1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(false), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 631 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 632 633 // To handle counter-based loop conditions. 634 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 635 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 638 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 639 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 640 641 // Comparisons that require checking two conditions. 642 if (Subtarget.hasSPE()) { 643 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 645 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 646 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 647 } 648 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 660 661 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 662 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 663 664 if (Subtarget.has64BitSupport()) { 665 // They also have instructions for converting between i64 and fp. 666 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 668 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 670 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 671 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 672 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 674 // This is just the low 32 bits of a (signed) fp->i64 conversion. 675 // We cannot do this with Promote because i64 is not a legal type. 676 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 679 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 } 683 } else { 684 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 685 if (Subtarget.hasSPE()) { 686 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 687 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 688 } else { 689 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 690 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 691 } 692 } 693 694 // With the instructions enabled under FPCVT, we can do everything. 695 if (Subtarget.hasFPCVT()) { 696 if (Subtarget.has64BitSupport()) { 697 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 699 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 700 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 701 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 702 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 703 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 704 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 705 } 706 707 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 709 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 710 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 711 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 712 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 713 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 714 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 715 } 716 717 if (Subtarget.use64BitRegs()) { 718 // 64-bit PowerPC implementations can support i64 types directly 719 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 720 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 721 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 722 // 64-bit PowerPC wants to expand i128 shifts itself. 723 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 724 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 725 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 726 } else { 727 // 32-bit PowerPC wants to expand i64 shifts itself. 728 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 729 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 730 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 731 } 732 733 // PowerPC has better expansions for funnel shifts than the generic 734 // TargetLowering::expandFunnelShift. 735 if (Subtarget.has64BitSupport()) { 736 setOperationAction(ISD::FSHL, MVT::i64, Custom); 737 setOperationAction(ISD::FSHR, MVT::i64, Custom); 738 } 739 setOperationAction(ISD::FSHL, MVT::i32, Custom); 740 setOperationAction(ISD::FSHR, MVT::i32, Custom); 741 742 if (Subtarget.hasVSX()) { 743 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 745 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 746 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 747 } 748 749 if (Subtarget.hasAltivec()) { 750 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 751 setOperationAction(ISD::SADDSAT, VT, Legal); 752 setOperationAction(ISD::SSUBSAT, VT, Legal); 753 setOperationAction(ISD::UADDSAT, VT, Legal); 754 setOperationAction(ISD::USUBSAT, VT, Legal); 755 } 756 // First set operation action for all vector types to expand. Then we 757 // will selectively turn on ones that can be effectively codegen'd. 758 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 759 // add/sub are legal for all supported vector VT's. 760 setOperationAction(ISD::ADD, VT, Legal); 761 setOperationAction(ISD::SUB, VT, Legal); 762 763 // For v2i64, these are only valid with P8Vector. This is corrected after 764 // the loop. 765 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 766 setOperationAction(ISD::SMAX, VT, Legal); 767 setOperationAction(ISD::SMIN, VT, Legal); 768 setOperationAction(ISD::UMAX, VT, Legal); 769 setOperationAction(ISD::UMIN, VT, Legal); 770 } 771 else { 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::SMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::UMIN, VT, Expand); 776 } 777 778 if (Subtarget.hasVSX()) { 779 setOperationAction(ISD::FMAXNUM, VT, Legal); 780 setOperationAction(ISD::FMINNUM, VT, Legal); 781 } 782 783 // Vector instructions introduced in P8 784 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 785 setOperationAction(ISD::CTPOP, VT, Legal); 786 setOperationAction(ISD::CTLZ, VT, Legal); 787 } 788 else { 789 setOperationAction(ISD::CTPOP, VT, Expand); 790 setOperationAction(ISD::CTLZ, VT, Expand); 791 } 792 793 // Vector instructions introduced in P9 794 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 795 setOperationAction(ISD::CTTZ, VT, Legal); 796 else 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 // We promote all shuffles to v16i8. 800 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 801 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 802 803 // We promote all non-typed operations to v4i32. 804 setOperationAction(ISD::AND , VT, Promote); 805 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 806 setOperationAction(ISD::OR , VT, Promote); 807 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 808 setOperationAction(ISD::XOR , VT, Promote); 809 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 810 setOperationAction(ISD::LOAD , VT, Promote); 811 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 812 setOperationAction(ISD::SELECT, VT, Promote); 813 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 814 setOperationAction(ISD::VSELECT, VT, Legal); 815 setOperationAction(ISD::SELECT_CC, VT, Promote); 816 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 817 setOperationAction(ISD::STORE, VT, Promote); 818 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 819 820 // No other operations are legal. 821 setOperationAction(ISD::MUL , VT, Expand); 822 setOperationAction(ISD::SDIV, VT, Expand); 823 setOperationAction(ISD::SREM, VT, Expand); 824 setOperationAction(ISD::UDIV, VT, Expand); 825 setOperationAction(ISD::UREM, VT, Expand); 826 setOperationAction(ISD::FDIV, VT, Expand); 827 setOperationAction(ISD::FREM, VT, Expand); 828 setOperationAction(ISD::FNEG, VT, Expand); 829 setOperationAction(ISD::FSQRT, VT, Expand); 830 setOperationAction(ISD::FLOG, VT, Expand); 831 setOperationAction(ISD::FLOG10, VT, Expand); 832 setOperationAction(ISD::FLOG2, VT, Expand); 833 setOperationAction(ISD::FEXP, VT, Expand); 834 setOperationAction(ISD::FEXP2, VT, Expand); 835 setOperationAction(ISD::FSIN, VT, Expand); 836 setOperationAction(ISD::FCOS, VT, Expand); 837 setOperationAction(ISD::FABS, VT, Expand); 838 setOperationAction(ISD::FFLOOR, VT, Expand); 839 setOperationAction(ISD::FCEIL, VT, Expand); 840 setOperationAction(ISD::FTRUNC, VT, Expand); 841 setOperationAction(ISD::FRINT, VT, Expand); 842 setOperationAction(ISD::FNEARBYINT, VT, Expand); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 844 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 845 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 846 setOperationAction(ISD::MULHU, VT, Expand); 847 setOperationAction(ISD::MULHS, VT, Expand); 848 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 849 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 850 setOperationAction(ISD::UDIVREM, VT, Expand); 851 setOperationAction(ISD::SDIVREM, VT, Expand); 852 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 853 setOperationAction(ISD::FPOW, VT, Expand); 854 setOperationAction(ISD::BSWAP, VT, Expand); 855 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 856 setOperationAction(ISD::ROTL, VT, Expand); 857 setOperationAction(ISD::ROTR, VT, Expand); 858 859 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 860 setTruncStoreAction(VT, InnerVT, Expand); 861 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 862 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 863 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 864 } 865 } 866 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 867 if (!Subtarget.hasP8Vector()) { 868 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 870 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 871 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 872 } 873 874 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 875 // with merges, splats, etc. 876 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 877 878 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 879 // are cheap, so handle them before they get expanded to scalar. 880 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 883 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 884 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 885 886 setOperationAction(ISD::AND , MVT::v4i32, Legal); 887 setOperationAction(ISD::OR , MVT::v4i32, Legal); 888 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 889 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 890 setOperationAction(ISD::SELECT, MVT::v4i32, 891 Subtarget.useCRBits() ? Legal : Expand); 892 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 895 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 896 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 897 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 898 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 900 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 901 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 902 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 903 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 904 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 905 906 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 907 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 908 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 909 if (Subtarget.hasAltivec()) 910 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 911 setOperationAction(ISD::ROTL, VT, Legal); 912 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 913 if (Subtarget.hasP8Altivec()) 914 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 915 916 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 918 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 919 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 920 921 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 922 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 923 924 if (Subtarget.hasVSX()) { 925 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 926 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 927 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 928 } 929 930 if (Subtarget.hasP8Altivec()) 931 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 932 else 933 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 934 935 if (Subtarget.isISA3_1()) { 936 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 938 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 939 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 940 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 941 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 942 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 943 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 944 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 945 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 946 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 947 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 948 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 949 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 950 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 951 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 952 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 953 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 954 } 955 956 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 957 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 961 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 965 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 966 967 // Altivec does not contain unordered floating-point compare instructions 968 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 970 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 971 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 972 973 if (Subtarget.hasVSX()) { 974 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 976 if (Subtarget.hasP8Vector()) { 977 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 978 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 979 } 980 if (Subtarget.hasDirectMove() && isPPC64) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 983 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 989 } 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 991 992 // The nearbyint variants are not allowed to raise the inexact exception 993 // so we can only code-gen them with unsafe math. 994 if (TM.Options.UnsafeFPMath) { 995 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 996 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 997 } 998 999 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1004 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1005 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1006 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1007 1008 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1010 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1011 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1012 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1013 1014 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1015 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1016 1017 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1019 1020 // Share the Altivec comparison restrictions. 1021 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1023 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1024 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1025 1026 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1028 1029 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1030 1031 if (Subtarget.hasP8Vector()) 1032 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1033 1034 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1035 1036 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1037 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1038 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1039 1040 if (Subtarget.hasP8Altivec()) { 1041 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1042 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1043 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1044 1045 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1046 // SRL, but not for SRA because of the instructions available: 1047 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1048 // doing 1049 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1050 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1051 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1052 1053 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1054 } 1055 else { 1056 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1057 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1058 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1061 1062 // VSX v2i64 only supports non-arithmetic operations. 1063 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1065 } 1066 1067 if (Subtarget.isISA3_1()) 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1069 else 1070 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1071 1072 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1074 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1075 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1076 1077 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1078 1079 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1081 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1082 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1083 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1084 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1085 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1086 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1087 1088 // Custom handling for partial vectors of integers converted to 1089 // floating point. We already have optimal handling for v2i32 through 1090 // the DAG combine, so those aren't necessary. 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1093 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1094 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1097 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1098 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1101 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1102 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1105 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1106 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1107 1108 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1112 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1113 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1114 1115 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1116 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1117 1118 // Handle constrained floating-point operations of vector. 1119 // The predictor is `hasVSX` because altivec instruction has 1120 // no exception but VSX vector instruction has. 1121 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1134 1135 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1148 1149 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1150 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1151 1152 for (MVT FPT : MVT::fp_valuetypes()) 1153 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1154 1155 // Expand the SELECT to SELECT_CC 1156 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1157 1158 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1159 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1160 1161 // No implementation for these ops for PowerPC. 1162 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1163 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1164 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1165 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1166 setOperationAction(ISD::FREM, MVT::f128, Expand); 1167 } 1168 1169 if (Subtarget.hasP8Altivec()) { 1170 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1171 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1172 } 1173 1174 if (Subtarget.hasP9Vector()) { 1175 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1176 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1177 1178 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1179 // SRL, but not for SRA because of the instructions available: 1180 // VS{RL} and VS{RL}O. 1181 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1182 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1183 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1184 1185 setOperationAction(ISD::FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1188 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1189 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1190 1191 setOperationAction(ISD::FMA, MVT::f128, Legal); 1192 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1196 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1197 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1198 1199 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1200 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1201 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1202 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1203 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1204 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1207 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1208 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1209 1210 // Handle constrained floating-point operations of fp128 1211 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1217 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1218 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1219 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1220 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1224 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1225 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1226 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1227 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1229 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1230 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1231 } else if (Subtarget.hasVSX()) { 1232 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1233 setOperationAction(ISD::STORE, MVT::f128, Promote); 1234 1235 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1236 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1237 1238 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1239 // fp_to_uint and int_to_fp. 1240 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1241 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1242 1243 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1244 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1245 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1246 setOperationAction(ISD::FABS, MVT::f128, Expand); 1247 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1248 setOperationAction(ISD::FMA, MVT::f128, Expand); 1249 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1250 1251 // Expand the fp_extend if the target type is fp128. 1252 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1253 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1254 1255 // Expand the fp_round if the source type is fp128. 1256 for (MVT VT : {MVT::f32, MVT::f64}) { 1257 setOperationAction(ISD::FP_ROUND, VT, Custom); 1258 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1259 } 1260 1261 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1262 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1263 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1264 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1265 1266 // Lower following f128 select_cc pattern: 1267 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1268 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1269 1270 // We need to handle f128 SELECT_CC with integer result type. 1271 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1272 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1273 } 1274 1275 if (Subtarget.hasP9Altivec()) { 1276 if (Subtarget.isISA3_1()) { 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1279 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1281 } else { 1282 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1283 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1284 } 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1291 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1292 } 1293 1294 if (Subtarget.hasP10Vector()) { 1295 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1296 } 1297 } 1298 1299 if (Subtarget.pairedVectorMemops()) { 1300 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1301 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1302 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1303 } 1304 if (Subtarget.hasMMA()) { 1305 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1306 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1307 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1308 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1309 } 1310 1311 if (Subtarget.has64BitSupport()) 1312 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1313 1314 if (Subtarget.isISA3_1()) 1315 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1316 1317 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1318 1319 if (!isPPC64) { 1320 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1321 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1322 } 1323 1324 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1325 setMaxAtomicSizeInBitsSupported(128); 1326 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1327 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1328 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1329 } 1330 1331 setBooleanContents(ZeroOrOneBooleanContent); 1332 1333 if (Subtarget.hasAltivec()) { 1334 // Altivec instructions set fields to all zeros or all ones. 1335 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1336 } 1337 1338 if (!isPPC64) { 1339 // These libcalls are not available in 32-bit. 1340 setLibcallName(RTLIB::SHL_I128, nullptr); 1341 setLibcallName(RTLIB::SRL_I128, nullptr); 1342 setLibcallName(RTLIB::SRA_I128, nullptr); 1343 setLibcallName(RTLIB::MULO_I64, nullptr); 1344 } 1345 1346 if (!isPPC64) 1347 setMaxAtomicSizeInBitsSupported(32); 1348 1349 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1350 1351 // We have target-specific dag combine patterns for the following nodes: 1352 setTargetDAGCombine(ISD::ADD); 1353 setTargetDAGCombine(ISD::SHL); 1354 setTargetDAGCombine(ISD::SRA); 1355 setTargetDAGCombine(ISD::SRL); 1356 setTargetDAGCombine(ISD::MUL); 1357 setTargetDAGCombine(ISD::FMA); 1358 setTargetDAGCombine(ISD::SINT_TO_FP); 1359 setTargetDAGCombine(ISD::BUILD_VECTOR); 1360 if (Subtarget.hasFPCVT()) 1361 setTargetDAGCombine(ISD::UINT_TO_FP); 1362 setTargetDAGCombine(ISD::LOAD); 1363 setTargetDAGCombine(ISD::STORE); 1364 setTargetDAGCombine(ISD::BR_CC); 1365 if (Subtarget.useCRBits()) 1366 setTargetDAGCombine(ISD::BRCOND); 1367 setTargetDAGCombine(ISD::BSWAP); 1368 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1369 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1370 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1371 1372 setTargetDAGCombine(ISD::SIGN_EXTEND); 1373 setTargetDAGCombine(ISD::ZERO_EXTEND); 1374 setTargetDAGCombine(ISD::ANY_EXTEND); 1375 1376 setTargetDAGCombine(ISD::TRUNCATE); 1377 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1378 1379 1380 if (Subtarget.useCRBits()) { 1381 setTargetDAGCombine(ISD::TRUNCATE); 1382 setTargetDAGCombine(ISD::SETCC); 1383 setTargetDAGCombine(ISD::SELECT_CC); 1384 } 1385 1386 if (Subtarget.hasP9Altivec()) { 1387 setTargetDAGCombine(ISD::ABS); 1388 setTargetDAGCombine(ISD::VSELECT); 1389 } 1390 1391 setLibcallName(RTLIB::LOG_F128, "logf128"); 1392 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1393 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1394 setLibcallName(RTLIB::EXP_F128, "expf128"); 1395 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1396 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1397 setLibcallName(RTLIB::COS_F128, "cosf128"); 1398 setLibcallName(RTLIB::POW_F128, "powf128"); 1399 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1400 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1401 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1402 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1403 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1404 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1405 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1406 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1407 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1408 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1409 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1410 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1411 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1412 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1413 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1414 1415 // With 32 condition bits, we don't need to sink (and duplicate) compares 1416 // aggressively in CodeGenPrep. 1417 if (Subtarget.useCRBits()) { 1418 setHasMultipleConditionRegisters(); 1419 setJumpIsExpensive(); 1420 } 1421 1422 setMinFunctionAlignment(Align(4)); 1423 1424 switch (Subtarget.getCPUDirective()) { 1425 default: break; 1426 case PPC::DIR_970: 1427 case PPC::DIR_A2: 1428 case PPC::DIR_E500: 1429 case PPC::DIR_E500mc: 1430 case PPC::DIR_E5500: 1431 case PPC::DIR_PWR4: 1432 case PPC::DIR_PWR5: 1433 case PPC::DIR_PWR5X: 1434 case PPC::DIR_PWR6: 1435 case PPC::DIR_PWR6X: 1436 case PPC::DIR_PWR7: 1437 case PPC::DIR_PWR8: 1438 case PPC::DIR_PWR9: 1439 case PPC::DIR_PWR10: 1440 case PPC::DIR_PWR_FUTURE: 1441 setPrefLoopAlignment(Align(16)); 1442 setPrefFunctionAlignment(Align(16)); 1443 break; 1444 } 1445 1446 if (Subtarget.enableMachineScheduler()) 1447 setSchedulingPreference(Sched::Source); 1448 else 1449 setSchedulingPreference(Sched::Hybrid); 1450 1451 computeRegisterProperties(STI.getRegisterInfo()); 1452 1453 // The Freescale cores do better with aggressive inlining of memcpy and 1454 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1455 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1456 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1457 MaxStoresPerMemset = 32; 1458 MaxStoresPerMemsetOptSize = 16; 1459 MaxStoresPerMemcpy = 32; 1460 MaxStoresPerMemcpyOptSize = 8; 1461 MaxStoresPerMemmove = 32; 1462 MaxStoresPerMemmoveOptSize = 8; 1463 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1464 // The A2 also benefits from (very) aggressive inlining of memcpy and 1465 // friends. The overhead of a the function call, even when warm, can be 1466 // over one hundred cycles. 1467 MaxStoresPerMemset = 128; 1468 MaxStoresPerMemcpy = 128; 1469 MaxStoresPerMemmove = 128; 1470 MaxLoadsPerMemcmp = 128; 1471 } else { 1472 MaxLoadsPerMemcmp = 8; 1473 MaxLoadsPerMemcmpOptSize = 4; 1474 } 1475 1476 IsStrictFPEnabled = true; 1477 1478 // Let the subtarget (CPU) decide if a predictable select is more expensive 1479 // than the corresponding branch. This information is used in CGP to decide 1480 // when to convert selects into branches. 1481 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1482 } 1483 1484 // *********************************** NOTE ************************************ 1485 // For selecting load and store instructions, the addressing modes are defined 1486 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1487 // patterns to match the load the store instructions. 1488 // 1489 // The TD definitions for the addressing modes correspond to their respective 1490 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1491 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1492 // address mode flags of a particular node. Afterwards, the computed address 1493 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1494 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1495 // accordingly, based on the preferred addressing mode. 1496 // 1497 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1498 // MemOpFlags contains all the possible flags that can be used to compute the 1499 // optimal addressing mode for load and store instructions. 1500 // AddrMode contains all the possible load and store addressing modes available 1501 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1502 // 1503 // When adding new load and store instructions, it is possible that new address 1504 // flags may need to be added into MemOpFlags, and a new addressing mode will 1505 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1506 // of the minimal and main distinguishing address flags for the new load/store 1507 // instructions) will need to be added into initializeAddrModeMap() below. 1508 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1509 // need to be updated to account for selecting the optimal addressing mode. 1510 // ***************************************************************************** 1511 /// Initialize the map that relates the different addressing modes of the load 1512 /// and store instructions to a set of flags. This ensures the load/store 1513 /// instruction is correctly matched during instruction selection. 1514 void PPCTargetLowering::initializeAddrModeMap() { 1515 AddrModesMap[PPC::AM_DForm] = { 1516 // LWZ, STW 1517 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1518 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1519 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1520 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1521 // LBZ, LHZ, STB, STH 1522 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1523 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1524 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1525 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1526 // LHA 1527 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1528 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1529 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1530 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1531 // LFS, LFD, STFS, STFD 1532 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1533 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1534 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1535 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1536 }; 1537 AddrModesMap[PPC::AM_DSForm] = { 1538 // LWA 1539 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1540 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1541 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1542 // LD, STD 1543 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1544 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1545 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1546 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1547 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1548 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1549 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1550 }; 1551 AddrModesMap[PPC::AM_DQForm] = { 1552 // LXV, STXV 1553 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1554 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1555 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1556 }; 1557 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1558 PPC::MOF_SubtargetP10}; 1559 // TODO: Add mapping for quadword load/store. 1560 } 1561 1562 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1563 /// the desired ByVal argument alignment. 1564 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1565 if (MaxAlign == MaxMaxAlign) 1566 return; 1567 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1568 if (MaxMaxAlign >= 32 && 1569 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1570 MaxAlign = Align(32); 1571 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1572 MaxAlign < 16) 1573 MaxAlign = Align(16); 1574 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1575 Align EltAlign; 1576 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1577 if (EltAlign > MaxAlign) 1578 MaxAlign = EltAlign; 1579 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1580 for (auto *EltTy : STy->elements()) { 1581 Align EltAlign; 1582 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1583 if (EltAlign > MaxAlign) 1584 MaxAlign = EltAlign; 1585 if (MaxAlign == MaxMaxAlign) 1586 break; 1587 } 1588 } 1589 } 1590 1591 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1592 /// function arguments in the caller parameter area. 1593 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1594 const DataLayout &DL) const { 1595 // 16byte and wider vectors are passed on 16byte boundary. 1596 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1597 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1598 if (Subtarget.hasAltivec()) 1599 getMaxByValAlign(Ty, Alignment, Align(16)); 1600 return Alignment.value(); 1601 } 1602 1603 bool PPCTargetLowering::useSoftFloat() const { 1604 return Subtarget.useSoftFloat(); 1605 } 1606 1607 bool PPCTargetLowering::hasSPE() const { 1608 return Subtarget.hasSPE(); 1609 } 1610 1611 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1612 return VT.isScalarInteger(); 1613 } 1614 1615 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1616 switch ((PPCISD::NodeType)Opcode) { 1617 case PPCISD::FIRST_NUMBER: break; 1618 case PPCISD::FSEL: return "PPCISD::FSEL"; 1619 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1620 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1621 case PPCISD::FCFID: return "PPCISD::FCFID"; 1622 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1623 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1624 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1625 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1626 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1627 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1628 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1629 case PPCISD::FP_TO_UINT_IN_VSR: 1630 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1631 case PPCISD::FP_TO_SINT_IN_VSR: 1632 return "PPCISD::FP_TO_SINT_IN_VSR"; 1633 case PPCISD::FRE: return "PPCISD::FRE"; 1634 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1635 case PPCISD::FTSQRT: 1636 return "PPCISD::FTSQRT"; 1637 case PPCISD::FSQRT: 1638 return "PPCISD::FSQRT"; 1639 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1640 case PPCISD::VPERM: return "PPCISD::VPERM"; 1641 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1642 case PPCISD::XXSPLTI_SP_TO_DP: 1643 return "PPCISD::XXSPLTI_SP_TO_DP"; 1644 case PPCISD::XXSPLTI32DX: 1645 return "PPCISD::XXSPLTI32DX"; 1646 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1647 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1648 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1649 case PPCISD::CMPB: return "PPCISD::CMPB"; 1650 case PPCISD::Hi: return "PPCISD::Hi"; 1651 case PPCISD::Lo: return "PPCISD::Lo"; 1652 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1653 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1654 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1655 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1656 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1657 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1658 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1659 case PPCISD::SRL: return "PPCISD::SRL"; 1660 case PPCISD::SRA: return "PPCISD::SRA"; 1661 case PPCISD::SHL: return "PPCISD::SHL"; 1662 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1663 case PPCISD::CALL: return "PPCISD::CALL"; 1664 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1665 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1666 case PPCISD::CALL_RM: 1667 return "PPCISD::CALL_RM"; 1668 case PPCISD::CALL_NOP_RM: 1669 return "PPCISD::CALL_NOP_RM"; 1670 case PPCISD::CALL_NOTOC_RM: 1671 return "PPCISD::CALL_NOTOC_RM"; 1672 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1673 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1674 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1675 case PPCISD::BCTRL_RM: 1676 return "PPCISD::BCTRL_RM"; 1677 case PPCISD::BCTRL_LOAD_TOC_RM: 1678 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1679 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1680 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1681 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1682 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1683 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1684 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1685 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1686 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1687 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1688 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1689 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1690 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1691 case PPCISD::ANDI_rec_1_EQ_BIT: 1692 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1693 case PPCISD::ANDI_rec_1_GT_BIT: 1694 return "PPCISD::ANDI_rec_1_GT_BIT"; 1695 case PPCISD::VCMP: return "PPCISD::VCMP"; 1696 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1697 case PPCISD::LBRX: return "PPCISD::LBRX"; 1698 case PPCISD::STBRX: return "PPCISD::STBRX"; 1699 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1700 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1701 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1702 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1703 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1704 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1705 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1706 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1707 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1708 case PPCISD::ST_VSR_SCAL_INT: 1709 return "PPCISD::ST_VSR_SCAL_INT"; 1710 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1711 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1712 case PPCISD::BDZ: return "PPCISD::BDZ"; 1713 case PPCISD::MFFS: return "PPCISD::MFFS"; 1714 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1715 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1716 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1717 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1718 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1719 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1720 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1721 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1722 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1723 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1724 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1725 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1726 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1727 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1728 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1729 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1730 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1731 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1732 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1733 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1734 case PPCISD::PADDI_DTPREL: 1735 return "PPCISD::PADDI_DTPREL"; 1736 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1737 case PPCISD::SC: return "PPCISD::SC"; 1738 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1739 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1740 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1741 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1742 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1743 case PPCISD::VABSD: return "PPCISD::VABSD"; 1744 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1745 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1746 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1747 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1748 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1749 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1750 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1751 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1752 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1753 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1754 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1755 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1756 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1757 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1758 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1759 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1760 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1761 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1762 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1763 case PPCISD::STRICT_FADDRTZ: 1764 return "PPCISD::STRICT_FADDRTZ"; 1765 case PPCISD::STRICT_FCTIDZ: 1766 return "PPCISD::STRICT_FCTIDZ"; 1767 case PPCISD::STRICT_FCTIWZ: 1768 return "PPCISD::STRICT_FCTIWZ"; 1769 case PPCISD::STRICT_FCTIDUZ: 1770 return "PPCISD::STRICT_FCTIDUZ"; 1771 case PPCISD::STRICT_FCTIWUZ: 1772 return "PPCISD::STRICT_FCTIWUZ"; 1773 case PPCISD::STRICT_FCFID: 1774 return "PPCISD::STRICT_FCFID"; 1775 case PPCISD::STRICT_FCFIDU: 1776 return "PPCISD::STRICT_FCFIDU"; 1777 case PPCISD::STRICT_FCFIDS: 1778 return "PPCISD::STRICT_FCFIDS"; 1779 case PPCISD::STRICT_FCFIDUS: 1780 return "PPCISD::STRICT_FCFIDUS"; 1781 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1782 } 1783 return nullptr; 1784 } 1785 1786 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1787 EVT VT) const { 1788 if (!VT.isVector()) 1789 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1790 1791 return VT.changeVectorElementTypeToInteger(); 1792 } 1793 1794 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1795 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1796 return true; 1797 } 1798 1799 //===----------------------------------------------------------------------===// 1800 // Node matching predicates, for use by the tblgen matching code. 1801 //===----------------------------------------------------------------------===// 1802 1803 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1804 static bool isFloatingPointZero(SDValue Op) { 1805 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1806 return CFP->getValueAPF().isZero(); 1807 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1808 // Maybe this has already been legalized into the constant pool? 1809 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1810 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1811 return CFP->getValueAPF().isZero(); 1812 } 1813 return false; 1814 } 1815 1816 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1817 /// true if Op is undef or if it matches the specified value. 1818 static bool isConstantOrUndef(int Op, int Val) { 1819 return Op < 0 || Op == Val; 1820 } 1821 1822 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1823 /// VPKUHUM instruction. 1824 /// The ShuffleKind distinguishes between big-endian operations with 1825 /// two different inputs (0), either-endian operations with two identical 1826 /// inputs (1), and little-endian operations with two different inputs (2). 1827 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1828 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1829 SelectionDAG &DAG) { 1830 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1831 if (ShuffleKind == 0) { 1832 if (IsLE) 1833 return false; 1834 for (unsigned i = 0; i != 16; ++i) 1835 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1836 return false; 1837 } else if (ShuffleKind == 2) { 1838 if (!IsLE) 1839 return false; 1840 for (unsigned i = 0; i != 16; ++i) 1841 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1842 return false; 1843 } else if (ShuffleKind == 1) { 1844 unsigned j = IsLE ? 0 : 1; 1845 for (unsigned i = 0; i != 8; ++i) 1846 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1847 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1848 return false; 1849 } 1850 return true; 1851 } 1852 1853 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1854 /// VPKUWUM instruction. 1855 /// The ShuffleKind distinguishes between big-endian operations with 1856 /// two different inputs (0), either-endian operations with two identical 1857 /// inputs (1), and little-endian operations with two different inputs (2). 1858 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1859 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1860 SelectionDAG &DAG) { 1861 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1862 if (ShuffleKind == 0) { 1863 if (IsLE) 1864 return false; 1865 for (unsigned i = 0; i != 16; i += 2) 1866 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1867 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1868 return false; 1869 } else if (ShuffleKind == 2) { 1870 if (!IsLE) 1871 return false; 1872 for (unsigned i = 0; i != 16; i += 2) 1873 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1874 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1875 return false; 1876 } else if (ShuffleKind == 1) { 1877 unsigned j = IsLE ? 0 : 2; 1878 for (unsigned i = 0; i != 8; i += 2) 1879 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1880 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1881 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1882 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1883 return false; 1884 } 1885 return true; 1886 } 1887 1888 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1889 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1890 /// current subtarget. 1891 /// 1892 /// The ShuffleKind distinguishes between big-endian operations with 1893 /// two different inputs (0), either-endian operations with two identical 1894 /// inputs (1), and little-endian operations with two different inputs (2). 1895 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1896 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1897 SelectionDAG &DAG) { 1898 const PPCSubtarget& Subtarget = 1899 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1900 if (!Subtarget.hasP8Vector()) 1901 return false; 1902 1903 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1904 if (ShuffleKind == 0) { 1905 if (IsLE) 1906 return false; 1907 for (unsigned i = 0; i != 16; i += 4) 1908 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1909 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1910 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1911 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1912 return false; 1913 } else if (ShuffleKind == 2) { 1914 if (!IsLE) 1915 return false; 1916 for (unsigned i = 0; i != 16; i += 4) 1917 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1918 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1919 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1920 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1921 return false; 1922 } else if (ShuffleKind == 1) { 1923 unsigned j = IsLE ? 0 : 4; 1924 for (unsigned i = 0; i != 8; i += 4) 1925 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1926 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1927 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1928 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1929 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1930 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1931 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1932 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1933 return false; 1934 } 1935 return true; 1936 } 1937 1938 /// isVMerge - Common function, used to match vmrg* shuffles. 1939 /// 1940 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1941 unsigned LHSStart, unsigned RHSStart) { 1942 if (N->getValueType(0) != MVT::v16i8) 1943 return false; 1944 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1945 "Unsupported merge size!"); 1946 1947 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1948 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1949 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1950 LHSStart+j+i*UnitSize) || 1951 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1952 RHSStart+j+i*UnitSize)) 1953 return false; 1954 } 1955 return true; 1956 } 1957 1958 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1959 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1960 /// The ShuffleKind distinguishes between big-endian merges with two 1961 /// different inputs (0), either-endian merges with two identical inputs (1), 1962 /// and little-endian merges with two different inputs (2). For the latter, 1963 /// the input operands are swapped (see PPCInstrAltivec.td). 1964 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1965 unsigned ShuffleKind, SelectionDAG &DAG) { 1966 if (DAG.getDataLayout().isLittleEndian()) { 1967 if (ShuffleKind == 1) // unary 1968 return isVMerge(N, UnitSize, 0, 0); 1969 else if (ShuffleKind == 2) // swapped 1970 return isVMerge(N, UnitSize, 0, 16); 1971 else 1972 return false; 1973 } else { 1974 if (ShuffleKind == 1) // unary 1975 return isVMerge(N, UnitSize, 8, 8); 1976 else if (ShuffleKind == 0) // normal 1977 return isVMerge(N, UnitSize, 8, 24); 1978 else 1979 return false; 1980 } 1981 } 1982 1983 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1984 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1985 /// The ShuffleKind distinguishes between big-endian merges with two 1986 /// different inputs (0), either-endian merges with two identical inputs (1), 1987 /// and little-endian merges with two different inputs (2). For the latter, 1988 /// the input operands are swapped (see PPCInstrAltivec.td). 1989 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1990 unsigned ShuffleKind, SelectionDAG &DAG) { 1991 if (DAG.getDataLayout().isLittleEndian()) { 1992 if (ShuffleKind == 1) // unary 1993 return isVMerge(N, UnitSize, 8, 8); 1994 else if (ShuffleKind == 2) // swapped 1995 return isVMerge(N, UnitSize, 8, 24); 1996 else 1997 return false; 1998 } else { 1999 if (ShuffleKind == 1) // unary 2000 return isVMerge(N, UnitSize, 0, 0); 2001 else if (ShuffleKind == 0) // normal 2002 return isVMerge(N, UnitSize, 0, 16); 2003 else 2004 return false; 2005 } 2006 } 2007 2008 /** 2009 * Common function used to match vmrgew and vmrgow shuffles 2010 * 2011 * The indexOffset determines whether to look for even or odd words in 2012 * the shuffle mask. This is based on the of the endianness of the target 2013 * machine. 2014 * - Little Endian: 2015 * - Use offset of 0 to check for odd elements 2016 * - Use offset of 4 to check for even elements 2017 * - Big Endian: 2018 * - Use offset of 0 to check for even elements 2019 * - Use offset of 4 to check for odd elements 2020 * A detailed description of the vector element ordering for little endian and 2021 * big endian can be found at 2022 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2023 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2024 * compiler differences mean to you 2025 * 2026 * The mask to the shuffle vector instruction specifies the indices of the 2027 * elements from the two input vectors to place in the result. The elements are 2028 * numbered in array-access order, starting with the first vector. These vectors 2029 * are always of type v16i8, thus each vector will contain 16 elements of size 2030 * 8. More info on the shuffle vector can be found in the 2031 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2032 * Language Reference. 2033 * 2034 * The RHSStartValue indicates whether the same input vectors are used (unary) 2035 * or two different input vectors are used, based on the following: 2036 * - If the instruction uses the same vector for both inputs, the range of the 2037 * indices will be 0 to 15. In this case, the RHSStart value passed should 2038 * be 0. 2039 * - If the instruction has two different vectors then the range of the 2040 * indices will be 0 to 31. In this case, the RHSStart value passed should 2041 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2042 * to 31 specify elements in the second vector). 2043 * 2044 * \param[in] N The shuffle vector SD Node to analyze 2045 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2046 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2047 * vector to the shuffle_vector instruction 2048 * \return true iff this shuffle vector represents an even or odd word merge 2049 */ 2050 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2051 unsigned RHSStartValue) { 2052 if (N->getValueType(0) != MVT::v16i8) 2053 return false; 2054 2055 for (unsigned i = 0; i < 2; ++i) 2056 for (unsigned j = 0; j < 4; ++j) 2057 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2058 i*RHSStartValue+j+IndexOffset) || 2059 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2060 i*RHSStartValue+j+IndexOffset+8)) 2061 return false; 2062 return true; 2063 } 2064 2065 /** 2066 * Determine if the specified shuffle mask is suitable for the vmrgew or 2067 * vmrgow instructions. 2068 * 2069 * \param[in] N The shuffle vector SD Node to analyze 2070 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2071 * \param[in] ShuffleKind Identify the type of merge: 2072 * - 0 = big-endian merge with two different inputs; 2073 * - 1 = either-endian merge with two identical inputs; 2074 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2075 * little-endian merges). 2076 * \param[in] DAG The current SelectionDAG 2077 * \return true iff this shuffle mask 2078 */ 2079 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2080 unsigned ShuffleKind, SelectionDAG &DAG) { 2081 if (DAG.getDataLayout().isLittleEndian()) { 2082 unsigned indexOffset = CheckEven ? 4 : 0; 2083 if (ShuffleKind == 1) // Unary 2084 return isVMerge(N, indexOffset, 0); 2085 else if (ShuffleKind == 2) // swapped 2086 return isVMerge(N, indexOffset, 16); 2087 else 2088 return false; 2089 } 2090 else { 2091 unsigned indexOffset = CheckEven ? 0 : 4; 2092 if (ShuffleKind == 1) // Unary 2093 return isVMerge(N, indexOffset, 0); 2094 else if (ShuffleKind == 0) // Normal 2095 return isVMerge(N, indexOffset, 16); 2096 else 2097 return false; 2098 } 2099 return false; 2100 } 2101 2102 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2103 /// amount, otherwise return -1. 2104 /// The ShuffleKind distinguishes between big-endian operations with two 2105 /// different inputs (0), either-endian operations with two identical inputs 2106 /// (1), and little-endian operations with two different inputs (2). For the 2107 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2108 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2109 SelectionDAG &DAG) { 2110 if (N->getValueType(0) != MVT::v16i8) 2111 return -1; 2112 2113 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2114 2115 // Find the first non-undef value in the shuffle mask. 2116 unsigned i; 2117 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2118 /*search*/; 2119 2120 if (i == 16) return -1; // all undef. 2121 2122 // Otherwise, check to see if the rest of the elements are consecutively 2123 // numbered from this value. 2124 unsigned ShiftAmt = SVOp->getMaskElt(i); 2125 if (ShiftAmt < i) return -1; 2126 2127 ShiftAmt -= i; 2128 bool isLE = DAG.getDataLayout().isLittleEndian(); 2129 2130 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2131 // Check the rest of the elements to see if they are consecutive. 2132 for (++i; i != 16; ++i) 2133 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2134 return -1; 2135 } else if (ShuffleKind == 1) { 2136 // Check the rest of the elements to see if they are consecutive. 2137 for (++i; i != 16; ++i) 2138 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2139 return -1; 2140 } else 2141 return -1; 2142 2143 if (isLE) 2144 ShiftAmt = 16 - ShiftAmt; 2145 2146 return ShiftAmt; 2147 } 2148 2149 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2150 /// specifies a splat of a single element that is suitable for input to 2151 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2152 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2153 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2154 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2155 2156 // The consecutive indices need to specify an element, not part of two 2157 // different elements. So abandon ship early if this isn't the case. 2158 if (N->getMaskElt(0) % EltSize != 0) 2159 return false; 2160 2161 // This is a splat operation if each element of the permute is the same, and 2162 // if the value doesn't reference the second vector. 2163 unsigned ElementBase = N->getMaskElt(0); 2164 2165 // FIXME: Handle UNDEF elements too! 2166 if (ElementBase >= 16) 2167 return false; 2168 2169 // Check that the indices are consecutive, in the case of a multi-byte element 2170 // splatted with a v16i8 mask. 2171 for (unsigned i = 1; i != EltSize; ++i) 2172 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2173 return false; 2174 2175 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2176 if (N->getMaskElt(i) < 0) continue; 2177 for (unsigned j = 0; j != EltSize; ++j) 2178 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2179 return false; 2180 } 2181 return true; 2182 } 2183 2184 /// Check that the mask is shuffling N byte elements. Within each N byte 2185 /// element of the mask, the indices could be either in increasing or 2186 /// decreasing order as long as they are consecutive. 2187 /// \param[in] N the shuffle vector SD Node to analyze 2188 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2189 /// Word/DoubleWord/QuadWord). 2190 /// \param[in] StepLen the delta indices number among the N byte element, if 2191 /// the mask is in increasing/decreasing order then it is 1/-1. 2192 /// \return true iff the mask is shuffling N byte elements. 2193 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2194 int StepLen) { 2195 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2196 "Unexpected element width."); 2197 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2198 2199 unsigned NumOfElem = 16 / Width; 2200 unsigned MaskVal[16]; // Width is never greater than 16 2201 for (unsigned i = 0; i < NumOfElem; ++i) { 2202 MaskVal[0] = N->getMaskElt(i * Width); 2203 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2204 return false; 2205 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2206 return false; 2207 } 2208 2209 for (unsigned int j = 1; j < Width; ++j) { 2210 MaskVal[j] = N->getMaskElt(i * Width + j); 2211 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2212 return false; 2213 } 2214 } 2215 } 2216 2217 return true; 2218 } 2219 2220 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2221 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2222 if (!isNByteElemShuffleMask(N, 4, 1)) 2223 return false; 2224 2225 // Now we look at mask elements 0,4,8,12 2226 unsigned M0 = N->getMaskElt(0) / 4; 2227 unsigned M1 = N->getMaskElt(4) / 4; 2228 unsigned M2 = N->getMaskElt(8) / 4; 2229 unsigned M3 = N->getMaskElt(12) / 4; 2230 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2231 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2232 2233 // Below, let H and L be arbitrary elements of the shuffle mask 2234 // where H is in the range [4,7] and L is in the range [0,3]. 2235 // H, 1, 2, 3 or L, 5, 6, 7 2236 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2237 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2238 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2239 InsertAtByte = IsLE ? 12 : 0; 2240 Swap = M0 < 4; 2241 return true; 2242 } 2243 // 0, H, 2, 3 or 4, L, 6, 7 2244 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2245 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2246 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2247 InsertAtByte = IsLE ? 8 : 4; 2248 Swap = M1 < 4; 2249 return true; 2250 } 2251 // 0, 1, H, 3 or 4, 5, L, 7 2252 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2253 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2254 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2255 InsertAtByte = IsLE ? 4 : 8; 2256 Swap = M2 < 4; 2257 return true; 2258 } 2259 // 0, 1, 2, H or 4, 5, 6, L 2260 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2261 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2262 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2263 InsertAtByte = IsLE ? 0 : 12; 2264 Swap = M3 < 4; 2265 return true; 2266 } 2267 2268 // If both vector operands for the shuffle are the same vector, the mask will 2269 // contain only elements from the first one and the second one will be undef. 2270 if (N->getOperand(1).isUndef()) { 2271 ShiftElts = 0; 2272 Swap = true; 2273 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2274 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2275 InsertAtByte = IsLE ? 12 : 0; 2276 return true; 2277 } 2278 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2279 InsertAtByte = IsLE ? 8 : 4; 2280 return true; 2281 } 2282 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2283 InsertAtByte = IsLE ? 4 : 8; 2284 return true; 2285 } 2286 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2287 InsertAtByte = IsLE ? 0 : 12; 2288 return true; 2289 } 2290 } 2291 2292 return false; 2293 } 2294 2295 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2296 bool &Swap, bool IsLE) { 2297 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2298 // Ensure each byte index of the word is consecutive. 2299 if (!isNByteElemShuffleMask(N, 4, 1)) 2300 return false; 2301 2302 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2303 unsigned M0 = N->getMaskElt(0) / 4; 2304 unsigned M1 = N->getMaskElt(4) / 4; 2305 unsigned M2 = N->getMaskElt(8) / 4; 2306 unsigned M3 = N->getMaskElt(12) / 4; 2307 2308 // If both vector operands for the shuffle are the same vector, the mask will 2309 // contain only elements from the first one and the second one will be undef. 2310 if (N->getOperand(1).isUndef()) { 2311 assert(M0 < 4 && "Indexing into an undef vector?"); 2312 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2313 return false; 2314 2315 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2316 Swap = false; 2317 return true; 2318 } 2319 2320 // Ensure each word index of the ShuffleVector Mask is consecutive. 2321 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2322 return false; 2323 2324 if (IsLE) { 2325 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2326 // Input vectors don't need to be swapped if the leading element 2327 // of the result is one of the 3 left elements of the second vector 2328 // (or if there is no shift to be done at all). 2329 Swap = false; 2330 ShiftElts = (8 - M0) % 8; 2331 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2332 // Input vectors need to be swapped if the leading element 2333 // of the result is one of the 3 left elements of the first vector 2334 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2335 Swap = true; 2336 ShiftElts = (4 - M0) % 4; 2337 } 2338 2339 return true; 2340 } else { // BE 2341 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2342 // Input vectors don't need to be swapped if the leading element 2343 // of the result is one of the 4 elements of the first vector. 2344 Swap = false; 2345 ShiftElts = M0; 2346 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2347 // Input vectors need to be swapped if the leading element 2348 // of the result is one of the 4 elements of the right vector. 2349 Swap = true; 2350 ShiftElts = M0 - 4; 2351 } 2352 2353 return true; 2354 } 2355 } 2356 2357 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2358 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2359 2360 if (!isNByteElemShuffleMask(N, Width, -1)) 2361 return false; 2362 2363 for (int i = 0; i < 16; i += Width) 2364 if (N->getMaskElt(i) != i + Width - 1) 2365 return false; 2366 2367 return true; 2368 } 2369 2370 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2371 return isXXBRShuffleMaskHelper(N, 2); 2372 } 2373 2374 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2375 return isXXBRShuffleMaskHelper(N, 4); 2376 } 2377 2378 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2379 return isXXBRShuffleMaskHelper(N, 8); 2380 } 2381 2382 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2383 return isXXBRShuffleMaskHelper(N, 16); 2384 } 2385 2386 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2387 /// if the inputs to the instruction should be swapped and set \p DM to the 2388 /// value for the immediate. 2389 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2390 /// AND element 0 of the result comes from the first input (LE) or second input 2391 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2392 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2393 /// mask. 2394 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2395 bool &Swap, bool IsLE) { 2396 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2397 2398 // Ensure each byte index of the double word is consecutive. 2399 if (!isNByteElemShuffleMask(N, 8, 1)) 2400 return false; 2401 2402 unsigned M0 = N->getMaskElt(0) / 8; 2403 unsigned M1 = N->getMaskElt(8) / 8; 2404 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2405 2406 // If both vector operands for the shuffle are the same vector, the mask will 2407 // contain only elements from the first one and the second one will be undef. 2408 if (N->getOperand(1).isUndef()) { 2409 if ((M0 | M1) < 2) { 2410 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2411 Swap = false; 2412 return true; 2413 } else 2414 return false; 2415 } 2416 2417 if (IsLE) { 2418 if (M0 > 1 && M1 < 2) { 2419 Swap = false; 2420 } else if (M0 < 2 && M1 > 1) { 2421 M0 = (M0 + 2) % 4; 2422 M1 = (M1 + 2) % 4; 2423 Swap = true; 2424 } else 2425 return false; 2426 2427 // Note: if control flow comes here that means Swap is already set above 2428 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2429 return true; 2430 } else { // BE 2431 if (M0 < 2 && M1 > 1) { 2432 Swap = false; 2433 } else if (M0 > 1 && M1 < 2) { 2434 M0 = (M0 + 2) % 4; 2435 M1 = (M1 + 2) % 4; 2436 Swap = true; 2437 } else 2438 return false; 2439 2440 // Note: if control flow comes here that means Swap is already set above 2441 DM = (M0 << 1) + (M1 & 1); 2442 return true; 2443 } 2444 } 2445 2446 2447 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2448 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2449 /// elements are counted from the left of the vector register). 2450 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2451 SelectionDAG &DAG) { 2452 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2453 assert(isSplatShuffleMask(SVOp, EltSize)); 2454 if (DAG.getDataLayout().isLittleEndian()) 2455 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2456 else 2457 return SVOp->getMaskElt(0) / EltSize; 2458 } 2459 2460 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2461 /// by using a vspltis[bhw] instruction of the specified element size, return 2462 /// the constant being splatted. The ByteSize field indicates the number of 2463 /// bytes of each element [124] -> [bhw]. 2464 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2465 SDValue OpVal; 2466 2467 // If ByteSize of the splat is bigger than the element size of the 2468 // build_vector, then we have a case where we are checking for a splat where 2469 // multiple elements of the buildvector are folded together into a single 2470 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2471 unsigned EltSize = 16/N->getNumOperands(); 2472 if (EltSize < ByteSize) { 2473 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2474 SDValue UniquedVals[4]; 2475 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2476 2477 // See if all of the elements in the buildvector agree across. 2478 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2479 if (N->getOperand(i).isUndef()) continue; 2480 // If the element isn't a constant, bail fully out. 2481 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2482 2483 if (!UniquedVals[i&(Multiple-1)].getNode()) 2484 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2485 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2486 return SDValue(); // no match. 2487 } 2488 2489 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2490 // either constant or undef values that are identical for each chunk. See 2491 // if these chunks can form into a larger vspltis*. 2492 2493 // Check to see if all of the leading entries are either 0 or -1. If 2494 // neither, then this won't fit into the immediate field. 2495 bool LeadingZero = true; 2496 bool LeadingOnes = true; 2497 for (unsigned i = 0; i != Multiple-1; ++i) { 2498 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2499 2500 LeadingZero &= isNullConstant(UniquedVals[i]); 2501 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2502 } 2503 // Finally, check the least significant entry. 2504 if (LeadingZero) { 2505 if (!UniquedVals[Multiple-1].getNode()) 2506 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2507 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2508 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2509 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2510 } 2511 if (LeadingOnes) { 2512 if (!UniquedVals[Multiple-1].getNode()) 2513 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2514 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2515 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2516 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2517 } 2518 2519 return SDValue(); 2520 } 2521 2522 // Check to see if this buildvec has a single non-undef value in its elements. 2523 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2524 if (N->getOperand(i).isUndef()) continue; 2525 if (!OpVal.getNode()) 2526 OpVal = N->getOperand(i); 2527 else if (OpVal != N->getOperand(i)) 2528 return SDValue(); 2529 } 2530 2531 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2532 2533 unsigned ValSizeInBytes = EltSize; 2534 uint64_t Value = 0; 2535 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2536 Value = CN->getZExtValue(); 2537 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2538 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2539 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2540 } 2541 2542 // If the splat value is larger than the element value, then we can never do 2543 // this splat. The only case that we could fit the replicated bits into our 2544 // immediate field for would be zero, and we prefer to use vxor for it. 2545 if (ValSizeInBytes < ByteSize) return SDValue(); 2546 2547 // If the element value is larger than the splat value, check if it consists 2548 // of a repeated bit pattern of size ByteSize. 2549 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2550 return SDValue(); 2551 2552 // Properly sign extend the value. 2553 int MaskVal = SignExtend32(Value, ByteSize * 8); 2554 2555 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2556 if (MaskVal == 0) return SDValue(); 2557 2558 // Finally, if this value fits in a 5 bit sext field, return it 2559 if (SignExtend32<5>(MaskVal) == MaskVal) 2560 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2561 return SDValue(); 2562 } 2563 2564 //===----------------------------------------------------------------------===// 2565 // Addressing Mode Selection 2566 //===----------------------------------------------------------------------===// 2567 2568 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2569 /// or 64-bit immediate, and if the value can be accurately represented as a 2570 /// sign extension from a 16-bit value. If so, this returns true and the 2571 /// immediate. 2572 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2573 if (!isa<ConstantSDNode>(N)) 2574 return false; 2575 2576 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2577 if (N->getValueType(0) == MVT::i32) 2578 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2579 else 2580 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2581 } 2582 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2583 return isIntS16Immediate(Op.getNode(), Imm); 2584 } 2585 2586 /// Used when computing address flags for selecting loads and stores. 2587 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2588 /// An OR of two provably disjoint values is equivalent to an ADD. 2589 /// Most PPC load/store instructions compute the effective address as a sum, 2590 /// so doing this conversion is useful. 2591 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2592 if (N.getOpcode() != ISD::OR) 2593 return false; 2594 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2595 if (!LHSKnown.Zero.getBoolValue()) 2596 return false; 2597 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2598 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2599 } 2600 2601 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2602 /// be represented as an indexed [r+r] operation. 2603 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2604 SDValue &Index, 2605 SelectionDAG &DAG) const { 2606 for (SDNode *U : N->uses()) { 2607 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2608 if (Memop->getMemoryVT() == MVT::f64) { 2609 Base = N.getOperand(0); 2610 Index = N.getOperand(1); 2611 return true; 2612 } 2613 } 2614 } 2615 return false; 2616 } 2617 2618 /// isIntS34Immediate - This method tests if value of node given can be 2619 /// accurately represented as a sign extension from a 34-bit value. If so, 2620 /// this returns true and the immediate. 2621 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2622 if (!isa<ConstantSDNode>(N)) 2623 return false; 2624 2625 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2626 return isInt<34>(Imm); 2627 } 2628 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2629 return isIntS34Immediate(Op.getNode(), Imm); 2630 } 2631 2632 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2633 /// can be represented as an indexed [r+r] operation. Returns false if it 2634 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2635 /// non-zero and N can be represented by a base register plus a signed 16-bit 2636 /// displacement, make a more precise judgement by checking (displacement % \p 2637 /// EncodingAlignment). 2638 bool PPCTargetLowering::SelectAddressRegReg( 2639 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2640 MaybeAlign EncodingAlignment) const { 2641 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2642 // a [pc+imm]. 2643 if (SelectAddressPCRel(N, Base)) 2644 return false; 2645 2646 int16_t Imm = 0; 2647 if (N.getOpcode() == ISD::ADD) { 2648 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2649 // SPE load/store can only handle 8-bit offsets. 2650 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2651 return true; 2652 if (isIntS16Immediate(N.getOperand(1), Imm) && 2653 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2654 return false; // r+i 2655 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2656 return false; // r+i 2657 2658 Base = N.getOperand(0); 2659 Index = N.getOperand(1); 2660 return true; 2661 } else if (N.getOpcode() == ISD::OR) { 2662 if (isIntS16Immediate(N.getOperand(1), Imm) && 2663 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2664 return false; // r+i can fold it if we can. 2665 2666 // If this is an or of disjoint bitfields, we can codegen this as an add 2667 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2668 // disjoint. 2669 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2670 2671 if (LHSKnown.Zero.getBoolValue()) { 2672 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2673 // If all of the bits are known zero on the LHS or RHS, the add won't 2674 // carry. 2675 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2676 Base = N.getOperand(0); 2677 Index = N.getOperand(1); 2678 return true; 2679 } 2680 } 2681 } 2682 2683 return false; 2684 } 2685 2686 // If we happen to be doing an i64 load or store into a stack slot that has 2687 // less than a 4-byte alignment, then the frame-index elimination may need to 2688 // use an indexed load or store instruction (because the offset may not be a 2689 // multiple of 4). The extra register needed to hold the offset comes from the 2690 // register scavenger, and it is possible that the scavenger will need to use 2691 // an emergency spill slot. As a result, we need to make sure that a spill slot 2692 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2693 // stack slot. 2694 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2695 // FIXME: This does not handle the LWA case. 2696 if (VT != MVT::i64) 2697 return; 2698 2699 // NOTE: We'll exclude negative FIs here, which come from argument 2700 // lowering, because there are no known test cases triggering this problem 2701 // using packed structures (or similar). We can remove this exclusion if 2702 // we find such a test case. The reason why this is so test-case driven is 2703 // because this entire 'fixup' is only to prevent crashes (from the 2704 // register scavenger) on not-really-valid inputs. For example, if we have: 2705 // %a = alloca i1 2706 // %b = bitcast i1* %a to i64* 2707 // store i64* a, i64 b 2708 // then the store should really be marked as 'align 1', but is not. If it 2709 // were marked as 'align 1' then the indexed form would have been 2710 // instruction-selected initially, and the problem this 'fixup' is preventing 2711 // won't happen regardless. 2712 if (FrameIdx < 0) 2713 return; 2714 2715 MachineFunction &MF = DAG.getMachineFunction(); 2716 MachineFrameInfo &MFI = MF.getFrameInfo(); 2717 2718 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2719 return; 2720 2721 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2722 FuncInfo->setHasNonRISpills(); 2723 } 2724 2725 /// Returns true if the address N can be represented by a base register plus 2726 /// a signed 16-bit displacement [r+imm], and if it is not better 2727 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2728 /// displacements that are multiples of that value. 2729 bool PPCTargetLowering::SelectAddressRegImm( 2730 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2731 MaybeAlign EncodingAlignment) const { 2732 // FIXME dl should come from parent load or store, not from address 2733 SDLoc dl(N); 2734 2735 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2736 // a [pc+imm]. 2737 if (SelectAddressPCRel(N, Base)) 2738 return false; 2739 2740 // If this can be more profitably realized as r+r, fail. 2741 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2742 return false; 2743 2744 if (N.getOpcode() == ISD::ADD) { 2745 int16_t imm = 0; 2746 if (isIntS16Immediate(N.getOperand(1), imm) && 2747 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2748 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2749 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2750 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2751 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2752 } else { 2753 Base = N.getOperand(0); 2754 } 2755 return true; // [r+i] 2756 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2757 // Match LOAD (ADD (X, Lo(G))). 2758 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2759 && "Cannot handle constant offsets yet!"); 2760 Disp = N.getOperand(1).getOperand(0); // The global address. 