Options = getTargetMachine().Options;
16848     SDValue N0 = Op.getOperand(0);
16849     SDValue N1 = Op.getOperand(1);
16850     SDValue N2 = Op.getOperand(2);
16851     SDLoc Loc(Op);
16852 
16853     NegatibleCost N2Cost = NegatibleCost::Expensive;
16854     SDValue NegN2 =
16855         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16856 
16857     if (!NegN2)
16858       return SDValue();
16859 
16860     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16861     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16862     // These transformations may change sign of zeroes. For example,
16863     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16864     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16865       // Try and choose the cheaper one to negate.
16866       NegatibleCost N0Cost = NegatibleCost::Expensive;
16867       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16868                                            N0Cost, Depth + 1);
16869 
16870       NegatibleCost N1Cost = NegatibleCost::Expensive;
16871       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16872                                            N1Cost, Depth + 1);
16873 
16874       if (NegN0 && N0Cost <= N1Cost) {
16875         Cost = std::min(N0Cost, N2Cost);
16876         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16877       } else if (NegN1) {
16878         Cost = std::min(N1Cost, N2Cost);
16879         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16880       }
16881     }
16882 
16883     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16884     if (isOperationLegal(ISD::FMA, VT)) {
16885       Cost = N2Cost;
16886       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16887     }
16888 
16889     break;
16890   }
16891 
16892   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16893                                               Cost, Depth);
16894 }
16895 
16896 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16897 bool PPCTargetLowering::useLoadStackGuardNode() const {
16898   if (!Subtarget.isTargetLinux())
16899     return TargetLowering::useLoadStackGuardNode();
16900   return true;
16901 }
16902 
16903 // Override to disable global variable loading on Linux and insert AIX canary
16904 // word declaration.
16905 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16906   if (Subtarget.isAIXABI()) {
16907     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16908                         Type::getInt8PtrTy(M.getContext()));
16909     return;
16910   }
16911   if (!Subtarget.isTargetLinux())
16912     return TargetLowering::insertSSPDeclarations(M);
16913 }
16914 
16915 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16916   if (Subtarget.isAIXABI())
16917     return M.getGlobalVariable(AIXSSPCanaryWordName);
16918   return TargetLowering::getSDagStackGuard(M);
16919 }
16920 
16921 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16922                                      bool ForCodeSize) const {
16923   if (!VT.isSimple() || !Subtarget.hasVSX())
16924     return false;
16925 
16926   switch(VT.getSimpleVT().SimpleTy) {
16927   default:
16928     // For FP types that are currently not supported by PPC backend, return
16929     // false. Examples: f16, f80.
16930     return false;
16931   case MVT::f32:
16932   case MVT::f64:
16933     if (Subtarget.hasPrefixInstrs()) {
16934       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16935       return true;
16936     }
16937     LLVM_FALLTHROUGH;
16938   case MVT::ppcf128:
16939     return Imm.isPosZero();
16940   }
16941 }
16942 
16943 // For vector shift operation op, fold
16944 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16945 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16946                                   SelectionDAG &DAG) {
16947   SDValue N0 = N->getOperand(0);
16948   SDValue N1 = N->getOperand(1);
16949   EVT VT = N0.getValueType();
16950   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16951   unsigned Opcode = N->getOpcode();
16952   unsigned TargetOpcode;
16953 
16954   switch (Opcode) {
16955   default:
16956     llvm_unreachable("Unexpected shift operation");
16957   case ISD::SHL:
16958     TargetOpcode = PPCISD::SHL;
16959     break;
16960   case ISD::SRL:
16961     TargetOpcode = PPCISD::SRL;
16962     break;
16963   case ISD::SRA:
16964     TargetOpcode = PPCISD::SRA;
16965     break;
16966   }
16967 
16968   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16969       N1->getOpcode() == ISD::AND)
16970     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16971       if (Mask->getZExtValue() == OpSizeInBits - 1)
16972         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16973 
16974   return SDValue();
16975 }
16976 
16977 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16978   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16979     return Value;
16980 
16981   SDValue N0 = N->getOperand(0);
16982   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16983   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16984       N0.getOpcode() != ISD::SIGN_EXTEND ||
16985       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16986       N->getValueType(0) != MVT::i64)
16987     return SDValue();
16988 
16989   // We can't save an operation here if the value is already extended, and
16990   // the existing shift is easier to combine.
16991   SDValue ExtsSrc = N0.getOperand(0);
16992   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16993       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16994     return SDValue();
16995 
16996   SDLoc DL(N0);
16997   SDValue ShiftBy = SDValue(CN1, 0);
16998   // We want the shift amount to be i32 on the extswli, but the shift could
16999   // have an i64.
