1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
139 
140 // FIXME: Remove this once the bug has been fixed!
141 extern cl::opt<bool> ANDIGlueBug;
142 
143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
144                                      const PPCSubtarget &STI)
145     : TargetLowering(TM), Subtarget(STI) {
146   // Initialize map that relates the PPC addressing modes to the computed flags
147   // of a load/store instruction. The map is used to determine the optimal
148   // addressing mode when selecting load and stores.
149   initializeAddrModeMap();
150   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
151   // arguments are at least 4/8 bytes aligned.
152   bool isPPC64 = Subtarget.isPPC64();
153   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
154 
155   // Set up the register classes.
156   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
157   if (!useSoftFloat()) {
158     if (hasSPE()) {
159       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
160       // EFPU2 APU only supports f32
161       if (!Subtarget.hasEFPU2())
162         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
163     } else {
164       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
165       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
166     }
167   }
168 
169   // Match BITREVERSE to customized fast code sequence in the td file.
170   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
171   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
172 
173   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
174   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
175 
176   // Custom lower inline assembly to check for special registers.
177   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
178   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
179 
180   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
181   for (MVT VT : MVT::integer_valuetypes()) {
182     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
183     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
184   }
185 
186   if (Subtarget.isISA3_0()) {
187     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
188     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
189     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
190     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
191   } else {
192     // No extending loads from f16 or HW conversions back and forth.
193     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
195     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
197     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
198     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
199     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
200     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
201   }
202 
203   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
204 
205   // PowerPC has pre-inc load and store's.
206   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
207   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
208   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
209   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
210   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
211   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
212   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
213   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
214   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
215   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
216   if (!Subtarget.hasSPE()) {
217     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
218     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
219     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
220     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
221   }
222 
223   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
224   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
225   for (MVT VT : ScalarIntVTs) {
226     setOperationAction(ISD::ADDC, VT, Legal);
227     setOperationAction(ISD::ADDE, VT, Legal);
228     setOperationAction(ISD::SUBC, VT, Legal);
229     setOperationAction(ISD::SUBE, VT, Legal);
230   }
231 
232   if (Subtarget.useCRBits()) {
233     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
234 
235     if (isPPC64 || Subtarget.hasFPCVT()) {
236       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
237       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
238                         isPPC64 ? MVT::i64 : MVT::i32);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
240       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
241                         isPPC64 ? MVT::i64 : MVT::i32);
242 
243       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
244       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
245                          isPPC64 ? MVT::i64 : MVT::i32);
246       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249 
250       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
251       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
252                         isPPC64 ? MVT::i64 : MVT::i32);
253       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256 
257       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
258       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
259                         isPPC64 ? MVT::i64 : MVT::i32);
260       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263     } else {
264       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
265       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
266       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
267       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
268     }
269 
270     // PowerPC does not support direct load/store of condition registers.
271     setOperationAction(ISD::LOAD, MVT::i1, Custom);
272     setOperationAction(ISD::STORE, MVT::i1, Custom);
273 
274     // FIXME: Remove this once the ANDI glue bug is fixed:
275     if (ANDIGlueBug)
276       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
277 
278     for (MVT VT : MVT::integer_valuetypes()) {
279       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
281       setTruncStoreAction(VT, MVT::i1, Expand);
282     }
283 
284     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
285   }
286 
287   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
288   // PPC (the libcall is not available).
289   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
291   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
292   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
293 
294   // We do not currently implement these libm ops for PowerPC.
295   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
296   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
297   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
298   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
299   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
300   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
301 
302   // PowerPC has no SREM/UREM instructions unless we are on P9
303   // On P9 we may use a hardware instruction to compute the remainder.
304   // When the result of both the remainder and the division is required it is
305   // more efficient to compute the remainder from the result of the division
306   // rather than use the remainder instruction. The instructions are legalized
307   // directly because the DivRemPairsPass performs the transformation at the IR
308   // level.
309   if (Subtarget.isISA3_0()) {
310     setOperationAction(ISD::SREM, MVT::i32, Legal);
311     setOperationAction(ISD::UREM, MVT::i32, Legal);
312     setOperationAction(ISD::SREM, MVT::i64, Legal);
313     setOperationAction(ISD::UREM, MVT::i64, Legal);
314   } else {
315     setOperationAction(ISD::SREM, MVT::i32, Expand);
316     setOperationAction(ISD::UREM, MVT::i32, Expand);
317     setOperationAction(ISD::SREM, MVT::i64, Expand);
318     setOperationAction(ISD::UREM, MVT::i64, Expand);
319   }
320 
321   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
322   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
323   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
324   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
325   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
326   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
327   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
328   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
329   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
330 
331   // Handle constrained floating-point operations of scalar.
332   // TODO: Handle SPE specific operation.
333   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
334   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
335   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
336   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
337   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
338 
339   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
340   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
341   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
342   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
343 
344   if (!Subtarget.hasSPE()) {
345     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
346     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
347   }
348 
349   if (Subtarget.hasVSX()) {
350     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
352   }
353 
354   if (Subtarget.hasFSQRT()) {
355     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasFPRND()) {
360     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
362     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
364 
365     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
366     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
367     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
368     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
369   }
370 
371   // We don't support sin/cos/sqrt/fmod/pow
372   setOperationAction(ISD::FSIN , MVT::f64, Expand);
373   setOperationAction(ISD::FCOS , MVT::f64, Expand);
374   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
375   setOperationAction(ISD::FREM , MVT::f64, Expand);
376   setOperationAction(ISD::FPOW , MVT::f64, Expand);
377   setOperationAction(ISD::FSIN , MVT::f32, Expand);
378   setOperationAction(ISD::FCOS , MVT::f32, Expand);
379   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
380   setOperationAction(ISD::FREM , MVT::f32, Expand);
381   setOperationAction(ISD::FPOW , MVT::f32, Expand);
382   if (Subtarget.hasSPE()) {
383     setOperationAction(ISD::FMA  , MVT::f64, Expand);
384     setOperationAction(ISD::FMA  , MVT::f32, Expand);
385   } else {
386     setOperationAction(ISD::FMA  , MVT::f64, Legal);
387     setOperationAction(ISD::FMA  , MVT::f32, Legal);
388   }
389 
390   if (Subtarget.hasSPE())
391     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
392 
393   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
394 
395   // If we're enabling GP optimizations, use hardware square root
396   if (!Subtarget.hasFSQRT() &&
397       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
398         Subtarget.hasFRE()))
399     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
400 
401   if (!Subtarget.hasFSQRT() &&
402       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
403         Subtarget.hasFRES()))
404     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
405 
406   if (Subtarget.hasFCPSGN()) {
407     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
408     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
409   } else {
410     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
411     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
412   }
413 
414   if (Subtarget.hasFPRND()) {
415     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
416     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
417     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
418     setOperationAction(ISD::FROUND, MVT::f64, Legal);
419 
420     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
421     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
422     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
423     setOperationAction(ISD::FROUND, MVT::f32, Legal);
424   }
425 
426   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
427   // to speed up scalar BSWAP64.
428   // CTPOP or CTTZ were introduced in P8/P9 respectively
429   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
430   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
431     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
432   else
433     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
434   if (Subtarget.isISA3_0()) {
435     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
436     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
437   } else {
438     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
439     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
440   }
441 
442   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
443     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
444     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
445   } else {
446     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
447     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
448   }
449 
450   // PowerPC does not have ROTR
451   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
452   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
453 
454   if (!Subtarget.useCRBits()) {
455     // PowerPC does not have Select
456     setOperationAction(ISD::SELECT, MVT::i32, Expand);
457     setOperationAction(ISD::SELECT, MVT::i64, Expand);
458     setOperationAction(ISD::SELECT, MVT::f32, Expand);
459     setOperationAction(ISD::SELECT, MVT::f64, Expand);
460   }
461 
462   // PowerPC wants to turn select_cc of FP into fsel when possible.
463   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
464   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
465 
466   // PowerPC wants to optimize integer setcc a bit
467   if (!Subtarget.useCRBits())
468     setOperationAction(ISD::SETCC, MVT::i32, Custom);
469 
470   if (Subtarget.hasFPU()) {
471     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
472     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
473     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
474 
475     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
476     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
477     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
478   }
479 
480   // PowerPC does not have BRCOND which requires SetCC
481   if (!Subtarget.useCRBits())
482     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
483 
484   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
485 
486   if (Subtarget.hasSPE()) {
487     // SPE has built-in conversions
488     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
490     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
491     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
492     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
493     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
494 
495     // SPE supports signaling compare of f32/f64.
496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
497     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
498   } else {
499     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
500     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
501     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
502 
503     // PowerPC does not have [U|S]INT_TO_FP
504     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
506     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
507     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
508   }
509 
510   if (Subtarget.hasDirectMove() && isPPC64) {
511     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
512     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
513     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
514     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
515     if (TM.Options.UnsafeFPMath) {
516       setOperationAction(ISD::LRINT, MVT::f64, Legal);
517       setOperationAction(ISD::LRINT, MVT::f32, Legal);
518       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
519       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
520       setOperationAction(ISD::LROUND, MVT::f64, Legal);
521       setOperationAction(ISD::LROUND, MVT::f32, Legal);
522       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
523       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
524     }
525   } else {
526     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
527     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
528     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
529     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
530   }
531 
532   // We cannot sextinreg(i1).  Expand to shifts.
533   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
534 
535   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537   // support continuation, user-level threading, and etc.. As a result, no
538   // other SjLj exception interfaces are implemented and please don't build
539   // your own exception handling based on them.
540   // LLVM/Clang supports zero-cost DWARF exception handling.
541   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543 
544   // We want to legalize GlobalAddress and ConstantPool nodes into the
545   // appropriate instructions to materialize the address.
546   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
547   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
548   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
549   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
550   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
551   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
552   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
553   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
554   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
555   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
556 
557   // TRAP is legal.
558   setOperationAction(ISD::TRAP, MVT::Other, Legal);
559 
560   // TRAMPOLINE is custom lowered.
561   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
562   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
563 
564   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
565   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
566 
567   if (Subtarget.is64BitELFABI()) {
568     // VAARG always uses double-word chunks, so promote anything smaller.
569     setOperationAction(ISD::VAARG, MVT::i1, Promote);
570     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
571     setOperationAction(ISD::VAARG, MVT::i8, Promote);
572     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
573     setOperationAction(ISD::VAARG, MVT::i16, Promote);
574     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
575     setOperationAction(ISD::VAARG, MVT::i32, Promote);
576     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
577     setOperationAction(ISD::VAARG, MVT::Other, Expand);
578   } else if (Subtarget.is32BitELFABI()) {
579     // VAARG is custom lowered with the 32-bit SVR4 ABI.
580     setOperationAction(ISD::VAARG, MVT::Other, Custom);
581     setOperationAction(ISD::VAARG, MVT::i64, Custom);
582   } else
583     setOperationAction(ISD::VAARG, MVT::Other, Expand);
584 
585   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
586   if (Subtarget.is32BitELFABI())
587     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
588   else
589     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
590 
591   // Use the default implementation.
592   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
593   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
594   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
595   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
596   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
597   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
598   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
599   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
600   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
601 
602   // We want to custom lower some of our intrinsics.
603   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
604   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
605   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
606 
607   // To handle counter-based loop conditions.
608   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
609 
610   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
611   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
612   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
613   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
614 
615   // Comparisons that require checking two conditions.
616   if (Subtarget.hasSPE()) {
617     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
618     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
619     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
620     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
621   }
622   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
623   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
624   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
625   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
626   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
627   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
628   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
629   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
630   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
631   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
632   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
633   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
634 
635   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
636   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
637 
638   if (Subtarget.has64BitSupport()) {
639     // They also have instructions for converting between i64 and fp.
640     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
641     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
642     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
643     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
644     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
645     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
646     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
647     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
648     // This is just the low 32 bits of a (signed) fp->i64 conversion.
649     // We cannot do this with Promote because i64 is not a legal type.
650     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
651     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
652 
653     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
654       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
655       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
656     }
657   } else {
658     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
659     if (Subtarget.hasSPE()) {
660       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
661       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
662     } else {
663       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
664       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
665     }
666   }
667 
668   // With the instructions enabled under FPCVT, we can do everything.
669   if (Subtarget.hasFPCVT()) {
670     if (Subtarget.has64BitSupport()) {
671       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
672       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
673       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
674       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
675       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
676       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
677       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
678       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
679     }
680 
681     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
682     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
683     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
684     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
685     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
686     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
687     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
688     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
689   }
690 
691   if (Subtarget.use64BitRegs()) {
692     // 64-bit PowerPC implementations can support i64 types directly
693     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
694     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
695     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
696     // 64-bit PowerPC wants to expand i128 shifts itself.
697     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
698     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
699     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
700   } else {
701     // 32-bit PowerPC wants to expand i64 shifts itself.
702     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
703     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
704     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
705   }
706 
707   // PowerPC has better expansions for funnel shifts than the generic
708   // TargetLowering::expandFunnelShift.
709   if (Subtarget.has64BitSupport()) {
710     setOperationAction(ISD::FSHL, MVT::i64, Custom);
711     setOperationAction(ISD::FSHR, MVT::i64, Custom);
712   }
713   setOperationAction(ISD::FSHL, MVT::i32, Custom);
714   setOperationAction(ISD::FSHR, MVT::i32, Custom);
715 
716   if (Subtarget.hasVSX()) {
717     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
718     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
719     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
720     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
721   }
722 
723   if (Subtarget.hasAltivec()) {
724     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
725       setOperationAction(ISD::SADDSAT, VT, Legal);
726       setOperationAction(ISD::SSUBSAT, VT, Legal);
727       setOperationAction(ISD::UADDSAT, VT, Legal);
728       setOperationAction(ISD::USUBSAT, VT, Legal);
729     }
730     // First set operation action for all vector types to expand. Then we
731     // will selectively turn on ones that can be effectively codegen'd.
732     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
733       // add/sub are legal for all supported vector VT's.
734       setOperationAction(ISD::ADD, VT, Legal);
735       setOperationAction(ISD::SUB, VT, Legal);
736 
737       // For v2i64, these are only valid with P8Vector. This is corrected after
738       // the loop.
739       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
740         setOperationAction(ISD::SMAX, VT, Legal);
741         setOperationAction(ISD::SMIN, VT, Legal);
742         setOperationAction(ISD::UMAX, VT, Legal);
743         setOperationAction(ISD::UMIN, VT, Legal);
744       }
745       else {
746         setOperationAction(ISD::SMAX, VT, Expand);
747         setOperationAction(ISD::SMIN, VT, Expand);
748         setOperationAction(ISD::UMAX, VT, Expand);
749         setOperationAction(ISD::UMIN, VT, Expand);
750       }
751 
752       if (Subtarget.hasVSX()) {
753         setOperationAction(ISD::FMAXNUM, VT, Legal);
754         setOperationAction(ISD::FMINNUM, VT, Legal);
755       }
756 
757       // Vector instructions introduced in P8
758       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
759         setOperationAction(ISD::CTPOP, VT, Legal);
760         setOperationAction(ISD::CTLZ, VT, Legal);
761       }
762       else {
763         setOperationAction(ISD::CTPOP, VT, Expand);
764         setOperationAction(ISD::CTLZ, VT, Expand);
765       }
766 
767       // Vector instructions introduced in P9
768       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
769         setOperationAction(ISD::CTTZ, VT, Legal);
770       else
771         setOperationAction(ISD::CTTZ, VT, Expand);
772 
773       // We promote all shuffles to v16i8.
774       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
775       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
776 
777       // We promote all non-typed operations to v4i32.
778       setOperationAction(ISD::AND   , VT, Promote);
779       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
780       setOperationAction(ISD::OR    , VT, Promote);
781       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
782       setOperationAction(ISD::XOR   , VT, Promote);
783       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
784       setOperationAction(ISD::LOAD  , VT, Promote);
785       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
786       setOperationAction(ISD::SELECT, VT, Promote);
787       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
788       setOperationAction(ISD::VSELECT, VT, Legal);
789       setOperationAction(ISD::SELECT_CC, VT, Promote);
790       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
791       setOperationAction(ISD::STORE, VT, Promote);
792       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
793 
794       // No other operations are legal.
795       setOperationAction(ISD::MUL , VT, Expand);
796       setOperationAction(ISD::SDIV, VT, Expand);
797       setOperationAction(ISD::SREM, VT, Expand);
798       setOperationAction(ISD::UDIV, VT, Expand);
799       setOperationAction(ISD::UREM, VT, Expand);
800       setOperationAction(ISD::FDIV, VT, Expand);
801       setOperationAction(ISD::FREM, VT, Expand);
802       setOperationAction(ISD::FNEG, VT, Expand);
803       setOperationAction(ISD::FSQRT, VT, Expand);
804       setOperationAction(ISD::FLOG, VT, Expand);
805       setOperationAction(ISD::FLOG10, VT, Expand);
806       setOperationAction(ISD::FLOG2, VT, Expand);
807       setOperationAction(ISD::FEXP, VT, Expand);
808       setOperationAction(ISD::FEXP2, VT, Expand);
809       setOperationAction(ISD::FSIN, VT, Expand);
810       setOperationAction(ISD::FCOS, VT, Expand);
811       setOperationAction(ISD::FABS, VT, Expand);
812       setOperationAction(ISD::FFLOOR, VT, Expand);
813       setOperationAction(ISD::FCEIL,  VT, Expand);
814       setOperationAction(ISD::FTRUNC, VT, Expand);
815       setOperationAction(ISD::FRINT,  VT, Expand);
816       setOperationAction(ISD::FNEARBYINT, VT, Expand);
817       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
818       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
819       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
820       setOperationAction(ISD::MULHU, VT, Expand);
821       setOperationAction(ISD::MULHS, VT, Expand);
822       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
823       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
824       setOperationAction(ISD::UDIVREM, VT, Expand);
825       setOperationAction(ISD::SDIVREM, VT, Expand);
826       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
827       setOperationAction(ISD::FPOW, VT, Expand);
828       setOperationAction(ISD::BSWAP, VT, Expand);
829       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
830       setOperationAction(ISD::ROTL, VT, Expand);
831       setOperationAction(ISD::ROTR, VT, Expand);
832 
833       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
834         setTruncStoreAction(VT, InnerVT, Expand);
835         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
836         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
837         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
838       }
839     }
840     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
841     if (!Subtarget.hasP8Vector()) {
842       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
843       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
844       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
845       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
846     }
847 
848     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
849     // with merges, splats, etc.
850     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
851 
852     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
853     // are cheap, so handle them before they get expanded to scalar.
854     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
855     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
856     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
857     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
858     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
859 
860     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
861     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
862     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
863     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
864     setOperationAction(ISD::SELECT, MVT::v4i32,
865                        Subtarget.useCRBits() ? Legal : Expand);
866     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
867     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
868     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
869     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
870     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
871     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
872     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
873     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
874     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
875     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
876     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
877     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
878     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
879 
880     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
881     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
882     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
883     if (Subtarget.hasAltivec())
884       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
885         setOperationAction(ISD::ROTL, VT, Legal);
886     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
887     if (Subtarget.hasP8Altivec())
888       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
889 
890     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
891     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
892     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
893     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
894 
895     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
896     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
897 
898     if (Subtarget.hasVSX()) {
899       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
900       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
901       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
902     }
903 
904     if (Subtarget.hasP8Altivec())
905       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
906     else
907       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
908 
909     if (Subtarget.isISA3_1()) {
910       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
911       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
912       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
913       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
914       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
915       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
916       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
917       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
918       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
919       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
920       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
921       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
922       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
923       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
924       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
925       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
926       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
927       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
928     }
929 
930     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
931     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
932 
933     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
934     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
935 
936     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
937     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
938     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
939     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
940 
941     // Altivec does not contain unordered floating-point compare instructions
942     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
943     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
944     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
945     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
946 
947     if (Subtarget.hasVSX()) {
948       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
949       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
950       if (Subtarget.hasP8Vector()) {
951         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
952         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
953       }
954       if (Subtarget.hasDirectMove() && isPPC64) {
955         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
956         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
957         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
958         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
959         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
960         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
961         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
962         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
963       }
964       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
965 
966       // The nearbyint variants are not allowed to raise the inexact exception
967       // so we can only code-gen them with unsafe math.
968       if (TM.Options.UnsafeFPMath) {
969         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
970         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
971       }
972 
973       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
974       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
975       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
976       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
977       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
978       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
979       setOperationAction(ISD::FROUND, MVT::f64, Legal);
980       setOperationAction(ISD::FRINT, MVT::f64, Legal);
981 
982       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
983       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
984       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
985       setOperationAction(ISD::FROUND, MVT::f32, Legal);
986       setOperationAction(ISD::FRINT, MVT::f32, Legal);
987 
988       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
989       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
990 
991       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
992       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
993 
994       // Share the Altivec comparison restrictions.
995       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
996       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
997       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
998       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
999 
1000       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1001       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1002 
1003       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
1004 
1005       if (Subtarget.hasP8Vector())
1006         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1007 
1008       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1009 
1010       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1011       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1012       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1013 
1014       if (Subtarget.hasP8Altivec()) {
1015         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1016         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1017         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1018 
1019         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1020         // SRL, but not for SRA because of the instructions available:
1021         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1022         // doing
1023         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1024         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1025         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1026 
1027         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1028       }
1029       else {
1030         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1031         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1032         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1033 
1034         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1035 
1036         // VSX v2i64 only supports non-arithmetic operations.
1037         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1038         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1039       }
1040 
1041       if (Subtarget.isISA3_1())
1042         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1043       else
1044         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1045 
1046       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1047       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1048       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1049       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1050 
1051       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1052 
1053       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1054       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1055       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1056       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1057       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1058       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1059       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1060       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1061 
1062       // Custom handling for partial vectors of integers converted to
1063       // floating point. We already have optimal handling for v2i32 through
1064       // the DAG combine, so those aren't necessary.