2761 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2762 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2763 Disp.getOpcode() == ISD::TargetConstantPool || 2764 Disp.getOpcode() == ISD::TargetJumpTable); 2765 Base = N.getOperand(0); 2766 return true; // [&g+r] 2767 } 2768 } else if (N.getOpcode() == ISD::OR) { 2769 int16_t imm = 0; 2770 if (isIntS16Immediate(N.getOperand(1), imm) && 2771 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2772 // If this is an or of disjoint bitfields, we can codegen this as an add 2773 // (for better address arithmetic) if the LHS and RHS of the OR are 2774 // provably disjoint. 2775 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2776 2777 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2778 // If all of the bits are known zero on the LHS or RHS, the add won't 2779 // carry. 2780 if (FrameIndexSDNode *FI = 2781 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2782 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2783 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2784 } else { 2785 Base = N.getOperand(0); 2786 } 2787 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2788 return true; 2789 } 2790 } 2791 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2792 // Loading from a constant address. 2793 2794 // If this address fits entirely in a 16-bit sext immediate field, codegen 2795 // this as "d, 0" 2796 int16_t Imm; 2797 if (isIntS16Immediate(CN, Imm) && 2798 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2799 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2800 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2801 CN->getValueType(0)); 2802 return true; 2803 } 2804 2805 // Handle 32-bit sext immediates with LIS + addr mode. 2806 if ((CN->getValueType(0) == MVT::i32 || 2807 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2808 (!EncodingAlignment || 2809 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2810 int Addr = (int)CN->getZExtValue(); 2811 2812 // Otherwise, break this down into an LIS + disp. 2813 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2814 2815 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2816 MVT::i32); 2817 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2818 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2819 return true; 2820 } 2821 } 2822 2823 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2824 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2825 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2826 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2827 } else 2828 Base = N; 2829 return true; // [r+0] 2830 } 2831 2832 /// Similar to the 16-bit case but for instructions that take a 34-bit 2833 /// displacement field (prefixed loads/stores). 2834 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2835 SDValue &Base, 2836 SelectionDAG &DAG) const { 2837 // Only on 64-bit targets. 2838 if (N.getValueType() != MVT::i64) 2839 return false; 2840 2841 SDLoc dl(N); 2842 int64_t Imm = 0; 2843 2844 if (N.getOpcode() == ISD::ADD) { 2845 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2846 return false; 2847 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2848 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2849 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2850 else 2851 Base = N.getOperand(0); 2852 return true; 2853 } 2854 2855 if (N.getOpcode() == ISD::OR) { 2856 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2857 return false; 2858 // If this is an or of disjoint bitfields, we can codegen this as an add 2859 // (for better address arithmetic) if the LHS and RHS of the OR are 2860 // provably disjoint. 2861 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2862 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2863 return false; 2864 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2865 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2866 else 2867 Base = N.getOperand(0); 2868 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2869 return true; 2870 } 2871 2872 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2873 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2874 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2875 return true; 2876 } 2877 2878 return false; 2879 } 2880 2881 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2882 /// represented as an indexed [r+r] operation. 2883 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2884 SDValue &Index, 2885 SelectionDAG &DAG) const { 2886 // Check to see if we can easily represent this as an [r+r] address. This 2887 // will fail if it thinks that the address is more profitably represented as 2888 // reg+imm, e.g. where imm = 0. 2889 if (SelectAddressRegReg(N, Base, Index, DAG)) 2890 return true; 2891 2892 // If the address is the result of an add, we will utilize the fact that the 2893 // address calculation includes an implicit add. However, we can reduce 2894 // register pressure if we do not materialize a constant just for use as the 2895 // index register. We only get rid of the add if it is not an add of a 2896 // value and a 16-bit signed constant and both have a single use. 2897 int16_t imm = 0; 2898 if (N.getOpcode() == ISD::ADD && 2899 (!isIntS16Immediate(N.getOperand(1), imm) || 2900 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2901 Base = N.getOperand(0); 2902 Index = N.getOperand(1); 2903 return true; 2904 } 2905 2906 // Otherwise, do it the hard way, using R0 as the base register. 2907 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2908 N.getValueType()); 2909 Index = N; 2910 return true; 2911 } 2912 2913 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2914 Ty *PCRelCand = dyn_cast<Ty>(N); 2915 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2916 } 2917 2918 /// Returns true if this address is a PC Relative address. 2919 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2920 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2921 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2922 // This is a materialize PC Relative node. Always select this as PC Relative. 2923 Base = N; 2924 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2925 return true; 2926 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2927 isValidPCRelNode<GlobalAddressSDNode>(N) || 2928 isValidPCRelNode<JumpTableSDNode>(N) || 2929 isValidPCRelNode<BlockAddressSDNode>(N)) 2930 return true; 2931 return false; 2932 } 2933 2934 /// Returns true if we should use a direct load into vector instruction 2935 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2936 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2937 2938 // If there are any other uses other than scalar to vector, then we should 2939 // keep it as a scalar load -> direct move pattern to prevent multiple 2940 // loads. 2941 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2942 if (!LD) 2943 return false; 2944 2945 EVT MemVT = LD->getMemoryVT(); 2946 if (!MemVT.isSimple()) 2947 return false; 2948 switch(MemVT.getSimpleVT().SimpleTy) { 2949 case MVT::i64: 2950 break; 2951 case MVT::i32: 2952 if (!ST.hasP8Vector()) 2953 return false; 2954 break; 2955 case MVT::i16: 2956 case MVT::i8: 2957 if (!ST.hasP9Vector()) 2958 return false; 2959 break; 2960 default: 2961 return false; 2962 } 2963 2964 SDValue LoadedVal(N, 0); 2965 if (!LoadedVal.hasOneUse()) 2966 return false; 2967 2968 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2969 UI != UE; ++UI) 2970 if (UI.getUse().get().getResNo() == 0 && 2971 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2972 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2973 return false; 2974 2975 return true; 2976 } 2977 2978 /// getPreIndexedAddressParts - returns true by value, base pointer and 2979 /// offset pointer and addressing mode by reference if the node's address 2980 /// can be legally represented as pre-indexed load / store address. 2981 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2982 SDValue &Offset, 2983 ISD::MemIndexedMode &AM, 2984 SelectionDAG &DAG) const { 2985 if (DisablePPCPreinc) return false; 2986 2987 bool isLoad = true; 2988 SDValue Ptr; 2989 EVT VT; 2990 unsigned Alignment; 2991 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2992 Ptr = LD->getBasePtr(); 2993 VT = LD->getMemoryVT(); 2994 Alignment = LD->getAlignment(); 2995 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2996 Ptr = ST->getBasePtr(); 2997 VT = ST->getMemoryVT(); 2998 Alignment = ST->getAlignment(); 2999 isLoad = false; 3000 } else 3001 return false; 3002 3003 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 3004 // instructions because we can fold these into a more efficient instruction 3005 // instead, (such as LXSD). 3006 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 3007 return false; 3008 } 3009 3010 // PowerPC doesn't have preinc load/store instructions for vectors 3011 if (VT.isVector()) 3012 return false; 3013 3014 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3015 // Common code will reject creating a pre-inc form if the base pointer 3016 // is a frame index, or if N is a store and the base pointer is either 3017 // the same as or a predecessor of the value being stored. Check for 3018 // those situations here, and try with swapped Base/Offset instead. 3019 bool Swap = false; 3020 3021 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3022 Swap = true; 3023 else if (!isLoad) { 3024 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3025 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3026 Swap = true; 3027 } 3028 3029 if (Swap) 3030 std::swap(Base, Offset); 3031 3032 AM = ISD::PRE_INC; 3033 return true; 3034 } 3035 3036 // LDU/STU can only handle immediates that are a multiple of 4. 3037 if (VT != MVT::i64) { 3038 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3039 return false; 3040 } else { 3041 // LDU/STU need an address with at least 4-byte alignment. 3042 if (Alignment < 4) 3043 return false; 3044 3045 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3046 return false; 3047 } 3048 3049 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3050 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3051 // sext i32 to i64 when addr mode is r+i. 3052 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3053 LD->getExtensionType() == ISD::SEXTLOAD && 3054 isa<ConstantSDNode>(Offset)) 3055 return false; 3056 } 3057 3058 AM = ISD::PRE_INC; 3059 return true; 3060 } 3061 3062 //===----------------------------------------------------------------------===// 3063 // LowerOperation implementation 3064 //===----------------------------------------------------------------------===// 3065 3066 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3067 /// and LoOpFlags to the target MO flags. 3068 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3069 unsigned &HiOpFlags, unsigned &LoOpFlags, 3070 const GlobalValue *GV = nullptr) { 3071 HiOpFlags = PPCII::MO_HA; 3072 LoOpFlags = PPCII::MO_LO; 3073 3074 // Don't use the pic base if not in PIC relocation model. 3075 if (IsPIC) { 3076 HiOpFlags |= PPCII::MO_PIC_FLAG; 3077 LoOpFlags |= PPCII::MO_PIC_FLAG; 3078 } 3079 } 3080 3081 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3082 SelectionDAG &DAG) { 3083 SDLoc DL(HiPart); 3084 EVT PtrVT = HiPart.getValueType(); 3085 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3086 3087 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3088 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3089 3090 // With PIC, the first instruction is actually "GR+hi(&G)". 3091 if (isPIC) 3092 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3093 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3094 3095 // Generate non-pic code that has direct accesses to the constant pool. 3096 // The address of the global is just (hi(&g)+lo(&g)). 3097 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3098 } 3099 3100 static void setUsesTOCBasePtr(MachineFunction &MF) { 3101 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3102 FuncInfo->setUsesTOCBasePtr(); 3103 } 3104 3105 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3106 setUsesTOCBasePtr(DAG.getMachineFunction()); 3107 } 3108 3109 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3110 SDValue GA) const { 3111 const bool Is64Bit = Subtarget.isPPC64(); 3112 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3113 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3114 : Subtarget.isAIXABI() 3115 ? DAG.getRegister(PPC::R2, VT) 3116 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3117 SDValue Ops[] = { GA, Reg }; 3118 return DAG.getMemIntrinsicNode( 3119 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3120 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3121 MachineMemOperand::MOLoad); 3122 } 3123 3124 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3125 SelectionDAG &DAG) const { 3126 EVT PtrVT = Op.getValueType(); 3127 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3128 const Constant *C = CP->getConstVal(); 3129 3130 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3131 // The actual address of the GlobalValue is stored in the TOC. 3132 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3133 if (Subtarget.isUsingPCRelativeCalls()) { 3134 SDLoc DL(CP); 3135 EVT Ty = getPointerTy(DAG.getDataLayout()); 3136 SDValue ConstPool = DAG.getTargetConstantPool( 3137 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3138 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3139 } 3140 setUsesTOCBasePtr(DAG); 3141 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3142 return getTOCEntry(DAG, SDLoc(CP), GA); 3143 } 3144 3145 unsigned MOHiFlag, MOLoFlag; 3146 bool IsPIC = isPositionIndependent(); 3147 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3148 3149 if (IsPIC && Subtarget.isSVR4ABI()) { 3150 SDValue GA = 3151 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3152 return getTOCEntry(DAG, SDLoc(CP), GA); 3153 } 3154 3155 SDValue CPIHi = 3156 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3157 SDValue CPILo = 3158 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3159 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3160 } 3161 3162 // For 64-bit PowerPC, prefer the more compact relative encodings. 3163 // This trades 32 bits per jump table entry for one or two instructions 3164 // on the jump site. 3165 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3166 if (isJumpTableRelative()) 3167 return MachineJumpTableInfo::EK_LabelDifference32; 3168 3169 return TargetLowering::getJumpTableEncoding(); 3170 } 3171 3172 bool PPCTargetLowering::isJumpTableRelative() const { 3173 if (UseAbsoluteJumpTables) 3174 return false; 3175 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3176 return true; 3177 return TargetLowering::isJumpTableRelative(); 3178 } 3179 3180 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3181 SelectionDAG &DAG) const { 3182 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3183 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3184 3185 switch (getTargetMachine().getCodeModel()) { 3186 case CodeModel::Small: 3187 case CodeModel::Medium: 3188 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3189 default: 3190 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3191 getPointerTy(DAG.getDataLayout())); 3192 } 3193 } 3194 3195 const MCExpr * 3196 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3197 unsigned JTI, 3198 MCContext &Ctx) const { 3199 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3200 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3201 3202 switch (getTargetMachine().getCodeModel()) { 3203 case CodeModel::Small: 3204 case CodeModel::Medium: 3205 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3206 default: 3207 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3208 } 3209 } 3210 3211 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3212 EVT PtrVT = Op.getValueType(); 3213 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3214 3215 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3216 if (Subtarget.isUsingPCRelativeCalls()) { 3217 SDLoc DL(JT); 3218 EVT Ty = getPointerTy(DAG.getDataLayout()); 3219 SDValue GA = 3220 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3221 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3222 return MatAddr; 3223 } 3224 3225 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3226 // The actual address of the GlobalValue is stored in the TOC. 3227 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3228 setUsesTOCBasePtr(DAG); 3229 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3230 return getTOCEntry(DAG, SDLoc(JT), GA); 3231 } 3232 3233 unsigned MOHiFlag, MOLoFlag; 3234 bool IsPIC = isPositionIndependent(); 3235 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3236 3237 if (IsPIC && Subtarget.isSVR4ABI()) { 3238 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3239 PPCII::MO_PIC_FLAG); 3240 return getTOCEntry(DAG, SDLoc(GA), GA); 3241 } 3242 3243 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3244 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3245 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3246 } 3247 3248 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 EVT PtrVT = Op.getValueType(); 3251 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3252 const BlockAddress *BA = BASDN->getBlockAddress(); 3253 3254 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3255 if (Subtarget.isUsingPCRelativeCalls()) { 3256 SDLoc DL(BASDN); 3257 EVT Ty = getPointerTy(DAG.getDataLayout()); 3258 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3259 PPCII::MO_PCREL_FLAG); 3260 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3261 return MatAddr; 3262 } 3263 3264 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3265 // The actual BlockAddress is stored in the TOC. 3266 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3267 setUsesTOCBasePtr(DAG); 3268 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3269 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3270 } 3271 3272 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3273 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3274 return getTOCEntry( 3275 DAG, SDLoc(BASDN), 3276 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3277 3278 unsigned MOHiFlag, MOLoFlag; 3279 bool IsPIC = isPositionIndependent(); 3280 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3281 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3282 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3283 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3284 } 3285 3286 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3287 SelectionDAG &DAG) const { 3288 if (Subtarget.isAIXABI()) 3289 return LowerGlobalTLSAddressAIX(Op, DAG); 3290 3291 return LowerGlobalTLSAddressLinux(Op, DAG); 3292 } 3293 3294 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3295 SelectionDAG &DAG) const { 3296 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3297 3298 if (DAG.getTarget().useEmulatedTLS()) 3299 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3300 3301 SDLoc dl(GA); 3302 const GlobalValue *GV = GA->getGlobal(); 3303 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3304 3305 // The general-dynamic model is the only access model supported for now, so 3306 // all the GlobalTLSAddress nodes are lowered with this model. 3307 // We need to generate two TOC entries, one for the variable offset, one for 3308 // the region handle. The global address for the TOC entry of the region 3309 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3310 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3311 SDValue VariableOffsetTGA = 3312 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3313 SDValue RegionHandleTGA = 3314 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3315 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3316 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3317 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3318 RegionHandle); 3319 } 3320 3321 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3322 SelectionDAG &DAG) const { 3323 // FIXME: TLS addresses currently use medium model code sequences, 3324 // which is the most useful form. Eventually support for small and 3325 // large models could be added if users need it, at the cost of 3326 // additional complexity. 3327 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3328 if (DAG.getTarget().useEmulatedTLS()) 3329 return LowerToTLSEmulatedModel(GA, DAG); 3330 3331 SDLoc dl(GA); 3332 const GlobalValue *GV = GA->getGlobal(); 3333 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3334 bool is64bit = Subtarget.isPPC64(); 3335 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3336 PICLevel::Level picLevel = M->getPICLevel(); 3337 3338 const TargetMachine &TM = getTargetMachine(); 3339 TLSModel::Model Model = TM.getTLSModel(GV); 3340 3341 if (Model == TLSModel::LocalExec) { 3342 if (Subtarget.isUsingPCRelativeCalls()) { 3343 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3344 SDValue TGA = DAG.getTargetGlobalAddress( 3345 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3346 SDValue MatAddr = 3347 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3348 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3349 } 3350 3351 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3352 PPCII::MO_TPREL_HA); 3353 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3354 PPCII::MO_TPREL_LO); 3355 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3356 : DAG.getRegister(PPC::R2, MVT::i32); 3357 3358 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3359 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3360 } 3361 3362 if (Model == TLSModel::InitialExec) { 3363 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3364 SDValue TGA = DAG.getTargetGlobalAddress( 3365 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3366 SDValue TGATLS = DAG.getTargetGlobalAddress( 3367 GV, dl, PtrVT, 0, 3368 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3369 SDValue TPOffset; 3370 if (IsPCRel) { 3371 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3372 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3373 MachinePointerInfo()); 3374 } else { 3375 SDValue GOTPtr; 3376 if (is64bit) { 3377 setUsesTOCBasePtr(DAG); 3378 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3379 GOTPtr = 3380 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3381 } else { 3382 if (!TM.isPositionIndependent()) 3383 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3384 else if (picLevel == PICLevel::SmallPIC) 3385 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3386 else 3387 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3388 } 3389 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3390 } 3391 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3392 } 3393 3394 if (Model == TLSModel::GeneralDynamic) { 3395 if (Subtarget.isUsingPCRelativeCalls()) { 3396 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3397 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3398 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3399 } 3400 3401 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3402 SDValue GOTPtr; 3403 if (is64bit) { 3404 setUsesTOCBasePtr(DAG); 3405 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3406 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3407 GOTReg, TGA); 3408 } else { 3409 if (picLevel == PICLevel::SmallPIC) 3410 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3411 else 3412 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3413 } 3414 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3415 GOTPtr, TGA, TGA); 3416 } 3417 3418 if (Model == TLSModel::LocalDynamic) { 3419 if (Subtarget.isUsingPCRelativeCalls()) { 3420 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3421 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3422 SDValue MatPCRel = 3423 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3424 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3425 } 3426 3427 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3428 SDValue GOTPtr; 3429 if (is64bit) { 3430 setUsesTOCBasePtr(DAG); 3431 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3432 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3433 GOTReg, TGA); 3434 } else { 3435 if (picLevel == PICLevel::SmallPIC) 3436 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3437 else 3438 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3439 } 3440 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3441 PtrVT, GOTPtr, TGA, TGA); 3442 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3443 PtrVT, TLSAddr, TGA); 3444 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3445 } 3446 3447 llvm_unreachable("Unknown TLS model!"); 3448 } 3449 3450 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3451 SelectionDAG &DAG) const { 3452 EVT PtrVT = Op.getValueType(); 3453 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3454 SDLoc DL(GSDN); 3455 const GlobalValue *GV = GSDN->getGlobal(); 3456 3457 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3458 // The actual address of the GlobalValue is stored in the TOC. 3459 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3460 if (Subtarget.isUsingPCRelativeCalls()) { 3461 EVT Ty = getPointerTy(DAG.getDataLayout()); 3462 if (isAccessedAsGotIndirect(Op)) { 3463 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3464 PPCII::MO_PCREL_FLAG | 3465 PPCII::MO_GOT_FLAG); 3466 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3467 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3468 MachinePointerInfo()); 3469 return Load; 3470 } else { 3471 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3472 PPCII::MO_PCREL_FLAG); 3473 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3474 } 3475 } 3476 setUsesTOCBasePtr(DAG); 3477 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3478 return getTOCEntry(DAG, DL, GA); 3479 } 3480 3481 unsigned MOHiFlag, MOLoFlag; 3482 bool IsPIC = isPositionIndependent(); 3483 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3484 3485 if (IsPIC && Subtarget.isSVR4ABI()) { 3486 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3487 GSDN->getOffset(), 3488 PPCII::MO_PIC_FLAG); 3489 return getTOCEntry(DAG, DL, GA); 3490 } 3491 3492 SDValue GAHi = 3493 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3494 SDValue GALo = 3495 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3496 3497 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3498 } 3499 3500 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3501 bool IsStrict = Op->isStrictFPOpcode(); 3502 ISD::CondCode CC = 3503 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3504 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3505 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3506 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3507 EVT LHSVT = LHS.getValueType(); 3508 SDLoc dl(Op); 3509 3510 // Soften the setcc with libcall if it is fp128. 3511 if (LHSVT == MVT::f128) { 3512 assert(!Subtarget.hasP9Vector() && 3513 "SETCC for f128 is already legal under Power9!"); 3514 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3515 Op->getOpcode() == ISD::STRICT_FSETCCS); 3516 if (RHS.getNode()) 3517 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3518 DAG.getCondCode(CC)); 3519 if (IsStrict) 3520 return DAG.getMergeValues({LHS, Chain}, dl); 3521 return LHS; 3522 } 3523 3524 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3525 3526 if (Op.getValueType() == MVT::v2i64) { 3527 // When the operands themselves are v2i64 values, we need to do something 3528 // special because VSX has no underlying comparison operations for these. 3529 if (LHS.getValueType() == MVT::v2i64) { 3530 // Equality can be handled by casting to the legal type for Altivec 3531 // comparisons, everything else needs to be expanded. 3532 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3533 return SDValue(); 3534 SDValue SetCC32 = DAG.getSetCC( 3535 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3536 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3537 int ShuffV[] = {1, 0, 3, 2}; 3538 SDValue Shuff = 3539 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3540 return DAG.getBitcast(MVT::v2i64, 3541 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3542 dl, MVT::v4i32, Shuff, SetCC32)); 3543 } 3544 3545 // We handle most of these in the usual way. 3546 return Op; 3547 } 3548 3549 // If we're comparing for equality to zero, expose the fact that this is 3550 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3551 // fold the new nodes. 3552 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3553 return V; 3554 3555 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3556 // Leave comparisons against 0 and -1 alone for now, since they're usually 3557 // optimized. FIXME: revisit this when we can custom lower all setcc 3558 // optimizations. 3559 if (C->isAllOnes() || C->isZero()) 3560 return SDValue(); 3561 } 3562 3563 // If we have an integer seteq/setne, turn it into a compare against zero 3564 // by xor'ing the rhs with the lhs, which is faster than setting a 3565 // condition register, reading it back out, and masking the correct bit. The 3566 // normal approach here uses sub to do this instead of xor. Using xor exposes 3567 // the result to other bit-twiddling opportunities. 3568 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3569 EVT VT = Op.getValueType(); 3570 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3571 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3572 } 3573 return SDValue(); 3574 } 3575 3576 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3577 SDNode *Node = Op.getNode(); 3578 EVT VT = Node->getValueType(0); 3579 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3580 SDValue InChain = Node->getOperand(0); 3581 SDValue VAListPtr = Node->getOperand(1); 3582 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3583 SDLoc dl(Node); 3584 3585 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3586 3587 // gpr_index 3588 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3589 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3590 InChain = GprIndex.getValue(1); 3591 3592 if (VT == MVT::i64) { 3593 // Check if GprIndex is even 3594 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3595 DAG.getConstant(1, dl, MVT::i32)); 3596 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3597 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3598 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3599 DAG.getConstant(1, dl, MVT::i32)); 3600 // Align GprIndex to be even if it isn't 3601 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3602 GprIndex); 3603 } 3604 3605 // fpr index is 1 byte after gpr 3606 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3607 DAG.getConstant(1, dl, MVT::i32)); 3608 3609 // fpr 3610 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3611 FprPtr, MachinePointerInfo(SV), MVT::i8); 3612 InChain = FprIndex.getValue(1); 3613 3614 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3615 DAG.getConstant(8, dl, MVT::i32)); 3616 3617 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3618 DAG.getConstant(4, dl, MVT::i32)); 3619 3620 // areas 3621 SDValue OverflowArea = 3622 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3623 InChain = OverflowArea.getValue(1); 3624 3625 SDValue RegSaveArea = 3626 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3627 InChain = RegSaveArea.getValue(1); 3628 3629 // select overflow_area if index > 8 3630 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3631 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3632 3633 // adjustment constant gpr_index * 4/8 3634 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3635 VT.isInteger() ? GprIndex : FprIndex, 3636 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3637 MVT::i32)); 3638 3639 // OurReg = RegSaveArea + RegConstant 3640 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3641 RegConstant); 3642 3643 // Floating types are 32 bytes into RegSaveArea 3644 if (VT.isFloatingPoint()) 3645 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3646 DAG.getConstant(32, dl, MVT::i32)); 3647 3648 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3649 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3650 VT.isInteger() ? GprIndex : FprIndex, 3651 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3652 MVT::i32)); 3653 3654 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3655 VT.isInteger() ? VAListPtr : FprPtr, 3656 MachinePointerInfo(SV), MVT::i8); 3657 3658 // determine if we should load from reg_save_area or overflow_area 3659 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3660 3661 // increase overflow_area by 4/8 if gpr/fpr > 8 3662 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3663 DAG.getConstant(VT.isInteger() ? 4 : 8, 3664 dl, MVT::i32)); 3665 3666 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3667 OverflowAreaPlusN); 3668 3669 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3670 MachinePointerInfo(), MVT::i32); 3671 3672 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3673 } 3674 3675 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3676 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3677 3678 // We have to copy the entire va_list struct: 3679 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3680 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3681 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3682 false, true, false, MachinePointerInfo(), 3683 MachinePointerInfo()); 3684 } 3685 3686 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3687 SelectionDAG &DAG) const { 3688 if (Subtarget.isAIXABI()) 3689 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3690 3691 return Op.getOperand(0); 3692 } 3693 3694 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3695 MachineFunction &MF = DAG.getMachineFunction(); 3696 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3697 3698 assert((Op.getOpcode() == ISD::INLINEASM || 3699 Op.getOpcode() == ISD::INLINEASM_BR) && 3700 "Expecting Inline ASM node."); 3701 3702 // If an LR store is already known to be required then there is not point in 3703 // checking this ASM as well. 3704 if (MFI.isLRStoreRequired()) 3705 return Op; 3706 3707 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3708 // type MVT::Glue. We want to ignore this last operand if that is the case. 3709 unsigned NumOps = Op.getNumOperands(); 3710 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3711 --NumOps; 3712 3713 // Check all operands that may contain the LR. 3714 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3715 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3716 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3717 ++i; // Skip the ID value. 3718 3719 switch (InlineAsm::getKind(Flags)) { 3720 default: 3721 llvm_unreachable("Bad flags!"); 3722 case InlineAsm::Kind_RegUse: 3723 case InlineAsm::Kind_Imm: 3724 case InlineAsm::Kind_Mem: 3725 i += NumVals; 3726 break; 3727 case InlineAsm::Kind_Clobber: 3728 case InlineAsm::Kind_RegDef: 3729 case InlineAsm::Kind_RegDefEarlyClobber: { 3730 for (; NumVals; --NumVals, ++i) { 3731 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3732 if (Reg != PPC::LR && Reg != PPC::LR8) 3733 continue; 3734 MFI.setLRStoreRequired(); 3735 return Op; 3736 } 3737 break; 3738 } 3739 } 3740 } 3741 3742 return Op; 3743 } 3744 3745 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3746 SelectionDAG &DAG) const { 3747 if (Subtarget.isAIXABI()) 3748 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3749 3750 SDValue Chain = Op.getOperand(0); 3751 SDValue Trmp = Op.getOperand(1); // trampoline 3752 SDValue FPtr = Op.getOperand(2); // nested function 3753 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3754 SDLoc dl(Op); 3755 3756 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3757 bool isPPC64 = (PtrVT == MVT::i64); 3758 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3759 3760 TargetLowering::ArgListTy Args; 3761 TargetLowering::ArgListEntry Entry; 3762 3763 Entry.Ty = IntPtrTy; 3764 Entry.Node = Trmp; Args.push_back(Entry); 3765 3766 // TrampSize == (isPPC64 ? 48 : 40); 3767 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3768 isPPC64 ? MVT::i64 : MVT::i32); 3769 Args.push_back(Entry); 3770 3771 Entry.Node = FPtr; Args.push_back(Entry); 3772 Entry.Node = Nest; Args.push_back(Entry); 3773 3774 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3775 TargetLowering::CallLoweringInfo CLI(DAG); 3776 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3777 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3778 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3779 3780 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3781 return CallResult.second; 3782 } 3783 3784 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3785 MachineFunction &MF = DAG.getMachineFunction(); 3786 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3787 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3788 3789 SDLoc dl(Op); 3790 3791 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3792 // vastart just stores the address of the VarArgsFrameIndex slot into the 3793 // memory location argument. 3794 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3795 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3796 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3797 MachinePointerInfo(SV)); 3798 } 3799 3800 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3801 // We suppose the given va_list is already allocated. 3802 // 3803 // typedef struct { 3804 // char gpr; /* index into the array of 8 GPRs 3805 // * stored in the register save area 3806 // * gpr=0 corresponds to r3, 3807 // * gpr=1 to r4, etc. 3808 // */ 3809 // char fpr; /* index into the array of 8 FPRs 3810 // * stored in the register save area 3811 // * fpr=0 corresponds to f1, 3812 // * fpr=1 to f2, etc. 3813 // */ 3814 // char *overflow_arg_area; 3815 // /* location on stack that holds 3816 // * the next overflow argument 3817 // */ 3818 // char *reg_save_area; 3819 // /* where r3:r10 and f1:f8 (if saved) 3820 // * are stored 3821 // */ 3822 // } va_list[1]; 3823 3824 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3825 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3826 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3827 PtrVT); 3828 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3829 PtrVT); 3830 3831 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3832 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3833 3834 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3835 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3836 3837 uint64_t FPROffset = 1; 3838 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3839 3840 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3841 3842 // Store first byte : number of int regs 3843 SDValue firstStore = 3844 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3845 MachinePointerInfo(SV), MVT::i8); 3846 uint64_t nextOffset = FPROffset; 3847 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3848 ConstFPROffset); 3849 3850 // Store second byte : number of float regs 3851 SDValue secondStore = 3852 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3853 MachinePointerInfo(SV, nextOffset), MVT::i8); 3854 nextOffset += StackOffset; 3855 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3856 3857 // Store second word : arguments given on stack 3858 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3859 MachinePointerInfo(SV, nextOffset)); 3860 nextOffset += FrameOffset; 3861 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3862 3863 // Store third word : arguments given in registers 3864 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3865 MachinePointerInfo(SV, nextOffset)); 3866 } 3867 3868 /// FPR - The set of FP registers that should be allocated for arguments 3869 /// on Darwin and AIX. 3870 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3871 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3872 PPC::F11, PPC::F12, PPC::F13}; 3873 3874 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3875 /// the stack. 3876 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3877 unsigned PtrByteSize) { 3878 unsigned ArgSize = ArgVT.getStoreSize(); 3879 if (Flags.isByVal()) 3880 ArgSize = Flags.getByValSize(); 3881 3882 // Round up to multiples of the pointer size, except for array members, 3883 // which are always packed. 3884 if (!Flags.isInConsecutiveRegs()) 3885 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3886 3887 return ArgSize; 3888 } 3889 3890 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3891 /// on the stack. 3892 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3893 ISD::ArgFlagsTy Flags, 3894 unsigned PtrByteSize) { 3895 Align Alignment(PtrByteSize); 3896 3897 // Altivec parameters are padded to a 16 byte boundary. 3898 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3899 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3900 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3901 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3902 Alignment = Align(16); 3903 3904 // ByVal parameters are aligned as requested. 3905 if (Flags.isByVal()) { 3906 auto BVAlign = Flags.getNonZeroByValAlign(); 3907 if (BVAlign > PtrByteSize) { 3908 if (BVAlign.value() % PtrByteSize != 0) 3909 llvm_unreachable( 3910 "ByVal alignment is not a multiple of the pointer size"); 3911 3912 Alignment = BVAlign; 3913 } 3914 } 3915 3916 // Array members are always packed to their original alignment. 3917 if (Flags.isInConsecutiveRegs()) { 3918 // If the array member was split into multiple registers, the first 3919 // needs to be aligned to the size of the full type. (Except for 3920 // ppcf128, which is only aligned as its f64 components.) 3921 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3922 Alignment = Align(OrigVT.getStoreSize()); 3923 else 3924 Alignment = Align(ArgVT.getStoreSize()); 3925 } 3926 3927 return Alignment; 3928 } 3929 3930 /// CalculateStackSlotUsed - Return whether this argument will use its 3931 /// stack slot (instead of being passed in registers). ArgOffset, 3932 /// AvailableFPRs, and AvailableVRs must hold the current argument 3933 /// position, and will be updated to account for this argument. 3934 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3935 unsigned PtrByteSize, unsigned LinkageSize, 3936 unsigned ParamAreaSize, unsigned &ArgOffset, 3937 unsigned &AvailableFPRs, 3938 unsigned &AvailableVRs) { 3939 bool UseMemory = false; 3940 3941 // Respect alignment of argument on the stack. 3942 Align Alignment = 3943 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3944 ArgOffset = alignTo(ArgOffset, Alignment); 3945 // If there's no space left in the argument save area, we must 3946 // use memory (this check also catches zero-sized arguments). 3947 if (ArgOffset >= LinkageSize + ParamAreaSize) 3948 UseMemory = true; 3949 3950 // Allocate argument on the stack. 3951 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3952 if (Flags.isInConsecutiveRegsLast()) 3953 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3954 // If we overran the argument save area, we must use memory 3955 // (this check catches arguments passed partially in memory) 3956 if (ArgOffset > LinkageSize + ParamAreaSize) 3957 UseMemory = true; 3958 3959 // However, if the argument is actually passed in an FPR or a VR, 3960 // we don't use memory after all. 3961 if (!Flags.isByVal()) { 3962 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3963 if (AvailableFPRs > 0) { 3964 --AvailableFPRs; 3965 return false; 3966 } 3967 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3968 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3969 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3970 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3971 if (AvailableVRs > 0) { 3972 --AvailableVRs; 3973 return false; 3974 } 3975 } 3976 3977 return UseMemory; 3978 } 3979 3980 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3981 /// ensure minimum alignment required for target. 3982 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3983 unsigned NumBytes) { 3984 return alignTo(NumBytes, Lowering->getStackAlign()); 3985 } 3986 3987 SDValue PPCTargetLowering::LowerFormalArguments( 3988 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3989 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3990 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3991 if (Subtarget.isAIXABI()) 3992 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3993 InVals); 3994 if (Subtarget.is64BitELFABI()) 3995 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3996 InVals); 3997 assert(Subtarget.is32BitELFABI()); 3998 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3999 InVals); 4000 } 4001 4002 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 4003 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4004 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4005 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4006 4007 // 32-bit SVR4 ABI Stack Frame Layout: 4008 // +-----------------------------------+ 4009 // +--> | Back chain | 4010 // | +-----------------------------------+ 4011 // | | Floating-point register save area | 4012 // | +-----------------------------------+ 4013 // | | General register save area | 4014 // | +-----------------------------------+ 4015 // | | CR save word | 4016 // | +-----------------------------------+ 4017 // | | VRSAVE save word | 4018 // | +-----------------------------------+ 4019 // | | Alignment padding | 4020 // | +-----------------------------------+ 4021 // | | Vector register save area | 4022 // | +-----------------------------------+ 4023 // | | Local variable space | 4024 // | +-----------------------------------+ 4025 // | | Parameter list area | 4026 // | +-----------------------------------+ 4027 // | | LR save word | 4028 // | +-----------------------------------+ 4029 // SP--> +--- | Back chain | 4030 // +-----------------------------------+ 4031 // 4032 // Specifications: 4033 // System V Application Binary Interface PowerPC Processor Supplement 4034 // AltiVec Technology Programming Interface Manual 4035 4036 MachineFunction &MF = DAG.getMachineFunction(); 4037 MachineFrameInfo &MFI = MF.getFrameInfo(); 4038 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4039 4040 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4041 // Potential tail calls could cause overwriting of argument stack slots. 4042 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4043 (CallConv == CallingConv::Fast)); 4044 const Align PtrAlign(4); 4045 4046 // Assign locations to all of the incoming arguments. 4047 SmallVector<CCValAssign, 16> ArgLocs; 4048 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4049 *DAG.getContext()); 4050 4051 // Reserve space for the linkage area on the stack. 4052 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4053 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4054 if (useSoftFloat()) 4055 CCInfo.PreAnalyzeFormalArguments(Ins); 4056 4057 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4058 CCInfo.clearWasPPCF128(); 4059 4060 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4061 CCValAssign &VA = ArgLocs[i]; 4062 4063 // Arguments stored in registers. 4064 if (VA.isRegLoc()) { 4065 const TargetRegisterClass *RC; 4066 EVT ValVT = VA.getValVT(); 4067 4068 switch (ValVT.getSimpleVT().SimpleTy) { 4069 default: 4070 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4071 case MVT::i1: 4072 case MVT::i32: 4073 RC = &PPC::GPRCRegClass; 4074 break; 4075 case MVT::f32: 4076 if (Subtarget.hasP8Vector()) 4077 RC = &PPC::VSSRCRegClass; 4078 else if (Subtarget.hasSPE()) 4079 RC = &PPC::GPRCRegClass; 4080 else 4081 RC = &PPC::F4RCRegClass; 4082 break; 4083 case MVT::f64: 4084 if (Subtarget.hasVSX()) 4085 RC = &PPC::VSFRCRegClass; 4086 else if (Subtarget.hasSPE()) 4087 // SPE passes doubles in GPR pairs. 4088 RC = &PPC::GPRCRegClass; 4089 else 4090 RC = &PPC::F8RCRegClass; 4091 break; 4092 case MVT::v16i8: 4093 case MVT::v8i16: 4094 case MVT::v4i32: 4095 RC = &PPC::VRRCRegClass; 4096 break; 4097 case MVT::v4f32: 4098 RC = &PPC::VRRCRegClass; 4099 break; 4100 case MVT::v2f64: 4101 case MVT::v2i64: 4102 RC = &PPC::VRRCRegClass; 4103 break; 4104 } 4105 4106 SDValue ArgValue; 4107 // Transform the arguments stored in physical registers into 4108 // virtual ones. 4109 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4110 assert(i + 1 < e && "No second half of double precision argument"); 4111 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4112 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4113 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4114 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4115 if (!Subtarget.isLittleEndian()) 4116 std::swap (ArgValueLo, ArgValueHi); 4117 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4118 ArgValueHi); 4119 } else { 4120 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4121 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4122 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4123 if (ValVT == MVT::i1) 4124 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4125 } 4126 4127 InVals.push_back(ArgValue); 4128 } else { 4129 // Argument stored in memory. 4130 assert(VA.isMemLoc()); 4131 4132 // Get the extended size of the argument type in stack 4133 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4134 // Get the actual size of the argument type 4135 unsigned ObjSize = VA.getValVT().getStoreSize(); 4136 unsigned ArgOffset = VA.getLocMemOffset(); 4137 // Stack objects in PPC32 are right justified. 4138 ArgOffset += ArgSize - ObjSize; 4139 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4140 4141 // Create load nodes to retrieve arguments from the stack. 4142 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4143 InVals.push_back( 4144 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4145 } 4146 } 4147 4148 // Assign locations to all of the incoming aggregate by value arguments. 4149 // Aggregates passed by value are stored in the local variable space of the 4150 // caller's stack frame, right above the parameter list area. 4151 SmallVector<CCValAssign, 16> ByValArgLocs; 4152 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4153 ByValArgLocs, *DAG.getContext()); 4154 4155 // Reserve stack space for the allocations in CCInfo. 4156 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4157 4158 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4159 4160 // Area that is at least reserved in the caller of this function. 4161 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4162 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4163 4164 // Set the size that is at least reserved in caller of this function. Tail 4165 // call optimized function's reserved stack space needs to be aligned so that 4166 // taking the difference between two stack areas will result in an aligned 4167 // stack. 4168 MinReservedArea = 4169 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4170 FuncInfo->setMinReservedArea(MinReservedArea); 4171 4172 SmallVector<SDValue, 8> MemOps; 4173 4174 // If the function takes variable number of arguments, make a frame index for 4175 // the start of the first vararg value... for expansion of llvm.va_start. 4176 if (isVarArg) { 4177 static const MCPhysReg GPArgRegs[] = { 4178 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4179 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4180 }; 4181 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4182 4183 static const MCPhysReg FPArgRegs[] = { 4184 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4185 PPC::F8 4186 }; 4187 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4188 4189 if (useSoftFloat() || hasSPE()) 4190 NumFPArgRegs = 0; 4191 4192 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4193 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4194 4195 // Make room for NumGPArgRegs and NumFPArgRegs. 4196 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4197 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4198 4199 FuncInfo->setVarArgsStackOffset( 4200 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4201 CCInfo.getNextStackOffset(), true)); 4202 4203 FuncInfo->setVarArgsFrameIndex( 4204 MFI.CreateStackObject(Depth, Align(8), false)); 4205 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4206 4207 // The fixed integer arguments of a variadic function are stored to the 4208 // VarArgsFrameIndex on the stack so that they may be loaded by 4209 // dereferencing the result of va_next. 4210 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4211 // Get an existing live-in vreg, or add a new one. 4212 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4213 if (!VReg) 4214 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4215 4216 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4217 SDValue Store = 4218 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4219 MemOps.push_back(Store); 4220 // Increment the address by four for the next argument to store 4221 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4222 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4223 } 4224 4225 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4226 // is set. 4227 // The double arguments are stored to the VarArgsFrameIndex 4228 // on the stack. 4229 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4230 // Get an existing live-in vreg, or add a new one. 4231 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4232 if (!VReg) 4233 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4234 4235 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4236 SDValue Store = 4237 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4238 MemOps.push_back(Store); 4239 // Increment the address by eight for the next argument to store 4240 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4241 PtrVT); 4242 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4243 } 4244 } 4245 4246 if (!MemOps.empty()) 4247 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4248 4249 return Chain; 4250 } 4251 4252 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4253 // value to MVT::i64 and then truncate to the correct register size. 4254 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4255 EVT ObjectVT, SelectionDAG &DAG, 4256 SDValue ArgVal, 4257 const SDLoc &dl) const { 4258 if (Flags.isSExt()) 4259 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4260 DAG.getValueType(ObjectVT)); 4261 else if (Flags.isZExt()) 4262 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4263 DAG.getValueType(ObjectVT)); 4264 4265 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4266 } 4267 4268 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4269 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4270 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4271 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4272 // TODO: add description of PPC stack frame format, or at least some docs. 4273 // 4274 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4275 bool isLittleEndian = Subtarget.isLittleEndian(); 4276 MachineFunction &MF = DAG.getMachineFunction(); 4277 MachineFrameInfo &MFI = MF.getFrameInfo(); 4278 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4279 4280 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4281 "fastcc not supported on varargs functions"); 4282 4283 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4284 // Potential tail calls could cause overwriting of argument stack slots. 4285 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4286 (CallConv == CallingConv::Fast)); 4287 unsigned PtrByteSize = 8; 4288 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4289 4290 static const MCPhysReg GPR[] = { 4291 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4292 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4293 }; 4294 static const MCPhysReg VR[] = { 4295 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4296 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4297 }; 4298 4299 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4300 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4301 const unsigned Num_VR_Regs = array_lengthof(VR); 4302 4303 // Do a first pass over the arguments to determine whether the ABI 4304 // guarantees that our caller has allocated the parameter save area 4305 // on its stack frame. In the ELFv1 ABI, this is always the case; 4306 // in the ELFv2 ABI, it is true if this is a vararg function or if 4307 // any parameter is located in a stack slot. 4308 4309 bool HasParameterArea = !isELFv2ABI || isVarArg; 4310 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4311 unsigned NumBytes = LinkageSize; 4312 unsigned AvailableFPRs = Num_FPR_Regs; 4313 unsigned AvailableVRs = Num_VR_Regs; 4314 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4315 if (Ins[i].Flags.isNest()) 4316 continue; 4317 4318 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4319 PtrByteSize, LinkageSize, ParamAreaSize, 4320 NumBytes, AvailableFPRs, AvailableVRs)) 4321 HasParameterArea = true; 4322 } 4323 4324 // Add DAG nodes to load the arguments or copy them out of registers. On 4325 // entry to a function on PPC, the arguments start after the linkage area, 4326 // although the first ones are often in registers. 4327 4328 unsigned ArgOffset = LinkageSize; 4329 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4330 SmallVector<SDValue, 8> MemOps; 4331 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4332 unsigned CurArgIdx = 0; 4333 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4334 SDValue ArgVal; 4335 bool needsLoad = false; 4336 EVT ObjectVT = Ins[ArgNo].VT; 4337 EVT OrigVT = Ins[ArgNo].ArgVT; 4338 unsigned ObjSize = ObjectVT.getStoreSize(); 4339 unsigned ArgSize = ObjSize; 4340 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4341 if (Ins[ArgNo].isOrigArg()) { 4342 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4343 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4344 } 4345 // We re-align the argument offset for each argument, except when using the 4346 // fast calling convention, when we need to make sure we do that only when 4347 // we'll actually use a stack slot. 4348 unsigned CurArgOffset; 4349 Align Alignment; 4350 auto ComputeArgOffset = [&]() { 4351 /* Respect alignment of argument on the stack. */ 4352 Alignment = 4353 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4354 ArgOffset = alignTo(ArgOffset, Alignment); 4355 CurArgOffset = ArgOffset; 4356 }; 4357 4358 if (CallConv != CallingConv::Fast) { 4359 ComputeArgOffset(); 4360 4361 /* Compute GPR index associated with argument offset. */ 4362 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4363 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4364 } 4365 4366 // FIXME the codegen can be much improved in some cases. 4367 // We do not have to keep everything in memory. 4368 if (Flags.isByVal()) { 4369 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4370 4371 if (CallConv == CallingConv::Fast) 4372 ComputeArgOffset(); 4373 4374 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4375 ObjSize = Flags.getByValSize(); 4376 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4377 // Empty aggregate parameters do not take up registers. Examples: 4378 // struct { } a; 4379 // union { } b; 4380 // int c[0]; 4381 // etc. However, we have to provide a place-holder in InVals, so 4382 // pretend we have an 8-byte item at the current address for that 4383 // purpose. 4384 if (!ObjSize) { 4385 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4386 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4387 InVals.push_back(FIN); 4388 continue; 4389 } 4390 4391 // Create a stack object covering all stack doublewords occupied 4392 // by the argument. If the argument is (fully or partially) on 4393 // the stack, or if the argument is fully in registers but the 4394 // caller has allocated the parameter save anyway, we can refer 4395 // directly to the caller's stack frame. Otherwise, create a 4396 // local copy in our own frame. 4397 int FI; 4398 if (HasParameterArea || 4399 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4400 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4401 else 4402 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4403 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4404 4405 // Handle aggregates smaller than 8 bytes. 4406 if (ObjSize < PtrByteSize) { 4407 // The value of the object is its address, which differs from the 4408 // address of the enclosing doubleword on big-endian systems. 4409 SDValue Arg = FIN; 4410 if (!isLittleEndian) { 4411 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4412 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4413 } 4414 InVals.push_back(Arg); 4415 4416 if (GPR_idx != Num_GPR_Regs) { 4417 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4418 FuncInfo->addLiveInAttr(VReg, Flags); 4419 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4420 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4421 SDValue Store = 4422 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4423 MachinePointerInfo(&*FuncArg), ObjType); 4424 MemOps.push_back(Store); 4425 } 4426 // Whether we copied from a register or not, advance the offset 4427 // into the parameter save area by a full doubleword. 4428 ArgOffset += PtrByteSize; 4429 continue; 4430 } 4431 4432 // The value of the object is its address, which is the address of 4433 // its first stack doubleword. 4434 InVals.push_back(FIN); 4435 4436 // Store whatever pieces of the object are in registers to memory. 4437 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4438 if (GPR_idx == Num_GPR_Regs) 4439 break; 4440 4441 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4442 FuncInfo->addLiveInAttr(VReg, Flags); 4443 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4444 SDValue Addr = FIN; 4445 if (j) { 4446 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4447 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4448 } 4449 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4450 MachinePointerInfo(&*FuncArg, j)); 4451 MemOps.push_back(Store); 4452 ++GPR_idx; 4453 } 4454 ArgOffset += ArgSize; 4455 continue; 4456 } 4457 4458 switch (ObjectVT.getSimpleVT().SimpleTy) { 4459 default: llvm_unreachable("Unhandled argument type!"); 4460 case MVT::i1: 4461 case MVT::i32: 4462 case MVT::i64: 4463 if (Flags.isNest()) { 4464 // The 'nest' parameter, if any, is passed in R11. 4465 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4466 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4467 4468 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4469 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4470 4471 break; 4472 } 4473 4474 // These can be scalar arguments or elements of an integer array type 4475 // passed directly. Clang may use those instead of "byval" aggregate 4476 // types to avoid forcing arguments to memory unnecessarily. 4477 if (GPR_idx != Num_GPR_Regs) { 4478 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4479 FuncInfo->addLiveInAttr(VReg, Flags); 4480 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4481 4482 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4483 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4484 // value to MVT::i64 and then truncate to the correct register size. 4485 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4486 } else { 4487 if (CallConv == CallingConv::Fast) 4488 ComputeArgOffset(); 4489 4490 needsLoad = true; 4491 ArgSize = PtrByteSize; 4492 } 4493 if (CallConv != CallingConv::Fast || needsLoad) 4494 ArgOffset += 8; 4495 break; 4496 4497 case MVT::f32: 4498 case MVT::f64: 4499 // These can be scalar arguments or elements of a float array type 4500 // passed directly. The latter are used to implement ELFv2 homogenous 4501 // float aggregates. 4502 if (FPR_idx != Num_FPR_Regs) { 4503 unsigned VReg; 4504 4505 if (ObjectVT == MVT::f32) 4506 VReg = MF.addLiveIn(FPR[FPR_idx], 4507 Subtarget.hasP8Vector() 4508 ? &PPC::VSSRCRegClass 4509 : &PPC::F4RCRegClass); 4510 else 4511 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4512 ? &PPC::VSFRCRegClass 4513 : &PPC::F8RCRegClass); 4514 4515 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4516 ++FPR_idx; 4517 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4518 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4519 // once we support fp <-> gpr moves. 4520 4521 // This can only ever happen in the presence of f32 array types, 4522 // since otherwise we never run out of FPRs before running out 4523 // of GPRs. 4524 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4525 FuncInfo->addLiveInAttr(VReg, Flags); 4526 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4527 4528 if (ObjectVT == MVT::f32) { 4529 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4530 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4531 DAG.getConstant(32, dl, MVT::i32)); 4532 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4533 } 4534 4535 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4536 } else { 4537 if (CallConv == CallingConv::Fast) 4538 ComputeArgOffset(); 4539 4540 needsLoad = true; 4541 } 4542 4543 // When passing an array of floats, the array occupies consecutive 4544 // space in the argument area; only round up to the next doubleword 4545 // at the end of the array. Otherwise, each float takes 8 bytes. 4546 if (CallConv != CallingConv::Fast || needsLoad) { 4547 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4548 ArgOffset += ArgSize; 4549 if (Flags.isInConsecutiveRegsLast()) 4550 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4551 } 4552 break; 4553 case MVT::v4f32: 4554 case MVT::v4i32: 4555 case MVT::v8i16: 4556 case MVT::v16i8: 4557 case MVT::v2f64: 4558 case MVT::v2i64: 4559 case MVT::v1i128: 4560 case MVT::f128: 4561 // These can be scalar arguments or elements of a vector array type 4562 // passed directly. The latter are used to implement ELFv2 homogenous 4563 // vector aggregates. 4564 if (VR_idx != Num_VR_Regs) { 4565 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4566 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4567 ++VR_idx; 4568 } else { 4569 if (CallConv == CallingConv::Fast) 4570 ComputeArgOffset(); 4571 needsLoad = true; 4572 } 4573 if (CallConv != CallingConv::Fast || needsLoad) 4574 ArgOffset += 16; 4575 break; 4576 } 4577 4578 // We need to load the argument to a virtual register if we determined 4579 // above that we ran out of physical registers of the appropriate type. 4580 if (needsLoad) { 4581 if (ObjSize < ArgSize && !isLittleEndian) 4582 CurArgOffset += ArgSize - ObjSize; 4583 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4584 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4585 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4586 } 4587 4588 InVals.push_back(ArgVal); 4589 } 4590 4591 // Area that is at least reserved in the caller of this function. 4592 unsigned MinReservedArea; 4593 if (HasParameterArea) 4594 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4595 else 4596 MinReservedArea = LinkageSize; 4597 4598 // Set the size that is at least reserved in caller of this function. Tail 4599 // call optimized functions' reserved stack space needs to be aligned so that 4600 // taking the difference between two stack areas will result in an aligned 4601 // stack. 4602 MinReservedArea = 4603 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4604 FuncInfo->setMinReservedArea(MinReservedArea); 4605 4606 // If the function takes variable number of arguments, make a frame index for 4607 // the start of the first vararg value... for expansion of llvm.va_start. 4608 // On ELFv2ABI spec, it writes: 4609 // C programs that are intended to be *portable* across different compilers 4610 // and architectures must use the header file <stdarg.h> to deal with variable 4611 // argument lists. 4612 if (isVarArg && MFI.hasVAStart()) { 4613 int Depth = ArgOffset; 4614 4615 FuncInfo->setVarArgsFrameIndex( 4616 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4617 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4618 4619 // If this function is vararg, store any remaining integer argument regs 4620 // to their spots on the stack so that they may be loaded by dereferencing 4621 // the result of va_next. 4622 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4623 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4624 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4625 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4626 SDValue Store = 4627 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4628 MemOps.push_back(Store); 4629 // Increment the address by four for the next argument to store 4630 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4631 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4632 } 4633 } 4634 4635 if (!MemOps.empty()) 4636 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4637 4638 return Chain; 4639 } 4640 4641 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4642 /// adjusted to accommodate the arguments for the tailcall. 4643 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4644 unsigned ParamSize) { 4645 4646 if (!isTailCall) return 0; 4647 4648 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4649 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4650 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4651 // Remember only if the new adjustment is bigger. 4652 if (SPDiff < FI->getTailCallSPDelta()) 4653 FI->setTailCallSPDelta(SPDiff); 4654 4655 return SPDiff; 4656 } 4657 4658 static bool isFunctionGlobalAddress(SDValue Callee); 4659 4660 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4661 const TargetMachine &TM) { 4662 // It does not make sense to call callsShareTOCBase() with a caller that 4663 // is PC Relative since PC Relative callers do not have a TOC. 4664 #ifndef NDEBUG 4665 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4666 assert(!STICaller->isUsingPCRelativeCalls() && 4667 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4668 #endif 4669 4670 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4671 // don't have enough information to determine if the caller and callee share 4672 // the same TOC base, so we have to pessimistically assume they don't for 4673 // correctness. 4674 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4675 if (!G) 4676 return false; 4677 4678 const GlobalValue *GV = G->getGlobal(); 4679 4680 // If the callee is preemptable, then the static linker will use a plt-stub 4681 // which saves the toc to the stack, and needs a nop after the call 4682 // instruction to convert to a toc-restore. 4683 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4684 return false; 4685 4686 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4687 // We may need a TOC restore in the situation where the caller requires a 4688 // valid TOC but the callee is PC Relative and does not. 4689 const Function *F = dyn_cast<Function>(GV); 4690 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4691 4692 // If we have an Alias we can try to get the function from there. 4693 if (Alias) { 4694 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4695 F = dyn_cast<Function>(GlobalObj); 4696 } 4697 4698 // If we still have no valid function pointer we do not have enough 4699 // information to determine if the callee uses PC Relative calls so we must 4700 // assume that it does. 4701 if (!F) 4702 return false; 4703 4704 // If the callee uses PC Relative we cannot guarantee that the callee won't 4705 // clobber the TOC of the caller and so we must assume that the two 4706 // functions do not share a TOC base. 4707 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4708 if (STICallee->isUsingPCRelativeCalls()) 4709 return false; 4710 4711 // If the GV is not a strong definition then we need to assume it can be 4712 // replaced by another function at link time. The function that replaces 4713 // it may not share the same TOC as the caller since the callee may be 4714 // replaced by a PC Relative version of the same function. 4715 if (!GV->isStrongDefinitionForLinker()) 4716 return false; 4717 4718 // The medium and large code models are expected to provide a sufficiently 4719 // large TOC to provide all data addressing needs of a module with a 4720 // single TOC. 4721 if (CodeModel::Medium == TM.getCodeModel() || 4722 CodeModel::Large == TM.getCodeModel()) 4723 return true; 4724 4725 // Any explicitly-specified sections and section prefixes must also match. 4726 // Also, if we're using -ffunction-sections, then each function is always in 4727 // a different section (the same is true for COMDAT functions). 4728 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4729 GV->getSection() != Caller->getSection()) 4730 return false; 4731 if (const auto *F = dyn_cast<Function>(GV)) { 4732 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4733 return false; 4734 } 4735 4736 return true; 4737 } 4738 4739 static bool 4740 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4741 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4742 assert(Subtarget.is64BitELFABI()); 4743 4744 const unsigned PtrByteSize = 8; 4745 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4746 4747 static const MCPhysReg GPR[] = { 4748 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4749 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4750 }; 4751 static const MCPhysReg VR[] = { 4752 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4753 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4754 }; 4755 4756 const unsigned NumGPRs = array_lengthof(GPR); 4757 const unsigned NumFPRs = 13; 4758 const unsigned NumVRs = array_lengthof(VR); 4759 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4760 4761 unsigned NumBytes = LinkageSize; 4762 unsigned AvailableFPRs = NumFPRs; 4763 unsigned AvailableVRs = NumVRs; 4764 4765 for (const ISD::OutputArg& Param : Outs) { 4766 if (Param.Flags.isNest()) continue; 4767 4768 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4769 LinkageSize, ParamAreaSize, NumBytes, 4770 AvailableFPRs, AvailableVRs)) 4771 return true; 4772 } 4773 return false; 4774 } 4775 4776 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4777 if (CB.arg_size() != CallerFn->arg_size()) 4778 return false; 4779 4780 auto CalleeArgIter = CB.arg_begin(); 4781 auto CalleeArgEnd = CB.arg_end(); 4782 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4783 4784 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4785 const Value* CalleeArg = *CalleeArgIter; 4786 const Value* CallerArg = &(*CallerArgIter); 4787 if (CalleeArg == CallerArg) 4788 continue; 4789 4790 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4791 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4792 // } 4793 // 1st argument of callee is undef and has the same type as caller. 4794 if (CalleeArg->getType() == CallerArg->getType() && 4795 isa<UndefValue>(CalleeArg)) 4796 continue; 4797 4798 return false; 4799 } 4800 4801 return true; 4802 } 4803 4804 // Returns true if TCO is possible between the callers and callees 4805 // calling conventions. 4806 static bool 4807 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4808 CallingConv::ID CalleeCC) { 4809 // Tail calls are possible with fastcc and ccc. 4810 auto isTailCallableCC = [] (CallingConv::ID CC){ 4811 return CC == CallingConv::C || CC == CallingConv::Fast; 4812 }; 4813 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4814 return false; 4815 4816 // We can safely tail call both fastcc and ccc callees from a c calling 4817 // convention caller. If the caller is fastcc, we may have less stack space 4818 // than a non-fastcc caller with the same signature so disable tail-calls in 4819 // that case. 4820 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4821 } 4822 4823 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4824 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4825 const SmallVectorImpl<ISD::OutputArg> &Outs, 4826 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4827 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4828 4829 if (DisableSCO && !TailCallOpt) return false; 4830 4831 // Variadic argument functions are not supported. 4832 if (isVarArg) return false; 4833 4834 auto &Caller = DAG.getMachineFunction().getFunction(); 4835 // Check that the calling conventions are compatible for tco. 4836 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4837 return false; 4838 4839 // Caller contains any byval parameter is not supported. 4840 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4841 return false; 4842 4843 // Callee contains any byval parameter is not supported, too. 4844 // Note: This is a quick work around, because in some cases, e.g. 4845 // caller's stack size > callee's stack size, we are still able to apply 4846 // sibling call optimization. For example, gcc is able to do SCO for caller1 4847 // in the following example, but not for caller2. 4848 // struct test { 4849 // long int a; 4850 // char ary[56]; 4851 // } gTest; 4852 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4853 // b->a = v.a; 4854 // return 0; 4855 // } 4856 // void caller1(struct test a, struct test c, struct test *b) { 4857 // callee(gTest, b); } 4858 // void caller2(struct test *b) { callee(gTest, b); } 4859 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4860 return false; 4861 4862 // If callee and caller use different calling conventions, we cannot pass 4863 // parameters on stack since offsets for the parameter area may be different. 4864 if (Caller.getCallingConv() != CalleeCC && 4865 needStackSlotPassParameters(Subtarget, Outs)) 4866 return false; 4867 4868 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4869 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4870 // callee potentially have different TOC bases then we cannot tail call since 4871 // we need to restore the TOC pointer after the call. 4872 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4873 // We cannot guarantee this for indirect calls or calls to external functions. 4874 // When PC-Relative addressing is used, the concept of the TOC is no longer 4875 // applicable so this check is not required. 4876 // Check first for indirect calls. 4877 if (!Subtarget.isUsingPCRelativeCalls() && 4878 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4879 return false; 4880 4881 // Check if we share the TOC base. 4882 if (!Subtarget.isUsingPCRelativeCalls() && 4883 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4884 return false; 4885 4886 // TCO allows altering callee ABI, so we don't have to check further. 4887 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4888 return true; 4889 4890 if (DisableSCO) return false; 4891 4892 // If callee use the same argument list that caller is using, then we can 4893 // apply SCO on this case. If it is not, then we need to check if callee needs 4894 // stack for passing arguments. 4895 // PC Relative tail calls may not have a CallBase. 4896 // If there is no CallBase we cannot verify if we have the same argument 4897 // list so assume that we don't have the same argument list. 4898 if (CB && !hasSameArgumentList(&Caller, *CB) && 4899 needStackSlotPassParameters(Subtarget, Outs)) 4900 return false; 4901 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4902 return false; 4903 4904 return true; 4905 } 4906 4907 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4908 /// for tail call optimization. Targets which want to do tail call 4909 /// optimization should implement this function. 4910 bool 4911 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4912 CallingConv::ID CalleeCC, 4913 bool isVarArg, 4914 const SmallVectorImpl<ISD::InputArg> &Ins, 4915 SelectionDAG& DAG) const { 4916 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4917 return false; 4918 4919 // Variable argument functions are not supported. 4920 if (isVarArg) 4921 return false; 4922 4923 MachineFunction &MF = DAG.getMachineFunction(); 4924 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4925 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4926 // Functions containing by val parameters are not supported. 4927 for (unsigned i = 0; i != Ins.size(); i++) { 4928 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4929 if (Flags.isByVal()) return false; 4930 } 4931 4932 // Non-PIC/GOT tail calls are supported. 4933 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4934 return true; 4935 4936 // At the moment we can only do local tail calls (in same module, hidden 4937 // or protected) if we are generating PIC. 4938 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4939 return G->getGlobal()->hasHiddenVisibility() 4940 || G->getGlobal()->hasProtectedVisibility(); 4941 } 4942 4943 return false; 4944 } 4945 4946 /// isCallCompatibleAddress - Return the immediate to use if the specified 4947 /// 32-bit value is representable in the immediate field of a BxA instruction. 4948 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4949 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4950 if (!C) return nullptr; 4951 4952 int Addr = C->getZExtValue(); 4953 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4954 SignExtend32<26>(Addr) != Addr) 4955 return nullptr; // Top 6 bits have to be sext of immediate. 4956 4957 return DAG 4958 .getConstant( 4959 (int)C->getZExtValue() >> 2, SDLoc(Op), 4960 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4961 .getNode(); 4962 } 4963 4964 namespace { 4965 4966 struct TailCallArgumentInfo { 4967 SDValue Arg; 4968 SDValue FrameIdxOp; 4969 int FrameIdx = 0; 4970 4971 TailCallArgumentInfo() = default; 4972 }; 4973 4974 } // end anonymous namespace 4975 4976 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4977 static void StoreTailCallArgumentsToStackSlot( 4978 SelectionDAG &DAG, SDValue Chain, 4979 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4980 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4981 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4982 SDValue Arg = TailCallArgs[i].Arg; 4983 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4984 int FI = TailCallArgs[i].FrameIdx; 4985 // Store relative to framepointer. 4986 MemOpChains.push_back(DAG.getStore( 4987 Chain, dl, Arg, FIN, 4988 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4989 } 4990 } 4991 4992 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4993 /// the appropriate stack slot for the tail call optimized function call. 4994 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4995 SDValue OldRetAddr, SDValue OldFP, 4996 int SPDiff, const SDLoc &dl) { 4997 if (SPDiff) { 4998 // Calculate the new stack slot for the return address. 4999 MachineFunction &MF = DAG.getMachineFunction(); 5000 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5001 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5002 bool isPPC64 = Subtarget.isPPC64(); 5003 int SlotSize = isPPC64 ? 