17000   if (ShiftBy.getValueType() == MVT::i64)
17001     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
17002 
17003   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
17004                          ShiftBy);
17005 }
17006 
17007 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
17008   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17009     return Value;
17010 
17011   return SDValue();
17012 }
17013 
17014 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
17015   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17016     return Value;
17017 
17018   return SDValue();
17019 }
17020 
17021 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
17022 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
17023 // When C is zero, the equation (addi Z, -C) can be simplified to Z
17024 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
17025 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
17026                                  const PPCSubtarget &Subtarget) {
17027   if (!Subtarget.isPPC64())
17028     return SDValue();
17029 
17030   SDValue LHS = N->getOperand(0);
17031   SDValue RHS = N->getOperand(1);
17032 
17033   auto isZextOfCompareWithConstant = [](SDValue Op) {
17034     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
17035         Op.getValueType() != MVT::i64)
17036       return false;
17037 
17038     SDValue Cmp = Op.getOperand(0);
17039     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
17040         Cmp.getOperand(0).getValueType() != MVT::i64)
17041       return false;
17042 
17043     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
17044       int64_t NegConstant = 0 - Constant->getSExtValue();
17045       // Due to the limitations of the addi instruction,
17046       // -C is required to be [-32768, 32767].
17047       return isInt<16>(NegConstant);
17048     }
17049 
17050     return false;
17051   };
17052 
17053   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17054   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17055 
17056   // If there is a pattern, canonicalize a zext operand to the RHS.
17057   if (LHSHasPattern && !RHSHasPattern)
17058     std::swap(LHS, RHS);
17059   else if (!LHSHasPattern && !RHSHasPattern)
17060     return SDValue();
17061 
17062   SDLoc DL(N);
17063   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17064   SDValue Cmp = RHS.getOperand(0);
17065   SDValue Z = Cmp.getOperand(0);
17066   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17067   int64_t NegConstant = 0 - Constant->getSExtValue();
17068 
17069   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17070   default: break;
17071   case ISD::SETNE: {
17072     //                                 when C == 0
17073     //                             --> addze X, (addic Z, -1).carry
17074     //                            /
17075     // add X, (zext(setne Z, C))--
17076     //                            \    when -32768 <= -C <= 32767 && C != 0
17077     //                             --> addze X, (addic (addi Z, -C), -1).carry
17078     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17079                               DAG.getConstant(NegConstant, DL, MVT::i64));
17080     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17081     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17082                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17083     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17084                        SDValue(Addc.getNode(), 1));
17085     }
17086   case ISD::SETEQ: {
17087     //                                 when C == 0
17088     //                             --> addze X, (subfic Z, 0).carry
17089     //                            /
17090     // add X, (zext(sete  Z, C))--
17091     //                            \    when -32768 <= -C <= 32767 && C != 0
17092     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17093     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17094                               DAG.getConstant(NegConstant, DL, MVT::i64));
17095     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17096     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17097                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17098     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17099                        SDValue(Subc.getNode(), 1));
17100     }
17101   }
17102 
17103   return SDValue();
17104 }
17105 
17106 // Transform
17107 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17108 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17109 // In this case both C1 and C2 must be known constants.
17110 // C1+C2 must fit into a 34 bit signed integer.
17111 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17112                                           const PPCSubtarget &Subtarget) {
17113   if (!Subtarget.isUsingPCRelativeCalls())
17114     return SDValue();
17115 
17116   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17117   // If we find that node try to cast the Global Address and the Constant.
17118   SDValue LHS = N->getOperand(0);
17119   SDValue RHS = N->getOperand(1);
17120 
17121   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17122     std::swap(LHS, RHS);
17123 
17124   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17125     return SDValue();
17126 
17127   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17128   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17129   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17130 
17131   // Check that both casts succeeded.
17132   if (!GSDN || !ConstNode)
17133     return SDValue();
17134 
17135   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17136   SDLoc DL(GSDN);
17137 
17138   // The signed int offset needs to fit in 34 bits.
17139   if (!isInt<34>(NewOffset))
17140     return SDValue();
17141 
17142   // The new global address is a copy of the old global address except
17143   // that it has the updated Offset.
17144   SDValue GA =
17145       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17146                                  NewOffset, GSDN->getTargetFlags());
17147   SDValue MatPCRel =
17148       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17149   return MatPCRel;
17150 }
17151 
17152 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17153   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17154     return Value;
17155 
17156   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17157     return Value;
17158 
17159   return SDValue();
17160 }
17161 
17162 // Detect TRUNCATE operations on bitcasts of float128 values.
17163 // What we are looking for here is the situtation where we extract a subset
17164 // of bits from a 128 bit float.
17165 // This can be of two forms:
17166 // 1) BITCAST of f128 feeding TRUNCATE
17167 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17168 // The reason this is required is because we do not have a legal i128 type
17169 // and so we want to prevent having to store the f128 and then reload part
17170 // of it.
17171 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17172                                            DAGCombinerInfo &DCI) const {
17173   // If we are using CRBits then try that first.
17174   if (Subtarget.useCRBits()) {
17175     // Check if CRBits did anything and return that if it did.
17176     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17177       return CRTruncValue;
17178   }
17179 
17180   SDLoc dl(N);
17181   SDValue Op0 = N->getOperand(0);
17182 
17183   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17184   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17185     EVT VT = N->getValueType(0);
17186     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17187       return SDValue();
17188     SDValue Sub = Op0.getOperand(0);
17189     if (Sub.getOpcode() == ISD::SUB) {
17190       SDValue SubOp0 = Sub.getOperand(0);
17191       SDValue SubOp1 = Sub.getOperand(1);
17192       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17193           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17194         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17195                                SubOp1.getOperand(0),
17196                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17197       }
17198     }
17199   }
17200 
17201   // Looking for a truncate of i128 to i64.