1065       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1066       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1067       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1068       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1069       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1070       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1071       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1072       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1073       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1074       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1075       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1076       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1077       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1078       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1079       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1080       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1081 
1082       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1083       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1084       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1085       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1086       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1087       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1088 
1089       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1090       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1091 
1092       // Handle constrained floating-point operations of vector.
1093       // The predictor is `hasVSX` because altivec instruction has
1094       // no exception but VSX vector instruction has.
1095       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1096       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1097       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1098       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1099       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1100       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1101       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1102       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1103       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1104       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1105       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1106       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1107       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1108 
1109       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1110       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1111       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1112       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1113       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1114       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1115       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1116       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1117       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1118       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1119       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1120       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1121       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1122 
1123       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1124       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1125 
1126       for (MVT FPT : MVT::fp_valuetypes())
1127         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1128 
1129       // Expand the SELECT to SELECT_CC
1130       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1131 
1132       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1133       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1134 
1135       // No implementation for these ops for PowerPC.
1136       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1137       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1138       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1139       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1140       setOperationAction(ISD::FREM, MVT::f128, Expand);
1141     }
1142 
1143     if (Subtarget.hasP8Altivec()) {
1144       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1145       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1146     }
1147 
1148     if (Subtarget.hasP9Vector()) {
1149       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1150       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1151 
1152       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1153       // SRL, but not for SRA because of the instructions available:
1154       // VS{RL} and VS{RL}O.
1155       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1156       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1157       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1158 
1159       setOperationAction(ISD::FADD, MVT::f128, Legal);
1160       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1161       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1162       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1163       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1164 
1165       setOperationAction(ISD::FMA, MVT::f128, Legal);
1166       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1167       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1168       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1169       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1170       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1171       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1172 
1173       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1174       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1175       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1176       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1177       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1178       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1179 
1180       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1181       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1182       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1183 
1184       // Handle constrained floating-point operations of fp128
1185       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1186       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1187       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1188       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1189       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1190       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1191       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1192       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1193       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1194       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1195       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1196       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1197       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1198       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1199       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1200       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1201       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1202       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1203       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1204       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1205     } else if (Subtarget.hasVSX()) {
1206       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1207       setOperationAction(ISD::STORE, MVT::f128, Promote);
1208 
1209       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1210       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1211 
1212       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1213       // fp_to_uint and int_to_fp.
1214       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1215       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1216 
1217       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1218       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1219       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1220       setOperationAction(ISD::FABS, MVT::f128, Expand);
1221       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1222       setOperationAction(ISD::FMA, MVT::f128, Expand);
1223       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1224 
1225       // Expand the fp_extend if the target type is fp128.
1226       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1227       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1228 
1229       // Expand the fp_round if the source type is fp128.
1230       for (MVT VT : {MVT::f32, MVT::f64}) {
1231         setOperationAction(ISD::FP_ROUND, VT, Custom);
1232         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1233       }
1234 
1235       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1236       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1237       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1238       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1239 
1240       // Lower following f128 select_cc pattern:
1241       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1242       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1243 
1244       // We need to handle f128 SELECT_CC with integer result type.
1245       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1246       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1247     }
1248 
1249     if (Subtarget.hasP9Altivec()) {
1250       if (Subtarget.isISA3_1()) {
1251         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1252         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1253         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1254         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1255         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal);
1256       } else {
1257         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1258         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1259       }
1260       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1261       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1262       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1263       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1264       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1265       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1266       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1267     }
1268   }
1269 
1270   if (Subtarget.pairedVectorMemops()) {
1271     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1272     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1273     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1274   }
1275   if (Subtarget.hasMMA()) {
1276     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1277     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1278     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1279     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1280   }
1281 
1282   if (Subtarget.has64BitSupport())
1283     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1284 
1285   if (Subtarget.isISA3_1())
1286     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1287 
1288   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1289 
1290   if (!isPPC64) {
1291     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1292     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1293   }
1294 
1295   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) {
1296     setMaxAtomicSizeInBitsSupported(128);
1297     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1298     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1299     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1300   }
1301 
1302   setBooleanContents(ZeroOrOneBooleanContent);
1303 
1304   if (Subtarget.hasAltivec()) {
1305     // Altivec instructions set fields to all zeros or all ones.
1306     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1307   }
1308 
1309   if (!isPPC64) {
1310     // These libcalls are not available in 32-bit.
1311     setLibcallName(RTLIB::SHL_I128, nullptr);
1312     setLibcallName(RTLIB::SRL_I128, nullptr);
1313     setLibcallName(RTLIB::SRA_I128, nullptr);
1314     setLibcallName(RTLIB::MULO_I64, nullptr);
1315   }
1316 
1317   if (!isPPC64)
1318     setMaxAtomicSizeInBitsSupported(32);
1319 
1320   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1321 
1322   // We have target-specific dag combine patterns for the following nodes:
1323   setTargetDAGCombine(ISD::ADD);
1324   setTargetDAGCombine(ISD::SHL);
1325   setTargetDAGCombine(ISD::SRA);
1326   setTargetDAGCombine(ISD::SRL);
1327   setTargetDAGCombine(ISD::MUL);
1328   setTargetDAGCombine(ISD::FMA);
1329   setTargetDAGCombine(ISD::SINT_TO_FP);
1330   setTargetDAGCombine(ISD::BUILD_VECTOR);
1331   if (Subtarget.hasFPCVT())
1332     setTargetDAGCombine(ISD::UINT_TO_FP);
1333   setTargetDAGCombine(ISD::LOAD);
1334   setTargetDAGCombine(ISD::STORE);
1335   setTargetDAGCombine(ISD::BR_CC);
1336   if (Subtarget.useCRBits())
1337     setTargetDAGCombine(ISD::BRCOND);
1338   setTargetDAGCombine(ISD::BSWAP);
1339   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1340   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1341   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1342 
1343   setTargetDAGCombine(ISD::SIGN_EXTEND);
1344   setTargetDAGCombine(ISD::ZERO_EXTEND);
1345   setTargetDAGCombine(ISD::ANY_EXTEND);
1346 
1347   setTargetDAGCombine(ISD::TRUNCATE);
1348   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1349 
1350 
1351   if (Subtarget.useCRBits()) {
1352     setTargetDAGCombine(ISD::TRUNCATE);
1353     setTargetDAGCombine(ISD::SETCC);
1354     setTargetDAGCombine(ISD::SELECT_CC);
1355   }
1356 
1357   if (Subtarget.hasP9Altivec()) {
1358     setTargetDAGCombine(ISD::ABS);
1359     setTargetDAGCombine(ISD::VSELECT);
1360   }
1361 
1362   setLibcallName(RTLIB::LOG_F128, "logf128");
1363   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1364   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1365   setLibcallName(RTLIB::EXP_F128, "expf128");
1366   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1367   setLibcallName(RTLIB::SIN_F128, "sinf128");
1368   setLibcallName(RTLIB::COS_F128, "cosf128");
1369   setLibcallName(RTLIB::POW_F128, "powf128");
1370   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1371   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1372   setLibcallName(RTLIB::REM_F128, "fmodf128");
1373   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1374   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1375   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1376   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1377   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1378   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1379   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1380   setLibcallName(RTLIB::RINT_F128, "rintf128");
1381   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1382   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1383   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1384   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1385 
1386   // With 32 condition bits, we don't need to sink (and duplicate) compares
1387   // aggressively in CodeGenPrep.
1388   if (Subtarget.useCRBits()) {
1389     setHasMultipleConditionRegisters();
1390     setJumpIsExpensive();
1391   }
1392 
1393   setMinFunctionAlignment(Align(4));
1394 
1395   switch (Subtarget.getCPUDirective()) {
1396   default: break;
1397   case PPC::DIR_970:
1398   case PPC::DIR_A2:
1399   case PPC::DIR_E500:
1400   case PPC::DIR_E500mc:
1401   case PPC::DIR_E5500:
1402   case PPC::DIR_PWR4:
1403   case PPC::DIR_PWR5:
1404   case PPC::DIR_PWR5X:
1405   case PPC::DIR_PWR6:
1406   case PPC::DIR_PWR6X:
1407   case PPC::DIR_PWR7:
1408   case PPC::DIR_PWR8:
1409   case PPC::DIR_PWR9:
1410   case PPC::DIR_PWR10:
1411   case PPC::DIR_PWR_FUTURE:
1412     setPrefLoopAlignment(Align(16));
1413     setPrefFunctionAlignment(Align(16));
1414     break;
1415   }
1416 
1417   if (Subtarget.enableMachineScheduler())
1418     setSchedulingPreference(Sched::Source);
1419   else
1420     setSchedulingPreference(Sched::Hybrid);
1421 
1422   computeRegisterProperties(STI.getRegisterInfo());
1423 
1424   // The Freescale cores do better with aggressive inlining of memcpy and
1425   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1426   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1427       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1428     MaxStoresPerMemset = 32;
1429     MaxStoresPerMemsetOptSize = 16;
1430     MaxStoresPerMemcpy = 32;
1431     MaxStoresPerMemcpyOptSize = 8;
1432     MaxStoresPerMemmove = 32;
1433     MaxStoresPerMemmoveOptSize = 8;
1434   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1435     // The A2 also benefits from (very) aggressive inlining of memcpy and
1436     // friends. The overhead of a the function call, even when warm, can be
1437     // over one hundred cycles.
1438     MaxStoresPerMemset = 128;
1439     MaxStoresPerMemcpy = 128;
1440     MaxStoresPerMemmove = 128;
1441     MaxLoadsPerMemcmp = 128;
1442   } else {
1443     MaxLoadsPerMemcmp = 8;
1444     MaxLoadsPerMemcmpOptSize = 4;
1445   }
1446 
1447   IsStrictFPEnabled = true;
1448 
1449   // Let the subtarget (CPU) decide if a predictable select is more expensive
1450   // than the corresponding branch. This information is used in CGP to decide
1451   // when to convert selects into branches.
1452   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1453 }
1454 
1455 // *********************************** NOTE ************************************
1456 // For selecting load and store instructions, the addressing modes are defined
1457 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1458 // patterns to match the load the store instructions.
1459 //
1460 // The TD definitions for the addressing modes correspond to their respective
1461 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1462 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1463 // address mode flags of a particular node. Afterwards, the computed address
1464 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1465 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1466 // accordingly, based on the preferred addressing mode.
1467 //
1468 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1469 // MemOpFlags contains all the possible flags that can be used to compute the
1470 // optimal addressing mode for load and store instructions.
1471 // AddrMode contains all the possible load and store addressing modes available
1472 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1473 //
1474 // When adding new load and store instructions, it is possible that new address
1475 // flags may need to be added into MemOpFlags, and a new addressing mode will
1476 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1477 // of the minimal and main distinguishing address flags for the new load/store
1478 // instructions) will need to be added into initializeAddrModeMap() below.
1479 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1480 // need to be updated to account for selecting the optimal addressing mode.
1481 // *****************************************************************************
1482 /// Initialize the map that relates the different addressing modes of the load
1483 /// and store instructions to a set of flags. This ensures the load/store
1484 /// instruction is correctly matched during instruction selection.
1485 void PPCTargetLowering::initializeAddrModeMap() {
1486   AddrModesMap[PPC::AM_DForm] = {
1487       // LWZ, STW
1488       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1489       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1490       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1491       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1492       // LBZ, LHZ, STB, STH
1493       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1494       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1495       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1496       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1497       // LHA
1498       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1499       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1500       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1501       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1502       // LFS, LFD, STFS, STFD
1503       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1504       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1505       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1506       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1507   };
1508   AddrModesMap[PPC::AM_DSForm] = {
1509       // LWA
1510       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1511       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1512       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1513       // LD, STD
1514       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1515       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1516       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1517       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1518       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1519       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1520       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1521   };
1522   AddrModesMap[PPC::AM_DQForm] = {
1523       // LXV, STXV
1524       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1525       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1526       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1527   };
1528   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1529                                        PPC::MOF_SubtargetP10};
1530   // TODO: Add mapping for quadword load/store.
1531 }
1532 
1533 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1534 /// the desired ByVal argument alignment.
1535 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1536   if (MaxAlign == MaxMaxAlign)
1537     return;
1538   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1539     if (MaxMaxAlign >= 32 &&
1540         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1541       MaxAlign = Align(32);
1542     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1543              MaxAlign < 16)
1544       MaxAlign = Align(16);
1545   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1546     Align EltAlign;
1547     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1548     if (EltAlign > MaxAlign)
1549       MaxAlign = EltAlign;
1550   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1551     for (auto *EltTy : STy->elements()) {
1552       Align EltAlign;
1553       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1554       if (EltAlign > MaxAlign)
1555         MaxAlign = EltAlign;
1556       if (MaxAlign == MaxMaxAlign)
1557         break;
1558     }
1559   }
1560 }
1561 
1562 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1563 /// function arguments in the caller parameter area.
1564 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1565                                                   const DataLayout &DL) const {
1566   // 16byte and wider vectors are passed on 16byte boundary.
1567   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1568   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1569   if (Subtarget.hasAltivec())
1570     getMaxByValAlign(Ty, Alignment, Align(16));
1571   return Alignment.value();
1572 }
1573 
1574 bool PPCTargetLowering::useSoftFloat() const {
1575   return Subtarget.useSoftFloat();
1576 }
1577 
1578 bool PPCTargetLowering::hasSPE() const {
1579   return Subtarget.hasSPE();
1580 }
1581 
1582 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1583   return VT.isScalarInteger();
1584 }
1585 
1586 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1587   switch ((PPCISD::NodeType)Opcode) {
1588   case PPCISD::FIRST_NUMBER:    break;
1589   case PPCISD::FSEL:            return "PPCISD::FSEL";
1590   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1591   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1592   case PPCISD::FCFID:           return "PPCISD::FCFID";
1593   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1594   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1595   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1596   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1597   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1598   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1599   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1600   case PPCISD::FP_TO_UINT_IN_VSR:
1601                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1602   case PPCISD::FP_TO_SINT_IN_VSR:
1603                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1604   case PPCISD::FRE:             return "PPCISD::FRE";
1605   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1606   case PPCISD::FTSQRT:
1607     return "PPCISD::FTSQRT";
1608   case PPCISD::FSQRT:
1609     return "PPCISD::FSQRT";
1610   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1611   case PPCISD::VPERM:           return "PPCISD::VPERM";
1612   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1613   case PPCISD::XXSPLTI_SP_TO_DP:
1614     return "PPCISD::XXSPLTI_SP_TO_DP";
1615   case PPCISD::XXSPLTI32DX:
1616     return "PPCISD::XXSPLTI32DX";
1617   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1618   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1619   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1620   case PPCISD::CMPB:            return "PPCISD::CMPB";
1621   case PPCISD::Hi:              return "PPCISD::Hi";
1622   case PPCISD::Lo:              return "PPCISD::Lo";
1623   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1624   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1625   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1626   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1627   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1628   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1629   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1630   case PPCISD::SRL:             return "PPCISD::SRL";
1631   case PPCISD::SRA:             return "PPCISD::SRA";
1632   case PPCISD::SHL:             return "PPCISD::SHL";
1633   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1634   case PPCISD::CALL:            return "PPCISD::CALL";
1635   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1636   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1637   case PPCISD::CALL_RM:
1638     return "PPCISD::CALL_RM";
1639   case PPCISD::CALL_NOP_RM:
1640     return "PPCISD::CALL_NOP_RM";
1641   case PPCISD::CALL_NOTOC_RM:
1642     return "PPCISD::CALL_NOTOC_RM";
1643   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1644   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1645   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1646   case PPCISD::BCTRL_RM:
1647     return "PPCISD::BCTRL_RM";
1648   case PPCISD::BCTRL_LOAD_TOC_RM:
1649     return "PPCISD::BCTRL_LOAD_TOC_RM";
1650   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1651   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1652   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1653   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1654   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1655   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1656   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1657   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1658   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1659   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1660   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1661     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1662   case PPCISD::ANDI_rec_1_EQ_BIT:
1663     return "PPCISD::ANDI_rec_1_EQ_BIT";
1664   case PPCISD::ANDI_rec_1_GT_BIT:
1665     return "PPCISD::ANDI_rec_1_GT_BIT";
1666   case PPCISD::VCMP:            return "PPCISD::VCMP";
1667   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1668   case PPCISD::LBRX:            return "PPCISD::LBRX";
1669   case PPCISD::STBRX:           return "PPCISD::STBRX";
1670   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1671   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1672   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1673   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1674   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1675   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1676   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1677   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1678   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1679   case PPCISD::ST_VSR_SCAL_INT:
1680                                 return "PPCISD::ST_VSR_SCAL_INT";
1681   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1682   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1683   case PPCISD::BDZ:             return "PPCISD::BDZ";
1684   case PPCISD::MFFS:            return "PPCISD::MFFS";
1685   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1686   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1687   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1688   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1689   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1690   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1691   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1692   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1693   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1694   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1695   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1696   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1697   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1698   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1699   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1700   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1701   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1702   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1703   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1704   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1705   case PPCISD::PADDI_DTPREL:
1706     return "PPCISD::PADDI_DTPREL";
1707   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1708   case PPCISD::SC:              return "PPCISD::SC";
1709   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1710   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1711   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1712   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1713   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1714   case PPCISD::VABSD:           return "PPCISD::VABSD";
1715   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1716   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1717   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1718   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1719   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1720   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1721   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1722   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1723     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1724   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1725     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1726   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1727   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1728   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1729   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1730   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1731   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1732   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1733   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1734   case PPCISD::STRICT_FADDRTZ:
1735     return "PPCISD::STRICT_FADDRTZ";
1736   case PPCISD::STRICT_FCTIDZ:
1737     return "PPCISD::STRICT_FCTIDZ";
1738   case PPCISD::STRICT_FCTIWZ:
1739     return "PPCISD::STRICT_FCTIWZ";
1740   case PPCISD::STRICT_FCTIDUZ:
1741     return "PPCISD::STRICT_FCTIDUZ";
1742   case PPCISD::STRICT_FCTIWUZ:
1743     return "PPCISD::STRICT_FCTIWUZ";
1744   case PPCISD::STRICT_FCFID:
1745     return "PPCISD::STRICT_FCFID";
1746   case PPCISD::STRICT_FCFIDU:
1747     return "PPCISD::STRICT_FCFIDU";
1748   case PPCISD::STRICT_FCFIDS:
1749     return "PPCISD::STRICT_FCFIDS";
1750   case PPCISD::STRICT_FCFIDUS:
1751     return "PPCISD::STRICT_FCFIDUS";
1752   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1753   }
1754   return nullptr;
1755 }
1756 
1757 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1758                                           EVT VT) const {
1759   if (!VT.isVector())
1760     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1761 
1762   return VT.changeVectorElementTypeToInteger();
1763 }
1764 
1765 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1766   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1767   return true;
1768 }
1769 
1770 //===----------------------------------------------------------------------===//
1771 // Node matching predicates, for use by the tblgen matching code.
1772 //===----------------------------------------------------------------------===//
1773 
1774 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1775 static bool isFloatingPointZero(SDValue Op) {
1776   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1777     return CFP->getValueAPF().isZero();
1778   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1779     // Maybe this has already been legalized into the constant pool?
1780     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1781       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1782         return CFP->getValueAPF().isZero();
1783   }
1784   return false;
1785 }
1786 
1787 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1788 /// true if Op is undef or if it matches the specified value.
1789 static bool isConstantOrUndef(int Op, int Val) {
1790   return Op < 0 || Op == Val;
1791 }
1792 
1793 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1794 /// VPKUHUM instruction.
1795 /// The ShuffleKind distinguishes between big-endian operations with
1796 /// two different inputs (0), either-endian operations with two identical
1797 /// inputs (1), and little-endian operations with two different inputs (2).
1798 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1799 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1800                                SelectionDAG &DAG) {
1801   bool IsLE = DAG.getDataLayout().isLittleEndian();
1802   if (ShuffleKind == 0) {
1803     if (IsLE)
1804       return false;
1805     for (unsigned i = 0; i != 16; ++i)
1806       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1807         return false;
1808   } else if (ShuffleKind == 2) {
1809     if (!IsLE)
1810       return false;
1811     for (unsigned i = 0; i != 16; ++i)
1812       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1813         return false;
1814   } else if (ShuffleKind == 1) {
1815     unsigned j = IsLE ? 0 : 1;
1816     for (unsigned i = 0; i != 8; ++i)
1817       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1818           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1819         return false;
1820   }
1821   return true;
1822 }
1823 
1824 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1825 /// VPKUWUM instruction.
1826 /// The ShuffleKind distinguishes between big-endian operations with
1827 /// two different inputs (0), either-endian operations with two identical
1828 /// inputs (1), and little-endian operations with two different inputs (2).
1829 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1830 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1831                                SelectionDAG &DAG) {
1832   bool IsLE = DAG.getDataLayout().isLittleEndian();
1833   if (ShuffleKind == 0) {
1834     if (IsLE)
1835       return false;
1836     for (unsigned i = 0; i != 16; i += 2)
1837       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1838           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1839         return false;
1840   } else if (ShuffleKind == 2) {
1841     if (!IsLE)
1842       return false;
1843     for (unsigned i = 0; i != 16; i += 2)
1844       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1845           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1846         return false;
1847   } else if (ShuffleKind == 1) {
1848     unsigned j = IsLE ? 0 : 2;
1849     for (unsigned i = 0; i != 8; i += 2)
1850       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1851           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1852           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1853           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1854         return false;
1855   }
1856   return true;
1857 }
1858 
1859 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1860 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1861 /// current subtarget.
1862 ///
1863 /// The ShuffleKind distinguishes between big-endian operations with
1864 /// two different inputs (0), either-endian operations with two identical
1865 /// inputs (1), and little-endian operations with two different inputs (2).