8 : 4; 5004 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5005 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5006 NewRetAddrLoc, true); 5007 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5008 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5009 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5010 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5011 } 5012 return Chain; 5013 } 5014 5015 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5016 /// the position of the argument. 5017 static void 5018 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5019 SDValue Arg, int SPDiff, unsigned ArgOffset, 5020 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5021 int Offset = ArgOffset + SPDiff; 5022 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5023 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5024 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5025 SDValue FIN = DAG.getFrameIndex(FI, VT); 5026 TailCallArgumentInfo Info; 5027 Info.Arg = Arg; 5028 Info.FrameIdxOp = FIN; 5029 Info.FrameIdx = FI; 5030 TailCallArguments.push_back(Info); 5031 } 5032 5033 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5034 /// stack slot. Returns the chain as result and the loaded frame pointers in 5035 /// LROpOut/FPOpout. Used when tail calling. 5036 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5037 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5038 SDValue &FPOpOut, const SDLoc &dl) const { 5039 if (SPDiff) { 5040 // Load the LR and FP stack slot for later adjusting. 5041 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5042 LROpOut = getReturnAddrFrameIndex(DAG); 5043 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5044 Chain = SDValue(LROpOut.getNode(), 1); 5045 } 5046 return Chain; 5047 } 5048 5049 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5050 /// by "Src" to address "Dst" of size "Size". Alignment information is 5051 /// specified by the specific parameter attribute. The copy will be passed as 5052 /// a byval function parameter. 5053 /// Sometimes what we are copying is the end of a larger object, the part that 5054 /// does not fit in registers. 5055 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5056 SDValue Chain, ISD::ArgFlagsTy Flags, 5057 SelectionDAG &DAG, const SDLoc &dl) { 5058 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5059 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5060 Flags.getNonZeroByValAlign(), false, false, false, 5061 MachinePointerInfo(), MachinePointerInfo()); 5062 } 5063 5064 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5065 /// tail calls. 5066 static void LowerMemOpCallTo( 5067 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5068 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5069 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5070 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5071 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5072 if (!isTailCall) { 5073 if (isVector) { 5074 SDValue StackPtr; 5075 if (isPPC64) 5076 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5077 else 5078 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5079 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5080 DAG.getConstant(ArgOffset, dl, PtrVT)); 5081 } 5082 MemOpChains.push_back( 5083 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5084 // Calculate and remember argument location. 5085 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5086 TailCallArguments); 5087 } 5088 5089 static void 5090 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5091 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5092 SDValue FPOp, 5093 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5094 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5095 // might overwrite each other in case of tail call optimization. 5096 SmallVector<SDValue, 8> MemOpChains2; 5097 // Do not flag preceding copytoreg stuff together with the following stuff. 5098 InFlag = SDValue(); 5099 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5100 MemOpChains2, dl); 5101 if (!MemOpChains2.empty()) 5102 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5103 5104 // Store the return address to the appropriate stack slot. 5105 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5106 5107 // Emit callseq_end just before tailcall node. 5108 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5109 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5110 InFlag = Chain.getValue(1); 5111 } 5112 5113 // Is this global address that of a function that can be called by name? (as 5114 // opposed to something that must hold a descriptor for an indirect call). 5115 static bool isFunctionGlobalAddress(SDValue Callee) { 5116 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5117 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5118 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5119 return false; 5120 5121 return G->getGlobal()->getValueType()->isFunctionTy(); 5122 } 5123 5124 return false; 5125 } 5126 5127 SDValue PPCTargetLowering::LowerCallResult( 5128 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5129 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5130 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5131 SmallVector<CCValAssign, 16> RVLocs; 5132 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5133 *DAG.getContext()); 5134 5135 CCRetInfo.AnalyzeCallResult( 5136 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5137 ? RetCC_PPC_Cold 5138 : RetCC_PPC); 5139 5140 // Copy all of the result registers out of their specified physreg. 5141 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5142 CCValAssign &VA = RVLocs[i]; 5143 assert(VA.isRegLoc() && "Can only return in registers!"); 5144 5145 SDValue Val; 5146 5147 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5148 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5149 InFlag); 5150 Chain = Lo.getValue(1); 5151 InFlag = Lo.getValue(2); 5152 VA = RVLocs[++i]; // skip ahead to next loc 5153 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5154 InFlag); 5155 Chain = Hi.getValue(1); 5156 InFlag = Hi.getValue(2); 5157 if (!Subtarget.isLittleEndian()) 5158 std::swap (Lo, Hi); 5159 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5160 } else { 5161 Val = DAG.getCopyFromReg(Chain, dl, 5162 VA.getLocReg(), VA.getLocVT(), InFlag); 5163 Chain = Val.getValue(1); 5164 InFlag = Val.getValue(2); 5165 } 5166 5167 switch (VA.getLocInfo()) { 5168 default: llvm_unreachable("Unknown loc info!"); 5169 case CCValAssign::Full: break; 5170 case CCValAssign::AExt: 5171 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5172 break; 5173 case CCValAssign::ZExt: 5174 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5175 DAG.getValueType(VA.getValVT())); 5176 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5177 break; 5178 case CCValAssign::SExt: 5179 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5180 DAG.getValueType(VA.getValVT())); 5181 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5182 break; 5183 } 5184 5185 InVals.push_back(Val); 5186 } 5187 5188 return Chain; 5189 } 5190 5191 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5192 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5193 // PatchPoint calls are not indirect. 5194 if (isPatchPoint) 5195 return false; 5196 5197 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5198 return false; 5199 5200 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5201 // becuase the immediate function pointer points to a descriptor instead of 5202 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5203 // pointer immediate points to the global entry point, while the BLA would 5204 // need to jump to the local entry point (see rL211174). 5205 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5206 isBLACompatibleAddress(Callee, DAG)) 5207 return false; 5208 5209 return true; 5210 } 5211 5212 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5213 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5214 return Subtarget.isAIXABI() || 5215 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5216 } 5217 5218 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5219 const Function &Caller, const SDValue &Callee, 5220 const PPCSubtarget &Subtarget, 5221 const TargetMachine &TM, 5222 bool IsStrictFPCall = false) { 5223 if (CFlags.IsTailCall) 5224 return PPCISD::TC_RETURN; 5225 5226 unsigned RetOpc = 0; 5227 // This is a call through a function pointer. 5228 if (CFlags.IsIndirect) { 5229 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5230 // indirect calls. The save of the caller's TOC pointer to the stack will be 5231 // inserted into the DAG as part of call lowering. The restore of the TOC 5232 // pointer is modeled by using a pseudo instruction for the call opcode that 5233 // represents the 2 instruction sequence of an indirect branch and link, 5234 // immediately followed by a load of the TOC pointer from the the stack save 5235 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5236 // as it is not saved or used. 5237 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5238 : PPCISD::BCTRL; 5239 } else if (Subtarget.isUsingPCRelativeCalls()) { 5240 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5241 RetOpc = PPCISD::CALL_NOTOC; 5242 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5243 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5244 // immediately following the call instruction if the caller and callee may 5245 // have different TOC bases. At link time if the linker determines the calls 5246 // may not share a TOC base, the call is redirected to a trampoline inserted 5247 // by the linker. The trampoline will (among other things) save the callers 5248 // TOC pointer at an ABI designated offset in the linkage area and the 5249 // linker will rewrite the nop to be a load of the TOC pointer from the 5250 // linkage area into gpr2. 5251 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5252 : PPCISD::CALL_NOP; 5253 else 5254 RetOpc = PPCISD::CALL; 5255 if (IsStrictFPCall) { 5256 switch (RetOpc) { 5257 default: 5258 llvm_unreachable("Unknown call opcode"); 5259 case PPCISD::BCTRL_LOAD_TOC: 5260 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5261 break; 5262 case PPCISD::BCTRL: 5263 RetOpc = PPCISD::BCTRL_RM; 5264 break; 5265 case PPCISD::CALL_NOTOC: 5266 RetOpc = PPCISD::CALL_NOTOC_RM; 5267 break; 5268 case PPCISD::CALL: 5269 RetOpc = PPCISD::CALL_RM; 5270 break; 5271 case PPCISD::CALL_NOP: 5272 RetOpc = PPCISD::CALL_NOP_RM; 5273 break; 5274 } 5275 } 5276 return RetOpc; 5277 } 5278 5279 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5280 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5281 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5282 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5283 return SDValue(Dest, 0); 5284 5285 // Returns true if the callee is local, and false otherwise. 5286 auto isLocalCallee = [&]() { 5287 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5288 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5289 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5290 5291 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5292 !isa_and_nonnull<GlobalIFunc>(GV); 5293 }; 5294 5295 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5296 // a static relocation model causes some versions of GNU LD (2.17.50, at 5297 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5298 // built with secure-PLT. 5299 bool UsePlt = 5300 Subtarget.is32BitELFABI() && !isLocalCallee() && 5301 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5302 5303 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5304 const TargetMachine &TM = Subtarget.getTargetMachine(); 5305 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5306 MCSymbolXCOFF *S = 5307 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5308 5309 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5310 return DAG.getMCSymbol(S, PtrVT); 5311 }; 5312 5313 if (isFunctionGlobalAddress(Callee)) { 5314 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5315 5316 if (Subtarget.isAIXABI()) { 5317 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5318 return getAIXFuncEntryPointSymbolSDNode(GV); 5319 } 5320 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5321 UsePlt ? PPCII::MO_PLT : 0); 5322 } 5323 5324 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5325 const char *SymName = S->getSymbol(); 5326 if (Subtarget.isAIXABI()) { 5327 // If there exists a user-declared function whose name is the same as the 5328 // ExternalSymbol's, then we pick up the user-declared version. 5329 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5330 if (const Function *F = 5331 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5332 return getAIXFuncEntryPointSymbolSDNode(F); 5333 5334 // On AIX, direct function calls reference the symbol for the function's 5335 // entry point, which is named by prepending a "." before the function's 5336 // C-linkage name. A Qualname is returned here because an external 5337 // function entry point is a csect with XTY_ER property. 5338 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5339 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5340 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5341 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5342 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5343 return Sec->getQualNameSymbol(); 5344 }; 5345 5346 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5347 } 5348 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5349 UsePlt ? PPCII::MO_PLT : 0); 5350 } 5351 5352 // No transformation needed. 5353 assert(Callee.getNode() && "What no callee?"); 5354 return Callee; 5355 } 5356 5357 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5358 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5359 "Expected a CALLSEQ_STARTSDNode."); 5360 5361 // The last operand is the chain, except when the node has glue. If the node 5362 // has glue, then the last operand is the glue, and the chain is the second 5363 // last operand. 5364 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5365 if (LastValue.getValueType() != MVT::Glue) 5366 return LastValue; 5367 5368 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5369 } 5370 5371 // Creates the node that moves a functions address into the count register 5372 // to prepare for an indirect call instruction. 5373 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5374 SDValue &Glue, SDValue &Chain, 5375 const SDLoc &dl) { 5376 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5377 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5378 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5379 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5380 // The glue is the second value produced. 5381 Glue = Chain.getValue(1); 5382 } 5383 5384 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5385 SDValue &Glue, SDValue &Chain, 5386 SDValue CallSeqStart, 5387 const CallBase *CB, const SDLoc &dl, 5388 bool hasNest, 5389 const PPCSubtarget &Subtarget) { 5390 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5391 // entry point, but to the function descriptor (the function entry point 5392 // address is part of the function descriptor though). 5393 // The function descriptor is a three doubleword structure with the 5394 // following fields: function entry point, TOC base address and 5395 // environment pointer. 5396 // Thus for a call through a function pointer, the following actions need 5397 // to be performed: 5398 // 1. Save the TOC of the caller in the TOC save area of its stack 5399 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5400 // 2. Load the address of the function entry point from the function 5401 // descriptor. 5402 // 3. Load the TOC of the callee from the function descriptor into r2. 5403 // 4. Load the environment pointer from the function descriptor into 5404 // r11. 5405 // 5. Branch to the function entry point address. 5406 // 6. On return of the callee, the TOC of the caller needs to be 5407 // restored (this is done in FinishCall()). 5408 // 5409 // The loads are scheduled at the beginning of the call sequence, and the 5410 // register copies are flagged together to ensure that no other 5411 // operations can be scheduled in between. E.g. without flagging the 5412 // copies together, a TOC access in the caller could be scheduled between 5413 // the assignment of the callee TOC and the branch to the callee, which leads 5414 // to incorrect code. 5415 5416 // Start by loading the function address from the descriptor. 5417 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5418 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5419 ? (MachineMemOperand::MODereferenceable | 5420 MachineMemOperand::MOInvariant) 5421 : MachineMemOperand::MONone; 5422 5423 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5424 5425 // Registers used in building the DAG. 5426 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5427 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5428 5429 // Offsets of descriptor members. 5430 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5431 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5432 5433 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5434 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5435 5436 // One load for the functions entry point address. 5437 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5438 Alignment, MMOFlags); 5439 5440 // One for loading the TOC anchor for the module that contains the called 5441 // function. 5442 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5443 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5444 SDValue TOCPtr = 5445 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5446 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5447 5448 // One for loading the environment pointer. 5449 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5450 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5451 SDValue LoadEnvPtr = 5452 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5453 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5454 5455 5456 // Then copy the newly loaded TOC anchor to the TOC pointer. 5457 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5458 Chain = TOCVal.getValue(0); 5459 Glue = TOCVal.getValue(1); 5460 5461 // If the function call has an explicit 'nest' parameter, it takes the 5462 // place of the environment pointer. 5463 assert((!hasNest || !Subtarget.isAIXABI()) && 5464 "Nest parameter is not supported on AIX."); 5465 if (!hasNest) { 5466 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5467 Chain = EnvVal.getValue(0); 5468 Glue = EnvVal.getValue(1); 5469 } 5470 5471 // The rest of the indirect call sequence is the same as the non-descriptor 5472 // DAG. 5473 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5474 } 5475 5476 static void 5477 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5478 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5479 SelectionDAG &DAG, 5480 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5481 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5482 const PPCSubtarget &Subtarget) { 5483 const bool IsPPC64 = Subtarget.isPPC64(); 5484 // MVT for a general purpose register. 5485 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5486 5487 // First operand is always the chain. 5488 Ops.push_back(Chain); 5489 5490 // If it's a direct call pass the callee as the second operand. 5491 if (!CFlags.IsIndirect) 5492 Ops.push_back(Callee); 5493 else { 5494 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5495 5496 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5497 // on the stack (this would have been done in `LowerCall_64SVR4` or 5498 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5499 // represents both the indirect branch and a load that restores the TOC 5500 // pointer from the linkage area. The operand for the TOC restore is an add 5501 // of the TOC save offset to the stack pointer. This must be the second 5502 // operand: after the chain input but before any other variadic arguments. 5503 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5504 // saved or used. 5505 if (isTOCSaveRestoreRequired(Subtarget)) { 5506 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5507 5508 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5509 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5510 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5511 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5512 Ops.push_back(AddTOC); 5513 } 5514 5515 // Add the register used for the environment pointer. 5516 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5517 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5518 RegVT)); 5519 5520 5521 // Add CTR register as callee so a bctr can be emitted later. 5522 if (CFlags.IsTailCall) 5523 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5524 } 5525 5526 // If this is a tail call add stack pointer delta. 5527 if (CFlags.IsTailCall) 5528 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5529 5530 // Add argument registers to the end of the list so that they are known live 5531 // into the call. 5532 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5533 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5534 RegsToPass[i].second.getValueType())); 5535 5536 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5537 // no way to mark dependencies as implicit here. 5538 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5539 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5540 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5541 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5542 5543 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5544 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5545 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5546 5547 // Add a register mask operand representing the call-preserved registers. 5548 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5549 const uint32_t *Mask = 5550 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5551 assert(Mask && "Missing call preserved mask for calling convention"); 5552 Ops.push_back(DAG.getRegisterMask(Mask)); 5553 5554 // If the glue is valid, it is the last operand. 5555 if (Glue.getNode()) 5556 Ops.push_back(Glue); 5557 } 5558 5559 SDValue PPCTargetLowering::FinishCall( 5560 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5561 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5562 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5563 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5564 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5565 5566 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5567 Subtarget.isAIXABI()) 5568 setUsesTOCBasePtr(DAG); 5569 5570 unsigned CallOpc = 5571 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5572 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5573 5574 if (!CFlags.IsIndirect) 5575 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5576 else if (Subtarget.usesFunctionDescriptors()) 5577 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5578 dl, CFlags.HasNest, Subtarget); 5579 else 5580 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5581 5582 // Build the operand list for the call instruction. 5583 SmallVector<SDValue, 8> Ops; 5584 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5585 SPDiff, Subtarget); 5586 5587 // Emit tail call. 5588 if (CFlags.IsTailCall) { 5589 // Indirect tail call when using PC Relative calls do not have the same 5590 // constraints. 5591 assert(((Callee.getOpcode() == ISD::Register && 5592 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5593 Callee.getOpcode() == ISD::TargetExternalSymbol || 5594 Callee.getOpcode() == ISD::TargetGlobalAddress || 5595 isa<ConstantSDNode>(Callee) || 5596 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5597 "Expecting a global address, external symbol, absolute value, " 5598 "register or an indirect tail call when PC Relative calls are " 5599 "used."); 5600 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5601 assert(CallOpc == PPCISD::TC_RETURN && 5602 "Unexpected call opcode for a tail call."); 5603 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5604 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5605 } 5606 5607 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5608 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5609 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5610 Glue = Chain.getValue(1); 5611 5612 // When performing tail call optimization the callee pops its arguments off 5613 // the stack. Account for this here so these bytes can be pushed back on in 5614 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5615 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5616 getTargetMachine().Options.GuaranteedTailCallOpt) 5617 ? NumBytes 5618 : 0; 5619 5620 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5621 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5622 Glue, dl); 5623 Glue = Chain.getValue(1); 5624 5625 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5626 DAG, InVals); 5627 } 5628 5629 SDValue 5630 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5631 SmallVectorImpl<SDValue> &InVals) const { 5632 SelectionDAG &DAG = CLI.DAG; 5633 SDLoc &dl = CLI.DL; 5634 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5635 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5636 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5637 SDValue Chain = CLI.Chain; 5638 SDValue Callee = CLI.Callee; 5639 bool &isTailCall = CLI.IsTailCall; 5640 CallingConv::ID CallConv = CLI.CallConv; 5641 bool isVarArg = CLI.IsVarArg; 5642 bool isPatchPoint = CLI.IsPatchPoint; 5643 const CallBase *CB = CLI.CB; 5644 5645 if (isTailCall) { 5646 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5647 isTailCall = false; 5648 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5649 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5650 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5651 else 5652 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5653 Ins, DAG); 5654 if (isTailCall) { 5655 ++NumTailCalls; 5656 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5657 ++NumSiblingCalls; 5658 5659 // PC Relative calls no longer guarantee that the callee is a Global 5660 // Address Node. The callee could be an indirect tail call in which 5661 // case the SDValue for the callee could be a load (to load the address 5662 // of a function pointer) or it may be a register copy (to move the 5663 // address of the callee from a function parameter into a virtual 5664 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5665 assert((Subtarget.isUsingPCRelativeCalls() || 5666 isa<GlobalAddressSDNode>(Callee)) && 5667 "Callee should be an llvm::Function object."); 5668 5669 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5670 << "\nTCO callee: "); 5671 LLVM_DEBUG(Callee.dump()); 5672 } 5673 } 5674 5675 if (!isTailCall && CB && CB->isMustTailCall()) 5676 report_fatal_error("failed to perform tail call elimination on a call " 5677 "site marked musttail"); 5678 5679 // When long calls (i.e. indirect calls) are always used, calls are always 5680 // made via function pointer. If we have a function name, first translate it 5681 // into a pointer. 5682 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5683 !isTailCall) 5684 Callee = LowerGlobalAddress(Callee, DAG); 5685 5686 CallFlags CFlags( 5687 CallConv, isTailCall, isVarArg, isPatchPoint, 5688 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5689 // hasNest 5690 Subtarget.is64BitELFABI() && 5691 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5692 CLI.NoMerge); 5693 5694 if (Subtarget.isAIXABI()) 5695 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5696 InVals, CB); 5697 5698 assert(Subtarget.isSVR4ABI()); 5699 if (Subtarget.isPPC64()) 5700 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5701 InVals, CB); 5702 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5703 InVals, CB); 5704 } 5705 5706 SDValue PPCTargetLowering::LowerCall_32SVR4( 5707 SDValue Chain, SDValue Callee, CallFlags CFlags, 5708 const SmallVectorImpl<ISD::OutputArg> &Outs, 5709 const SmallVectorImpl<SDValue> &OutVals, 5710 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5711 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5712 const CallBase *CB) const { 5713 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5714 // of the 32-bit SVR4 ABI stack frame layout. 5715 5716 const CallingConv::ID CallConv = CFlags.CallConv; 5717 const bool IsVarArg = CFlags.IsVarArg; 5718 const bool IsTailCall = CFlags.IsTailCall; 5719 5720 assert((CallConv == CallingConv::C || 5721 CallConv == CallingConv::Cold || 5722 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5723 5724 const Align PtrAlign(4); 5725 5726 MachineFunction &MF = DAG.getMachineFunction(); 5727 5728 // Mark this function as potentially containing a function that contains a 5729 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5730 // and restoring the callers stack pointer in this functions epilog. This is 5731 // done because by tail calling the called function might overwrite the value 5732 // in this function's (MF) stack pointer stack slot 0(SP). 5733 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5734 CallConv == CallingConv::Fast) 5735 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5736 5737 // Count how many bytes are to be pushed on the stack, including the linkage 5738 // area, parameter list area and the part of the local variable space which 5739 // contains copies of aggregates which are passed by value. 5740 5741 // Assign locations to all of the outgoing arguments. 5742 SmallVector<CCValAssign, 16> ArgLocs; 5743 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5744 5745 // Reserve space for the linkage area on the stack. 5746 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5747 PtrAlign); 5748 if (useSoftFloat()) 5749 CCInfo.PreAnalyzeCallOperands(Outs); 5750 5751 if (IsVarArg) { 5752 // Handle fixed and variable vector arguments differently. 5753 // Fixed vector arguments go into registers as long as registers are 5754 // available. Variable vector arguments always go into memory. 5755 unsigned NumArgs = Outs.size(); 5756 5757 for (unsigned i = 0; i != NumArgs; ++i) { 5758 MVT ArgVT = Outs[i].VT; 5759 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5760 bool Result; 5761 5762 if (Outs[i].IsFixed) { 5763 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5764 CCInfo); 5765 } else { 5766 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5767 ArgFlags, CCInfo); 5768 } 5769 5770 if (Result) { 5771 #ifndef NDEBUG 5772 errs() << "Call operand #" << i << " has unhandled type " 5773 << EVT(ArgVT).getEVTString() << "\n"; 5774 #endif 5775 llvm_unreachable(nullptr); 5776 } 5777 } 5778 } else { 5779 // All arguments are treated the same. 5780 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5781 } 5782 CCInfo.clearWasPPCF128(); 5783 5784 // Assign locations to all of the outgoing aggregate by value arguments. 5785 SmallVector<CCValAssign, 16> ByValArgLocs; 5786 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5787 5788 // Reserve stack space for the allocations in CCInfo. 5789 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5790 5791 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5792 5793 // Size of the linkage area, parameter list area and the part of the local 5794 // space variable where copies of aggregates which are passed by value are 5795 // stored. 5796 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5797 5798 // Calculate by how many bytes the stack has to be adjusted in case of tail 5799 // call optimization. 5800 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5801 5802 // Adjust the stack pointer for the new arguments... 5803 // These operations are automatically eliminated by the prolog/epilog pass 5804 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5805 SDValue CallSeqStart = Chain; 5806 5807 // Load the return address and frame pointer so it can be moved somewhere else 5808 // later. 5809 SDValue LROp, FPOp; 5810 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5811 5812 // Set up a copy of the stack pointer for use loading and storing any 5813 // arguments that may not fit in the registers available for argument 5814 // passing. 5815 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5816 5817 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5818 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5819 SmallVector<SDValue, 8> MemOpChains; 5820 5821 bool seenFloatArg = false; 5822 // Walk the register/memloc assignments, inserting copies/loads. 5823 // i - Tracks the index into the list of registers allocated for the call 5824 // RealArgIdx - Tracks the index into the list of actual function arguments 5825 // j - Tracks the index into the list of byval arguments 5826 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5827 i != e; 5828 ++i, ++RealArgIdx) { 5829 CCValAssign &VA = ArgLocs[i]; 5830 SDValue Arg = OutVals[RealArgIdx]; 5831 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5832 5833 if (Flags.isByVal()) { 5834 // Argument is an aggregate which is passed by value, thus we need to 5835 // create a copy of it in the local variable space of the current stack 5836 // frame (which is the stack frame of the caller) and pass the address of 5837 // this copy to the callee. 5838 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5839 CCValAssign &ByValVA = ByValArgLocs[j++]; 5840 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5841 5842 // Memory reserved in the local variable space of the callers stack frame. 5843 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5844 5845 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5846 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5847 StackPtr, PtrOff); 5848 5849 // Create a copy of the argument in the local area of the current 5850 // stack frame. 5851 SDValue MemcpyCall = 5852 CreateCopyOfByValArgument(Arg, PtrOff, 5853 CallSeqStart.getNode()->getOperand(0), 5854 Flags, DAG, dl); 5855 5856 // This must go outside the CALLSEQ_START..END. 5857 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5858 SDLoc(MemcpyCall)); 5859 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5860 NewCallSeqStart.getNode()); 5861 Chain = CallSeqStart = NewCallSeqStart; 5862 5863 // Pass the address of the aggregate copy on the stack either in a 5864 // physical register or in the parameter list area of the current stack 5865 // frame to the callee. 5866 Arg = PtrOff; 5867 } 5868 5869 // When useCRBits() is true, there can be i1 arguments. 5870 // It is because getRegisterType(MVT::i1) => MVT::i1, 5871 // and for other integer types getRegisterType() => MVT::i32. 5872 // Extend i1 and ensure callee will get i32. 5873 if (Arg.getValueType() == MVT::i1) 5874 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5875 dl, MVT::i32, Arg); 5876 5877 if (VA.isRegLoc()) { 5878 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5879 // Put argument in a physical register. 5880 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5881 bool IsLE = Subtarget.isLittleEndian(); 5882 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5883 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5884 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5885 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5886 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5887 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5888 SVal.getValue(0))); 5889 } else 5890 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5891 } else { 5892 // Put argument in the parameter list area of the current stack frame. 5893 assert(VA.isMemLoc()); 5894 unsigned LocMemOffset = VA.getLocMemOffset(); 5895 5896 if (!IsTailCall) { 5897 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5898 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5899 StackPtr, PtrOff); 5900 5901 MemOpChains.push_back( 5902 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5903 } else { 5904 // Calculate and remember argument location. 5905 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5906 TailCallArguments); 5907 } 5908 } 5909 } 5910 5911 if (!MemOpChains.empty()) 5912 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5913 5914 // Build a sequence of copy-to-reg nodes chained together with token chain 5915 // and flag operands which copy the outgoing args into the appropriate regs. 5916 SDValue InFlag; 5917 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5918 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5919 RegsToPass[i].second, InFlag); 5920 InFlag = Chain.getValue(1); 5921 } 5922 5923 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5924 // registers. 5925 if (IsVarArg) { 5926 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5927 SDValue Ops[] = { Chain, InFlag }; 5928 5929 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5930 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5931 5932 InFlag = Chain.getValue(1); 5933 } 5934 5935 if (IsTailCall) 5936 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5937 TailCallArguments); 5938 5939 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5940 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5941 } 5942 5943 // Copy an argument into memory, being careful to do this outside the 5944 // call sequence for the call to which the argument belongs. 5945 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5946 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5947 SelectionDAG &DAG, const SDLoc &dl) const { 5948 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5949 CallSeqStart.getNode()->getOperand(0), 5950 Flags, DAG, dl); 5951 // The MEMCPY must go outside the CALLSEQ_START..END. 5952 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5953 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5954 SDLoc(MemcpyCall)); 5955 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5956 NewCallSeqStart.getNode()); 5957 return NewCallSeqStart; 5958 } 5959 5960 SDValue PPCTargetLowering::LowerCall_64SVR4( 5961 SDValue Chain, SDValue Callee, CallFlags CFlags, 5962 const SmallVectorImpl<ISD::OutputArg> &Outs, 5963 const SmallVectorImpl<SDValue> &OutVals, 5964 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5965 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5966 const CallBase *CB) const { 5967 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5968 bool isLittleEndian = Subtarget.isLittleEndian(); 5969 unsigned NumOps = Outs.size(); 5970 bool IsSibCall = false; 5971 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5972 5973 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5974 unsigned PtrByteSize = 8; 5975 5976 MachineFunction &MF = DAG.getMachineFunction(); 5977 5978 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5979 IsSibCall = true; 5980 5981 // Mark this function as potentially containing a function that contains a 5982 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5983 // and restoring the callers stack pointer in this functions epilog. This is 5984 // done because by tail calling the called function might overwrite the value 5985 // in this function's (MF) stack pointer stack slot 0(SP). 5986 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5987 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5988 5989 assert(!(IsFastCall && CFlags.IsVarArg) && 5990 "fastcc not supported on varargs functions"); 5991 5992 // Count how many bytes are to be pushed on the stack, including the linkage 5993 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5994 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5995 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5996 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5997 unsigned NumBytes = LinkageSize; 5998 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5999 6000 static const MCPhysReg GPR[] = { 6001 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6002 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6003 }; 6004 static const MCPhysReg VR[] = { 6005 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6006 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6007 }; 6008 6009 const unsigned NumGPRs = array_lengthof(GPR); 6010 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6011 const unsigned NumVRs = array_lengthof(VR); 6012 6013 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6014 // can be passed to the callee in registers. 6015 // For the fast calling convention, there is another check below. 6016 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6017 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6018 if (!HasParameterArea) { 6019 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6020 unsigned AvailableFPRs = NumFPRs; 6021 unsigned AvailableVRs = NumVRs; 6022 unsigned NumBytesTmp = NumBytes; 6023 for (unsigned i = 0; i != NumOps; ++i) { 6024 if (Outs[i].Flags.isNest()) continue; 6025 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6026 PtrByteSize, LinkageSize, ParamAreaSize, 6027 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6028 HasParameterArea = true; 6029 } 6030 } 6031 6032 // When using the fast calling convention, we don't provide backing for 6033 // arguments that will be in registers. 6034 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6035 6036 // Avoid allocating parameter area for fastcc functions if all the arguments 6037 // can be passed in the registers. 6038 if (IsFastCall) 6039 HasParameterArea = false; 6040 6041 // Add up all the space actually used. 6042 for (unsigned i = 0; i != NumOps; ++i) { 6043 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6044 EVT ArgVT = Outs[i].VT; 6045 EVT OrigVT = Outs[i].ArgVT; 6046 6047 if (Flags.isNest()) 6048 continue; 6049 6050 if (IsFastCall) { 6051 if (Flags.isByVal()) { 6052 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6053 if (NumGPRsUsed > NumGPRs) 6054 HasParameterArea = true; 6055 } else { 6056 switch (ArgVT.getSimpleVT().SimpleTy) { 6057 default: llvm_unreachable("Unexpected ValueType for argument!"); 6058 case MVT::i1: 6059 case MVT::i32: 6060 case MVT::i64: 6061 if (++NumGPRsUsed <= NumGPRs) 6062 continue; 6063 break; 6064 case MVT::v4i32: 6065 case MVT::v8i16: 6066 case MVT::v16i8: 6067 case MVT::v2f64: 6068 case MVT::v2i64: 6069 case MVT::v1i128: 6070 case MVT::f128: 6071 if (++NumVRsUsed <= NumVRs) 6072 continue; 6073 break; 6074 case MVT::v4f32: 6075 if (++NumVRsUsed <= NumVRs) 6076 continue; 6077 break; 6078 case MVT::f32: 6079 case MVT::f64: 6080 if (++NumFPRsUsed <= NumFPRs) 6081 continue; 6082 break; 6083 } 6084 HasParameterArea = true; 6085 } 6086 } 6087 6088 /* Respect alignment of argument on the stack. */ 6089 auto Alignement = 6090 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6091 NumBytes = alignTo(NumBytes, Alignement); 6092 6093 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6094 if (Flags.isInConsecutiveRegsLast()) 6095 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6096 } 6097 6098 unsigned NumBytesActuallyUsed = NumBytes; 6099 6100 // In the old ELFv1 ABI, 6101 // the prolog code of the callee may store up to 8 GPR argument registers to 6102 // the stack, allowing va_start to index over them in memory if its varargs. 6103 // Because we cannot tell if this is needed on the caller side, we have to 6104 // conservatively assume that it is needed. As such, make sure we have at 6105 // least enough stack space for the caller to store the 8 GPRs. 6106 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6107 // really requires memory operands, e.g. a vararg function. 6108 if (HasParameterArea) 6109 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6110 else 6111 NumBytes = LinkageSize; 6112 6113 // Tail call needs the stack to be aligned. 6114 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6115 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6116 6117 int SPDiff = 0; 6118 6119 // Calculate by how many bytes the stack has to be adjusted in case of tail 6120 // call optimization. 6121 if (!IsSibCall) 6122 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6123 6124 // To protect arguments on the stack from being clobbered in a tail call, 6125 // force all the loads to happen before doing any other lowering. 6126 if (CFlags.IsTailCall) 6127 Chain = DAG.getStackArgumentTokenFactor(Chain); 6128 6129 // Adjust the stack pointer for the new arguments... 6130 // These operations are automatically eliminated by the prolog/epilog pass 6131 if (!IsSibCall) 6132 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6133 SDValue CallSeqStart = Chain; 6134 6135 // Load the return address and frame pointer so it can be move somewhere else 6136 // later. 6137 SDValue LROp, FPOp; 6138 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6139 6140 // Set up a copy of the stack pointer for use loading and storing any 6141 // arguments that may not fit in the registers available for argument 6142 // passing. 6143 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6144 6145 // Figure out which arguments are going to go in registers, and which in 6146 // memory. Also, if this is a vararg function, floating point operations 6147 // must be stored to our stack, and loaded into integer regs as well, if 6148 // any integer regs are available for argument passing. 6149 unsigned ArgOffset = LinkageSize; 6150 6151 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6152 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6153 6154 SmallVector<SDValue, 8> MemOpChains; 6155 for (unsigned i = 0; i != NumOps; ++i) { 6156 SDValue Arg = OutVals[i]; 6157 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6158 EVT ArgVT = Outs[i].VT; 6159 EVT OrigVT = Outs[i].ArgVT; 6160 6161 // PtrOff will be used to store the current argument to the stack if a 6162 // register cannot be found for it. 6163 SDValue PtrOff; 6164 6165 // We re-align the argument offset for each argument, except when using the 6166 // fast calling convention, when we need to make sure we do that only when 6167 // we'll actually use a stack slot. 6168 auto ComputePtrOff = [&]() { 6169 /* Respect alignment of argument on the stack. */ 6170 auto Alignment = 6171 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6172 ArgOffset = alignTo(ArgOffset, Alignment); 6173 6174 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6175 6176 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6177 }; 6178 6179 if (!IsFastCall) { 6180 ComputePtrOff(); 6181 6182 /* Compute GPR index associated with argument offset. */ 6183 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6184 GPR_idx = std::min(GPR_idx, NumGPRs); 6185 } 6186 6187 // Promote integers to 64-bit values. 6188 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6189 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6190 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6191 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6192 } 6193 6194 // FIXME memcpy is used way more than necessary. Correctness first. 6195 // Note: "by value" is code for passing a structure by value, not 6196 // basic types. 6197 if (Flags.isByVal()) { 6198 // Note: Size includes alignment padding, so 6199 // struct x { short a; char b; } 6200 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6201 // These are the proper values we need for right-justifying the 6202 // aggregate in a parameter register. 6203 unsigned Size = Flags.getByValSize(); 6204 6205 // An empty aggregate parameter takes up no storage and no 6206 // registers. 6207 if (Size == 0) 6208 continue; 6209 6210 if (IsFastCall) 6211 ComputePtrOff(); 6212 6213 // All aggregates smaller than 8 bytes must be passed right-justified. 6214 if (Size==1 || Size==2 || Size==4) { 6215 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6216 if (GPR_idx != NumGPRs) { 6217 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6218 MachinePointerInfo(), VT); 6219 MemOpChains.push_back(Load.getValue(1)); 6220 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6221 6222 ArgOffset += PtrByteSize; 6223 continue; 6224 } 6225 } 6226 6227 if (GPR_idx == NumGPRs && Size < 8) { 6228 SDValue AddPtr = PtrOff; 6229 if (!isLittleEndian) { 6230 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6231 PtrOff.getValueType()); 6232 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6233 } 6234 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6235 CallSeqStart, 6236 Flags, DAG, dl); 6237 ArgOffset += PtrByteSize; 6238 continue; 6239 } 6240 // Copy the object to parameter save area if it can not be entirely passed 6241 // by registers. 6242 // FIXME: we only need to copy the parts which need to be passed in 6243 // parameter save area. For the parts passed by registers, we don't need 6244 // to copy them to the stack although we need to allocate space for them 6245 // in parameter save area. 6246 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6247 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6248 CallSeqStart, 6249 Flags, DAG, dl); 6250 6251 // When a register is available, pass a small aggregate right-justified. 6252 if (Size < 8 && GPR_idx != NumGPRs) { 6253 // The easiest way to get this right-justified in a register 6254 // is to copy the structure into the rightmost portion of a 6255 // local variable slot, then load the whole slot into the 6256 // register. 6257 // FIXME: The memcpy seems to produce pretty awful code for 6258 // small aggregates, particularly for packed ones. 6259 // FIXME: It would be preferable to use the slot in the 6260 // parameter save area instead of a new local variable. 6261 SDValue AddPtr = PtrOff; 6262 if (!isLittleEndian) { 6263 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6264 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6265 } 6266 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6267 CallSeqStart, 6268 Flags, DAG, dl); 6269 6270 // Load the slot into the register. 6271 SDValue Load = 6272 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6273 MemOpChains.push_back(Load.getValue(1)); 6274 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6275 6276 // Done with this argument. 6277 ArgOffset += PtrByteSize; 6278 continue; 6279 } 6280 6281 // For aggregates larger than PtrByteSize, copy the pieces of the 6282 // object that fit into registers from the parameter save area. 6283 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6284 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6285 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6286 if (GPR_idx != NumGPRs) { 6287 SDValue Load = 6288 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6289 MemOpChains.push_back(Load.getValue(1)); 6290 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6291 ArgOffset += PtrByteSize; 6292 } else { 6293 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6294 break; 6295 } 6296 } 6297 continue; 6298 } 6299 6300 switch (Arg.getSimpleValueType().SimpleTy) { 6301 default: llvm_unreachable("Unexpected ValueType for argument!"); 6302 case MVT::i1: 6303 case MVT::i32: 6304 case MVT::i64: 6305 if (Flags.isNest()) { 6306 // The 'nest' parameter, if any, is passed in R11. 6307 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6308 break; 6309 } 6310 6311 // These can be scalar arguments or elements of an integer array type 6312 // passed directly. Clang may use those instead of "byval" aggregate 6313 // types to avoid forcing arguments to memory unnecessarily. 6314 if (GPR_idx != NumGPRs) { 6315 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6316 } else { 6317 if (IsFastCall) 6318 ComputePtrOff(); 6319 6320 assert(HasParameterArea && 6321 "Parameter area must exist to pass an argument in memory."); 6322 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6323 true, CFlags.IsTailCall, false, MemOpChains, 6324 TailCallArguments, dl); 6325 if (IsFastCall) 6326 ArgOffset += PtrByteSize; 6327 } 6328 if (!IsFastCall) 6329 ArgOffset += PtrByteSize; 6330 break; 6331 case MVT::f32: 6332 case MVT::f64: { 6333 // These can be scalar arguments or elements of a float array type 6334 // passed directly. The latter are used to implement ELFv2 homogenous 6335 // float aggregates. 6336 6337 // Named arguments go into FPRs first, and once they overflow, the 6338 // remaining arguments go into GPRs and then the parameter save area. 6339 // Unnamed arguments for vararg functions always go to GPRs and 6340 // then the parameter save area. For now, put all arguments to vararg 6341 // routines always in both locations (FPR *and* GPR or stack slot). 6342 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6343 bool NeededLoad = false; 6344 6345 // First load the argument into the next available FPR. 6346 if (FPR_idx != NumFPRs) 6347 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6348 6349 // Next, load the argument into GPR or stack slot if needed. 6350 if (!NeedGPROrStack) 6351 ; 6352 else if (GPR_idx != NumGPRs && !IsFastCall) { 6353 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6354 // once we support fp <-> gpr moves. 6355 6356 // In the non-vararg case, this can only ever happen in the 6357 // presence of f32 array types, since otherwise we never run 6358 // out of FPRs before running out of GPRs. 6359 SDValue ArgVal; 6360 6361 // Double values are always passed in a single GPR. 6362 if (Arg.getValueType() != MVT::f32) { 6363 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6364 6365 // Non-array float values are extended and passed in a GPR. 6366 } else if (!Flags.isInConsecutiveRegs()) { 6367 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6368 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6369 6370 // If we have an array of floats, we collect every odd element 6371 // together with its predecessor into one GPR. 6372 } else if (ArgOffset % PtrByteSize != 0) { 6373 SDValue Lo, Hi; 6374 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6375 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6376 if (!isLittleEndian) 6377 std::swap(Lo, Hi); 6378 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6379 6380 // The final element, if even, goes into the first half of a GPR. 6381 } else if (Flags.isInConsecutiveRegsLast()) { 6382 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6383 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6384 if (!isLittleEndian) 6385 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6386 DAG.getConstant(32, dl, MVT::i32)); 6387 6388 // Non-final even elements are skipped; they will be handled 6389 // together the with subsequent argument on the next go-around. 6390 } else 6391 ArgVal = SDValue(); 6392 6393 if (ArgVal.getNode()) 6394 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6395 } else { 6396 if (IsFastCall) 6397 ComputePtrOff(); 6398 6399 // Single-precision floating-point values are mapped to the 6400 // second (rightmost) word of the stack doubleword. 6401 if (Arg.getValueType() == MVT::f32 && 6402 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6403 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6404 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6405 } 6406 6407 assert(HasParameterArea && 6408 "Parameter area must exist to pass an argument in memory."); 6409 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6410 true, CFlags.IsTailCall, false, MemOpChains, 6411 TailCallArguments, dl); 6412 6413 NeededLoad = true; 6414 } 6415 // When passing an array of floats, the array occupies consecutive 6416 // space in the argument area; only round up to the next doubleword 6417 // at the end of the array. Otherwise, each float takes 8 bytes. 6418 if (!IsFastCall || NeededLoad) { 6419 ArgOffset += (Arg.getValueType() == MVT::f32 && 6420 Flags.isInConsecutiveRegs()) ? 4 : 8; 6421 if (Flags.isInConsecutiveRegsLast()) 6422 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6423 } 6424 break; 6425 } 6426 case MVT::v4f32: 6427 case MVT::v4i32: 6428 case MVT::v8i16: 6429 case MVT::v16i8: 6430 case MVT::v2f64: 6431 case MVT::v2i64: 6432 case MVT::v1i128: 6433 case MVT::f128: 6434 // These can be scalar arguments or elements of a vector array type 6435 // passed directly. The latter are used to implement ELFv2 homogenous 6436 // vector aggregates. 6437 6438 // For a varargs call, named arguments go into VRs or on the stack as 6439 // usual; unnamed arguments always go to the stack or the corresponding 6440 // GPRs when within range. For now, we always put the value in both 6441 // locations (or even all three). 6442 if (CFlags.IsVarArg) { 6443 assert(HasParameterArea && 6444 "Parameter area must exist if we have a varargs call."); 6445 // We could elide this store in the case where the object fits 6446 // entirely in R registers. Maybe later. 6447 SDValue Store = 6448 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6449 MemOpChains.push_back(Store); 6450 if (VR_idx != NumVRs) { 6451 SDValue Load = 6452 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6453 MemOpChains.push_back(Load.getValue(1)); 6454 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6455 } 6456 ArgOffset += 16; 6457 for (unsigned i=0; i<16; i+=PtrByteSize) { 6458 if (GPR_idx == NumGPRs) 6459 break; 6460 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6461 DAG.getConstant(i, dl, PtrVT)); 6462 SDValue Load = 6463 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6464 MemOpChains.push_back(Load.getValue(1)); 6465 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6466 } 6467 break; 6468 } 6469 6470 // Non-varargs Altivec params go into VRs or on the stack. 6471 if (VR_idx != NumVRs) { 6472 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6473 } else { 6474 if (IsFastCall) 6475 ComputePtrOff(); 6476 6477 assert(HasParameterArea && 6478 "Parameter area must exist to pass an argument in memory."); 6479 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6480 true, CFlags.IsTailCall, true, MemOpChains, 6481 TailCallArguments, dl); 6482 if (IsFastCall) 6483 ArgOffset += 16; 6484 } 6485 6486 if (!IsFastCall) 6487 ArgOffset += 16; 6488 break; 6489 } 6490 } 6491 6492 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6493 "mismatch in size of parameter area"); 6494 (void)NumBytesActuallyUsed; 6495 6496 if (!MemOpChains.empty()) 6497 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6498 6499 // Check if this is an indirect call (MTCTR/BCTRL). 6500 // See prepareDescriptorIndirectCall and buildCallOperands for more 6501 // information about calls through function pointers in the 64-bit SVR4 ABI. 6502 if (CFlags.IsIndirect) { 6503 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6504 // caller in the TOC save area. 6505 if (isTOCSaveRestoreRequired(Subtarget)) { 6506 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6507 // Load r2 into a virtual register and store it to the TOC save area. 6508 setUsesTOCBasePtr(DAG); 6509 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6510 // TOC save area offset. 6511 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6512 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6513 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6514 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6515 MachinePointerInfo::getStack( 6516 DAG.getMachineFunction(), TOCSaveOffset)); 6517 } 6518 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6519 // This does not mean the MTCTR instruction must use R12; it's easier 6520 // to model this as an extra parameter, so do that. 6521 if (isELFv2ABI && !CFlags.IsPatchPoint) 6522 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6523 } 6524 6525 // Build a sequence of copy-to-reg nodes chained together with token chain 6526 // and flag operands which copy the outgoing args into the appropriate regs. 6527 SDValue InFlag; 6528 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6529 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6530 RegsToPass[i].second, InFlag); 6531 InFlag = Chain.getValue(1); 6532 } 6533 6534 if (CFlags.IsTailCall && !IsSibCall) 6535 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6536 TailCallArguments); 6537 6538 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6539 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6540 } 6541 6542 // Returns true when the shadow of a general purpose argument register 6543 // in the parameter save area is aligned to at least 'RequiredAlign'. 6544 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6545 assert(RequiredAlign.value() <= 16 && 6546 "Required alignment greater than stack alignment."); 6547 switch (Reg) { 6548 default: 6549 report_fatal_error("called on invalid register."); 6550 case PPC::R5: 6551 case PPC::R9: 6552 case PPC::X3: 6553 case PPC::X5: 6554 case PPC::X7: 6555 case PPC::X9: 6556 // These registers are 16 byte aligned which is the most strict aligment 6557 // we can support. 6558 return true; 6559 case PPC::R3: 6560 case PPC::R7: 6561 case PPC::X4: 6562 case PPC::X6: 6563 case PPC::X8: 6564 case PPC::X10: 6565 // The shadow of these registers in the PSA is 8 byte aligned. 6566 return RequiredAlign <= 8; 6567 case PPC::R4: 6568 case PPC::R6: 6569 case PPC::R8: 6570 case PPC::R10: 6571 return RequiredAlign <= 4; 6572 } 6573 } 6574 6575 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6576 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6577 CCState &S) { 6578 AIXCCState &State = static_cast<AIXCCState &>(S); 6579 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6580 State.getMachineFunction().getSubtarget()); 6581 const bool IsPPC64 = Subtarget.isPPC64(); 6582 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6583 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6584 6585 if (ValVT == MVT::f128) 6586 report_fatal_error("f128 is unimplemented on AIX."); 6587 6588 if (ArgFlags.isNest()) 6589 report_fatal_error("Nest arguments are unimplemented."); 6590 6591 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6592 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6593 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6594 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6595 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6596 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6597 6598 static const MCPhysReg VR[] = {// Vector registers. 6599 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6600 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6601 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6602 6603 if (ArgFlags.isByVal()) { 6604 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6605 report_fatal_error("Pass-by-value arguments with alignment greater than " 6606 "register width are not supported."); 6607 6608 const unsigned ByValSize = ArgFlags.getByValSize(); 6609 6610 // An empty aggregate parameter takes up no storage and no registers, 6611 // but needs a MemLoc for a stack slot for the formal arguments side. 6612 if (ByValSize == 0) { 6613 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6614 State.getNextStackOffset(), RegVT, 6615 LocInfo)); 6616 return false; 6617 } 6618 6619 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6620 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6621 for (const unsigned E = Offset + StackSize; Offset < E; 6622 Offset += PtrAlign.value()) { 6623 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6624 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6625 else { 6626 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6627 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6628 LocInfo)); 6629 break; 6630 } 6631 } 6632 return false; 6633 } 6634 6635 // Arguments always reserve parameter save area. 6636 switch (ValVT.SimpleTy) { 6637 default: 6638 report_fatal_error("Unhandled value type for argument."); 6639 case MVT::i64: 6640 // i64 arguments should have been split to i32 for PPC32. 6641 assert(IsPPC64 && "PPC32 should have split i64 values."); 6642 LLVM_FALLTHROUGH; 6643 case MVT::i1: 6644 case MVT::i32: { 6645 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6646 // AIX integer arguments are always passed in register width. 6647 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6648 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6649 : CCValAssign::LocInfo::ZExt; 6650 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6651 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6652 else 6653 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6654 6655 return false; 6656 } 6657 case MVT::f32: 6658 case MVT::f64: { 6659 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6660 const unsigned StoreSize = LocVT.getStoreSize(); 6661 // Floats are always 4-byte aligned in the PSA on AIX. 6662 // This includes f64 in 64-bit mode for ABI compatibility. 6663 const unsigned Offset = 6664 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6665 unsigned FReg = State.AllocateReg(FPR); 6666 if (FReg) 6667 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6668 6669 // Reserve and initialize GPRs or initialize the PSA as required. 6670 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6671 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6672 assert(FReg && "An FPR should be available when a GPR is reserved."); 6673 if (State.isVarArg()) { 6674 // Successfully reserved GPRs are only initialized for vararg calls. 6675 // Custom handling is required for: 6676 // f64 in PPC32 needs to be split into 2 GPRs. 6677 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6678 State.addLoc( 6679 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6680 } 6681 } else { 6682 // If there are insufficient GPRs, the PSA needs to be initialized. 6683 // Initialization occurs even if an FPR was initialized for 6684 // compatibility with the AIX XL compiler. The full memory for the 6685 // argument will be initialized even if a prior word is saved in GPR. 6686 // A custom memLoc is used when the argument also passes in FPR so 6687 // that the callee handling can skip over it easily. 6688 State.addLoc( 6689 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6690 LocInfo) 6691 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6692 break; 6693 } 6694 } 6695 6696 return false; 6697 } 6698 case MVT::v4f32: 6699 case MVT::v4i32: 6700 case MVT::v8i16: 6701 case MVT::v16i8: 6702 case MVT::v2i64: 6703 case MVT::v2f64: 6704 case MVT::v1i128: { 6705 const unsigned VecSize = 16; 6706 const Align VecAlign(VecSize); 6707 6708 if (!State.isVarArg()) { 6709 // If there are vector registers remaining we don't consume any stack 6710 // space. 6711 if (unsigned VReg = State.AllocateReg(VR)) { 6712 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6713 return false; 6714 } 6715 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6716 // might be allocated in the portion of the PSA that is shadowed by the 6717 // GPRs. 6718 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6719 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6720 return false; 6721 } 6722 6723 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6724 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6725 6726 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6727 // Burn any underaligned registers and their shadowed stack space until 6728 // we reach the required alignment. 6729 while (NextRegIndex != GPRs.size() && 6730 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6731 // Shadow allocate register and its stack shadow. 6732 unsigned Reg = State.AllocateReg(GPRs); 6733 State.AllocateStack(PtrSize, PtrAlign); 6734 assert(Reg && "Allocating register unexpectedly failed."); 6735 (void)Reg; 6736 NextRegIndex = State.getFirstUnallocated(GPRs); 6737 } 6738 6739 // Vectors that are passed as fixed arguments are handled differently. 6740 // They are passed in VRs if any are available (unlike arguments passed 6741 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6742 // functions) 6743 if (State.isFixed(ValNo)) { 6744 if (unsigned VReg = State.AllocateReg(VR)) { 6745 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6746 // Shadow allocate GPRs and stack space even though we pass in a VR. 6747 for (unsigned I = 0; I != VecSize; I += PtrSize) 6748 State.AllocateReg(GPRs); 6749 State.AllocateStack(VecSize, VecAlign); 6750 return false; 6751 } 6752 // No vector registers remain so pass on the stack. 6753 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6754 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6755 return false; 6756 } 6757 6758 // If all GPRS are consumed then we pass the argument fully on the stack. 6759 if (NextRegIndex == GPRs.size()) { 6760 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6761 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6762 return false; 6763 } 6764 6765 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6766 // half of the argument, and then need to pass the remaining half on the 6767 // stack. 6768 if (GPRs[NextRegIndex] == PPC::R9) { 6769 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6770 State.addLoc( 6771 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6772 6773 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6774 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6775 assert(FirstReg && SecondReg && 6776 "Allocating R9 or R10 unexpectedly failed."); 6777 State.addLoc( 6778 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6779 State.addLoc( 6780 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6781 return false; 6782 } 6783 6784 // We have enough GPRs to fully pass the vector argument, and we have 6785 // already consumed any underaligned registers. Start with the custom 6786 // MemLoc and then the custom RegLocs. 6787 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6788 State.addLoc( 6789 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6790 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6791 const unsigned Reg = State.AllocateReg(GPRs); 6792 assert(Reg && "Failed to allocated register for vararg vector argument"); 6793 State.addLoc( 6794 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6795 } 6796 return false; 6797 } 6798 } 6799 return true; 6800 } 6801 6802 // So far, this function is only used by LowerFormalArguments_AIX() 6803 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6804 bool IsPPC64, 6805 bool HasP8Vector, 6806 bool HasVSX) { 6807 assert((IsPPC64 || SVT != MVT::i64) && 6808 "i64 should have been split for 32-bit codegen."); 6809 6810 switch (SVT) { 6811 default: 6812 report_fatal_error("Unexpected value type for formal argument"); 6813 case MVT::i1: 6814 case MVT::i32: 6815 case MVT::i64: 6816 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6817 case MVT::f32: 6818 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6819 case MVT::f64: 6820 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6821 case MVT::v4f32: 6822 case MVT::v4i32: 6823 case MVT::v8i16: 6824 case MVT::v16i8: 6825 case MVT::v2i64: 6826 case MVT::v2f64: 6827 case MVT::v1i128: 6828 return &PPC::VRRCRegClass; 6829 } 6830 } 6831 6832 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6833 SelectionDAG &DAG, SDValue ArgValue, 6834 MVT LocVT, const SDLoc &dl) { 6835 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6836 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6837 6838 if (Flags.isSExt()) 6839 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6840 DAG.getValueType(ValVT)); 6841 else if (Flags.isZExt()) 6842 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6843 DAG.getValueType(ValVT)); 6844 6845 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6846 } 6847 6848 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6849 const unsigned LASize = FL->getLinkageSize(); 6850 6851 if (PPC::GPRCRegClass.contains(Reg)) { 6852 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6853 "Reg must be a valid argument register!"); 6854 return LASize + 4 * (Reg - PPC::R3); 6855 } 6856 6857 if (PPC::G8RCRegClass.contains(Reg)) { 6858 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6859 "Reg must be a valid argument register!"); 6860 return LASize + 8 * (Reg - PPC::X3); 6861 } 6862 6863 llvm_unreachable("Only general purpose registers expected."); 6864 } 6865 6866 // AIX ABI Stack Frame Layout: 6867 // 6868 // Low Memory +--------------------------------------------+ 6869 // SP +---> | Back chain | ---+ 6870 // | +--------------------------------------------+ | 6871 // | | Saved Condition Register | | 6872 // | +--------------------------------------------+ | 6873 // | | Saved Linkage Register | | 6874 // | +--------------------------------------------+ | Linkage Area 6875 // | | Reserved for compilers | | 6876 // | +--------------------------------------------+ | 6877 // | | Reserved for binders | | 6878 // | +--------------------------------------------+ | 6879 // | | Saved TOC pointer | ---+ 6880 // | +--------------------------------------------+ 6881 // | | Parameter save area | 6882 // | +--------------------------------------------+ 6883 // | | Alloca space | 6884 // | +--------------------------------------------+ 6885 // | | Local variable space | 6886 // | +--------------------------------------------+ 6887 // | | Float/int conversion temporary | 6888 // | +--------------------------------------------+ 6889 // | | Save area for AltiVec registers | 6890 // | +--------------------------------------------+ 6891 // | | AltiVec alignment padding | 6892 // | +--------------------------------------------+ 6893 // | | Save area for VRSAVE register | 6894 // | +--------------------------------------------+ 6895 // | | Save area for General Purpose registers | 6896 // | +--------------------------------------------+ 6897 // | | Save area for Floating Point registers | 6898 // | +--------------------------------------------+ 6899 // +---- | Back chain | 6900 // High Memory +--------------------------------------------+ 6901 // 6902 // Specifications: 6903 // AIX 7.2 Assembler Language Reference 6904 // Subroutine linkage convention 6905 6906 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6907 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6908 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6909 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6910 6911 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6912 CallConv == CallingConv::Fast) && 6913 "Unexpected calling convention!"); 6914 6915 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6916 report_fatal_error("Tail call support is unimplemented on AIX."); 6917 6918 if (useSoftFloat()) 6919 report_fatal_error("Soft float support is unimplemented on AIX."); 6920 6921 const PPCSubtarget &Subtarget = 6922 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6923 6924 const bool IsPPC64 = Subtarget.isPPC64(); 6925 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6926 6927 // Assign locations to all of the incoming arguments. 6928 SmallVector<CCValAssign, 16> ArgLocs; 6929 MachineFunction &MF = DAG.getMachineFunction(); 6930 MachineFrameInfo &MFI = MF.getFrameInfo(); 6931 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6932 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6933 6934 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6935 // Reserve space for the linkage area on the stack. 6936 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6937 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6938 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6939 6940 SmallVector<SDValue, 8> MemOps; 6941 6942 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6943 CCValAssign &VA = ArgLocs[I++]; 6944 MVT LocVT = VA.getLocVT(); 6945 MVT ValVT = VA.getValVT(); 6946 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6947 // For compatibility with the AIX XL compiler, the float args in the 6948 // parameter save area are initialized even if the argument is available 6949 // in register. The caller is required to initialize both the register 6950 // and memory, however, the callee can choose to expect it in either. 6951 // The memloc is dismissed here because the argument is retrieved from 6952 // the register. 6953 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6954 continue; 6955 6956 auto HandleMemLoc = [&]() { 6957 const unsigned LocSize = LocVT.getStoreSize(); 6958 const unsigned ValSize = ValVT.getStoreSize(); 6959 assert((ValSize <= LocSize) && 6960 "Object size is larger than size of MemLoc"); 6961 int CurArgOffset = VA.getLocMemOffset(); 6962 // Objects are right-justified because AIX is big-endian. 6963 if (LocSize > ValSize) 6964 CurArgOffset += LocSize - ValSize; 6965 // Potential tail calls could cause overwriting of argument stack slots. 6966 const bool IsImmutable = 6967 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6968 (CallConv == CallingConv::Fast)); 6969 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6970 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6971 SDValue ArgValue = 6972 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6973 InVals.push_back(ArgValue); 6974 }; 6975 6976 // Vector arguments to VaArg functions are passed both on the stack, and 6977 // in any available GPRs. Load the value from the stack and add the GPRs 6978 // as live ins. 6979 if (VA.isMemLoc() && VA.needsCustom()) { 6980 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6981 assert(isVarArg && "Only use custom memloc for vararg."); 6982 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6983 // matching custom RegLocs. 6984 const unsigned OriginalValNo = VA.getValNo(); 6985 (void)OriginalValNo; 6986 6987 auto HandleCustomVecRegLoc = [&]() { 6988 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6989 "Missing custom RegLoc."); 6990 VA = ArgLocs[I++]; 6991 assert(VA.getValVT().isVector() && 6992 "Unexpected Val type for custom RegLoc."); 6993 assert(VA.getValNo() == OriginalValNo && 6994 "ValNo mismatch between custom MemLoc and RegLoc."); 6995 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6996 MF.addLiveIn(VA.getLocReg(), 6997 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6998 Subtarget.hasVSX())); 6999 }; 7000 7001 HandleMemLoc(); 7002 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7003 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7004 // R10. 7005 HandleCustomVecRegLoc(); 7006 HandleCustomVecRegLoc(); 7007 7008 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7009 // we passed the vector in R5, R6, R7 and R8. 7010 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7011 assert(!IsPPC64 && 7012 "Only 2 custom RegLocs expected for 64-bit codegen."); 7013 HandleCustomVecRegLoc(); 7014 HandleCustomVecRegLoc(); 7015 } 7016 7017 continue; 7018 } 7019 7020 if (VA.isRegLoc()) { 7021 if (VA.getValVT().isScalarInteger()) 7022 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7023 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7024 switch (VA.getValVT().SimpleTy) { 7025 default: 7026 report_fatal_error("Unhandled value type for argument."); 7027 case MVT::f32: 7028 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7029 break; 7030 case MVT::f64: 7031 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7032 break; 7033 } 7034 } else if (VA.getValVT().isVector()) { 7035 switch (VA.getValVT().SimpleTy) { 7036 default: 7037 report_fatal_error("Unhandled value type for argument."); 7038 case MVT::v16i8: 7039 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7040 break; 7041 case MVT::v8i16: 7042 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7043 break; 7044 case MVT::v4i32: 7045 case MVT::v2i64: 7046 case MVT::v1i128: 7047 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7048 break; 7049 case MVT::v4f32: 7050 case MVT::v2f64: 7051 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7052 break; 7053 } 7054 } 7055 } 7056 7057 if (Flags.isByVal() && VA.isMemLoc()) { 7058 const unsigned Size = 7059 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7060 PtrByteSize); 7061 const int FI = MF.getFrameInfo().CreateFixedObject( 7062 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7063 /* IsAliased */ true); 7064 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7065 InVals.push_back(FIN); 7066 7067 continue; 7068 } 7069 7070 if (Flags.isByVal()) { 7071 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7072 7073 const MCPhysReg ArgReg = VA.getLocReg(); 7074 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7075 7076 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7077 report_fatal_error("Over aligned byvals not supported yet."); 7078 7079 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7080 const int FI = MF.getFrameInfo().CreateFixedObject( 7081 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7082 /* IsAliased */ true); 7083 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7084 InVals.push_back(FIN); 7085 7086 // Add live ins for all the RegLocs for the same ByVal. 7087 const TargetRegisterClass *RegClass = 7088 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7089 7090 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7091 unsigned Offset) { 7092 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7093 // Since the callers side has left justified the aggregate in the 7094 // register, we can simply store the entire register into the stack 7095 // slot. 7096 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7097 // The store to the fixedstack object is needed becuase accessing a 7098 // field of the ByVal will use a gep and load. Ideally we will optimize 7099 // to extracting the value from the register directly, and elide the 7100 // stores when the arguments address is not taken, but that will need to 7101 // be future work. 7102 SDValue Store = DAG.getStore( 7103 CopyFrom.getValue(1), dl, CopyFrom, 7104 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7105 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7106 7107 MemOps.push_back(Store); 7108 }; 7109 7110 unsigned Offset = 0; 7111 HandleRegLoc(VA.getLocReg(), Offset); 7112 Offset += PtrByteSize; 7113 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7114 Offset += PtrByteSize) { 7115 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7116 "RegLocs should be for ByVal argument."); 7117 7118 const CCValAssign RL = ArgLocs[I++]; 7119 HandleRegLoc(RL.getLocReg(), Offset); 7120 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7121 } 7122 7123 if (Offset != StackSize) { 7124 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7125 "Expected MemLoc for remaining bytes."); 7126 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7127 // Consume the MemLoc.The InVal has already been emitted, so nothing 7128 // more needs to be done. 7129 ++I; 7130 } 7131 7132 continue; 7133 } 7134 7135 if (VA.isRegLoc() && !VA.needsCustom()) { 7136 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7137 Register VReg = 7138 MF.addLiveIn(VA.getLocReg(), 7139 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7140 Subtarget.hasVSX())); 7141 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7142 if (ValVT.isScalarInteger() && 7143 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7144 ArgValue = 7145 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7146 } 7147 InVals.push_back(ArgValue); 7148 continue; 7149 } 7150 if (VA.isMemLoc()) { 7151 HandleMemLoc(); 7152 continue; 7153 } 7154 } 7155 7156 // On AIX a minimum of 8 words is saved to the parameter save area. 7157 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7158 // Area that is at least reserved in the caller of this function. 