17202   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17203     return SDValue();
17204 
17205   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17206 
17207   // SRL feeding TRUNCATE.
17208   if (Op0.getOpcode() == ISD::SRL) {
17209     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17210     // The right shift has to be by 64 bits.
17211     if (!ConstNode || ConstNode->getZExtValue() != 64)
17212       return SDValue();
17213 
17214     // Switch the element number to extract.
17215     EltToExtract = EltToExtract ? 0 : 1;
17216     // Update Op0 past the SRL.
17217     Op0 = Op0.getOperand(0);
17218   }
17219 
17220   // BITCAST feeding a TRUNCATE possibly via SRL.
17221   if (Op0.getOpcode() == ISD::BITCAST &&
17222       Op0.getValueType() == MVT::i128 &&
17223       Op0.getOperand(0).getValueType() == MVT::f128) {
17224     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17225     return DCI.DAG.getNode(
17226         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17227         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17228   }
17229   return SDValue();
17230 }
17231 
17232 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17233   SelectionDAG &DAG = DCI.DAG;
17234 
17235   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17236   if (!ConstOpOrElement)
17237     return SDValue();
17238 
17239   // An imul is usually smaller than the alternative sequence for legal type.
17240   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17241       isOperationLegal(ISD::MUL, N->getValueType(0)))
17242     return SDValue();
17243 
17244   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17245     switch (this->Subtarget.getCPUDirective()) {
17246     default:
17247       // TODO: enhance the condition for subtarget before pwr8
17248       return false;
17249     case PPC::DIR_PWR8:
17250       //  type        mul     add    shl
17251       // scalar        4       1      1
17252       // vector        7       2      2
17253       return true;
17254     case PPC::DIR_PWR9:
17255     case PPC::DIR_PWR10:
17256     case PPC::DIR_PWR_FUTURE:
17257       //  type        mul     add    shl
17258       // scalar        5       2      2
17259       // vector        7       2      2
17260 
17261       // The cycle RATIO of related operations are showed as a table above.
17262       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17263       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17264       // are 4, it is always profitable; but for 3 instrs patterns
17265       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17266       // So we should only do it for vector type.
17267       return IsAddOne && IsNeg ? VT.isVector() : true;
17268     }
17269   };
17270 
17271   EVT VT = N->getValueType(0);
17272   SDLoc DL(N);
17273 
17274   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17275   bool IsNeg = MulAmt.isNegative();
17276   APInt MulAmtAbs = MulAmt.abs();
17277 
17278   if ((MulAmtAbs - 1).isPowerOf2()) {
17279     // (mul x, 2^N + 1) => (add (shl x, N), x)
17280     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17281 
17282     if (!IsProfitable(IsNeg, true, VT))
17283       return SDValue();
17284 
17285     SDValue Op0 = N->getOperand(0);
17286     SDValue Op1 =
17287         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17288                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17289     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17290 
17291     if (!IsNeg)
17292       return Res;
17293 
17294     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17295   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17296     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17297     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17298 
17299     if (!IsProfitable(IsNeg, false, VT))
17300       return SDValue();
17301 
17302     SDValue Op0 = N->getOperand(0);
17303     SDValue Op1 =
17304         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17305                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17306 
17307     if (!IsNeg)
17308       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17309     else
17310       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17311 
17312   } else {
17313     return SDValue();
17314   }
17315 }
17316 
17317 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17318 // in combiner since we need to check SD flags and other subtarget features.
17319 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17320                                           DAGCombinerInfo &DCI) const {
17321   SDValue N0 = N->getOperand(0);
17322   SDValue N1 = N->getOperand(1);
17323   SDValue N2 = N->getOperand(2);
17324   SDNodeFlags Flags = N->getFlags();
17325   EVT VT = N->getValueType(0);
17326   SelectionDAG &DAG = DCI.DAG;
17327   const TargetOptions &Options = getTargetMachine().Options;
17328   unsigned Opc = N->getOpcode();
17329   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17330   bool LegalOps = !DCI.isBeforeLegalizeOps();
17331   SDLoc Loc(N);
17332 
17333   if (!isOperationLegal(ISD::FMA, VT))
17334     return SDValue();
17335 
17336   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17337   // since (fnmsub a b c)=-0 while c-ab=+0.
17338   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17339     return SDValue();
17340 
17341   // (fma (fneg a) b c) => (fnmsub a b c)
17342   // (fnmsub (fneg a) b c) => (fma a b c)
17343   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17344     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17345 
17346   // (fma a (fneg b) c) => (fnmsub a b c)
17347   // (fnmsub a (fneg b) c) => (fma a b c)
17348   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17349     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17350 
17351   return SDValue();
17352 }
17353 
17354 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17355   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17356   if (!Subtarget.is64BitELFABI())
17357     return false;
17358 
17359   // If not a tail call then no need to proceed.
17360   if (!CI->isTailCall())
17361     return false;
17362 
17363   // If sibling calls have been disabled and tail-calls aren't guaranteed
17364   // there is no reason to duplicate.
17365   auto &TM = getTargetMachine();
17366   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17367     return false;
17368 
17369   // Can't tail call a function called indirectly, or if it has variadic args.
17370   const Function *Callee = CI->getCalledFunction();
17371   if (!Callee || Callee->isVarArg())
17372     return false;
17373 
17374   // Make sure the callee and caller calling conventions are eligible for tco.