1866 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1867 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1868                                SelectionDAG &DAG) {
1869   const PPCSubtarget& Subtarget =
1870       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1871   if (!Subtarget.hasP8Vector())
1872     return false;
1873 
1874   bool IsLE = DAG.getDataLayout().isLittleEndian();
1875   if (ShuffleKind == 0) {
1876     if (IsLE)
1877       return false;
1878     for (unsigned i = 0; i != 16; i += 4)
1879       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1880           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1881           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1882           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1883         return false;
1884   } else if (ShuffleKind == 2) {
1885     if (!IsLE)
1886       return false;
1887     for (unsigned i = 0; i != 16; i += 4)
1888       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1889           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1890           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1891           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1892         return false;
1893   } else if (ShuffleKind == 1) {
1894     unsigned j = IsLE ? 0 : 4;
1895     for (unsigned i = 0; i != 8; i += 4)
1896       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1897           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1898           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1899           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1900           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1901           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1902           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1903           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1904         return false;
1905   }
1906   return true;
1907 }
1908 
1909 /// isVMerge - Common function, used to match vmrg* shuffles.
1910 ///
1911 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1912                      unsigned LHSStart, unsigned RHSStart) {
1913   if (N->getValueType(0) != MVT::v16i8)
1914     return false;
1915   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1916          "Unsupported merge size!");
1917 
1918   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1919     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1920       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1921                              LHSStart+j+i*UnitSize) ||
1922           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1923                              RHSStart+j+i*UnitSize))
1924         return false;
1925     }
1926   return true;
1927 }
1928 
1929 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1930 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1931 /// The ShuffleKind distinguishes between big-endian merges with two
1932 /// different inputs (0), either-endian merges with two identical inputs (1),
1933 /// and little-endian merges with two different inputs (2).  For the latter,
1934 /// the input operands are swapped (see PPCInstrAltivec.td).
1935 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1936                              unsigned ShuffleKind, SelectionDAG &DAG) {
1937   if (DAG.getDataLayout().isLittleEndian()) {
1938     if (ShuffleKind == 1) // unary
1939       return isVMerge(N, UnitSize, 0, 0);
1940     else if (ShuffleKind == 2) // swapped
1941       return isVMerge(N, UnitSize, 0, 16);
1942     else
1943       return false;
1944   } else {
1945     if (ShuffleKind == 1) // unary
1946       return isVMerge(N, UnitSize, 8, 8);
1947     else if (ShuffleKind == 0) // normal
1948       return isVMerge(N, UnitSize, 8, 24);
1949     else
1950       return false;
1951   }
1952 }
1953 
1954 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1955 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1956 /// The ShuffleKind distinguishes between big-endian merges with two
1957 /// different inputs (0), either-endian merges with two identical inputs (1),
1958 /// and little-endian merges with two different inputs (2).  For the latter,
1959 /// the input operands are swapped (see PPCInstrAltivec.td).
1960 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1961                              unsigned ShuffleKind, SelectionDAG &DAG) {
1962   if (DAG.getDataLayout().isLittleEndian()) {
1963     if (ShuffleKind == 1) // unary
1964       return isVMerge(N, UnitSize, 8, 8);
1965     else if (ShuffleKind == 2) // swapped
1966       return isVMerge(N, UnitSize, 8, 24);
1967     else
1968       return false;
1969   } else {
1970     if (ShuffleKind == 1) // unary
1971       return isVMerge(N, UnitSize, 0, 0);
1972     else if (ShuffleKind == 0) // normal
1973       return isVMerge(N, UnitSize, 0, 16);
1974     else
1975       return false;
1976   }
1977 }
1978 
1979 /**
1980  * Common function used to match vmrgew and vmrgow shuffles
1981  *
1982  * The indexOffset determines whether to look for even or odd words in
1983  * the shuffle mask. This is based on the of the endianness of the target
1984  * machine.
1985  *   - Little Endian:
1986  *     - Use offset of 0 to check for odd elements
1987  *     - Use offset of 4 to check for even elements
1988  *   - Big Endian:
1989  *     - Use offset of 0 to check for even elements
1990  *     - Use offset of 4 to check for odd elements
1991  * A detailed description of the vector element ordering for little endian and
1992  * big endian can be found at
1993  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1994  * Targeting your applications - what little endian and big endian IBM XL C/C++
1995  * compiler differences mean to you
1996  *
1997  * The mask to the shuffle vector instruction specifies the indices of the
1998  * elements from the two input vectors to place in the result. The elements are
1999  * numbered in array-access order, starting with the first vector. These vectors
2000  * are always of type v16i8, thus each vector will contain 16 elements of size
2001  * 8. More info on the shuffle vector can be found in the
2002  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2003  * Language Reference.
2004  *
2005  * The RHSStartValue indicates whether the same input vectors are used (unary)
2006  * or two different input vectors are used, based on the following:
2007  *   - If the instruction uses the same vector for both inputs, the range of the
2008  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2009  *     be 0.
2010  *   - If the instruction has two different vectors then the range of the
2011  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2012  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2013  *     to 31 specify elements in the second vector).
2014  *
2015  * \param[in] N The shuffle vector SD Node to analyze
2016  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2017  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2018  * vector to the shuffle_vector instruction
2019  * \return true iff this shuffle vector represents an even or odd word merge
2020  */
2021 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2022                      unsigned RHSStartValue) {
2023   if (N->getValueType(0) != MVT::v16i8)
2024     return false;
2025 
2026   for (unsigned i = 0; i < 2; ++i)
2027     for (unsigned j = 0; j < 4; ++j)
2028       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2029                              i*RHSStartValue+j+IndexOffset) ||
2030           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2031                              i*RHSStartValue+j+IndexOffset+8))
2032         return false;
2033   return true;
2034 }
2035 
2036 /**
2037  * Determine if the specified shuffle mask is suitable for the vmrgew or
2038  * vmrgow instructions.
2039  *
2040  * \param[in] N The shuffle vector SD Node to analyze
2041  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2042  * \param[in] ShuffleKind Identify the type of merge:
2043  *   - 0 = big-endian merge with two different inputs;
2044  *   - 1 = either-endian merge with two identical inputs;
2045  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2046  *     little-endian merges).
2047  * \param[in] DAG The current SelectionDAG
2048  * \return true iff this shuffle mask
2049  */
2050 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2051                               unsigned ShuffleKind, SelectionDAG &DAG) {
2052   if (DAG.getDataLayout().isLittleEndian()) {
2053     unsigned indexOffset = CheckEven ? 4 : 0;
2054     if (ShuffleKind == 1) // Unary
2055       return isVMerge(N, indexOffset, 0);
2056     else if (ShuffleKind == 2) // swapped
2057       return isVMerge(N, indexOffset, 16);
2058     else
2059       return false;
2060   }
2061   else {
2062     unsigned indexOffset = CheckEven ? 0 : 4;
2063     if (ShuffleKind == 1) // Unary
2064       return isVMerge(N, indexOffset, 0);
2065     else if (ShuffleKind == 0) // Normal
2066       return isVMerge(N, indexOffset, 16);
2067     else
2068       return false;
2069   }
2070   return false;
2071 }
2072 
2073 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2074 /// amount, otherwise return -1.
2075 /// The ShuffleKind distinguishes between big-endian operations with two
2076 /// different inputs (0), either-endian operations with two identical inputs
2077 /// (1), and little-endian operations with two different inputs (2).  For the
2078 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2079 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2080                              SelectionDAG &DAG) {
2081   if (N->getValueType(0) != MVT::v16i8)
2082     return -1;
2083 
2084   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2085 
2086   // Find the first non-undef value in the shuffle mask.
2087   unsigned i;
2088   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2089     /*search*/;
2090 
2091   if (i == 16) return -1;  // all undef.
2092 
2093   // Otherwise, check to see if the rest of the elements are consecutively
2094   // numbered from this value.
2095   unsigned ShiftAmt = SVOp->getMaskElt(i);
2096   if (ShiftAmt < i) return -1;
2097 
2098   ShiftAmt -= i;
2099   bool isLE = DAG.getDataLayout().isLittleEndian();
2100 
2101   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2102     // Check the rest of the elements to see if they are consecutive.
2103     for (++i; i != 16; ++i)
2104       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2105         return -1;
2106   } else if (ShuffleKind == 1) {
2107     // Check the rest of the elements to see if they are consecutive.
2108     for (++i; i != 16; ++i)
2109       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2110         return -1;
2111   } else
2112     return -1;
2113 
2114   if (isLE)
2115     ShiftAmt = 16 - ShiftAmt;
2116 
2117   return ShiftAmt;
2118 }
2119 
2120 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2121 /// specifies a splat of a single element that is suitable for input to
2122 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2123 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2124   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2125          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2126 
2127   // The consecutive indices need to specify an element, not part of two
2128   // different elements.  So abandon ship early if this isn't the case.
2129   if (N->getMaskElt(0) % EltSize != 0)
2130     return false;
2131 
2132   // This is a splat operation if each element of the permute is the same, and
2133   // if the value doesn't reference the second vector.
2134   unsigned ElementBase = N->getMaskElt(0);
2135 
2136   // FIXME: Handle UNDEF elements too!
2137   if (ElementBase >= 16)
2138     return false;
2139 
2140   // Check that the indices are consecutive, in the case of a multi-byte element
2141   // splatted with a v16i8 mask.
2142   for (unsigned i = 1; i != EltSize; ++i)
2143     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2144       return false;
2145 
2146   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2147     if (N->getMaskElt(i) < 0) continue;
2148     for (unsigned j = 0; j != EltSize; ++j)
2149       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2150         return false;
2151   }
2152   return true;
2153 }
2154 
2155 /// Check that the mask is shuffling N byte elements. Within each N byte
2156 /// element of the mask, the indices could be either in increasing or
2157 /// decreasing order as long as they are consecutive.
2158 /// \param[in] N the shuffle vector SD Node to analyze
2159 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2160 /// Word/DoubleWord/QuadWord).
2161 /// \param[in] StepLen the delta indices number among the N byte element, if
2162 /// the mask is in increasing/decreasing order then it is 1/-1.
2163 /// \return true iff the mask is shuffling N byte elements.
2164 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2165                                    int StepLen) {
2166   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2167          "Unexpected element width.");
2168   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2169 
2170   unsigned NumOfElem = 16 / Width;
2171   unsigned MaskVal[16]; //  Width is never greater than 16
2172   for (unsigned i = 0; i < NumOfElem; ++i) {
2173     MaskVal[0] = N->getMaskElt(i * Width);
2174     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2175       return false;
2176     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2177       return false;
2178     }
2179 
2180     for (unsigned int j = 1; j < Width; ++j) {
2181       MaskVal[j] = N->getMaskElt(i * Width + j);
2182       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2183         return false;
2184       }
2185     }
2186   }
2187 
2188   return true;
2189 }
2190 
2191 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2192                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2193   if (!isNByteElemShuffleMask(N, 4, 1))
2194     return false;
2195 
2196   // Now we look at mask elements 0,4,8,12
2197   unsigned M0 = N->getMaskElt(0) / 4;
2198   unsigned M1 = N->getMaskElt(4) / 4;
2199   unsigned M2 = N->getMaskElt(8) / 4;
2200   unsigned M3 = N->getMaskElt(12) / 4;
2201   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2202   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2203 
2204   // Below, let H and L be arbitrary elements of the shuffle mask
2205   // where H is in the range [4,7] and L is in the range [0,3].
2206   // H, 1, 2, 3 or L, 5, 6, 7
2207   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2208       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2209     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2210     InsertAtByte = IsLE ? 12 : 0;
2211     Swap = M0 < 4;
2212     return true;
2213   }
2214   // 0, H, 2, 3 or 4, L, 6, 7
2215   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2216       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2217     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2218     InsertAtByte = IsLE ? 8 : 4;
2219     Swap = M1 < 4;
2220     return true;
2221   }
2222   // 0, 1, H, 3 or 4, 5, L, 7
2223   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2224       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2225     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2226     InsertAtByte = IsLE ? 4 : 8;
2227     Swap = M2 < 4;
2228     return true;
2229   }
2230   // 0, 1, 2, H or 4, 5, 6, L
2231   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2232       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2233     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2234     InsertAtByte = IsLE ? 0 : 12;
2235     Swap = M3 < 4;
2236     return true;
2237   }
2238 
2239   // If both vector operands for the shuffle are the same vector, the mask will
2240   // contain only elements from the first one and the second one will be undef.
2241   if (N->getOperand(1).isUndef()) {
2242     ShiftElts = 0;
2243     Swap = true;
2244     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2245     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2246       InsertAtByte = IsLE ? 12 : 0;
2247       return true;
2248     }
2249     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2250       InsertAtByte = IsLE ? 8 : 4;
2251       return true;
2252     }
2253     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2254       InsertAtByte = IsLE ? 4 : 8;
2255       return true;
2256     }
2257     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2258       InsertAtByte = IsLE ? 0 : 12;
2259       return true;
2260     }
2261   }
2262 
2263   return false;
2264 }
2265 
2266 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2267                                bool &Swap, bool IsLE) {
2268   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2269   // Ensure each byte index of the word is consecutive.
2270   if (!isNByteElemShuffleMask(N, 4, 1))
2271     return false;
2272 
2273   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2274   unsigned M0 = N->getMaskElt(0) / 4;
2275   unsigned M1 = N->getMaskElt(4) / 4;
2276   unsigned M2 = N->getMaskElt(8) / 4;
2277   unsigned M3 = N->getMaskElt(12) / 4;
2278 
2279   // If both vector operands for the shuffle are the same vector, the mask will
2280   // contain only elements from the first one and the second one will be undef.
2281   if (N->getOperand(1).isUndef()) {
2282     assert(M0 < 4 && "Indexing into an undef vector?");
2283     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2284       return false;
2285 
2286     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2287     Swap = false;
2288     return true;
2289   }
2290 
2291   // Ensure each word index of the ShuffleVector Mask is consecutive.
2292   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2293     return false;
2294 
2295   if (IsLE) {
2296     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2297       // Input vectors don't need to be swapped if the leading element
2298       // of the result is one of the 3 left elements of the second vector
2299       // (or if there is no shift to be done at all).
2300       Swap = false;
2301       ShiftElts = (8 - M0) % 8;
2302     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2303       // Input vectors need to be swapped if the leading element
2304       // of the result is one of the 3 left elements of the first vector
2305       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2306       Swap = true;
2307       ShiftElts = (4 - M0) % 4;
2308     }
2309 
2310     return true;
2311   } else {                                          // BE
2312     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2313       // Input vectors don't need to be swapped if the leading element
2314       // of the result is one of the 4 elements of the first vector.
2315       Swap = false;
2316       ShiftElts = M0;
2317     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2318       // Input vectors need to be swapped if the leading element
2319       // of the result is one of the 4 elements of the right vector.
2320       Swap = true;
2321       ShiftElts = M0 - 4;
2322     }
2323 
2324     return true;
2325   }
2326 }
2327 
2328 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2329   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2330 
2331   if (!isNByteElemShuffleMask(N, Width, -1))
2332     return false;
2333 
2334   for (int i = 0; i < 16; i += Width)
2335     if (N->getMaskElt(i) != i + Width - 1)
2336       return false;
2337 
2338   return true;
2339 }
2340 
2341 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2342   return isXXBRShuffleMaskHelper(N, 2);
2343 }
2344 
2345 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2346   return isXXBRShuffleMaskHelper(N, 4);
2347 }
2348 
2349 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2350   return isXXBRShuffleMaskHelper(N, 8);
2351 }
2352 
2353 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2354   return isXXBRShuffleMaskHelper(N, 16);
2355 }
2356 
2357 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2358 /// if the inputs to the instruction should be swapped and set \p DM to the
2359 /// value for the immediate.
2360 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2361 /// AND element 0 of the result comes from the first input (LE) or second input
2362 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2363 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2364 /// mask.
2365 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2366                                bool &Swap, bool IsLE) {
2367   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2368 
2369   // Ensure each byte index of the double word is consecutive.
2370   if (!isNByteElemShuffleMask(N, 8, 1))
2371     return false;
2372 
2373   unsigned M0 = N->getMaskElt(0) / 8;
2374   unsigned M1 = N->getMaskElt(8) / 8;
2375   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2376 
2377   // If both vector operands for the shuffle are the same vector, the mask will
2378   // contain only elements from the first one and the second one will be undef.
2379   if (N->getOperand(1).isUndef()) {
2380     if ((M0 | M1) < 2) {
2381       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2382       Swap = false;
2383       return true;
2384     } else
2385       return false;
2386   }
2387 
2388   if (IsLE) {
2389     if (M0 > 1 && M1 < 2) {
2390       Swap = false;
2391     } else if (M0 < 2 && M1 > 1) {
2392       M0 = (M0 + 2) % 4;
2393       M1 = (M1 + 2) % 4;
2394       Swap = true;
2395     } else
2396       return false;
2397 
2398     // Note: if control flow comes here that means Swap is already set above
2399     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2400     return true;
2401   } else { // BE
2402     if (M0 < 2 && M1 > 1) {
2403       Swap = false;
2404     } else if (M0 > 1 && M1 < 2) {
2405       M0 = (M0 + 2) % 4;
2406       M1 = (M1 + 2) % 4;
2407       Swap = true;
2408     } else
2409       return false;
2410 
2411     // Note: if control flow comes here that means Swap is already set above
2412     DM = (M0 << 1) + (M1 & 1);
2413     return true;
2414   }
2415 }
2416 
2417 
2418 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2419 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2420 /// elements are counted from the left of the vector register).
2421 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2422                                          SelectionDAG &DAG) {
2423   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2424   assert(isSplatShuffleMask(SVOp, EltSize));
2425   if (DAG.getDataLayout().isLittleEndian())
2426     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2427   else
2428     return SVOp->getMaskElt(0) / EltSize;
2429 }
2430 
2431 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2432 /// by using a vspltis[bhw] instruction of the specified element size, return
2433 /// the constant being splatted.  The ByteSize field indicates the number of
2434 /// bytes of each element [124] -> [bhw].
2435 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2436   SDValue OpVal;
2437 
2438   // If ByteSize of the splat is bigger than the element size of the
2439   // build_vector, then we have a case where we are checking for a splat where
2440   // multiple elements of the buildvector are folded together into a single
2441   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2442   unsigned EltSize = 16/N->getNumOperands();
2443   if (EltSize < ByteSize) {
2444     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2445     SDValue UniquedVals[4];
2446     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2447 
2448     // See if all of the elements in the buildvector agree across.
2449     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2450       if (N->getOperand(i).isUndef()) continue;
2451       // If the element isn't a constant, bail fully out.
2452       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2453 
2454       if (!UniquedVals[i&(Multiple-1)].getNode())
2455         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2456       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2457         return SDValue();  // no match.
2458     }
2459 
2460     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2461     // either constant or undef values that are identical for each chunk.  See
2462     // if these chunks can form into a larger vspltis*.
2463 
2464     // Check to see if all of the leading entries are either 0 or -1.  If
2465     // neither, then this won't fit into the immediate field.
2466     bool LeadingZero = true;
2467     bool LeadingOnes = true;
2468     for (unsigned i = 0; i != Multiple-1; ++i) {
2469       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2470 
2471       LeadingZero &= isNullConstant(UniquedVals[i]);
2472       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2473     }
2474     // Finally, check the least significant entry.
2475     if (LeadingZero) {
2476       if (!UniquedVals[Multiple-1].getNode())
2477         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2478       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2479       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2480         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2481     }
2482     if (LeadingOnes) {
2483       if (!UniquedVals[Multiple-1].getNode())
2484         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2485       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2486       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2487         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2488     }
2489 
2490     return SDValue();
2491   }
2492 
2493   // Check to see if this buildvec has a single non-undef value in its elements.
2494   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2495     if (N->getOperand(i).isUndef()) continue;
2496     if (!OpVal.getNode())
2497       OpVal = N->getOperand(i);
2498     else if (OpVal != N->getOperand(i))
2499       return SDValue();
2500   }
2501 
2502   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2503 
2504   unsigned ValSizeInBytes = EltSize;
2505   uint64_t Value = 0;
2506   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2507     Value = CN->getZExtValue();
2508   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2509     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2510     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2511   }
2512 
2513   // If the splat value is larger than the element value, then we can never do
2514   // this splat.  The only case that we could fit the replicated bits into our
2515   // immediate field for would be zero, and we prefer to use vxor for it.
2516   if (ValSizeInBytes < ByteSize) return SDValue();
2517 
2518   // If the element value is larger than the splat value, check if it consists
2519   // of a repeated bit pattern of size ByteSize.
2520   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2521     return SDValue();
2522 
2523   // Properly sign extend the value.
2524   int MaskVal = SignExtend32(Value, ByteSize * 8);
2525 
2526   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2527   if (MaskVal == 0) return SDValue();
2528 
2529   // Finally, if this value fits in a 5 bit sext field, return it
2530   if (SignExtend32<5>(MaskVal) == MaskVal)
2531     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2532   return SDValue();
2533 }
2534 
2535 //===----------------------------------------------------------------------===//
2536 //  Addressing Mode Selection
2537 //===----------------------------------------------------------------------===//
2538 
2539 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2540 /// or 64-bit immediate, and if the value can be accurately represented as a
2541 /// sign extension from a 16-bit value.  If so, this returns true and the
2542 /// immediate.
2543 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2544   if (!isa<ConstantSDNode>(N))
2545     return false;
2546 
2547   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2548   if (N->getValueType(0) == MVT::i32)
2549     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2550   else
2551     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2552 }
2553 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2554   return isIntS16Immediate(Op.getNode(), Imm);
2555 }
2556 
2557 /// Used when computing address flags for selecting loads and stores.
2558 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2559 /// An OR of two provably disjoint values is equivalent to an ADD.