7159 unsigned CallerReservedArea = 7160 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7161 7162 // Set the size that is at least reserved in caller of this function. Tail 7163 // call optimized function's reserved stack space needs to be aligned so 7164 // that taking the difference between two stack areas will result in an 7165 // aligned stack. 7166 CallerReservedArea = 7167 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7168 FuncInfo->setMinReservedArea(CallerReservedArea); 7169 7170 if (isVarArg) { 7171 FuncInfo->setVarArgsFrameIndex( 7172 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7173 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7174 7175 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7176 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7177 7178 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7179 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7180 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7181 7182 // The fixed integer arguments of a variadic function are stored to the 7183 // VarArgsFrameIndex on the stack so that they may be loaded by 7184 // dereferencing the result of va_next. 7185 for (unsigned GPRIndex = 7186 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7187 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7188 7189 const Register VReg = 7190 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7191 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7192 7193 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7194 SDValue Store = 7195 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7196 MemOps.push_back(Store); 7197 // Increment the address for the next argument to store. 7198 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7199 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7200 } 7201 } 7202 7203 if (!MemOps.empty()) 7204 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7205 7206 return Chain; 7207 } 7208 7209 SDValue PPCTargetLowering::LowerCall_AIX( 7210 SDValue Chain, SDValue Callee, CallFlags CFlags, 7211 const SmallVectorImpl<ISD::OutputArg> &Outs, 7212 const SmallVectorImpl<SDValue> &OutVals, 7213 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7214 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7215 const CallBase *CB) const { 7216 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7217 // AIX ABI stack frame layout. 7218 7219 assert((CFlags.CallConv == CallingConv::C || 7220 CFlags.CallConv == CallingConv::Cold || 7221 CFlags.CallConv == CallingConv::Fast) && 7222 "Unexpected calling convention!"); 7223 7224 if (CFlags.IsPatchPoint) 7225 report_fatal_error("This call type is unimplemented on AIX."); 7226 7227 const PPCSubtarget& Subtarget = 7228 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7229 7230 MachineFunction &MF = DAG.getMachineFunction(); 7231 SmallVector<CCValAssign, 16> ArgLocs; 7232 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7233 *DAG.getContext()); 7234 7235 // Reserve space for the linkage save area (LSA) on the stack. 7236 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7237 // [SP][CR][LR][2 x reserved][TOC]. 7238 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7239 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7240 const bool IsPPC64 = Subtarget.isPPC64(); 7241 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7242 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7243 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7244 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7245 7246 // The prolog code of the callee may store up to 8 GPR argument registers to 7247 // the stack, allowing va_start to index over them in memory if the callee 7248 // is variadic. 7249 // Because we cannot tell if this is needed on the caller side, we have to 7250 // conservatively assume that it is needed. As such, make sure we have at 7251 // least enough stack space for the caller to store the 8 GPRs. 7252 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7253 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7254 CCInfo.getNextStackOffset()); 7255 7256 // Adjust the stack pointer for the new arguments... 7257 // These operations are automatically eliminated by the prolog/epilog pass. 7258 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7259 SDValue CallSeqStart = Chain; 7260 7261 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7262 SmallVector<SDValue, 8> MemOpChains; 7263 7264 // Set up a copy of the stack pointer for loading and storing any 7265 // arguments that may not fit in the registers available for argument 7266 // passing. 7267 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7268 : DAG.getRegister(PPC::R1, MVT::i32); 7269 7270 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7271 const unsigned ValNo = ArgLocs[I].getValNo(); 7272 SDValue Arg = OutVals[ValNo]; 7273 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7274 7275 if (Flags.isByVal()) { 7276 const unsigned ByValSize = Flags.getByValSize(); 7277 7278 // Nothing to do for zero-sized ByVals on the caller side. 7279 if (!ByValSize) { 7280 ++I; 7281 continue; 7282 } 7283 7284 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7285 return DAG.getExtLoad( 7286 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7287 (LoadOffset != 0) 7288 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7289 : Arg, 7290 MachinePointerInfo(), VT); 7291 }; 7292 7293 unsigned LoadOffset = 0; 7294 7295 // Initialize registers, which are fully occupied by the by-val argument. 7296 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7297 SDValue Load = GetLoad(PtrVT, LoadOffset); 7298 MemOpChains.push_back(Load.getValue(1)); 7299 LoadOffset += PtrByteSize; 7300 const CCValAssign &ByValVA = ArgLocs[I++]; 7301 assert(ByValVA.getValNo() == ValNo && 7302 "Unexpected location for pass-by-value argument."); 7303 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7304 } 7305 7306 if (LoadOffset == ByValSize) 7307 continue; 7308 7309 // There must be one more loc to handle the remainder. 7310 assert(ArgLocs[I].getValNo() == ValNo && 7311 "Expected additional location for by-value argument."); 7312 7313 if (ArgLocs[I].isMemLoc()) { 7314 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7315 const CCValAssign &ByValVA = ArgLocs[I++]; 7316 ISD::ArgFlagsTy MemcpyFlags = Flags; 7317 // Only memcpy the bytes that don't pass in register. 7318 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7319 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7320 (LoadOffset != 0) 7321 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7322 : Arg, 7323 DAG.getObjectPtrOffset(dl, StackPtr, 7324 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7325 CallSeqStart, MemcpyFlags, DAG, dl); 7326 continue; 7327 } 7328 7329 // Initialize the final register residue. 7330 // Any residue that occupies the final by-val arg register must be 7331 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7332 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7333 // 2 and 1 byte loads. 7334 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7335 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7336 "Unexpected register residue for by-value argument."); 7337 SDValue ResidueVal; 7338 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7339 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7340 const MVT VT = 7341 N == 1 ? MVT::i8 7342 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7343 SDValue Load = GetLoad(VT, LoadOffset); 7344 MemOpChains.push_back(Load.getValue(1)); 7345 LoadOffset += N; 7346 Bytes += N; 7347 7348 // By-val arguments are passed left-justfied in register. 7349 // Every load here needs to be shifted, otherwise a full register load 7350 // should have been used. 7351 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7352 "Unexpected load emitted during handling of pass-by-value " 7353 "argument."); 7354 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7355 EVT ShiftAmountTy = 7356 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7357 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7358 SDValue ShiftedLoad = 7359 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7360 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7361 ShiftedLoad) 7362 : ShiftedLoad; 7363 } 7364 7365 const CCValAssign &ByValVA = ArgLocs[I++]; 7366 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7367 continue; 7368 } 7369 7370 CCValAssign &VA = ArgLocs[I++]; 7371 const MVT LocVT = VA.getLocVT(); 7372 const MVT ValVT = VA.getValVT(); 7373 7374 switch (VA.getLocInfo()) { 7375 default: 7376 report_fatal_error("Unexpected argument extension type."); 7377 case CCValAssign::Full: 7378 break; 7379 case CCValAssign::ZExt: 7380 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7381 break; 7382 case CCValAssign::SExt: 7383 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7384 break; 7385 } 7386 7387 if (VA.isRegLoc() && !VA.needsCustom()) { 7388 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7389 continue; 7390 } 7391 7392 // Vector arguments passed to VarArg functions need custom handling when 7393 // they are passed (at least partially) in GPRs. 7394 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7395 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7396 // Store value to its stack slot. 7397 SDValue PtrOff = 7398 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7399 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7400 SDValue Store = 7401 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7402 MemOpChains.push_back(Store); 7403 const unsigned OriginalValNo = VA.getValNo(); 7404 // Then load the GPRs from the stack 7405 unsigned LoadOffset = 0; 7406 auto HandleCustomVecRegLoc = [&]() { 7407 assert(I != E && "Unexpected end of CCvalAssigns."); 7408 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7409 "Expected custom RegLoc."); 7410 CCValAssign RegVA = ArgLocs[I++]; 7411 assert(RegVA.getValNo() == OriginalValNo && 7412 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7413 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7414 DAG.getConstant(LoadOffset, dl, PtrVT)); 7415 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7416 MemOpChains.push_back(Load.getValue(1)); 7417 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7418 LoadOffset += PtrByteSize; 7419 }; 7420 7421 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7422 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7423 // R10. 7424 HandleCustomVecRegLoc(); 7425 HandleCustomVecRegLoc(); 7426 7427 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7428 ArgLocs[I].getValNo() == OriginalValNo) { 7429 assert(!IsPPC64 && 7430 "Only 2 custom RegLocs expected for 64-bit codegen."); 7431 HandleCustomVecRegLoc(); 7432 HandleCustomVecRegLoc(); 7433 } 7434 7435 continue; 7436 } 7437 7438 if (VA.isMemLoc()) { 7439 SDValue PtrOff = 7440 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7441 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7442 MemOpChains.push_back( 7443 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7444 7445 continue; 7446 } 7447 7448 if (!ValVT.isFloatingPoint()) 7449 report_fatal_error( 7450 "Unexpected register handling for calling convention."); 7451 7452 // Custom handling is used for GPR initializations for vararg float 7453 // arguments. 7454 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7455 LocVT.isInteger() && 7456 "Custom register handling only expected for VarArg."); 7457 7458 SDValue ArgAsInt = 7459 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7460 7461 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7462 // f32 in 32-bit GPR 7463 // f64 in 64-bit GPR 7464 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7465 else if (Arg.getValueType().getFixedSizeInBits() < 7466 LocVT.getFixedSizeInBits()) 7467 // f32 in 64-bit GPR. 7468 RegsToPass.push_back(std::make_pair( 7469 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7470 else { 7471 // f64 in two 32-bit GPRs 7472 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7473 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7474 "Unexpected custom register for argument!"); 7475 CCValAssign &GPR1 = VA; 7476 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7477 DAG.getConstant(32, dl, MVT::i8)); 7478 RegsToPass.push_back(std::make_pair( 7479 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7480 7481 if (I != E) { 7482 // If only 1 GPR was available, there will only be one custom GPR and 7483 // the argument will also pass in memory. 7484 CCValAssign &PeekArg = ArgLocs[I]; 7485 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7486 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7487 CCValAssign &GPR2 = ArgLocs[I++]; 7488 RegsToPass.push_back(std::make_pair( 7489 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7490 } 7491 } 7492 } 7493 } 7494 7495 if (!MemOpChains.empty()) 7496 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7497 7498 // For indirect calls, we need to save the TOC base to the stack for 7499 // restoration after the call. 7500 if (CFlags.IsIndirect) { 7501 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7502 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7503 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7504 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7505 const unsigned TOCSaveOffset = 7506 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7507 7508 setUsesTOCBasePtr(DAG); 7509 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7510 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7511 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7512 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7513 Chain = DAG.getStore( 7514 Val.getValue(1), dl, Val, AddPtr, 7515 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7516 } 7517 7518 // Build a sequence of copy-to-reg nodes chained together with token chain 7519 // and flag operands which copy the outgoing args into the appropriate regs. 7520 SDValue InFlag; 7521 for (auto Reg : RegsToPass) { 7522 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7523 InFlag = Chain.getValue(1); 7524 } 7525 7526 const int SPDiff = 0; 7527 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7528 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7529 } 7530 7531 bool 7532 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7533 MachineFunction &MF, bool isVarArg, 7534 const SmallVectorImpl<ISD::OutputArg> &Outs, 7535 LLVMContext &Context) const { 7536 SmallVector<CCValAssign, 16> RVLocs; 7537 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7538 return CCInfo.CheckReturn( 7539 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7540 ? RetCC_PPC_Cold 7541 : RetCC_PPC); 7542 } 7543 7544 SDValue 7545 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7546 bool isVarArg, 7547 const SmallVectorImpl<ISD::OutputArg> &Outs, 7548 const SmallVectorImpl<SDValue> &OutVals, 7549 const SDLoc &dl, SelectionDAG &DAG) const { 7550 SmallVector<CCValAssign, 16> RVLocs; 7551 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7552 *DAG.getContext()); 7553 CCInfo.AnalyzeReturn(Outs, 7554 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7555 ? RetCC_PPC_Cold 7556 : RetCC_PPC); 7557 7558 SDValue Flag; 7559 SmallVector<SDValue, 4> RetOps(1, Chain); 7560 7561 // Copy the result values into the output registers. 7562 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7563 CCValAssign &VA = RVLocs[i]; 7564 assert(VA.isRegLoc() && "Can only return in registers!"); 7565 7566 SDValue Arg = OutVals[RealResIdx]; 7567 7568 switch (VA.getLocInfo()) { 7569 default: llvm_unreachable("Unknown loc info!"); 7570 case CCValAssign::Full: break; 7571 case CCValAssign::AExt: 7572 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7573 break; 7574 case CCValAssign::ZExt: 7575 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7576 break; 7577 case CCValAssign::SExt: 7578 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7579 break; 7580 } 7581 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7582 bool isLittleEndian = Subtarget.isLittleEndian(); 7583 // Legalize ret f64 -> ret 2 x i32. 7584 SDValue SVal = 7585 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7586 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7587 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7588 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7589 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7590 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7591 Flag = Chain.getValue(1); 7592 VA = RVLocs[++i]; // skip ahead to next loc 7593 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7594 } else 7595 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7596 Flag = Chain.getValue(1); 7597 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7598 } 7599 7600 RetOps[0] = Chain; // Update chain. 7601 7602 // Add the flag if we have it. 7603 if (Flag.getNode()) 7604 RetOps.push_back(Flag); 7605 7606 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7607 } 7608 7609 SDValue 7610 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7611 SelectionDAG &DAG) const { 7612 SDLoc dl(Op); 7613 7614 // Get the correct type for integers. 7615 EVT IntVT = Op.getValueType(); 7616 7617 // Get the inputs. 7618 SDValue Chain = Op.getOperand(0); 7619 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7620 // Build a DYNAREAOFFSET node. 7621 SDValue Ops[2] = {Chain, FPSIdx}; 7622 SDVTList VTs = DAG.getVTList(IntVT); 7623 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7624 } 7625 7626 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7627 SelectionDAG &DAG) const { 7628 // When we pop the dynamic allocation we need to restore the SP link. 7629 SDLoc dl(Op); 7630 7631 // Get the correct type for pointers. 7632 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7633 7634 // Construct the stack pointer operand. 7635 bool isPPC64 = Subtarget.isPPC64(); 7636 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7637 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7638 7639 // Get the operands for the STACKRESTORE. 7640 SDValue Chain = Op.getOperand(0); 7641 SDValue SaveSP = Op.getOperand(1); 7642 7643 // Load the old link SP. 7644 SDValue LoadLinkSP = 7645 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7646 7647 // Restore the stack pointer. 7648 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7649 7650 // Store the old link SP. 7651 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7652 } 7653 7654 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7655 MachineFunction &MF = DAG.getMachineFunction(); 7656 bool isPPC64 = Subtarget.isPPC64(); 7657 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7658 7659 // Get current frame pointer save index. The users of this index will be 7660 // primarily DYNALLOC instructions. 7661 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7662 int RASI = FI->getReturnAddrSaveIndex(); 7663 7664 // If the frame pointer save index hasn't been defined yet. 7665 if (!RASI) { 7666 // Find out what the fix offset of the frame pointer save area. 7667 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7668 // Allocate the frame index for frame pointer save area. 7669 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7670 // Save the result. 7671 FI->setReturnAddrSaveIndex(RASI); 7672 } 7673 return DAG.getFrameIndex(RASI, PtrVT); 7674 } 7675 7676 SDValue 7677 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7678 MachineFunction &MF = DAG.getMachineFunction(); 7679 bool isPPC64 = Subtarget.isPPC64(); 7680 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7681 7682 // Get current frame pointer save index. The users of this index will be 7683 // primarily DYNALLOC instructions. 7684 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7685 int FPSI = FI->getFramePointerSaveIndex(); 7686 7687 // If the frame pointer save index hasn't been defined yet. 7688 if (!FPSI) { 7689 // Find out what the fix offset of the frame pointer save area. 7690 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7691 // Allocate the frame index for frame pointer save area. 7692 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7693 // Save the result. 7694 FI->setFramePointerSaveIndex(FPSI); 7695 } 7696 return DAG.getFrameIndex(FPSI, PtrVT); 7697 } 7698 7699 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7700 SelectionDAG &DAG) const { 7701 MachineFunction &MF = DAG.getMachineFunction(); 7702 // Get the inputs. 7703 SDValue Chain = Op.getOperand(0); 7704 SDValue Size = Op.getOperand(1); 7705 SDLoc dl(Op); 7706 7707 // Get the correct type for pointers. 7708 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7709 // Negate the size. 7710 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7711 DAG.getConstant(0, dl, PtrVT), Size); 7712 // Construct a node for the frame pointer save index. 7713 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7714 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7715 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7716 if (hasInlineStackProbe(MF)) 7717 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7718 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7719 } 7720 7721 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7722 SelectionDAG &DAG) const { 7723 MachineFunction &MF = DAG.getMachineFunction(); 7724 7725 bool isPPC64 = Subtarget.isPPC64(); 7726 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7727 7728 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7729 return DAG.getFrameIndex(FI, PtrVT); 7730 } 7731 7732 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7733 SelectionDAG &DAG) const { 7734 SDLoc DL(Op); 7735 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7736 DAG.getVTList(MVT::i32, MVT::Other), 7737 Op.getOperand(0), Op.getOperand(1)); 7738 } 7739 7740 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7741 SelectionDAG &DAG) const { 7742 SDLoc DL(Op); 7743 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7744 Op.getOperand(0), Op.getOperand(1)); 7745 } 7746 7747 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7748 if (Op.getValueType().isVector()) 7749 return LowerVectorLoad(Op, DAG); 7750 7751 assert(Op.getValueType() == MVT::i1 && 7752 "Custom lowering only for i1 loads"); 7753 7754 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7755 7756 SDLoc dl(Op); 7757 LoadSDNode *LD = cast<LoadSDNode>(Op); 7758 7759 SDValue Chain = LD->getChain(); 7760 SDValue BasePtr = LD->getBasePtr(); 7761 MachineMemOperand *MMO = LD->getMemOperand(); 7762 7763 SDValue NewLD = 7764 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7765 BasePtr, MVT::i8, MMO); 7766 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7767 7768 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7769 return DAG.getMergeValues(Ops, dl); 7770 } 7771 7772 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7773 if (Op.getOperand(1).getValueType().isVector()) 7774 return LowerVectorStore(Op, DAG); 7775 7776 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7777 "Custom lowering only for i1 stores"); 7778 7779 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7780 7781 SDLoc dl(Op); 7782 StoreSDNode *ST = cast<StoreSDNode>(Op); 7783 7784 SDValue Chain = ST->getChain(); 7785 SDValue BasePtr = ST->getBasePtr(); 7786 SDValue Value = ST->getValue(); 7787 MachineMemOperand *MMO = ST->getMemOperand(); 7788 7789 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7790 Value); 7791 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7792 } 7793 7794 // FIXME: Remove this once the ANDI glue bug is fixed: 7795 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7796 assert(Op.getValueType() == MVT::i1 && 7797 "Custom lowering only for i1 results"); 7798 7799 SDLoc DL(Op); 7800 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7801 } 7802 7803 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7804 SelectionDAG &DAG) const { 7805 7806 // Implements a vector truncate that fits in a vector register as a shuffle. 7807 // We want to legalize vector truncates down to where the source fits in 7808 // a vector register (and target is therefore smaller than vector register 7809 // size). At that point legalization will try to custom lower the sub-legal 7810 // result and get here - where we can contain the truncate as a single target 7811 // operation. 7812 7813 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7814 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7815 // 7816 // We will implement it for big-endian ordering as this (where x denotes 7817 // undefined): 7818 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7819 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7820 // 7821 // The same operation in little-endian ordering will be: 7822 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7823 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7824 7825 EVT TrgVT = Op.getValueType(); 7826 assert(TrgVT.isVector() && "Vector type expected."); 7827 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7828 EVT EltVT = TrgVT.getVectorElementType(); 7829 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7830 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7831 !isPowerOf2_32(EltVT.getSizeInBits())) 7832 return SDValue(); 7833 7834 SDValue N1 = Op.getOperand(0); 7835 EVT SrcVT = N1.getValueType(); 7836 unsigned SrcSize = SrcVT.getSizeInBits(); 7837 if (SrcSize > 256 || 7838 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7839 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7840 return SDValue(); 7841 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7842 return SDValue(); 7843 7844 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7845 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7846 7847 SDLoc DL(Op); 7848 SDValue Op1, Op2; 7849 if (SrcSize == 256) { 7850 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7851 EVT SplitVT = 7852 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7853 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7854 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7855 DAG.getConstant(0, DL, VecIdxTy)); 7856 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7857 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7858 } 7859 else { 7860 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7861 Op2 = DAG.getUNDEF(WideVT); 7862 } 7863 7864 // First list the elements we want to keep. 7865 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7866 SmallVector<int, 16> ShuffV; 7867 if (Subtarget.isLittleEndian()) 7868 for (unsigned i = 0; i < TrgNumElts; ++i) 7869 ShuffV.push_back(i * SizeMult); 7870 else 7871 for (unsigned i = 1; i <= TrgNumElts; ++i) 7872 ShuffV.push_back(i * SizeMult - 1); 7873 7874 // Populate the remaining elements with undefs. 7875 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7876 // ShuffV.push_back(i + WideNumElts); 7877 ShuffV.push_back(WideNumElts + 1); 7878 7879 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7880 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7881 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7882 } 7883 7884 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7885 /// possible. 7886 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7887 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7888 EVT ResVT = Op.getValueType(); 7889 EVT CmpVT = Op.getOperand(0).getValueType(); 7890 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7891 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7892 SDLoc dl(Op); 7893 7894 // Without power9-vector, we don't have native instruction for f128 comparison. 7895 // Following transformation to libcall is needed for setcc: 7896 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7897 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7898 SDValue Z = DAG.getSetCC( 7899 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7900 LHS, RHS, CC); 7901 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7902 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7903 } 7904 7905 // Not FP, or using SPE? Not a fsel. 7906 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7907 Subtarget.hasSPE()) 7908 return Op; 7909 7910 SDNodeFlags Flags = Op.getNode()->getFlags(); 7911 7912 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7913 // presence of infinities. 7914 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7915 switch (CC) { 7916 default: 7917 break; 7918 case ISD::SETOGT: 7919 case ISD::SETGT: 7920 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7921 case ISD::SETOLT: 7922 case ISD::SETLT: 7923 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7924 } 7925 } 7926 7927 // We might be able to do better than this under some circumstances, but in 7928 // general, fsel-based lowering of select is a finite-math-only optimization. 7929 // For more information, see section F.3 of the 2.06 ISA specification. 7930 // With ISA 3.0 7931 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7932 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7933 return Op; 7934 7935 // If the RHS of the comparison is a 0.0, we don't need to do the 7936 // subtraction at all. 7937 SDValue Sel1; 7938 if (isFloatingPointZero(RHS)) 7939 switch (CC) { 7940 default: break; // SETUO etc aren't handled by fsel. 7941 case ISD::SETNE: 7942 std::swap(TV, FV); 7943 LLVM_FALLTHROUGH; 7944 case ISD::SETEQ: 7945 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7946 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7947 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7948 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7949 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7950 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7951 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7952 case ISD::SETULT: 7953 case ISD::SETLT: 7954 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7955 LLVM_FALLTHROUGH; 7956 case ISD::SETOGE: 7957 case ISD::SETGE: 7958 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7959 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7960 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7961 case ISD::SETUGT: 7962 case ISD::SETGT: 7963 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7964 LLVM_FALLTHROUGH; 7965 case ISD::SETOLE: 7966 case ISD::SETLE: 7967 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7968 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7969 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7970 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7971 } 7972 7973 SDValue Cmp; 7974 switch (CC) { 7975 default: break; // SETUO etc aren't handled by fsel. 7976 case ISD::SETNE: 7977 std::swap(TV, FV); 7978 LLVM_FALLTHROUGH; 7979 case ISD::SETEQ: 7980 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7981 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7982 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7983 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7984 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7985 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7986 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7987 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7988 case ISD::SETULT: 7989 case ISD::SETLT: 7990 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7991 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7992 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7993 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7994 case ISD::SETOGE: 7995 case ISD::SETGE: 7996 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7997 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7998 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7999 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8000 case ISD::SETUGT: 8001 case ISD::SETGT: 8002 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8003 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8004 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8005 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8006 case ISD::SETOLE: 8007 case ISD::SETLE: 8008 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8009 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8010 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8011 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8012 } 8013 return Op; 8014 } 8015 8016 static unsigned getPPCStrictOpcode(unsigned Opc) { 8017 switch (Opc) { 8018 default: 8019 llvm_unreachable("No strict version of this opcode!"); 8020 case PPCISD::FCTIDZ: 8021 return PPCISD::STRICT_FCTIDZ; 8022 case PPCISD::FCTIWZ: 8023 return PPCISD::STRICT_FCTIWZ; 8024 case PPCISD::FCTIDUZ: 8025 return PPCISD::STRICT_FCTIDUZ; 8026 case PPCISD::FCTIWUZ: 8027 return PPCISD::STRICT_FCTIWUZ; 8028 case PPCISD::FCFID: 8029 return PPCISD::STRICT_FCFID; 8030 case PPCISD::FCFIDU: 8031 return PPCISD::STRICT_FCFIDU; 8032 case PPCISD::FCFIDS: 8033 return PPCISD::STRICT_FCFIDS; 8034 case PPCISD::FCFIDUS: 8035 return PPCISD::STRICT_FCFIDUS; 8036 } 8037 } 8038 8039 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8040 const PPCSubtarget &Subtarget) { 8041 SDLoc dl(Op); 8042 bool IsStrict = Op->isStrictFPOpcode(); 8043 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8044 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8045 8046 // TODO: Any other flags to propagate? 8047 SDNodeFlags Flags; 8048 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8049 8050 // For strict nodes, source is the second operand. 8051 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8052 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8053 assert(Src.getValueType().isFloatingPoint()); 8054 if (Src.getValueType() == MVT::f32) { 8055 if (IsStrict) { 8056 Src = 8057 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8058 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8059 Chain = Src.getValue(1); 8060 } else 8061 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8062 } 8063 SDValue Conv; 8064 unsigned Opc = ISD::DELETED_NODE; 8065 switch (Op.getSimpleValueType().SimpleTy) { 8066 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8067 case MVT::i32: 8068 Opc = IsSigned ? PPCISD::FCTIWZ 8069 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8070 break; 8071 case MVT::i64: 8072 assert((IsSigned || Subtarget.hasFPCVT()) && 8073 "i64 FP_TO_UINT is supported only with FPCVT"); 8074 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8075 } 8076 if (IsStrict) { 8077 Opc = getPPCStrictOpcode(Opc); 8078 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8079 {Chain, Src}, Flags); 8080 } else { 8081 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8082 } 8083 return Conv; 8084 } 8085 8086 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8087 SelectionDAG &DAG, 8088 const SDLoc &dl) const { 8089 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8090 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8091 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8092 bool IsStrict = Op->isStrictFPOpcode(); 8093 8094 // Convert the FP value to an int value through memory. 8095 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8096 (IsSigned || Subtarget.hasFPCVT()); 8097 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8098 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8099 MachinePointerInfo MPI = 8100 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8101 8102 // Emit a store to the stack slot. 8103 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8104 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8105 if (i32Stack) { 8106 MachineFunction &MF = DAG.getMachineFunction(); 8107 Alignment = Align(4); 8108 MachineMemOperand *MMO = 8109 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8110 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8111 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8112 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8113 } else 8114 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8115 8116 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8117 // add in a bias on big endian. 8118 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8119 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8120 DAG.getConstant(4, dl, FIPtr.getValueType())); 8121 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8122 } 8123 8124 RLI.Chain = Chain; 8125 RLI.Ptr = FIPtr; 8126 RLI.MPI = MPI; 8127 RLI.Alignment = Alignment; 8128 } 8129 8130 /// Custom lowers floating point to integer conversions to use 8131 /// the direct move instructions available in ISA 2.07 to avoid the 8132 /// need for load/store combinations. 8133 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8134 SelectionDAG &DAG, 8135 const SDLoc &dl) const { 8136 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8137 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8138 if (Op->isStrictFPOpcode()) 8139 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8140 else 8141 return Mov; 8142 } 8143 8144 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8145 const SDLoc &dl) const { 8146 bool IsStrict = Op->isStrictFPOpcode(); 8147 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8148 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8149 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8150 EVT SrcVT = Src.getValueType(); 8151 EVT DstVT = Op.getValueType(); 8152 8153 // FP to INT conversions are legal for f128. 8154 if (SrcVT == MVT::f128) 8155 return Subtarget.hasP9Vector() ? Op : SDValue(); 8156 8157 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8158 // PPC (the libcall is not available). 8159 if (SrcVT == MVT::ppcf128) { 8160 if (DstVT == MVT::i32) { 8161 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8162 // set other fast-math flags to FP operations in both strict and 8163 // non-strict cases. (FP_TO_SINT, FSUB) 8164 SDNodeFlags Flags; 8165 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8166 8167 if (IsSigned) { 8168 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8169 DAG.getIntPtrConstant(0, dl)); 8170 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8171 DAG.getIntPtrConstant(1, dl)); 8172 8173 // Add the two halves of the long double in round-to-zero mode, and use 8174 // a smaller FP_TO_SINT. 8175 if (IsStrict) { 8176 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8177 DAG.getVTList(MVT::f64, MVT::Other), 8178 {Op.getOperand(0), Lo, Hi}, Flags); 8179 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8180 DAG.getVTList(MVT::i32, MVT::Other), 8181 {Res.getValue(1), Res}, Flags); 8182 } else { 8183 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8184 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8185 } 8186 } else { 8187 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8188 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8189 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8190 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8191 if (IsStrict) { 8192 // Sel = Src < 0x80000000 8193 // FltOfs = select Sel, 0.0, 0x80000000 8194 // IntOfs = select Sel, 0, 0x80000000 8195 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8196 SDValue Chain = Op.getOperand(0); 8197 EVT SetCCVT = 8198 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8199 EVT DstSetCCVT = 8200 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8201 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8202 Chain, true); 8203 Chain = Sel.getValue(1); 8204 8205 SDValue FltOfs = DAG.getSelect( 8206 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8207 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8208 8209 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8210 DAG.getVTList(SrcVT, MVT::Other), 8211 {Chain, Src, FltOfs}, Flags); 8212 Chain = Val.getValue(1); 8213 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8214 DAG.getVTList(DstVT, MVT::Other), 8215 {Chain, Val}, Flags); 8216 Chain = SInt.getValue(1); 8217 SDValue IntOfs = DAG.getSelect( 8218 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8219 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8220 return DAG.getMergeValues({Result, Chain}, dl); 8221 } else { 8222 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8223 // FIXME: generated code sucks. 8224 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8225 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8226 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8227 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8228 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8229 } 8230 } 8231 } 8232 8233 return SDValue(); 8234 } 8235 8236 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8237 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8238 8239 ReuseLoadInfo RLI; 8240 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8241 8242 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8243 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8244 } 8245 8246 // We're trying to insert a regular store, S, and then a load, L. If the 8247 // incoming value, O, is a load, we might just be able to have our load use the 8248 // address used by O. However, we don't know if anything else will store to 8249 // that address before we can load from it. To prevent this situation, we need 8250 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8251 // the same chain operand as O, we create a token factor from the chain results 8252 // of O and L, and we replace all uses of O's chain result with that token 8253 // factor (see spliceIntoChain below for this last part). 8254 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8255 ReuseLoadInfo &RLI, 8256 SelectionDAG &DAG, 8257 ISD::LoadExtType ET) const { 8258 // Conservatively skip reusing for constrained FP nodes. 8259 if (Op->isStrictFPOpcode()) 8260 return false; 8261 8262 SDLoc dl(Op); 8263 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8264 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8265 if (ET == ISD::NON_EXTLOAD && 8266 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8267 isOperationLegalOrCustom(Op.getOpcode(), 8268 Op.getOperand(0).getValueType())) { 8269 8270 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8271 return true; 8272 } 8273 8274 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8275 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8276 LD->isNonTemporal()) 8277 return false; 8278 if (LD->getMemoryVT() != MemVT) 8279 return false; 8280 8281 // If the result of the load is an illegal type, then we can't build a 8282 // valid chain for reuse since the legalised loads and token factor node that 8283 // ties the legalised loads together uses a different output chain then the 8284 // illegal load. 8285 if (!isTypeLegal(LD->getValueType(0))) 8286 return false; 8287 8288 RLI.Ptr = LD->getBasePtr(); 8289 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8290 assert(LD->getAddressingMode() == ISD::PRE_INC && 8291 "Non-pre-inc AM on PPC?"); 8292 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8293 LD->getOffset()); 8294 } 8295 8296 RLI.Chain = LD->getChain(); 8297 RLI.MPI = LD->getPointerInfo(); 8298 RLI.IsDereferenceable = LD->isDereferenceable(); 8299 RLI.IsInvariant = LD->isInvariant(); 8300 RLI.Alignment = LD->getAlign(); 8301 RLI.AAInfo = LD->getAAInfo(); 8302 RLI.Ranges = LD->getRanges(); 8303 8304 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8305 return true; 8306 } 8307 8308 // Given the head of the old chain, ResChain, insert a token factor containing 8309 // it and NewResChain, and make users of ResChain now be users of that token 8310 // factor. 8311 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8312 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8313 SDValue NewResChain, 8314 SelectionDAG &DAG) const { 8315 if (!ResChain) 8316 return; 8317 8318 SDLoc dl(NewResChain); 8319 8320 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8321 NewResChain, DAG.getUNDEF(MVT::Other)); 8322 assert(TF.getNode() != NewResChain.getNode() && 8323 "A new TF really is required here"); 8324 8325 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8326 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8327 } 8328 8329 /// Analyze profitability of direct move 8330 /// prefer float load to int load plus direct move 8331 /// when there is no integer use of int load 8332 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8333 SDNode *Origin = Op.getOperand(0).getNode(); 8334 if (Origin->getOpcode() != ISD::LOAD) 8335 return true; 8336 8337 // If there is no LXSIBZX/LXSIHZX, like Power8, 8338 // prefer direct move if the memory size is 1 or 2 bytes. 8339 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8340 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8341 return true; 8342 8343 for (SDNode::use_iterator UI = Origin->use_begin(), 8344 UE = Origin->use_end(); 8345 UI != UE; ++UI) { 8346 8347 // Only look at the users of the loaded value. 8348 if (UI.getUse().get().getResNo() != 0) 8349 continue; 8350 8351 if (UI->getOpcode() != ISD::SINT_TO_FP && 8352 UI->getOpcode() != ISD::UINT_TO_FP && 8353 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8354 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8355 return true; 8356 } 8357 8358 return false; 8359 } 8360 8361 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8362 const PPCSubtarget &Subtarget, 8363 SDValue Chain = SDValue()) { 8364 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8365 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8366 SDLoc dl(Op); 8367 8368 // TODO: Any other flags to propagate? 8369 SDNodeFlags Flags; 8370 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8371 8372 // If we have FCFIDS, then use it when converting to single-precision. 8373 // Otherwise, convert to double-precision and then round. 8374 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8375 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8376 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8377 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8378 if (Op->isStrictFPOpcode()) { 8379 if (!Chain) 8380 Chain = Op.getOperand(0); 8381 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8382 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8383 } else 8384 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8385 } 8386 8387 /// Custom lowers integer to floating point conversions to use 8388 /// the direct move instructions available in ISA 2.07 to avoid the 8389 /// need for load/store combinations. 8390 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8391 SelectionDAG &DAG, 8392 const SDLoc &dl) const { 8393 assert((Op.getValueType() == MVT::f32 || 8394 Op.getValueType() == MVT::f64) && 8395 "Invalid floating point type as target of conversion"); 8396 assert(Subtarget.hasFPCVT() && 8397 "Int to FP conversions with direct moves require FPCVT"); 8398 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8399 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8400 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8401 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8402 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8403 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8404 return convertIntToFP(Op, Mov, DAG, Subtarget); 8405 } 8406 8407 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8408 8409 EVT VecVT = Vec.getValueType(); 8410 assert(VecVT.isVector() && "Expected a vector type."); 8411 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8412 8413 EVT EltVT = VecVT.getVectorElementType(); 8414 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8415 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8416 8417 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8418 SmallVector<SDValue, 16> Ops(NumConcat); 8419 Ops[0] = Vec; 8420 SDValue UndefVec = DAG.getUNDEF(VecVT); 8421 for (unsigned i = 1; i < NumConcat; ++i) 8422 Ops[i] = UndefVec; 8423 8424 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8425 } 8426 8427 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8428 const SDLoc &dl) const { 8429 bool IsStrict = Op->isStrictFPOpcode(); 8430 unsigned Opc = Op.getOpcode(); 8431 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8432 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8433 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8434 "Unexpected conversion type"); 8435 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8436 "Supports conversions to v2f64/v4f32 only."); 8437 8438 // TODO: Any other flags to propagate? 8439 SDNodeFlags Flags; 8440 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8441 8442 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8443 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8444 8445 SDValue Wide = widenVec(DAG, Src, dl); 8446 EVT WideVT = Wide.getValueType(); 8447 unsigned WideNumElts = WideVT.getVectorNumElements(); 8448 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8449 8450 SmallVector<int, 16> ShuffV; 8451 for (unsigned i = 0; i < WideNumElts; ++i) 8452 ShuffV.push_back(i + WideNumElts); 8453 8454 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8455 int SaveElts = FourEltRes ? 4 : 2; 8456 if (Subtarget.isLittleEndian()) 8457 for (int i = 0; i < SaveElts; i++) 8458 ShuffV[i * Stride] = i; 8459 else 8460 for (int i = 1; i <= SaveElts; i++) 8461 ShuffV[i * Stride - 1] = i - 1; 8462 8463 SDValue ShuffleSrc2 = 8464 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8465 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8466 8467 SDValue Extend; 8468 if (SignedConv) { 8469 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8470 EVT ExtVT = Src.getValueType(); 8471 if (Subtarget.hasP9Altivec()) 8472 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8473 IntermediateVT.getVectorNumElements()); 8474 8475 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8476 DAG.getValueType(ExtVT)); 8477 } else 8478 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8479 8480 if (IsStrict) 8481 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8482 {Op.getOperand(0), Extend}, Flags); 8483 8484 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8485 } 8486 8487 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8488 SelectionDAG &DAG) const { 8489 SDLoc dl(Op); 8490 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8491 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8492 bool IsStrict = Op->isStrictFPOpcode(); 8493 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8494 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8495 8496 // TODO: Any other flags to propagate? 8497 SDNodeFlags Flags; 8498 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8499 8500 EVT InVT = Src.getValueType(); 8501 EVT OutVT = Op.getValueType(); 8502 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8503 isOperationCustom(Op.getOpcode(), InVT)) 8504 return LowerINT_TO_FPVector(Op, DAG, dl); 8505 8506 // Conversions to f128 are legal. 8507 if (Op.getValueType() == MVT::f128) 8508 return Subtarget.hasP9Vector() ? Op : SDValue(); 8509 8510 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8511 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8512 return SDValue(); 8513 8514 if (Src.getValueType() == MVT::i1) { 8515 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8516 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8517 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8518 if (IsStrict) 8519 return DAG.getMergeValues({Sel, Chain}, dl); 8520 else 8521 return Sel; 8522 } 8523 8524 // If we have direct moves, we can do all the conversion, skip the store/load 8525 // however, without FPCVT we can't do most conversions. 8526 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8527 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8528 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8529 8530 assert((IsSigned || Subtarget.hasFPCVT()) && 8531 "UINT_TO_FP is supported only with FPCVT"); 8532 8533 if (Src.getValueType() == MVT::i64) { 8534 SDValue SINT = Src; 8535 // When converting to single-precision, we actually need to convert 8536 // to double-precision first and then round to single-precision. 8537 // To avoid double-rounding effects during that operation, we have 8538 // to prepare the input operand. Bits that might be truncated when 8539 // converting to double-precision are replaced by a bit that won't 8540 // be lost at this stage, but is below the single-precision rounding 8541 // position. 8542 // 8543 // However, if -enable-unsafe-fp-math is in effect, accept double 8544 // rounding to avoid the extra overhead. 8545 if (Op.getValueType() == MVT::f32 && 8546 !Subtarget.hasFPCVT() && 8547 !DAG.getTarget().Options.UnsafeFPMath) { 8548 8549 // Twiddle input to make sure the low 11 bits are zero. (If this 8550 // is the case, we are guaranteed the value will fit into the 53 bit 8551 // mantissa of an IEEE double-precision value without rounding.) 8552 // If any of those low 11 bits were not zero originally, make sure 8553 // bit 12 (value 2048) is set instead, so that the final rounding 8554 // to single-precision gets the correct result. 8555 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8556 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8557 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8558 Round, DAG.getConstant(2047, dl, MVT::i64)); 8559 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8560 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8561 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8562 8563 // However, we cannot use that value unconditionally: if the magnitude 8564 // of the input value is small, the bit-twiddling we did above might 8565 // end up visibly changing the output. Fortunately, in that case, we 8566 // don't need to twiddle bits since the original input will convert 8567 // exactly to double-precision floating-point already. Therefore, 8568 // construct a conditional to use the original value if the top 11 8569 // bits are all sign-bit copies, and use the rounded value computed 8570 // above otherwise. 8571 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8572 SINT, DAG.getConstant(53, dl, MVT::i32)); 8573 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8574 Cond, DAG.getConstant(1, dl, MVT::i64)); 8575 Cond = DAG.getSetCC( 8576 dl, 8577 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8578 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8579 8580 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8581 } 8582 8583 ReuseLoadInfo RLI; 8584 SDValue Bits; 8585 8586 MachineFunction &MF = DAG.getMachineFunction(); 8587 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8588 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8589 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8590 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8591 } else if (Subtarget.hasLFIWAX() && 8592 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8593 MachineMemOperand *MMO = 8594 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8595 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8596 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8597 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8598 DAG.getVTList(MVT::f64, MVT::Other), 8599 Ops, MVT::i32, MMO); 8600 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8601 } else if (Subtarget.hasFPCVT() && 8602 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8603 MachineMemOperand *MMO = 8604 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8605 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8606 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8607 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8608 DAG.getVTList(MVT::f64, MVT::Other), 8609 Ops, MVT::i32, MMO); 8610 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8611 } else if (((Subtarget.hasLFIWAX() && 8612 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8613 (Subtarget.hasFPCVT() && 8614 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8615 SINT.getOperand(0).getValueType() == MVT::i32) { 8616 MachineFrameInfo &MFI = MF.getFrameInfo(); 8617 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8618 8619 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8620 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8621 8622 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8623 MachinePointerInfo::getFixedStack( 8624 DAG.getMachineFunction(), FrameIdx)); 8625 Chain = Store; 8626 8627 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8628 "Expected an i32 store"); 8629 8630 RLI.Ptr = FIdx; 8631 RLI.Chain = Chain; 8632 RLI.MPI = 8633 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8634 RLI.Alignment = Align(4); 8635 8636 MachineMemOperand *MMO = 8637 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8638 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8639 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8640 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8641 PPCISD::LFIWZX : PPCISD::LFIWAX, 8642 dl, DAG.getVTList(MVT::f64, MVT::Other), 8643 Ops, MVT::i32, MMO); 8644 Chain = Bits.getValue(1); 8645 } else 8646 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8647 8648 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8649 if (IsStrict) 8650 Chain = FP.getValue(1); 8651 8652 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8653 if (IsStrict) 8654 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8655 DAG.getVTList(MVT::f32, MVT::Other), 8656 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8657 else 8658 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8659 DAG.getIntPtrConstant(0, dl)); 8660 } 8661 return FP; 8662 } 8663 8664 assert(Src.getValueType() == MVT::i32 && 8665 "Unhandled INT_TO_FP type in custom expander!"); 8666 // Since we only generate this in 64-bit mode, we can take advantage of 8667 // 64-bit registers. In particular, sign extend the input value into the 8668 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8669 // then lfd it and fcfid it. 8670 MachineFunction &MF = DAG.getMachineFunction(); 8671 MachineFrameInfo &MFI = MF.getFrameInfo(); 8672 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8673 8674 SDValue Ld; 8675 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8676 ReuseLoadInfo RLI; 8677 bool ReusingLoad; 8678 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8679 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8680 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8681 8682 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8683 MachinePointerInfo::getFixedStack( 8684 DAG.getMachineFunction(), FrameIdx)); 8685 Chain = Store; 8686 8687 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8688 "Expected an i32 store"); 8689 8690 RLI.Ptr = FIdx; 8691 RLI.Chain = Chain; 8692 RLI.MPI = 8693 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8694 RLI.Alignment = Align(4); 8695 } 8696 8697 MachineMemOperand *MMO = 8698 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8699 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8700 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8701 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8702 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8703 MVT::i32, MMO); 8704 Chain = Ld.getValue(1); 8705 if (ReusingLoad) 8706 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8707 } else { 8708 assert(Subtarget.isPPC64() && 8709 "i32->FP without LFIWAX supported only on PPC64"); 8710 8711 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8712 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8713 8714 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8715 8716 // STD the extended value into the stack slot. 8717 SDValue Store = DAG.getStore( 8718 Chain, dl, Ext64, FIdx, 8719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8720 Chain = Store; 8721 8722 // Load the value as a double. 8723 Ld = DAG.getLoad( 8724 MVT::f64, dl, Chain, FIdx, 8725 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8726 Chain = Ld.getValue(1); 8727 } 8728 8729 // FCFID it and return it. 8730 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8731 if (IsStrict) 8732 Chain = FP.getValue(1); 8733 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8734 if (IsStrict) 8735 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8736 DAG.getVTList(MVT::f32, MVT::Other), 8737 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8738 else 8739 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8740 DAG.getIntPtrConstant(0, dl)); 8741 } 8742 return FP; 8743 } 8744 8745 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8746 SelectionDAG &DAG) const { 8747 SDLoc dl(Op); 8748 /* 8749 The rounding mode is in bits 30:31 of FPSR, and has the following 8750 settings: 8751 00 Round to nearest 8752 01 Round to 0 8753 10 Round to +inf 8754 11 Round to -inf 8755 8756 FLT_ROUNDS, on the other hand, expects the following: 8757 -1 Undefined 8758 0 Round to 0 8759 1 Round to nearest 8760 2 Round to +inf 8761 3 Round to -inf 8762 8763 To perform the conversion, we do: 8764 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8765 */ 8766 8767 MachineFunction &MF = DAG.getMachineFunction(); 8768 EVT VT = Op.getValueType(); 8769 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8770 8771 // Save FP Control Word to register 8772 SDValue Chain = Op.getOperand(0); 8773 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8774 Chain = MFFS.getValue(1); 8775 8776 SDValue CWD; 8777 if (isTypeLegal(MVT::i64)) { 8778 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8779 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8780 } else { 8781 // Save FP register to stack slot 8782 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8783 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8784 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8785 8786 // Load FP Control Word from low 32 bits of stack slot. 8787 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8788 "Stack slot adjustment is valid only on big endian subtargets!"); 8789 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8790 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8791 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8792 Chain = CWD.getValue(1); 8793 } 8794 8795 // Transform as necessary 8796 SDValue CWD1 = 8797 DAG.getNode(ISD::AND, dl, MVT::i32, 8798 CWD, DAG.getConstant(3, dl, MVT::i32)); 8799 SDValue CWD2 = 8800 DAG.getNode(ISD::SRL, dl, MVT::i32, 8801 DAG.getNode(ISD::AND, dl, MVT::i32, 8802 DAG.getNode(ISD::XOR, dl, MVT::i32, 8803 CWD, DAG.getConstant(3, dl, MVT::i32)), 8804 DAG.getConstant(3, dl, MVT::i32)), 8805 DAG.getConstant(1, dl, MVT::i32)); 8806 8807 SDValue RetVal = 8808 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8809 8810 RetVal = 8811 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8812 dl, VT, RetVal); 8813 8814 return DAG.getMergeValues({RetVal, Chain}, dl); 8815 } 8816 8817 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8818 EVT VT = Op.getValueType(); 8819 unsigned BitWidth = VT.getSizeInBits(); 8820 SDLoc dl(Op); 8821 assert(Op.getNumOperands() == 3 && 8822 VT == Op.getOperand(1).getValueType() && 8823 "Unexpected SHL!"); 8824 8825 // Expand into a bunch of logical ops. Note that these ops 8826 // depend on the PPC behavior for oversized shift amounts. 8827 SDValue Lo = Op.getOperand(0); 8828 SDValue Hi = Op.getOperand(1); 8829 SDValue Amt = Op.getOperand(2); 8830 EVT AmtVT = Amt.getValueType(); 8831 8832 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8833 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8834 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8835 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8836 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8837 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8838 DAG.getConstant(-BitWidth, dl, AmtVT)); 8839 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8840 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8841 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8842 SDValue OutOps[] = { OutLo, OutHi }; 8843 return DAG.getMergeValues(OutOps, dl); 8844 } 8845 8846 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8847 EVT VT = Op.getValueType(); 8848 SDLoc dl(Op); 8849 unsigned BitWidth = VT.getSizeInBits(); 8850 assert(Op.getNumOperands() == 3 && 8851 VT == Op.getOperand(1).getValueType() && 8852 "Unexpected SRL!"); 8853 8854 // Expand into a bunch of logical ops. Note that these ops 8855 // depend on the PPC behavior for oversized shift amounts. 8856 SDValue Lo = Op.getOperand(0); 8857 SDValue Hi = Op.getOperand(1); 8858 SDValue Amt = Op.getOperand(2); 8859 EVT AmtVT = Amt.getValueType(); 8860 8861 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8862 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8863 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8864 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8865 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8866 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8867 DAG.getConstant(-BitWidth, dl, AmtVT)); 8868 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8869 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8870 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8871 SDValue OutOps[] = { OutLo, OutHi }; 8872 return DAG.getMergeValues(OutOps, dl); 8873 } 8874 8875 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8876 SDLoc dl(Op); 8877 EVT VT = Op.getValueType(); 8878 unsigned BitWidth = VT.getSizeInBits(); 8879 assert(Op.getNumOperands() == 3 && 8880 VT == Op.getOperand(1).getValueType() && 8881 "Unexpected SRA!"); 8882 8883 // Expand into a bunch of logical ops, followed by a select_cc. 8884 SDValue Lo = Op.getOperand(0); 8885 SDValue Hi = Op.getOperand(1); 8886 SDValue Amt = Op.getOperand(2); 8887 EVT AmtVT = Amt.getValueType(); 8888 8889 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8890 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8891 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8892 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8893 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8894 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8895 DAG.getConstant(-BitWidth, dl, AmtVT)); 8896 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8897 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8898 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8899 Tmp4, Tmp6, ISD::SETLE); 8900 SDValue OutOps[] = { OutLo, OutHi }; 8901 return DAG.getMergeValues(OutOps, dl); 8902 } 8903 8904 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8905 SelectionDAG &DAG) const { 8906 SDLoc dl(Op); 8907 EVT VT = Op.getValueType(); 8908 unsigned BitWidth = VT.getSizeInBits(); 8909 8910 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8911 SDValue X = Op.getOperand(0); 8912 SDValue Y = Op.getOperand(1); 8913 SDValue Z = Op.getOperand(2); 8914 EVT AmtVT = Z.getValueType(); 8915 8916 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8917 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8918 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8919 // on PowerPC shift by BW being well defined. 8920 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8921 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8922 SDValue SubZ = 8923 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8924 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8925 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8926 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8927 } 8928 8929 //===----------------------------------------------------------------------===// 8930 // Vector related lowering. 8931 // 8932 8933 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8934 /// element size of SplatSize. Cast the result to VT. 8935 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8936 SelectionDAG &DAG, const SDLoc &dl) { 8937 static const MVT VTys[] = { // canonical VT to use for each size. 8938 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8939 }; 8940 8941 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8942 8943 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8944 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8945 SplatSize = 1; 8946 Val = 0xFF; 8947 } 8948 8949 EVT CanonicalVT = VTys[SplatSize-1]; 8950 8951 // Build a canonical splat for this value. 8952 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8953 } 8954 8955 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8956 /// specified intrinsic ID. 8957 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8958 const SDLoc &dl, EVT DestVT = MVT::Other) { 8959 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8960 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8961 DAG.getConstant(IID, dl, MVT::i32), Op); 8962 } 8963 8964 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8965 /// specified intrinsic ID. 8966 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8967 SelectionDAG &DAG, const SDLoc &dl, 8968 EVT DestVT = MVT::Other) { 8969 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8970 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8971 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8972 } 8973 8974 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8975 /// specified intrinsic ID. 8976 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8977 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8978 EVT DestVT = MVT::Other) { 8979 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8980 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8981 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8982 } 8983 8984 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8985 /// amount. The result has the specified value type. 8986 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8987 SelectionDAG &DAG, const SDLoc &dl) { 8988 // Force LHS/RHS to be the right type. 8989 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8990 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8991 8992 int Ops[16]; 8993 for (unsigned i = 0; i != 16; ++i) 8994 Ops[i] = i + Amt; 8995 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8996 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8997 } 8998 8999 /// Do we have an efficient pattern in a .td file for this node? 9000 /// 9001 /// \param V - pointer to the BuildVectorSDNode being matched 9002 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9003 /// 9004 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9005 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9006 /// the opposite is true (expansion is beneficial) are: 9007 /// - The node builds a vector out of integers that are not 32 or 64-bits 9008 /// - The node builds a vector out of constants 9009 /// - The node is a "load-and-splat" 9010 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9011 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9012 bool HasDirectMove, 9013 bool HasP8Vector) { 9014 EVT VecVT = V->getValueType(0); 9015 bool RightType = VecVT == MVT::v2f64 || 9016 (HasP8Vector && VecVT == MVT::v4f32) || 9017 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9018 if (!RightType) 9019 return false; 9020 9021 bool IsSplat = true; 9022 bool IsLoad = false; 9023 SDValue Op0 = V->getOperand(0); 9024 9025 // This function is called in a block that confirms the node is not a constant 9026 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9027 // different constants. 9028 if (V->isConstant()) 9029 return false; 9030 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9031 if (V->getOperand(i).isUndef()) 9032 return false; 9033 // We want to expand nodes that represent load-and-splat even if the 9034 // loaded value is a floating point truncation or conversion to int. 9035 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9036 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9037 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9038 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9039 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9040 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9041 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9042 IsLoad = true; 9043 // If the operands are different or the input is not a load and has more 9044 // uses than just this BV node, then it isn't a splat. 9045 if (V->getOperand(i) != Op0 || 9046 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9047 IsSplat = false; 9048 } 9049 return !(IsSplat && IsLoad); 9050 } 9051 9052 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9053 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9054 9055 SDLoc dl(Op); 9056 SDValue Op0 = Op->getOperand(0); 9057 9058 if ((Op.getValueType() != MVT::f128) || 9059 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9060 (Op0.getOperand(0).getValueType() != MVT::i64) || 9061 (Op0.getOperand(1).getValueType() != MVT::i64)) 9062 return SDValue(); 9063 9064 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9065 Op0.getOperand(1)); 9066 } 9067 9068 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9069 const SDValue *InputLoad = &Op; 9070 if (InputLoad->getOpcode() == ISD::BITCAST) 9071 InputLoad = &InputLoad->getOperand(0); 9072 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9073 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9074 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9075 InputLoad = &InputLoad->getOperand(0); 9076 } 9077 if (InputLoad->getOpcode() != ISD::LOAD) 9078 return nullptr; 9079 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9080 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9081 } 9082 9083 // Convert the argument APFloat to a single precision APFloat if there is no 9084 // loss in information during the conversion to single precision APFloat and the 9085 // resulting number is not a denormal number. Return true if successful. 9086 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9087 APFloat APFloatToConvert = ArgAPFloat; 9088 bool LosesInfo = true; 9089 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9090 &LosesInfo); 9091 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9092 if (Success) 9093 ArgAPFloat = APFloatToConvert; 9094 return Success; 9095 } 9096 9097 // Bitcast the argument APInt to a double and convert it to a single precision 9098 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9099 // argument if there is no loss in information during the conversion from 9100 // double to single precision APFloat and the resulting number is not a denormal 9101 // number. Return true if successful. 9102 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9103 double DpValue = ArgAPInt.bitsToDouble(); 9104 APFloat APFloatDp(DpValue); 9105 bool Success = convertToNonDenormSingle(APFloatDp); 9106 if (Success) 9107 ArgAPInt = APFloatDp.bitcastToAPInt(); 9108 return Success; 9109 } 9110 9111 // Nondestructive check for convertTonNonDenormSingle. 9112 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9113 // Only convert if it loses info, since XXSPLTIDP should 9114 // handle the other case. 9115 APFloat APFloatToConvert = ArgAPFloat; 9116 bool LosesInfo = true; 9117 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9118 &LosesInfo); 9119 9120 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9121 } 9122 9123 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9124 unsigned &Opcode) { 9125 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9126 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9127 return false; 9128 9129 EVT Ty = Op->getValueType(0); 9130 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9131 // as we cannot handle extending loads for these types. 9132 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9133 ISD::isNON_EXTLoad(InputNode)) 9134 return true; 9135 9136 EVT MemVT = InputNode->getMemoryVT(); 9137 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9138 // memory VT is the same vector element VT type. 9139 // The loads feeding into the v8i16 and v16i8 types will be extending because 9140 // scalar i8/i16 are not legal types. 9141 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9142 (MemVT == Ty.getVectorElementType())) 9143 return true; 9144 9145 if (Ty == MVT::v2i64) { 9146 // Check the extend type, when the input type is i32, and the output vector 9147 // type is v2i64. 9148 if (MemVT == MVT::i32) { 9149 if (ISD::isZEXTLoad(InputNode)) 9150 Opcode = PPCISD::ZEXT_LD_SPLAT; 9151 if (ISD::isSEXTLoad(InputNode)) 9152 Opcode = PPCISD::SEXT_LD_SPLAT; 9153 } 9154 return true; 9155 } 9156 return false; 9157 } 9158 9159 // If this is a case we can't handle, return null and let the default 9160 // expansion code take care of it. If we CAN select this case, and if it 9161 // selects to a single instruction, return Op. Otherwise, if we can codegen 9162 // this case more efficiently than a constant pool load, lower it to the 9163 // sequence of ops that should be used. 9164 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9165 SelectionDAG &DAG) const { 9166 SDLoc dl(Op); 9167 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9168 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9169 9170 // Check if this is a splat of a constant value. 9171 APInt APSplatBits, APSplatUndef; 9172 unsigned SplatBitSize; 9173 bool HasAnyUndefs; 9174 bool BVNIsConstantSplat = 9175 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9176 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9177 9178 // If it is a splat of a double, check if we can shrink it to a 32 bit 9179 // non-denormal float which when converted back to double gives us the same 9180 // double. This is to exploit the XXSPLTIDP instruction. 9181 // If we lose precision, we use XXSPLTI32DX. 9182 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9183 Subtarget.hasPrefixInstrs()) { 9184 // Check the type first to short-circuit so we don't modify APSplatBits if 9185 // this block isn't executed. 9186 if ((Op->getValueType(0) == MVT::v2f64) && 9187 convertToNonDenormSingle(APSplatBits)) { 9188 SDValue SplatNode = DAG.getNode( 9189 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9190 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9191 return DAG.getBitcast(Op.getValueType(), SplatNode); 9192 } else { 9193 // We may lose precision, so we have to use XXSPLTI32DX. 9194 9195 uint32_t Hi = 9196 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9197 uint32_t Lo = 9198 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9199 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9200 9201 if (!Hi || !Lo) 9202 // If either load is 0, then we should generate XXLXOR to set to 0. 9203 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9204 9205 if (Hi) 9206 SplatNode = DAG.getNode( 9207 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9208 DAG.getTargetConstant(0, dl, MVT::i32), 9209 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9210 9211 if (Lo) 9212 SplatNode = 9213 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9214 DAG.getTargetConstant(1, dl, MVT::i32), 9215 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9216 9217 return DAG.getBitcast(Op.getValueType(), SplatNode); 9218 } 9219 } 9220 9221 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9222 unsigned NewOpcode = PPCISD::LD_SPLAT; 9223 9224 // Handle load-and-splat patterns as we have instructions that will do this 9225 // in one go. 9226 if (DAG.isSplatValue(Op, true) && 9227 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9228 const SDValue *InputLoad = &Op.getOperand(0); 9229 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9230 9231 // If the input load is an extending load, it will be an i32 -> i64 9232 // extending load and isValidSplatLoad() will update NewOpcode. 9233 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9234 unsigned ElementSize = 9235 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9236 9237 assert(((ElementSize == 2 * MemorySize) 9238 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9239 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9240 : (NewOpcode == PPCISD::LD_SPLAT)) && 9241 "Unmatched element size and opcode!\n"); 9242 9243 // Checking for a single use of this load, we have to check for vector 9244 // width (128 bits) / ElementSize uses (since each operand of the 9245 // BUILD_VECTOR is a separate use of the value. 9246 unsigned NumUsesOfInputLD = 128 / ElementSize; 9247 for (SDValue BVInOp : Op->ops()) 9248 if (BVInOp.isUndef()) 9249 NumUsesOfInputLD--; 9250 9251 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9252 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9253 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9254 // 15", but funciton IsValidSplatLoad() now will only return true when 9255 // the data at index 0 is not nullptr. So we will not get into trouble for 9256 // these cases. 9257 // 9258 // case 1 - lfiwzx/lfiwax 9259 // 1.1: load result is i32 and is sign/zero extend to i64; 9260 // 1.2: build a v2i64 vector type with above loaded value; 9261 // 1.3: the vector has only one value at index 0, others are all undef; 9262 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9263 if (NumUsesOfInputLD == 1 && 9264 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9265 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9266 Subtarget.hasLFIWAX())) 9267 return SDValue(); 9268 9269 // case 2 - lxvr[hb]x 9270 // 2.1: load result is at most i16; 9271 // 2.2: build a vector with above loaded value; 9272 // 2.3: the vector has only one value at index 0, others are all undef; 9273 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9274 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9275 Subtarget.isISA3_1() && ElementSize <= 16) 9276 return SDValue(); 9277 9278 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9279 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9280 Subtarget.hasVSX()) { 9281 SDValue Ops[] = { 9282 LD->getChain(), // Chain 9283 LD->getBasePtr(), // Ptr 9284 DAG.getValueType(Op.getValueType()) // VT 9285 }; 9286 SDValue LdSplt = DAG.getMemIntrinsicNode( 9287 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9288 LD->getMemoryVT(), LD->getMemOperand()); 9289 // Replace all uses of the output chain of the original load with the 9290 // output chain of the new load. 9291 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9292 LdSplt.getValue(1)); 9293 return LdSplt; 9294 } 9295 } 9296 9297 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9298 // 32-bits can be lowered to VSX instructions under certain conditions. 9299 // Without VSX, there is no pattern more efficient than expanding the node. 9300 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9301 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9302 Subtarget.hasP8Vector())) 9303 return Op; 9304 return SDValue(); 9305 } 9306 9307 uint64_t SplatBits = APSplatBits.getZExtValue(); 9308 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9309 unsigned SplatSize = SplatBitSize / 8; 9310 9311 // First, handle single instruction cases. 