17375   const Function *Caller = CI->getParent()->getParent();
17376   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17377                                            CI->getCallingConv()))
17378       return false;
17379 
17380   // If the function is local then we have a good chance at tail-calling it
17381   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17382 }
17383 
17384 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17385   if (!Subtarget.hasVSX())
17386     return false;
17387   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17388     return true;
17389   return VT == MVT::f32 || VT == MVT::f64 ||
17390     VT == MVT::v4f32 || VT == MVT::v2f64;
17391 }
17392 
17393 bool PPCTargetLowering::
17394 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17395   const Value *Mask = AndI.getOperand(1);
17396   // If the mask is suitable for andi. or andis. we should sink the and.
17397   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17398     // Can't handle constants wider than 64-bits.
17399     if (CI->getBitWidth() > 64)
17400       return false;
17401     int64_t ConstVal = CI->getZExtValue();
17402     return isUInt<16>(ConstVal) ||
17403       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17404   }
17405 
17406   // For non-constant masks, we can always use the record-form and.
17407   return true;
17408 }
17409 
17410 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17411 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17412 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17413 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17414 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17415 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17416   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17417   assert(Subtarget.hasP9Altivec() &&
17418          "Only combine this when P9 altivec supported!");
17419   EVT VT = N->getValueType(0);
17420   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17421     return SDValue();
17422 
17423   SelectionDAG &DAG = DCI.DAG;
17424   SDLoc dl(N);
17425   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17426     // Even for signed integers, if it's known to be positive (as signed
17427     // integer) due to zero-extended inputs.
17428     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17429     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17430     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17431          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17432         (SubOpcd1 == ISD::ZERO_EXTEND ||
17433          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17434       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17435                          N->getOperand(0)->getOperand(0),
17436                          N->getOperand(0)->getOperand(1),
17437                          DAG.getTargetConstant(0, dl, MVT::i32));
17438     }
17439 
17440     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17441     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17442         N->getOperand(0).hasOneUse()) {
17443       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17444                          N->getOperand(0)->getOperand(0),
17445                          N->getOperand(0)->getOperand(1),
17446                          DAG.getTargetConstant(1, dl, MVT::i32));
17447     }
17448   }
17449 
17450   return SDValue();
17451 }
17452 
17453 // For type v4i32/v8ii16/v16i8, transform
17454 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17455 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17456 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17457 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17458 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17459                                           DAGCombinerInfo &DCI) const {
17460   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17461   assert(Subtarget.hasP9Altivec() &&
17462          "Only combine this when P9 altivec supported!");
17463 
17464   SelectionDAG &DAG = DCI.DAG;
17465   SDLoc dl(N);
17466   SDValue Cond = N->getOperand(0);
17467   SDValue TrueOpnd = N->getOperand(1);
17468   SDValue FalseOpnd = N->getOperand(2);
17469   EVT VT = N->getOperand(1).getValueType();
17470 
17471   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17472       FalseOpnd.getOpcode() != ISD::SUB)
17473     return SDValue();
17474 
17475   // ABSD only available for type v4i32/v8i16/v16i8
17476   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17477     return SDValue();
17478 
17479   // At least to save one more dependent computation
17480   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17481     return SDValue();
17482 
17483   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17484 
17485   // Can only handle unsigned comparison here
17486   switch (CC) {
17487   default:
17488     return SDValue();
17489   case ISD::SETUGT:
17490   case ISD::SETUGE:
17491     break;
17492   case ISD::SETULT:
17493   case ISD::SETULE:
17494     std::swap(TrueOpnd, FalseOpnd);
17495     break;
17496   }
17497 
17498   SDValue CmpOpnd1 = Cond.getOperand(0);
17499   SDValue CmpOpnd2 = Cond.getOperand(1);
17500 
17501   // SETCC CmpOpnd1 CmpOpnd2 cond
17502   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17503   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17504   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17505       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17506       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17507       FalseOpnd.getOperand(1) == CmpOpnd1) {
17508     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17509                        CmpOpnd1, CmpOpnd2,
17510                        DAG.getTargetConstant(0, dl, MVT::i32));
17511   }
17512 
17513   return SDValue();
17514 }
17515 
17516 /// getAddrModeForFlags - Based on the set of address flags, select the most
17517 /// optimal instruction format to match by.
17518 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17519   // This is not a node we should be handling here.
17520   if (Flags == PPC::MOF_None)
17521     return PPC::AM_None;
17522   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17523   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17524     if ((Flags & FlagSet) == FlagSet)
17525       return PPC::AM_DForm;
17526   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17527     if ((Flags & FlagSet) == FlagSet)
17528       return PPC::AM_DSForm;
17529   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17530     if ((Flags & FlagSet) == FlagSet)
17531       return PPC::AM_DQForm;
17532   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17533     if ((Flags & FlagSet) == FlagSet)
17534       return PPC::AM_PrefixDForm;
17535   // If no other forms are selected, return an X-Form as it is the most
17536   // general addressing mode.
17537   return PPC::AM_XForm;
17538 }
17539 
17540 /// Set alignment flags based on whether or not the Frame Index is aligned.
17541 /// Utilized when computing flags for address computation when selecting
17542 /// load and store instructions.