2560 /// Most PPC load/store instructions compute the effective address as a sum,
2561 /// so doing this conversion is useful.
2562 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2563   if (N.getOpcode() != ISD::OR)
2564     return false;
2565   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2566   if (!LHSKnown.Zero.getBoolValue())
2567     return false;
2568   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2569   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2570 }
2571 
2572 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2573 /// be represented as an indexed [r+r] operation.
2574 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2575                                                SDValue &Index,
2576                                                SelectionDAG &DAG) const {
2577   for (SDNode *U : N->uses()) {
2578     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2579       if (Memop->getMemoryVT() == MVT::f64) {
2580           Base = N.getOperand(0);
2581           Index = N.getOperand(1);
2582           return true;
2583       }
2584     }
2585   }
2586   return false;
2587 }
2588 
2589 /// isIntS34Immediate - This method tests if value of node given can be
2590 /// accurately represented as a sign extension from a 34-bit value.  If so,
2591 /// this returns true and the immediate.
2592 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2593   if (!isa<ConstantSDNode>(N))
2594     return false;
2595 
2596   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2597   return isInt<34>(Imm);
2598 }
2599 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2600   return isIntS34Immediate(Op.getNode(), Imm);
2601 }
2602 
2603 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2604 /// can be represented as an indexed [r+r] operation.  Returns false if it
2605 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2606 /// non-zero and N can be represented by a base register plus a signed 16-bit
2607 /// displacement, make a more precise judgement by checking (displacement % \p
2608 /// EncodingAlignment).
2609 bool PPCTargetLowering::SelectAddressRegReg(
2610     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2611     MaybeAlign EncodingAlignment) const {
2612   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2613   // a [pc+imm].
2614   if (SelectAddressPCRel(N, Base))
2615     return false;
2616 
2617   int16_t Imm = 0;
2618   if (N.getOpcode() == ISD::ADD) {
2619     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2620     // SPE load/store can only handle 8-bit offsets.
2621     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2622         return true;
2623     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2624         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2625       return false; // r+i
2626     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2627       return false;    // r+i
2628 
2629     Base = N.getOperand(0);
2630     Index = N.getOperand(1);
2631     return true;
2632   } else if (N.getOpcode() == ISD::OR) {
2633     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2634         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2635       return false; // r+i can fold it if we can.
2636 
2637     // If this is an or of disjoint bitfields, we can codegen this as an add
2638     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2639     // disjoint.
2640     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2641 
2642     if (LHSKnown.Zero.getBoolValue()) {
2643       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2644       // If all of the bits are known zero on the LHS or RHS, the add won't
2645       // carry.
2646       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2647         Base = N.getOperand(0);
2648         Index = N.getOperand(1);
2649         return true;
2650       }
2651     }
2652   }
2653 
2654   return false;
2655 }
2656 
2657 // If we happen to be doing an i64 load or store into a stack slot that has
2658 // less than a 4-byte alignment, then the frame-index elimination may need to
2659 // use an indexed load or store instruction (because the offset may not be a
2660 // multiple of 4). The extra register needed to hold the offset comes from the
2661 // register scavenger, and it is possible that the scavenger will need to use
2662 // an emergency spill slot. As a result, we need to make sure that a spill slot
2663 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2664 // stack slot.
2665 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2666   // FIXME: This does not handle the LWA case.
2667   if (VT != MVT::i64)
2668     return;
2669 
2670   // NOTE: We'll exclude negative FIs here, which come from argument
2671   // lowering, because there are no known test cases triggering this problem
2672   // using packed structures (or similar). We can remove this exclusion if
2673   // we find such a test case. The reason why this is so test-case driven is
2674   // because this entire 'fixup' is only to prevent crashes (from the
2675   // register scavenger) on not-really-valid inputs. For example, if we have:
2676   //   %a = alloca i1
2677   //   %b = bitcast i1* %a to i64*
2678   //   store i64* a, i64 b
2679   // then the store should really be marked as 'align 1', but is not. If it
2680   // were marked as 'align 1' then the indexed form would have been
2681   // instruction-selected initially, and the problem this 'fixup' is preventing
2682   // won't happen regardless.
2683   if (FrameIdx < 0)
2684     return;
2685 
2686   MachineFunction &MF = DAG.getMachineFunction();
2687   MachineFrameInfo &MFI = MF.getFrameInfo();
2688 
2689   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2690     return;
2691 
2692   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2693   FuncInfo->setHasNonRISpills();
2694 }
2695 
2696 /// Returns true if the address N can be represented by a base register plus
2697 /// a signed 16-bit displacement [r+imm], and if it is not better
2698 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2699 /// displacements that are multiples of that value.
2700 bool PPCTargetLowering::SelectAddressRegImm(
2701     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2702     MaybeAlign EncodingAlignment) const {
2703   // FIXME dl should come from parent load or store, not from address
2704   SDLoc dl(N);
2705 
2706   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2707   // a [pc+imm].
2708   if (SelectAddressPCRel(N, Base))
2709     return false;
2710 
2711   // If this can be more profitably realized as r+r, fail.
2712   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2713     return false;
2714 
2715   if (N.getOpcode() == ISD::ADD) {
2716     int16_t imm = 0;
2717     if (isIntS16Immediate(N.getOperand(1), imm) &&
2718         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2719       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2720       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2721         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2722         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2723       } else {
2724         Base = N.getOperand(0);
2725       }
2726       return true; // [r+i]
2727     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2728       // Match LOAD (ADD (X, Lo(G))).
2729       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2730              && "Cannot handle constant offsets yet!");
2731       Disp = N.getOperand(1).getOperand(0);  // The global address.
2732       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2733              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2734              Disp.getOpcode() == ISD::TargetConstantPool ||
2735              Disp.getOpcode() == ISD::TargetJumpTable);
2736       Base = N.getOperand(0);
2737       return true;  // [&g+r]
2738     }
2739   } else if (N.getOpcode() == ISD::OR) {
2740     int16_t imm = 0;
2741     if (isIntS16Immediate(N.getOperand(1), imm) &&
2742         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2743       // If this is an or of disjoint bitfields, we can codegen this as an add
2744       // (for better address arithmetic) if the LHS and RHS of the OR are
2745       // provably disjoint.
2746       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2747 
2748       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2749         // If all of the bits are known zero on the LHS or RHS, the add won't
2750         // carry.
2751         if (FrameIndexSDNode *FI =
2752               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2753           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2754           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2755         } else {
2756           Base = N.getOperand(0);
2757         }
2758         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2759         return true;
2760       }
2761     }
2762   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2763     // Loading from a constant address.
2764 
2765     // If this address fits entirely in a 16-bit sext immediate field, codegen
2766     // this as "d, 0"
2767     int16_t Imm;
2768     if (isIntS16Immediate(CN, Imm) &&
2769         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2770       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2771       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2772                              CN->getValueType(0));
2773       return true;
2774     }
2775 
2776     // Handle 32-bit sext immediates with LIS + addr mode.
2777     if ((CN->getValueType(0) == MVT::i32 ||
2778          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2779         (!EncodingAlignment ||
2780          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2781       int Addr = (int)CN->getZExtValue();
2782 
2783       // Otherwise, break this down into an LIS + disp.
2784       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2785 
2786       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2787                                    MVT::i32);
2788       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2789       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2790       return true;
2791     }
2792   }
2793 
2794   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2795   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2796     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2797     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2798   } else
2799     Base = N;
2800   return true;      // [r+0]
2801 }
2802 
2803 /// Similar to the 16-bit case but for instructions that take a 34-bit
2804 /// displacement field (prefixed loads/stores).
2805 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2806                                               SDValue &Base,
2807                                               SelectionDAG &DAG) const {
2808   // Only on 64-bit targets.
2809   if (N.getValueType() != MVT::i64)
2810     return false;
2811 
2812   SDLoc dl(N);
2813   int64_t Imm = 0;
2814 
2815   if (N.getOpcode() == ISD::ADD) {
2816     if (!isIntS34Immediate(N.getOperand(1), Imm))
2817       return false;
2818     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2819     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2820       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2821     else
2822       Base = N.getOperand(0);
2823     return true;
2824   }
2825 
2826   if (N.getOpcode() == ISD::OR) {
2827     if (!isIntS34Immediate(N.getOperand(1), Imm))
2828       return false;
2829     // If this is an or of disjoint bitfields, we can codegen this as an add
2830     // (for better address arithmetic) if the LHS and RHS of the OR are
2831     // provably disjoint.
2832     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2833     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2834       return false;
2835     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2836       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2837     else
2838       Base = N.getOperand(0);
2839     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2840     return true;
2841   }
2842 
2843   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2844     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2845     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2846     return true;
2847   }
2848 
2849   return false;
2850 }
2851 
2852 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2853 /// represented as an indexed [r+r] operation.
2854 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2855                                                 SDValue &Index,
2856                                                 SelectionDAG &DAG) const {
2857   // Check to see if we can easily represent this as an [r+r] address.  This
2858   // will fail if it thinks that the address is more profitably represented as
2859   // reg+imm, e.g. where imm = 0.
2860   if (SelectAddressRegReg(N, Base, Index, DAG))
2861     return true;
2862 
2863   // If the address is the result of an add, we will utilize the fact that the
2864   // address calculation includes an implicit add.  However, we can reduce
2865   // register pressure if we do not materialize a constant just for use as the
2866   // index register.  We only get rid of the add if it is not an add of a
2867   // value and a 16-bit signed constant and both have a single use.
2868   int16_t imm = 0;
2869   if (N.getOpcode() == ISD::ADD &&
2870       (!isIntS16Immediate(N.getOperand(1), imm) ||
2871        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2872     Base = N.getOperand(0);
2873     Index = N.getOperand(1);
2874     return true;
2875   }
2876 
2877   // Otherwise, do it the hard way, using R0 as the base register.
2878   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2879                          N.getValueType());
2880   Index = N;
2881   return true;
2882 }
2883 
2884 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2885   Ty *PCRelCand = dyn_cast<Ty>(N);
2886   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2887 }
2888 
2889 /// Returns true if this address is a PC Relative address.
2890 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2891 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2892 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2893   // This is a materialize PC Relative node. Always select this as PC Relative.
2894   Base = N;
2895   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2896     return true;
2897   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2898       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2899       isValidPCRelNode<JumpTableSDNode>(N) ||
2900       isValidPCRelNode<BlockAddressSDNode>(N))
2901     return true;
2902   return false;
2903 }
2904 
2905 /// Returns true if we should use a direct load into vector instruction
2906 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2907 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2908 
2909   // If there are any other uses other than scalar to vector, then we should
2910   // keep it as a scalar load -> direct move pattern to prevent multiple
2911   // loads.
2912   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2913   if (!LD)
2914     return false;
2915 
2916   EVT MemVT = LD->getMemoryVT();
2917   if (!MemVT.isSimple())
2918     return false;
2919   switch(MemVT.getSimpleVT().SimpleTy) {
2920   case MVT::i64:
2921     break;
2922   case MVT::i32:
2923     if (!ST.hasP8Vector())
2924       return false;
2925     break;
2926   case MVT::i16:
2927   case MVT::i8:
2928     if (!ST.hasP9Vector())
2929       return false;
2930     break;
2931   default:
2932     return false;
2933   }
2934 
2935   SDValue LoadedVal(N, 0);
2936   if (!LoadedVal.hasOneUse())
2937     return false;
2938 
2939   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2940        UI != UE; ++UI)
2941     if (UI.getUse().get().getResNo() == 0 &&
2942         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2943         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2944       return false;
2945 
2946   return true;
2947 }
2948 
2949 /// getPreIndexedAddressParts - returns true by value, base pointer and
2950 /// offset pointer and addressing mode by reference if the node's address
2951 /// can be legally represented as pre-indexed load / store address.
2952 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2953                                                   SDValue &Offset,
2954                                                   ISD::MemIndexedMode &AM,
2955                                                   SelectionDAG &DAG) const {
2956   if (DisablePPCPreinc) return false;
2957 
2958   bool isLoad = true;
2959   SDValue Ptr;
2960   EVT VT;
2961   unsigned Alignment;
2962   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2963     Ptr = LD->getBasePtr();
2964     VT = LD->getMemoryVT();
2965     Alignment = LD->getAlignment();
2966   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2967     Ptr = ST->getBasePtr();
2968     VT  = ST->getMemoryVT();
2969     Alignment = ST->getAlignment();
2970     isLoad = false;
2971   } else
2972     return false;
2973 
2974   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2975   // instructions because we can fold these into a more efficient instruction
2976   // instead, (such as LXSD).
2977   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2978     return false;
2979   }
2980 
2981   // PowerPC doesn't have preinc load/store instructions for vectors
2982   if (VT.isVector())
2983     return false;
2984 
2985   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2986     // Common code will reject creating a pre-inc form if the base pointer
2987     // is a frame index, or if N is a store and the base pointer is either
2988     // the same as or a predecessor of the value being stored.  Check for
2989     // those situations here, and try with swapped Base/Offset instead.
2990     bool Swap = false;
2991 
2992     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2993       Swap = true;
2994     else if (!isLoad) {
2995       SDValue Val = cast<StoreSDNode>(N)->getValue();
2996       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2997         Swap = true;
2998     }
2999 
3000     if (Swap)
3001       std::swap(Base, Offset);
3002 
3003     AM = ISD::PRE_INC;
3004     return true;
3005   }
3006 
3007   // LDU/STU can only handle immediates that are a multiple of 4.
3008   if (VT != MVT::i64) {
3009     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3010       return false;
3011   } else {
3012     // LDU/STU need an address with at least 4-byte alignment.
3013     if (Alignment < 4)
3014       return false;
3015 
3016     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3017       return false;
3018   }
3019 
3020   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3021     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3022     // sext i32 to i64 when addr mode is r+i.
3023     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3024         LD->getExtensionType() == ISD::SEXTLOAD &&
3025         isa<ConstantSDNode>(Offset))
3026       return false;
3027   }
3028 
3029   AM = ISD::PRE_INC;
3030   return true;
3031 }
3032 
3033 //===----------------------------------------------------------------------===//
3034 //  LowerOperation implementation
3035 //===----------------------------------------------------------------------===//
3036 
3037 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3038 /// and LoOpFlags to the target MO flags.
3039 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3040                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3041                                const GlobalValue *GV = nullptr) {
3042   HiOpFlags = PPCII::MO_HA;
3043   LoOpFlags = PPCII::MO_LO;
3044 
3045   // Don't use the pic base if not in PIC relocation model.
3046   if (IsPIC) {
3047     HiOpFlags |= PPCII::MO_PIC_FLAG;
3048     LoOpFlags |= PPCII::MO_PIC_FLAG;
3049   }
3050 }
3051 
3052 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3053                              SelectionDAG &DAG) {
3054   SDLoc DL(HiPart);
3055   EVT PtrVT = HiPart.getValueType();
3056   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3057 
3058   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3059   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3060 
3061   // With PIC, the first instruction is actually "GR+hi(&G)".
3062   if (isPIC)
3063     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3064                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3065 
3066   // Generate non-pic code that has direct accesses to the constant pool.
3067   // The address of the global is just (hi(&g)+lo(&g)).
3068   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3069 }
3070 
3071 static void setUsesTOCBasePtr(MachineFunction &MF) {
3072   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3073   FuncInfo->setUsesTOCBasePtr();
3074 }
3075 
3076 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3077   setUsesTOCBasePtr(DAG.getMachineFunction());
3078 }
3079 
3080 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3081                                        SDValue GA) const {
3082   const bool Is64Bit = Subtarget.isPPC64();
3083   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3084   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3085                         : Subtarget.isAIXABI()
3086                               ? DAG.getRegister(PPC::R2, VT)
3087                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3088   SDValue Ops[] = { GA, Reg };
3089   return DAG.getMemIntrinsicNode(
3090       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3091       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3092       MachineMemOperand::MOLoad);
3093 }
3094 
3095 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3096                                              SelectionDAG &DAG) const {
3097   EVT PtrVT = Op.getValueType();
3098   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3099   const Constant *C = CP->getConstVal();
3100 
3101   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3102   // The actual address of the GlobalValue is stored in the TOC.
3103   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3104     if (Subtarget.isUsingPCRelativeCalls()) {
3105       SDLoc DL(CP);
3106       EVT Ty = getPointerTy(DAG.getDataLayout());
3107       SDValue ConstPool = DAG.getTargetConstantPool(
3108           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3109       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3110     }
3111     setUsesTOCBasePtr(DAG);
3112     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3113     return getTOCEntry(DAG, SDLoc(CP), GA);
3114   }
3115 
3116   unsigned MOHiFlag, MOLoFlag;
3117   bool IsPIC = isPositionIndependent();
3118   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3119 
3120   if (IsPIC && Subtarget.isSVR4ABI()) {
3121     SDValue GA =
3122         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3123     return getTOCEntry(DAG, SDLoc(CP), GA);
3124   }
3125 
3126   SDValue CPIHi =
3127       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3128   SDValue CPILo =
3129       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3130   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3131 }
3132 
3133 // For 64-bit PowerPC, prefer the more compact relative encodings.
3134 // This trades 32 bits per jump table entry for one or two instructions
3135 // on the jump site.
3136 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3137   if (isJumpTableRelative())
3138     return MachineJumpTableInfo::EK_LabelDifference32;
3139 
3140   return TargetLowering::getJumpTableEncoding();
3141 }
3142 
3143 bool PPCTargetLowering::isJumpTableRelative() const {
3144   if (UseAbsoluteJumpTables)
3145     return false;
3146   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3147     return true;
3148   return TargetLowering::isJumpTableRelative();
3149 }
3150 
3151 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3152                                                     SelectionDAG &DAG) const {
3153   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3154     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3155 
3156   switch (getTargetMachine().getCodeModel()) {
3157   case CodeModel::Small:
3158   case CodeModel::Medium:
3159     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3160   default:
3161     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3162                        getPointerTy(DAG.getDataLayout()));
3163   }
3164 }
3165 
3166 const MCExpr *
3167 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3168                                                 unsigned JTI,
3169                                                 MCContext &Ctx) const {
3170   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3171     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3172 
3173   switch (getTargetMachine().getCodeModel()) {
3174   case CodeModel::Small:
3175   case CodeModel::Medium:
3176     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3177   default:
3178     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3179   }
3180 }
3181 
3182 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3183   EVT PtrVT = Op.getValueType();
3184   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3185 
3186   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3187   if (Subtarget.isUsingPCRelativeCalls()) {
3188     SDLoc DL(JT);
3189     EVT Ty = getPointerTy(DAG.getDataLayout());
3190     SDValue GA =
3191         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3192     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3193     return MatAddr;
3194   }
3195 
3196   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3197   // The actual address of the GlobalValue is stored in the TOC.
3198   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3199     setUsesTOCBasePtr(DAG);
3200     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3201     return getTOCEntry(DAG, SDLoc(JT), GA);
3202   }
3203 
3204   unsigned MOHiFlag, MOLoFlag;
3205   bool IsPIC = isPositionIndependent();
3206   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3207 
3208   if (IsPIC && Subtarget.isSVR4ABI()) {
3209     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3210                                         PPCII::MO_PIC_FLAG);
3211     return getTOCEntry(DAG, SDLoc(GA), GA);
3212   }
3213 
3214   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3215   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3216   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3217 }
3218 
3219 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3220                                              SelectionDAG &DAG) const {
3221   EVT PtrVT = Op.getValueType();
3222   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3223   const BlockAddress *BA = BASDN->getBlockAddress();
3224 
3225   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3226   if (Subtarget.isUsingPCRelativeCalls()) {
3227     SDLoc DL(BASDN);
3228     EVT Ty = getPointerTy(DAG.getDataLayout());
3229     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3230                                            PPCII::MO_PCREL_FLAG);
3231     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3232     return MatAddr;
3233   }
3234 
3235   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3236   // The actual BlockAddress is stored in the TOC.
3237   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3238     setUsesTOCBasePtr(DAG);
3239     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3240     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3241   }
3242 
3243   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3244   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3245     return getTOCEntry(
3246         DAG, SDLoc(BASDN),
3247         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3248 
3249   unsigned MOHiFlag, MOLoFlag;
3250   bool IsPIC = isPositionIndependent();
3251   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3252   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3253   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3254   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3255 }
3256 
3257 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3258                                               SelectionDAG &DAG) const {
3259   if (Subtarget.isAIXABI())
3260     return LowerGlobalTLSAddressAIX(Op, DAG);
3261 
3262   return LowerGlobalTLSAddressLinux(Op, DAG);
3263 }
3264 
3265 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3266                                                     SelectionDAG &DAG) const {
3267   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3268 
3269   if (DAG.getTarget().useEmulatedTLS())
3270     report_fatal_error("Emulated TLS is not yet supported on AIX");
3271 
3272   SDLoc dl(GA);
3273   const GlobalValue *GV = GA->getGlobal();
3274   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3275 
3276   // The general-dynamic model is the only access model supported for now, so
3277   // all the GlobalTLSAddress nodes are lowered with this model.
3278   // We need to generate two TOC entries, one for the variable offset, one for
3279   // the region handle. The global address for the TOC entry of the region
3280   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3281   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3282   SDValue VariableOffsetTGA =
3283       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3284   SDValue RegionHandleTGA =
3285       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3286   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3287   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3288   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3289                      RegionHandle);
3290 }
3291 
3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3293                                                       SelectionDAG &DAG) const {
3294   // FIXME: TLS addresses currently use medium model code sequences,
3295   // which is the most useful form.  Eventually support for small and
3296   // large models could be added if users need it, at the cost of
3297   // additional complexity.