9312 9313 // All zeros? 9314 if (SplatBits == 0) { 9315 // Canonicalize all zero vectors to be v4i32. 9316 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9317 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9318 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9319 } 9320 return Op; 9321 } 9322 9323 // We have XXSPLTIW for constant splats four bytes wide. 9324 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9325 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9326 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9327 // turned into a 4-byte splat of 0xABABABAB. 9328 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9329 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9330 Op.getValueType(), DAG, dl); 9331 9332 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9333 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9334 dl); 9335 9336 // We have XXSPLTIB for constant splats one byte wide. 9337 if (Subtarget.hasP9Vector() && SplatSize == 1) 9338 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9339 dl); 9340 9341 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9342 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9343 (32-SplatBitSize)); 9344 if (SextVal >= -16 && SextVal <= 15) 9345 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9346 dl); 9347 9348 // Two instruction sequences. 9349 9350 // If this value is in the range [-32,30] and is even, use: 9351 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9352 // If this value is in the range [17,31] and is odd, use: 9353 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9354 // If this value is in the range [-31,-17] and is odd, use: 9355 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9356 // Note the last two are three-instruction sequences. 9357 if (SextVal >= -32 && SextVal <= 31) { 9358 // To avoid having these optimizations undone by constant folding, 9359 // we convert to a pseudo that will be expanded later into one of 9360 // the above forms. 9361 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9362 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9363 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9364 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9365 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9366 if (VT == Op.getValueType()) 9367 return RetVal; 9368 else 9369 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9370 } 9371 9372 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9373 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9374 // for fneg/fabs. 9375 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9376 // Make -1 and vspltisw -1: 9377 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9378 9379 // Make the VSLW intrinsic, computing 0x8000_0000. 9380 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9381 OnesV, DAG, dl); 9382 9383 // xor by OnesV to invert it. 9384 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9385 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9386 } 9387 9388 // Check to see if this is a wide variety of vsplti*, binop self cases. 9389 static const signed char SplatCsts[] = { 9390 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9391 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9392 }; 9393 9394 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9395 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9396 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9397 int i = SplatCsts[idx]; 9398 9399 // Figure out what shift amount will be used by altivec if shifted by i in 9400 // this splat size. 9401 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9402 9403 // vsplti + shl self. 9404 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9405 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9406 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9407 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9408 Intrinsic::ppc_altivec_vslw 9409 }; 9410 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9411 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9412 } 9413 9414 // vsplti + srl self. 9415 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9416 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9417 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9418 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9419 Intrinsic::ppc_altivec_vsrw 9420 }; 9421 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9422 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9423 } 9424 9425 // vsplti + rol self. 9426 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9427 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9428 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9429 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9430 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9431 Intrinsic::ppc_altivec_vrlw 9432 }; 9433 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9434 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9435 } 9436 9437 // t = vsplti c, result = vsldoi t, t, 1 9438 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9439 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9440 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9441 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9442 } 9443 // t = vsplti c, result = vsldoi t, t, 2 9444 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9445 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9446 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9447 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9448 } 9449 // t = vsplti c, result = vsldoi t, t, 3 9450 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9451 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9452 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9453 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9454 } 9455 } 9456 9457 return SDValue(); 9458 } 9459 9460 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9461 /// the specified operations to build the shuffle. 9462 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9463 SDValue RHS, SelectionDAG &DAG, 9464 const SDLoc &dl) { 9465 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9466 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9467 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9468 9469 enum { 9470 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9471 OP_VMRGHW, 9472 OP_VMRGLW, 9473 OP_VSPLTISW0, 9474 OP_VSPLTISW1, 9475 OP_VSPLTISW2, 9476 OP_VSPLTISW3, 9477 OP_VSLDOI4, 9478 OP_VSLDOI8, 9479 OP_VSLDOI12 9480 }; 9481 9482 if (OpNum == OP_COPY) { 9483 if (LHSID == (1*9+2)*9+3) return LHS; 9484 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9485 return RHS; 9486 } 9487 9488 SDValue OpLHS, OpRHS; 9489 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9490 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9491 9492 int ShufIdxs[16]; 9493 switch (OpNum) { 9494 default: llvm_unreachable("Unknown i32 permute!"); 9495 case OP_VMRGHW: 9496 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9497 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9498 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9499 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9500 break; 9501 case OP_VMRGLW: 9502 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9503 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9504 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9505 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9506 break; 9507 case OP_VSPLTISW0: 9508 for (unsigned i = 0; i != 16; ++i) 9509 ShufIdxs[i] = (i&3)+0; 9510 break; 9511 case OP_VSPLTISW1: 9512 for (unsigned i = 0; i != 16; ++i) 9513 ShufIdxs[i] = (i&3)+4; 9514 break; 9515 case OP_VSPLTISW2: 9516 for (unsigned i = 0; i != 16; ++i) 9517 ShufIdxs[i] = (i&3)+8; 9518 break; 9519 case OP_VSPLTISW3: 9520 for (unsigned i = 0; i != 16; ++i) 9521 ShufIdxs[i] = (i&3)+12; 9522 break; 9523 case OP_VSLDOI4: 9524 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9525 case OP_VSLDOI8: 9526 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9527 case OP_VSLDOI12: 9528 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9529 } 9530 EVT VT = OpLHS.getValueType(); 9531 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9532 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9533 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9534 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9535 } 9536 9537 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9538 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9539 /// SDValue. 9540 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9541 SelectionDAG &DAG) const { 9542 const unsigned BytesInVector = 16; 9543 bool IsLE = Subtarget.isLittleEndian(); 9544 SDLoc dl(N); 9545 SDValue V1 = N->getOperand(0); 9546 SDValue V2 = N->getOperand(1); 9547 unsigned ShiftElts = 0, InsertAtByte = 0; 9548 bool Swap = false; 9549 9550 // Shifts required to get the byte we want at element 7. 9551 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9552 0, 15, 14, 13, 12, 11, 10, 9}; 9553 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9554 1, 2, 3, 4, 5, 6, 7, 8}; 9555 9556 ArrayRef<int> Mask = N->getMask(); 9557 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9558 9559 // For each mask element, find out if we're just inserting something 9560 // from V2 into V1 or vice versa. 9561 // Possible permutations inserting an element from V2 into V1: 9562 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9563 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9564 // ... 9565 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9566 // Inserting from V1 into V2 will be similar, except mask range will be 9567 // [16,31]. 9568 9569 bool FoundCandidate = false; 9570 // If both vector operands for the shuffle are the same vector, the mask 9571 // will contain only elements from the first one and the second one will be 9572 // undef. 9573 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9574 // Go through the mask of half-words to find an element that's being moved 9575 // from one vector to the other. 9576 for (unsigned i = 0; i < BytesInVector; ++i) { 9577 unsigned CurrentElement = Mask[i]; 9578 // If 2nd operand is undefined, we should only look for element 7 in the 9579 // Mask. 9580 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9581 continue; 9582 9583 bool OtherElementsInOrder = true; 9584 // Examine the other elements in the Mask to see if they're in original 9585 // order. 9586 for (unsigned j = 0; j < BytesInVector; ++j) { 9587 if (j == i) 9588 continue; 9589 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9590 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9591 // in which we always assume we're always picking from the 1st operand. 9592 int MaskOffset = 9593 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9594 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9595 OtherElementsInOrder = false; 9596 break; 9597 } 9598 } 9599 // If other elements are in original order, we record the number of shifts 9600 // we need to get the element we want into element 7. Also record which byte 9601 // in the vector we should insert into. 9602 if (OtherElementsInOrder) { 9603 // If 2nd operand is undefined, we assume no shifts and no swapping. 9604 if (V2.isUndef()) { 9605 ShiftElts = 0; 9606 Swap = false; 9607 } else { 9608 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9609 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9610 : BigEndianShifts[CurrentElement & 0xF]; 9611 Swap = CurrentElement < BytesInVector; 9612 } 9613 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9614 FoundCandidate = true; 9615 break; 9616 } 9617 } 9618 9619 if (!FoundCandidate) 9620 return SDValue(); 9621 9622 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9623 // optionally with VECSHL if shift is required. 9624 if (Swap) 9625 std::swap(V1, V2); 9626 if (V2.isUndef()) 9627 V2 = V1; 9628 if (ShiftElts) { 9629 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9630 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9631 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9632 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9633 } 9634 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9635 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9636 } 9637 9638 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9639 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9640 /// SDValue. 9641 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9642 SelectionDAG &DAG) const { 9643 const unsigned NumHalfWords = 8; 9644 const unsigned BytesInVector = NumHalfWords * 2; 9645 // Check that the shuffle is on half-words. 9646 if (!isNByteElemShuffleMask(N, 2, 1)) 9647 return SDValue(); 9648 9649 bool IsLE = Subtarget.isLittleEndian(); 9650 SDLoc dl(N); 9651 SDValue V1 = N->getOperand(0); 9652 SDValue V2 = N->getOperand(1); 9653 unsigned ShiftElts = 0, InsertAtByte = 0; 9654 bool Swap = false; 9655 9656 // Shifts required to get the half-word we want at element 3. 9657 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9658 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9659 9660 uint32_t Mask = 0; 9661 uint32_t OriginalOrderLow = 0x1234567; 9662 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9663 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9664 // 32-bit space, only need 4-bit nibbles per element. 9665 for (unsigned i = 0; i < NumHalfWords; ++i) { 9666 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9667 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9668 } 9669 9670 // For each mask element, find out if we're just inserting something 9671 // from V2 into V1 or vice versa. Possible permutations inserting an element 9672 // from V2 into V1: 9673 // X, 1, 2, 3, 4, 5, 6, 7 9674 // 0, X, 2, 3, 4, 5, 6, 7 9675 // 0, 1, X, 3, 4, 5, 6, 7 9676 // 0, 1, 2, X, 4, 5, 6, 7 9677 // 0, 1, 2, 3, X, 5, 6, 7 9678 // 0, 1, 2, 3, 4, X, 6, 7 9679 // 0, 1, 2, 3, 4, 5, X, 7 9680 // 0, 1, 2, 3, 4, 5, 6, X 9681 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9682 9683 bool FoundCandidate = false; 9684 // Go through the mask of half-words to find an element that's being moved 9685 // from one vector to the other. 9686 for (unsigned i = 0; i < NumHalfWords; ++i) { 9687 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9688 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9689 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9690 uint32_t TargetOrder = 0x0; 9691 9692 // If both vector operands for the shuffle are the same vector, the mask 9693 // will contain only elements from the first one and the second one will be 9694 // undef. 9695 if (V2.isUndef()) { 9696 ShiftElts = 0; 9697 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9698 TargetOrder = OriginalOrderLow; 9699 Swap = false; 9700 // Skip if not the correct element or mask of other elements don't equal 9701 // to our expected order. 9702 if (MaskOneElt == VINSERTHSrcElem && 9703 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9704 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9705 FoundCandidate = true; 9706 break; 9707 } 9708 } else { // If both operands are defined. 9709 // Target order is [8,15] if the current mask is between [0,7]. 9710 TargetOrder = 9711 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9712 // Skip if mask of other elements don't equal our expected order. 9713 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9714 // We only need the last 3 bits for the number of shifts. 9715 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9716 : BigEndianShifts[MaskOneElt & 0x7]; 9717 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9718 Swap = MaskOneElt < NumHalfWords; 9719 FoundCandidate = true; 9720 break; 9721 } 9722 } 9723 } 9724 9725 if (!FoundCandidate) 9726 return SDValue(); 9727 9728 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9729 // optionally with VECSHL if shift is required. 9730 if (Swap) 9731 std::swap(V1, V2); 9732 if (V2.isUndef()) 9733 V2 = V1; 9734 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9735 if (ShiftElts) { 9736 // Double ShiftElts because we're left shifting on v16i8 type. 9737 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9738 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9739 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9740 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9741 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9742 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9743 } 9744 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9745 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9746 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9747 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9748 } 9749 9750 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9751 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9752 /// return the default SDValue. 9753 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9754 SelectionDAG &DAG) const { 9755 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9756 // to v16i8. Peek through the bitcasts to get the actual operands. 9757 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9758 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9759 9760 auto ShuffleMask = SVN->getMask(); 9761 SDValue VecShuffle(SVN, 0); 9762 SDLoc DL(SVN); 9763 9764 // Check that we have a four byte shuffle. 9765 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9766 return SDValue(); 9767 9768 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9769 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9770 std::swap(LHS, RHS); 9771 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9772 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9773 } 9774 9775 // Ensure that the RHS is a vector of constants. 9776 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9777 if (!BVN) 9778 return SDValue(); 9779 9780 // Check if RHS is a splat of 4-bytes (or smaller). 9781 APInt APSplatValue, APSplatUndef; 9782 unsigned SplatBitSize; 9783 bool HasAnyUndefs; 9784 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9785 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9786 SplatBitSize > 32) 9787 return SDValue(); 9788 9789 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9790 // The instruction splats a constant C into two words of the source vector 9791 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9792 // Thus we check that the shuffle mask is the equivalent of 9793 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9794 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9795 // within each word are consecutive, so we only need to check the first byte. 9796 SDValue Index; 9797 bool IsLE = Subtarget.isLittleEndian(); 9798 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9799 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9800 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9801 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9802 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9803 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9804 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9805 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9806 else 9807 return SDValue(); 9808 9809 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9810 // for XXSPLTI32DX. 9811 unsigned SplatVal = APSplatValue.getZExtValue(); 9812 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9813 SplatVal |= (SplatVal << SplatBitSize); 9814 9815 SDValue SplatNode = DAG.getNode( 9816 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9817 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9818 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9819 } 9820 9821 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9822 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9823 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9824 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9825 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9826 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9827 assert(Op.getValueType() == MVT::v1i128 && 9828 "Only set v1i128 as custom, other type shouldn't reach here!"); 9829 SDLoc dl(Op); 9830 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9831 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9832 unsigned SHLAmt = N1.getConstantOperandVal(0); 9833 if (SHLAmt % 8 == 0) { 9834 std::array<int, 16> Mask; 9835 std::iota(Mask.begin(), Mask.end(), 0); 9836 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9837 if (SDValue Shuffle = 9838 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9839 DAG.getUNDEF(MVT::v16i8), Mask)) 9840 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9841 } 9842 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9843 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9844 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9845 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9846 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9847 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9848 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9849 } 9850 9851 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9852 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9853 /// return the code it can be lowered into. Worst case, it can always be 9854 /// lowered into a vperm. 9855 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9856 SelectionDAG &DAG) const { 9857 SDLoc dl(Op); 9858 SDValue V1 = Op.getOperand(0); 9859 SDValue V2 = Op.getOperand(1); 9860 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9861 9862 // Any nodes that were combined in the target-independent combiner prior 9863 // to vector legalization will not be sent to the target combine. Try to 9864 // combine it here. 9865 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9866 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9867 return NewShuffle; 9868 Op = NewShuffle; 9869 SVOp = cast<ShuffleVectorSDNode>(Op); 9870 V1 = Op.getOperand(0); 9871 V2 = Op.getOperand(1); 9872 } 9873 EVT VT = Op.getValueType(); 9874 bool isLittleEndian = Subtarget.isLittleEndian(); 9875 9876 unsigned ShiftElts, InsertAtByte; 9877 bool Swap = false; 9878 9879 // If this is a load-and-splat, we can do that with a single instruction 9880 // in some cases. However if the load has multiple uses, we don't want to 9881 // combine it because that will just produce multiple loads. 9882 bool IsPermutedLoad = false; 9883 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9884 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9885 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9886 InputLoad->hasOneUse()) { 9887 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9888 int SplatIdx = 9889 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9890 9891 // The splat index for permuted loads will be in the left half of the vector 9892 // which is strictly wider than the loaded value by 8 bytes. So we need to 9893 // adjust the splat index to point to the correct address in memory. 9894 if (IsPermutedLoad) { 9895 assert((isLittleEndian || IsFourByte) && 9896 "Unexpected size for permuted load on big endian target"); 9897 SplatIdx += IsFourByte ? 2 : 1; 9898 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9899 "Splat of a value outside of the loaded memory"); 9900 } 9901 9902 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9903 // For 4-byte load-and-splat, we need Power9. 9904 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9905 uint64_t Offset = 0; 9906 if (IsFourByte) 9907 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9908 else 9909 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9910 9911 // If the width of the load is the same as the width of the splat, 9912 // loading with an offset would load the wrong memory. 9913 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9914 Offset = 0; 9915 9916 SDValue BasePtr = LD->getBasePtr(); 9917 if (Offset != 0) 9918 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9919 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9920 SDValue Ops[] = { 9921 LD->getChain(), // Chain 9922 BasePtr, // BasePtr 9923 DAG.getValueType(Op.getValueType()) // VT 9924 }; 9925 SDVTList VTL = 9926 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9927 SDValue LdSplt = 9928 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9929 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9930 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9931 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9932 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9933 return LdSplt; 9934 } 9935 } 9936 if (Subtarget.hasP9Vector() && 9937 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9938 isLittleEndian)) { 9939 if (Swap) 9940 std::swap(V1, V2); 9941 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9942 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9943 if (ShiftElts) { 9944 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9945 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9946 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9947 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9948 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9949 } 9950 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9951 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9952 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9953 } 9954 9955 if (Subtarget.hasPrefixInstrs()) { 9956 SDValue SplatInsertNode; 9957 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9958 return SplatInsertNode; 9959 } 9960 9961 if (Subtarget.hasP9Altivec()) { 9962 SDValue NewISDNode; 9963 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9964 return NewISDNode; 9965 9966 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9967 return NewISDNode; 9968 } 9969 9970 if (Subtarget.hasVSX() && 9971 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9972 if (Swap) 9973 std::swap(V1, V2); 9974 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9975 SDValue Conv2 = 9976 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9977 9978 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9979 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9980 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9981 } 9982 9983 if (Subtarget.hasVSX() && 9984 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9985 if (Swap) 9986 std::swap(V1, V2); 9987 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9988 SDValue Conv2 = 9989 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9990 9991 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9992 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9993 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9994 } 9995 9996 if (Subtarget.hasP9Vector()) { 9997 if (PPC::isXXBRHShuffleMask(SVOp)) { 9998 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9999 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 10000 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 10001 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 10002 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10003 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 10004 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 10005 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10006 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10007 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10008 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10009 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10010 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10011 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10012 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10013 } 10014 } 10015 10016 if (Subtarget.hasVSX()) { 10017 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10018 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10019 10020 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10021 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10022 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10023 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10024 } 10025 10026 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10027 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10028 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10029 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10030 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10031 } 10032 } 10033 10034 // Cases that are handled by instructions that take permute immediates 10035 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10036 // selected by the instruction selector. 10037 if (V2.isUndef()) { 10038 if (PPC::isSplatShuffleMask(SVOp, 1) || 10039 PPC::isSplatShuffleMask(SVOp, 2) || 10040 PPC::isSplatShuffleMask(SVOp, 4) || 10041 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10042 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10043 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10044 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10045 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10046 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10047 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10048 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10049 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10050 (Subtarget.hasP8Altivec() && ( 10051 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10052 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10053 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10054 return Op; 10055 } 10056 } 10057 10058 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10059 // and produce a fixed permutation. If any of these match, do not lower to 10060 // VPERM. 10061 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10062 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10063 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10064 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10065 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10066 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10067 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10068 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10069 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10070 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10071 (Subtarget.hasP8Altivec() && ( 10072 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10073 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10074 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10075 return Op; 10076 10077 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10078 // perfect shuffle table to emit an optimal matching sequence. 10079 ArrayRef<int> PermMask = SVOp->getMask(); 10080 10081 if (!DisablePerfectShuffle && !isLittleEndian) { 10082 unsigned PFIndexes[4]; 10083 bool isFourElementShuffle = true; 10084 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10085 ++i) { // Element number 10086 unsigned EltNo = 8; // Start out undef. 10087 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10088 if (PermMask[i * 4 + j] < 0) 10089 continue; // Undef, ignore it. 10090 10091 unsigned ByteSource = PermMask[i * 4 + j]; 10092 if ((ByteSource & 3) != j) { 10093 isFourElementShuffle = false; 10094 break; 10095 } 10096 10097 if (EltNo == 8) { 10098 EltNo = ByteSource / 4; 10099 } else if (EltNo != ByteSource / 4) { 10100 isFourElementShuffle = false; 10101 break; 10102 } 10103 } 10104 PFIndexes[i] = EltNo; 10105 } 10106 10107 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10108 // perfect shuffle vector to determine if it is cost effective to do this as 10109 // discrete instructions, or whether we should use a vperm. 10110 // For now, we skip this for little endian until such time as we have a 10111 // little-endian perfect shuffle table. 10112 if (isFourElementShuffle) { 10113 // Compute the index in the perfect shuffle table. 10114 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10115 PFIndexes[2] * 9 + PFIndexes[3]; 10116 10117 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10118 unsigned Cost = (PFEntry >> 30); 10119 10120 // Determining when to avoid vperm is tricky. Many things affect the cost 10121 // of vperm, particularly how many times the perm mask needs to be 10122 // computed. For example, if the perm mask can be hoisted out of a loop or 10123 // is already used (perhaps because there are multiple permutes with the 10124 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10125 // permute mask out of the loop requires an extra register. 10126 // 10127 // As a compromise, we only emit discrete instructions if the shuffle can 10128 // be generated in 3 or fewer operations. When we have loop information 10129 // available, if this block is within a loop, we should avoid using vperm 10130 // for 3-operation perms and use a constant pool load instead. 10131 if (Cost < 3) 10132 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10133 } 10134 } 10135 10136 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10137 // vector that will get spilled to the constant pool. 10138 if (V2.isUndef()) V2 = V1; 10139 10140 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10141 // that it is in input element units, not in bytes. Convert now. 10142 10143 // For little endian, the order of the input vectors is reversed, and 10144 // the permutation mask is complemented with respect to 31. This is 10145 // necessary to produce proper semantics with the big-endian-biased vperm 10146 // instruction. 10147 EVT EltVT = V1.getValueType().getVectorElementType(); 10148 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10149 10150 SmallVector<SDValue, 16> ResultMask; 10151 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10152 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10153 10154 for (unsigned j = 0; j != BytesPerElement; ++j) 10155 if (isLittleEndian) 10156 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10157 dl, MVT::i32)); 10158 else 10159 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10160 MVT::i32)); 10161 } 10162 10163 ShufflesHandledWithVPERM++; 10164 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10165 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10166 LLVM_DEBUG(SVOp->dump()); 10167 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10168 LLVM_DEBUG(VPermMask.dump()); 10169 10170 if (isLittleEndian) 10171 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10172 V2, V1, VPermMask); 10173 else 10174 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10175 V1, V2, VPermMask); 10176 } 10177 10178 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10179 /// vector comparison. If it is, return true and fill in Opc/isDot with 10180 /// information about the intrinsic. 10181 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10182 bool &isDot, const PPCSubtarget &Subtarget) { 10183 unsigned IntrinsicID = 10184 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10185 CompareOpc = -1; 10186 isDot = false; 10187 switch (IntrinsicID) { 10188 default: 10189 return false; 10190 // Comparison predicates. 10191 case Intrinsic::ppc_altivec_vcmpbfp_p: 10192 CompareOpc = 966; 10193 isDot = true; 10194 break; 10195 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10196 CompareOpc = 198; 10197 isDot = true; 10198 break; 10199 case Intrinsic::ppc_altivec_vcmpequb_p: 10200 CompareOpc = 6; 10201 isDot = true; 10202 break; 10203 case Intrinsic::ppc_altivec_vcmpequh_p: 10204 CompareOpc = 70; 10205 isDot = true; 10206 break; 10207 case Intrinsic::ppc_altivec_vcmpequw_p: 10208 CompareOpc = 134; 10209 isDot = true; 10210 break; 10211 case Intrinsic::ppc_altivec_vcmpequd_p: 10212 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10213 CompareOpc = 199; 10214 isDot = true; 10215 } else 10216 return false; 10217 break; 10218 case Intrinsic::ppc_altivec_vcmpneb_p: 10219 case Intrinsic::ppc_altivec_vcmpneh_p: 10220 case Intrinsic::ppc_altivec_vcmpnew_p: 10221 case Intrinsic::ppc_altivec_vcmpnezb_p: 10222 case Intrinsic::ppc_altivec_vcmpnezh_p: 10223 case Intrinsic::ppc_altivec_vcmpnezw_p: 10224 if (Subtarget.hasP9Altivec()) { 10225 switch (IntrinsicID) { 10226 default: 10227 llvm_unreachable("Unknown comparison intrinsic."); 10228 case Intrinsic::ppc_altivec_vcmpneb_p: 10229 CompareOpc = 7; 10230 break; 10231 case Intrinsic::ppc_altivec_vcmpneh_p: 10232 CompareOpc = 71; 10233 break; 10234 case Intrinsic::ppc_altivec_vcmpnew_p: 10235 CompareOpc = 135; 10236 break; 10237 case Intrinsic::ppc_altivec_vcmpnezb_p: 10238 CompareOpc = 263; 10239 break; 10240 case Intrinsic::ppc_altivec_vcmpnezh_p: 10241 CompareOpc = 327; 10242 break; 10243 case Intrinsic::ppc_altivec_vcmpnezw_p: 10244 CompareOpc = 391; 10245 break; 10246 } 10247 isDot = true; 10248 } else 10249 return false; 10250 break; 10251 case Intrinsic::ppc_altivec_vcmpgefp_p: 10252 CompareOpc = 454; 10253 isDot = true; 10254 break; 10255 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10256 CompareOpc = 710; 10257 isDot = true; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10260 CompareOpc = 774; 10261 isDot = true; 10262 break; 10263 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10264 CompareOpc = 838; 10265 isDot = true; 10266 break; 10267 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10268 CompareOpc = 902; 10269 isDot = true; 10270 break; 10271 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10272 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10273 CompareOpc = 967; 10274 isDot = true; 10275 } else 10276 return false; 10277 break; 10278 case Intrinsic::ppc_altivec_vcmpgtub_p: 10279 CompareOpc = 518; 10280 isDot = true; 10281 break; 10282 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10283 CompareOpc = 582; 10284 isDot = true; 10285 break; 10286 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10287 CompareOpc = 646; 10288 isDot = true; 10289 break; 10290 case Intrinsic::ppc_altivec_vcmpgtud_p: 10291 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10292 CompareOpc = 711; 10293 isDot = true; 10294 } else 10295 return false; 10296 break; 10297 10298 case Intrinsic::ppc_altivec_vcmpequq: 10299 case Intrinsic::ppc_altivec_vcmpgtsq: 10300 case Intrinsic::ppc_altivec_vcmpgtuq: 10301 if (!Subtarget.isISA3_1()) 10302 return false; 10303 switch (IntrinsicID) { 10304 default: 10305 llvm_unreachable("Unknown comparison intrinsic."); 10306 case Intrinsic::ppc_altivec_vcmpequq: 10307 CompareOpc = 455; 10308 break; 10309 case Intrinsic::ppc_altivec_vcmpgtsq: 10310 CompareOpc = 903; 10311 break; 10312 case Intrinsic::ppc_altivec_vcmpgtuq: 10313 CompareOpc = 647; 10314 break; 10315 } 10316 break; 10317 10318 // VSX predicate comparisons use the same infrastructure 10319 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10320 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10321 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10322 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10323 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10324 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10325 if (Subtarget.hasVSX()) { 10326 switch (IntrinsicID) { 10327 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10328 CompareOpc = 99; 10329 break; 10330 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10331 CompareOpc = 115; 10332 break; 10333 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10334 CompareOpc = 107; 10335 break; 10336 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10337 CompareOpc = 67; 10338 break; 10339 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10340 CompareOpc = 83; 10341 break; 10342 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10343 CompareOpc = 75; 10344 break; 10345 } 10346 isDot = true; 10347 } else 10348 return false; 10349 break; 10350 10351 // Normal Comparisons. 10352 case Intrinsic::ppc_altivec_vcmpbfp: 10353 CompareOpc = 966; 10354 break; 10355 case Intrinsic::ppc_altivec_vcmpeqfp: 10356 CompareOpc = 198; 10357 break; 10358 case Intrinsic::ppc_altivec_vcmpequb: 10359 CompareOpc = 6; 10360 break; 10361 case Intrinsic::ppc_altivec_vcmpequh: 10362 CompareOpc = 70; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpequw: 10365 CompareOpc = 134; 10366 break; 10367 case Intrinsic::ppc_altivec_vcmpequd: 10368 if (Subtarget.hasP8Altivec()) 10369 CompareOpc = 199; 10370 else 10371 return false; 10372 break; 10373 case Intrinsic::ppc_altivec_vcmpneb: 10374 case Intrinsic::ppc_altivec_vcmpneh: 10375 case Intrinsic::ppc_altivec_vcmpnew: 10376 case Intrinsic::ppc_altivec_vcmpnezb: 10377 case Intrinsic::ppc_altivec_vcmpnezh: 10378 case Intrinsic::ppc_altivec_vcmpnezw: 10379 if (Subtarget.hasP9Altivec()) 10380 switch (IntrinsicID) { 10381 default: 10382 llvm_unreachable("Unknown comparison intrinsic."); 10383 case Intrinsic::ppc_altivec_vcmpneb: 10384 CompareOpc = 7; 10385 break; 10386 case Intrinsic::ppc_altivec_vcmpneh: 10387 CompareOpc = 71; 10388 break; 10389 case Intrinsic::ppc_altivec_vcmpnew: 10390 CompareOpc = 135; 10391 break; 10392 case Intrinsic::ppc_altivec_vcmpnezb: 10393 CompareOpc = 263; 10394 break; 10395 case Intrinsic::ppc_altivec_vcmpnezh: 10396 CompareOpc = 327; 10397 break; 10398 case Intrinsic::ppc_altivec_vcmpnezw: 10399 CompareOpc = 391; 10400 break; 10401 } 10402 else 10403 return false; 10404 break; 10405 case Intrinsic::ppc_altivec_vcmpgefp: 10406 CompareOpc = 454; 10407 break; 10408 case Intrinsic::ppc_altivec_vcmpgtfp: 10409 CompareOpc = 710; 10410 break; 10411 case Intrinsic::ppc_altivec_vcmpgtsb: 10412 CompareOpc = 774; 10413 break; 10414 case Intrinsic::ppc_altivec_vcmpgtsh: 10415 CompareOpc = 838; 10416 break; 10417 case Intrinsic::ppc_altivec_vcmpgtsw: 10418 CompareOpc = 902; 10419 break; 10420 case Intrinsic::ppc_altivec_vcmpgtsd: 10421 if (Subtarget.hasP8Altivec()) 10422 CompareOpc = 967; 10423 else 10424 return false; 10425 break; 10426 case Intrinsic::ppc_altivec_vcmpgtub: 10427 CompareOpc = 518; 10428 break; 10429 case Intrinsic::ppc_altivec_vcmpgtuh: 10430 CompareOpc = 582; 10431 break; 10432 case Intrinsic::ppc_altivec_vcmpgtuw: 10433 CompareOpc = 646; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpgtud: 10436 if (Subtarget.hasP8Altivec()) 10437 CompareOpc = 711; 10438 else 10439 return false; 10440 break; 10441 case Intrinsic::ppc_altivec_vcmpequq_p: 10442 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10443 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10444 if (!Subtarget.isISA3_1()) 10445 return false; 10446 switch (IntrinsicID) { 10447 default: 10448 llvm_unreachable("Unknown comparison intrinsic."); 10449 case Intrinsic::ppc_altivec_vcmpequq_p: 10450 CompareOpc = 455; 10451 break; 10452 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10453 CompareOpc = 903; 10454 break; 10455 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10456 CompareOpc = 647; 10457 break; 10458 } 10459 isDot = true; 10460 break; 10461 } 10462 return true; 10463 } 10464 10465 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10466 /// lower, do it, otherwise return null. 10467 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10468 SelectionDAG &DAG) const { 10469 unsigned IntrinsicID = 10470 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10471 10472 SDLoc dl(Op); 10473 10474 switch (IntrinsicID) { 10475 case Intrinsic::thread_pointer: 10476 // Reads the thread pointer register, used for __builtin_thread_pointer. 10477 if (Subtarget.isPPC64()) 10478 return DAG.getRegister(PPC::X13, MVT::i64); 10479 return DAG.getRegister(PPC::R2, MVT::i32); 10480 10481 case Intrinsic::ppc_mma_disassemble_acc: 10482 case Intrinsic::ppc_vsx_disassemble_pair: { 10483 int NumVecs = 2; 10484 SDValue WideVec = Op.getOperand(1); 10485 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10486 NumVecs = 4; 10487 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10488 } 10489 SmallVector<SDValue, 4> RetOps; 10490 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10491 SDValue Extract = DAG.getNode( 10492 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10493 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10494 : VecNo, 10495 dl, getPointerTy(DAG.getDataLayout()))); 10496 RetOps.push_back(Extract); 10497 } 10498 return DAG.getMergeValues(RetOps, dl); 10499 } 10500 10501 case Intrinsic::ppc_unpack_longdouble: { 10502 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10503 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10504 "Argument of long double unpack must be 0 or 1!"); 10505 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10506 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10507 Idx->getValueType(0))); 10508 } 10509 10510 case Intrinsic::ppc_compare_exp_lt: 10511 case Intrinsic::ppc_compare_exp_gt: 10512 case Intrinsic::ppc_compare_exp_eq: 10513 case Intrinsic::ppc_compare_exp_uo: { 10514 unsigned Pred; 10515 switch (IntrinsicID) { 10516 case Intrinsic::ppc_compare_exp_lt: 10517 Pred = PPC::PRED_LT; 10518 break; 10519 case Intrinsic::ppc_compare_exp_gt: 10520 Pred = PPC::PRED_GT; 10521 break; 10522 case Intrinsic::ppc_compare_exp_eq: 10523 Pred = PPC::PRED_EQ; 10524 break; 10525 case Intrinsic::ppc_compare_exp_uo: 10526 Pred = PPC::PRED_UN; 10527 break; 10528 } 10529 return SDValue( 10530 DAG.getMachineNode( 10531 PPC::SELECT_CC_I4, dl, MVT::i32, 10532 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10533 Op.getOperand(1), Op.getOperand(2)), 10534 0), 10535 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10536 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10537 0); 10538 } 10539 case Intrinsic::ppc_test_data_class_d: 10540 case Intrinsic::ppc_test_data_class_f: { 10541 unsigned CmprOpc = PPC::XSTSTDCDP; 10542 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10543 CmprOpc = PPC::XSTSTDCSP; 10544 return SDValue( 10545 DAG.getMachineNode( 10546 PPC::SELECT_CC_I4, dl, MVT::i32, 10547 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10548 Op.getOperand(1)), 10549 0), 10550 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10551 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10552 0); 10553 } 10554 case Intrinsic::ppc_fnmsub: { 10555 EVT VT = Op.getOperand(1).getValueType(); 10556 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10557 return DAG.getNode( 10558 ISD::FNEG, dl, VT, 10559 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10560 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10561 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10562 Op.getOperand(2), Op.getOperand(3)); 10563 } 10564 case Intrinsic::ppc_convert_f128_to_ppcf128: 10565 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10566 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10567 ? RTLIB::CONVERT_PPCF128_F128 10568 : RTLIB::CONVERT_F128_PPCF128; 10569 MakeLibCallOptions CallOptions; 10570 std::pair<SDValue, SDValue> Result = 10571 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10572 dl, SDValue()); 10573 return Result.first; 10574 } 10575 } 10576 10577 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10578 // opcode number of the comparison. 10579 int CompareOpc; 10580 bool isDot; 10581 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10582 return SDValue(); // Don't custom lower most intrinsics. 10583 10584 // If this is a non-dot comparison, make the VCMP node and we are done. 10585 if (!isDot) { 10586 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10587 Op.getOperand(1), Op.getOperand(2), 10588 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10589 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10590 } 10591 10592 // Create the PPCISD altivec 'dot' comparison node. 10593 SDValue Ops[] = { 10594 Op.getOperand(2), // LHS 10595 Op.getOperand(3), // RHS 10596 DAG.getConstant(CompareOpc, dl, MVT::i32) 10597 }; 10598 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10599 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10600 10601 // Now that we have the comparison, emit a copy from the CR to a GPR. 10602 // This is flagged to the above dot comparison. 10603 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10604 DAG.getRegister(PPC::CR6, MVT::i32), 10605 CompNode.getValue(1)); 10606 10607 // Unpack the result based on how the target uses it. 10608 unsigned BitNo; // Bit # of CR6. 10609 bool InvertBit; // Invert result? 10610 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10611 default: // Can't happen, don't crash on invalid number though. 10612 case 0: // Return the value of the EQ bit of CR6. 10613 BitNo = 0; InvertBit = false; 10614 break; 10615 case 1: // Return the inverted value of the EQ bit of CR6. 10616 BitNo = 0; InvertBit = true; 10617 break; 10618 case 2: // Return the value of the LT bit of CR6. 10619 BitNo = 2; InvertBit = false; 10620 break; 10621 case 3: // Return the inverted value of the LT bit of CR6. 10622 BitNo = 2; InvertBit = true; 10623 break; 10624 } 10625 10626 // Shift the bit into the low position. 10627 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10628 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10629 // Isolate the bit. 10630 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10631 DAG.getConstant(1, dl, MVT::i32)); 10632 10633 // If we are supposed to, toggle the bit. 10634 if (InvertBit) 10635 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10636 DAG.getConstant(1, dl, MVT::i32)); 10637 return Flags; 10638 } 10639 10640 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10641 SelectionDAG &DAG) const { 10642 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10643 // the beginning of the argument list. 10644 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10645 SDLoc DL(Op); 10646 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10647 case Intrinsic::ppc_cfence: { 10648 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10649 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10650 SDValue Val = Op.getOperand(ArgStart + 1); 10651 EVT Ty = Val.getValueType(); 10652 if (Ty == MVT::i128) { 10653 // FIXME: Testing one of two paired registers is sufficient to guarantee 10654 // ordering? 10655 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10656 } 10657 return SDValue( 10658 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10659 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10660 Op.getOperand(0)), 10661 0); 10662 } 10663 default: 10664 break; 10665 } 10666 return SDValue(); 10667 } 10668 10669 // Lower scalar BSWAP64 to xxbrd. 10670 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10671 SDLoc dl(Op); 10672 if (!Subtarget.isPPC64()) 10673 return Op; 10674 // MTVSRDD 10675 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10676 Op.getOperand(0)); 10677 // XXBRD 10678 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10679 // MFVSRD 10680 int VectorIndex = 0; 10681 if (Subtarget.isLittleEndian()) 10682 VectorIndex = 1; 10683 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10684 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10685 return Op; 10686 } 10687 10688 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10689 // compared to a value that is atomically loaded (atomic loads zero-extend). 10690 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10691 SelectionDAG &DAG) const { 10692 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10693 "Expecting an atomic compare-and-swap here."); 10694 SDLoc dl(Op); 10695 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10696 EVT MemVT = AtomicNode->getMemoryVT(); 10697 if (MemVT.getSizeInBits() >= 32) 10698 return Op; 10699 10700 SDValue CmpOp = Op.getOperand(2); 10701 // If this is already correctly zero-extended, leave it alone. 10702 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10703 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10704 return Op; 10705 10706 // Clear the high bits of the compare operand. 10707 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10708 SDValue NewCmpOp = 10709 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10710 DAG.getConstant(MaskVal, dl, MVT::i32)); 10711 10712 // Replace the existing compare operand with the properly zero-extended one. 10713 SmallVector<SDValue, 4> Ops; 10714 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10715 Ops.push_back(AtomicNode->getOperand(i)); 10716 Ops[2] = NewCmpOp; 10717 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10718 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10719 auto NodeTy = 10720 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10721 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10722 } 10723 10724 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10725 SelectionDAG &DAG) const { 10726 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10727 EVT MemVT = N->getMemoryVT(); 10728 assert(MemVT.getSimpleVT() == MVT::i128 && 10729 "Expect quadword atomic operations"); 10730 SDLoc dl(N); 10731 unsigned Opc = N->getOpcode(); 10732 switch (Opc) { 10733 case ISD::ATOMIC_LOAD: { 10734 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10735 // lowered to ppc instructions by pattern matching instruction selector. 10736 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10737 SmallVector<SDValue, 4> Ops{ 10738 N->getOperand(0), 10739 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10740 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10741 Ops.push_back(N->getOperand(I)); 10742 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10743 Ops, MemVT, N->getMemOperand()); 10744 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10745 SDValue ValHi = 10746 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10747 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10748 DAG.getConstant(64, dl, MVT::i32)); 10749 SDValue Val = 10750 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10751 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10752 {Val, LoadedVal.getValue(2)}); 10753 } 10754 case ISD::ATOMIC_STORE: { 10755 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10756 // lowered to ppc instructions by pattern matching instruction selector. 10757 SDVTList Tys = DAG.getVTList(MVT::Other); 10758 SmallVector<SDValue, 4> Ops{ 10759 N->getOperand(0), 10760 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10761 SDValue Val = N->getOperand(2); 10762 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10763 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10764 DAG.getConstant(64, dl, MVT::i32)); 10765 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10766 Ops.push_back(ValLo); 10767 Ops.push_back(ValHi); 10768 Ops.push_back(N->getOperand(1)); 10769 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10770 N->getMemOperand()); 10771 } 10772 default: 10773 llvm_unreachable("Unexpected atomic opcode"); 10774 } 10775 } 10776 10777 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10778 SelectionDAG &DAG) const { 10779 SDLoc dl(Op); 10780 // Create a stack slot that is 16-byte aligned. 10781 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10782 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10783 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10784 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10785 10786 // Store the input value into Value#0 of the stack slot. 10787 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10788 MachinePointerInfo()); 10789 // Load it out. 10790 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10791 } 10792 10793 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10794 SelectionDAG &DAG) const { 10795 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10796 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10797 10798 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10799 10800 EVT VT = Op.getValueType(); 10801 SDLoc dl(Op); 10802 SDValue V1 = Op.getOperand(0); 10803 SDValue V2 = Op.getOperand(1); 10804 10805 if (VT == MVT::v2f64 && C) 10806 return Op; 10807 10808 if (Subtarget.hasP9Vector()) { 10809 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10810 // because on P10, it allows this specific insert_vector_elt load pattern to 10811 // utilize the refactored load and store infrastructure in order to exploit 10812 // prefixed loads. 10813 // On targets with inexpensive direct moves (Power9 and up), a 10814 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10815 // load since a single precision load will involve conversion to double 10816 // precision on the load followed by another conversion to single precision. 10817 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10818 (isa<LoadSDNode>(V2))) { 10819 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10820 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10821 SDValue InsVecElt = 10822 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10823 BitcastLoad, Op.getOperand(2)); 10824 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10825 } 10826 } 10827 10828 if (Subtarget.isISA3_1()) { 10829 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10830 return SDValue(); 10831 // On P10, we have legal lowering for constant and variable indices for 10832 // all vectors. 10833 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10834 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10835 return Op; 10836 } 10837 10838 // Before P10, we have legal lowering for constant indices but not for 10839 // variable ones. 10840 if (!C) 10841 return SDValue(); 10842 10843 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10844 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10845 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10846 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10847 unsigned InsertAtElement = C->getZExtValue(); 10848 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10849 if (Subtarget.isLittleEndian()) { 10850 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10851 } 10852 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10853 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10854 } 10855 return Op; 10856 } 10857 10858 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10859 SelectionDAG &DAG) const { 10860 SDLoc dl(Op); 10861 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10862 SDValue LoadChain = LN->getChain(); 10863 SDValue BasePtr = LN->getBasePtr(); 10864 EVT VT = Op.getValueType(); 10865 10866 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10867 return Op; 10868 10869 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10870 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10871 // 2 or 4 vsx registers. 10872 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10873 "Type unsupported without MMA"); 10874 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10875 "Type unsupported without paired vector support"); 10876 Align Alignment = LN->getAlign(); 10877 SmallVector<SDValue, 4> Loads; 10878 SmallVector<SDValue, 4> LoadChains; 10879 unsigned NumVecs = VT.getSizeInBits() / 128; 10880 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10881 SDValue Load = 10882 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10883 LN->getPointerInfo().getWithOffset(Idx * 16), 10884 commonAlignment(Alignment, Idx * 16), 10885 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10886 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10887 DAG.getConstant(16, dl, BasePtr.getValueType())); 10888 Loads.push_back(Load); 10889 LoadChains.push_back(Load.getValue(1)); 10890 } 10891 if (Subtarget.isLittleEndian()) { 10892 std::reverse(Loads.begin(), Loads.end()); 10893 std::reverse(LoadChains.begin(), LoadChains.end()); 10894 } 10895 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10896 SDValue Value = 10897 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10898 dl, VT, Loads); 10899 SDValue RetOps[] = {Value, TF}; 10900 return DAG.getMergeValues(RetOps, dl); 10901 } 10902 10903 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10904 SelectionDAG &DAG) const { 10905 SDLoc dl(Op); 10906 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10907 SDValue StoreChain = SN->getChain(); 10908 SDValue BasePtr = SN->getBasePtr(); 10909 SDValue Value = SN->getValue(); 10910 EVT StoreVT = Value.getValueType(); 10911 10912 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10913 return Op; 10914 10915 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10916 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10917 // underlying registers individually. 10918 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10919 "Type unsupported without MMA"); 10920 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10921 "Type unsupported without paired vector support"); 10922 Align Alignment = SN->getAlign(); 10923 SmallVector<SDValue, 4> Stores; 10924 unsigned NumVecs = 2; 10925 if (StoreVT == MVT::v512i1) { 10926 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10927 NumVecs = 4; 10928 } 10929 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10930 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10931 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10932 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10933 SDValue Store = 10934 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10935 SN->getPointerInfo().getWithOffset(Idx * 16), 10936 commonAlignment(Alignment, Idx * 16), 10937 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10938 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10939 DAG.getConstant(16, dl, BasePtr.getValueType())); 10940 Stores.push_back(Store); 10941 } 10942 SDValue TF = DAG.getTokenFactor(dl, Stores); 10943 return TF; 10944 } 10945 10946 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10947 SDLoc dl(Op); 10948 if (Op.getValueType() == MVT::v4i32) { 10949 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10950 10951 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10952 // +16 as shift amt. 10953 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10954 SDValue RHSSwap = // = vrlw RHS, 16 10955 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10956 10957 // Shrinkify inputs to v8i16. 10958 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10959 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10960 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10961 10962 // Low parts multiplied together, generating 32-bit results (we ignore the 10963 // top parts). 10964 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10965 LHS, RHS, DAG, dl, MVT::v4i32); 10966 10967 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10968 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10969 // Shift the high parts up 16 bits. 10970 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10971 Neg16, DAG, dl); 10972 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10973 } else if (Op.getValueType() == MVT::v16i8) { 10974 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10975 bool isLittleEndian = Subtarget.isLittleEndian(); 10976 10977 // Multiply the even 8-bit parts, producing 16-bit sums. 10978 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10979 LHS, RHS, DAG, dl, MVT::v8i16); 10980 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10981 10982 // Multiply the odd 8-bit parts, producing 16-bit sums. 10983 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10984 LHS, RHS, DAG, dl, MVT::v8i16); 10985 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10986 10987 // Merge the results together. Because vmuleub and vmuloub are 10988 // instructions with a big-endian bias, we must reverse the 10989 // element numbering and reverse the meaning of "odd" and "even" 10990 // when generating little endian code. 10991 int Ops[16]; 10992 for (unsigned i = 0; i != 8; ++i) { 10993 if (isLittleEndian) { 10994 Ops[i*2 ] = 2*i; 10995 Ops[i*2+1] = 2*i+16; 10996 } else { 10997 Ops[i*2 ] = 2*i+1; 10998 Ops[i*2+1] = 2*i+1+16; 10999 } 11000 } 11001 if (isLittleEndian) 11002 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11003 else 11004 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11005 } else { 11006 llvm_unreachable("Unknown mul to lower!"); 11007 } 11008 } 11009 11010 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11011 bool IsStrict = Op->isStrictFPOpcode(); 11012 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11013 !Subtarget.hasP9Vector()) 11014 return SDValue(); 11015 11016 return Op; 11017 } 11018 11019 // Custom lowering for fpext vf32 to v2f64 11020 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11021 11022 assert(Op.getOpcode() == ISD::FP_EXTEND && 11023 "Should only be called for ISD::FP_EXTEND"); 11024 11025 // FIXME: handle extends from half precision float vectors on P9. 11026 // We only want to custom lower an extend from v2f32 to v2f64. 11027 if (Op.getValueType() != MVT::v2f64 || 11028 Op.getOperand(0).getValueType() != MVT::v2f32) 11029 return SDValue(); 11030 11031 SDLoc dl(Op); 11032 SDValue Op0 = Op.getOperand(0); 11033 11034 switch (Op0.getOpcode()) { 11035 default: 11036 return SDValue(); 11037 case ISD::EXTRACT_SUBVECTOR: { 11038 assert(Op0.getNumOperands() == 2 && 11039 isa<ConstantSDNode>(Op0->getOperand(1)) && 11040 "Node should have 2 operands with second one being a constant!"); 11041 11042 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11043 return SDValue(); 11044 11045 // Custom lower is only done for high or low doubleword. 11046 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11047 if (Idx % 2 != 0) 11048 return SDValue(); 11049 11050 // Since input is v4f32, at this point Idx is either 0 or 2. 11051 // Shift to get the doubleword position we want. 11052 int DWord = Idx >> 1; 11053 11054 // High and low word positions are different on little endian. 11055 if (Subtarget.isLittleEndian()) 11056 DWord ^= 0x1; 11057 11058 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11059 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11060 } 11061 case ISD::FADD: 11062 case ISD::FMUL: 11063 case ISD::FSUB: { 11064 SDValue NewLoad[2]; 11065 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11066 // Ensure both input are loads. 11067 SDValue LdOp = Op0.getOperand(i); 11068 if (LdOp.getOpcode() != ISD::LOAD) 11069 return SDValue(); 11070 // Generate new load node. 11071 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11072 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11073 NewLoad[i] = DAG.getMemIntrinsicNode( 11074 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11075 LD->getMemoryVT(), LD->getMemOperand()); 11076 } 11077 SDValue NewOp = 11078 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11079 NewLoad[1], Op0.getNode()->getFlags()); 11080 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11081 DAG.getConstant(0, dl, MVT::i32)); 11082 } 11083 case ISD::LOAD: { 11084 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11085 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11086 SDValue NewLd = DAG.getMemIntrinsicNode( 11087 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11088 LD->getMemoryVT(), LD->getMemOperand()); 11089 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11090 DAG.getConstant(0, dl, MVT::i32)); 11091 } 11092 } 11093 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11094 } 11095 11096 /// LowerOperation - Provide custom lowering hooks for some operations. 11097 /// 11098 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11099 switch (Op.getOpcode()) { 11100 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11101 case ISD::FPOW: return lowerPow(Op, DAG); 11102 case ISD::FSIN: return lowerSin(Op, DAG); 11103 case ISD::FCOS: return lowerCos(Op, DAG); 11104 case ISD::FLOG: return lowerLog(Op, DAG); 11105 case ISD::FLOG10: return lowerLog10(Op, DAG); 11106 case ISD::FEXP: return lowerExp(Op, DAG); 11107 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11108 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11109 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11110 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11111 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11112 case ISD::STRICT_FSETCC: 11113 case ISD::STRICT_FSETCCS: 11114 case ISD::SETCC: return LowerSETCC(Op, DAG); 11115 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11116 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11117 11118 case ISD::INLINEASM: 11119 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11120 // Variable argument lowering. 11121 case ISD::VASTART: return LowerVASTART(Op, DAG); 11122 case ISD::VAARG: return LowerVAARG(Op, DAG); 11123 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11124 11125 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11126 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11127 case ISD::GET_DYNAMIC_AREA_OFFSET: 11128 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11129 11130 // Exception handling lowering. 11131 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11132 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11133 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11134 11135 case ISD::LOAD: return LowerLOAD(Op, DAG); 11136 case ISD::STORE: return LowerSTORE(Op, DAG); 11137 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11138 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11139 case ISD::STRICT_FP_TO_UINT: 11140 case ISD::STRICT_FP_TO_SINT: 11141 case ISD::FP_TO_UINT: 11142 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11143 case ISD::STRICT_UINT_TO_FP: 11144 case ISD::STRICT_SINT_TO_FP: 11145 case ISD::UINT_TO_FP: 11146 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11147 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11148 11149 // Lower 64-bit shifts. 11150 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11151 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11152 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11153 11154 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11155 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11156 11157 // Vector-related lowering. 11158 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11159 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11160 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11161 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11162 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11163 case ISD::MUL: return LowerMUL(Op, DAG); 11164 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11165 case ISD::STRICT_FP_ROUND: 11166 case ISD::FP_ROUND: 11167 return LowerFP_ROUND(Op, DAG); 11168 case ISD::ROTL: return LowerROTL(Op, DAG); 11169 11170 // For counter-based loop handling. 11171 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11172 11173 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11174 11175 // Frame & Return address. 11176 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11177 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11178 11179 case ISD::INTRINSIC_VOID: 11180 return LowerINTRINSIC_VOID(Op, DAG); 11181 case ISD::BSWAP: 11182 return LowerBSWAP(Op, DAG); 11183 case ISD::ATOMIC_CMP_SWAP: 11184 return LowerATOMIC_CMP_SWAP(Op, DAG); 11185 case ISD::ATOMIC_STORE: 11186 return LowerATOMIC_LOAD_STORE(Op, DAG); 11187 } 11188 } 11189 11190 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11191 SmallVectorImpl<SDValue>&Results, 11192 SelectionDAG &DAG) const { 11193 SDLoc dl(N); 11194 switch (N->getOpcode()) { 11195 default: 11196 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11197 case ISD::ATOMIC_LOAD: { 11198 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11199 Results.push_back(Res); 11200 Results.push_back(Res.getValue(1)); 11201 break; 11202 } 11203 case ISD::READCYCLECOUNTER: { 11204 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11205 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11206 11207 Results.push_back( 11208 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11209 Results.push_back(RTB.getValue(2)); 11210 break; 11211 } 11212 case ISD::INTRINSIC_W_CHAIN: { 11213 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11214 Intrinsic::loop_decrement) 11215 break; 11216 11217 assert(N->getValueType(0) == MVT::i1 && 11218 "Unexpected result type for CTR decrement intrinsic"); 11219 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11220 N->getValueType(0)); 11221 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11222 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11223 N->getOperand(1)); 11224 11225 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11226 Results.push_back(NewInt.getValue(1)); 11227 break; 11228 } 11229 case ISD::INTRINSIC_WO_CHAIN: { 11230 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11231 case Intrinsic::ppc_pack_longdouble: 11232 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11233 N->getOperand(2), N->getOperand(1))); 11234 break; 11235 case Intrinsic::ppc_fnmsub: 11236 case Intrinsic::ppc_convert_f128_to_ppcf128: 11237 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11238 break; 11239 } 11240 break; 11241 } 11242 case ISD::VAARG: { 11243 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11244 return; 11245 11246 EVT VT = N->getValueType(0); 11247 11248 if (VT == MVT::i64) { 11249 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11250 11251 Results.push_back(NewNode); 11252 Results.push_back(NewNode.getValue(1)); 11253 } 11254 return; 11255 } 11256 case ISD::STRICT_FP_TO_SINT: 11257 case ISD::STRICT_FP_TO_UINT: 11258 case ISD::FP_TO_SINT: 11259 case ISD::FP_TO_UINT: { 11260 // LowerFP_TO_INT() can only handle f32 and f64. 11261 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11262 MVT::ppcf128) 11263 return; 11264 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11265 Results.push_back(LoweredValue); 11266 if (N->isStrictFPOpcode()) 11267 Results.push_back(LoweredValue.getValue(1)); 11268 return; 11269 } 11270 case ISD::TRUNCATE: { 11271 if (!N->getValueType(0).isVector()) 11272 return; 11273 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11274 if (Lowered) 11275 Results.push_back(Lowered); 11276 return; 11277 } 11278 case ISD::FSHL: 11279 case ISD::FSHR: 11280 // Don't handle funnel shifts here. 11281 return; 11282 case ISD::BITCAST: 11283 // Don't handle bitcast here. 11284 return; 11285 case ISD::FP_EXTEND: 11286 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11287 if (Lowered) 11288 Results.push_back(Lowered); 11289 return; 11290 } 11291 } 11292 11293 //===----------------------------------------------------------------------===// 11294 // Other Lowering Code 11295 //===----------------------------------------------------------------------===// 11296 11297 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11298 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11299 Function *Func = Intrinsic::getDeclaration(M, Id); 11300 return Builder.CreateCall(Func, {}); 11301 } 11302 11303 // The mappings for emitLeading/TrailingFence is taken from 11304 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11305 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11306 Instruction *Inst, 11307 AtomicOrdering Ord) const { 11308 if (Ord == AtomicOrdering::SequentiallyConsistent) 11309 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11310 if (isReleaseOrStronger(Ord)) 11311 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11312 return nullptr; 11313 } 11314 11315 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11316 Instruction *Inst, 11317 AtomicOrdering Ord) const { 11318 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11319 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11320 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11321 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11322 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11323 return Builder.CreateCall( 11324 Intrinsic::getDeclaration( 11325 Builder.GetInsertBlock()->getParent()->getParent(), 11326 Intrinsic::ppc_cfence, {Inst->getType()}), 11327 {Inst}); 11328 // FIXME: Can use isync for rmw operation. 11329 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11330 } 11331 return nullptr; 11332 } 11333 11334 MachineBasicBlock * 11335 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11336 unsigned AtomicSize, 11337 unsigned BinOpcode, 11338 unsigned CmpOpcode, 11339 unsigned CmpPred) const { 11340 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11341 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11342 11343 auto LoadMnemonic = PPC::LDARX; 11344 auto StoreMnemonic = PPC::STDCX; 11345 switch (AtomicSize) { 11346 default: 11347 llvm_unreachable("Unexpected size of atomic entity"); 11348 case 1: 11349 LoadMnemonic = PPC::LBARX; 11350 StoreMnemonic = PPC::STBCX; 11351 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11352 break; 11353 case 2: 11354 LoadMnemonic = PPC::LHARX; 11355 StoreMnemonic = PPC::STHCX; 11356 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11357 break; 11358 case 4: 11359 LoadMnemonic = PPC::LWARX; 11360 StoreMnemonic = PPC::STWCX; 11361 break; 11362 case 8: 11363 LoadMnemonic = PPC::LDARX; 11364 StoreMnemonic = PPC::STDCX; 11365 break; 11366 } 11367 11368 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11369 MachineFunction *F = BB->getParent(); 11370 MachineFunction::iterator It = ++BB->getIterator(); 11371 11372 Register dest = MI.getOperand(0).getReg(); 11373 Register ptrA = MI.getOperand(1).getReg(); 11374 Register ptrB = MI.getOperand(2).getReg(); 11375 Register incr = MI.getOperand(3).getReg(); 11376 DebugLoc dl = MI.getDebugLoc(); 11377 11378 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11379 MachineBasicBlock *loop2MBB = 11380 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11381 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11382 F->insert(It, loopMBB); 11383 if (CmpOpcode) 11384 F->insert(It, loop2MBB); 11385 F->insert(It, exitMBB); 11386 exitMBB->splice(exitMBB->begin(), BB, 11387 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11388 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11389 11390 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11391 Register TmpReg = (!BinOpcode) ? incr : 11392 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11393 : &PPC::GPRCRegClass); 11394 11395 // thisMBB: 11396 // ... 11397 // fallthrough --> loopMBB 11398 BB->addSuccessor(loopMBB); 11399 11400 // loopMBB: 11401 // l[wd]arx dest, ptr 11402 // add r0, dest, incr 11403 // st[wd]cx. r0, ptr 11404 // bne- loopMBB 11405 // fallthrough --> exitMBB 11406 11407 // For max/min... 11408 // loopMBB: 11409 // l[wd]arx dest, ptr 11410 // cmpl?[wd] incr, dest 11411 // bgt exitMBB 11412 // loop2MBB: 11413 // st[wd]cx. dest, ptr 11414 // bne- loopMBB 11415 // fallthrough --> exitMBB 11416 11417 BB = loopMBB; 11418 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11419 .addReg(ptrA).addReg(ptrB); 11420 if (BinOpcode) 11421 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11422 if (CmpOpcode) { 11423 // Signed comparisons of byte or halfword values must be sign-extended. 11424 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11425 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11426 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11427 ExtReg).addReg(dest); 11428 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11429 .addReg(incr).addReg(ExtReg); 11430 } else 11431 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11432 .addReg(incr).addReg(dest); 11433 11434 BuildMI(BB, dl, TII->get(PPC::BCC)) 11435 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11436 BB->addSuccessor(loop2MBB); 11437 BB->addSuccessor(exitMBB); 11438 BB = loop2MBB; 11439 } 11440 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11441 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11442 BuildMI(BB, dl, TII->get(PPC::BCC)) 11443 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11444 BB->addSuccessor(loopMBB); 11445 BB->addSuccessor(exitMBB); 11446 11447 // exitMBB: 11448 // ... 11449 BB = exitMBB; 11450 return BB; 11451 } 11452 11453 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11454 switch(MI.getOpcode()) { 11455 default: 11456 return false; 11457 case PPC::COPY: 11458 return TII->isSignExtended(MI); 11459 case PPC::LHA: 11460 case PPC::LHA8: 11461 case PPC::LHAU: 11462 case PPC::LHAU8: 11463 case PPC::LHAUX: 11464 case PPC::LHAUX8: 11465 case PPC::LHAX: 11466 case PPC::LHAX8: 11467 case PPC::LWA: 11468 case PPC::LWAUX: 11469 case PPC::LWAX: 11470 case PPC::LWAX_32: 11471 case PPC::LWA_32: 11472 case PPC::PLHA: 11473 case PPC::PLHA8: 11474 case PPC::PLHA8pc: 11475 case PPC::PLHApc: 11476 case PPC::PLWA: 11477 case PPC::PLWA8: 11478 case PPC::PLWA8pc: 11479 case PPC::PLWApc: 11480 case PPC::EXTSB: 11481 case PPC::EXTSB8: 11482 case PPC::EXTSB8_32_64: 11483 case PPC::EXTSB8_rec: 11484 case PPC::EXTSB_rec: 11485 case PPC::EXTSH: 11486 case PPC::EXTSH8: 11487 case PPC::EXTSH8_32_64: 11488 case PPC::EXTSH8_rec: 11489 case PPC::EXTSH_rec: 11490 case PPC::EXTSW: 11491 case PPC::EXTSWSLI: 11492 case PPC::EXTSWSLI_32_64: 11493 case PPC::EXTSWSLI_32_64_rec: 11494 case PPC::EXTSWSLI_rec: 11495 case PPC::EXTSW_32: 11496 case PPC::EXTSW_32_64: 11497 case PPC::EXTSW_32_64_rec: 11498 case PPC::EXTSW_rec: 11499 case PPC::SRAW: 11500 case PPC::SRAWI: 11501 case PPC::SRAWI_rec: 11502 case PPC::SRAW_rec: 11503 return true; 11504 } 11505 return false; 11506 } 11507 11508 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11509 MachineInstr &MI, MachineBasicBlock *BB, 11510 bool is8bit, // operation 11511 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11512 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11513 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11514 11515 // If this is a signed comparison and the value being compared is not known 11516 // to be sign extended, sign extend it here. 11517 DebugLoc dl = MI.getDebugLoc(); 11518 MachineFunction *F = BB->getParent(); 11519 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11520 Register incr = MI.getOperand(3).getReg(); 11521 bool IsSignExtended = Register::isVirtualRegister(incr) && 11522 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11523 11524 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11525 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11526 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11527 .addReg(MI.getOperand(3).getReg()); 11528 MI.getOperand(3).setReg(ValueReg); 11529 } 11530 // If we support part-word atomic mnemonics, just use them 11531 if (Subtarget.hasPartwordAtomics()) 11532 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11533 CmpPred); 11534 11535 // In 64 bit mode we have to use 64 bits for addresses, even though the 11536 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11537 // registers without caring whether they're 32 or 64, but here we're 11538 // doing actual arithmetic on the addresses. 