17543 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17544                                SelectionDAG &DAG) {
17545   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17546   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17547   if (!FI)
17548     return;
17549   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17550   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17551   // If this is (add $FI, $S16Imm), the alignment flags are already set
17552   // based on the immediate. We just need to clear the alignment flags
17553   // if the FI alignment is weaker.
17554   if ((FrameIndexAlign % 4) != 0)
17555     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17556   if ((FrameIndexAlign % 16) != 0)
17557     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17558   // If the address is a plain FrameIndex, set alignment flags based on
17559   // FI alignment.
17560   if (!IsAdd) {
17561     if ((FrameIndexAlign % 4) == 0)
17562       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17563     if ((FrameIndexAlign % 16) == 0)
17564       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17565   }
17566 }
17567 
17568 /// Given a node, compute flags that are used for address computation when
17569 /// selecting load and store instructions. The flags computed are stored in
17570 /// FlagSet. This function takes into account whether the node is a constant,
17571 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17572 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17573                                               SelectionDAG &DAG) {
17574   // Set the alignment flags for the node depending on if the node is
17575   // 4-byte or 16-byte aligned.
17576   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17577     if ((Imm & 0x3) == 0)
17578       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17579     if ((Imm & 0xf) == 0)
17580       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17581   };
17582 
17583   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17584     // All 32-bit constants can be computed as LIS + Disp.
17585     const APInt &ConstImm = CN->getAPIntValue();
17586     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17587       FlagSet |= PPC::MOF_AddrIsSImm32;
17588       SetAlignFlagsForImm(ConstImm.getZExtValue());
17589       setAlignFlagsForFI(N, FlagSet, DAG);
17590     }
17591     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17592       FlagSet |= PPC::MOF_RPlusSImm34;
17593     else // Let constant materialization handle large constants.
17594       FlagSet |= PPC::MOF_NotAddNorCst;
17595   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17596     // This address can be represented as an addition of:
17597     // - Register + Imm16 (possibly a multiple of 4/16)
17598     // - Register + Imm34
17599     // - Register + PPCISD::Lo
17600     // - Register + Register
17601     // In any case, we won't have to match this as Base + Zero.
17602     SDValue RHS = N.getOperand(1);
17603     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17604       const APInt &ConstImm = CN->getAPIntValue();
17605       if (ConstImm.isSignedIntN(16)) {
17606         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17607         SetAlignFlagsForImm(ConstImm.getZExtValue());
17608         setAlignFlagsForFI(N, FlagSet, DAG);
17609       }
17610       if (ConstImm.isSignedIntN(34))
17611         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17612       else
17613         FlagSet |= PPC::MOF_RPlusR; // Register.
17614     } else if (RHS.getOpcode() == PPCISD::Lo &&
17615                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17616       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17617     else
17618       FlagSet |= PPC::MOF_RPlusR;
17619   } else { // The address computation is not a constant or an addition.
17620     setAlignFlagsForFI(N, FlagSet, DAG);
17621     FlagSet |= PPC::MOF_NotAddNorCst;
17622   }
17623 }
17624 
17625 static bool isPCRelNode(SDValue N) {
17626   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17627       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17628       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17629       isValidPCRelNode<JumpTableSDNode>(N) ||
17630       isValidPCRelNode<BlockAddressSDNode>(N));
17631 }
17632 
17633 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17634 /// the address flags of the load/store instruction that is to be matched.
17635 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17636                                            SelectionDAG &DAG) const {
17637   unsigned FlagSet = PPC::MOF_None;
17638 
17639   // Compute subtarget flags.
17640   if (!Subtarget.hasP9Vector())
17641     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17642   else {
17643     FlagSet |= PPC::MOF_SubtargetP9;
17644     if (Subtarget.hasPrefixInstrs())
17645       FlagSet |= PPC::MOF_SubtargetP10;
17646   }
17647   if (Subtarget.hasSPE())
17648     FlagSet |= PPC::MOF_SubtargetSPE;
17649 
17650   // Check if we have a PCRel node and return early.
17651   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17652     return FlagSet;
17653 
17654   // If the node is the paired load/store intrinsics, compute flags for
17655   // address computation and return early.
17656   unsigned ParentOp = Parent->getOpcode();
17657   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17658                                (ParentOp == ISD::INTRINSIC_VOID))) {
17659     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17660     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17661       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17662                              ? Parent->getOperand(2)
17663                              : Parent->getOperand(3);
17664       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17665       FlagSet |= PPC::MOF_Vector;
17666       return FlagSet;
17667     }
17668   }
17669 
17670   // Mark this as something we don't want to handle here if it is atomic
17671   // or pre-increment instruction.
17672   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17673     if (LSB->isIndexed())
17674       return PPC::MOF_None;
17675 
17676   // Compute in-memory type flags. This is based on if there are scalars,
17677   // floats or vectors.