3298   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3299   if (DAG.getTarget().useEmulatedTLS())
3300     return LowerToTLSEmulatedModel(GA, DAG);
3301 
3302   SDLoc dl(GA);
3303   const GlobalValue *GV = GA->getGlobal();
3304   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3305   bool is64bit = Subtarget.isPPC64();
3306   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3307   PICLevel::Level picLevel = M->getPICLevel();
3308 
3309   const TargetMachine &TM = getTargetMachine();
3310   TLSModel::Model Model = TM.getTLSModel(GV);
3311 
3312   if (Model == TLSModel::LocalExec) {
3313     if (Subtarget.isUsingPCRelativeCalls()) {
3314       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3315       SDValue TGA = DAG.getTargetGlobalAddress(
3316           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3317       SDValue MatAddr =
3318           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3319       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3320     }
3321 
3322     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3323                                                PPCII::MO_TPREL_HA);
3324     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3325                                                PPCII::MO_TPREL_LO);
3326     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3327                              : DAG.getRegister(PPC::R2, MVT::i32);
3328 
3329     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3330     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3331   }
3332 
3333   if (Model == TLSModel::InitialExec) {
3334     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3335     SDValue TGA = DAG.getTargetGlobalAddress(
3336         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3337     SDValue TGATLS = DAG.getTargetGlobalAddress(
3338         GV, dl, PtrVT, 0,
3339         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3340     SDValue TPOffset;
3341     if (IsPCRel) {
3342       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3343       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3344                              MachinePointerInfo());
3345     } else {
3346       SDValue GOTPtr;
3347       if (is64bit) {
3348         setUsesTOCBasePtr(DAG);
3349         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3350         GOTPtr =
3351             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3352       } else {
3353         if (!TM.isPositionIndependent())
3354           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3355         else if (picLevel == PICLevel::SmallPIC)
3356           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3357         else
3358           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3359       }
3360       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3361     }
3362     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3363   }
3364 
3365   if (Model == TLSModel::GeneralDynamic) {
3366     if (Subtarget.isUsingPCRelativeCalls()) {
3367       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3368                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3369       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3370     }
3371 
3372     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3373     SDValue GOTPtr;
3374     if (is64bit) {
3375       setUsesTOCBasePtr(DAG);
3376       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3377       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3378                                    GOTReg, TGA);
3379     } else {
3380       if (picLevel == PICLevel::SmallPIC)
3381         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3382       else
3383         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3384     }
3385     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3386                        GOTPtr, TGA, TGA);
3387   }
3388 
3389   if (Model == TLSModel::LocalDynamic) {
3390     if (Subtarget.isUsingPCRelativeCalls()) {
3391       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3392                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3393       SDValue MatPCRel =
3394           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3395       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3396     }
3397 
3398     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3399     SDValue GOTPtr;
3400     if (is64bit) {
3401       setUsesTOCBasePtr(DAG);
3402       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3403       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3404                            GOTReg, TGA);
3405     } else {
3406       if (picLevel == PICLevel::SmallPIC)
3407         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3408       else
3409         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3410     }
3411     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3412                                   PtrVT, GOTPtr, TGA, TGA);
3413     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3414                                       PtrVT, TLSAddr, TGA);
3415     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3416   }
3417 
3418   llvm_unreachable("Unknown TLS model!");
3419 }
3420 
3421 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3422                                               SelectionDAG &DAG) const {
3423   EVT PtrVT = Op.getValueType();
3424   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3425   SDLoc DL(GSDN);
3426   const GlobalValue *GV = GSDN->getGlobal();
3427 
3428   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3429   // The actual address of the GlobalValue is stored in the TOC.
3430   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3431     if (Subtarget.isUsingPCRelativeCalls()) {
3432       EVT Ty = getPointerTy(DAG.getDataLayout());
3433       if (isAccessedAsGotIndirect(Op)) {
3434         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3435                                                 PPCII::MO_PCREL_FLAG |
3436                                                     PPCII::MO_GOT_FLAG);
3437         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3438         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3439                                    MachinePointerInfo());
3440         return Load;
3441       } else {
3442         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3443                                                 PPCII::MO_PCREL_FLAG);
3444         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3445       }
3446     }
3447     setUsesTOCBasePtr(DAG);
3448     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3449     return getTOCEntry(DAG, DL, GA);
3450   }
3451 
3452   unsigned MOHiFlag, MOLoFlag;
3453   bool IsPIC = isPositionIndependent();
3454   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3455 
3456   if (IsPIC && Subtarget.isSVR4ABI()) {
3457     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3458                                             GSDN->getOffset(),
3459                                             PPCII::MO_PIC_FLAG);
3460     return getTOCEntry(DAG, DL, GA);
3461   }
3462 
3463   SDValue GAHi =
3464     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3465   SDValue GALo =
3466     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3467 
3468   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3469 }
3470 
3471 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3472   bool IsStrict = Op->isStrictFPOpcode();
3473   ISD::CondCode CC =
3474       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3475   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3476   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3477   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3478   EVT LHSVT = LHS.getValueType();
3479   SDLoc dl(Op);
3480 
3481   // Soften the setcc with libcall if it is fp128.
3482   if (LHSVT == MVT::f128) {
3483     assert(!Subtarget.hasP9Vector() &&
3484            "SETCC for f128 is already legal under Power9!");
3485     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3486                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3487     if (RHS.getNode())
3488       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3489                         DAG.getCondCode(CC));
3490     if (IsStrict)
3491       return DAG.getMergeValues({LHS, Chain}, dl);
3492     return LHS;
3493   }
3494 
3495   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3496 
3497   if (Op.getValueType() == MVT::v2i64) {
3498     // When the operands themselves are v2i64 values, we need to do something
3499     // special because VSX has no underlying comparison operations for these.
3500     if (LHS.getValueType() == MVT::v2i64) {
3501       // Equality can be handled by casting to the legal type for Altivec
3502       // comparisons, everything else needs to be expanded.
3503       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3504         return SDValue();
3505       SDValue SetCC32 = DAG.getSetCC(
3506           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3507           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3508       int ShuffV[] = {1, 0, 3, 2};
3509       SDValue Shuff =
3510           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3511       return DAG.getBitcast(
3512           MVT::v2i64, DAG.getNode(ISD::AND, dl, MVT::v4i32, Shuff, SetCC32));
3513     }
3514 
3515     // We handle most of these in the usual way.
3516     return Op;
3517   }
3518 
3519   // If we're comparing for equality to zero, expose the fact that this is
3520   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3521   // fold the new nodes.
3522   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3523     return V;
3524 
3525   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3526     // Leave comparisons against 0 and -1 alone for now, since they're usually
3527     // optimized.  FIXME: revisit this when we can custom lower all setcc
3528     // optimizations.
3529     if (C->isAllOnes() || C->isZero())
3530       return SDValue();
3531   }
3532 
3533   // If we have an integer seteq/setne, turn it into a compare against zero
3534   // by xor'ing the rhs with the lhs, which is faster than setting a
3535   // condition register, reading it back out, and masking the correct bit.  The
3536   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3537   // the result to other bit-twiddling opportunities.
3538   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3539     EVT VT = Op.getValueType();
3540     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3541     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3542   }
3543   return SDValue();
3544 }
3545 
3546 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3547   SDNode *Node = Op.getNode();
3548   EVT VT = Node->getValueType(0);
3549   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3550   SDValue InChain = Node->getOperand(0);
3551   SDValue VAListPtr = Node->getOperand(1);
3552   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3553   SDLoc dl(Node);
3554 
3555   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3556 
3557   // gpr_index
3558   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3559                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3560   InChain = GprIndex.getValue(1);
3561 
3562   if (VT == MVT::i64) {
3563     // Check if GprIndex is even
3564     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3565                                  DAG.getConstant(1, dl, MVT::i32));
3566     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3567                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3568     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3569                                           DAG.getConstant(1, dl, MVT::i32));
3570     // Align GprIndex to be even if it isn't
3571     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3572                            GprIndex);
3573   }
3574 
3575   // fpr index is 1 byte after gpr
3576   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3577                                DAG.getConstant(1, dl, MVT::i32));
3578 
3579   // fpr
3580   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3581                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3582   InChain = FprIndex.getValue(1);
3583 
3584   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3585                                        DAG.getConstant(8, dl, MVT::i32));
3586 
3587   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3588                                         DAG.getConstant(4, dl, MVT::i32));
3589 
3590   // areas
3591   SDValue OverflowArea =
3592       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3593   InChain = OverflowArea.getValue(1);
3594 
3595   SDValue RegSaveArea =
3596       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3597   InChain = RegSaveArea.getValue(1);
3598 
3599   // select overflow_area if index > 8
3600   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3601                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3602 
3603   // adjustment constant gpr_index * 4/8
3604   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3605                                     VT.isInteger() ? GprIndex : FprIndex,
3606                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3607                                                     MVT::i32));
3608 
3609   // OurReg = RegSaveArea + RegConstant
3610   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3611                                RegConstant);
3612 
3613   // Floating types are 32 bytes into RegSaveArea
3614   if (VT.isFloatingPoint())
3615     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3616                          DAG.getConstant(32, dl, MVT::i32));
3617 
3618   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3619   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3620                                    VT.isInteger() ? GprIndex : FprIndex,
3621                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3622                                                    MVT::i32));
3623 
3624   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3625                               VT.isInteger() ? VAListPtr : FprPtr,
3626                               MachinePointerInfo(SV), MVT::i8);
3627 
3628   // determine if we should load from reg_save_area or overflow_area
3629   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3630 
3631   // increase overflow_area by 4/8 if gpr/fpr > 8
3632   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3633                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3634                                           dl, MVT::i32));
3635 
3636   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3637                              OverflowAreaPlusN);
3638 
3639   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3640                               MachinePointerInfo(), MVT::i32);
3641 
3642   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3643 }
3644 
3645 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3646   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3647 
3648   // We have to copy the entire va_list struct:
3649   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3650   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3651                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3652                        false, true, false, MachinePointerInfo(),
3653                        MachinePointerInfo());
3654 }
3655 
3656 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3657                                                   SelectionDAG &DAG) const {
3658   if (Subtarget.isAIXABI())
3659     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3660 
3661   return Op.getOperand(0);
3662 }
3663 
3664 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3665   MachineFunction &MF = DAG.getMachineFunction();
3666   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3667 
3668   assert((Op.getOpcode() == ISD::INLINEASM ||
3669           Op.getOpcode() == ISD::INLINEASM_BR) &&
3670          "Expecting Inline ASM node.");
3671 
3672   // If an LR store is already known to be required then there is not point in
3673   // checking this ASM as well.
3674   if (MFI.isLRStoreRequired())
3675     return Op;
3676 
3677   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3678   // type MVT::Glue. We want to ignore this last operand if that is the case.
3679   unsigned NumOps = Op.getNumOperands();
3680   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3681     --NumOps;
3682 
3683   // Check all operands that may contain the LR.
3684   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3685     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3686     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3687     ++i; // Skip the ID value.
3688 
3689     switch (InlineAsm::getKind(Flags)) {
3690     default:
3691       llvm_unreachable("Bad flags!");
3692     case InlineAsm::Kind_RegUse:
3693     case InlineAsm::Kind_Imm:
3694     case InlineAsm::Kind_Mem:
3695       i += NumVals;
3696       break;
3697     case InlineAsm::Kind_Clobber:
3698     case InlineAsm::Kind_RegDef:
3699     case InlineAsm::Kind_RegDefEarlyClobber: {
3700       for (; NumVals; --NumVals, ++i) {
3701         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3702         if (Reg != PPC::LR && Reg != PPC::LR8)
3703           continue;
3704         MFI.setLRStoreRequired();
3705         return Op;
3706       }
3707       break;
3708     }
3709     }
3710   }
3711 
3712   return Op;
3713 }
3714 
3715 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3716                                                 SelectionDAG &DAG) const {
3717   if (Subtarget.isAIXABI())
3718     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3719 
3720   SDValue Chain = Op.getOperand(0);
3721   SDValue Trmp = Op.getOperand(1); // trampoline
3722   SDValue FPtr = Op.getOperand(2); // nested function
3723   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3724   SDLoc dl(Op);
3725 
3726   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3727   bool isPPC64 = (PtrVT == MVT::i64);
3728   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3729 
3730   TargetLowering::ArgListTy Args;
3731   TargetLowering::ArgListEntry Entry;
3732 
3733   Entry.Ty = IntPtrTy;
3734   Entry.Node = Trmp; Args.push_back(Entry);
3735 
3736   // TrampSize == (isPPC64 ? 48 : 40);
3737   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3738                                isPPC64 ? MVT::i64 : MVT::i32);
3739   Args.push_back(Entry);
3740 
3741   Entry.Node = FPtr; Args.push_back(Entry);
3742   Entry.Node = Nest; Args.push_back(Entry);
3743 
3744   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3745   TargetLowering::CallLoweringInfo CLI(DAG);
3746   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3747       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3748       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3749 
3750   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3751   return CallResult.second;
3752 }
3753 
3754 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3755   MachineFunction &MF = DAG.getMachineFunction();
3756   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3757   EVT PtrVT = getPointerTy(MF.getDataLayout());
3758 
3759   SDLoc dl(Op);
3760 
3761   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3762     // vastart just stores the address of the VarArgsFrameIndex slot into the
3763     // memory location argument.
3764     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3765     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3766     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3767                         MachinePointerInfo(SV));
3768   }
3769 
3770   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3771   // We suppose the given va_list is already allocated.
3772   //
3773   // typedef struct {
3774   //  char gpr;     /* index into the array of 8 GPRs
3775   //                 * stored in the register save area
3776   //                 * gpr=0 corresponds to r3,
3777   //                 * gpr=1 to r4, etc.
3778   //                 */
3779   //  char fpr;     /* index into the array of 8 FPRs
3780   //                 * stored in the register save area
3781   //                 * fpr=0 corresponds to f1,
3782   //                 * fpr=1 to f2, etc.
3783   //                 */
3784   //  char *overflow_arg_area;
3785   //                /* location on stack that holds
3786   //                 * the next overflow argument
3787   //                 */
3788   //  char *reg_save_area;
3789   //               /* where r3:r10 and f1:f8 (if saved)
3790   //                * are stored
3791   //                */
3792   // } va_list[1];
3793 
3794   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3795   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3796   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3797                                             PtrVT);
3798   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3799                                  PtrVT);
3800 
3801   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3802   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3803 
3804   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3805   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3806 
3807   uint64_t FPROffset = 1;
3808   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3809 
3810   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3811 
3812   // Store first byte : number of int regs
3813   SDValue firstStore =
3814       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3815                         MachinePointerInfo(SV), MVT::i8);
3816   uint64_t nextOffset = FPROffset;
3817   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3818                                   ConstFPROffset);
3819 
3820   // Store second byte : number of float regs
3821   SDValue secondStore =
3822       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3823                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3824   nextOffset += StackOffset;
3825   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3826 
3827   // Store second word : arguments given on stack
3828   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3829                                     MachinePointerInfo(SV, nextOffset));
3830   nextOffset += FrameOffset;
3831   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3832 
3833   // Store third word : arguments given in registers
3834   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3835                       MachinePointerInfo(SV, nextOffset));
3836 }
3837 
3838 /// FPR - The set of FP registers that should be allocated for arguments
3839 /// on Darwin and AIX.
3840 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3841                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3842                                 PPC::F11, PPC::F12, PPC::F13};
3843 
3844 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3845 /// the stack.
3846 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3847                                        unsigned PtrByteSize) {
3848   unsigned ArgSize = ArgVT.getStoreSize();
3849   if (Flags.isByVal())
3850     ArgSize = Flags.getByValSize();
3851 
3852   // Round up to multiples of the pointer size, except for array members,
3853   // which are always packed.
3854   if (!Flags.isInConsecutiveRegs())
3855     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3856 
3857   return ArgSize;
3858 }
3859 
3860 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3861 /// on the stack.
3862 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3863                                          ISD::ArgFlagsTy Flags,
3864                                          unsigned PtrByteSize) {
3865   Align Alignment(PtrByteSize);
3866 
3867   // Altivec parameters are padded to a 16 byte boundary.
3868   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3869       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3870       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3871       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3872     Alignment = Align(16);
3873 
3874   // ByVal parameters are aligned as requested.
3875   if (Flags.isByVal()) {
3876     auto BVAlign = Flags.getNonZeroByValAlign();
3877     if (BVAlign > PtrByteSize) {
3878       if (BVAlign.value() % PtrByteSize != 0)
3879         llvm_unreachable(
3880             "ByVal alignment is not a multiple of the pointer size");
3881 
3882       Alignment = BVAlign;
3883     }
3884   }
3885 
3886   // Array members are always packed to their original alignment.
3887   if (Flags.isInConsecutiveRegs()) {
3888     // If the array member was split into multiple registers, the first
3889     // needs to be aligned to the size of the full type.  (Except for
3890     // ppcf128, which is only aligned as its f64 components.)
3891     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3892       Alignment = Align(OrigVT.getStoreSize());
3893     else
3894       Alignment = Align(ArgVT.getStoreSize());
3895   }
3896 
3897   return Alignment;
3898 }
3899 
3900 /// CalculateStackSlotUsed - Return whether this argument will use its
3901 /// stack slot (instead of being passed in registers).  ArgOffset,
3902 /// AvailableFPRs, and AvailableVRs must hold the current argument
3903 /// position, and will be updated to account for this argument.
3904 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3905                                    unsigned PtrByteSize, unsigned LinkageSize,
3906                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3907                                    unsigned &AvailableFPRs,
3908                                    unsigned &AvailableVRs) {
3909   bool UseMemory = false;
3910 
3911   // Respect alignment of argument on the stack.
3912   Align Alignment =
3913       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3914   ArgOffset = alignTo(ArgOffset, Alignment);
3915   // If there's no space left in the argument save area, we must
3916   // use memory (this check also catches zero-sized arguments).
3917   if (ArgOffset >= LinkageSize + ParamAreaSize)
3918     UseMemory = true;
3919 
3920   // Allocate argument on the stack.
3921   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3922   if (Flags.isInConsecutiveRegsLast())
3923     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3924   // If we overran the argument save area, we must use memory
3925   // (this check catches arguments passed partially in memory)
3926   if (ArgOffset > LinkageSize + ParamAreaSize)
3927     UseMemory = true;
3928 
3929   // However, if the argument is actually passed in an FPR or a VR,
3930   // we don't use memory after all.
3931   if (!Flags.isByVal()) {
3932     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3933       if (AvailableFPRs > 0) {
3934         --AvailableFPRs;
3935         return false;
3936       }
3937     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3938         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3939         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3940         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3941       if (AvailableVRs > 0) {
3942         --AvailableVRs;
3943         return false;
3944       }
3945   }
3946 
3947   return UseMemory;
3948 }
3949 
3950 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3951 /// ensure minimum alignment required for target.
3952 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3953                                      unsigned NumBytes) {
3954   return alignTo(NumBytes, Lowering->getStackAlign());
3955 }
3956 
3957 SDValue PPCTargetLowering::LowerFormalArguments(
3958     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3959     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3960     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3961   if (Subtarget.isAIXABI())
3962     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3963                                     InVals);
3964   if (Subtarget.is64BitELFABI())
3965     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3966                                        InVals);
3967   assert(Subtarget.is32BitELFABI());
3968   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3969                                      InVals);
3970 }
3971 
3972 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3973     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3974     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3975     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3976 
3977   // 32-bit SVR4 ABI Stack Frame Layout:
3978   //              +-----------------------------------+
3979   //        +-->  |            Back chain             |
3980   //        |     +-----------------------------------+
3981   //        |     | Floating-point register save area |
3982   //        |     +-----------------------------------+
3983   //        |     |    General register save area     |
3984   //        |     +-----------------------------------+
3985   //        |     |          CR save word             |
3986   //        |     +-----------------------------------+
3987   //        |     |         VRSAVE save word          |
3988   //        |     +-----------------------------------+
3989   //        |     |         Alignment padding         |
3990   //        |     +-----------------------------------+
3991   //        |     |     Vector register save area     |
3992   //        |     +-----------------------------------+
3993   //        |     |       Local variable space        |
3994   //        |     +-----------------------------------+
3995   //        |     |        Parameter list area        |
3996   //        |     +-----------------------------------+
3997   //        |     |           LR save word            |
3998   //        |     +-----------------------------------+
3999   // SP-->  +---  |            Back chain             |
4000   //              +-----------------------------------+
4001   //
4002   // Specifications:
4003   //   System V Application Binary Interface PowerPC Processor Supplement
4004   //   AltiVec Technology Programming Interface Manual
4005 
4006   MachineFunction &MF = DAG.getMachineFunction();
4007   MachineFrameInfo &MFI = MF.getFrameInfo();
4008   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4009 
4010   EVT PtrVT = getPointerTy(MF.getDataLayout());
4011   // Potential tail calls could cause overwriting of argument stack slots.
4012   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4013                        (CallConv == CallingConv::Fast));
4014   const Align PtrAlign(4);
4015 
4016   // Assign locations to all of the incoming arguments.
4017   SmallVector<CCValAssign, 16> ArgLocs;
4018   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4019                  *DAG.getContext());
4020 
4021   // Reserve space for the linkage area on the stack.
4022   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4023   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4024   if (useSoftFloat())
4025     CCInfo.PreAnalyzeFormalArguments(Ins);
4026 
4027   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4028   CCInfo.clearWasPPCF128();
4029 
4030   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4031     CCValAssign &VA = ArgLocs[i];
4032 
4033     // Arguments stored in registers.
4034     if (VA.isRegLoc()) {
4035       const TargetRegisterClass *RC;
4036       EVT ValVT = VA.getValVT();
4037 
4038       switch (ValVT.getSimpleVT().SimpleTy) {
4039         default:
4040           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4041         case MVT::i1:
4042         case MVT::i32:
4043           RC = &PPC::GPRCRegClass;
4044           break;
4045         case MVT::f32:
4046           if (Subtarget.hasP8Vector())
4047             RC = &PPC::VSSRCRegClass;
4048           else if (Subtarget.hasSPE())
4049             RC = &PPC::GPRCRegClass;
4050           else
4051             RC = &PPC::F4RCRegClass;
4052           break;
4053         case MVT::f64:
4054           if (Subtarget.hasVSX())
4055             RC = &PPC::VSFRCRegClass;
4056           else if (Subtarget.hasSPE())
4057             // SPE passes doubles in GPR pairs.