11539 bool is64bit = Subtarget.isPPC64(); 11540 bool isLittleEndian = Subtarget.isLittleEndian(); 11541 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11542 11543 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11544 MachineFunction::iterator It = ++BB->getIterator(); 11545 11546 Register dest = MI.getOperand(0).getReg(); 11547 Register ptrA = MI.getOperand(1).getReg(); 11548 Register ptrB = MI.getOperand(2).getReg(); 11549 11550 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11551 MachineBasicBlock *loop2MBB = 11552 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11553 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11554 F->insert(It, loopMBB); 11555 if (CmpOpcode) 11556 F->insert(It, loop2MBB); 11557 F->insert(It, exitMBB); 11558 exitMBB->splice(exitMBB->begin(), BB, 11559 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11560 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11561 11562 const TargetRegisterClass *RC = 11563 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11564 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11565 11566 Register PtrReg = RegInfo.createVirtualRegister(RC); 11567 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11568 Register ShiftReg = 11569 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11570 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11571 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11572 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11573 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11574 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11575 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11576 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11577 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11578 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11579 Register Ptr1Reg; 11580 Register TmpReg = 11581 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11582 11583 // thisMBB: 11584 // ... 11585 // fallthrough --> loopMBB 11586 BB->addSuccessor(loopMBB); 11587 11588 // The 4-byte load must be aligned, while a char or short may be 11589 // anywhere in the word. Hence all this nasty bookkeeping code. 11590 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11591 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11592 // xori shift, shift1, 24 [16] 11593 // rlwinm ptr, ptr1, 0, 0, 29 11594 // slw incr2, incr, shift 11595 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11596 // slw mask, mask2, shift 11597 // loopMBB: 11598 // lwarx tmpDest, ptr 11599 // add tmp, tmpDest, incr2 11600 // andc tmp2, tmpDest, mask 11601 // and tmp3, tmp, mask 11602 // or tmp4, tmp3, tmp2 11603 // stwcx. tmp4, ptr 11604 // bne- loopMBB 11605 // fallthrough --> exitMBB 11606 // srw SrwDest, tmpDest, shift 11607 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11608 if (ptrA != ZeroReg) { 11609 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11610 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11611 .addReg(ptrA) 11612 .addReg(ptrB); 11613 } else { 11614 Ptr1Reg = ptrB; 11615 } 11616 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11617 // mode. 11618 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11619 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11620 .addImm(3) 11621 .addImm(27) 11622 .addImm(is8bit ? 28 : 27); 11623 if (!isLittleEndian) 11624 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11625 .addReg(Shift1Reg) 11626 .addImm(is8bit ? 24 : 16); 11627 if (is64bit) 11628 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11629 .addReg(Ptr1Reg) 11630 .addImm(0) 11631 .addImm(61); 11632 else 11633 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11634 .addReg(Ptr1Reg) 11635 .addImm(0) 11636 .addImm(0) 11637 .addImm(29); 11638 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11639 if (is8bit) 11640 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11641 else { 11642 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11643 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11644 .addReg(Mask3Reg) 11645 .addImm(65535); 11646 } 11647 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11648 .addReg(Mask2Reg) 11649 .addReg(ShiftReg); 11650 11651 BB = loopMBB; 11652 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11653 .addReg(ZeroReg) 11654 .addReg(PtrReg); 11655 if (BinOpcode) 11656 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11657 .addReg(Incr2Reg) 11658 .addReg(TmpDestReg); 11659 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11660 .addReg(TmpDestReg) 11661 .addReg(MaskReg); 11662 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11663 if (CmpOpcode) { 11664 // For unsigned comparisons, we can directly compare the shifted values. 11665 // For signed comparisons we shift and sign extend. 11666 Register SReg = RegInfo.createVirtualRegister(GPRC); 11667 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11668 .addReg(TmpDestReg) 11669 .addReg(MaskReg); 11670 unsigned ValueReg = SReg; 11671 unsigned CmpReg = Incr2Reg; 11672 if (CmpOpcode == PPC::CMPW) { 11673 ValueReg = RegInfo.createVirtualRegister(GPRC); 11674 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11675 .addReg(SReg) 11676 .addReg(ShiftReg); 11677 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11678 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11679 .addReg(ValueReg); 11680 ValueReg = ValueSReg; 11681 CmpReg = incr; 11682 } 11683 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11684 .addReg(CmpReg) 11685 .addReg(ValueReg); 11686 BuildMI(BB, dl, TII->get(PPC::BCC)) 11687 .addImm(CmpPred) 11688 .addReg(PPC::CR0) 11689 .addMBB(exitMBB); 11690 BB->addSuccessor(loop2MBB); 11691 BB->addSuccessor(exitMBB); 11692 BB = loop2MBB; 11693 } 11694 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11695 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11696 .addReg(Tmp4Reg) 11697 .addReg(ZeroReg) 11698 .addReg(PtrReg); 11699 BuildMI(BB, dl, TII->get(PPC::BCC)) 11700 .addImm(PPC::PRED_NE) 11701 .addReg(PPC::CR0) 11702 .addMBB(loopMBB); 11703 BB->addSuccessor(loopMBB); 11704 BB->addSuccessor(exitMBB); 11705 11706 // exitMBB: 11707 // ... 11708 BB = exitMBB; 11709 // Since the shift amount is not a constant, we need to clear 11710 // the upper bits with a separate RLWINM. 11711 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11712 .addReg(SrwDestReg) 11713 .addImm(0) 11714 .addImm(is8bit ? 24 : 16) 11715 .addImm(31); 11716 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11717 .addReg(TmpDestReg) 11718 .addReg(ShiftReg); 11719 return BB; 11720 } 11721 11722 llvm::MachineBasicBlock * 11723 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11724 MachineBasicBlock *MBB) const { 11725 DebugLoc DL = MI.getDebugLoc(); 11726 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11727 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11728 11729 MachineFunction *MF = MBB->getParent(); 11730 MachineRegisterInfo &MRI = MF->getRegInfo(); 11731 11732 const BasicBlock *BB = MBB->getBasicBlock(); 11733 MachineFunction::iterator I = ++MBB->getIterator(); 11734 11735 Register DstReg = MI.getOperand(0).getReg(); 11736 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11737 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11738 Register mainDstReg = MRI.createVirtualRegister(RC); 11739 Register restoreDstReg = MRI.createVirtualRegister(RC); 11740 11741 MVT PVT = getPointerTy(MF->getDataLayout()); 11742 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11743 "Invalid Pointer Size!"); 11744 // For v = setjmp(buf), we generate 11745 // 11746 // thisMBB: 11747 // SjLjSetup mainMBB 11748 // bl mainMBB 11749 // v_restore = 1 11750 // b sinkMBB 11751 // 11752 // mainMBB: 11753 // buf[LabelOffset] = LR 11754 // v_main = 0 11755 // 11756 // sinkMBB: 11757 // v = phi(main, restore) 11758 // 11759 11760 MachineBasicBlock *thisMBB = MBB; 11761 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11762 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11763 MF->insert(I, mainMBB); 11764 MF->insert(I, sinkMBB); 11765 11766 MachineInstrBuilder MIB; 11767 11768 // Transfer the remainder of BB and its successor edges to sinkMBB. 11769 sinkMBB->splice(sinkMBB->begin(), MBB, 11770 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11771 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11772 11773 // Note that the structure of the jmp_buf used here is not compatible 11774 // with that used by libc, and is not designed to be. Specifically, it 11775 // stores only those 'reserved' registers that LLVM does not otherwise 11776 // understand how to spill. Also, by convention, by the time this 11777 // intrinsic is called, Clang has already stored the frame address in the 11778 // first slot of the buffer and stack address in the third. Following the 11779 // X86 target code, we'll store the jump address in the second slot. We also 11780 // need to save the TOC pointer (R2) to handle jumps between shared 11781 // libraries, and that will be stored in the fourth slot. The thread 11782 // identifier (R13) is not affected. 11783 11784 // thisMBB: 11785 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11786 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11787 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11788 11789 // Prepare IP either in reg. 11790 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11791 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11792 Register BufReg = MI.getOperand(1).getReg(); 11793 11794 if (Subtarget.is64BitELFABI()) { 11795 setUsesTOCBasePtr(*MBB->getParent()); 11796 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11797 .addReg(PPC::X2) 11798 .addImm(TOCOffset) 11799 .addReg(BufReg) 11800 .cloneMemRefs(MI); 11801 } 11802 11803 // Naked functions never have a base pointer, and so we use r1. For all 11804 // other functions, this decision must be delayed until during PEI. 11805 unsigned BaseReg; 11806 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11807 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11808 else 11809 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11810 11811 MIB = BuildMI(*thisMBB, MI, DL, 11812 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11813 .addReg(BaseReg) 11814 .addImm(BPOffset) 11815 .addReg(BufReg) 11816 .cloneMemRefs(MI); 11817 11818 // Setup 11819 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11820 MIB.addRegMask(TRI->getNoPreservedMask()); 11821 11822 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11823 11824 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11825 .addMBB(mainMBB); 11826 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11827 11828 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11829 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11830 11831 // mainMBB: 11832 // mainDstReg = 0 11833 MIB = 11834 BuildMI(mainMBB, DL, 11835 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11836 11837 // Store IP 11838 if (Subtarget.isPPC64()) { 11839 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11840 .addReg(LabelReg) 11841 .addImm(LabelOffset) 11842 .addReg(BufReg); 11843 } else { 11844 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11845 .addReg(LabelReg) 11846 .addImm(LabelOffset) 11847 .addReg(BufReg); 11848 } 11849 MIB.cloneMemRefs(MI); 11850 11851 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11852 mainMBB->addSuccessor(sinkMBB); 11853 11854 // sinkMBB: 11855 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11856 TII->get(PPC::PHI), DstReg) 11857 .addReg(mainDstReg).addMBB(mainMBB) 11858 .addReg(restoreDstReg).addMBB(thisMBB); 11859 11860 MI.eraseFromParent(); 11861 return sinkMBB; 11862 } 11863 11864 MachineBasicBlock * 11865 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11866 MachineBasicBlock *MBB) const { 11867 DebugLoc DL = MI.getDebugLoc(); 11868 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11869 11870 MachineFunction *MF = MBB->getParent(); 11871 MachineRegisterInfo &MRI = MF->getRegInfo(); 11872 11873 MVT PVT = getPointerTy(MF->getDataLayout()); 11874 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11875 "Invalid Pointer Size!"); 11876 11877 const TargetRegisterClass *RC = 11878 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11879 Register Tmp = MRI.createVirtualRegister(RC); 11880 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11881 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11882 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11883 unsigned BP = 11884 (PVT == MVT::i64) 11885 ? PPC::X30 11886 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11887 : PPC::R30); 11888 11889 MachineInstrBuilder MIB; 11890 11891 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11892 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11893 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11894 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11895 11896 Register BufReg = MI.getOperand(0).getReg(); 11897 11898 // Reload FP (the jumped-to function may not have had a 11899 // frame pointer, and if so, then its r31 will be restored 11900 // as necessary). 11901 if (PVT == MVT::i64) { 11902 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11903 .addImm(0) 11904 .addReg(BufReg); 11905 } else { 11906 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11907 .addImm(0) 11908 .addReg(BufReg); 11909 } 11910 MIB.cloneMemRefs(MI); 11911 11912 // Reload IP 11913 if (PVT == MVT::i64) { 11914 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11915 .addImm(LabelOffset) 11916 .addReg(BufReg); 11917 } else { 11918 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11919 .addImm(LabelOffset) 11920 .addReg(BufReg); 11921 } 11922 MIB.cloneMemRefs(MI); 11923 11924 // Reload SP 11925 if (PVT == MVT::i64) { 11926 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11927 .addImm(SPOffset) 11928 .addReg(BufReg); 11929 } else { 11930 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11931 .addImm(SPOffset) 11932 .addReg(BufReg); 11933 } 11934 MIB.cloneMemRefs(MI); 11935 11936 // Reload BP 11937 if (PVT == MVT::i64) { 11938 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11939 .addImm(BPOffset) 11940 .addReg(BufReg); 11941 } else { 11942 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11943 .addImm(BPOffset) 11944 .addReg(BufReg); 11945 } 11946 MIB.cloneMemRefs(MI); 11947 11948 // Reload TOC 11949 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11950 setUsesTOCBasePtr(*MBB->getParent()); 11951 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11952 .addImm(TOCOffset) 11953 .addReg(BufReg) 11954 .cloneMemRefs(MI); 11955 } 11956 11957 // Jump 11958 BuildMI(*MBB, MI, DL, 11959 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11960 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11961 11962 MI.eraseFromParent(); 11963 return MBB; 11964 } 11965 11966 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11967 // If the function specifically requests inline stack probes, emit them. 11968 if (MF.getFunction().hasFnAttribute("probe-stack")) 11969 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11970 "inline-asm"; 11971 return false; 11972 } 11973 11974 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11975 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11976 unsigned StackAlign = TFI->getStackAlignment(); 11977 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11978 "Unexpected stack alignment"); 11979 // The default stack probe size is 4096 if the function has no 11980 // stack-probe-size attribute. 11981 unsigned StackProbeSize = 4096; 11982 const Function &Fn = MF.getFunction(); 11983 if (Fn.hasFnAttribute("stack-probe-size")) 11984 Fn.getFnAttribute("stack-probe-size") 11985 .getValueAsString() 11986 .getAsInteger(0, StackProbeSize); 11987 // Round down to the stack alignment. 11988 StackProbeSize &= ~(StackAlign - 1); 11989 return StackProbeSize ? StackProbeSize : StackAlign; 11990 } 11991 11992 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11993 // into three phases. In the first phase, it uses pseudo instruction 11994 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11995 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11996 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11997 // MaxCallFrameSize so that it can calculate correct data area pointer. 11998 MachineBasicBlock * 11999 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12000 MachineBasicBlock *MBB) const { 12001 const bool isPPC64 = Subtarget.isPPC64(); 12002 MachineFunction *MF = MBB->getParent(); 12003 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12004 DebugLoc DL = MI.getDebugLoc(); 12005 const unsigned ProbeSize = getStackProbeSize(*MF); 12006 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12007 MachineRegisterInfo &MRI = MF->getRegInfo(); 12008 // The CFG of probing stack looks as 12009 // +-----+ 12010 // | MBB | 12011 // +--+--+ 12012 // | 12013 // +----v----+ 12014 // +--->+ TestMBB +---+ 12015 // | +----+----+ | 12016 // | | | 12017 // | +-----v----+ | 12018 // +---+ BlockMBB | | 12019 // +----------+ | 12020 // | 12021 // +---------+ | 12022 // | TailMBB +<--+ 12023 // +---------+ 12024 // In MBB, calculate previous frame pointer and final stack pointer. 12025 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12026 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12027 // TailMBB is spliced via \p MI. 12028 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12029 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12030 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12031 12032 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12033 MF->insert(MBBIter, TestMBB); 12034 MF->insert(MBBIter, BlockMBB); 12035 MF->insert(MBBIter, TailMBB); 12036 12037 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12038 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12039 12040 Register DstReg = MI.getOperand(0).getReg(); 12041 Register NegSizeReg = MI.getOperand(1).getReg(); 12042 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12043 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12044 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12045 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12046 12047 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12048 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12049 // NegSize. 12050 unsigned ProbeOpc; 12051 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12052 ProbeOpc = 12053 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12054 else 12055 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12056 // and NegSizeReg will be allocated in the same phyreg to avoid 12057 // redundant copy when NegSizeReg has only one use which is current MI and 12058 // will be replaced by PREPARE_PROBED_ALLOCA then. 12059 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12060 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12061 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12062 .addDef(ActualNegSizeReg) 12063 .addReg(NegSizeReg) 12064 .add(MI.getOperand(2)) 12065 .add(MI.getOperand(3)); 12066 12067 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12068 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12069 FinalStackPtr) 12070 .addReg(SPReg) 12071 .addReg(ActualNegSizeReg); 12072 12073 // Materialize a scratch register for update. 12074 int64_t NegProbeSize = -(int64_t)ProbeSize; 12075 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12076 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12077 if (!isInt<16>(NegProbeSize)) { 12078 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12079 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12080 .addImm(NegProbeSize >> 16); 12081 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12082 ScratchReg) 12083 .addReg(TempReg) 12084 .addImm(NegProbeSize & 0xFFFF); 12085 } else 12086 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12087 .addImm(NegProbeSize); 12088 12089 { 12090 // Probing leading residual part. 12091 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12092 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12093 .addReg(ActualNegSizeReg) 12094 .addReg(ScratchReg); 12095 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12096 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12097 .addReg(Div) 12098 .addReg(ScratchReg); 12099 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12100 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12101 .addReg(Mul) 12102 .addReg(ActualNegSizeReg); 12103 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12104 .addReg(FramePointer) 12105 .addReg(SPReg) 12106 .addReg(NegMod); 12107 } 12108 12109 { 12110 // Remaining part should be multiple of ProbeSize. 12111 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12112 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12113 .addReg(SPReg) 12114 .addReg(FinalStackPtr); 12115 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12116 .addImm(PPC::PRED_EQ) 12117 .addReg(CmpResult) 12118 .addMBB(TailMBB); 12119 TestMBB->addSuccessor(BlockMBB); 12120 TestMBB->addSuccessor(TailMBB); 12121 } 12122 12123 { 12124 // Touch the block. 12125 // |P...|P...|P... 12126 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12127 .addReg(FramePointer) 12128 .addReg(SPReg) 12129 .addReg(ScratchReg); 12130 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12131 BlockMBB->addSuccessor(TestMBB); 12132 } 12133 12134 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12135 // DYNAREAOFFSET pseudo instruction to get the future result. 12136 Register MaxCallFrameSizeReg = 12137 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12138 BuildMI(TailMBB, DL, 12139 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12140 MaxCallFrameSizeReg) 12141 .add(MI.getOperand(2)) 12142 .add(MI.getOperand(3)); 12143 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12144 .addReg(SPReg) 12145 .addReg(MaxCallFrameSizeReg); 12146 12147 // Splice instructions after MI to TailMBB. 12148 TailMBB->splice(TailMBB->end(), MBB, 12149 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12150 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12151 MBB->addSuccessor(TestMBB); 12152 12153 // Delete the pseudo instruction. 12154 MI.eraseFromParent(); 12155 12156 ++NumDynamicAllocaProbed; 12157 return TailMBB; 12158 } 12159 12160 MachineBasicBlock * 12161 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12162 MachineBasicBlock *BB) const { 12163 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12164 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12165 if (Subtarget.is64BitELFABI() && 12166 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12167 !Subtarget.isUsingPCRelativeCalls()) { 12168 // Call lowering should have added an r2 operand to indicate a dependence 12169 // on the TOC base pointer value. It can't however, because there is no 12170 // way to mark the dependence as implicit there, and so the stackmap code 12171 // will confuse it with a regular operand. Instead, add the dependence 12172 // here. 12173 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12174 } 12175 12176 return emitPatchPoint(MI, BB); 12177 } 12178 12179 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12180 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12181 return emitEHSjLjSetJmp(MI, BB); 12182 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12183 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12184 return emitEHSjLjLongJmp(MI, BB); 12185 } 12186 12187 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12188 12189 // To "insert" these instructions we actually have to insert their 12190 // control-flow patterns. 12191 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12192 MachineFunction::iterator It = ++BB->getIterator(); 12193 12194 MachineFunction *F = BB->getParent(); 12195 MachineRegisterInfo &MRI = F->getRegInfo(); 12196 12197 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12198 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12199 MI.getOpcode() == PPC::SELECT_I8) { 12200 SmallVector<MachineOperand, 2> Cond; 12201 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12202 MI.getOpcode() == PPC::SELECT_CC_I8) 12203 Cond.push_back(MI.getOperand(4)); 12204 else 12205 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12206 Cond.push_back(MI.getOperand(1)); 12207 12208 DebugLoc dl = MI.getDebugLoc(); 12209 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12210 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12211 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12212 MI.getOpcode() == PPC::SELECT_CC_F8 || 12213 MI.getOpcode() == PPC::SELECT_CC_F16 || 12214 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12215 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12216 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12217 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12218 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12219 MI.getOpcode() == PPC::SELECT_CC_SPE || 12220 MI.getOpcode() == PPC::SELECT_F4 || 12221 MI.getOpcode() == PPC::SELECT_F8 || 12222 MI.getOpcode() == PPC::SELECT_F16 || 12223 MI.getOpcode() == PPC::SELECT_SPE || 12224 MI.getOpcode() == PPC::SELECT_SPE4 || 12225 MI.getOpcode() == PPC::SELECT_VRRC || 12226 MI.getOpcode() == PPC::SELECT_VSFRC || 12227 MI.getOpcode() == PPC::SELECT_VSSRC || 12228 MI.getOpcode() == PPC::SELECT_VSRC) { 12229 // The incoming instruction knows the destination vreg to set, the 12230 // condition code register to branch on, the true/false values to 12231 // select between, and a branch opcode to use. 12232 12233 // thisMBB: 12234 // ... 12235 // TrueVal = ... 12236 // cmpTY ccX, r1, r2 12237 // bCC copy1MBB 12238 // fallthrough --> copy0MBB 12239 MachineBasicBlock *thisMBB = BB; 12240 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12241 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12242 DebugLoc dl = MI.getDebugLoc(); 12243 F->insert(It, copy0MBB); 12244 F->insert(It, sinkMBB); 12245 12246 // Transfer the remainder of BB and its successor edges to sinkMBB. 12247 sinkMBB->splice(sinkMBB->begin(), BB, 12248 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12249 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12250 12251 // Next, add the true and fallthrough blocks as its successors. 12252 BB->addSuccessor(copy0MBB); 12253 BB->addSuccessor(sinkMBB); 12254 12255 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12256 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12257 MI.getOpcode() == PPC::SELECT_F16 || 12258 MI.getOpcode() == PPC::SELECT_SPE4 || 12259 MI.getOpcode() == PPC::SELECT_SPE || 12260 MI.getOpcode() == PPC::SELECT_VRRC || 12261 MI.getOpcode() == PPC::SELECT_VSFRC || 12262 MI.getOpcode() == PPC::SELECT_VSSRC || 12263 MI.getOpcode() == PPC::SELECT_VSRC) { 12264 BuildMI(BB, dl, TII->get(PPC::BC)) 12265 .addReg(MI.getOperand(1).getReg()) 12266 .addMBB(sinkMBB); 12267 } else { 12268 unsigned SelectPred = MI.getOperand(4).getImm(); 12269 BuildMI(BB, dl, TII->get(PPC::BCC)) 12270 .addImm(SelectPred) 12271 .addReg(MI.getOperand(1).getReg()) 12272 .addMBB(sinkMBB); 12273 } 12274 12275 // copy0MBB: 12276 // %FalseValue = ... 12277 // # fallthrough to sinkMBB 12278 BB = copy0MBB; 12279 12280 // Update machine-CFG edges 12281 BB->addSuccessor(sinkMBB); 12282 12283 // sinkMBB: 12284 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12285 // ... 12286 BB = sinkMBB; 12287 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12288 .addReg(MI.getOperand(3).getReg()) 12289 .addMBB(copy0MBB) 12290 .addReg(MI.getOperand(2).getReg()) 12291 .addMBB(thisMBB); 12292 } else if (MI.getOpcode() == PPC::ReadTB) { 12293 // To read the 64-bit time-base register on a 32-bit target, we read the 12294 // two halves. Should the counter have wrapped while it was being read, we 12295 // need to try again. 12296 // ... 12297 // readLoop: 12298 // mfspr Rx,TBU # load from TBU 12299 // mfspr Ry,TB # load from TB 12300 // mfspr Rz,TBU # load from TBU 12301 // cmpw crX,Rx,Rz # check if 'old'='new' 12302 // bne readLoop # branch if they're not equal 12303 // ... 12304 12305 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12306 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12307 DebugLoc dl = MI.getDebugLoc(); 12308 F->insert(It, readMBB); 12309 F->insert(It, sinkMBB); 12310 12311 // Transfer the remainder of BB and its successor edges to sinkMBB. 12312 sinkMBB->splice(sinkMBB->begin(), BB, 12313 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12314 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12315 12316 BB->addSuccessor(readMBB); 12317 BB = readMBB; 12318 12319 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12320 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12321 Register LoReg = MI.getOperand(0).getReg(); 12322 Register HiReg = MI.getOperand(1).getReg(); 12323 12324 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12325 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12326 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12327 12328 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12329 12330 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12331 .addReg(HiReg) 12332 .addReg(ReadAgainReg); 12333 BuildMI(BB, dl, TII->get(PPC::BCC)) 12334 .addImm(PPC::PRED_NE) 12335 .addReg(CmpReg) 12336 .addMBB(readMBB); 12337 12338 BB->addSuccessor(readMBB); 12339 BB->addSuccessor(sinkMBB); 12340 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12341 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12342 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12343 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12344 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12345 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12346 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12347 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12348 12349 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12350 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12351 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12352 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12353 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12354 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12355 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12356 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12357 12358 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12359 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12360 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12361 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12362 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12363 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12364 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12365 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12366 12367 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12368 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12369 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12370 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12371 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12372 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12373 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12374 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12375 12376 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12377 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12378 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12379 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12380 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12381 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12382 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12383 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12384 12385 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12386 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12387 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12388 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12389 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12390 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12391 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12392 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12393 12394 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12395 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12396 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12397 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12398 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12399 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12400 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12401 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12402 12403 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12404 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12406 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12407 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12408 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12409 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12410 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12411 12412 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12413 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12415 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12416 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12417 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12418 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12419 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12420 12421 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12422 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12424 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12426 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12428 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12429 12430 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12431 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12432 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12433 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12434 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12435 BB = EmitAtomicBinary(MI, BB, 4, 0); 12436 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12437 BB = EmitAtomicBinary(MI, BB, 8, 0); 12438 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12439 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12440 (Subtarget.hasPartwordAtomics() && 12441 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12442 (Subtarget.hasPartwordAtomics() && 12443 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12444 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12445 12446 auto LoadMnemonic = PPC::LDARX; 12447 auto StoreMnemonic = PPC::STDCX; 12448 switch (MI.getOpcode()) { 12449 default: 12450 llvm_unreachable("Compare and swap of unknown size"); 12451 case PPC::ATOMIC_CMP_SWAP_I8: 12452 LoadMnemonic = PPC::LBARX; 12453 StoreMnemonic = PPC::STBCX; 12454 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12455 break; 12456 case PPC::ATOMIC_CMP_SWAP_I16: 12457 LoadMnemonic = PPC::LHARX; 12458 StoreMnemonic = PPC::STHCX; 12459 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12460 break; 12461 case PPC::ATOMIC_CMP_SWAP_I32: 12462 LoadMnemonic = PPC::LWARX; 12463 StoreMnemonic = PPC::STWCX; 12464 break; 12465 case PPC::ATOMIC_CMP_SWAP_I64: 12466 LoadMnemonic = PPC::LDARX; 12467 StoreMnemonic = PPC::STDCX; 12468 break; 12469 } 12470 Register dest = MI.getOperand(0).getReg(); 12471 Register ptrA = MI.getOperand(1).getReg(); 12472 Register ptrB = MI.getOperand(2).getReg(); 12473 Register oldval = MI.getOperand(3).getReg(); 12474 Register newval = MI.getOperand(4).getReg(); 12475 DebugLoc dl = MI.getDebugLoc(); 12476 12477 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12478 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12479 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12480 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12481 F->insert(It, loop1MBB); 12482 F->insert(It, loop2MBB); 12483 F->insert(It, midMBB); 12484 F->insert(It, exitMBB); 12485 exitMBB->splice(exitMBB->begin(), BB, 12486 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12487 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12488 12489 // thisMBB: 12490 // ... 12491 // fallthrough --> loopMBB 12492 BB->addSuccessor(loop1MBB); 12493 12494 // loop1MBB: 12495 // l[bhwd]arx dest, ptr 12496 // cmp[wd] dest, oldval 12497 // bne- midMBB 12498 // loop2MBB: 12499 // st[bhwd]cx. newval, ptr 12500 // bne- loopMBB 12501 // b exitBB 12502 // midMBB: 12503 // st[bhwd]cx. dest, ptr 12504 // exitBB: 12505 BB = loop1MBB; 12506 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12507 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12508 .addReg(oldval) 12509 .addReg(dest); 12510 BuildMI(BB, dl, TII->get(PPC::BCC)) 12511 .addImm(PPC::PRED_NE) 12512 .addReg(PPC::CR0) 12513 .addMBB(midMBB); 12514 BB->addSuccessor(loop2MBB); 12515 BB->addSuccessor(midMBB); 12516 12517 BB = loop2MBB; 12518 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12519 .addReg(newval) 12520 .addReg(ptrA) 12521 .addReg(ptrB); 12522 BuildMI(BB, dl, TII->get(PPC::BCC)) 12523 .addImm(PPC::PRED_NE) 12524 .addReg(PPC::CR0) 12525 .addMBB(loop1MBB); 12526 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12527 BB->addSuccessor(loop1MBB); 12528 BB->addSuccessor(exitMBB); 12529 12530 BB = midMBB; 12531 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12532 .addReg(dest) 12533 .addReg(ptrA) 12534 .addReg(ptrB); 12535 BB->addSuccessor(exitMBB); 12536 12537 // exitMBB: 12538 // ... 12539 BB = exitMBB; 12540 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12541 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12542 // We must use 64-bit registers for addresses when targeting 64-bit, 12543 // since we're actually doing arithmetic on them. Other registers 12544 // can be 32-bit. 12545 bool is64bit = Subtarget.isPPC64(); 12546 bool isLittleEndian = Subtarget.isLittleEndian(); 12547 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12548 12549 Register dest = MI.getOperand(0).getReg(); 12550 Register ptrA = MI.getOperand(1).getReg(); 12551 Register ptrB = MI.getOperand(2).getReg(); 12552 Register oldval = MI.getOperand(3).getReg(); 12553 Register newval = MI.getOperand(4).getReg(); 12554 DebugLoc dl = MI.getDebugLoc(); 12555 12556 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12557 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12558 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12559 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12560 F->insert(It, loop1MBB); 12561 F->insert(It, loop2MBB); 12562 F->insert(It, midMBB); 12563 F->insert(It, exitMBB); 12564 exitMBB->splice(exitMBB->begin(), BB, 12565 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12566 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12567 12568 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12569 const TargetRegisterClass *RC = 12570 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12571 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12572 12573 Register PtrReg = RegInfo.createVirtualRegister(RC); 12574 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12575 Register ShiftReg = 12576 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12577 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12578 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12579 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12580 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12581 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12582 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12583 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12584 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12585 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12586 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12587 Register Ptr1Reg; 12588 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12589 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12590 // thisMBB: 12591 // ... 12592 // fallthrough --> loopMBB 12593 BB->addSuccessor(loop1MBB); 12594 12595 // The 4-byte load must be aligned, while a char or short may be 12596 // anywhere in the word. Hence all this nasty bookkeeping code. 12597 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12598 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12599 // xori shift, shift1, 24 [16] 12600 // rlwinm ptr, ptr1, 0, 0, 29 12601 // slw newval2, newval, shift 12602 // slw oldval2, oldval,shift 12603 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12604 // slw mask, mask2, shift 12605 // and newval3, newval2, mask 12606 // and oldval3, oldval2, mask 12607 // loop1MBB: 12608 // lwarx tmpDest, ptr 12609 // and tmp, tmpDest, mask 12610 // cmpw tmp, oldval3 12611 // bne- midMBB 12612 // loop2MBB: 12613 // andc tmp2, tmpDest, mask 12614 // or tmp4, tmp2, newval3 12615 // stwcx. tmp4, ptr 12616 // bne- loop1MBB 12617 // b exitBB 12618 // midMBB: 12619 // stwcx. tmpDest, ptr 12620 // exitBB: 12621 // srw dest, tmpDest, shift 12622 if (ptrA != ZeroReg) { 12623 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12624 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12625 .addReg(ptrA) 12626 .addReg(ptrB); 12627 } else { 12628 Ptr1Reg = ptrB; 12629 } 12630 12631 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12632 // mode. 12633 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12634 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12635 .addImm(3) 12636 .addImm(27) 12637 .addImm(is8bit ? 28 : 27); 12638 if (!isLittleEndian) 12639 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12640 .addReg(Shift1Reg) 12641 .addImm(is8bit ? 24 : 16); 12642 if (is64bit) 12643 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12644 .addReg(Ptr1Reg) 12645 .addImm(0) 12646 .addImm(61); 12647 else 12648 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12649 .addReg(Ptr1Reg) 12650 .addImm(0) 12651 .addImm(0) 12652 .addImm(29); 12653 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12654 .addReg(newval) 12655 .addReg(ShiftReg); 12656 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12657 .addReg(oldval) 12658 .addReg(ShiftReg); 12659 if (is8bit) 12660 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12661 else { 12662 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12663 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12664 .addReg(Mask3Reg) 12665 .addImm(65535); 12666 } 12667 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12668 .addReg(Mask2Reg) 12669 .addReg(ShiftReg); 12670 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12671 .addReg(NewVal2Reg) 12672 .addReg(MaskReg); 12673 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12674 .addReg(OldVal2Reg) 12675 .addReg(MaskReg); 12676 12677 BB = loop1MBB; 12678 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12679 .addReg(ZeroReg) 12680 .addReg(PtrReg); 12681 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12682 .addReg(TmpDestReg) 12683 .addReg(MaskReg); 12684 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12685 .addReg(TmpReg) 12686 .addReg(OldVal3Reg); 12687 BuildMI(BB, dl, TII->get(PPC::BCC)) 12688 .addImm(PPC::PRED_NE) 12689 .addReg(PPC::CR0) 12690 .addMBB(midMBB); 12691 BB->addSuccessor(loop2MBB); 12692 BB->addSuccessor(midMBB); 12693 12694 BB = loop2MBB; 12695 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12696 .addReg(TmpDestReg) 12697 .addReg(MaskReg); 12698 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12699 .addReg(Tmp2Reg) 12700 .addReg(NewVal3Reg); 12701 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12702 .addReg(Tmp4Reg) 12703 .addReg(ZeroReg) 12704 .addReg(PtrReg); 12705 BuildMI(BB, dl, TII->get(PPC::BCC)) 12706 .addImm(PPC::PRED_NE) 12707 .addReg(PPC::CR0) 12708 .addMBB(loop1MBB); 12709 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12710 BB->addSuccessor(loop1MBB); 12711 BB->addSuccessor(exitMBB); 12712 12713 BB = midMBB; 12714 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12715 .addReg(TmpDestReg) 12716 .addReg(ZeroReg) 12717 .addReg(PtrReg); 12718 BB->addSuccessor(exitMBB); 12719 12720 // exitMBB: 12721 // ... 12722 BB = exitMBB; 12723 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12724 .addReg(TmpReg) 12725 .addReg(ShiftReg); 12726 } else if (MI.getOpcode() == PPC::FADDrtz) { 12727 // This pseudo performs an FADD with rounding mode temporarily forced 12728 // to round-to-zero. We emit this via custom inserter since the FPSCR 12729 // is not modeled at the SelectionDAG level. 12730 Register Dest = MI.getOperand(0).getReg(); 12731 Register Src1 = MI.getOperand(1).getReg(); 12732 Register Src2 = MI.getOperand(2).getReg(); 12733 DebugLoc dl = MI.getDebugLoc(); 12734 12735 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12736 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12737 12738 // Save FPSCR value. 12739 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12740 12741 // Set rounding mode to round-to-zero. 12742 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12743 .addImm(31) 12744 .addReg(PPC::RM, RegState::ImplicitDefine); 12745 12746 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12747 .addImm(30) 12748 .addReg(PPC::RM, RegState::ImplicitDefine); 12749 12750 // Perform addition. 12751 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12752 .addReg(Src1) 12753 .addReg(Src2); 12754 if (MI.getFlag(MachineInstr::NoFPExcept)) 12755 MIB.setMIFlag(MachineInstr::NoFPExcept); 12756 12757 // Restore FPSCR value. 12758 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12759 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12760 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12761 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12762 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12763 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12764 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12765 ? PPC::ANDI8_rec 12766 : PPC::ANDI_rec; 12767 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12768 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12769 12770 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12771 Register Dest = RegInfo.createVirtualRegister( 12772 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12773 12774 DebugLoc Dl = MI.getDebugLoc(); 12775 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12776 .addReg(MI.getOperand(1).getReg()) 12777 .addImm(1); 12778 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12779 MI.getOperand(0).getReg()) 12780 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12781 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12782 DebugLoc Dl = MI.getDebugLoc(); 12783 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12784 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12785 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12786 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12787 MI.getOperand(0).getReg()) 12788 .addReg(CRReg); 12789 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12790 DebugLoc Dl = MI.getDebugLoc(); 12791 unsigned Imm = MI.getOperand(1).getImm(); 12792 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12793 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12794 MI.getOperand(0).getReg()) 12795 .addReg(PPC::CR0EQ); 12796 } else if (MI.getOpcode() == PPC::SETRNDi) { 12797 DebugLoc dl = MI.getDebugLoc(); 12798 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12799 12800 // Save FPSCR value. 12801 if (MRI.use_empty(OldFPSCRReg)) 12802 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12803 else 12804 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12805 12806 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12807 // the following settings: 12808 // 00 Round to nearest 12809 // 01 Round to 0 12810 // 10 Round to +inf 12811 // 11 Round to -inf 12812 12813 // When the operand is immediate, using the two least significant bits of 12814 // the immediate to set the bits 62:63 of FPSCR. 12815 unsigned Mode = MI.getOperand(1).getImm(); 12816 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12817 .addImm(31) 12818 .addReg(PPC::RM, RegState::ImplicitDefine); 12819 12820 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12821 .addImm(30) 12822 .addReg(PPC::RM, RegState::ImplicitDefine); 12823 } else if (MI.getOpcode() == PPC::SETRND) { 12824 DebugLoc dl = MI.getDebugLoc(); 12825 12826 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12827 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12828 // If the target doesn't have DirectMove, we should use stack to do the 12829 // conversion, because the target doesn't have the instructions like mtvsrd 12830 // or mfvsrd to do this conversion directly. 12831 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12832 if (Subtarget.hasDirectMove()) { 12833 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12834 .addReg(SrcReg); 12835 } else { 12836 // Use stack to do the register copy. 12837 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12838 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12839 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12840 if (RC == &PPC::F8RCRegClass) { 12841 // Copy register from F8RCRegClass to G8RCRegclass. 12842 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12843 "Unsupported RegClass."); 12844 12845 StoreOp = PPC::STFD; 12846 LoadOp = PPC::LD; 12847 } else { 12848 // Copy register from G8RCRegClass to F8RCRegclass. 12849 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12850 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12851 "Unsupported RegClass."); 12852 } 12853 12854 MachineFrameInfo &MFI = F->getFrameInfo(); 12855 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12856 12857 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12858 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12859 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12860 MFI.getObjectAlign(FrameIdx)); 12861 12862 // Store the SrcReg into the stack. 12863 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12864 .addReg(SrcReg) 12865 .addImm(0) 12866 .addFrameIndex(FrameIdx) 12867 .addMemOperand(MMOStore); 12868 12869 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12870 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12871 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12872 MFI.getObjectAlign(FrameIdx)); 12873 12874 // Load from the stack where SrcReg is stored, and save to DestReg, 12875 // so we have done the RegClass conversion from RegClass::SrcReg to 12876 // RegClass::DestReg. 12877 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12878 .addImm(0) 12879 .addFrameIndex(FrameIdx) 12880 .addMemOperand(MMOLoad); 12881 } 12882 }; 12883 12884 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12885 12886 // Save FPSCR value. 12887 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12888 12889 // When the operand is gprc register, use two least significant bits of the 12890 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12891 // 12892 // copy OldFPSCRTmpReg, OldFPSCRReg 12893 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12894 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12895 // copy NewFPSCRReg, NewFPSCRTmpReg 12896 // mtfsf 255, NewFPSCRReg 12897 MachineOperand SrcOp = MI.getOperand(1); 12898 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12899 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12900 12901 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12902 12903 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12904 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12905 12906 // The first operand of INSERT_SUBREG should be a register which has 12907 // subregisters, we only care about its RegClass, so we should use an 12908 // IMPLICIT_DEF register. 12909 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12910 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12911 .addReg(ImDefReg) 12912 .add(SrcOp) 12913 .addImm(1); 12914 12915 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12916 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12917 .addReg(OldFPSCRTmpReg) 12918 .addReg(ExtSrcReg) 12919 .addImm(0) 12920 .addImm(62); 12921 12922 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12923 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12924 12925 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12926 // bits of FPSCR. 12927 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12928 .addImm(255) 12929 .addReg(NewFPSCRReg) 12930 .addImm(0) 12931 .addImm(0); 12932 } else if (MI.getOpcode() == PPC::SETFLM) { 12933 DebugLoc Dl = MI.getDebugLoc(); 12934 12935 // Result of setflm is previous FPSCR content, so we need to save it first. 12936 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12937 if (MRI.use_empty(OldFPSCRReg)) 12938 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12939 else 12940 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12941 12942 // Put bits in 32:63 to FPSCR. 12943 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12944 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12945 .addImm(255) 12946 .addReg(NewFPSCRReg) 12947 .addImm(0) 12948 .addImm(0); 12949 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12950 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12951 return emitProbedAlloca(MI, BB); 12952 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12953 DebugLoc DL = MI.getDebugLoc(); 12954 Register Src = MI.getOperand(2).getReg(); 12955 Register Lo = MI.getOperand(0).getReg(); 12956 Register Hi = MI.getOperand(1).getReg(); 12957 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12958 .addDef(Lo) 12959 .addUse(Src, 0, PPC::sub_gp8_x1); 12960 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12961 .addDef(Hi) 12962 .addUse(Src, 0, PPC::sub_gp8_x0); 12963 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12964 MI.getOpcode() == PPC::STQX_PSEUDO) { 12965 DebugLoc DL = MI.getDebugLoc(); 12966 // Ptr is used as the ptr_rc_no_r0 part 12967 // of LQ/STQ's memory operand and adding result of RA and RB, 12968 // so it has to be g8rc_and_g8rc_nox0. 12969 Register Ptr = 12970 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12971 Register Val = MI.getOperand(0).getReg(); 12972 Register RA = MI.getOperand(1).getReg(); 12973 Register RB = MI.getOperand(2).getReg(); 12974 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12975 BuildMI(*BB, MI, DL, 12976 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12977 : TII->get(PPC::STQ)) 12978 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12979 .addImm(0) 12980 .addReg(Ptr); 12981 } else { 12982 llvm_unreachable("Unexpected instr type to insert"); 12983 } 12984 12985 MI.eraseFromParent(); // The pseudo instruction is gone now. 12986 return BB; 12987 } 12988 12989 //===----------------------------------------------------------------------===// 12990 // Target Optimization Hooks 12991 //===----------------------------------------------------------------------===// 12992 12993 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12994 // For the estimates, convergence is quadratic, so we essentially double the 12995 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12996 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12997 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12998 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12999 if (VT.getScalarType() == MVT::f64) 13000 RefinementSteps++; 13001 return RefinementSteps; 13002 } 13003 13004 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13005 const DenormalMode &Mode) const { 13006 // We only have VSX Vector Test for software Square Root. 13007 EVT VT = Op.getValueType(); 13008 if (!isTypeLegal(MVT::i1) || 13009 (VT != MVT::f64 && 13010 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13011 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13012 13013 SDLoc DL(Op); 13014 // The output register of FTSQRT is CR field. 13015 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13016 // ftsqrt BF,FRB 13017 // Let e_b be the unbiased exponent of the double-precision 13018 // floating-point operand in register FRB. 13019 // fe_flag is set to 1 if either of the following conditions occurs. 13020 // - The double-precision floating-point operand in register FRB is a zero, 13021 // a NaN, or an infinity, or a negative value. 13022 // - e_b is less than or equal to -970. 13023 // Otherwise fe_flag is set to 0. 13024 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13025 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13026 // exponent is less than -970) 13027 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13028 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13029 FTSQRT, SRIdxVal), 13030 0); 13031 } 13032 13033 SDValue 13034 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13035 SelectionDAG &DAG) const { 13036 // We only have VSX Vector Square Root. 13037 EVT VT = Op.getValueType(); 13038 if (VT != MVT::f64 && 13039 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13040 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13041 13042 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13043 } 13044 13045 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13046 int Enabled, int &RefinementSteps, 13047 bool &UseOneConstNR, 13048 bool Reciprocal) const { 13049 EVT VT = Operand.getValueType(); 13050 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13051 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13052 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13053 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13054 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13055 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13056 13057 // The Newton-Raphson computation with a single constant does not provide 13058 // enough accuracy on some CPUs. 13059 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13060 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13061 } 13062 return SDValue(); 13063 } 13064 13065 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13066 int Enabled, 13067 int &RefinementSteps) const { 13068 EVT VT = Operand.getValueType(); 13069 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13070 (VT == MVT::f64 && Subtarget.hasFRE()) || 13071 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13072 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13073 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13074 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13075 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13076 } 13077 return SDValue(); 13078 } 13079 13080 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13081 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13082 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13083 // enabled for division), this functionality is redundant with the default 13084 // combiner logic (once the division -> reciprocal/multiply transformation 13085 // has taken place). As a result, this matters more for older cores than for 13086 // newer ones. 13087 13088 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13089 // reciprocal if there are two or more FDIVs (for embedded cores with only 13090 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13091 switch (Subtarget.getCPUDirective()) { 13092 default: 13093 return 3; 13094 case PPC::DIR_440: 13095 case PPC::DIR_A2: 13096 case PPC::DIR_E500: 13097 case PPC::DIR_E500mc: 13098 case PPC::DIR_E5500: 13099 return 2; 13100 } 13101 } 13102 13103 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13104 // collapsed, and so we need to look through chains of them. 13105 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13106 int64_t& Offset, SelectionDAG &DAG) { 13107 if (DAG.isBaseWithConstantOffset(Loc)) { 13108 Base = Loc.getOperand(0); 13109 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13110 13111 // The base might itself be a base plus an offset, and if so, accumulate 13112 // that as well. 13113 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13114 } 13115 } 13116 13117 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13118 unsigned Bytes, int Dist, 13119 SelectionDAG &DAG) { 13120 if (VT.getSizeInBits() / 8 != Bytes) 13121 return false; 13122 13123 SDValue BaseLoc = Base->getBasePtr(); 13124 if (Loc.getOpcode() == ISD::FrameIndex) { 13125 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13126 return false; 13127 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13128 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13129 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13130 int FS = MFI.getObjectSize(FI); 13131 int BFS = MFI.getObjectSize(BFI); 13132 if (FS != BFS || FS != (int)Bytes) return false; 13133 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13134 } 13135 13136 SDValue Base1 = Loc, Base2 = BaseLoc; 13137 int64_t Offset1 = 0, Offset2 = 0; 13138 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13139 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13140 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13141 return true; 13142 13143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13144 const GlobalValue *GV1 = nullptr; 13145 const GlobalValue *GV2 = nullptr; 13146 Offset1 = 0; 13147 Offset2 = 0; 13148 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13149 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13150 if (isGA1 && isGA2 && GV1 == GV2) 13151 return Offset1 == (Offset2 + Dist*Bytes); 13152 return false; 13153 } 13154 13155 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13156 // not enforce equality of the chain operands. 13157 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13158 unsigned Bytes, int Dist, 13159 SelectionDAG &DAG) { 13160 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13161 EVT VT = LS->getMemoryVT(); 13162 SDValue Loc = LS->getBasePtr(); 13163 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13164 } 13165 13166 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13167 EVT VT; 13168 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13169 default: return false; 13170 case Intrinsic::ppc_altivec_lvx: 13171 case Intrinsic::ppc_altivec_lvxl: 13172 case Intrinsic::ppc_vsx_lxvw4x: 13173 case Intrinsic::ppc_vsx_lxvw4x_be: 13174 VT = MVT::v4i32; 13175 break; 13176 case Intrinsic::ppc_vsx_lxvd2x: 13177 case Intrinsic::ppc_vsx_lxvd2x_be: 13178 VT = MVT::v2f64; 13179 break; 13180 case Intrinsic::ppc_altivec_lvebx: 13181 VT = MVT::i8; 13182 break; 13183 case Intrinsic::ppc_altivec_lvehx: 13184 VT = MVT::i16; 13185 break; 13186 case Intrinsic::ppc_altivec_lvewx: 13187 VT = MVT::i32; 13188 break; 13189 } 13190 13191 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13192 } 13193 13194 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13195 EVT VT; 13196 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13197 default: return false; 13198 case Intrinsic::ppc_altivec_stvx: 13199 case Intrinsic::ppc_altivec_stvxl: 13200 case Intrinsic::ppc_vsx_stxvw4x: 13201 VT = MVT::v4i32; 13202 break; 13203 case Intrinsic::ppc_vsx_stxvd2x: 13204 VT = MVT::v2f64; 13205 break; 13206 case Intrinsic::ppc_vsx_stxvw4x_be: 13207 VT = MVT::v4i32; 13208 break; 13209 case Intrinsic::ppc_vsx_stxvd2x_be: 13210 VT = MVT::v2f64; 13211 break; 13212 case Intrinsic::ppc_altivec_stvebx: 13213 VT = MVT::i8; 13214 break; 13215 case Intrinsic::ppc_altivec_stvehx: 13216 VT = MVT::i16; 13217 break; 13218 case Intrinsic::ppc_altivec_stvewx: 13219 VT = MVT::i32; 13220 break; 13221 } 13222 13223 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13224 } 13225 13226 return false; 13227 } 13228 13229 // Return true is there is a nearyby consecutive load to the one provided 13230 // (regardless of alignment). We search up and down the chain, looking though 13231 // token factors and other loads (but nothing else). As a result, a true result 13232 // indicates that it is safe to create a new consecutive load adjacent to the 13233 // load provided. 13234 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13235 SDValue Chain = LD->getChain(); 13236 EVT VT = LD->getMemoryVT(); 13237 13238 SmallSet<SDNode *, 16> LoadRoots; 13239 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13240 SmallSet<SDNode *, 16> Visited; 13241 13242 // First, search up the chain, branching to follow all token-factor operands. 13243 // If we find a consecutive load, then we're done, otherwise, record all 13244 // nodes just above the top-level loads and token factors. 13245 while (!Queue.empty()) { 13246 SDNode *ChainNext = Queue.pop_back_val(); 13247 if (!Visited.insert(ChainNext).second) 13248 continue; 13249 13250 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13251 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13252 return true; 13253 13254 if (!Visited.count(ChainLD->getChain().getNode())) 13255 Queue.push_back(ChainLD->getChain().getNode()); 13256 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13257 for (const SDUse &O : ChainNext->ops()) 13258 if (!Visited.count(O.getNode())) 13259 Queue.push_back(O.getNode()); 13260 } else 13261 LoadRoots.insert(ChainNext); 13262 } 13263 13264 // Second, search down the chain, starting from the top-level nodes recorded 13265 // in the first phase. These top-level nodes are the nodes just above all 13266 // loads and token factors. Starting with their uses, recursively look though 13267 // all loads (just the chain uses) and token factors to find a consecutive 13268 // load. 13269 Visited.clear(); 13270 Queue.clear(); 13271 13272 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13273 IE = LoadRoots.end(); I != IE; ++I) { 13274 Queue.push_back(*I); 13275 13276 while (!Queue.empty()) { 13277 SDNode *LoadRoot = Queue.pop_back_val(); 13278 if (!Visited.insert(LoadRoot).second) 13279 continue; 13280 13281 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13282 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13283 return true; 13284 13285 for (SDNode *U : LoadRoot->uses()) 13286 if (((isa<MemSDNode>(U) && 13287 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13288 U->getOpcode() == ISD::TokenFactor) && 13289 !Visited.count(U)) 13290 Queue.push_back(U); 13291 } 13292 } 13293 13294 return false; 13295 } 13296 13297 /// This function is called when we have proved that a SETCC node can be replaced 13298 /// by subtraction (and other supporting instructions) so that the result of 13299 /// comparison is kept in a GPR instead of CR. This function is purely for 13300 /// codegen purposes and has some flags to guide the codegen process. 13301 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13302 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13303 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13304 13305 // Zero extend the operands to the largest legal integer. Originally, they 13306 // must be of a strictly smaller size. 13307 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13308 DAG.getConstant(Size, DL, MVT::i32)); 13309 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13310 DAG.getConstant(Size, DL, MVT::i32)); 13311 13312 // Swap if needed. Depends on the condition code. 13313 if (Swap) 13314 std::swap(Op0, Op1); 13315 13316 // Subtract extended integers. 13317 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13318 13319 // Move the sign bit to the least significant position and zero out the rest. 13320 // Now the least significant bit carries the result of original comparison. 13321 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13322 DAG.getConstant(Size - 1, DL, MVT::i32)); 13323 auto Final = Shifted; 13324 13325 // Complement the result if needed. Based on the condition code. 13326 if (Complement) 13327 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13328 DAG.getConstant(1, DL, MVT::i64)); 13329 13330 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13331 } 13332 13333 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13334 DAGCombinerInfo &DCI) const { 13335 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13336 13337 SelectionDAG &DAG = DCI.DAG; 13338 SDLoc DL(N); 13339 13340 // Size of integers being compared has a critical role in the following 13341 // analysis, so we prefer to do this when all types are legal. 13342 if (!DCI.isAfterLegalizeDAG()) 13343 return SDValue(); 13344 13345 // If all users of SETCC extend its value to a legal integer type 13346 // then we replace SETCC with a subtraction 13347 for (const SDNode *U : N->uses()) 13348 if (U->getOpcode() != ISD::ZERO_EXTEND) 13349 return SDValue(); 13350 13351 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13352 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13353 13354 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13355 13356 if (OpSize < Size) { 13357 switch (CC) { 13358 default: break; 13359 case ISD::SETULT: 13360 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13361 case ISD::SETULE: 13362 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13363 case ISD::SETUGT: 13364 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13365 case ISD::SETUGE: 13366 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13367 } 13368 } 13369 13370 return SDValue(); 13371 } 13372 13373 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13374 DAGCombinerInfo &DCI) const { 13375 SelectionDAG &DAG = DCI.DAG; 13376 SDLoc dl(N); 13377 13378 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13379 // If we're tracking CR bits, we need to be careful that we don't have: 13380 // trunc(binary-ops(zext(x), zext(y))) 13381 // or 13382 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13383 // such that we're unnecessarily moving things into GPRs when it would be 13384 // better to keep them in CR bits. 13385 13386 // Note that trunc here can be an actual i1 trunc, or can be the effective 13387 // truncation that comes from a setcc or select_cc. 13388 if (N->getOpcode() == ISD::TRUNCATE && 13389 N->getValueType(0) != MVT::i1) 13390 return SDValue(); 13391 13392 if (N->getOperand(0).getValueType() != MVT::i32 && 13393 N->getOperand(0).getValueType() != MVT::i64) 13394 return SDValue(); 13395 13396 if (N->getOpcode() == ISD::SETCC || 13397 N->getOpcode() == ISD::SELECT_CC) { 13398 // If we're looking at a comparison, then we need to make sure that the 13399 // high bits (all except for the first) don't matter the result. 13400 ISD::CondCode CC = 13401 cast<CondCodeSDNode>(N->getOperand( 13402 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13403 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13404 13405 if (ISD::isSignedIntSetCC(CC)) { 13406 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13407 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13408 return SDValue(); 13409 } else if (ISD::isUnsignedIntSetCC(CC)) { 13410 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13411 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13412 !DAG.MaskedValueIsZero(N->getOperand(1), 13413 APInt::getHighBitsSet(OpBits, OpBits-1))) 13414 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13415 : SDValue()); 13416 } else { 13417 // This is neither a signed nor an unsigned comparison, just make sure 13418 // that the high bits are equal. 13419 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13420 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13421 13422 // We don't really care about what is known about the first bit (if 13423 // anything), so pretend that it is known zero for both to ensure they can 13424 // be compared as constants. 13425 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13426 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13427 13428 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13429 Op1Known.getConstant() != Op2Known.getConstant()) 13430 return SDValue(); 13431 } 13432 } 13433 13434 // We now know that the higher-order bits are irrelevant, we just need to 13435 // make sure that all of the intermediate operations are bit operations, and 13436 // all inputs are extensions. 13437 if (N->getOperand(0).getOpcode() != ISD::AND && 13438 N->getOperand(0).getOpcode() != ISD::OR && 13439 N->getOperand(0).getOpcode() != ISD::XOR && 13440 N->getOperand(0).getOpcode() != ISD::SELECT && 13441 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13442 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13443 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13444 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13445 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13446 return SDValue(); 13447 13448 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13449 N->getOperand(1).getOpcode() != ISD::AND && 13450 N->getOperand(1).getOpcode() != ISD::OR && 13451 N->getOperand(1).getOpcode() != ISD::XOR && 13452 N->getOperand(1).getOpcode() != ISD::SELECT && 13453 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13454 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13455 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13456 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13457 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13458 return SDValue(); 13459 13460 SmallVector<SDValue, 4> Inputs; 13461 SmallVector<SDValue, 8> BinOps, PromOps; 13462 SmallPtrSet<SDNode *, 16> Visited; 13463 13464 for (unsigned i = 0; i < 2; ++i) { 13465 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13466 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13467 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13468 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13469 isa<ConstantSDNode>(N->getOperand(i))) 13470 Inputs.push_back(N->getOperand(i)); 13471 else 13472 BinOps.push_back(N->getOperand(i)); 13473 13474 if (N->getOpcode() == ISD::TRUNCATE) 13475 break; 13476 } 13477 13478 // Visit all inputs, collect all binary operations (and, or, xor and 13479 // select) that are all fed by extensions. 13480 while (!BinOps.empty()) { 13481 SDValue BinOp = BinOps.pop_back_val(); 13482 13483 if (!Visited.insert(BinOp.getNode()).second) 13484 continue; 13485 13486 PromOps.push_back(BinOp); 13487 13488 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13489 // The condition of the select is not promoted. 13490 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13491 continue; 13492 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13493 continue; 13494 13495 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13496 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13497 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13498 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13499 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13500 Inputs.push_back(BinOp.getOperand(i)); 13501 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13502 BinOp.getOperand(i).getOpcode() == ISD::OR || 13503 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13504 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13505 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13506 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13507 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13508 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13509 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13510 BinOps.push_back(BinOp.getOperand(i)); 13511 } else { 13512 // We have an input that is not an extension or another binary 13513 // operation; we'll abort this transformation. 13514 return SDValue(); 13515 } 13516 } 13517 } 13518 13519 // Make sure that this is a self-contained cluster of operations (which 13520 // is not quite the same thing as saying that everything has only one 13521 // use). 13522 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13523 if (isa<ConstantSDNode>(Inputs[i])) 13524 continue; 13525 13526 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13527 if (User != N && !Visited.count(User)) 13528 return SDValue(); 13529 13530 // Make sure that we're not going to promote the non-output-value 13531 // operand(s) or SELECT or SELECT_CC. 13532 // FIXME: Although we could sometimes handle this, and it does occur in 13533 // practice that one of the condition inputs to the select is also one of 13534 // the outputs, we currently can't deal with this. 13535 if (User->getOpcode() == ISD::SELECT) { 13536 if (User->getOperand(0) == Inputs[i]) 13537 return SDValue(); 13538 } else if (User->getOpcode() == ISD::SELECT_CC) { 13539 if (User->getOperand(0) == Inputs[i] || 13540 User->getOperand(1) == Inputs[i]) 13541 return SDValue(); 13542 } 13543 } 13544 } 13545 13546 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13547 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13548 if (User != N && !Visited.count(User)) 13549 return SDValue(); 13550 13551 // Make sure that we're not going to promote the non-output-value 13552 // operand(s) or SELECT or SELECT_CC. 13553 // FIXME: Although we could sometimes handle this, and it does occur in 13554 // practice that one of the condition inputs to the select is also one of 13555 // the outputs, we currently can't deal with this. 13556 if (User->getOpcode() == ISD::SELECT) { 13557 if (User->getOperand(0) == PromOps[i]) 13558 return SDValue(); 13559 } else if (User->getOpcode() == ISD::SELECT_CC) { 13560 if (User->getOperand(0) == PromOps[i] || 13561 User->getOperand(1) == PromOps[i]) 13562 return SDValue(); 13563 } 13564 } 13565 } 13566 13567 // Replace all inputs with the extension operand. 13568 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13569 // Constants may have users outside the cluster of to-be-promoted nodes, 13570 // and so we need to replace those as we do the promotions. 13571 if (isa<ConstantSDNode>(Inputs[i])) 13572 continue; 13573 else 13574 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13575 } 13576 13577 std::list<HandleSDNode> PromOpHandles; 13578 for (auto &PromOp : PromOps) 13579 PromOpHandles.emplace_back(PromOp); 13580 13581 // Replace all operations (these are all the same, but have a different 13582 // (i1) return type). DAG.getNode will validate that the types of 13583 // a binary operator match, so go through the list in reverse so that 13584 // we've likely promoted both operands first. Any intermediate truncations or 13585 // extensions disappear. 13586 while (!PromOpHandles.empty()) { 13587 SDValue PromOp = PromOpHandles.back().getValue(); 13588 PromOpHandles.pop_back(); 13589 13590 if (PromOp.getOpcode() == ISD::TRUNCATE || 13591 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13592 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13593 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13594 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13595 PromOp.getOperand(0).getValueType() != MVT::i1) { 13596 // The operand is not yet ready (see comment below). 13597 PromOpHandles.emplace_front(PromOp); 13598 continue; 13599 } 13600 13601 SDValue RepValue = PromOp.getOperand(0); 13602 if (isa<ConstantSDNode>(RepValue)) 13603 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13604 13605 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13606 continue; 13607 } 13608 13609 unsigned C; 13610 switch (PromOp.getOpcode()) { 13611 default: C = 0; break; 13612 case ISD::SELECT: C = 1; break; 13613 case ISD::SELECT_CC: C = 2; break; 13614 } 13615 13616 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13617 PromOp.getOperand(C).getValueType() != MVT::i1) || 13618 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13619 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13620 // The to-be-promoted operands of this node have not yet been 13621 // promoted (this should be rare because we're going through the 13622 // list backward, but if one of the operands has several users in 13623 // this cluster of to-be-promoted nodes, it is possible). 13624 PromOpHandles.emplace_front(PromOp); 13625 continue; 13626 } 13627 13628 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13629 PromOp.getNode()->op_end()); 13630 13631 // If there are any constant inputs, make sure they're replaced now. 13632 for (unsigned i = 0; i < 2; ++i) 13633 if (isa<ConstantSDNode>(Ops[C+i])) 13634 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13635 13636 DAG.ReplaceAllUsesOfValueWith(PromOp, 13637 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13638 } 13639 13640 // Now we're left with the initial truncation itself. 13641 if (N->getOpcode() == ISD::TRUNCATE) 13642 return N->getOperand(0); 13643 13644 // Otherwise, this is a comparison. The operands to be compared have just 13645 // changed type (to i1), but everything else is the same. 13646 return SDValue(N, 0); 13647 } 13648 13649 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13650 DAGCombinerInfo &DCI) const { 13651 SelectionDAG &DAG = DCI.DAG; 13652 SDLoc dl(N); 13653 13654 // If we're tracking CR bits, we need to be careful that we don't have: 13655 // zext(binary-ops(trunc(x), trunc(y))) 13656 // or 13657 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13658 // such that we're unnecessarily moving things into CR bits that can more 13659 // efficiently stay in GPRs. Note that if we're not certain that the high 13660 // bits are set as required by the final extension, we still may need to do 13661 // some masking to get the proper behavior. 13662 13663 // This same functionality is important on PPC64 when dealing with 13664 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13665 // the return values of functions. Because it is so similar, it is handled 13666 // here as well. 13667 13668 if (N->getValueType(0) != MVT::i32 && 13669 N->getValueType(0) != MVT::i64) 13670 return SDValue(); 13671 13672 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13673 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13674 return SDValue(); 13675 13676 if (N->getOperand(0).getOpcode() != ISD::AND && 13677 N->getOperand(0).getOpcode() != ISD::OR && 13678 N->getOperand(0).getOpcode() != ISD::XOR && 13679 N->getOperand(0).getOpcode() != ISD::SELECT && 13680 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13681 return SDValue(); 13682 13683 SmallVector<SDValue, 4> Inputs; 13684 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13685 SmallPtrSet<SDNode *, 16> Visited; 13686 13687 // Visit all inputs, collect all binary operations (and, or, xor and 13688 // select) that are all fed by truncations. 13689 while (!BinOps.empty()) { 13690 SDValue BinOp = BinOps.pop_back_val(); 13691 13692 if (!Visited.insert(BinOp.getNode()).second) 13693 continue; 13694 13695 PromOps.push_back(BinOp); 13696 13697 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13698 // The condition of the select is not promoted. 13699 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13700 continue; 13701 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13702 continue; 13703 13704 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13705 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13706 Inputs.push_back(BinOp.getOperand(i)); 13707 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13708 BinOp.getOperand(i).getOpcode() == ISD::OR || 13709 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13710 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13711 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13712 BinOps.push_back(BinOp.getOperand(i)); 13713 } else { 13714 // We have an input that is not a truncation or another binary 13715 // operation; we'll abort this transformation. 