17678   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17679   assert(MN && "Parent should be a MemSDNode!");
17680   EVT MemVT = MN->getMemoryVT();
17681   unsigned Size = MemVT.getSizeInBits();
17682   if (MemVT.isScalarInteger()) {
17683     assert(Size <= 128 &&
17684            "Not expecting scalar integers larger than 16 bytes!");
17685     if (Size < 32)
17686       FlagSet |= PPC::MOF_SubWordInt;
17687     else if (Size == 32)
17688       FlagSet |= PPC::MOF_WordInt;
17689     else
17690       FlagSet |= PPC::MOF_DoubleWordInt;
17691   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17692     if (Size == 128)
17693       FlagSet |= PPC::MOF_Vector;
17694     else if (Size == 256) {
17695       assert(Subtarget.pairedVectorMemops() &&
17696              "256-bit vectors are only available when paired vector memops is "
17697              "enabled!");
17698       FlagSet |= PPC::MOF_Vector;
17699     } else
17700       llvm_unreachable("Not expecting illegal vectors!");
17701   } else { // Floating point type: can be scalar, f128 or vector types.
17702     if (Size == 32 || Size == 64)
17703       FlagSet |= PPC::MOF_ScalarFloat;
17704     else if (MemVT == MVT::f128 || MemVT.isVector())
17705       FlagSet |= PPC::MOF_Vector;
17706     else
17707       llvm_unreachable("Not expecting illegal scalar floats!");
17708   }
17709 
17710   // Compute flags for address computation.
17711   computeFlagsForAddressComputation(N, FlagSet, DAG);
17712 
17713   // Compute type extension flags.
17714   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17715     switch (LN->getExtensionType()) {
17716     case ISD::SEXTLOAD:
17717       FlagSet |= PPC::MOF_SExt;
17718       break;
17719     case ISD::EXTLOAD:
17720     case ISD::ZEXTLOAD:
17721       FlagSet |= PPC::MOF_ZExt;
17722       break;
17723     case ISD::NON_EXTLOAD:
17724       FlagSet |= PPC::MOF_NoExt;
17725       break;
17726     }
17727   } else
17728     FlagSet |= PPC::MOF_NoExt;
17729 
17730   // For integers, no extension is the same as zero extension.
17731   // We set the extension mode to zero extension so we don't have
17732   // to add separate entries in AddrModesMap for loads and stores.
17733   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17734     FlagSet |= PPC::MOF_ZExt;
17735     FlagSet &= ~PPC::MOF_NoExt;
17736   }
17737 
17738   // If we don't have prefixed instructions, 34-bit constants should be
17739   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17740   bool IsNonP1034BitConst =
17741       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17742        FlagSet) == PPC::MOF_RPlusSImm34;
17743   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17744       IsNonP1034BitConst)
17745     FlagSet |= PPC::MOF_NotAddNorCst;
17746 
17747   return FlagSet;
17748 }
17749 
17750 /// SelectForceXFormMode - Given the specified address, force it to be
17751 /// represented as an indexed [r+r] operation (an XForm instruction).
17752 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17753                                                       SDValue &Base,
17754                                                       SelectionDAG &DAG) const {
17755 
17756   PPC::AddrMode Mode = PPC::AM_XForm;
17757   int16_t ForceXFormImm = 0;
17758   if (provablyDisjointOr(DAG, N) &&
17759       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17760     Disp = N.getOperand(0);
17761     Base = N.getOperand(1);
17762     return Mode;
17763   }
17764 
17765   // If the address is the result of an add, we will utilize the fact that the
17766   // address calculation includes an implicit add.  However, we can reduce
17767   // register pressure if we do not materialize a constant just for use as the
17768   // index register.  We only get rid of the add if it is not an add of a
17769   // value and a 16-bit signed constant and both have a single use.
17770   if (N.getOpcode() == ISD::ADD &&
17771       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17772        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17773     Disp = N.getOperand(0);
17774     Base = N.getOperand(1);
17775     return Mode;
17776   }
17777 
17778   // Otherwise, use R0 as the base register.
17779   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17780                          N.getValueType());
17781   Base = N;
17782 
17783   return Mode;
17784 }
17785 
17786 bool PPCTargetLowering::splitValueIntoRegisterParts(
17787     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17788     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17789   EVT ValVT = Val.getValueType();
17790   // If we are splitting a scalar integer into f64 parts (i.e. so they
17791   // can be placed into VFRC registers), we need to zero extend and
17792   // bitcast the values. This will ensure the value is placed into a
17793   // VSR using direct moves or stack operations as needed.