4058             RC = &PPC::GPRCRegClass;
4059           else
4060             RC = &PPC::F8RCRegClass;
4061           break;
4062         case MVT::v16i8:
4063         case MVT::v8i16:
4064         case MVT::v4i32:
4065           RC = &PPC::VRRCRegClass;
4066           break;
4067         case MVT::v4f32:
4068           RC = &PPC::VRRCRegClass;
4069           break;
4070         case MVT::v2f64:
4071         case MVT::v2i64:
4072           RC = &PPC::VRRCRegClass;
4073           break;
4074       }
4075 
4076       SDValue ArgValue;
4077       // Transform the arguments stored in physical registers into
4078       // virtual ones.
4079       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4080         assert(i + 1 < e && "No second half of double precision argument");
4081         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4082         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4083         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4084         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4085         if (!Subtarget.isLittleEndian())
4086           std::swap (ArgValueLo, ArgValueHi);
4087         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4088                                ArgValueHi);
4089       } else {
4090         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4091         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4092                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4093         if (ValVT == MVT::i1)
4094           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4095       }
4096 
4097       InVals.push_back(ArgValue);
4098     } else {
4099       // Argument stored in memory.
4100       assert(VA.isMemLoc());
4101 
4102       // Get the extended size of the argument type in stack
4103       unsigned ArgSize = VA.getLocVT().getStoreSize();
4104       // Get the actual size of the argument type
4105       unsigned ObjSize = VA.getValVT().getStoreSize();
4106       unsigned ArgOffset = VA.getLocMemOffset();
4107       // Stack objects in PPC32 are right justified.
4108       ArgOffset += ArgSize - ObjSize;
4109       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4110 
4111       // Create load nodes to retrieve arguments from the stack.
4112       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4113       InVals.push_back(
4114           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4115     }
4116   }
4117 
4118   // Assign locations to all of the incoming aggregate by value arguments.
4119   // Aggregates passed by value are stored in the local variable space of the
4120   // caller's stack frame, right above the parameter list area.
4121   SmallVector<CCValAssign, 16> ByValArgLocs;
4122   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4123                       ByValArgLocs, *DAG.getContext());
4124 
4125   // Reserve stack space for the allocations in CCInfo.
4126   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4127 
4128   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4129 
4130   // Area that is at least reserved in the caller of this function.
4131   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4132   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4133 
4134   // Set the size that is at least reserved in caller of this function.  Tail
4135   // call optimized function's reserved stack space needs to be aligned so that
4136   // taking the difference between two stack areas will result in an aligned
4137   // stack.
4138   MinReservedArea =
4139       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4140   FuncInfo->setMinReservedArea(MinReservedArea);
4141 
4142   SmallVector<SDValue, 8> MemOps;
4143 
4144   // If the function takes variable number of arguments, make a frame index for
4145   // the start of the first vararg value... for expansion of llvm.va_start.
4146   if (isVarArg) {
4147     static const MCPhysReg GPArgRegs[] = {
4148       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4149       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4150     };
4151     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4152 
4153     static const MCPhysReg FPArgRegs[] = {
4154       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4155       PPC::F8
4156     };
4157     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4158 
4159     if (useSoftFloat() || hasSPE())
4160        NumFPArgRegs = 0;
4161 
4162     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4163     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4164 
4165     // Make room for NumGPArgRegs and NumFPArgRegs.
4166     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4167                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4168 
4169     FuncInfo->setVarArgsStackOffset(
4170       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4171                             CCInfo.getNextStackOffset(), true));
4172 
4173     FuncInfo->setVarArgsFrameIndex(
4174         MFI.CreateStackObject(Depth, Align(8), false));
4175     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4176 
4177     // The fixed integer arguments of a variadic function are stored to the
4178     // VarArgsFrameIndex on the stack so that they may be loaded by
4179     // dereferencing the result of va_next.
4180     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4181       // Get an existing live-in vreg, or add a new one.
4182       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4183       if (!VReg)
4184         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4185 
4186       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4187       SDValue Store =
4188           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4189       MemOps.push_back(Store);
4190       // Increment the address by four for the next argument to store
4191       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4192       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4193     }
4194 
4195     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4196     // is set.
4197     // The double arguments are stored to the VarArgsFrameIndex
4198     // on the stack.
4199     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4200       // Get an existing live-in vreg, or add a new one.
4201       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4202       if (!VReg)
4203         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4204 
4205       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4206       SDValue Store =
4207           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4208       MemOps.push_back(Store);
4209       // Increment the address by eight for the next argument to store
4210       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4211                                          PtrVT);
4212       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4213     }
4214   }
4215 
4216   if (!MemOps.empty())
4217     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4218 
4219   return Chain;
4220 }
4221 
4222 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4223 // value to MVT::i64 and then truncate to the correct register size.
4224 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4225                                              EVT ObjectVT, SelectionDAG &DAG,
4226                                              SDValue ArgVal,
4227                                              const SDLoc &dl) const {
4228   if (Flags.isSExt())
4229     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4230                          DAG.getValueType(ObjectVT));
4231   else if (Flags.isZExt())
4232     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4233                          DAG.getValueType(ObjectVT));
4234 
4235   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4236 }
4237 
4238 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4239     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4240     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4241     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4242   // TODO: add description of PPC stack frame format, or at least some docs.
4243   //
4244   bool isELFv2ABI = Subtarget.isELFv2ABI();
4245   bool isLittleEndian = Subtarget.isLittleEndian();
4246   MachineFunction &MF = DAG.getMachineFunction();
4247   MachineFrameInfo &MFI = MF.getFrameInfo();
4248   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4249 
4250   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4251          "fastcc not supported on varargs functions");
4252 
4253   EVT PtrVT = getPointerTy(MF.getDataLayout());
4254   // Potential tail calls could cause overwriting of argument stack slots.
4255   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4256                        (CallConv == CallingConv::Fast));
4257   unsigned PtrByteSize = 8;
4258   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4259 
4260   static const MCPhysReg GPR[] = {
4261     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4262     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4263   };
4264   static const MCPhysReg VR[] = {
4265     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4266     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4267   };
4268 
4269   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4270   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4271   const unsigned Num_VR_Regs  = array_lengthof(VR);
4272 
4273   // Do a first pass over the arguments to determine whether the ABI
4274   // guarantees that our caller has allocated the parameter save area
4275   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4276   // in the ELFv2 ABI, it is true if this is a vararg function or if
4277   // any parameter is located in a stack slot.
4278 
4279   bool HasParameterArea = !isELFv2ABI || isVarArg;
4280   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4281   unsigned NumBytes = LinkageSize;
4282   unsigned AvailableFPRs = Num_FPR_Regs;
4283   unsigned AvailableVRs = Num_VR_Regs;
4284   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4285     if (Ins[i].Flags.isNest())
4286       continue;
4287 
4288     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4289                                PtrByteSize, LinkageSize, ParamAreaSize,
4290                                NumBytes, AvailableFPRs, AvailableVRs))
4291       HasParameterArea = true;
4292   }
4293 
4294   // Add DAG nodes to load the arguments or copy them out of registers.  On
4295   // entry to a function on PPC, the arguments start after the linkage area,
4296   // although the first ones are often in registers.
4297 
4298   unsigned ArgOffset = LinkageSize;
4299   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4300   SmallVector<SDValue, 8> MemOps;
4301   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4302   unsigned CurArgIdx = 0;
4303   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4304     SDValue ArgVal;
4305     bool needsLoad = false;
4306     EVT ObjectVT = Ins[ArgNo].VT;
4307     EVT OrigVT = Ins[ArgNo].ArgVT;
4308     unsigned ObjSize = ObjectVT.getStoreSize();
4309     unsigned ArgSize = ObjSize;
4310     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4311     if (Ins[ArgNo].isOrigArg()) {
4312       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4313       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4314     }
4315     // We re-align the argument offset for each argument, except when using the
4316     // fast calling convention, when we need to make sure we do that only when
4317     // we'll actually use a stack slot.
4318     unsigned CurArgOffset;
4319     Align Alignment;
4320     auto ComputeArgOffset = [&]() {
4321       /* Respect alignment of argument on the stack.  */
4322       Alignment =
4323           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4324       ArgOffset = alignTo(ArgOffset, Alignment);
4325       CurArgOffset = ArgOffset;
4326     };
4327 
4328     if (CallConv != CallingConv::Fast) {
4329       ComputeArgOffset();
4330 
4331       /* Compute GPR index associated with argument offset.  */
4332       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4333       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4334     }
4335 
4336     // FIXME the codegen can be much improved in some cases.
4337     // We do not have to keep everything in memory.
4338     if (Flags.isByVal()) {
4339       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4340 
4341       if (CallConv == CallingConv::Fast)
4342         ComputeArgOffset();
4343 
4344       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4345       ObjSize = Flags.getByValSize();
4346       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4347       // Empty aggregate parameters do not take up registers.  Examples:
4348       //   struct { } a;
4349       //   union  { } b;
4350       //   int c[0];
4351       // etc.  However, we have to provide a place-holder in InVals, so
4352       // pretend we have an 8-byte item at the current address for that
4353       // purpose.
4354       if (!ObjSize) {
4355         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4356         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4357         InVals.push_back(FIN);
4358         continue;
4359       }
4360 
4361       // Create a stack object covering all stack doublewords occupied
4362       // by the argument.  If the argument is (fully or partially) on
4363       // the stack, or if the argument is fully in registers but the
4364       // caller has allocated the parameter save anyway, we can refer
4365       // directly to the caller's stack frame.  Otherwise, create a
4366       // local copy in our own frame.
4367       int FI;
4368       if (HasParameterArea ||
4369           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4370         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4371       else
4372         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4373       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4374 
4375       // Handle aggregates smaller than 8 bytes.
4376       if (ObjSize < PtrByteSize) {
4377         // The value of the object is its address, which differs from the
4378         // address of the enclosing doubleword on big-endian systems.
4379         SDValue Arg = FIN;
4380         if (!isLittleEndian) {
4381           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4382           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4383         }
4384         InVals.push_back(Arg);
4385 
4386         if (GPR_idx != Num_GPR_Regs) {
4387           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4388           FuncInfo->addLiveInAttr(VReg, Flags);
4389           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4390           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4391           SDValue Store =
4392               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4393                                 MachinePointerInfo(&*FuncArg), ObjType);
4394           MemOps.push_back(Store);
4395         }
4396         // Whether we copied from a register or not, advance the offset
4397         // into the parameter save area by a full doubleword.
4398         ArgOffset += PtrByteSize;
4399         continue;
4400       }
4401 
4402       // The value of the object is its address, which is the address of
4403       // its first stack doubleword.
4404       InVals.push_back(FIN);
4405 
4406       // Store whatever pieces of the object are in registers to memory.
4407       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4408         if (GPR_idx == Num_GPR_Regs)
4409           break;
4410 
4411         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4412         FuncInfo->addLiveInAttr(VReg, Flags);
4413         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4414         SDValue Addr = FIN;
4415         if (j) {
4416           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4417           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4418         }
4419         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4420                                      MachinePointerInfo(&*FuncArg, j));
4421         MemOps.push_back(Store);
4422         ++GPR_idx;
4423       }
4424       ArgOffset += ArgSize;
4425       continue;
4426     }
4427 
4428     switch (ObjectVT.getSimpleVT().SimpleTy) {
4429     default: llvm_unreachable("Unhandled argument type!");
4430     case MVT::i1:
4431     case MVT::i32:
4432     case MVT::i64:
4433       if (Flags.isNest()) {
4434         // The 'nest' parameter, if any, is passed in R11.
4435         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4436         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4437 
4438         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4439           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4440 
4441         break;
4442       }
4443 
4444       // These can be scalar arguments or elements of an integer array type
4445       // passed directly.  Clang may use those instead of "byval" aggregate
4446       // types to avoid forcing arguments to memory unnecessarily.
4447       if (GPR_idx != Num_GPR_Regs) {
4448         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4449         FuncInfo->addLiveInAttr(VReg, Flags);
4450         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4451 
4452         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4453           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4454           // value to MVT::i64 and then truncate to the correct register size.
4455           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4456       } else {
4457         if (CallConv == CallingConv::Fast)
4458           ComputeArgOffset();
4459 
4460         needsLoad = true;
4461         ArgSize = PtrByteSize;
4462       }
4463       if (CallConv != CallingConv::Fast || needsLoad)
4464         ArgOffset += 8;
4465       break;
4466 
4467     case MVT::f32:
4468     case MVT::f64:
4469       // These can be scalar arguments or elements of a float array type
4470       // passed directly.  The latter are used to implement ELFv2 homogenous
4471       // float aggregates.
4472       if (FPR_idx != Num_FPR_Regs) {
4473         unsigned VReg;
4474 
4475         if (ObjectVT == MVT::f32)
4476           VReg = MF.addLiveIn(FPR[FPR_idx],
4477                               Subtarget.hasP8Vector()
4478                                   ? &PPC::VSSRCRegClass
4479                                   : &PPC::F4RCRegClass);
4480         else
4481           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4482                                                 ? &PPC::VSFRCRegClass
4483                                                 : &PPC::F8RCRegClass);
4484 
4485         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4486         ++FPR_idx;
4487       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4488         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4489         // once we support fp <-> gpr moves.
4490 
4491         // This can only ever happen in the presence of f32 array types,
4492         // since otherwise we never run out of FPRs before running out
4493         // of GPRs.
4494         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4495         FuncInfo->addLiveInAttr(VReg, Flags);
4496         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4497 
4498         if (ObjectVT == MVT::f32) {
4499           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4500             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4501                                  DAG.getConstant(32, dl, MVT::i32));
4502           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4503         }
4504 
4505         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4506       } else {
4507         if (CallConv == CallingConv::Fast)
4508           ComputeArgOffset();
4509 
4510         needsLoad = true;
4511       }
4512 
4513       // When passing an array of floats, the array occupies consecutive
4514       // space in the argument area; only round up to the next doubleword
4515       // at the end of the array.  Otherwise, each float takes 8 bytes.
4516       if (CallConv != CallingConv::Fast || needsLoad) {
4517         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4518         ArgOffset += ArgSize;
4519         if (Flags.isInConsecutiveRegsLast())
4520           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4521       }
4522       break;
4523     case MVT::v4f32:
4524     case MVT::v4i32:
4525     case MVT::v8i16:
4526     case MVT::v16i8:
4527     case MVT::v2f64:
4528     case MVT::v2i64:
4529     case MVT::v1i128:
4530     case MVT::f128:
4531       // These can be scalar arguments or elements of a vector array type
4532       // passed directly.  The latter are used to implement ELFv2 homogenous
4533       // vector aggregates.
4534       if (VR_idx != Num_VR_Regs) {
4535         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4536         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4537         ++VR_idx;
4538       } else {
4539         if (CallConv == CallingConv::Fast)
4540           ComputeArgOffset();
4541         needsLoad = true;
4542       }
4543       if (CallConv != CallingConv::Fast || needsLoad)
4544         ArgOffset += 16;
4545       break;
4546     }
4547 
4548     // We need to load the argument to a virtual register if we determined
4549     // above that we ran out of physical registers of the appropriate type.
4550     if (needsLoad) {
4551       if (ObjSize < ArgSize && !isLittleEndian)
4552         CurArgOffset += ArgSize - ObjSize;
4553       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4554       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4555       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4556     }
4557 
4558     InVals.push_back(ArgVal);
4559   }
4560 
4561   // Area that is at least reserved in the caller of this function.
4562   unsigned MinReservedArea;
4563   if (HasParameterArea)
4564     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4565   else
4566     MinReservedArea = LinkageSize;
4567 
4568   // Set the size that is at least reserved in caller of this function.  Tail
4569   // call optimized functions' reserved stack space needs to be aligned so that
4570   // taking the difference between two stack areas will result in an aligned
4571   // stack.
4572   MinReservedArea =
4573       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4574   FuncInfo->setMinReservedArea(MinReservedArea);
4575 
4576   // If the function takes variable number of arguments, make a frame index for
4577   // the start of the first vararg value... for expansion of llvm.va_start.
4578   // On ELFv2ABI spec, it writes:
4579   // C programs that are intended to be *portable* across different compilers
4580   // and architectures must use the header file <stdarg.h> to deal with variable
4581   // argument lists.
4582   if (isVarArg && MFI.hasVAStart()) {
4583     int Depth = ArgOffset;
4584 
4585     FuncInfo->setVarArgsFrameIndex(
4586       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4587     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4588 
4589     // If this function is vararg, store any remaining integer argument regs
4590     // to their spots on the stack so that they may be loaded by dereferencing
4591     // the result of va_next.
4592     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4593          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4594       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4595       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4596       SDValue Store =
4597           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4598       MemOps.push_back(Store);
4599       // Increment the address by four for the next argument to store
4600       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4601       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4602     }
4603   }
4604 
4605   if (!MemOps.empty())
4606     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4607 
4608   return Chain;
4609 }
4610 
4611 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4612 /// adjusted to accommodate the arguments for the tailcall.
4613 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4614                                    unsigned ParamSize) {
4615 
4616   if (!isTailCall) return 0;
4617 
4618   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4619   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4620   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4621   // Remember only if the new adjustment is bigger.
4622   if (SPDiff < FI->getTailCallSPDelta())
4623     FI->setTailCallSPDelta(SPDiff);
4624 
4625   return SPDiff;
4626 }
4627 
4628 static bool isFunctionGlobalAddress(SDValue Callee);
4629 
4630 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4631                               const TargetMachine &TM) {
4632   // It does not make sense to call callsShareTOCBase() with a caller that
4633   // is PC Relative since PC Relative callers do not have a TOC.
4634 #ifndef NDEBUG
4635   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4636   assert(!STICaller->isUsingPCRelativeCalls() &&
4637          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4638 #endif
4639 
4640   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4641   // don't have enough information to determine if the caller and callee share
4642   // the same  TOC base, so we have to pessimistically assume they don't for
4643   // correctness.
4644   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4645   if (!G)
4646     return false;
4647 
4648   const GlobalValue *GV = G->getGlobal();
4649 
4650   // If the callee is preemptable, then the static linker will use a plt-stub
4651   // which saves the toc to the stack, and needs a nop after the call
4652   // instruction to convert to a toc-restore.
4653   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4654     return false;
4655 
4656   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4657   // We may need a TOC restore in the situation where the caller requires a
4658   // valid TOC but the callee is PC Relative and does not.
4659   const Function *F = dyn_cast<Function>(GV);
4660   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4661 
4662   // If we have an Alias we can try to get the function from there.
4663   if (Alias) {
4664     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4665     F = dyn_cast<Function>(GlobalObj);
4666   }
4667 
4668   // If we still have no valid function pointer we do not have enough
4669   // information to determine if the callee uses PC Relative calls so we must
4670   // assume that it does.
4671   if (!F)
4672     return false;
4673 
4674   // If the callee uses PC Relative we cannot guarantee that the callee won't
4675   // clobber the TOC of the caller and so we must assume that the two
4676   // functions do not share a TOC base.
4677   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4678   if (STICallee->isUsingPCRelativeCalls())
4679     return false;
4680 
4681   // If the GV is not a strong definition then we need to assume it can be
4682   // replaced by another function at link time. The function that replaces
4683   // it may not share the same TOC as the caller since the callee may be
4684   // replaced by a PC Relative version of the same function.
4685   if (!GV->isStrongDefinitionForLinker())
4686     return false;
4687 
4688   // The medium and large code models are expected to provide a sufficiently
4689   // large TOC to provide all data addressing needs of a module with a
4690   // single TOC.
4691   if (CodeModel::Medium == TM.getCodeModel() ||
4692       CodeModel::Large == TM.getCodeModel())
4693     return true;
4694 
4695   // Any explicitly-specified sections and section prefixes must also match.
4696   // Also, if we're using -ffunction-sections, then each function is always in
4697   // a different section (the same is true for COMDAT functions).
4698   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4699       GV->getSection() != Caller->getSection())
4700     return false;
4701   if (const auto *F = dyn_cast<Function>(GV)) {
4702     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4703       return false;
4704   }
4705 
4706   return true;
4707 }
4708 
4709 static bool
4710 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4711                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4712   assert(Subtarget.is64BitELFABI());
4713 
4714   const unsigned PtrByteSize = 8;
4715   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4716 
4717   static const MCPhysReg GPR[] = {
4718     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4719     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4720   };
4721   static const MCPhysReg VR[] = {
4722     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4723     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4724   };
4725 
4726   const unsigned NumGPRs = array_lengthof(GPR);
4727   const unsigned NumFPRs = 13;
4728   const unsigned NumVRs = array_lengthof(VR);
4729   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4730 
4731   unsigned NumBytes = LinkageSize;
4732   unsigned AvailableFPRs = NumFPRs;
4733   unsigned AvailableVRs = NumVRs;
4734 
4735   for (const ISD::OutputArg& Param : Outs) {
4736     if (Param.Flags.isNest()) continue;
4737 
4738     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4739                                LinkageSize, ParamAreaSize, NumBytes,
4740                                AvailableFPRs, AvailableVRs))
4741       return true;
4742   }
4743   return false;
4744 }
4745 
4746 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4747   if (CB.arg_size() != CallerFn->arg_size())
4748     return false;
4749 
4750   auto CalleeArgIter = CB.arg_begin();
4751   auto CalleeArgEnd = CB.arg_end();
4752   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4753 
4754   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4755     const Value* CalleeArg = *CalleeArgIter;
4756     const Value* CallerArg = &(*CallerArgIter);
4757     if (CalleeArg == CallerArg)
4758       continue;
4759 
4760     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4761     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4762     //      }
4763     // 1st argument of callee is undef and has the same type as caller.