13716 return SDValue(); 13717 } 13718 } 13719 } 13720 13721 // The operands of a select that must be truncated when the select is 13722 // promoted because the operand is actually part of the to-be-promoted set. 13723 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13724 13725 // Make sure that this is a self-contained cluster of operations (which 13726 // is not quite the same thing as saying that everything has only one 13727 // use). 13728 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13729 if (isa<ConstantSDNode>(Inputs[i])) 13730 continue; 13731 13732 for (SDNode *User : Inputs[i].getNode()->uses()) { 13733 if (User != N && !Visited.count(User)) 13734 return SDValue(); 13735 13736 // If we're going to promote the non-output-value operand(s) or SELECT or 13737 // SELECT_CC, record them for truncation. 13738 if (User->getOpcode() == ISD::SELECT) { 13739 if (User->getOperand(0) == Inputs[i]) 13740 SelectTruncOp[0].insert(std::make_pair(User, 13741 User->getOperand(0).getValueType())); 13742 } else if (User->getOpcode() == ISD::SELECT_CC) { 13743 if (User->getOperand(0) == Inputs[i]) 13744 SelectTruncOp[0].insert(std::make_pair(User, 13745 User->getOperand(0).getValueType())); 13746 if (User->getOperand(1) == Inputs[i]) 13747 SelectTruncOp[1].insert(std::make_pair(User, 13748 User->getOperand(1).getValueType())); 13749 } 13750 } 13751 } 13752 13753 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13754 for (SDNode *User : PromOps[i].getNode()->uses()) { 13755 if (User != N && !Visited.count(User)) 13756 return SDValue(); 13757 13758 // If we're going to promote the non-output-value operand(s) or SELECT or 13759 // SELECT_CC, record them for truncation. 13760 if (User->getOpcode() == ISD::SELECT) { 13761 if (User->getOperand(0) == PromOps[i]) 13762 SelectTruncOp[0].insert(std::make_pair(User, 13763 User->getOperand(0).getValueType())); 13764 } else if (User->getOpcode() == ISD::SELECT_CC) { 13765 if (User->getOperand(0) == PromOps[i]) 13766 SelectTruncOp[0].insert(std::make_pair(User, 13767 User->getOperand(0).getValueType())); 13768 if (User->getOperand(1) == PromOps[i]) 13769 SelectTruncOp[1].insert(std::make_pair(User, 13770 User->getOperand(1).getValueType())); 13771 } 13772 } 13773 } 13774 13775 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13776 bool ReallyNeedsExt = false; 13777 if (N->getOpcode() != ISD::ANY_EXTEND) { 13778 // If all of the inputs are not already sign/zero extended, then 13779 // we'll still need to do that at the end. 13780 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13781 if (isa<ConstantSDNode>(Inputs[i])) 13782 continue; 13783 13784 unsigned OpBits = 13785 Inputs[i].getOperand(0).getValueSizeInBits(); 13786 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13787 13788 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13789 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13790 APInt::getHighBitsSet(OpBits, 13791 OpBits-PromBits))) || 13792 (N->getOpcode() == ISD::SIGN_EXTEND && 13793 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13794 (OpBits-(PromBits-1)))) { 13795 ReallyNeedsExt = true; 13796 break; 13797 } 13798 } 13799 } 13800 13801 // Replace all inputs, either with the truncation operand, or a 13802 // truncation or extension to the final output type. 13803 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13804 // Constant inputs need to be replaced with the to-be-promoted nodes that 13805 // use them because they might have users outside of the cluster of 13806 // promoted nodes. 13807 if (isa<ConstantSDNode>(Inputs[i])) 13808 continue; 13809 13810 SDValue InSrc = Inputs[i].getOperand(0); 13811 if (Inputs[i].getValueType() == N->getValueType(0)) 13812 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13813 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13814 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13815 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13816 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13817 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13818 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13819 else 13820 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13821 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13822 } 13823 13824 std::list<HandleSDNode> PromOpHandles; 13825 for (auto &PromOp : PromOps) 13826 PromOpHandles.emplace_back(PromOp); 13827 13828 // Replace all operations (these are all the same, but have a different 13829 // (promoted) return type). DAG.getNode will validate that the types of 13830 // a binary operator match, so go through the list in reverse so that 13831 // we've likely promoted both operands first. 13832 while (!PromOpHandles.empty()) { 13833 SDValue PromOp = PromOpHandles.back().getValue(); 13834 PromOpHandles.pop_back(); 13835 13836 unsigned C; 13837 switch (PromOp.getOpcode()) { 13838 default: C = 0; break; 13839 case ISD::SELECT: C = 1; break; 13840 case ISD::SELECT_CC: C = 2; break; 13841 } 13842 13843 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13844 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13845 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13846 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13847 // The to-be-promoted operands of this node have not yet been 13848 // promoted (this should be rare because we're going through the 13849 // list backward, but if one of the operands has several users in 13850 // this cluster of to-be-promoted nodes, it is possible). 13851 PromOpHandles.emplace_front(PromOp); 13852 continue; 13853 } 13854 13855 // For SELECT and SELECT_CC nodes, we do a similar check for any 13856 // to-be-promoted comparison inputs. 13857 if (PromOp.getOpcode() == ISD::SELECT || 13858 PromOp.getOpcode() == ISD::SELECT_CC) { 13859 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13860 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13861 (SelectTruncOp[1].count(PromOp.getNode()) && 13862 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13863 PromOpHandles.emplace_front(PromOp); 13864 continue; 13865 } 13866 } 13867 13868 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13869 PromOp.getNode()->op_end()); 13870 13871 // If this node has constant inputs, then they'll need to be promoted here. 13872 for (unsigned i = 0; i < 2; ++i) { 13873 if (!isa<ConstantSDNode>(Ops[C+i])) 13874 continue; 13875 if (Ops[C+i].getValueType() == N->getValueType(0)) 13876 continue; 13877 13878 if (N->getOpcode() == ISD::SIGN_EXTEND) 13879 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13880 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13881 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13882 else 13883 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13884 } 13885 13886 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13887 // truncate them again to the original value type. 13888 if (PromOp.getOpcode() == ISD::SELECT || 13889 PromOp.getOpcode() == ISD::SELECT_CC) { 13890 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13891 if (SI0 != SelectTruncOp[0].end()) 13892 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13893 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13894 if (SI1 != SelectTruncOp[1].end()) 13895 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13896 } 13897 13898 DAG.ReplaceAllUsesOfValueWith(PromOp, 13899 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13900 } 13901 13902 // Now we're left with the initial extension itself. 13903 if (!ReallyNeedsExt) 13904 return N->getOperand(0); 13905 13906 // To zero extend, just mask off everything except for the first bit (in the 13907 // i1 case). 13908 if (N->getOpcode() == ISD::ZERO_EXTEND) 13909 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13910 DAG.getConstant(APInt::getLowBitsSet( 13911 N->getValueSizeInBits(0), PromBits), 13912 dl, N->getValueType(0))); 13913 13914 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13915 "Invalid extension type"); 13916 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13917 SDValue ShiftCst = 13918 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13919 return DAG.getNode( 13920 ISD::SRA, dl, N->getValueType(0), 13921 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13922 ShiftCst); 13923 } 13924 13925 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13926 DAGCombinerInfo &DCI) const { 13927 assert(N->getOpcode() == ISD::SETCC && 13928 "Should be called with a SETCC node"); 13929 13930 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13931 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13932 SDValue LHS = N->getOperand(0); 13933 SDValue RHS = N->getOperand(1); 13934 13935 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13936 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13937 LHS.hasOneUse()) 13938 std::swap(LHS, RHS); 13939 13940 // x == 0-y --> x+y == 0 13941 // x != 0-y --> x+y != 0 13942 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13943 RHS.hasOneUse()) { 13944 SDLoc DL(N); 13945 SelectionDAG &DAG = DCI.DAG; 13946 EVT VT = N->getValueType(0); 13947 EVT OpVT = LHS.getValueType(); 13948 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13949 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13950 } 13951 } 13952 13953 return DAGCombineTruncBoolExt(N, DCI); 13954 } 13955 13956 // Is this an extending load from an f32 to an f64? 13957 static bool isFPExtLoad(SDValue Op) { 13958 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13959 return LD->getExtensionType() == ISD::EXTLOAD && 13960 Op.getValueType() == MVT::f64; 13961 return false; 13962 } 13963 13964 /// Reduces the number of fp-to-int conversion when building a vector. 13965 /// 13966 /// If this vector is built out of floating to integer conversions, 13967 /// transform it to a vector built out of floating point values followed by a 13968 /// single floating to integer conversion of the vector. 13969 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13970 /// becomes (fptosi (build_vector ($A, $B, ...))) 13971 SDValue PPCTargetLowering:: 13972 combineElementTruncationToVectorTruncation(SDNode *N, 13973 DAGCombinerInfo &DCI) const { 13974 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13975 "Should be called with a BUILD_VECTOR node"); 13976 13977 SelectionDAG &DAG = DCI.DAG; 13978 SDLoc dl(N); 13979 13980 SDValue FirstInput = N->getOperand(0); 13981 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13982 "The input operand must be an fp-to-int conversion."); 13983 13984 // This combine happens after legalization so the fp_to_[su]i nodes are 13985 // already converted to PPCSISD nodes. 13986 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13987 if (FirstConversion == PPCISD::FCTIDZ || 13988 FirstConversion == PPCISD::FCTIDUZ || 13989 FirstConversion == PPCISD::FCTIWZ || 13990 FirstConversion == PPCISD::FCTIWUZ) { 13991 bool IsSplat = true; 13992 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13993 FirstConversion == PPCISD::FCTIWUZ; 13994 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13995 SmallVector<SDValue, 4> Ops; 13996 EVT TargetVT = N->getValueType(0); 13997 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13998 SDValue NextOp = N->getOperand(i); 13999 if (NextOp.getOpcode() != PPCISD::MFVSR) 14000 return SDValue(); 14001 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14002 if (NextConversion != FirstConversion) 14003 return SDValue(); 14004 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14005 // This is not valid if the input was originally double precision. It is 14006 // also not profitable to do unless this is an extending load in which 14007 // case doing this combine will allow us to combine consecutive loads. 14008 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14009 return SDValue(); 14010 if (N->getOperand(i) != FirstInput) 14011 IsSplat = false; 14012 } 14013 14014 // If this is a splat, we leave it as-is since there will be only a single 14015 // fp-to-int conversion followed by a splat of the integer. This is better 14016 // for 32-bit and smaller ints and neutral for 64-bit ints. 14017 if (IsSplat) 14018 return SDValue(); 14019 14020 // Now that we know we have the right type of node, get its operands 14021 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14022 SDValue In = N->getOperand(i).getOperand(0); 14023 if (Is32Bit) { 14024 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14025 // here, we know that all inputs are extending loads so this is safe). 14026 if (In.isUndef()) 14027 Ops.push_back(DAG.getUNDEF(SrcVT)); 14028 else { 14029 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14030 MVT::f32, In.getOperand(0), 14031 DAG.getIntPtrConstant(1, dl)); 14032 Ops.push_back(Trunc); 14033 } 14034 } else 14035 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14036 } 14037 14038 unsigned Opcode; 14039 if (FirstConversion == PPCISD::FCTIDZ || 14040 FirstConversion == PPCISD::FCTIWZ) 14041 Opcode = ISD::FP_TO_SINT; 14042 else 14043 Opcode = ISD::FP_TO_UINT; 14044 14045 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14046 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14047 return DAG.getNode(Opcode, dl, TargetVT, BV); 14048 } 14049 return SDValue(); 14050 } 14051 14052 /// Reduce the number of loads when building a vector. 14053 /// 14054 /// Building a vector out of multiple loads can be converted to a load 14055 /// of the vector type if the loads are consecutive. If the loads are 14056 /// consecutive but in descending order, a shuffle is added at the end 14057 /// to reorder the vector. 14058 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14059 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14060 "Should be called with a BUILD_VECTOR node"); 14061 14062 SDLoc dl(N); 14063 14064 // Return early for non byte-sized type, as they can't be consecutive. 14065 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14066 return SDValue(); 14067 14068 bool InputsAreConsecutiveLoads = true; 14069 bool InputsAreReverseConsecutive = true; 14070 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14071 SDValue FirstInput = N->getOperand(0); 14072 bool IsRoundOfExtLoad = false; 14073 14074 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14075 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14076 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14077 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14078 } 14079 // Not a build vector of (possibly fp_rounded) loads. 14080 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14081 N->getNumOperands() == 1) 14082 return SDValue(); 14083 14084 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14085 // If any inputs are fp_round(extload), they all must be. 14086 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14087 return SDValue(); 14088 14089 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14090 N->getOperand(i); 14091 if (NextInput.getOpcode() != ISD::LOAD) 14092 return SDValue(); 14093 14094 SDValue PreviousInput = 14095 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14096 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14097 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14098 14099 // If any inputs are fp_round(extload), they all must be. 14100 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14101 return SDValue(); 14102 14103 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14104 InputsAreConsecutiveLoads = false; 14105 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14106 InputsAreReverseConsecutive = false; 14107 14108 // Exit early if the loads are neither consecutive nor reverse consecutive. 14109 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14110 return SDValue(); 14111 } 14112 14113 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14114 "The loads cannot be both consecutive and reverse consecutive."); 14115 14116 SDValue FirstLoadOp = 14117 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14118 SDValue LastLoadOp = 14119 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14120 N->getOperand(N->getNumOperands()-1); 14121 14122 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14123 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14124 if (InputsAreConsecutiveLoads) { 14125 assert(LD1 && "Input needs to be a LoadSDNode."); 14126 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14127 LD1->getBasePtr(), LD1->getPointerInfo(), 14128 LD1->getAlignment()); 14129 } 14130 if (InputsAreReverseConsecutive) { 14131 assert(LDL && "Input needs to be a LoadSDNode."); 14132 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14133 LDL->getBasePtr(), LDL->getPointerInfo(), 14134 LDL->getAlignment()); 14135 SmallVector<int, 16> Ops; 14136 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14137 Ops.push_back(i); 14138 14139 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14140 DAG.getUNDEF(N->getValueType(0)), Ops); 14141 } 14142 return SDValue(); 14143 } 14144 14145 // This function adds the required vector_shuffle needed to get 14146 // the elements of the vector extract in the correct position 14147 // as specified by the CorrectElems encoding. 14148 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14149 SDValue Input, uint64_t Elems, 14150 uint64_t CorrectElems) { 14151 SDLoc dl(N); 14152 14153 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14154 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14155 14156 // Knowing the element indices being extracted from the original 14157 // vector and the order in which they're being inserted, just put 14158 // them at element indices required for the instruction. 14159 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14160 if (DAG.getDataLayout().isLittleEndian()) 14161 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14162 else 14163 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14164 CorrectElems = CorrectElems >> 8; 14165 Elems = Elems >> 8; 14166 } 14167 14168 SDValue Shuffle = 14169 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14170 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14171 14172 EVT VT = N->getValueType(0); 14173 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14174 14175 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14176 Input.getValueType().getVectorElementType(), 14177 VT.getVectorNumElements()); 14178 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14179 DAG.getValueType(ExtVT)); 14180 } 14181 14182 // Look for build vector patterns where input operands come from sign 14183 // extended vector_extract elements of specific indices. If the correct indices 14184 // aren't used, add a vector shuffle to fix up the indices and create 14185 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14186 // during instruction selection. 14187 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14188 // This array encodes the indices that the vector sign extend instructions 14189 // extract from when extending from one type to another for both BE and LE. 14190 // The right nibble of each byte corresponds to the LE incides. 14191 // and the left nibble of each byte corresponds to the BE incides. 14192 // For example: 0x3074B8FC byte->word 14193 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14194 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14195 // For example: 0x000070F8 byte->double word 14196 // For LE: the allowed indices are: 0x0,0x8 14197 // For BE: the allowed indices are: 0x7,0xF 14198 uint64_t TargetElems[] = { 14199 0x3074B8FC, // b->w 14200 0x000070F8, // b->d 14201 0x10325476, // h->w 14202 0x00003074, // h->d 14203 0x00001032, // w->d 14204 }; 14205 14206 uint64_t Elems = 0; 14207 int Index; 14208 SDValue Input; 14209 14210 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14211 if (!Op) 14212 return false; 14213 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14214 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14215 return false; 14216 14217 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14218 // of the right width. 14219 SDValue Extract = Op.getOperand(0); 14220 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14221 Extract = Extract.getOperand(0); 14222 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14223 return false; 14224 14225 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14226 if (!ExtOp) 14227 return false; 14228 14229 Index = ExtOp->getZExtValue(); 14230 if (Input && Input != Extract.getOperand(0)) 14231 return false; 14232 14233 if (!Input) 14234 Input = Extract.getOperand(0); 14235 14236 Elems = Elems << 8; 14237 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14238 Elems |= Index; 14239 14240 return true; 14241 }; 14242 14243 // If the build vector operands aren't sign extended vector extracts, 14244 // of the same input vector, then return. 14245 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14246 if (!isSExtOfVecExtract(N->getOperand(i))) { 14247 return SDValue(); 14248 } 14249 } 14250 14251 // If the vector extract indicies are not correct, add the appropriate 14252 // vector_shuffle. 14253 int TgtElemArrayIdx; 14254 int InputSize = Input.getValueType().getScalarSizeInBits(); 14255 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14256 if (InputSize + OutputSize == 40) 14257 TgtElemArrayIdx = 0; 14258 else if (InputSize + OutputSize == 72) 14259 TgtElemArrayIdx = 1; 14260 else if (InputSize + OutputSize == 48) 14261 TgtElemArrayIdx = 2; 14262 else if (InputSize + OutputSize == 80) 14263 TgtElemArrayIdx = 3; 14264 else if (InputSize + OutputSize == 96) 14265 TgtElemArrayIdx = 4; 14266 else 14267 return SDValue(); 14268 14269 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14270 CorrectElems = DAG.getDataLayout().isLittleEndian() 14271 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14272 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14273 if (Elems != CorrectElems) { 14274 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14275 } 14276 14277 // Regular lowering will catch cases where a shuffle is not needed. 14278 return SDValue(); 14279 } 14280 14281 // Look for the pattern of a load from a narrow width to i128, feeding 14282 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14283 // (LXVRZX). This node represents a zero extending load that will be matched 14284 // to the Load VSX Vector Rightmost instructions. 14285 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14286 SDLoc DL(N); 14287 14288 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14289 if (N->getValueType(0) != MVT::v1i128) 14290 return SDValue(); 14291 14292 SDValue Operand = N->getOperand(0); 14293 // Proceed with the transformation if the operand to the BUILD_VECTOR 14294 // is a load instruction. 14295 if (Operand.getOpcode() != ISD::LOAD) 14296 return SDValue(); 14297 14298 auto *LD = cast<LoadSDNode>(Operand); 14299 EVT MemoryType = LD->getMemoryVT(); 14300 14301 // This transformation is only valid if the we are loading either a byte, 14302 // halfword, word, or doubleword. 14303 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14304 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14305 14306 // Ensure that the load from the narrow width is being zero extended to i128. 14307 if (!ValidLDType || 14308 (LD->getExtensionType() != ISD::ZEXTLOAD && 14309 LD->getExtensionType() != ISD::EXTLOAD)) 14310 return SDValue(); 14311 14312 SDValue LoadOps[] = { 14313 LD->getChain(), LD->getBasePtr(), 14314 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14315 14316 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14317 DAG.getVTList(MVT::v1i128, MVT::Other), 14318 LoadOps, MemoryType, LD->getMemOperand()); 14319 } 14320 14321 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14322 DAGCombinerInfo &DCI) const { 14323 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14324 "Should be called with a BUILD_VECTOR node"); 14325 14326 SelectionDAG &DAG = DCI.DAG; 14327 SDLoc dl(N); 14328 14329 if (!Subtarget.hasVSX()) 14330 return SDValue(); 14331 14332 // The target independent DAG combiner will leave a build_vector of 14333 // float-to-int conversions intact. We can generate MUCH better code for 14334 // a float-to-int conversion of a vector of floats. 14335 SDValue FirstInput = N->getOperand(0); 14336 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14337 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14338 if (Reduced) 14339 return Reduced; 14340 } 14341 14342 // If we're building a vector out of consecutive loads, just load that 14343 // vector type. 14344 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14345 if (Reduced) 14346 return Reduced; 14347 14348 // If we're building a vector out of extended elements from another vector 14349 // we have P9 vector integer extend instructions. The code assumes legal 14350 // input types (i.e. it can't handle things like v4i16) so do not run before 14351 // legalization. 14352 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14353 Reduced = combineBVOfVecSExt(N, DAG); 14354 if (Reduced) 14355 return Reduced; 14356 } 14357 14358 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14359 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14360 // is a load from <valid narrow width> to i128. 14361 if (Subtarget.isISA3_1()) { 14362 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14363 if (BVOfZLoad) 14364 return BVOfZLoad; 14365 } 14366 14367 if (N->getValueType(0) != MVT::v2f64) 14368 return SDValue(); 14369 14370 // Looking for: 14371 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14372 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14373 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14374 return SDValue(); 14375 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14376 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14377 return SDValue(); 14378 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14379 return SDValue(); 14380 14381 SDValue Ext1 = FirstInput.getOperand(0); 14382 SDValue Ext2 = N->getOperand(1).getOperand(0); 14383 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14384 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14385 return SDValue(); 14386 14387 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14388 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14389 if (!Ext1Op || !Ext2Op) 14390 return SDValue(); 14391 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14392 Ext1.getOperand(0) != Ext2.getOperand(0)) 14393 return SDValue(); 14394 14395 int FirstElem = Ext1Op->getZExtValue(); 14396 int SecondElem = Ext2Op->getZExtValue(); 14397 int SubvecIdx; 14398 if (FirstElem == 0 && SecondElem == 1) 14399 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14400 else if (FirstElem == 2 && SecondElem == 3) 14401 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14402 else 14403 return SDValue(); 14404 14405 SDValue SrcVec = Ext1.getOperand(0); 14406 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14407 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14408 return DAG.getNode(NodeType, dl, MVT::v2f64, 14409 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14410 } 14411 14412 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14413 DAGCombinerInfo &DCI) const { 14414 assert((N->getOpcode() == ISD::SINT_TO_FP || 14415 N->getOpcode() == ISD::UINT_TO_FP) && 14416 "Need an int -> FP conversion node here"); 14417 14418 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14419 return SDValue(); 14420 14421 SelectionDAG &DAG = DCI.DAG; 14422 SDLoc dl(N); 14423 SDValue Op(N, 0); 14424 14425 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14426 // from the hardware. 14427 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14428 return SDValue(); 14429 if (!Op.getOperand(0).getValueType().isSimple()) 14430 return SDValue(); 14431 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14432 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14433 return SDValue(); 14434 14435 SDValue FirstOperand(Op.getOperand(0)); 14436 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14437 (FirstOperand.getValueType() == MVT::i8 || 14438 FirstOperand.getValueType() == MVT::i16); 14439 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14440 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14441 bool DstDouble = Op.getValueType() == MVT::f64; 14442 unsigned ConvOp = Signed ? 14443 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14444 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14445 SDValue WidthConst = 14446 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14447 dl, false); 14448 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14449 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14450 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14451 DAG.getVTList(MVT::f64, MVT::Other), 14452 Ops, MVT::i8, LDN->getMemOperand()); 14453 14454 // For signed conversion, we need to sign-extend the value in the VSR 14455 if (Signed) { 14456 SDValue ExtOps[] = { Ld, WidthConst }; 14457 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14458 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14459 } else 14460 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14461 } 14462 14463 14464 // For i32 intermediate values, unfortunately, the conversion functions 14465 // leave the upper 32 bits of the value are undefined. Within the set of 14466 // scalar instructions, we have no method for zero- or sign-extending the 14467 // value. Thus, we cannot handle i32 intermediate values here. 14468 if (Op.getOperand(0).getValueType() == MVT::i32) 14469 return SDValue(); 14470 14471 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14472 "UINT_TO_FP is supported only with FPCVT"); 14473 14474 // If we have FCFIDS, then use it when converting to single-precision. 14475 // Otherwise, convert to double-precision and then round. 14476 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14477 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14478 : PPCISD::FCFIDS) 14479 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14480 : PPCISD::FCFID); 14481 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14482 ? MVT::f32 14483 : MVT::f64; 14484 14485 // If we're converting from a float, to an int, and back to a float again, 14486 // then we don't need the store/load pair at all. 14487 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14488 Subtarget.hasFPCVT()) || 14489 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14490 SDValue Src = Op.getOperand(0).getOperand(0); 14491 if (Src.getValueType() == MVT::f32) { 14492 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14493 DCI.AddToWorklist(Src.getNode()); 14494 } else if (Src.getValueType() != MVT::f64) { 14495 // Make sure that we don't pick up a ppc_fp128 source value. 14496 return SDValue(); 14497 } 14498 14499 unsigned FCTOp = 14500 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14501 PPCISD::FCTIDUZ; 14502 14503 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14504 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14505 14506 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14507 FP = DAG.getNode(ISD::FP_ROUND, dl, 14508 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14509 DCI.AddToWorklist(FP.getNode()); 14510 } 14511 14512 return FP; 14513 } 14514 14515 return SDValue(); 14516 } 14517 14518 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14519 // builtins) into loads with swaps. 14520 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14521 DAGCombinerInfo &DCI) const { 14522 SelectionDAG &DAG = DCI.DAG; 14523 SDLoc dl(N); 14524 SDValue Chain; 14525 SDValue Base; 14526 MachineMemOperand *MMO; 14527 14528 switch (N->getOpcode()) { 14529 default: 14530 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14531 case ISD::LOAD: { 14532 LoadSDNode *LD = cast<LoadSDNode>(N); 14533 Chain = LD->getChain(); 14534 Base = LD->getBasePtr(); 14535 MMO = LD->getMemOperand(); 14536 // If the MMO suggests this isn't a load of a full vector, leave 14537 // things alone. For a built-in, we have to make the change for 14538 // correctness, so if there is a size problem that will be a bug. 14539 if (MMO->getSize() < 16) 14540 return SDValue(); 14541 break; 14542 } 14543 case ISD::INTRINSIC_W_CHAIN: { 14544 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14545 Chain = Intrin->getChain(); 14546 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14547 // us what we want. Get operand 2 instead. 14548 Base = Intrin->getOperand(2); 14549 MMO = Intrin->getMemOperand(); 14550 break; 14551 } 14552 } 14553 14554 MVT VecTy = N->getValueType(0).getSimpleVT(); 14555 14556 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14557 // aligned and the type is a vector with elements up to 4 bytes 14558 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14559 VecTy.getScalarSizeInBits() <= 32) { 14560 return SDValue(); 14561 } 14562 14563 SDValue LoadOps[] = { Chain, Base }; 14564 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14565 DAG.getVTList(MVT::v2f64, MVT::Other), 14566 LoadOps, MVT::v2f64, MMO); 14567 14568 DCI.AddToWorklist(Load.getNode()); 14569 Chain = Load.getValue(1); 14570 SDValue Swap = DAG.getNode( 14571 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14572 DCI.AddToWorklist(Swap.getNode()); 14573 14574 // Add a bitcast if the resulting load type doesn't match v2f64. 14575 if (VecTy != MVT::v2f64) { 14576 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14577 DCI.AddToWorklist(N.getNode()); 14578 // Package {bitcast value, swap's chain} to match Load's shape. 14579 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14580 N, Swap.getValue(1)); 14581 } 14582 14583 return Swap; 14584 } 14585 14586 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14587 // builtins) into stores with swaps. 14588 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14589 DAGCombinerInfo &DCI) const { 14590 SelectionDAG &DAG = DCI.DAG; 14591 SDLoc dl(N); 14592 SDValue Chain; 14593 SDValue Base; 14594 unsigned SrcOpnd; 14595 MachineMemOperand *MMO; 14596 14597 switch (N->getOpcode()) { 14598 default: 14599 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14600 case ISD::STORE: { 14601 StoreSDNode *ST = cast<StoreSDNode>(N); 14602 Chain = ST->getChain(); 14603 Base = ST->getBasePtr(); 14604 MMO = ST->getMemOperand(); 14605 SrcOpnd = 1; 14606 // If the MMO suggests this isn't a store of a full vector, leave 14607 // things alone. For a built-in, we have to make the change for 14608 // correctness, so if there is a size problem that will be a bug. 14609 if (MMO->getSize() < 16) 14610 return SDValue(); 14611 break; 14612 } 14613 case ISD::INTRINSIC_VOID: { 14614 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14615 Chain = Intrin->getChain(); 14616 // Intrin->getBasePtr() oddly does not get what we want. 14617 Base = Intrin->getOperand(3); 14618 MMO = Intrin->getMemOperand(); 14619 SrcOpnd = 2; 14620 break; 14621 } 14622 } 14623 14624 SDValue Src = N->getOperand(SrcOpnd); 14625 MVT VecTy = Src.getValueType().getSimpleVT(); 14626 14627 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14628 // aligned and the type is a vector with elements up to 4 bytes 14629 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14630 VecTy.getScalarSizeInBits() <= 32) { 14631 return SDValue(); 14632 } 14633 14634 // All stores are done as v2f64 and possible bit cast. 14635 if (VecTy != MVT::v2f64) { 14636 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14637 DCI.AddToWorklist(Src.getNode()); 14638 } 14639 14640 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14641 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14642 DCI.AddToWorklist(Swap.getNode()); 14643 Chain = Swap.getValue(1); 14644 SDValue StoreOps[] = { Chain, Swap, Base }; 14645 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14646 DAG.getVTList(MVT::Other), 14647 StoreOps, VecTy, MMO); 14648 DCI.AddToWorklist(Store.getNode()); 14649 return Store; 14650 } 14651 14652 // Handle DAG combine for STORE (FP_TO_INT F). 14653 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14654 DAGCombinerInfo &DCI) const { 14655 14656 SelectionDAG &DAG = DCI.DAG; 14657 SDLoc dl(N); 14658 unsigned Opcode = N->getOperand(1).getOpcode(); 14659 14660 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14661 && "Not a FP_TO_INT Instruction!"); 14662 14663 SDValue Val = N->getOperand(1).getOperand(0); 14664 EVT Op1VT = N->getOperand(1).getValueType(); 14665 EVT ResVT = Val.getValueType(); 14666 14667 if (!isTypeLegal(ResVT)) 14668 return SDValue(); 14669 14670 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14671 bool ValidTypeForStoreFltAsInt = 14672 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14673 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14674 14675 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14676 return SDValue(); 14677 14678 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14679 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14680 return SDValue(); 14681 14682 // Extend f32 values to f64 14683 if (ResVT.getScalarSizeInBits() == 32) { 14684 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14685 DCI.AddToWorklist(Val.getNode()); 14686 } 14687 14688 // Set signed or unsigned conversion opcode. 14689 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14690 PPCISD::FP_TO_SINT_IN_VSR : 14691 PPCISD::FP_TO_UINT_IN_VSR; 14692 14693 Val = DAG.getNode(ConvOpcode, 14694 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14695 DCI.AddToWorklist(Val.getNode()); 14696 14697 // Set number of bytes being converted. 14698 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14699 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14700 DAG.getIntPtrConstant(ByteSize, dl, false), 14701 DAG.getValueType(Op1VT) }; 14702 14703 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14704 DAG.getVTList(MVT::Other), Ops, 14705 cast<StoreSDNode>(N)->getMemoryVT(), 14706 cast<StoreSDNode>(N)->getMemOperand()); 14707 14708 DCI.AddToWorklist(Val.getNode()); 14709 return Val; 14710 } 14711 14712 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14713 // Check that the source of the element keeps flipping 14714 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14715 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14716 for (int i = 1, e = Mask.size(); i < e; i++) { 14717 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14718 return false; 14719 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14720 return false; 14721 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14722 } 14723 return true; 14724 } 14725 14726 static bool isSplatBV(SDValue Op) { 14727 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14728 return false; 14729 SDValue FirstOp; 14730 14731 // Find first non-undef input. 14732 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14733 FirstOp = Op.getOperand(i); 14734 if (!FirstOp.isUndef()) 14735 break; 14736 } 14737 14738 // All inputs are undef or the same as the first non-undef input. 14739 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14740 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14741 return false; 14742 return true; 14743 } 14744 14745 static SDValue isScalarToVec(SDValue Op) { 14746 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14747 return Op; 14748 if (Op.getOpcode() != ISD::BITCAST) 14749 return SDValue(); 14750 Op = Op.getOperand(0); 14751 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14752 return Op; 14753 return SDValue(); 14754 } 14755 14756 // Fix up the shuffle mask to account for the fact that the result of 14757 // scalar_to_vector is not in lane zero. This just takes all values in 14758 // the ranges specified by the min/max indices and adds the number of 14759 // elements required to ensure each element comes from the respective 14760 // position in the valid lane. 14761 // On little endian, that's just the corresponding element in the other 14762 // half of the vector. On big endian, it is in the same half but right 14763 // justified rather than left justified in that half. 14764 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14765 int LHSMaxIdx, int RHSMinIdx, 14766 int RHSMaxIdx, int HalfVec, 14767 unsigned ValidLaneWidth, 14768 const PPCSubtarget &Subtarget) { 14769 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14770 int Idx = ShuffV[i]; 14771 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14772 ShuffV[i] += 14773 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14774 } 14775 } 14776 14777 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14778 // the original is: 14779 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14780 // In such a case, just change the shuffle mask to extract the element 14781 // from the permuted index. 14782 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14783 const PPCSubtarget &Subtarget) { 14784 SDLoc dl(OrigSToV); 14785 EVT VT = OrigSToV.getValueType(); 14786 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14787 "Expecting a SCALAR_TO_VECTOR here"); 14788 SDValue Input = OrigSToV.getOperand(0); 14789 14790 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14791 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14792 SDValue OrigVector = Input.getOperand(0); 14793 14794 // Can't handle non-const element indices or different vector types 14795 // for the input to the extract and the output of the scalar_to_vector. 14796 if (Idx && VT == OrigVector.getValueType()) { 14797 unsigned NumElts = VT.getVectorNumElements(); 14798 assert( 14799 NumElts > 1 && 14800 "Cannot produce a permuted scalar_to_vector for one element vector"); 14801 SmallVector<int, 16> NewMask(NumElts, -1); 14802 unsigned ResultInElt = NumElts / 2; 14803 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14804 NewMask[ResultInElt] = Idx->getZExtValue(); 14805 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14806 } 14807 } 14808 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14809 OrigSToV.getOperand(0)); 14810 } 14811 14812 // On little endian subtargets, combine shuffles such as: 14813 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14814 // into: 14815 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14816 // because the latter can be matched to a single instruction merge. 14817 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14818 // to put the value into element zero. Adjust the shuffle mask so that the 14819 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14820 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14821 // nodes with elements smaller than doubleword because all the ways 14822 // of getting scalar data into a vector register put the value in the 14823 // rightmost element of the left half of the vector. 14824 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14825 SelectionDAG &DAG) const { 14826 SDValue LHS = SVN->getOperand(0); 14827 SDValue RHS = SVN->getOperand(1); 14828 auto Mask = SVN->getMask(); 14829 int NumElts = LHS.getValueType().getVectorNumElements(); 14830 SDValue Res(SVN, 0); 14831 SDLoc dl(SVN); 14832 bool IsLittleEndian = Subtarget.isLittleEndian(); 14833 14834 // On big endian targets this is only useful for subtargets with direct moves. 14835 // On little endian targets it would be useful for all subtargets with VSX. 14836 // However adding special handling for LE subtargets without direct moves 14837 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14838 // which includes direct moves. 14839 if (!Subtarget.hasDirectMove()) 14840 return Res; 14841 14842 // If this is not a shuffle of a shuffle and the first element comes from 14843 // the second vector, canonicalize to the commuted form. This will make it 14844 // more likely to match one of the single instruction patterns. 14845 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14846 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14847 std::swap(LHS, RHS); 14848 Res = DAG.getCommutedVectorShuffle(*SVN); 14849 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14850 } 14851 14852 // Adjust the shuffle mask if either input vector comes from a 14853 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14854 // form (to prevent the need for a swap). 14855 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14856 SDValue SToVLHS = isScalarToVec(LHS); 14857 SDValue SToVRHS = isScalarToVec(RHS); 14858 if (SToVLHS || SToVRHS) { 14859 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14860 : SToVRHS.getValueType().getVectorNumElements(); 14861 int NumEltsOut = ShuffV.size(); 14862 // The width of the "valid lane" (i.e. the lane that contains the value that 14863 // is vectorized) needs to be expressed in terms of the number of elements 14864 // of the shuffle. It is thereby the ratio of the values before and after 14865 // any bitcast. 14866 unsigned ValidLaneWidth = 14867 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14868 LHS.getValueType().getScalarSizeInBits() 14869 : SToVRHS.getValueType().getScalarSizeInBits() / 14870 RHS.getValueType().getScalarSizeInBits(); 14871 14872 // Initially assume that neither input is permuted. These will be adjusted 14873 // accordingly if either input is. 14874 int LHSMaxIdx = -1; 14875 int RHSMinIdx = -1; 14876 int RHSMaxIdx = -1; 14877 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14878 14879 // Get the permuted scalar to vector nodes for the source(s) that come from 14880 // ISD::SCALAR_TO_VECTOR. 14881 // On big endian systems, this only makes sense for element sizes smaller 14882 // than 64 bits since for 64-bit elements, all instructions already put 14883 // the value into element zero. Since scalar size of LHS and RHS may differ 14884 // after isScalarToVec, this should be checked using their own sizes. 14885 if (SToVLHS) { 14886 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14887 return Res; 14888 // Set up the values for the shuffle vector fixup. 14889 LHSMaxIdx = NumEltsOut / NumEltsIn; 14890 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14891 if (SToVLHS.getValueType() != LHS.getValueType()) 14892 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14893 LHS = SToVLHS; 14894 } 14895 if (SToVRHS) { 14896 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14897 return Res; 14898 RHSMinIdx = NumEltsOut; 14899 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14900 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14901 if (SToVRHS.getValueType() != RHS.getValueType()) 14902 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14903 RHS = SToVRHS; 14904 } 14905 14906 // Fix up the shuffle mask to reflect where the desired element actually is. 14907 // The minimum and maximum indices that correspond to element zero for both 14908 // the LHS and RHS are computed and will control which shuffle mask entries 14909 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14910 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14911 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14912 HalfVec, ValidLaneWidth, Subtarget); 14913 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14914 14915 // We may have simplified away the shuffle. We won't be able to do anything 14916 // further with it here. 14917 if (!isa<ShuffleVectorSDNode>(Res)) 14918 return Res; 14919 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14920 } 14921 14922 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14923 // The common case after we commuted the shuffle is that the RHS is a splat 14924 // and we have elements coming in from the splat at indices that are not 14925 // conducive to using a merge. 14926 // Example: 14927 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14928 if (!isSplatBV(TheSplat)) 14929 return Res; 14930 14931 // We are looking for a mask such that all even elements are from 14932 // one vector and all odd elements from the other. 14933 if (!isAlternatingShuffMask(Mask, NumElts)) 14934 return Res; 14935 14936 // Adjust the mask so we are pulling in the same index from the splat 14937 // as the index from the interesting vector in consecutive elements. 14938 if (IsLittleEndian) { 14939 // Example (even elements from first vector): 14940 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14941 if (Mask[0] < NumElts) 14942 for (int i = 1, e = Mask.size(); i < e; i += 2) 14943 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14944 // Example (odd elements from first vector): 14945 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14946 else 14947 for (int i = 0, e = Mask.size(); i < e; i += 2) 14948 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14949 } else { 14950 // Example (even elements from first vector): 14951 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14952 if (Mask[0] < NumElts) 14953 for (int i = 0, e = Mask.size(); i < e; i += 2) 14954 ShuffV[i] = ShuffV[i + 1] - NumElts; 14955 // Example (odd elements from first vector): 14956 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14957 else 14958 for (int i = 1, e = Mask.size(); i < e; i += 2) 14959 ShuffV[i] = ShuffV[i - 1] - NumElts; 14960 } 14961 14962 // If the RHS has undefs, we need to remove them since we may have created 14963 // a shuffle that adds those instead of the splat value. 14964 SDValue SplatVal = 14965 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14966 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14967 14968 if (IsLittleEndian) 14969 RHS = TheSplat; 14970 else 14971 LHS = TheSplat; 14972 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14973 } 14974 14975 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14976 LSBaseSDNode *LSBase, 14977 DAGCombinerInfo &DCI) const { 14978 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14979 "Not a reverse memop pattern!"); 14980 14981 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14982 auto Mask = SVN->getMask(); 14983 int i = 0; 14984 auto I = Mask.rbegin(); 14985 auto E = Mask.rend(); 14986 14987 for (; I != E; ++I) { 14988 if (*I != i) 14989 return false; 14990 i++; 14991 } 14992 return true; 14993 }; 14994 14995 SelectionDAG &DAG = DCI.DAG; 14996 EVT VT = SVN->getValueType(0); 14997 14998 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14999 return SDValue(); 15000 15001 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15002 // See comment in PPCVSXSwapRemoval.cpp. 15003 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15004 if (!Subtarget.hasP9Vector()) 15005 return SDValue(); 15006 15007 if(!IsElementReverse(SVN)) 15008 return SDValue(); 15009 15010 if (LSBase->getOpcode() == ISD::LOAD) { 15011 // If the load return value 0 has more than one user except the 15012 // shufflevector instruction, it is not profitable to replace the 15013 // shufflevector with a reverse load. 15014 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15015 UI != UE; ++UI) 15016 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15017 return SDValue(); 15018 15019 SDLoc dl(LSBase); 15020 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15021 return DAG.getMemIntrinsicNode( 15022 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15023 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15024 } 15025 15026 if (LSBase->getOpcode() == ISD::STORE) { 15027 // If there are other uses of the shuffle, the swap cannot be avoided. 15028 // Forcing the use of an X-Form (since swapped stores only have 15029 // X-Forms) without removing the swap is unprofitable. 15030 if (!SVN->hasOneUse()) 15031 return SDValue(); 15032 15033 SDLoc dl(LSBase); 15034 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15035 LSBase->getBasePtr()}; 15036 return DAG.getMemIntrinsicNode( 15037 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15038 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15039 } 15040 15041 llvm_unreachable("Expected a load or store node here"); 15042 } 15043 15044 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15045 DAGCombinerInfo &DCI) const { 15046 SelectionDAG &DAG = DCI.DAG; 15047 SDLoc dl(N); 15048 switch (N->getOpcode()) { 15049 default: break; 15050 case ISD::ADD: 15051 return combineADD(N, DCI); 15052 case ISD::SHL: 15053 return combineSHL(N, DCI); 15054 case ISD::SRA: 15055 return combineSRA(N, DCI); 15056 case ISD::SRL: 15057 return combineSRL(N, DCI); 15058 case ISD::MUL: 15059 return combineMUL(N, DCI); 15060 case ISD::FMA: 15061 case PPCISD::FNMSUB: 15062 return combineFMALike(N, DCI); 15063 case PPCISD::SHL: 15064 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15065 return N->getOperand(0); 15066 break; 15067 case PPCISD::SRL: 15068 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15069 return N->getOperand(0); 15070 break; 15071 case PPCISD::SRA: 15072 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15073 if (C->isZero() || // 0 >>s V -> 0. 15074 C->isAllOnes()) // -1 >>s V -> -1. 15075 return N->getOperand(0); 15076 } 15077 break; 15078 case ISD::SIGN_EXTEND: 15079 case ISD::ZERO_EXTEND: 15080 case ISD::ANY_EXTEND: 15081 return DAGCombineExtBoolTrunc(N, DCI); 15082 case ISD::TRUNCATE: 15083 return combineTRUNCATE(N, DCI); 15084 case ISD::SETCC: 15085 if (SDValue CSCC = combineSetCC(N, DCI)) 15086 return CSCC; 15087 LLVM_FALLTHROUGH; 15088 case ISD::SELECT_CC: 15089 return DAGCombineTruncBoolExt(N, DCI); 15090 case ISD::SINT_TO_FP: 15091 case ISD::UINT_TO_FP: 15092 return combineFPToIntToFP(N, DCI); 15093 case ISD::VECTOR_SHUFFLE: 15094 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15095 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15096 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15097 } 15098 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15099 case ISD::STORE: { 15100 15101 EVT Op1VT = N->getOperand(1).getValueType(); 15102 unsigned Opcode = N->getOperand(1).getOpcode(); 15103 15104 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15105 SDValue Val= combineStoreFPToInt(N, DCI); 15106 if (Val) 15107 return Val; 15108 } 15109 15110 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15111 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15112 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15113 if (Val) 15114 return Val; 15115 } 15116 15117 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15118 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15119 N->getOperand(1).getNode()->hasOneUse() && 15120 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15121 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15122 15123 // STBRX can only handle simple types and it makes no sense to store less 15124 // two bytes in byte-reversed order. 15125 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15126 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15127 break; 15128 15129 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15130 // Do an any-extend to 32-bits if this is a half-word input. 15131 if (BSwapOp.getValueType() == MVT::i16) 15132 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15133 15134 // If the type of BSWAP operand is wider than stored memory width 15135 // it need to be shifted to the right side before STBRX. 15136 if (Op1VT.bitsGT(mVT)) { 15137 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15138 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15139 DAG.getConstant(Shift, dl, MVT::i32)); 15140 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15141 if (Op1VT == MVT::i64) 15142 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15143 } 15144 15145 SDValue Ops[] = { 15146 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15147 }; 15148 return 15149 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15150 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15151 cast<StoreSDNode>(N)->getMemOperand()); 15152 } 15153 15154 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15155 // So it can increase the chance of CSE constant construction. 15156 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15157 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15158 // Need to sign-extended to 64-bits to handle negative values. 15159 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15160 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15161 MemVT.getSizeInBits()); 15162 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15163 15164 // DAG.getTruncStore() can't be used here because it doesn't accept 15165 // the general (base + offset) addressing mode. 15166 // So we use UpdateNodeOperands and setTruncatingStore instead. 15167 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15168 N->getOperand(3)); 15169 cast<StoreSDNode>(N)->setTruncatingStore(true); 15170 return SDValue(N, 0); 15171 } 15172 15173 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15174 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15175 if (Op1VT.isSimple()) { 15176 MVT StoreVT = Op1VT.getSimpleVT(); 15177 if (Subtarget.needsSwapsForVSXMemOps() && 15178 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15179 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15180 return expandVSXStoreForLE(N, DCI); 15181 } 15182 break; 15183 } 15184 case ISD::LOAD: { 15185 LoadSDNode *LD = cast<LoadSDNode>(N); 15186 EVT VT = LD->getValueType(0); 15187 15188 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15189 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15190 if (VT.isSimple()) { 15191 MVT LoadVT = VT.getSimpleVT(); 15192 if (Subtarget.needsSwapsForVSXMemOps() && 15193 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15194 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15195 return expandVSXLoadForLE(N, DCI); 15196 } 15197 15198 // We sometimes end up with a 64-bit integer load, from which we extract 15199 // two single-precision floating-point numbers. This happens with 15200 // std::complex<float>, and other similar structures, because of the way we 15201 // canonicalize structure copies. However, if we lack direct moves, 15202 // then the final bitcasts from the extracted integer values to the 15203 // floating-point numbers turn into store/load pairs. Even with direct moves, 15204 // just loading the two floating-point numbers is likely better. 15205 auto ReplaceTwoFloatLoad = [&]() { 15206 if (VT != MVT::i64) 15207 return false; 15208 15209 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15210 LD->isVolatile()) 15211 return false; 15212 15213 // We're looking for a sequence like this: 15214 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15215 // t16: i64 = srl t13, Constant:i32<32> 15216 // t17: i32 = truncate t16 15217 // t18: f32 = bitcast t17 15218 // t19: i32 = truncate t13 15219 // t20: f32 = bitcast t19 15220 15221 if (!LD->hasNUsesOfValue(2, 0)) 15222 return false; 15223 15224 auto UI = LD->use_begin(); 15225 while (UI.getUse().getResNo() != 0) ++UI; 15226 SDNode *Trunc = *UI++; 15227 while (UI.getUse().getResNo() != 0) ++UI; 15228 SDNode *RightShift = *UI; 15229 if (Trunc->getOpcode() != ISD::TRUNCATE) 15230 std::swap(Trunc, RightShift); 15231 15232 if (Trunc->getOpcode() != ISD::TRUNCATE || 15233 Trunc->getValueType(0) != MVT::i32 || 15234 !Trunc->hasOneUse()) 15235 return false; 15236 if (RightShift->getOpcode() != ISD::SRL || 15237 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15238 RightShift->getConstantOperandVal(1) != 32 || 15239 !RightShift->hasOneUse()) 15240 return false; 15241 15242 SDNode *Trunc2 = *RightShift->use_begin(); 15243 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15244 Trunc2->getValueType(0) != MVT::i32 || 15245 !Trunc2->hasOneUse()) 15246 return false; 15247 15248 SDNode *Bitcast = *Trunc->use_begin(); 15249 SDNode *Bitcast2 = *Trunc2->use_begin(); 15250 15251 if (Bitcast->getOpcode() != ISD::BITCAST || 15252 Bitcast->getValueType(0) != MVT::f32) 15253 return false; 15254 if (Bitcast2->getOpcode() != ISD::BITCAST || 15255 Bitcast2->getValueType(0) != MVT::f32) 15256 return false; 15257 15258 if (Subtarget.isLittleEndian()) 15259 std::swap(Bitcast, Bitcast2); 15260 15261 // Bitcast has the second float (in memory-layout order) and Bitcast2 15262 // has the first one. 15263 15264 SDValue BasePtr = LD->getBasePtr(); 15265 if (LD->isIndexed()) { 15266 assert(LD->getAddressingMode() == ISD::PRE_INC && 15267 "Non-pre-inc AM on PPC?"); 15268 BasePtr = 15269 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15270 LD->getOffset()); 15271 } 15272 15273 auto MMOFlags = 15274 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15275 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15276 LD->getPointerInfo(), LD->getAlignment(), 15277 MMOFlags, LD->getAAInfo()); 15278 SDValue AddPtr = 15279 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15280 BasePtr, DAG.getIntPtrConstant(4, dl)); 15281 SDValue FloatLoad2 = DAG.getLoad( 15282 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15283 LD->getPointerInfo().getWithOffset(4), 15284 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15285 15286 if (LD->isIndexed()) { 15287 // Note that DAGCombine should re-form any pre-increment load(s) from 15288 // what is produced here if that makes sense. 15289 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15290 } 15291 15292 DCI.CombineTo(Bitcast2, FloatLoad); 15293 DCI.CombineTo(Bitcast, FloatLoad2); 15294 15295 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15296 SDValue(FloatLoad2.getNode(), 1)); 15297 return true; 15298 }; 15299 15300 if (ReplaceTwoFloatLoad()) 15301 return SDValue(N, 0); 15302 15303 EVT MemVT = LD->getMemoryVT(); 15304 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15305 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15306 if (LD->isUnindexed() && VT.isVector() && 15307 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15308 // P8 and later hardware should just use LOAD. 15309 !Subtarget.hasP8Vector() && 15310 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15311 VT == MVT::v4f32))) && 15312 LD->getAlign() < ABIAlignment) { 15313 // This is a type-legal unaligned Altivec load. 15314 SDValue Chain = LD->getChain(); 15315 SDValue Ptr = LD->getBasePtr(); 15316 bool isLittleEndian = Subtarget.isLittleEndian(); 15317 15318 // This implements the loading of unaligned vectors as described in 15319 // the venerable Apple Velocity Engine overview. Specifically: 15320 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15321 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15322 // 15323 // The general idea is to expand a sequence of one or more unaligned 15324 // loads into an alignment-based permutation-control instruction (lvsl 15325 // or lvsr), a series of regular vector loads (which always truncate 15326 // their input address to an aligned address), and a series of 15327 // permutations. The results of these permutations are the requested 15328 // loaded values. The trick is that the last "extra" load is not taken 15329 // from the address you might suspect (sizeof(vector) bytes after the 15330 // last requested load), but rather sizeof(vector) - 1 bytes after the 15331 // last requested vector. The point of this is to avoid a page fault if 15332 // the base address happened to be aligned. This works because if the 15333 // base address is aligned, then adding less than a full vector length 15334 // will cause the last vector in the sequence to be (re)loaded. 15335 // Otherwise, the next vector will be fetched as you might suspect was 15336 // necessary. 15337 15338 // We might be able to reuse the permutation generation from 15339 // a different base address offset from this one by an aligned amount. 15340 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15341 // optimization later. 15342 Intrinsic::ID Intr, IntrLD, IntrPerm; 15343 MVT PermCntlTy, PermTy, LDTy; 15344 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15345 : Intrinsic::ppc_altivec_lvsl; 15346 IntrLD = Intrinsic::ppc_altivec_lvx; 15347 IntrPerm = Intrinsic::ppc_altivec_vperm; 15348 PermCntlTy = MVT::v16i8; 15349 PermTy = MVT::v4i32; 15350 LDTy = MVT::v4i32; 15351 15352 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15353 15354 // Create the new MMO for the new base load. It is like the original MMO, 15355 // but represents an area in memory almost twice the vector size centered 15356 // on the original address. If the address is unaligned, we might start 15357 // reading up to (sizeof(vector)-1) bytes below the address of the 15358 // original unaligned load. 15359 MachineFunction &MF = DAG.getMachineFunction(); 15360 MachineMemOperand *BaseMMO = 15361 MF.getMachineMemOperand(LD->getMemOperand(), 15362 -(long)MemVT.getStoreSize()+1, 15363 2*MemVT.getStoreSize()-1); 15364 15365 // Create the new base load. 15366 SDValue LDXIntID = 15367 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15368 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15369 SDValue BaseLoad = 15370 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15371 DAG.getVTList(PermTy, MVT::Other), 15372 BaseLoadOps, LDTy, BaseMMO); 15373 15374 // Note that the value of IncOffset (which is provided to the next 15375 // load's pointer info offset value, and thus used to calculate the 15376 // alignment), and the value of IncValue (which is actually used to 15377 // increment the pointer value) are different! This is because we 15378 // require the next load to appear to be aligned, even though it 15379 // is actually offset from the base pointer by a lesser amount. 15380 int IncOffset = VT.getSizeInBits() / 8; 15381 int IncValue = IncOffset; 15382 15383 // Walk (both up and down) the chain looking for another load at the real 15384 // (aligned) offset (the alignment of the other load does not matter in 15385 // this case). If found, then do not use the offset reduction trick, as 15386 // that will prevent the loads from being later combined (as they would 15387 // otherwise be duplicates). 15388 if (!findConsecutiveLoad(LD, DAG)) 15389 --IncValue; 15390 15391 SDValue Increment = 15392 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15393 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15394 15395 MachineMemOperand *ExtraMMO = 15396 MF.getMachineMemOperand(LD->getMemOperand(), 15397 1, 2*MemVT.getStoreSize()-1); 15398 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15399 SDValue ExtraLoad = 15400 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15401 DAG.getVTList(PermTy, MVT::Other), 15402 ExtraLoadOps, LDTy, ExtraMMO); 15403 15404 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15405 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15406 15407 // Because vperm has a big-endian bias, we must reverse the order 15408 // of the input vectors and complement the permute control vector 15409 // when generating little endian code. We have already handled the 15410 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15411 // and ExtraLoad here. 15412 SDValue Perm; 15413 if (isLittleEndian) 15414 Perm = BuildIntrinsicOp(IntrPerm, 15415 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15416 else 15417 Perm = BuildIntrinsicOp(IntrPerm, 15418 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15419 15420 if (VT != PermTy) 15421 Perm = Subtarget.hasAltivec() 15422 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15423 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15424 DAG.getTargetConstant(1, dl, MVT::i64)); 15425 // second argument is 1 because this rounding 15426 // is always exact. 15427 15428 // The output of the permutation is our loaded result, the TokenFactor is 15429 // our new chain. 15430 DCI.CombineTo(N, Perm, TF); 15431 return SDValue(N, 0); 15432 } 15433 } 15434 break; 15435 case ISD::INTRINSIC_WO_CHAIN: { 15436 bool isLittleEndian = Subtarget.isLittleEndian(); 15437 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15438 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15439 : Intrinsic::ppc_altivec_lvsl); 15440 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15441 SDValue Add = N->getOperand(1); 15442 15443 int Bits = 4 /* 16 byte alignment */; 15444 15445 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15446 APInt::getAllOnes(Bits /* alignment */) 15447 .zext(Add.getScalarValueSizeInBits()))) { 15448 SDNode *BasePtr = Add->getOperand(0).getNode(); 15449 for (SDNode *U : BasePtr->uses()) { 15450 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15451 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15452 // We've found another LVSL/LVSR, and this address is an aligned 15453 // multiple of that one. The results will be the same, so use the 15454 // one we've just found instead. 15455 15456 return SDValue(U, 0); 15457 } 15458 } 15459 } 15460 15461 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15462 SDNode *BasePtr = Add->getOperand(0).getNode(); 15463 for (SDNode *U : BasePtr->uses()) { 15464 if (U->getOpcode() == ISD::ADD && 15465 isa<ConstantSDNode>(U->getOperand(1)) && 15466 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15467 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15468 (1ULL << Bits) == 15469 0) { 15470 SDNode *OtherAdd = U; 15471 for (SDNode *V : OtherAdd->uses()) { 15472 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15473 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15474 IID) { 15475 return SDValue(V, 0); 15476 } 15477 } 15478 } 15479 } 15480 } 15481 } 15482 15483 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15484 // Expose the vabsduw/h/b opportunity for down stream 15485 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15486 (IID == Intrinsic::ppc_altivec_vmaxsw || 15487 IID == Intrinsic::ppc_altivec_vmaxsh || 15488 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15489 SDValue V1 = N->getOperand(1); 15490 SDValue V2 = N->getOperand(2); 15491 if ((V1.getSimpleValueType() == MVT::v4i32 || 15492 V1.getSimpleValueType() == MVT::v8i16 || 15493 V1.getSimpleValueType() == MVT::v16i8) && 15494 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15495 // (0-a, a) 15496 if (V1.getOpcode() == ISD::SUB && 15497 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15498 V1.getOperand(1) == V2) { 15499 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15500 } 15501 // (a, 0-a) 15502 if (V2.getOpcode() == ISD::SUB && 15503 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15504 V2.getOperand(1) == V1) { 15505 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15506 } 15507 // (x-y, y-x) 15508 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15509 V1.getOperand(0) == V2.getOperand(1) && 15510 V1.getOperand(1) == V2.getOperand(0)) { 15511 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15512 } 15513 } 15514 } 15515 } 15516 15517 break; 15518 case ISD::INTRINSIC_W_CHAIN: 15519 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15520 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15521 if (Subtarget.needsSwapsForVSXMemOps()) { 15522 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15523 default: 15524 break; 15525 case Intrinsic::ppc_vsx_lxvw4x: 15526 case Intrinsic::ppc_vsx_lxvd2x: 15527 return expandVSXLoadForLE(N, DCI); 15528 } 15529 } 15530 break; 15531 case ISD::INTRINSIC_VOID: 15532 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15533 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15534 if (Subtarget.needsSwapsForVSXMemOps()) { 15535 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15536 default: 15537 break; 15538 case Intrinsic::ppc_vsx_stxvw4x: 15539 case Intrinsic::ppc_vsx_stxvd2x: 15540 return expandVSXStoreForLE(N, DCI); 15541 } 15542 } 15543 break; 15544 case ISD::BSWAP: { 15545 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15546 // For subtargets without LDBRX, we can still do better than the default 15547 // expansion even for 64-bit BSWAP (LOAD). 15548 bool Is64BitBswapOn64BitTgt = 15549 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15550 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15551 N->getOperand(0).hasOneUse(); 15552 if (IsSingleUseNormalLd && 15553 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15554 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15555 SDValue Load = N->getOperand(0); 15556 LoadSDNode *LD = cast<LoadSDNode>(Load); 15557 // Create the byte-swapping load. 15558 SDValue Ops[] = { 15559 LD->getChain(), // Chain 15560 LD->getBasePtr(), // Ptr 15561 DAG.getValueType(N->getValueType(0)) // VT 15562 }; 15563 SDValue BSLoad = 15564 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15565 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15566 MVT::i64 : MVT::i32, MVT::Other), 15567 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15568 15569 // If this is an i16 load, insert the truncate. 15570 SDValue ResVal = BSLoad; 15571 if (N->getValueType(0) == MVT::i16) 15572 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15573 15574 // First, combine the bswap away. This makes the value produced by the 15575 // load dead. 15576 DCI.CombineTo(N, ResVal); 15577 15578 // Next, combine the load away, we give it a bogus result value but a real 15579 // chain result. The result value is dead because the bswap is dead. 15580 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15581 15582 // Return N so it doesn't get rechecked! 15583 return SDValue(N, 0); 15584 } 15585 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15586 // before legalization so that the BUILD_PAIR is handled correctly. 15587 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15588 !IsSingleUseNormalLd) 15589 return SDValue(); 15590 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15591 15592 // Can't split volatile or atomic loads. 15593 if (!LD->isSimple()) 15594 return SDValue(); 15595 SDValue BasePtr = LD->getBasePtr(); 15596 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15597 LD->getPointerInfo(), LD->getAlignment()); 15598 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15599 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15600 DAG.getIntPtrConstant(4, dl)); 15601 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15602 LD->getMemOperand(), 4, 4); 15603 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15604 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15605 SDValue Res; 15606 if (Subtarget.isLittleEndian()) 15607 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15608 else 15609 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15610 SDValue TF = 15611 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15612 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15613 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15614 return Res; 15615 } 15616 case PPCISD::VCMP: 15617 // If a VCMP_rec node already exists with exactly the same operands as this 15618 // node, use its result instead of this node (VCMP_rec computes both a CR6 15619 // and a normal output). 15620 // 15621 if (!N->getOperand(0).hasOneUse() && 15622 !N->getOperand(1).hasOneUse() && 15623 !N->getOperand(2).hasOneUse()) { 15624 15625 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15626 SDNode *VCMPrecNode = nullptr; 15627 15628 SDNode *LHSN = N->getOperand(0).getNode(); 15629 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15630 UI != E; ++UI) 15631 if (UI->getOpcode() == PPCISD::VCMP_rec && 15632 UI->getOperand(1) == N->getOperand(1) && 15633 UI->getOperand(2) == N->getOperand(2) && 15634 UI->getOperand(0) == N->getOperand(0)) { 15635 VCMPrecNode = *UI; 15636 break; 15637 } 15638 15639 // If there is no VCMP_rec node, or if the flag value has a single use, 15640 // don't transform this. 15641 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15642 break; 15643 15644 // Look at the (necessarily single) use of the flag value. If it has a 15645 // chain, this transformation is more complex. Note that multiple things 15646 // could use the value result, which we should ignore. 15647 SDNode *FlagUser = nullptr; 15648 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15649 FlagUser == nullptr; ++UI) { 15650 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15651 SDNode *User = *UI; 15652 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15653 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15654 FlagUser = User; 15655 break; 15656 } 15657 } 15658 } 15659 15660 // If the user is a MFOCRF instruction, we know this is safe. 15661 // Otherwise we give up for right now. 15662 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15663 return SDValue(VCMPrecNode, 0); 15664 } 15665 break; 15666 case ISD::BRCOND: { 15667 SDValue Cond = N->getOperand(1); 15668 SDValue Target = N->getOperand(2); 15669 15670 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15671 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15672 Intrinsic::loop_decrement) { 15673 15674 // We now need to make the intrinsic dead (it cannot be instruction 15675 // selected). 15676 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15677 assert(Cond.getNode()->hasOneUse() && 15678 "Counter decrement has more than one use"); 15679 15680 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15681 N->getOperand(0), Target); 15682 } 15683 } 15684 break; 15685 case ISD::BR_CC: { 15686 // If this is a branch on an altivec predicate comparison, lower this so 15687 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15688 // lowering is done pre-legalize, because the legalizer lowers the predicate 15689 // compare down to code that is difficult to reassemble. 15690 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15691 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15692 15693 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15694 // value. If so, pass-through the AND to get to the intrinsic. 15695 if (LHS.getOpcode() == ISD::AND && 15696 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15697 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15698 Intrinsic::loop_decrement && 15699 isa<ConstantSDNode>(LHS.getOperand(1)) && 15700 !isNullConstant(LHS.getOperand(1))) 15701 LHS = LHS.getOperand(0); 15702 15703 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15704 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15705 Intrinsic::loop_decrement && 15706 isa<ConstantSDNode>(RHS)) { 15707 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15708 "Counter decrement comparison is not EQ or NE"); 15709 15710 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15711 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15712 (CC == ISD::SETNE && !Val); 15713 15714 // We now need to make the intrinsic dead (it cannot be instruction 15715 // selected). 15716 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15717 assert(LHS.getNode()->hasOneUse() && 15718 "Counter decrement has more than one use"); 15719 15720 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15721 N->getOperand(0), N->getOperand(4)); 15722 } 15723 15724 int CompareOpc; 15725 bool isDot; 15726 15727 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15728 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15729 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15730 assert(isDot && "Can't compare against a vector result!"); 15731 15732 // If this is a comparison against something other than 0/1, then we know 15733 // that the condition is never/always true. 15734 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15735 if (Val != 0 && Val != 1) { 15736 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15737 return N->getOperand(0); 15738 // Always !=, turn it into an unconditional branch. 15739 return DAG.getNode(ISD::BR, dl, MVT::Other, 15740 N->getOperand(0), N->getOperand(4)); 15741 } 15742 15743 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15744 15745 // Create the PPCISD altivec 'dot' comparison node. 15746 SDValue Ops[] = { 15747 LHS.getOperand(2), // LHS of compare 15748 LHS.getOperand(3), // RHS of compare 15749 DAG.getConstant(CompareOpc, dl, MVT::i32) 15750 }; 15751 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15752 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15753 15754 // Unpack the result based on how the target uses it. 15755 PPC::Predicate CompOpc; 15756 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15757 default: // Can't happen, don't crash on invalid number though. 15758 case 0: // Branch on the value of the EQ bit of CR6. 15759 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15760 break; 15761 case 1: // Branch on the inverted value of the EQ bit of CR6. 15762 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15763 break; 15764 case 2: // Branch on the value of the LT bit of CR6. 15765 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15766 break; 15767 case 3: // Branch on the inverted value of the LT bit of CR6. 15768 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15769 break; 15770 } 15771 15772 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15773 DAG.getConstant(CompOpc, dl, MVT::i32), 15774 DAG.getRegister(PPC::CR6, MVT::i32), 15775 N->getOperand(4), CompNode.getValue(1)); 15776 } 15777 break; 15778 } 15779 case ISD::BUILD_VECTOR: 15780 return DAGCombineBuildVector(N, DCI); 15781 case ISD::ABS: 15782 return combineABS(N, DCI); 15783 case ISD::VSELECT: 15784 return combineVSelect(N, DCI); 15785 } 15786 15787 return SDValue(); 15788 } 15789 15790 SDValue 15791 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15792 SelectionDAG &DAG, 15793 SmallVectorImpl<SDNode *> &Created) const { 15794 // fold (sdiv X, pow2) 15795 EVT VT = N->getValueType(0); 15796 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15797 return SDValue(); 15798 if ((VT != MVT::i32 && VT != MVT::i64) || 15799 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15800 return SDValue(); 15801 15802 SDLoc DL(N); 15803 SDValue N0 = N->getOperand(0); 15804 15805 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15806 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15807 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15808 15809 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15810 Created.push_back(Op.getNode()); 15811 15812 if (IsNegPow2) { 15813 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15814 Created.push_back(Op.getNode()); 15815 } 15816 15817 return Op; 15818 } 15819 15820 //===----------------------------------------------------------------------===// 15821 // Inline Assembly Support 15822 //===----------------------------------------------------------------------===// 15823 15824 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15825 KnownBits &Known, 15826 const APInt &DemandedElts, 15827 const SelectionDAG &DAG, 15828 unsigned Depth) const { 15829 Known.resetAll(); 15830 switch (Op.getOpcode()) { 15831 default: break; 15832 case PPCISD::LBRX: { 15833 // lhbrx is known to have the top bits cleared out. 15834 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15835 Known.Zero = 0xFFFF0000; 15836 break; 15837 } 15838 case ISD::INTRINSIC_WO_CHAIN: { 15839 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15840 default: break; 15841 case Intrinsic::ppc_altivec_vcmpbfp_p: 15842 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15843 case Intrinsic::ppc_altivec_vcmpequb_p: 15844 case Intrinsic::ppc_altivec_vcmpequh_p: 15845 case Intrinsic::ppc_altivec_vcmpequw_p: 15846 case Intrinsic::ppc_altivec_vcmpequd_p: 15847 case Intrinsic::ppc_altivec_vcmpequq_p: 15848 case Intrinsic::ppc_altivec_vcmpgefp_p: 15849 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15850 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15851 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15852 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15853 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15854 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15855 case Intrinsic::ppc_altivec_vcmpgtub_p: 15856 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15857 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15858 case Intrinsic::ppc_altivec_vcmpgtud_p: 15859 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15860 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15861 break; 15862 } 15863 break; 15864 } 15865 case ISD::INTRINSIC_W_CHAIN: { 15866 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15867 default: 15868 break; 15869 case Intrinsic::ppc_load2r: 15870 // Top bits are cleared for load2r (which is the same as lhbrx). 