17794   if (PartVT == MVT::f64 &&
17795       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17796     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17797     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17798     Parts[0] = Val;
17799     return true;
17800   }
17801   return false;
17802 }
17803 
17804 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
17805                                           SelectionDAG &DAG) const {
17806   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17807   TargetLowering::CallLoweringInfo CLI(DAG);
17808   EVT RetVT = Op.getValueType();
17809   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
17810   SDValue Callee =
17811       DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
17812   bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
17813   TargetLowering::ArgListTy Args;
17814   TargetLowering::ArgListEntry Entry;
17815   for (const SDValue &N : Op->op_values()) {
17816     EVT ArgVT = N.getValueType();
17817     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17818     Entry.Node = N;
17819     Entry.Ty = ArgTy;
17820     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
17821     Entry.IsZExt = !Entry.IsSExt;
17822     Args.push_back(Entry);
17823   }
17824 
17825   SDValue InChain = DAG.getEntryNode();
17826   SDValue TCChain = InChain;
17827   const Function &F = DAG.getMachineFunction().getFunction();
17828   bool isTailCall =
17829       TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
17830       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
17831   if (isTailCall)
17832     InChain = TCChain;
17833   CLI.setDebugLoc(SDLoc(Op))
17834       .setChain(InChain)
17835       .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args))
17836       .setTailCall(isTailCall)
17837       .setSExtResult(SignExtend)
17838       .setZExtResult(!SignExtend)
17839       .setIsPostTypeLegalization(true);
17840   return TLI.LowerCallTo(CLI).first;
17841 }
17842 
17843 SDValue PPCTargetLowering::lowerLibCallBasedOnType(
17844     const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
17845     SelectionDAG &DAG) const {
17846   if (Op.getValueType() == MVT::f32)
17847     return lowerToLibCall(LibCallFloatName, Op, DAG);
17848 
17849   if (Op.getValueType() == MVT::f64)
17850     return lowerToLibCall(LibCallDoubleName, Op, DAG);
17851 
17852   return SDValue();
17853 }
17854 
17855 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
17856   SDNodeFlags Flags = Op.getNode()->getFlags();
17857   return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
17858          Flags.hasNoNaNs() && Flags.hasNoInfs();
17859 }
17860 
17861 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
17862   return Op.getNode()->getFlags().hasApproximateFuncs();
17863 }
17864 
17865 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
17866                                             const char *LibCallFloatName,
17867                                             const char *LibCallDoubleNameFinite,
17868                                             const char *LibCallFloatNameFinite,
17869                                             SDValue Op,
17870                                             SelectionDAG &DAG) const {
17871   if (!isLowringToMASSSafe(Op))
17872     return SDValue();
17873 
17874   if (!isLowringToMASSFiniteSafe(Op))
17875     return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
17876                                    DAG);
17877 
17878   return lowerLibCallBasedOnType(LibCallFloatNameFinite,
17879                                  LibCallDoubleNameFinite, Op, DAG);
17880 }
17881 
17882 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
17883   return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
17884                           "__xl_powf_finite", Op, DAG);
17885 }
17886 
17887 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
17888   return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
17889                           "__xl_sinf_finite", Op, DAG);
17890 }
17891 
17892 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
17893   return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
17894                           "__xl_cosf_finite", Op, DAG);
17895 }
17896 
17897 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
17898   return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
17899                           "__xl_logf_finite", Op, DAG);
17900 }
17901 
17902 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
17903   return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
17904                           "__xl_log10f_finite", Op, DAG);
17905 }
17906 
17907 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
17908   return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
17909                           "__xl_expf_finite", Op, DAG);
17910 }
17911 
17912 // If we happen to match to an aligned D-Form, check if the Frame Index is
17913 // adequately aligned. If it is not, reset the mode to match to X-Form.
17914 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17915                                    PPC::AddrMode &Mode) {
17916   if (!isa<FrameIndexSDNode>(N))
17917     return;
17918   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17919       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17920     Mode = PPC::AM_XForm;
17921 }
17922 
17923 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17924 /// compute the address flags of the node, get the optimal address mode based
17925 /// on the flags, and set the Base and Disp based on the address mode.
17926 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17927                                                        SDValue N, SDValue &Disp,
17928                                                        SDValue &Base,
17929                                                        SelectionDAG &DAG,
17930                                                        MaybeAlign Align) const {
17931   SDLoc DL(Parent);
17932 
17933   // Compute the address flags.
17934   unsigned Flags = computeMOFlags(Parent, N, DAG);
17935 
17936   // Get the optimal address mode based on the Flags.
17937   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17938 
17939   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17940   // Select an X-Form load if it is not.
17941   setXFormForUnalignedFI(N, Flags, Mode);
17942 
17943   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17944   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17945     assert(Subtarget.isUsingPCRelativeCalls() &&
17946            "Must be using PC-Relative calls when a valid PC-Relative node is "
17947            "present!");
17948     Mode = PPC::AM_PCRel;
17949   }
17950 
17951   // Set Base and Disp accordingly depending on the address mode.
17952   switch (Mode) {
17953   case PPC::AM_DForm:
17954   case PPC::AM_DSForm:
17955   case PPC::AM_DQForm: {
17956     // This is a register plus a 16-bit immediate. The base will be the
17957     // register and the displacement will be the immediate unless it
17958     // isn't sufficiently aligned.
17959     if (Flags & PPC::MOF_RPlusSImm16) {
17960       SDValue Op0 = N.getOperand(0);
17961       SDValue Op1 = N.getOperand(1);
17962       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17963       if (!Align || isAligned(*Align, Imm)) {
17964         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17965         Base = Op0;
17966         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17967           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17968           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17969         }
17970         break;
17971       }
17972     }
17973     // This is a register plus the @lo relocation. The base is the register
17974     // and the displacement is the global address.
17975     else if (Flags & PPC::MOF_RPlusLo) {
17976       Disp = N.getOperand(1).getOperand(0); // The global address.
17977       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17978              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17979              Disp.getOpcode() == ISD::TargetConstantPool ||
17980              Disp.getOpcode() == ISD::TargetJumpTable);
17981       Base = N.getOperand(0);
17982       break;
17983     }
17984     // This is a constant address at most 32 bits. The base will be
17985     // zero or load-immediate-shifted and the displacement will be
17986     // the low 16 bits of the address.