4764     if (CalleeArg->getType() == CallerArg->getType() &&
4765         isa<UndefValue>(CalleeArg))
4766       continue;
4767 
4768     return false;
4769   }
4770 
4771   return true;
4772 }
4773 
4774 // Returns true if TCO is possible between the callers and callees
4775 // calling conventions.
4776 static bool
4777 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4778                                     CallingConv::ID CalleeCC) {
4779   // Tail calls are possible with fastcc and ccc.
4780   auto isTailCallableCC  = [] (CallingConv::ID CC){
4781       return  CC == CallingConv::C || CC == CallingConv::Fast;
4782   };
4783   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4784     return false;
4785 
4786   // We can safely tail call both fastcc and ccc callees from a c calling
4787   // convention caller. If the caller is fastcc, we may have less stack space
4788   // than a non-fastcc caller with the same signature so disable tail-calls in
4789   // that case.
4790   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4791 }
4792 
4793 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4794     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4795     const SmallVectorImpl<ISD::OutputArg> &Outs,
4796     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4797   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4798 
4799   if (DisableSCO && !TailCallOpt) return false;
4800 
4801   // Variadic argument functions are not supported.
4802   if (isVarArg) return false;
4803 
4804   auto &Caller = DAG.getMachineFunction().getFunction();
4805   // Check that the calling conventions are compatible for tco.
4806   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4807     return false;
4808 
4809   // Caller contains any byval parameter is not supported.
4810   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4811     return false;
4812 
4813   // Callee contains any byval parameter is not supported, too.
4814   // Note: This is a quick work around, because in some cases, e.g.
4815   // caller's stack size > callee's stack size, we are still able to apply
4816   // sibling call optimization. For example, gcc is able to do SCO for caller1
4817   // in the following example, but not for caller2.
4818   //   struct test {
4819   //     long int a;
4820   //     char ary[56];
4821   //   } gTest;
4822   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4823   //     b->a = v.a;
4824   //     return 0;
4825   //   }
4826   //   void caller1(struct test a, struct test c, struct test *b) {
4827   //     callee(gTest, b); }
4828   //   void caller2(struct test *b) { callee(gTest, b); }
4829   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4830     return false;
4831 
4832   // If callee and caller use different calling conventions, we cannot pass
4833   // parameters on stack since offsets for the parameter area may be different.
4834   if (Caller.getCallingConv() != CalleeCC &&
4835       needStackSlotPassParameters(Subtarget, Outs))
4836     return false;
4837 
4838   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4839   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4840   // callee potentially have different TOC bases then we cannot tail call since
4841   // we need to restore the TOC pointer after the call.
4842   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4843   // We cannot guarantee this for indirect calls or calls to external functions.
4844   // When PC-Relative addressing is used, the concept of the TOC is no longer
4845   // applicable so this check is not required.
4846   // Check first for indirect calls.
4847   if (!Subtarget.isUsingPCRelativeCalls() &&
4848       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4849     return false;
4850 
4851   // Check if we share the TOC base.
4852   if (!Subtarget.isUsingPCRelativeCalls() &&
4853       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4854     return false;
4855 
4856   // TCO allows altering callee ABI, so we don't have to check further.
4857   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4858     return true;
4859 
4860   if (DisableSCO) return false;
4861 
4862   // If callee use the same argument list that caller is using, then we can
4863   // apply SCO on this case. If it is not, then we need to check if callee needs
4864   // stack for passing arguments.
4865   // PC Relative tail calls may not have a CallBase.
4866   // If there is no CallBase we cannot verify if we have the same argument
4867   // list so assume that we don't have the same argument list.
4868   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4869       needStackSlotPassParameters(Subtarget, Outs))
4870     return false;
4871   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4872     return false;
4873 
4874   return true;
4875 }
4876 
4877 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4878 /// for tail call optimization. Targets which want to do tail call
4879 /// optimization should implement this function.
4880 bool
4881 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4882                                                      CallingConv::ID CalleeCC,
4883                                                      bool isVarArg,
4884                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4885                                                      SelectionDAG& DAG) const {
4886   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4887     return false;
4888 
4889   // Variable argument functions are not supported.
4890   if (isVarArg)
4891     return false;
4892 
4893   MachineFunction &MF = DAG.getMachineFunction();
4894   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4895   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4896     // Functions containing by val parameters are not supported.
4897     for (unsigned i = 0; i != Ins.size(); i++) {
4898        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4899        if (Flags.isByVal()) return false;
4900     }
4901 
4902     // Non-PIC/GOT tail calls are supported.
4903     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4904       return true;
4905 
4906     // At the moment we can only do local tail calls (in same module, hidden
4907     // or protected) if we are generating PIC.
4908     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4909       return G->getGlobal()->hasHiddenVisibility()
4910           || G->getGlobal()->hasProtectedVisibility();
4911   }
4912 
4913   return false;
4914 }
4915 
4916 /// isCallCompatibleAddress - Return the immediate to use if the specified
4917 /// 32-bit value is representable in the immediate field of a BxA instruction.
4918 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4919   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4920   if (!C) return nullptr;
4921 
4922   int Addr = C->getZExtValue();
4923   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4924       SignExtend32<26>(Addr) != Addr)
4925     return nullptr;  // Top 6 bits have to be sext of immediate.
4926 
4927   return DAG
4928       .getConstant(
4929           (int)C->getZExtValue() >> 2, SDLoc(Op),
4930           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4931       .getNode();
4932 }
4933 
4934 namespace {
4935 
4936 struct TailCallArgumentInfo {
4937   SDValue Arg;
4938   SDValue FrameIdxOp;
4939   int FrameIdx = 0;
4940 
4941   TailCallArgumentInfo() = default;
4942 };
4943 
4944 } // end anonymous namespace
4945 
4946 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4947 static void StoreTailCallArgumentsToStackSlot(
4948     SelectionDAG &DAG, SDValue Chain,
4949     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4950     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4951   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4952     SDValue Arg = TailCallArgs[i].Arg;
4953     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4954     int FI = TailCallArgs[i].FrameIdx;
4955     // Store relative to framepointer.
4956     MemOpChains.push_back(DAG.getStore(
4957         Chain, dl, Arg, FIN,
4958         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4959   }
4960 }
4961 
4962 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4963 /// the appropriate stack slot for the tail call optimized function call.
4964 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4965                                              SDValue OldRetAddr, SDValue OldFP,
4966                                              int SPDiff, const SDLoc &dl) {
4967   if (SPDiff) {
4968     // Calculate the new stack slot for the return address.
4969     MachineFunction &MF = DAG.getMachineFunction();
4970     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4971     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4972     bool isPPC64 = Subtarget.isPPC64();
4973     int SlotSize = isPPC64 ? 8 : 4;
4974     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4975     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4976                                                          NewRetAddrLoc, true);
4977     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4978     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4979     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4980                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4981   }
4982   return Chain;
4983 }
4984 
4985 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4986 /// the position of the argument.
4987 static void
4988 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4989                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4990                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4991   int Offset = ArgOffset + SPDiff;
4992   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4993   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4994   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4995   SDValue FIN = DAG.getFrameIndex(FI, VT);
4996   TailCallArgumentInfo Info;
4997   Info.Arg = Arg;
4998   Info.FrameIdxOp = FIN;
4999   Info.FrameIdx = FI;
5000   TailCallArguments.push_back(Info);
5001 }
5002 
5003 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5004 /// stack slot. Returns the chain as result and the loaded frame pointers in
5005 /// LROpOut/FPOpout. Used when tail calling.
5006 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5007     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5008     SDValue &FPOpOut, const SDLoc &dl) const {
5009   if (SPDiff) {
5010     // Load the LR and FP stack slot for later adjusting.
5011     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5012     LROpOut = getReturnAddrFrameIndex(DAG);
5013     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5014     Chain = SDValue(LROpOut.getNode(), 1);
5015   }
5016   return Chain;
5017 }
5018 
5019 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5020 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5021 /// specified by the specific parameter attribute. The copy will be passed as
5022 /// a byval function parameter.
5023 /// Sometimes what we are copying is the end of a larger object, the part that
5024 /// does not fit in registers.
5025 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5026                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5027                                          SelectionDAG &DAG, const SDLoc &dl) {
5028   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5029   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5030                        Flags.getNonZeroByValAlign(), false, false, false,
5031                        MachinePointerInfo(), MachinePointerInfo());
5032 }
5033 
5034 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5035 /// tail calls.
5036 static void LowerMemOpCallTo(
5037     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5038     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5039     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5040     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5041   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5042   if (!isTailCall) {
5043     if (isVector) {
5044       SDValue StackPtr;
5045       if (isPPC64)
5046         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5047       else
5048         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5050                            DAG.getConstant(ArgOffset, dl, PtrVT));
5051     }
5052     MemOpChains.push_back(
5053         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5054     // Calculate and remember argument location.
5055   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5056                                   TailCallArguments);
5057 }
5058 
5059 static void
5060 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5061                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5062                 SDValue FPOp,
5063                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5064   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5065   // might overwrite each other in case of tail call optimization.
5066   SmallVector<SDValue, 8> MemOpChains2;
5067   // Do not flag preceding copytoreg stuff together with the following stuff.
5068   InFlag = SDValue();
5069   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5070                                     MemOpChains2, dl);
5071   if (!MemOpChains2.empty())
5072     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5073 
5074   // Store the return address to the appropriate stack slot.
5075   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5076 
5077   // Emit callseq_end just before tailcall node.
5078   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5079                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5080   InFlag = Chain.getValue(1);
5081 }
5082 
5083 // Is this global address that of a function that can be called by name? (as
5084 // opposed to something that must hold a descriptor for an indirect call).
5085 static bool isFunctionGlobalAddress(SDValue Callee) {
5086   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5087     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5088         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5089       return false;
5090 
5091     return G->getGlobal()->getValueType()->isFunctionTy();
5092   }
5093 
5094   return false;
5095 }
5096 
5097 SDValue PPCTargetLowering::LowerCallResult(
5098     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5099     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5100     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5101   SmallVector<CCValAssign, 16> RVLocs;
5102   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5103                     *DAG.getContext());
5104 
5105   CCRetInfo.AnalyzeCallResult(
5106       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5107                ? RetCC_PPC_Cold
5108                : RetCC_PPC);
5109 
5110   // Copy all of the result registers out of their specified physreg.
5111   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5112     CCValAssign &VA = RVLocs[i];
5113     assert(VA.isRegLoc() && "Can only return in registers!");
5114 
5115     SDValue Val;
5116 
5117     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5118       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5119                                       InFlag);
5120       Chain = Lo.getValue(1);
5121       InFlag = Lo.getValue(2);
5122       VA = RVLocs[++i]; // skip ahead to next loc
5123       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5124                                       InFlag);
5125       Chain = Hi.getValue(1);
5126       InFlag = Hi.getValue(2);
5127       if (!Subtarget.isLittleEndian())
5128         std::swap (Lo, Hi);
5129       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5130     } else {
5131       Val = DAG.getCopyFromReg(Chain, dl,
5132                                VA.getLocReg(), VA.getLocVT(), InFlag);
5133       Chain = Val.getValue(1);
5134       InFlag = Val.getValue(2);
5135     }
5136 
5137     switch (VA.getLocInfo()) {
5138     default: llvm_unreachable("Unknown loc info!");
5139     case CCValAssign::Full: break;
5140     case CCValAssign::AExt:
5141       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5142       break;
5143     case CCValAssign::ZExt:
5144       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5145                         DAG.getValueType(VA.getValVT()));
5146       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5147       break;
5148     case CCValAssign::SExt:
5149       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5150                         DAG.getValueType(VA.getValVT()));
5151       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5152       break;
5153     }
5154 
5155     InVals.push_back(Val);
5156   }
5157 
5158   return Chain;
5159 }
5160 
5161 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5162                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5163   // PatchPoint calls are not indirect.
5164   if (isPatchPoint)
5165     return false;
5166 
5167   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5168     return false;
5169 
5170   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5171   // becuase the immediate function pointer points to a descriptor instead of
5172   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5173   // pointer immediate points to the global entry point, while the BLA would
5174   // need to jump to the local entry point (see rL211174).
5175   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5176       isBLACompatibleAddress(Callee, DAG))
5177     return false;
5178 
5179   return true;
5180 }
5181 
5182 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5183 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5184   return Subtarget.isAIXABI() ||
5185          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5186 }
5187 
5188 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5189                               const Function &Caller, const SDValue &Callee,
5190                               const PPCSubtarget &Subtarget,
5191                               const TargetMachine &TM,
5192                               bool IsStrictFPCall = false) {
5193   if (CFlags.IsTailCall)
5194     return PPCISD::TC_RETURN;
5195 
5196   unsigned RetOpc = 0;
5197   // This is a call through a function pointer.
5198   if (CFlags.IsIndirect) {
5199     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5200     // indirect calls. The save of the caller's TOC pointer to the stack will be
5201     // inserted into the DAG as part of call lowering. The restore of the TOC
5202     // pointer is modeled by using a pseudo instruction for the call opcode that
5203     // represents the 2 instruction sequence of an indirect branch and link,
5204     // immediately followed by a load of the TOC pointer from the the stack save
5205     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5206     // as it is not saved or used.
5207     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5208                                                  : PPCISD::BCTRL;
5209   } else if (Subtarget.isUsingPCRelativeCalls()) {
5210     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5211     RetOpc = PPCISD::CALL_NOTOC;
5212   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5213     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5214     // immediately following the call instruction if the caller and callee may
5215     // have different TOC bases. At link time if the linker determines the calls
5216     // may not share a TOC base, the call is redirected to a trampoline inserted
5217     // by the linker. The trampoline will (among other things) save the callers
5218     // TOC pointer at an ABI designated offset in the linkage area and the
5219     // linker will rewrite the nop to be a load of the TOC pointer from the
5220     // linkage area into gpr2.
5221     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5222                                                     : PPCISD::CALL_NOP;
5223   else
5224     RetOpc = PPCISD::CALL;
5225   if (IsStrictFPCall) {
5226     switch (RetOpc) {
5227     default:
5228       llvm_unreachable("Unknown call opcode");
5229     case PPCISD::BCTRL_LOAD_TOC:
5230       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5231       break;
5232     case PPCISD::BCTRL:
5233       RetOpc = PPCISD::BCTRL_RM;
5234       break;
5235     case PPCISD::CALL_NOTOC:
5236       RetOpc = PPCISD::CALL_NOTOC_RM;
5237       break;
5238     case PPCISD::CALL:
5239       RetOpc = PPCISD::CALL_RM;
5240       break;
5241     case PPCISD::CALL_NOP:
5242       RetOpc = PPCISD::CALL_NOP_RM;
5243       break;
5244     }
5245   }
5246   return RetOpc;
5247 }
5248 
5249 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5250                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5251   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5252     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5253       return SDValue(Dest, 0);
5254 
5255   // Returns true if the callee is local, and false otherwise.
5256   auto isLocalCallee = [&]() {
5257     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5258     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5259     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5260 
5261     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5262            !isa_and_nonnull<GlobalIFunc>(GV);
5263   };
5264 
5265   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5266   // a static relocation model causes some versions of GNU LD (2.17.50, at
5267   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5268   // built with secure-PLT.
5269   bool UsePlt =
5270       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5271       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5272 
5273   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5274     const TargetMachine &TM = Subtarget.getTargetMachine();
5275     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5276     MCSymbolXCOFF *S =
5277         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5278 
5279     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5280     return DAG.getMCSymbol(S, PtrVT);
5281   };
5282 
5283   if (isFunctionGlobalAddress(Callee)) {
5284     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5285 
5286     if (Subtarget.isAIXABI()) {
5287       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5288       return getAIXFuncEntryPointSymbolSDNode(GV);
5289     }
5290     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5291                                       UsePlt ? PPCII::MO_PLT : 0);
5292   }
5293 
5294   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5295     const char *SymName = S->getSymbol();
5296     if (Subtarget.isAIXABI()) {
5297       // If there exists a user-declared function whose name is the same as the
5298       // ExternalSymbol's, then we pick up the user-declared version.
5299       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5300       if (const Function *F =
5301               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5302         return getAIXFuncEntryPointSymbolSDNode(F);
5303 
5304       // On AIX, direct function calls reference the symbol for the function's
5305       // entry point, which is named by prepending a "." before the function's
5306       // C-linkage name. A Qualname is returned here because an external
5307       // function entry point is a csect with XTY_ER property.
5308       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5309         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5310         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5311             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5312             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5313         return Sec->getQualNameSymbol();
5314       };
5315 
5316       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5317     }
5318     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5319                                        UsePlt ? PPCII::MO_PLT : 0);
5320   }
5321 
5322   // No transformation needed.
5323   assert(Callee.getNode() && "What no callee?");
5324   return Callee;
5325 }
5326 
5327 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5328   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5329          "Expected a CALLSEQ_STARTSDNode.");
5330 
5331   // The last operand is the chain, except when the node has glue. If the node
5332   // has glue, then the last operand is the glue, and the chain is the second
5333   // last operand.
5334   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5335   if (LastValue.getValueType() != MVT::Glue)
5336     return LastValue;
5337 
5338   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5339 }
5340 
5341 // Creates the node that moves a functions address into the count register
5342 // to prepare for an indirect call instruction.
5343 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5344                                 SDValue &Glue, SDValue &Chain,
5345                                 const SDLoc &dl) {
5346   SDValue MTCTROps[] = {Chain, Callee, Glue};
5347   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5348   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5349                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5350   // The glue is the second value produced.
5351   Glue = Chain.getValue(1);
5352 }
5353 
5354 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5355                                           SDValue &Glue, SDValue &Chain,
5356                                           SDValue CallSeqStart,
5357                                           const CallBase *CB, const SDLoc &dl,
5358                                           bool hasNest,
5359                                           const PPCSubtarget &Subtarget) {
5360   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5361   // entry point, but to the function descriptor (the function entry point
5362   // address is part of the function descriptor though).
5363   // The function descriptor is a three doubleword structure with the
5364   // following fields: function entry point, TOC base address and
5365   // environment pointer.
5366   // Thus for a call through a function pointer, the following actions need
5367   // to be performed:
5368   //   1. Save the TOC of the caller in the TOC save area of its stack
5369   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5370   //   2. Load the address of the function entry point from the function
5371   //      descriptor.
5372   //   3. Load the TOC of the callee from the function descriptor into r2.
5373   //   4. Load the environment pointer from the function descriptor into
5374   //      r11.
5375   //   5. Branch to the function entry point address.
5376   //   6. On return of the callee, the TOC of the caller needs to be
5377   //      restored (this is done in FinishCall()).
5378   //
5379   // The loads are scheduled at the beginning of the call sequence, and the
5380   // register copies are flagged together to ensure that no other
5381   // operations can be scheduled in between. E.g. without flagging the
5382   // copies together, a TOC access in the caller could be scheduled between
5383   // the assignment of the callee TOC and the branch to the callee, which leads
5384   // to incorrect code.
5385 
5386   // Start by loading the function address from the descriptor.
5387   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5388   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5389                       ? (MachineMemOperand::MODereferenceable |
5390                          MachineMemOperand::MOInvariant)
5391                       : MachineMemOperand::MONone;
5392 
5393   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5394 
5395   // Registers used in building the DAG.
5396   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5397   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5398 
5399   // Offsets of descriptor members.
5400   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5401   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5402 
5403   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5404   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5405 
5406   // One load for the functions entry point address.
5407   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5408                                     Alignment, MMOFlags);
5409 
5410   // One for loading the TOC anchor for the module that contains the called
5411   // function.
5412   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5413   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5414   SDValue TOCPtr =
5415       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5416                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5417 
5418   // One for loading the environment pointer.
5419   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5420   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5421   SDValue LoadEnvPtr =
5422       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5423                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5424 
5425 
5426   // Then copy the newly loaded TOC anchor to the TOC pointer.
5427   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5428   Chain = TOCVal.getValue(0);
5429   Glue = TOCVal.getValue(1);
5430 
5431   // If the function call has an explicit 'nest' parameter, it takes the
5432   // place of the environment pointer.
5433   assert((!hasNest || !Subtarget.isAIXABI()) &&
5434          "Nest parameter is not supported on AIX.");
5435   if (!hasNest) {
5436     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5437     Chain = EnvVal.getValue(0);
5438     Glue = EnvVal.getValue(1);
5439   }
5440 
5441   // The rest of the indirect call sequence is the same as the non-descriptor
5442   // DAG.
5443   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5444 }
5445 
5446 static void
5447 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5448                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5449                   SelectionDAG &DAG,
5450                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5451                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5452                   const PPCSubtarget &Subtarget) {
5453   const bool IsPPC64 = Subtarget.isPPC64();
5454   // MVT for a general purpose register.
5455   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5456 
5457   // First operand is always the chain.
5458   Ops.push_back(Chain);
5459 
5460   // If it's a direct call pass the callee as the second operand.
5461   if (!CFlags.IsIndirect)
5462     Ops.push_back(Callee);
5463   else {
5464     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5465 
5466     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5467     // on the stack (this would have been done in `LowerCall_64SVR4` or
5468     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5469     // represents both the indirect branch and a load that restores the TOC
5470     // pointer from the linkage area. The operand for the TOC restore is an add
5471     // of the TOC save offset to the stack pointer. This must be the second
5472     // operand: after the chain input but before any other variadic arguments.
5473     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5474     // saved or used.
5475     if (isTOCSaveRestoreRequired(Subtarget)) {
5476       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5477 
5478       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5479       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5480       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5481       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5482       Ops.push_back(AddTOC);
5483     }
5484 
5485     // Add the register used for the environment pointer.