15871 Known.Zero = 0xFFFF0000; 15872 break; 15873 } 15874 break; 15875 } 15876 } 15877 } 15878 15879 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15880 switch (Subtarget.getCPUDirective()) { 15881 default: break; 15882 case PPC::DIR_970: 15883 case PPC::DIR_PWR4: 15884 case PPC::DIR_PWR5: 15885 case PPC::DIR_PWR5X: 15886 case PPC::DIR_PWR6: 15887 case PPC::DIR_PWR6X: 15888 case PPC::DIR_PWR7: 15889 case PPC::DIR_PWR8: 15890 case PPC::DIR_PWR9: 15891 case PPC::DIR_PWR10: 15892 case PPC::DIR_PWR_FUTURE: { 15893 if (!ML) 15894 break; 15895 15896 if (!DisableInnermostLoopAlign32) { 15897 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15898 // so that we can decrease cache misses and branch-prediction misses. 15899 // Actual alignment of the loop will depend on the hotness check and other 15900 // logic in alignBlocks. 15901 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15902 return Align(32); 15903 } 15904 15905 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15906 15907 // For small loops (between 5 and 8 instructions), align to a 32-byte 15908 // boundary so that the entire loop fits in one instruction-cache line. 15909 uint64_t LoopSize = 0; 15910 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15911 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15912 LoopSize += TII->getInstSizeInBytes(*J); 15913 if (LoopSize > 32) 15914 break; 15915 } 15916 15917 if (LoopSize > 16 && LoopSize <= 32) 15918 return Align(32); 15919 15920 break; 15921 } 15922 } 15923 15924 return TargetLowering::getPrefLoopAlignment(ML); 15925 } 15926 15927 /// getConstraintType - Given a constraint, return the type of 15928 /// constraint it is for this target. 15929 PPCTargetLowering::ConstraintType 15930 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15931 if (Constraint.size() == 1) { 15932 switch (Constraint[0]) { 15933 default: break; 15934 case 'b': 15935 case 'r': 15936 case 'f': 15937 case 'd': 15938 case 'v': 15939 case 'y': 15940 return C_RegisterClass; 15941 case 'Z': 15942 // FIXME: While Z does indicate a memory constraint, it specifically 15943 // indicates an r+r address (used in conjunction with the 'y' modifier 15944 // in the replacement string). Currently, we're forcing the base 15945 // register to be r0 in the asm printer (which is interpreted as zero) 15946 // and forming the complete address in the second register. This is 15947 // suboptimal. 15948 return C_Memory; 15949 } 15950 } else if (Constraint == "wc") { // individual CR bits. 15951 return C_RegisterClass; 15952 } else if (Constraint == "wa" || Constraint == "wd" || 15953 Constraint == "wf" || Constraint == "ws" || 15954 Constraint == "wi" || Constraint == "ww") { 15955 return C_RegisterClass; // VSX registers. 15956 } 15957 return TargetLowering::getConstraintType(Constraint); 15958 } 15959 15960 /// Examine constraint type and operand type and determine a weight value. 15961 /// This object must already have been set up with the operand type 15962 /// and the current alternative constraint selected. 15963 TargetLowering::ConstraintWeight 15964 PPCTargetLowering::getSingleConstraintMatchWeight( 15965 AsmOperandInfo &info, const char *constraint) const { 15966 ConstraintWeight weight = CW_Invalid; 15967 Value *CallOperandVal = info.CallOperandVal; 15968 // If we don't have a value, we can't do a match, 15969 // but allow it at the lowest weight. 15970 if (!CallOperandVal) 15971 return CW_Default; 15972 Type *type = CallOperandVal->getType(); 15973 15974 // Look at the constraint type. 15975 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15976 return CW_Register; // an individual CR bit. 15977 else if ((StringRef(constraint) == "wa" || 15978 StringRef(constraint) == "wd" || 15979 StringRef(constraint) == "wf") && 15980 type->isVectorTy()) 15981 return CW_Register; 15982 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15983 return CW_Register; // just hold 64-bit integers data. 15984 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15985 return CW_Register; 15986 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15987 return CW_Register; 15988 15989 switch (*constraint) { 15990 default: 15991 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15992 break; 15993 case 'b': 15994 if (type->isIntegerTy()) 15995 weight = CW_Register; 15996 break; 15997 case 'f': 15998 if (type->isFloatTy()) 15999 weight = CW_Register; 16000 break; 16001 case 'd': 16002 if (type->isDoubleTy()) 16003 weight = CW_Register; 16004 break; 16005 case 'v': 16006 if (type->isVectorTy()) 16007 weight = CW_Register; 16008 break; 16009 case 'y': 16010 weight = CW_Register; 16011 break; 16012 case 'Z': 16013 weight = CW_Memory; 16014 break; 16015 } 16016 return weight; 16017 } 16018 16019 std::pair<unsigned, const TargetRegisterClass *> 16020 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16021 StringRef Constraint, 16022 MVT VT) const { 16023 if (Constraint.size() == 1) { 16024 // GCC RS6000 Constraint Letters 16025 switch (Constraint[0]) { 16026 case 'b': // R1-R31 16027 if (VT == MVT::i64 && Subtarget.isPPC64()) 16028 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16029 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16030 case 'r': // R0-R31 16031 if (VT == MVT::i64 && Subtarget.isPPC64()) 16032 return std::make_pair(0U, &PPC::G8RCRegClass); 16033 return std::make_pair(0U, &PPC::GPRCRegClass); 16034 // 'd' and 'f' constraints are both defined to be "the floating point 16035 // registers", where one is for 32-bit and the other for 64-bit. We don't 16036 // really care overly much here so just give them all the same reg classes. 16037 case 'd': 16038 case 'f': 16039 if (Subtarget.hasSPE()) { 16040 if (VT == MVT::f32 || VT == MVT::i32) 16041 return std::make_pair(0U, &PPC::GPRCRegClass); 16042 if (VT == MVT::f64 || VT == MVT::i64) 16043 return std::make_pair(0U, &PPC::SPERCRegClass); 16044 } else { 16045 if (VT == MVT::f32 || VT == MVT::i32) 16046 return std::make_pair(0U, &PPC::F4RCRegClass); 16047 if (VT == MVT::f64 || VT == MVT::i64) 16048 return std::make_pair(0U, &PPC::F8RCRegClass); 16049 } 16050 break; 16051 case 'v': 16052 if (Subtarget.hasAltivec() && VT.isVector()) 16053 return std::make_pair(0U, &PPC::VRRCRegClass); 16054 else if (Subtarget.hasVSX()) 16055 // Scalars in Altivec registers only make sense with VSX. 16056 return std::make_pair(0U, &PPC::VFRCRegClass); 16057 break; 16058 case 'y': // crrc 16059 return std::make_pair(0U, &PPC::CRRCRegClass); 16060 } 16061 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16062 // An individual CR bit. 16063 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16064 } else if ((Constraint == "wa" || Constraint == "wd" || 16065 Constraint == "wf" || Constraint == "wi") && 16066 Subtarget.hasVSX()) { 16067 // A VSX register for either a scalar (FP) or vector. There is no 16068 // support for single precision scalars on subtargets prior to Power8. 16069 if (VT.isVector()) 16070 return std::make_pair(0U, &PPC::VSRCRegClass); 16071 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16072 return std::make_pair(0U, &PPC::VSSRCRegClass); 16073 return std::make_pair(0U, &PPC::VSFRCRegClass); 16074 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16075 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16076 return std::make_pair(0U, &PPC::VSSRCRegClass); 16077 else 16078 return std::make_pair(0U, &PPC::VSFRCRegClass); 16079 } else if (Constraint == "lr") { 16080 if (VT == MVT::i64) 16081 return std::make_pair(0U, &PPC::LR8RCRegClass); 16082 else 16083 return std::make_pair(0U, &PPC::LRRCRegClass); 16084 } 16085 16086 // Handle special cases of physical registers that are not properly handled 16087 // by the base class. 16088 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16089 // If we name a VSX register, we can't defer to the base class because it 16090 // will not recognize the correct register (their names will be VSL{0-31} 16091 // and V{0-31} so they won't match). So we match them here. 16092 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16093 int VSNum = atoi(Constraint.data() + 3); 16094 assert(VSNum >= 0 && VSNum <= 63 && 16095 "Attempted to access a vsr out of range"); 16096 if (VSNum < 32) 16097 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16098 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16099 } 16100 16101 // For float registers, we can't defer to the base class as it will match 16102 // the SPILLTOVSRRC class. 16103 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16104 int RegNum = atoi(Constraint.data() + 2); 16105 if (RegNum > 31 || RegNum < 0) 16106 report_fatal_error("Invalid floating point register number"); 16107 if (VT == MVT::f32 || VT == MVT::i32) 16108 return Subtarget.hasSPE() 16109 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16110 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16111 if (VT == MVT::f64 || VT == MVT::i64) 16112 return Subtarget.hasSPE() 16113 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16114 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16115 } 16116 } 16117 16118 std::pair<unsigned, const TargetRegisterClass *> R = 16119 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16120 16121 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16122 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16123 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16124 // register. 16125 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16126 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16127 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16128 PPC::GPRCRegClass.contains(R.first)) 16129 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16130 PPC::sub_32, &PPC::G8RCRegClass), 16131 &PPC::G8RCRegClass); 16132 16133 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16134 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16135 R.first = PPC::CR0; 16136 R.second = &PPC::CRRCRegClass; 16137 } 16138 // FIXME: This warning should ideally be emitted in the front end. 16139 const auto &TM = getTargetMachine(); 16140 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16141 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16142 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16143 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16144 errs() << "warning: vector registers 20 to 32 are reserved in the " 16145 "default AIX AltiVec ABI and cannot be used\n"; 16146 } 16147 16148 return R; 16149 } 16150 16151 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16152 /// vector. If it is invalid, don't add anything to Ops. 16153 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16154 std::string &Constraint, 16155 std::vector<SDValue>&Ops, 16156 SelectionDAG &DAG) const { 16157 SDValue Result; 16158 16159 // Only support length 1 constraints. 16160 if (Constraint.length() > 1) return; 16161 16162 char Letter = Constraint[0]; 16163 switch (Letter) { 16164 default: break; 16165 case 'I': 16166 case 'J': 16167 case 'K': 16168 case 'L': 16169 case 'M': 16170 case 'N': 16171 case 'O': 16172 case 'P': { 16173 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16174 if (!CST) return; // Must be an immediate to match. 16175 SDLoc dl(Op); 16176 int64_t Value = CST->getSExtValue(); 16177 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16178 // numbers are printed as such. 16179 switch (Letter) { 16180 default: llvm_unreachable("Unknown constraint letter!"); 16181 case 'I': // "I" is a signed 16-bit constant. 16182 if (isInt<16>(Value)) 16183 Result = DAG.getTargetConstant(Value, dl, TCVT); 16184 break; 16185 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16186 if (isShiftedUInt<16, 16>(Value)) 16187 Result = DAG.getTargetConstant(Value, dl, TCVT); 16188 break; 16189 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16190 if (isShiftedInt<16, 16>(Value)) 16191 Result = DAG.getTargetConstant(Value, dl, TCVT); 16192 break; 16193 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16194 if (isUInt<16>(Value)) 16195 Result = DAG.getTargetConstant(Value, dl, TCVT); 16196 break; 16197 case 'M': // "M" is a constant that is greater than 31. 16198 if (Value > 31) 16199 Result = DAG.getTargetConstant(Value, dl, TCVT); 16200 break; 16201 case 'N': // "N" is a positive constant that is an exact power of two. 16202 if (Value > 0 && isPowerOf2_64(Value)) 16203 Result = DAG.getTargetConstant(Value, dl, TCVT); 16204 break; 16205 case 'O': // "O" is the constant zero. 16206 if (Value == 0) 16207 Result = DAG.getTargetConstant(Value, dl, TCVT); 16208 break; 16209 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16210 if (isInt<16>(-Value)) 16211 Result = DAG.getTargetConstant(Value, dl, TCVT); 16212 break; 16213 } 16214 break; 16215 } 16216 } 16217 16218 if (Result.getNode()) { 16219 Ops.push_back(Result); 16220 return; 16221 } 16222 16223 // Handle standard constraint letters. 16224 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16225 } 16226 16227 // isLegalAddressingMode - Return true if the addressing mode represented 16228 // by AM is legal for this target, for a load/store of the specified type. 16229 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16230 const AddrMode &AM, Type *Ty, 16231 unsigned AS, 16232 Instruction *I) const { 16233 // Vector type r+i form is supported since power9 as DQ form. We don't check 16234 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16235 // imm form is preferred and the offset can be adjusted to use imm form later 16236 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16237 // max offset to check legal addressing mode, we should be a little aggressive 16238 // to contain other offsets for that LSRUse. 16239 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16240 return false; 16241 16242 // PPC allows a sign-extended 16-bit immediate field. 16243 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16244 return false; 16245 16246 // No global is ever allowed as a base. 16247 if (AM.BaseGV) 16248 return false; 16249 16250 // PPC only support r+r, 16251 switch (AM.Scale) { 16252 case 0: // "r+i" or just "i", depending on HasBaseReg. 16253 break; 16254 case 1: 16255 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16256 return false; 16257 // Otherwise we have r+r or r+i. 16258 break; 16259 case 2: 16260 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16261 return false; 16262 // Allow 2*r as r+r. 16263 break; 16264 default: 16265 // No other scales are supported. 16266 return false; 16267 } 16268 16269 return true; 16270 } 16271 16272 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16273 SelectionDAG &DAG) const { 16274 MachineFunction &MF = DAG.getMachineFunction(); 16275 MachineFrameInfo &MFI = MF.getFrameInfo(); 16276 MFI.setReturnAddressIsTaken(true); 16277 16278 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16279 return SDValue(); 16280 16281 SDLoc dl(Op); 16282 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16283 16284 // Make sure the function does not optimize away the store of the RA to 16285 // the stack. 16286 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16287 FuncInfo->setLRStoreRequired(); 16288 bool isPPC64 = Subtarget.isPPC64(); 16289 auto PtrVT = getPointerTy(MF.getDataLayout()); 16290 16291 if (Depth > 0) { 16292 // The link register (return address) is saved in the caller's frame 16293 // not the callee's stack frame. So we must get the caller's frame 16294 // address and load the return address at the LR offset from there. 16295 SDValue FrameAddr = 16296 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16297 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16298 SDValue Offset = 16299 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16300 isPPC64 ? MVT::i64 : MVT::i32); 16301 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16302 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16303 MachinePointerInfo()); 16304 } 16305 16306 // Just load the return address off the stack. 16307 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16308 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16309 MachinePointerInfo()); 16310 } 16311 16312 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16313 SelectionDAG &DAG) const { 16314 SDLoc dl(Op); 16315 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16316 16317 MachineFunction &MF = DAG.getMachineFunction(); 16318 MachineFrameInfo &MFI = MF.getFrameInfo(); 16319 MFI.setFrameAddressIsTaken(true); 16320 16321 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16322 bool isPPC64 = PtrVT == MVT::i64; 16323 16324 // Naked functions never have a frame pointer, and so we use r1. For all 16325 // other functions, this decision must be delayed until during PEI. 16326 unsigned FrameReg; 16327 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16328 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16329 else 16330 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16331 16332 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16333 PtrVT); 16334 while (Depth--) 16335 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16336 FrameAddr, MachinePointerInfo()); 16337 return FrameAddr; 16338 } 16339 16340 // FIXME? Maybe this could be a TableGen attribute on some registers and 16341 // this table could be generated automatically from RegInfo. 16342 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16343 const MachineFunction &MF) const { 16344 bool isPPC64 = Subtarget.isPPC64(); 16345 16346 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16347 if (!is64Bit && VT != LLT::scalar(32)) 16348 report_fatal_error("Invalid register global variable type"); 16349 16350 Register Reg = StringSwitch<Register>(RegName) 16351 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16352 .Case("r2", isPPC64 ? Register() : PPC::R2) 16353 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16354 .Default(Register()); 16355 16356 if (Reg) 16357 return Reg; 16358 report_fatal_error("Invalid register name global variable"); 16359 } 16360 16361 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16362 // 32-bit SVR4 ABI access everything as got-indirect. 16363 if (Subtarget.is32BitELFABI()) 16364 return true; 16365 16366 // AIX accesses everything indirectly through the TOC, which is similar to 16367 // the GOT. 16368 if (Subtarget.isAIXABI()) 16369 return true; 16370 16371 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16372 // If it is small or large code model, module locals are accessed 16373 // indirectly by loading their address from .toc/.got. 16374 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16375 return true; 16376 16377 // JumpTable and BlockAddress are accessed as got-indirect. 16378 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16379 return true; 16380 16381 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16382 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16383 16384 return false; 16385 } 16386 16387 bool 16388 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16389 // The PowerPC target isn't yet aware of offsets. 16390 return false; 16391 } 16392 16393 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16394 const CallInst &I, 16395 MachineFunction &MF, 16396 unsigned Intrinsic) const { 16397 switch (Intrinsic) { 16398 case Intrinsic::ppc_atomicrmw_xchg_i128: 16399 case Intrinsic::ppc_atomicrmw_add_i128: 16400 case Intrinsic::ppc_atomicrmw_sub_i128: 16401 case Intrinsic::ppc_atomicrmw_nand_i128: 16402 case Intrinsic::ppc_atomicrmw_and_i128: 16403 case Intrinsic::ppc_atomicrmw_or_i128: 16404 case Intrinsic::ppc_atomicrmw_xor_i128: 16405 case Intrinsic::ppc_cmpxchg_i128: 16406 Info.opc = ISD::INTRINSIC_W_CHAIN; 16407 Info.memVT = MVT::i128; 16408 Info.ptrVal = I.getArgOperand(0); 16409 Info.offset = 0; 16410 Info.align = Align(16); 16411 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16412 MachineMemOperand::MOVolatile; 16413 return true; 16414 case Intrinsic::ppc_atomic_load_i128: 16415 Info.opc = ISD::INTRINSIC_W_CHAIN; 16416 Info.memVT = MVT::i128; 16417 Info.ptrVal = I.getArgOperand(0); 16418 Info.offset = 0; 16419 Info.align = Align(16); 16420 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16421 return true; 16422 case Intrinsic::ppc_atomic_store_i128: 16423 Info.opc = ISD::INTRINSIC_VOID; 16424 Info.memVT = MVT::i128; 16425 Info.ptrVal = I.getArgOperand(2); 16426 Info.offset = 0; 16427 Info.align = Align(16); 16428 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16429 return true; 16430 case Intrinsic::ppc_altivec_lvx: 16431 case Intrinsic::ppc_altivec_lvxl: 16432 case Intrinsic::ppc_altivec_lvebx: 16433 case Intrinsic::ppc_altivec_lvehx: 16434 case Intrinsic::ppc_altivec_lvewx: 16435 case Intrinsic::ppc_vsx_lxvd2x: 16436 case Intrinsic::ppc_vsx_lxvw4x: 16437 case Intrinsic::ppc_vsx_lxvd2x_be: 16438 case Intrinsic::ppc_vsx_lxvw4x_be: 16439 case Intrinsic::ppc_vsx_lxvl: 16440 case Intrinsic::ppc_vsx_lxvll: { 16441 EVT VT; 16442 switch (Intrinsic) { 16443 case Intrinsic::ppc_altivec_lvebx: 16444 VT = MVT::i8; 16445 break; 16446 case Intrinsic::ppc_altivec_lvehx: 16447 VT = MVT::i16; 16448 break; 16449 case Intrinsic::ppc_altivec_lvewx: 16450 VT = MVT::i32; 16451 break; 16452 case Intrinsic::ppc_vsx_lxvd2x: 16453 case Intrinsic::ppc_vsx_lxvd2x_be: 16454 VT = MVT::v2f64; 16455 break; 16456 default: 16457 VT = MVT::v4i32; 16458 break; 16459 } 16460 16461 Info.opc = ISD::INTRINSIC_W_CHAIN; 16462 Info.memVT = VT; 16463 Info.ptrVal = I.getArgOperand(0); 16464 Info.offset = -VT.getStoreSize()+1; 16465 Info.size = 2*VT.getStoreSize()-1; 16466 Info.align = Align(1); 16467 Info.flags = MachineMemOperand::MOLoad; 16468 return true; 16469 } 16470 case Intrinsic::ppc_altivec_stvx: 16471 case Intrinsic::ppc_altivec_stvxl: 16472 case Intrinsic::ppc_altivec_stvebx: 16473 case Intrinsic::ppc_altivec_stvehx: 16474 case Intrinsic::ppc_altivec_stvewx: 16475 case Intrinsic::ppc_vsx_stxvd2x: 16476 case Intrinsic::ppc_vsx_stxvw4x: 16477 case Intrinsic::ppc_vsx_stxvd2x_be: 16478 case Intrinsic::ppc_vsx_stxvw4x_be: 16479 case Intrinsic::ppc_vsx_stxvl: 16480 case Intrinsic::ppc_vsx_stxvll: { 16481 EVT VT; 16482 switch (Intrinsic) { 16483 case Intrinsic::ppc_altivec_stvebx: 16484 VT = MVT::i8; 16485 break; 16486 case Intrinsic::ppc_altivec_stvehx: 16487 VT = MVT::i16; 16488 break; 16489 case Intrinsic::ppc_altivec_stvewx: 16490 VT = MVT::i32; 16491 break; 16492 case Intrinsic::ppc_vsx_stxvd2x: 16493 case Intrinsic::ppc_vsx_stxvd2x_be: 16494 VT = MVT::v2f64; 16495 break; 16496 default: 16497 VT = MVT::v4i32; 16498 break; 16499 } 16500 16501 Info.opc = ISD::INTRINSIC_VOID; 16502 Info.memVT = VT; 16503 Info.ptrVal = I.getArgOperand(1); 16504 Info.offset = -VT.getStoreSize()+1; 16505 Info.size = 2*VT.getStoreSize()-1; 16506 Info.align = Align(1); 16507 Info.flags = MachineMemOperand::MOStore; 16508 return true; 16509 } 16510 default: 16511 break; 16512 } 16513 16514 return false; 16515 } 16516 16517 /// It returns EVT::Other if the type should be determined using generic 16518 /// target-independent logic. 16519 EVT PPCTargetLowering::getOptimalMemOpType( 16520 const MemOp &Op, const AttributeList &FuncAttributes) const { 16521 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16522 // We should use Altivec/VSX loads and stores when available. For unaligned 16523 // addresses, unaligned VSX loads are only fast starting with the P8. 16524 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16525 (Op.isAligned(Align(16)) || 16526 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16527 return MVT::v4i32; 16528 } 16529 16530 if (Subtarget.isPPC64()) { 16531 return MVT::i64; 16532 } 16533 16534 return MVT::i32; 16535 } 16536 16537 /// Returns true if it is beneficial to convert a load of a constant 16538 /// to just the constant itself. 16539 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16540 Type *Ty) const { 16541 assert(Ty->isIntegerTy()); 16542 16543 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16544 return !(BitSize == 0 || BitSize > 64); 16545 } 16546 16547 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16548 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16549 return false; 16550 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16551 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16552 return NumBits1 == 64 && NumBits2 == 32; 16553 } 16554 16555 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16556 if (!VT1.isInteger() || !VT2.isInteger()) 16557 return false; 16558 unsigned NumBits1 = VT1.getSizeInBits(); 16559 unsigned NumBits2 = VT2.getSizeInBits(); 16560 return NumBits1 == 64 && NumBits2 == 32; 16561 } 16562 16563 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16564 // Generally speaking, zexts are not free, but they are free when they can be 16565 // folded with other operations. 16566 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16567 EVT MemVT = LD->getMemoryVT(); 16568 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16569 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16570 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16571 LD->getExtensionType() == ISD::ZEXTLOAD)) 16572 return true; 16573 } 16574 16575 // FIXME: Add other cases... 16576 // - 32-bit shifts with a zext to i64 16577 // - zext after ctlz, bswap, etc. 16578 // - zext after and by a constant mask 16579 16580 return TargetLowering::isZExtFree(Val, VT2); 16581 } 16582 16583 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16584 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16585 "invalid fpext types"); 16586 // Extending to float128 is not free. 16587 if (DestVT == MVT::f128) 16588 return false; 16589 return true; 16590 } 16591 16592 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16593 return isInt<16>(Imm) || isUInt<16>(Imm); 16594 } 16595 16596 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16597 return isInt<16>(Imm) || isUInt<16>(Imm); 16598 } 16599 16600 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16601 MachineMemOperand::Flags, 16602 bool *Fast) const { 16603 if (DisablePPCUnaligned) 16604 return false; 16605 16606 // PowerPC supports unaligned memory access for simple non-vector types. 16607 // Although accessing unaligned addresses is not as efficient as accessing 16608 // aligned addresses, it is generally more efficient than manual expansion, 16609 // and generally only traps for software emulation when crossing page 16610 // boundaries. 16611 16612 if (!VT.isSimple()) 16613 return false; 16614 16615 if (VT.isFloatingPoint() && !VT.isVector() && 16616 !Subtarget.allowsUnalignedFPAccess()) 16617 return false; 16618 16619 if (VT.getSimpleVT().isVector()) { 16620 if (Subtarget.hasVSX()) { 16621 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16622 VT != MVT::v4f32 && VT != MVT::v4i32) 16623 return false; 16624 } else { 16625 return false; 16626 } 16627 } 16628 16629 if (VT == MVT::ppcf128) 16630 return false; 16631 16632 if (Fast) 16633 *Fast = true; 16634 16635 return true; 16636 } 16637 16638 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16639 SDValue C) const { 16640 // Check integral scalar types. 16641 if (!VT.isScalarInteger()) 16642 return false; 16643 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16644 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16645 return false; 16646 // This transformation will generate >= 2 operations. But the following 16647 // cases will generate <= 2 instructions during ISEL. So exclude them. 16648 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16649 // HW instruction, ie. MULLI 16650 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16651 // instruction is needed than case 1, ie. MULLI and RLDICR 16652 int64_t Imm = ConstNode->getSExtValue(); 16653 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16654 Imm >>= Shift; 16655 if (isInt<16>(Imm)) 16656 return false; 16657 uint64_t UImm = static_cast<uint64_t>(Imm); 16658 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16659 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16660 return true; 16661 } 16662 return false; 16663 } 16664 16665 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16666 EVT VT) const { 16667 return isFMAFasterThanFMulAndFAdd( 16668 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16669 } 16670 16671 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16672 Type *Ty) const { 16673 switch (Ty->getScalarType()->getTypeID()) { 16674 case Type::FloatTyID: 16675 case Type::DoubleTyID: 16676 return true; 16677 case Type::FP128TyID: 16678 return Subtarget.hasP9Vector(); 16679 default: 16680 return false; 16681 } 16682 } 16683 16684 // FIXME: add more patterns which are not profitable to hoist. 16685 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16686 if (!I->hasOneUse()) 16687 return true; 16688 16689 Instruction *User = I->user_back(); 16690 assert(User && "A single use instruction with no uses."); 16691 16692 switch (I->getOpcode()) { 16693 case Instruction::FMul: { 16694 // Don't break FMA, PowerPC prefers FMA. 16695 if (User->getOpcode() != Instruction::FSub && 16696 User->getOpcode() != Instruction::FAdd) 16697 return true; 16698 16699 const TargetOptions &Options = getTargetMachine().Options; 16700 const Function *F = I->getFunction(); 16701 const DataLayout &DL = F->getParent()->getDataLayout(); 16702 Type *Ty = User->getOperand(0)->getType(); 16703 16704 return !( 16705 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16706 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16707 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16708 } 16709 case Instruction::Load: { 16710 // Don't break "store (load float*)" pattern, this pattern will be combined 16711 // to "store (load int32)" in later InstCombine pass. See function 16712 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16713 // cycles than loading a 32 bit integer. 16714 LoadInst *LI = cast<LoadInst>(I); 16715 // For the loads that combineLoadToOperationType does nothing, like 16716 // ordered load, it should be profitable to hoist them. 16717 // For swifterror load, it can only be used for pointer to pointer type, so 16718 // later type check should get rid of this case. 16719 if (!LI->isUnordered()) 16720 return true; 16721 16722 if (User->getOpcode() != Instruction::Store) 16723 return true; 16724 16725 if (I->getType()->getTypeID() != Type::FloatTyID) 16726 return true; 16727 16728 return false; 16729 } 16730 default: 16731 return true; 16732 } 16733 return true; 16734 } 16735 16736 const MCPhysReg * 16737 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16738 // LR is a callee-save register, but we must treat it as clobbered by any call 16739 // site. Hence we include LR in the scratch registers, which are in turn added 16740 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16741 // to CTR, which is used by any indirect call. 16742 static const MCPhysReg ScratchRegs[] = { 16743 PPC::X12, PPC::LR8, PPC::CTR8, 0 16744 }; 16745 16746 return ScratchRegs; 16747 } 16748 16749 Register PPCTargetLowering::getExceptionPointerRegister( 16750 const Constant *PersonalityFn) const { 16751 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16752 } 16753 16754 Register PPCTargetLowering::getExceptionSelectorRegister( 16755 const Constant *PersonalityFn) const { 16756 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16757 } 16758 16759 bool 16760 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16761 EVT VT , unsigned DefinedValues) const { 16762 if (VT == MVT::v2i64) 16763 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16764 16765 if (Subtarget.hasVSX()) 16766 return true; 16767 16768 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16769 } 16770 16771 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16772 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16773 return TargetLowering::getSchedulingPreference(N); 16774 16775 return Sched::ILP; 16776 } 16777 16778 // Create a fast isel object. 16779 FastISel * 16780 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16781 const TargetLibraryInfo *LibInfo) const { 16782 return PPC::createFastISel(FuncInfo, LibInfo); 16783 } 16784 16785 // 'Inverted' means the FMA opcode after negating one multiplicand. 16786 // For example, (fma -a b c) = (fnmsub a b c) 16787 static unsigned invertFMAOpcode(unsigned Opc) { 16788 switch (Opc) { 16789 default: 16790 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16791 case ISD::FMA: 16792 return PPCISD::FNMSUB; 16793 case PPCISD::FNMSUB: 16794 return ISD::FMA; 16795 } 16796 } 16797 16798 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16799 bool LegalOps, bool OptForSize, 16800 NegatibleCost &Cost, 16801 unsigned Depth) const { 16802 if (Depth > SelectionDAG::MaxRecursionDepth) 16803 return SDValue(); 16804 16805 unsigned Opc = Op.getOpcode(); 16806 EVT VT = Op.getValueType(); 16807 SDNodeFlags Flags = Op.getNode()->getFlags(); 16808 16809 switch (Opc) { 16810 case PPCISD::FNMSUB: 16811 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16812 break; 16813 16814 const TargetOptions &Options = getTargetMachine().Options; 16815 SDValue N0 = Op.getOperand(0); 16816 SDValue N1 = Op.getOperand(1); 16817 SDValue N2 = Op.getOperand(2); 16818 SDLoc Loc(Op); 16819 16820 NegatibleCost N2Cost = NegatibleCost::Expensive; 16821 SDValue NegN2 = 16822 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16823 16824 if (!NegN2) 16825 return SDValue(); 16826 16827 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16828 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16829 // These transformations may change sign of zeroes. For example, 16830 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16831 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16832 // Try and choose the cheaper one to negate. 16833 NegatibleCost N0Cost = NegatibleCost::Expensive; 16834 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16835 N0Cost, Depth + 1); 16836 16837 NegatibleCost N1Cost = NegatibleCost::Expensive; 16838 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16839 N1Cost, Depth + 1); 16840 16841 if (NegN0 && N0Cost <= N1Cost) { 16842 Cost = std::min(N0Cost, N2Cost); 16843 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16844 } else if (NegN1) { 16845 Cost = std::min(N1Cost, N2Cost); 16846 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16847 } 16848 } 16849 16850 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16851 if (isOperationLegal(ISD::FMA, VT)) { 16852 Cost = N2Cost; 16853 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16854 } 16855 16856 break; 16857 } 16858 16859 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16860 Cost, Depth); 16861 } 16862 16863 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16864 bool PPCTargetLowering::useLoadStackGuardNode() const { 16865 if (!Subtarget.isTargetLinux()) 16866 return TargetLowering::useLoadStackGuardNode(); 16867 return true; 16868 } 16869 16870 // Override to disable global variable loading on Linux and insert AIX canary 16871 // word declaration. 16872 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16873 if (Subtarget.isAIXABI()) { 16874 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16875 Type::getInt8PtrTy(M.getContext())); 16876 return; 16877 } 16878 if (!Subtarget.isTargetLinux()) 16879 return TargetLowering::insertSSPDeclarations(M); 16880 } 16881 16882 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16883 if (Subtarget.isAIXABI()) 16884 return M.getGlobalVariable(AIXSSPCanaryWordName); 16885 return TargetLowering::getSDagStackGuard(M); 16886 } 16887 16888 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16889 bool ForCodeSize) const { 16890 if (!VT.isSimple() || !Subtarget.hasVSX()) 16891 return false; 16892 16893 switch(VT.getSimpleVT().SimpleTy) { 16894 default: 16895 // For FP types that are currently not supported by PPC backend, return 16896 // false. Examples: f16, f80. 16897 return false; 16898 case MVT::f32: 16899 case MVT::f64: 16900 if (Subtarget.hasPrefixInstrs()) { 16901 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16902 return true; 16903 } 16904 LLVM_FALLTHROUGH; 16905 case MVT::ppcf128: 16906 return Imm.isPosZero(); 16907 } 16908 } 16909 16910 // For vector shift operation op, fold 16911 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16912 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16913 SelectionDAG &DAG) { 16914 SDValue N0 = N->getOperand(0); 16915 SDValue N1 = N->getOperand(1); 16916 EVT VT = N0.getValueType(); 16917 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16918 unsigned Opcode = N->getOpcode(); 16919 unsigned TargetOpcode; 16920 16921 switch (Opcode) { 16922 default: 16923 llvm_unreachable("Unexpected shift operation"); 16924 case ISD::SHL: 16925 TargetOpcode = PPCISD::SHL; 16926 break; 16927 case ISD::SRL: 16928 TargetOpcode = PPCISD::SRL; 16929 break; 16930 case ISD::SRA: 16931 TargetOpcode = PPCISD::SRA; 16932 break; 16933 } 16934 16935 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16936 N1->getOpcode() == ISD::AND) 16937 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16938 if (Mask->getZExtValue() == OpSizeInBits - 1) 16939 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16940 16941 return SDValue(); 16942 } 16943 16944 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16945 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16946 return Value; 16947 16948 SDValue N0 = N->getOperand(0); 16949 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16950 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16951 N0.getOpcode() != ISD::SIGN_EXTEND || 16952 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16953 N->getValueType(0) != MVT::i64) 16954 return SDValue(); 16955 16956 // We can't save an operation here if the value is already extended, and 16957 // the existing shift is easier to combine. 16958 SDValue ExtsSrc = N0.getOperand(0); 16959 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16960 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16961 return SDValue(); 16962 16963 SDLoc DL(N0); 16964 SDValue ShiftBy = SDValue(CN1, 0); 16965 // We want the shift amount to be i32 on the extswli, but the shift could 16966 // have an i64. 16967 if (ShiftBy.getValueType() == MVT::i64) 16968 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16969 16970 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16971 ShiftBy); 16972 } 16973 16974 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16975 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16976 return Value; 16977 16978 return SDValue(); 16979 } 16980 16981 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16982 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16983 return Value; 16984 16985 return SDValue(); 16986 } 16987 16988 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16989 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16990 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16991 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16992 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16993 const PPCSubtarget &Subtarget) { 16994 if (!Subtarget.isPPC64()) 16995 return SDValue(); 16996 16997 SDValue LHS = N->getOperand(0); 16998 SDValue RHS = N->getOperand(1); 16999 17000 auto isZextOfCompareWithConstant = [](SDValue Op) { 17001 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17002 Op.getValueType() != MVT::i64) 17003 return false; 17004 17005 SDValue Cmp = Op.getOperand(0); 17006 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17007 Cmp.getOperand(0).getValueType() != MVT::i64) 17008 return false; 17009 17010 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17011 int64_t NegConstant = 0 - Constant->getSExtValue(); 17012 // Due to the limitations of the addi instruction, 17013 // -C is required to be [-32768, 32767]. 17014 return isInt<16>(NegConstant); 17015 } 17016 17017 return false; 17018 }; 17019 17020 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17021 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17022 17023 // If there is a pattern, canonicalize a zext operand to the RHS. 17024 if (LHSHasPattern && !RHSHasPattern) 17025 std::swap(LHS, RHS); 17026 else if (!LHSHasPattern && !RHSHasPattern) 17027 return SDValue(); 17028 17029 SDLoc DL(N); 17030 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17031 SDValue Cmp = RHS.getOperand(0); 17032 SDValue Z = Cmp.getOperand(0); 17033 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17034 int64_t NegConstant = 0 - Constant->getSExtValue(); 17035 17036 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17037 default: break; 17038 case ISD::SETNE: { 17039 // when C == 0 17040 // --> addze X, (addic Z, -1).carry 17041 // / 17042 // add X, (zext(setne Z, C))-- 17043 // \ when -32768 <= -C <= 32767 && C != 0 17044 // --> addze X, (addic (addi Z, -C), -1).carry 17045 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17046 DAG.getConstant(NegConstant, DL, MVT::i64)); 17047 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17048 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17049 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17050 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17051 SDValue(Addc.getNode(), 1)); 17052 } 17053 case ISD::SETEQ: { 17054 // when C == 0 17055 // --> addze X, (subfic Z, 0).carry 17056 // / 17057 // add X, (zext(sete Z, C))-- 17058 // \ when -32768 <= -C <= 32767 && C != 0 17059 // --> addze X, (subfic (addi Z, -C), 0).carry 17060 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17061 DAG.getConstant(NegConstant, DL, MVT::i64)); 17062 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17063 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17064 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17065 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17066 SDValue(Subc.getNode(), 1)); 17067 } 17068 } 17069 17070 return SDValue(); 17071 } 17072 17073 // Transform 17074 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17075 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17076 // In this case both C1 and C2 must be known constants. 17077 // C1+C2 must fit into a 34 bit signed integer. 17078 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17079 const PPCSubtarget &Subtarget) { 17080 if (!Subtarget.isUsingPCRelativeCalls()) 17081 return SDValue(); 17082 17083 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17084 // If we find that node try to cast the Global Address and the Constant. 17085 SDValue LHS = N->getOperand(0); 17086 SDValue RHS = N->getOperand(1); 17087 17088 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17089 std::swap(LHS, RHS); 17090 17091 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17092 return SDValue(); 17093 17094 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17095 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17096 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17097 17098 // Check that both casts succeeded. 17099 if (!GSDN || !ConstNode) 17100 return SDValue(); 17101 17102 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17103 SDLoc DL(GSDN); 17104 17105 // The signed int offset needs to fit in 34 bits. 17106 if (!isInt<34>(NewOffset)) 17107 return SDValue(); 17108 17109 // The new global address is a copy of the old global address except 17110 // that it has the updated Offset. 17111 SDValue GA = 17112 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17113 NewOffset, GSDN->getTargetFlags()); 17114 SDValue MatPCRel = 17115 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17116 return MatPCRel; 17117 } 17118 17119 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17120 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17121 return Value; 17122 17123 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17124 return Value; 17125 17126 return SDValue(); 17127 } 17128 17129 // Detect TRUNCATE operations on bitcasts of float128 values. 17130 // What we are looking for here is the situtation where we extract a subset 17131 // of bits from a 128 bit float. 17132 // This can be of two forms: 17133 // 1) BITCAST of f128 feeding TRUNCATE 17134 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17135 // The reason this is required is because we do not have a legal i128 type 17136 // and so we want to prevent having to store the f128 and then reload part 17137 // of it. 17138 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17139 DAGCombinerInfo &DCI) const { 17140 // If we are using CRBits then try that first. 17141 if (Subtarget.useCRBits()) { 17142 // Check if CRBits did anything and return that if it did. 17143 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17144 return CRTruncValue; 17145 } 17146 17147 SDLoc dl(N); 17148 SDValue Op0 = N->getOperand(0); 17149 17150 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17151 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17152 EVT VT = N->getValueType(0); 17153 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17154 return SDValue(); 17155 SDValue Sub = Op0.getOperand(0); 17156 if (Sub.getOpcode() == ISD::SUB) { 17157 SDValue SubOp0 = Sub.getOperand(0); 17158 SDValue SubOp1 = Sub.getOperand(1); 17159 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17160 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17161 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17162 SubOp1.getOperand(0), 17163 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17164 } 17165 } 17166 } 17167 17168 // Looking for a truncate of i128 to i64. 17169 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17170 return SDValue(); 17171 17172 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17173 17174 // SRL feeding TRUNCATE. 17175 if (Op0.getOpcode() == ISD::SRL) { 17176 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17177 // The right shift has to be by 64 bits. 17178 if (!ConstNode || ConstNode->getZExtValue() != 64) 17179 return SDValue(); 17180 17181 // Switch the element number to extract. 17182 EltToExtract = EltToExtract ? 0 : 1; 17183 // Update Op0 past the SRL. 17184 Op0 = Op0.getOperand(0); 17185 } 17186 17187 // BITCAST feeding a TRUNCATE possibly via SRL. 17188 if (Op0.getOpcode() == ISD::BITCAST && 17189 Op0.getValueType() == MVT::i128 && 17190 Op0.getOperand(0).getValueType() == MVT::f128) { 17191 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17192 return DCI.DAG.getNode( 17193 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17194 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17195 } 17196 return SDValue(); 17197 } 17198 17199 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17200 SelectionDAG &DAG = DCI.DAG; 17201 17202 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17203 if (!ConstOpOrElement) 17204 return SDValue(); 17205 17206 // An imul is usually smaller than the alternative sequence for legal type. 17207 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17208 isOperationLegal(ISD::MUL, N->getValueType(0))) 17209 return SDValue(); 17210 17211 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17212 switch (this->Subtarget.getCPUDirective()) { 17213 default: 17214 // TODO: enhance the condition for subtarget before pwr8 17215 return false; 17216 case PPC::DIR_PWR8: 17217 // type mul add shl 17218 // scalar 4 1 1 17219 // vector 7 2 2 17220 return true; 17221 case PPC::DIR_PWR9: 17222 case PPC::DIR_PWR10: 17223 case PPC::DIR_PWR_FUTURE: 17224 // type mul add shl 17225 // scalar 5 2 2 17226 // vector 7 2 2 17227 17228 // The cycle RATIO of related operations are showed as a table above. 17229 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17230 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17231 // are 4, it is always profitable; but for 3 instrs patterns 17232 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17233 // So we should only do it for vector type. 17234 return IsAddOne && IsNeg ? VT.isVector() : true; 17235 } 17236 }; 17237 17238 EVT VT = N->getValueType(0); 17239 SDLoc DL(N); 17240 17241 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17242 bool IsNeg = MulAmt.isNegative(); 17243 APInt MulAmtAbs = MulAmt.abs(); 17244 17245 if ((MulAmtAbs - 1).isPowerOf2()) { 17246 // (mul x, 2^N + 1) => (add (shl x, N), x) 17247 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17248 17249 if (!IsProfitable(IsNeg, true, VT)) 17250 return SDValue(); 17251 17252 SDValue Op0 = N->getOperand(0); 17253 SDValue Op1 = 17254 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17255 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17256 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17257 17258 if (!IsNeg) 17259 return Res; 17260 17261 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17262 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17263 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17264 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17265 17266 if (!IsProfitable(IsNeg, false, VT)) 17267 return SDValue(); 17268 17269 SDValue Op0 = N->getOperand(0); 17270 SDValue Op1 = 17271 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17272 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17273 17274 if (!IsNeg) 17275 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17276 else 17277 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17278 17279 } else { 17280 return SDValue(); 17281 } 17282 } 17283 17284 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17285 // in combiner since we need to check SD flags and other subtarget features. 17286 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17287 DAGCombinerInfo &DCI) const { 17288 SDValue N0 = N->getOperand(0); 17289 SDValue N1 = N->getOperand(1); 17290 SDValue N2 = N->getOperand(2); 17291 SDNodeFlags Flags = N->getFlags(); 17292 EVT VT = N->getValueType(0); 17293 SelectionDAG &DAG = DCI.DAG; 17294 const TargetOptions &Options = getTargetMachine().Options; 17295 unsigned Opc = N->getOpcode(); 17296 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17297 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17298 SDLoc Loc(N); 17299 17300 if (!isOperationLegal(ISD::FMA, VT)) 17301 return SDValue(); 17302 17303 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17304 // since (fnmsub a b c)=-0 while c-ab=+0. 17305 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17306 return SDValue(); 17307 17308 // (fma (fneg a) b c) => (fnmsub a b c) 17309 // (fnmsub (fneg a) b c) => (fma a b c) 17310 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17311 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17312 17313 // (fma a (fneg b) c) => (fnmsub a b c) 17314 // (fnmsub a (fneg b) c) => (fma a b c) 17315 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17316 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17317 17318 return SDValue(); 17319 } 17320 17321 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17322 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17323 if (!Subtarget.is64BitELFABI()) 17324 return false; 17325 17326 // If not a tail call then no need to proceed. 17327 if (!CI->isTailCall()) 17328 return false; 17329 17330 // If sibling calls have been disabled and tail-calls aren't guaranteed 17331 // there is no reason to duplicate. 17332 auto &TM = getTargetMachine(); 17333 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17334 return false; 17335 17336 // Can't tail call a function called indirectly, or if it has variadic args. 17337 const Function *Callee = CI->getCalledFunction(); 17338 if (!Callee || Callee->isVarArg()) 17339 return false; 17340 17341 // Make sure the callee and caller calling conventions are eligible for tco. 17342 const Function *Caller = CI->getParent()->getParent(); 17343 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17344 CI->getCallingConv())) 17345 return false; 17346 17347 // If the function is local then we have a good chance at tail-calling it 17348 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17349 } 17350 17351 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17352 if (!Subtarget.hasVSX()) 17353 return false; 17354 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17355 return true; 17356 return VT == MVT::f32 || VT == MVT::f64 || 17357 VT == MVT::v4f32 || VT == MVT::v2f64; 17358 } 17359 17360 bool PPCTargetLowering:: 17361 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17362 const Value *Mask = AndI.getOperand(1); 17363 // If the mask is suitable for andi. or andis. we should sink the and. 17364 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17365 // Can't handle constants wider than 64-bits. 17366 if (CI->getBitWidth() > 64) 17367 return false; 17368 int64_t ConstVal = CI->getZExtValue(); 17369 return isUInt<16>(ConstVal) || 17370 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17371 } 17372 17373 // For non-constant masks, we can always use the record-form and. 17374 return true; 17375 } 17376 17377 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17378 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17379 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17380 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17381 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17382 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17383 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17384 assert(Subtarget.hasP9Altivec() && 17385 "Only combine this when P9 altivec supported!"); 17386 EVT VT = N->getValueType(0); 17387 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17388 return SDValue(); 17389 17390 SelectionDAG &DAG = DCI.DAG; 17391 SDLoc dl(N); 17392 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17393 // Even for signed integers, if it's known to be positive (as signed 17394 // integer) due to zero-extended inputs. 17395 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17396 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17397 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17398 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17399 (SubOpcd1 == ISD::ZERO_EXTEND || 17400 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17401 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17402 N->getOperand(0)->getOperand(0), 17403 N->getOperand(0)->getOperand(1), 17404 DAG.getTargetConstant(0, dl, MVT::i32)); 17405 } 17406 17407 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17408 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17409 N->getOperand(0).hasOneUse()) { 17410 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17411 N->getOperand(0)->getOperand(0), 17412 N->getOperand(0)->getOperand(1), 17413 DAG.getTargetConstant(1, dl, MVT::i32)); 17414 } 17415 } 17416 17417 return SDValue(); 17418 } 17419 17420 // For type v4i32/v8ii16/v16i8, transform 17421 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17422 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17423 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17424 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17425 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17426 DAGCombinerInfo &DCI) const { 17427 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17428 assert(Subtarget.hasP9Altivec() && 17429 "Only combine this when P9 altivec supported!"); 17430 17431 SelectionDAG &DAG = DCI.DAG; 17432 SDLoc dl(N); 17433 SDValue Cond = N->getOperand(0); 17434 SDValue TrueOpnd = N->getOperand(1); 17435 SDValue FalseOpnd = N->getOperand(2); 17436 EVT VT = N->getOperand(1).getValueType(); 17437 17438 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17439 FalseOpnd.getOpcode() != ISD::SUB) 17440 return SDValue(); 17441 17442 // ABSD only available for type v4i32/v8i16/v16i8 17443 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17444 return SDValue(); 17445 17446 // At least to save one more dependent computation 17447 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17448 return SDValue(); 17449 17450 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17451 17452 // Can only handle unsigned comparison here 17453 switch (CC) { 17454 default: 17455 return SDValue(); 17456 case ISD::SETUGT: 17457 case ISD::SETUGE: 17458 break; 17459 case ISD::SETULT: 17460 case ISD::SETULE: 17461 std::swap(TrueOpnd, FalseOpnd); 17462 break; 17463 } 17464 17465 SDValue CmpOpnd1 = Cond.getOperand(0); 17466 SDValue CmpOpnd2 = Cond.getOperand(1); 17467 17468 // SETCC CmpOpnd1 CmpOpnd2 cond 17469 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17470 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17471 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17472 TrueOpnd.getOperand(1) == CmpOpnd2 && 17473 FalseOpnd.getOperand(0) == CmpOpnd2 && 17474 FalseOpnd.getOperand(1) == CmpOpnd1) { 17475 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17476 CmpOpnd1, CmpOpnd2, 17477 DAG.getTargetConstant(0, dl, MVT::i32)); 17478 } 17479 17480 return SDValue(); 17481 } 17482 17483 /// getAddrModeForFlags - Based on the set of address flags, select the most 17484 /// optimal instruction format to match by. 17485 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17486 // This is not a node we should be handling here. 17487 if (Flags == PPC::MOF_None) 17488 return PPC::AM_None; 17489 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17490 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17491 if ((Flags & FlagSet) == FlagSet) 17492 return PPC::AM_DForm; 17493 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17494 if ((Flags & FlagSet) == FlagSet) 17495 return PPC::AM_DSForm; 17496 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17497 if ((Flags & FlagSet) == FlagSet) 17498 return PPC::AM_DQForm; 17499 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17500 if ((Flags & FlagSet) == FlagSet) 17501 return PPC::AM_PrefixDForm; 17502 // If no other forms are selected, return an X-Form as it is the most 17503 // general addressing mode. 17504 return PPC::AM_XForm; 17505 } 17506 17507 /// Set alignment flags based on whether or not the Frame Index is aligned. 17508 /// Utilized when computing flags for address computation when selecting 17509 /// load and store instructions. 17510 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17511 SelectionDAG &DAG) { 17512 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17513 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17514 if (!FI) 17515 return; 17516 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17517 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17518 // If this is (add $FI, $S16Imm), the alignment flags are already set 17519 // based on the immediate. We just need to clear the alignment flags 17520 // if the FI alignment is weaker. 17521 if ((FrameIndexAlign % 4) != 0) 17522 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17523 if ((FrameIndexAlign % 16) != 0) 17524 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17525 // If the address is a plain FrameIndex, set alignment flags based on 17526 // FI alignment. 17527 if (!IsAdd) { 17528 if ((FrameIndexAlign % 4) == 0) 17529 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17530 if ((FrameIndexAlign % 16) == 0) 17531 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17532 } 17533 } 17534 17535 /// Given a node, compute flags that are used for address computation when 17536 /// selecting load and store instructions. The flags computed are stored in 17537 /// FlagSet. This function takes into account whether the node is a constant, 17538 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17539 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17540 SelectionDAG &DAG) { 17541 // Set the alignment flags for the node depending on if the node is 17542 // 4-byte or 16-byte aligned. 17543 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17544 if ((Imm & 0x3) == 0) 17545 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17546 if ((Imm & 0xf) == 0) 17547 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17548 }; 17549 17550 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17551 // All 32-bit constants can be computed as LIS + Disp. 17552 const APInt &ConstImm = CN->getAPIntValue(); 17553 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17554 FlagSet |= PPC::MOF_AddrIsSImm32; 17555 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17556 setAlignFlagsForFI(N, FlagSet, DAG); 17557 } 17558 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17559 FlagSet |= PPC::MOF_RPlusSImm34; 17560 else // Let constant materialization handle large constants. 17561 FlagSet |= PPC::MOF_NotAddNorCst; 17562 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17563 // This address can be represented as an addition of: 17564 // - Register + Imm16 (possibly a multiple of 4/16) 17565 // - Register + Imm34 17566 // - Register + PPCISD::Lo 17567 // - Register + Register 17568 // In any case, we won't have to match this as Base + Zero. 17569 SDValue RHS = N.getOperand(1); 17570 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17571 const APInt &ConstImm = CN->getAPIntValue(); 17572 if (ConstImm.isSignedIntN(16)) { 17573 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17574 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17575 setAlignFlagsForFI(N, FlagSet, DAG); 17576 } 17577 if (ConstImm.isSignedIntN(34)) 17578 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17579 else 17580 FlagSet |= PPC::MOF_RPlusR; // Register. 17581 } else if (RHS.getOpcode() == PPCISD::Lo && 17582 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17583 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17584 else 17585 FlagSet |= PPC::MOF_RPlusR; 17586 } else { // The address computation is not a constant or an addition. 17587 setAlignFlagsForFI(N, FlagSet, DAG); 17588 FlagSet |= PPC::MOF_NotAddNorCst; 17589 } 17590 } 17591 17592 static bool isPCRelNode(SDValue N) { 17593 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17594 isValidPCRelNode<ConstantPoolSDNode>(N) || 17595 isValidPCRelNode<GlobalAddressSDNode>(N) || 17596 isValidPCRelNode<JumpTableSDNode>(N) || 17597 isValidPCRelNode<BlockAddressSDNode>(N)); 17598 } 17599 17600 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17601 /// the address flags of the load/store instruction that is to be matched. 17602 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17603 SelectionDAG &DAG) const { 17604 unsigned FlagSet = PPC::MOF_None; 17605 17606 // Compute subtarget flags. 17607 if (!Subtarget.hasP9Vector()) 17608 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17609 else { 17610 FlagSet |= PPC::MOF_SubtargetP9; 17611 if (Subtarget.hasPrefixInstrs()) 17612 FlagSet |= PPC::MOF_SubtargetP10; 17613 } 17614 if (Subtarget.hasSPE()) 17615 FlagSet |= PPC::MOF_SubtargetSPE; 17616 17617 // Check if we have a PCRel node and return early. 17618 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17619 return FlagSet; 17620 17621 // If the node is the paired load/store intrinsics, compute flags for 17622 // address computation and return early. 17623 unsigned ParentOp = Parent->getOpcode(); 17624 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17625 (ParentOp == ISD::INTRINSIC_VOID))) { 17626 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17627 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17628 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17629 ? Parent->getOperand(2) 17630 : Parent->getOperand(3); 17631 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17632 FlagSet |= PPC::MOF_Vector; 17633 return FlagSet; 17634 } 17635 } 17636 17637 // Mark this as something we don't want to handle here if it is atomic 17638 // or pre-increment instruction. 17639 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17640 if (LSB->isIndexed()) 17641 return PPC::MOF_None; 17642 17643 // Compute in-memory type flags. This is based on if there are scalars, 17644 // floats or vectors. 17645 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17646 assert(MN && "Parent should be a MemSDNode!"); 17647 EVT MemVT = MN->getMemoryVT(); 17648 unsigned Size = MemVT.getSizeInBits(); 17649 if (MemVT.isScalarInteger()) { 17650 assert(Size <= 128 && 17651 "Not expecting scalar integers larger than 16 bytes!"); 17652 if (Size < 32) 17653 FlagSet |= PPC::MOF_SubWordInt; 17654 else if (Size == 32) 17655 FlagSet |= PPC::MOF_WordInt; 17656 else 17657 FlagSet |= PPC::MOF_DoubleWordInt; 17658 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17659 if (Size == 128) 17660 FlagSet |= PPC::MOF_Vector; 17661 else if (Size == 256) { 17662 assert(Subtarget.pairedVectorMemops() && 17663 "256-bit vectors are only available when paired vector memops is " 17664 "enabled!"); 17665 FlagSet |= PPC::MOF_Vector; 17666 } else 17667 llvm_unreachable("Not expecting illegal vectors!"); 17668 } else { // Floating point type: can be scalar, f128 or vector types. 17669 if (Size == 32 || Size == 64) 17670 FlagSet |= PPC::MOF_ScalarFloat; 17671 else if (MemVT == MVT::f128 || MemVT.isVector()) 17672 FlagSet |= PPC::MOF_Vector; 17673 else 17674 llvm_unreachable("Not expecting illegal scalar floats!"); 17675 } 17676 17677 // Compute flags for address computation. 17678 computeFlagsForAddressComputation(N, FlagSet, DAG); 17679 17680 // Compute type extension flags. 17681 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17682 switch (LN->getExtensionType()) { 17683 case ISD::SEXTLOAD: 17684 FlagSet |= PPC::MOF_SExt; 17685 break; 17686 case ISD::EXTLOAD: 17687 case ISD::ZEXTLOAD: 17688 FlagSet |= PPC::MOF_ZExt; 17689 break; 17690 case ISD::NON_EXTLOAD: 17691 FlagSet |= PPC::MOF_NoExt; 17692 break; 17693 } 17694 } else 17695 FlagSet |= PPC::MOF_NoExt; 17696 17697 // For integers, no extension is the same as zero extension. 17698 // We set the extension mode to zero extension so we don't have 17699 // to add separate entries in AddrModesMap for loads and stores. 17700 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17701 FlagSet |= PPC::MOF_ZExt; 17702 FlagSet &= ~PPC::MOF_NoExt; 17703 } 17704 17705 // If we don't have prefixed instructions, 34-bit constants should be 17706 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17707 bool IsNonP1034BitConst = 17708 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17709 FlagSet) == PPC::MOF_RPlusSImm34; 17710 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17711 IsNonP1034BitConst) 17712 FlagSet |= PPC::MOF_NotAddNorCst; 17713 17714 return FlagSet; 17715 } 17716 17717 /// SelectForceXFormMode - Given the specified address, force it to be 17718 /// represented as an indexed [r+r] operation (an XForm instruction). 17719 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17720 SDValue &Base, 17721 SelectionDAG &DAG) const { 17722 17723 PPC::AddrMode Mode = PPC::AM_XForm; 17724 int16_t ForceXFormImm = 0; 17725 if (provablyDisjointOr(DAG, N) && 17726 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17727 Disp = N.getOperand(0); 17728 Base = N.getOperand(1); 17729 return Mode; 17730 } 17731 17732 // If the address is the result of an add, we will utilize the fact that the 17733 // address calculation includes an implicit add. However, we can reduce 17734 // register pressure if we do not materialize a constant just for use as the 17735 // index register. We only get rid of the add if it is not an add of a 17736 // value and a 16-bit signed constant and both have a single use. 17737 if (N.getOpcode() == ISD::ADD && 17738 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17739 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17740 Disp = N.getOperand(0); 17741 Base = N.getOperand(1); 17742 return Mode; 17743 } 17744 17745 // Otherwise, use R0 as the base register. 17746 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17747 N.getValueType()); 17748 Base = N; 17749 17750 return Mode; 17751 } 17752 17753 bool PPCTargetLowering::splitValueIntoRegisterParts( 17754 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17755 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17756 EVT ValVT = Val.getValueType(); 17757 // If we are splitting a scalar integer into f64 parts (i.e. so they 17758 // can be placed into VFRC registers), we need to zero extend and 17759 // bitcast the values. This will ensure the value is placed into a 17760 // VSR using direct moves or stack operations as needed. 17761 if (PartVT == MVT::f64 && 17762 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17763 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17764 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17765 Parts[0] = Val; 17766 return true; 17767 } 17768 return false; 17769 } 17770 17771 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17772 SelectionDAG &DAG) const { 17773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17774 TargetLowering::CallLoweringInfo CLI(DAG); 17775 EVT RetVT = Op.getValueType(); 17776 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 17777 SDValue Callee = 17778 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17779 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17780 TargetLowering::ArgListTy Args; 17781 TargetLowering::ArgListEntry Entry; 17782 for (const SDValue &N : Op->op_values()) { 17783 EVT ArgVT = N.getValueType(); 17784 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17785 Entry.Node = N; 17786 Entry.Ty = ArgTy; 17787 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17788 Entry.IsZExt = !Entry.IsSExt; 17789 Args.push_back(Entry); 17790 } 17791 17792 SDValue InChain = DAG.getEntryNode(); 17793 SDValue TCChain = InChain; 17794 const Function &F = DAG.getMachineFunction().getFunction(); 17795 bool isTailCall = 17796 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 17797 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 17798 if (isTailCall) 17799 InChain = TCChain; 17800 CLI.setDebugLoc(SDLoc(Op)) 17801 .setChain(InChain) 17802 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 17803 .setTailCall(isTailCall) 17804 .setSExtResult(SignExtend) 17805 .setZExtResult(!SignExtend) 17806 .setIsPostTypeLegalization(true); 17807 return TLI.LowerCallTo(CLI).first; 17808 } 17809 17810 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17811 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17812 SelectionDAG &DAG) const { 17813 if (Op.getValueType() == MVT::f32) 17814 return lowerToLibCall(LibCallFloatName, Op, DAG); 17815 17816 if (Op.getValueType() == MVT::f64) 17817 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17818 17819 return SDValue(); 17820 } 17821 17822 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17823 SDNodeFlags Flags = Op.getNode()->getFlags(); 17824 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17825 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17826 } 17827 17828 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17829 return Op.getNode()->getFlags().hasApproximateFuncs(); 17830 } 17831 17832 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17833 const char *LibCallFloatName, 17834 const char *LibCallDoubleNameFinite, 17835 const char *LibCallFloatNameFinite, 17836 SDValue Op, 17837 SelectionDAG &DAG) const { 17838 if (!isLowringToMASSSafe(Op)) 17839 return SDValue(); 17840 17841 if (!isLowringToMASSFiniteSafe(Op)) 17842 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17843 DAG); 17844 17845 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17846 LibCallDoubleNameFinite, Op, DAG); 17847 } 17848 17849 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17850 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17851 "__xl_powf_finite", Op, DAG); 17852 } 17853 17854 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17855 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17856 "__xl_sinf_finite", Op, DAG); 17857 } 17858 17859 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17860 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17861 "__xl_cosf_finite", Op, DAG); 17862 } 17863 17864 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17865 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17866 "__xl_logf_finite", Op, DAG); 17867 } 17868 17869 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17870 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17871 "__xl_log10f_finite", Op, DAG); 17872 } 17873 17874 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17875 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17876 "__xl_expf_finite", Op, DAG); 17877 } 17878 17879 // If we happen to match to an aligned D-Form, check if the Frame Index is 17880 // adequately aligned. If it is not, reset the mode to match to X-Form. 17881 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17882 PPC::AddrMode &Mode) { 17883 if (!isa<FrameIndexSDNode>(N)) 17884 return; 17885 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17886 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17887 Mode = PPC::AM_XForm; 17888 } 17889 17890 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17891 /// compute the address flags of the node, get the optimal address mode based 17892 /// on the flags, and set the Base and Disp based on the address mode. 17893 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17894 SDValue N, SDValue &Disp, 17895 SDValue &Base, 17896 SelectionDAG &DAG, 17897 MaybeAlign Align) const { 17898 SDLoc DL(Parent); 17899 17900 // Compute the address flags. 17901 unsigned Flags = computeMOFlags(Parent, N, DAG); 17902 17903 // Get the optimal address mode based on the Flags. 17904 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17905 17906 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17907 // Select an X-Form load if it is not. 17908 setXFormForUnalignedFI(N, Flags, Mode); 17909 17910 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17911 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17912 assert(Subtarget.isUsingPCRelativeCalls() && 17913 "Must be using PC-Relative calls when a valid PC-Relative node is " 17914 "present!"); 17915 Mode = PPC::AM_PCRel; 17916 } 17917 17918 // Set Base and Disp accordingly depending on the address mode. 17919 switch (Mode) { 17920 case PPC::AM_DForm: 17921 case PPC::AM_DSForm: 17922 case PPC::AM_DQForm: { 17923 // This is a register plus a 16-bit immediate. The base will be the 17924 // register and the displacement will be the immediate unless it 17925 // isn't sufficiently aligned. 17926 if (Flags & PPC::MOF_RPlusSImm16) { 17927 SDValue Op0 = N.getOperand(0); 17928 SDValue Op1 = N.getOperand(1); 17929 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17930 if (!Align || isAligned(*Align, Imm)) { 17931 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17932 Base = Op0; 17933 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17934 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17935 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17936 } 17937 break; 17938 } 17939 } 17940 // This is a register plus the @lo relocation. The base is the register 17941 // and the displacement is the global address. 17942 else if (Flags & PPC::MOF_RPlusLo) { 17943 Disp = N.getOperand(1).getOperand(0); // The global address. 17944 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17945 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17946 Disp.getOpcode() == ISD::TargetConstantPool || 17947 Disp.getOpcode() == ISD::TargetJumpTable); 17948 Base = N.getOperand(0); 17949 break; 17950 } 17951 // This is a constant address at most 32 bits. The base will be 17952 // zero or load-immediate-shifted and the displacement will be 17953 // the low 16 bits of the address. 17954 else if (Flags & PPC::MOF_AddrIsSImm32) { 17955 auto *CN = cast<ConstantSDNode>(N); 17956 EVT CNType = CN->getValueType(0); 17957 uint64_t CNImm = CN->getZExtValue(); 17958 // If this address fits entirely in a 16-bit sext immediate field, codegen 17959 // this as "d, 0". 17960 int16_t Imm; 17961 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17962 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17963 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17964 CNType); 17965 break; 17966 } 17967 // Handle 32-bit sext immediate with LIS + Addr mode. 17968 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17969 (!Align || isAligned(*Align, CNImm))) { 17970 int32_t Addr = (int32_t)CNImm; 17971 // Otherwise, break this down into LIS + Disp. 17972 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17973 Base = 17974 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17975 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17976 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17977 break; 17978 } 17979 } 17980 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17981 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17982 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17983 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17984 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17985 } else 17986 Base = N; 17987 break; 17988 } 17989 case PPC::AM_PrefixDForm: { 17990 int64_t Imm34 = 0; 17991 unsigned Opcode = N.getOpcode(); 17992 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17993 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17994 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17995 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17996 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17997 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17998 else 17999 Base = N.getOperand(0); 18000 } else if (isIntS34Immediate(N, Imm34)) { 18001 // The address is a 34-bit signed immediate. 18002 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18003 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18004 } 18005 break; 18006 } 18007 case PPC::AM_PCRel: { 18008 // When selecting PC-Relative instructions, "Base" is not utilized as 18009 // we select the address as [PC+imm]. 18010 Disp = N; 18011 break; 18012 } 18013 case PPC::AM_None: 18014 break; 18015 default: { // By default, X-Form is always available to be selected. 18016 // When a frame index is not aligned, we also match by XForm. 18017 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18018 Base = FI ? N : N.getOperand(1); 18019 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18020 N.getValueType()) 18021 : N.getOperand(0); 18022 break; 18023 } 18024 } 18025 return Mode; 18026 } 18027 18028 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18029 bool Return, 18030 bool IsVarArg) const { 18031 switch (CC) { 18032 case CallingConv::Cold: 18033 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18034 default: 18035 return CC_PPC64_ELF_FIS; 18036 } 18037 } 18038 18039 TargetLowering::AtomicExpansionKind 18040 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18041 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18042 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18043 return AtomicExpansionKind::MaskedIntrinsic; 18044 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18045 } 18046 18047 TargetLowering::AtomicExpansionKind 18048 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18049 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18050 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18051 return AtomicExpansionKind::MaskedIntrinsic; 18052 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18053 } 18054 18055 static Intrinsic::ID 18056 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18057 switch (BinOp) { 18058 default: 18059 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18060 case AtomicRMWInst::Xchg: 18061 return Intrinsic::ppc_atomicrmw_xchg_i128; 18062 case AtomicRMWInst::Add: 18063 return Intrinsic::ppc_atomicrmw_add_i128; 18064 case AtomicRMWInst::Sub: 18065 return Intrinsic::ppc_atomicrmw_sub_i128; 18066 case AtomicRMWInst::And: 18067 return Intrinsic::ppc_atomicrmw_and_i128; 18068 case AtomicRMWInst::Or: 18069 return Intrinsic::ppc_atomicrmw_or_i128; 18070 case AtomicRMWInst::Xor: 18071 return Intrinsic::ppc_atomicrmw_xor_i128; 18072 case AtomicRMWInst::Nand: 18073 return Intrinsic::ppc_atomicrmw_nand_i128; 18074 } 18075 } 18076 18077 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18078 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18079 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18080 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18081 "Only support quadword now"); 18082 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18083 Type *ValTy = Incr->getType(); 18084 assert(ValTy->getPrimitiveSizeInBits() == 128); 18085 Function *RMW = Intrinsic::getDeclaration( 18086 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18087 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18088 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18089 Value *IncrHi = 18090 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18091 Value *Addr = 18092 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18093 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18094 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18095 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18096 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18097 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18098 return Builder.CreateOr( 18099 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18100 } 18101 18102 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18103 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18104 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18105 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18106 "Only support quadword now"); 18107 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18108 Type *ValTy = CmpVal->getType(); 18109 assert(ValTy->getPrimitiveSizeInBits() == 128); 18110 Function *IntCmpXchg = 18111 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18112 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18113 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18114 Value *CmpHi = 18115 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18116 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18117 Value *NewHi = 18118 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18119 Value *Addr = 18120 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18121 emitLeadingFence(Builder, CI, Ord); 18122 Value *LoHi = 18123 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18124 emitTrailingFence(Builder, CI, Ord); 18125 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18126 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18127 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18128 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18129 return Builder.CreateOr( 18130 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18131 } 18132