17987     else if (Flags & PPC::MOF_AddrIsSImm32) {
17988       auto *CN = cast<ConstantSDNode>(N);
17989       EVT CNType = CN->getValueType(0);
17990       uint64_t CNImm = CN->getZExtValue();
17991       // If this address fits entirely in a 16-bit sext immediate field, codegen
17992       // this as "d, 0".
17993       int16_t Imm;
17994       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17995         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17996         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17997                                CNType);
17998         break;
17999       }
18000       // Handle 32-bit sext immediate with LIS + Addr mode.
18001       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
18002           (!Align || isAligned(*Align, CNImm))) {
18003         int32_t Addr = (int32_t)CNImm;
18004         // Otherwise, break this down into LIS + Disp.
18005         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
18006         Base =
18007             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
18008         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
18009         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
18010         break;
18011       }
18012     }
18013     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
18014     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
18015     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
18016       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18017       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18018     } else
18019       Base = N;
18020     break;
18021   }
18022   case PPC::AM_PrefixDForm: {
18023     int64_t Imm34 = 0;
18024     unsigned Opcode = N.getOpcode();
18025     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
18026         (isIntS34Immediate(N.getOperand(1), Imm34))) {
18027       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
18028       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18029       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
18030         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18031       else
18032         Base = N.getOperand(0);
18033     } else if (isIntS34Immediate(N, Imm34)) {
18034       // The address is a 34-bit signed immediate.
18035       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18036       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
18037     }
18038     break;
18039   }
18040   case PPC::AM_PCRel: {
18041     // When selecting PC-Relative instructions, "Base" is not utilized as
18042     // we select the address as [PC+imm].
18043     Disp = N;
18044     break;
18045   }
18046   case PPC::AM_None:
18047     break;
18048   default: { // By default, X-Form is always available to be selected.
18049     // When a frame index is not aligned, we also match by XForm.
18050     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
18051     Base = FI ? N : N.getOperand(1);
18052     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18053                                 N.getValueType())
18054               : N.getOperand(0);
18055     break;
18056   }
18057   }
18058   return Mode;
18059 }
18060 
18061 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
18062                                                  bool Return,
18063                                                  bool IsVarArg) const {
18064   switch (CC) {
18065   case CallingConv::Cold:
18066     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
18067   default:
18068     return CC_PPC64_ELF_FIS;
18069   }
18070 }
18071 
18072 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const {
18073   // TODO: 16-byte atomic type support for AIX is in progress; we should be able
18074   // to inline 16-byte atomic ops on AIX too in the future.
18075   return Subtarget.isPPC64() &&
18076          (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) &&
18077          Subtarget.hasQuadwordAtomics();
18078 }
18079 
18080 TargetLowering::AtomicExpansionKind
18081 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18082   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18083   if (shouldInlineQuadwordAtomics() && Size == 128)
18084     return AtomicExpansionKind::MaskedIntrinsic;
18085   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18086 }
18087 
18088 TargetLowering::AtomicExpansionKind
18089 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18090   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18091   if (shouldInlineQuadwordAtomics() && Size == 128)
18092     return AtomicExpansionKind::MaskedIntrinsic;
18093   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18094 }
18095 
18096 static Intrinsic::ID
18097 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18098   switch (BinOp) {
18099   default:
18100     llvm_unreachable("Unexpected AtomicRMW BinOp");
18101   case AtomicRMWInst::Xchg:
18102     return Intrinsic::ppc_atomicrmw_xchg_i128;
18103   case AtomicRMWInst::Add:
18104     return Intrinsic::ppc_atomicrmw_add_i128;
18105   case AtomicRMWInst::Sub:
18106     return Intrinsic::ppc_atomicrmw_sub_i128;
18107   case AtomicRMWInst::And:
18108     return Intrinsic::ppc_atomicrmw_and_i128;
18109   case AtomicRMWInst::Or:
18110     return Intrinsic::ppc_atomicrmw_or_i128;
18111   case AtomicRMWInst::Xor:
18112     return Intrinsic::ppc_atomicrmw_xor_i128;
18113   case AtomicRMWInst::Nand:
18114     return Intrinsic::ppc_atomicrmw_nand_i128;
18115   }
18116 }
18117 
18118 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18119     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18120     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18121   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18122   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18123   Type *ValTy = Incr->getType();
18124   assert(ValTy->getPrimitiveSizeInBits() == 128);
18125   Function *RMW = Intrinsic::getDeclaration(
18126       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18127   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18128   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18129   Value *IncrHi =
18130       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18131   Value *Addr =
18132       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18133   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
18134   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18135   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18136   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18137   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18138   return Builder.CreateOr(
18139       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18140 }
18141 
18142 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18143     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18144     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18145   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18146   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18147   Type *ValTy = CmpVal->getType();
18148   assert(ValTy->getPrimitiveSizeInBits() == 128);
18149   Function *IntCmpXchg =
18150       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18151   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18152   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18153   Value *CmpHi =
18154       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18155   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18156   Value *NewHi =
18157       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18158   Value *Addr =
18159       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18160   emitLeadingFence(Builder, CI, Ord);
18161   Value *LoHi =
18162       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
18163   emitTrailingFence(Builder, CI, Ord);
18164   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18165   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18166   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18167   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18168   return Builder.CreateOr(
18169       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18170 }
18171