5486     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5487       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5488                                     RegVT));
5489 
5490 
5491     // Add CTR register as callee so a bctr can be emitted later.
5492     if (CFlags.IsTailCall)
5493       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5494   }
5495 
5496   // If this is a tail call add stack pointer delta.
5497   if (CFlags.IsTailCall)
5498     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5499 
5500   // Add argument registers to the end of the list so that they are known live
5501   // into the call.
5502   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5503     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5504                                   RegsToPass[i].second.getValueType()));
5505 
5506   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5507   // no way to mark dependencies as implicit here.
5508   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5509   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5510        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5511     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5512 
5513   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5514   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5515     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5516 
5517   // Add a register mask operand representing the call-preserved registers.
5518   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5519   const uint32_t *Mask =
5520       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5521   assert(Mask && "Missing call preserved mask for calling convention");
5522   Ops.push_back(DAG.getRegisterMask(Mask));
5523 
5524   // If the glue is valid, it is the last operand.
5525   if (Glue.getNode())
5526     Ops.push_back(Glue);
5527 }
5528 
5529 SDValue PPCTargetLowering::FinishCall(
5530     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5531     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5532     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5533     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5534     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5535 
5536   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5537       Subtarget.isAIXABI())
5538     setUsesTOCBasePtr(DAG);
5539 
5540   unsigned CallOpc =
5541       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5542                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5543 
5544   if (!CFlags.IsIndirect)
5545     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5546   else if (Subtarget.usesFunctionDescriptors())
5547     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5548                                   dl, CFlags.HasNest, Subtarget);
5549   else
5550     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5551 
5552   // Build the operand list for the call instruction.
5553   SmallVector<SDValue, 8> Ops;
5554   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5555                     SPDiff, Subtarget);
5556 
5557   // Emit tail call.
5558   if (CFlags.IsTailCall) {
5559     // Indirect tail call when using PC Relative calls do not have the same
5560     // constraints.
5561     assert(((Callee.getOpcode() == ISD::Register &&
5562              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5563             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5564             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5565             isa<ConstantSDNode>(Callee) ||
5566             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5567            "Expecting a global address, external symbol, absolute value, "
5568            "register or an indirect tail call when PC Relative calls are "
5569            "used.");
5570     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5571     assert(CallOpc == PPCISD::TC_RETURN &&
5572            "Unexpected call opcode for a tail call.");
5573     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5574     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5575   }
5576 
5577   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5578   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5579   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5580   Glue = Chain.getValue(1);
5581 
5582   // When performing tail call optimization the callee pops its arguments off
5583   // the stack. Account for this here so these bytes can be pushed back on in
5584   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5585   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5586                          getTargetMachine().Options.GuaranteedTailCallOpt)
5587                             ? NumBytes
5588                             : 0;
5589 
5590   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5591                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5592                              Glue, dl);
5593   Glue = Chain.getValue(1);
5594 
5595   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5596                          DAG, InVals);
5597 }
5598 
5599 SDValue
5600 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5601                              SmallVectorImpl<SDValue> &InVals) const {
5602   SelectionDAG &DAG                     = CLI.DAG;
5603   SDLoc &dl                             = CLI.DL;
5604   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5605   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5606   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5607   SDValue Chain                         = CLI.Chain;
5608   SDValue Callee                        = CLI.Callee;
5609   bool &isTailCall                      = CLI.IsTailCall;
5610   CallingConv::ID CallConv              = CLI.CallConv;
5611   bool isVarArg                         = CLI.IsVarArg;
5612   bool isPatchPoint                     = CLI.IsPatchPoint;
5613   const CallBase *CB                    = CLI.CB;
5614 
5615   if (isTailCall) {
5616     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5617       isTailCall = false;
5618     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5619       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5620           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5621     else
5622       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5623                                                      Ins, DAG);
5624     if (isTailCall) {
5625       ++NumTailCalls;
5626       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5627         ++NumSiblingCalls;
5628 
5629       // PC Relative calls no longer guarantee that the callee is a Global
5630       // Address Node. The callee could be an indirect tail call in which
5631       // case the SDValue for the callee could be a load (to load the address
5632       // of a function pointer) or it may be a register copy (to move the
5633       // address of the callee from a function parameter into a virtual
5634       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5635       assert((Subtarget.isUsingPCRelativeCalls() ||
5636               isa<GlobalAddressSDNode>(Callee)) &&
5637              "Callee should be an llvm::Function object.");
5638 
5639       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5640                         << "\nTCO callee: ");
5641       LLVM_DEBUG(Callee.dump());
5642     }
5643   }
5644 
5645   if (!isTailCall && CB && CB->isMustTailCall())
5646     report_fatal_error("failed to perform tail call elimination on a call "
5647                        "site marked musttail");
5648 
5649   // When long calls (i.e. indirect calls) are always used, calls are always
5650   // made via function pointer. If we have a function name, first translate it
5651   // into a pointer.
5652   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5653       !isTailCall)
5654     Callee = LowerGlobalAddress(Callee, DAG);
5655 
5656   CallFlags CFlags(
5657       CallConv, isTailCall, isVarArg, isPatchPoint,
5658       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5659       // hasNest
5660       Subtarget.is64BitELFABI() &&
5661           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5662       CLI.NoMerge);
5663 
5664   if (Subtarget.isAIXABI())
5665     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5666                          InVals, CB);
5667 
5668   assert(Subtarget.isSVR4ABI());
5669   if (Subtarget.isPPC64())
5670     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5671                             InVals, CB);
5672   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5673                           InVals, CB);
5674 }
5675 
5676 SDValue PPCTargetLowering::LowerCall_32SVR4(
5677     SDValue Chain, SDValue Callee, CallFlags CFlags,
5678     const SmallVectorImpl<ISD::OutputArg> &Outs,
5679     const SmallVectorImpl<SDValue> &OutVals,
5680     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5681     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5682     const CallBase *CB) const {
5683   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5684   // of the 32-bit SVR4 ABI stack frame layout.
5685 
5686   const CallingConv::ID CallConv = CFlags.CallConv;
5687   const bool IsVarArg = CFlags.IsVarArg;
5688   const bool IsTailCall = CFlags.IsTailCall;
5689 
5690   assert((CallConv == CallingConv::C ||
5691           CallConv == CallingConv::Cold ||
5692           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5693 
5694   const Align PtrAlign(4);
5695 
5696   MachineFunction &MF = DAG.getMachineFunction();
5697 
5698   // Mark this function as potentially containing a function that contains a
5699   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5700   // and restoring the callers stack pointer in this functions epilog. This is
5701   // done because by tail calling the called function might overwrite the value
5702   // in this function's (MF) stack pointer stack slot 0(SP).
5703   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5704       CallConv == CallingConv::Fast)
5705     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5706 
5707   // Count how many bytes are to be pushed on the stack, including the linkage
5708   // area, parameter list area and the part of the local variable space which
5709   // contains copies of aggregates which are passed by value.
5710 
5711   // Assign locations to all of the outgoing arguments.
5712   SmallVector<CCValAssign, 16> ArgLocs;
5713   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5714 
5715   // Reserve space for the linkage area on the stack.
5716   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5717                        PtrAlign);
5718   if (useSoftFloat())
5719     CCInfo.PreAnalyzeCallOperands(Outs);
5720 
5721   if (IsVarArg) {
5722     // Handle fixed and variable vector arguments differently.
5723     // Fixed vector arguments go into registers as long as registers are
5724     // available. Variable vector arguments always go into memory.
5725     unsigned NumArgs = Outs.size();
5726 
5727     for (unsigned i = 0; i != NumArgs; ++i) {
5728       MVT ArgVT = Outs[i].VT;
5729       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5730       bool Result;
5731 
5732       if (Outs[i].IsFixed) {
5733         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5734                                CCInfo);
5735       } else {
5736         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5737                                       ArgFlags, CCInfo);
5738       }
5739 
5740       if (Result) {
5741 #ifndef NDEBUG
5742         errs() << "Call operand #" << i << " has unhandled type "
5743              << EVT(ArgVT).getEVTString() << "\n";
5744 #endif
5745         llvm_unreachable(nullptr);
5746       }
5747     }
5748   } else {
5749     // All arguments are treated the same.
5750     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5751   }
5752   CCInfo.clearWasPPCF128();
5753 
5754   // Assign locations to all of the outgoing aggregate by value arguments.
5755   SmallVector<CCValAssign, 16> ByValArgLocs;
5756   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5757 
5758   // Reserve stack space for the allocations in CCInfo.
5759   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5760 
5761   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5762 
5763   // Size of the linkage area, parameter list area and the part of the local
5764   // space variable where copies of aggregates which are passed by value are
5765   // stored.
5766   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5767 
5768   // Calculate by how many bytes the stack has to be adjusted in case of tail
5769   // call optimization.
5770   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5771 
5772   // Adjust the stack pointer for the new arguments...
5773   // These operations are automatically eliminated by the prolog/epilog pass
5774   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5775   SDValue CallSeqStart = Chain;
5776 
5777   // Load the return address and frame pointer so it can be moved somewhere else
5778   // later.
5779   SDValue LROp, FPOp;
5780   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5781 
5782   // Set up a copy of the stack pointer for use loading and storing any
5783   // arguments that may not fit in the registers available for argument
5784   // passing.
5785   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5786 
5787   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5788   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5789   SmallVector<SDValue, 8> MemOpChains;
5790 
5791   bool seenFloatArg = false;
5792   // Walk the register/memloc assignments, inserting copies/loads.
5793   // i - Tracks the index into the list of registers allocated for the call
5794   // RealArgIdx - Tracks the index into the list of actual function arguments
5795   // j - Tracks the index into the list of byval arguments
5796   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5797        i != e;
5798        ++i, ++RealArgIdx) {
5799     CCValAssign &VA = ArgLocs[i];
5800     SDValue Arg = OutVals[RealArgIdx];
5801     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5802 
5803     if (Flags.isByVal()) {
5804       // Argument is an aggregate which is passed by value, thus we need to
5805       // create a copy of it in the local variable space of the current stack
5806       // frame (which is the stack frame of the caller) and pass the address of
5807       // this copy to the callee.
5808       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5809       CCValAssign &ByValVA = ByValArgLocs[j++];
5810       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5811 
5812       // Memory reserved in the local variable space of the callers stack frame.
5813       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5814 
5815       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5816       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5817                            StackPtr, PtrOff);
5818 
5819       // Create a copy of the argument in the local area of the current
5820       // stack frame.
5821       SDValue MemcpyCall =
5822         CreateCopyOfByValArgument(Arg, PtrOff,
5823                                   CallSeqStart.getNode()->getOperand(0),
5824                                   Flags, DAG, dl);
5825 
5826       // This must go outside the CALLSEQ_START..END.
5827       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5828                                                      SDLoc(MemcpyCall));
5829       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5830                              NewCallSeqStart.getNode());
5831       Chain = CallSeqStart = NewCallSeqStart;
5832 
5833       // Pass the address of the aggregate copy on the stack either in a
5834       // physical register or in the parameter list area of the current stack
5835       // frame to the callee.
5836       Arg = PtrOff;
5837     }
5838 
5839     // When useCRBits() is true, there can be i1 arguments.
5840     // It is because getRegisterType(MVT::i1) => MVT::i1,
5841     // and for other integer types getRegisterType() => MVT::i32.
5842     // Extend i1 and ensure callee will get i32.
5843     if (Arg.getValueType() == MVT::i1)
5844       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5845                         dl, MVT::i32, Arg);
5846 
5847     if (VA.isRegLoc()) {
5848       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5849       // Put argument in a physical register.
5850       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5851         bool IsLE = Subtarget.isLittleEndian();
5852         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5853                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5854         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5855         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5856                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5857         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5858                              SVal.getValue(0)));
5859       } else
5860         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5861     } else {
5862       // Put argument in the parameter list area of the current stack frame.
5863       assert(VA.isMemLoc());
5864       unsigned LocMemOffset = VA.getLocMemOffset();
5865 
5866       if (!IsTailCall) {
5867         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5868         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5869                              StackPtr, PtrOff);
5870 
5871         MemOpChains.push_back(
5872             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5873       } else {
5874         // Calculate and remember argument location.
5875         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5876                                  TailCallArguments);
5877       }
5878     }
5879   }
5880 
5881   if (!MemOpChains.empty())
5882     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5883 
5884   // Build a sequence of copy-to-reg nodes chained together with token chain
5885   // and flag operands which copy the outgoing args into the appropriate regs.
5886   SDValue InFlag;
5887   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5888     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5889                              RegsToPass[i].second, InFlag);
5890     InFlag = Chain.getValue(1);
5891   }
5892 
5893   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5894   // registers.
5895   if (IsVarArg) {
5896     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5897     SDValue Ops[] = { Chain, InFlag };
5898 
5899     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5900                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5901 
5902     InFlag = Chain.getValue(1);
5903   }
5904 
5905   if (IsTailCall)
5906     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5907                     TailCallArguments);
5908 
5909   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5910                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5911 }
5912 
5913 // Copy an argument into memory, being careful to do this outside the
5914 // call sequence for the call to which the argument belongs.
5915 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5916     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5917     SelectionDAG &DAG, const SDLoc &dl) const {
5918   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5919                         CallSeqStart.getNode()->getOperand(0),
5920                         Flags, DAG, dl);
5921   // The MEMCPY must go outside the CALLSEQ_START..END.
5922   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5923   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5924                                                  SDLoc(MemcpyCall));
5925   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5926                          NewCallSeqStart.getNode());
5927   return NewCallSeqStart;
5928 }
5929 
5930 SDValue PPCTargetLowering::LowerCall_64SVR4(
5931     SDValue Chain, SDValue Callee, CallFlags CFlags,
5932     const SmallVectorImpl<ISD::OutputArg> &Outs,
5933     const SmallVectorImpl<SDValue> &OutVals,
5934     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5935     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5936     const CallBase *CB) const {
5937   bool isELFv2ABI = Subtarget.isELFv2ABI();
5938   bool isLittleEndian = Subtarget.isLittleEndian();
5939   unsigned NumOps = Outs.size();
5940   bool IsSibCall = false;
5941   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5942 
5943   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5944   unsigned PtrByteSize = 8;
5945 
5946   MachineFunction &MF = DAG.getMachineFunction();
5947 
5948   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5949     IsSibCall = true;
5950 
5951   // Mark this function as potentially containing a function that contains a
5952   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5953   // and restoring the callers stack pointer in this functions epilog. This is
5954   // done because by tail calling the called function might overwrite the value
5955   // in this function's (MF) stack pointer stack slot 0(SP).
5956   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5957     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5958 
5959   assert(!(IsFastCall && CFlags.IsVarArg) &&
5960          "fastcc not supported on varargs functions");
5961 
5962   // Count how many bytes are to be pushed on the stack, including the linkage
5963   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5964   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5965   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5966   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5967   unsigned NumBytes = LinkageSize;
5968   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5969 
5970   static const MCPhysReg GPR[] = {
5971     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5972     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5973   };
5974   static const MCPhysReg VR[] = {
5975     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5976     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5977   };
5978 
5979   const unsigned NumGPRs = array_lengthof(GPR);
5980   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5981   const unsigned NumVRs  = array_lengthof(VR);
5982 
5983   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5984   // can be passed to the callee in registers.
5985   // For the fast calling convention, there is another check below.
5986   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5987   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5988   if (!HasParameterArea) {
5989     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5990     unsigned AvailableFPRs = NumFPRs;
5991     unsigned AvailableVRs = NumVRs;
5992     unsigned NumBytesTmp = NumBytes;
5993     for (unsigned i = 0; i != NumOps; ++i) {
5994       if (Outs[i].Flags.isNest()) continue;
5995       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5996                                  PtrByteSize, LinkageSize, ParamAreaSize,
5997                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5998         HasParameterArea = true;
5999     }
6000   }
6001 
6002   // When using the fast calling convention, we don't provide backing for
6003   // arguments that will be in registers.
6004   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6005 
6006   // Avoid allocating parameter area for fastcc functions if all the arguments
6007   // can be passed in the registers.
6008   if (IsFastCall)
6009     HasParameterArea = false;
6010 
6011   // Add up all the space actually used.
6012   for (unsigned i = 0; i != NumOps; ++i) {
6013     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6014     EVT ArgVT = Outs[i].VT;
6015     EVT OrigVT = Outs[i].ArgVT;
6016 
6017     if (Flags.isNest())
6018       continue;
6019 
6020     if (IsFastCall) {
6021       if (Flags.isByVal()) {
6022         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6023         if (NumGPRsUsed > NumGPRs)
6024           HasParameterArea = true;
6025       } else {
6026         switch (ArgVT.getSimpleVT().SimpleTy) {
6027         default: llvm_unreachable("Unexpected ValueType for argument!");
6028         case MVT::i1:
6029         case MVT::i32:
6030         case MVT::i64:
6031           if (++NumGPRsUsed <= NumGPRs)
6032             continue;
6033           break;
6034         case MVT::v4i32:
6035         case MVT::v8i16:
6036         case MVT::v16i8:
6037         case MVT::v2f64:
6038         case MVT::v2i64:
6039         case MVT::v1i128:
6040         case MVT::f128:
6041           if (++NumVRsUsed <= NumVRs)
6042             continue;
6043           break;
6044         case MVT::v4f32:
6045           if (++NumVRsUsed <= NumVRs)
6046             continue;
6047           break;
6048         case MVT::f32:
6049         case MVT::f64:
6050           if (++NumFPRsUsed <= NumFPRs)
6051             continue;
6052           break;
6053         }
6054         HasParameterArea = true;
6055       }
6056     }
6057 
6058     /* Respect alignment of argument on the stack.  */
6059     auto Alignement =
6060         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6061     NumBytes = alignTo(NumBytes, Alignement);
6062 
6063     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6064     if (Flags.isInConsecutiveRegsLast())
6065       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6066   }
6067 
6068   unsigned NumBytesActuallyUsed = NumBytes;
6069 
6070   // In the old ELFv1 ABI,
6071   // the prolog code of the callee may store up to 8 GPR argument registers to
6072   // the stack, allowing va_start to index over them in memory if its varargs.
6073   // Because we cannot tell if this is needed on the caller side, we have to
6074   // conservatively assume that it is needed.  As such, make sure we have at
6075   // least enough stack space for the caller to store the 8 GPRs.
6076   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6077   // really requires memory operands, e.g. a vararg function.
6078   if (HasParameterArea)
6079     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6080   else
6081     NumBytes = LinkageSize;
6082 
6083   // Tail call needs the stack to be aligned.
6084   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6085     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6086 
6087   int SPDiff = 0;
6088 
6089   // Calculate by how many bytes the stack has to be adjusted in case of tail
6090   // call optimization.
6091   if (!IsSibCall)
6092     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6093 
6094   // To protect arguments on the stack from being clobbered in a tail call,
6095   // force all the loads to happen before doing any other lowering.
6096   if (CFlags.IsTailCall)
6097     Chain = DAG.getStackArgumentTokenFactor(Chain);
6098 
6099   // Adjust the stack pointer for the new arguments...
6100   // These operations are automatically eliminated by the prolog/epilog pass
6101   if (!IsSibCall)
6102     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6103   SDValue CallSeqStart = Chain;
6104 
6105   // Load the return address and frame pointer so it can be move somewhere else
6106   // later.
6107   SDValue LROp, FPOp;
6108   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6109 
6110   // Set up a copy of the stack pointer for use loading and storing any
6111   // arguments that may not fit in the registers available for argument
6112   // passing.
6113   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6114 
6115   // Figure out which arguments are going to go in registers, and which in
6116   // memory.  Also, if this is a vararg function, floating point operations
6117   // must be stored to our stack, and loaded into integer regs as well, if
6118   // any integer regs are available for argument passing.
6119   unsigned ArgOffset = LinkageSize;
6120 
6121   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6122   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6123 
6124   SmallVector<SDValue, 8> MemOpChains;
6125   for (unsigned i = 0; i != NumOps; ++i) {
6126     SDValue Arg = OutVals[i];
6127     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6128     EVT ArgVT = Outs[i].VT;
6129     EVT OrigVT = Outs[i].ArgVT;
6130 
6131     // PtrOff will be used to store the current argument to the stack if a
6132     // register cannot be found for it.
6133     SDValue PtrOff;
6134 
6135     // We re-align the argument offset for each argument, except when using the
6136     // fast calling convention, when we need to make sure we do that only when
6137     // we'll actually use a stack slot.
6138     auto ComputePtrOff = [&]() {
6139       /* Respect alignment of argument on the stack.  */
6140       auto Alignment =
6141           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6142       ArgOffset = alignTo(ArgOffset, Alignment);
6143 
6144       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6145 
6146       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6147     };
6148 
6149     if (!IsFastCall) {
6150       ComputePtrOff();
6151 
6152       /* Compute GPR index associated with argument offset.  */
6153       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6154       GPR_idx = std::min(GPR_idx, NumGPRs);
6155     }
6156 
6157     // Promote integers to 64-bit values.
6158     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6159       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6160       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6161       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6162     }
6163 
6164     // FIXME memcpy is used way more than necessary.  Correctness first.
6165     // Note: "by value" is code for passing a structure by value, not
6166     // basic types.
6167     if (Flags.isByVal()) {
6168       // Note: Size includes alignment padding, so
6169       //   struct x { short a; char b; }
6170       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6171       // These are the proper values we need for right-justifying the
6172       // aggregate in a parameter register.
6173       unsigned Size = Flags.getByValSize();
6174 
6175       // An empty aggregate parameter takes up no storage and no
6176       // registers.
6177       if (Size == 0)
6178         continue;
6179 
6180       if (IsFastCall)
6181         ComputePtrOff();
6182 
6183       // All aggregates smaller than 8 bytes must be passed right-justified.
6184       if (Size==1 || Size==2 || Size==4) {
6185         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6186         if (GPR_idx != NumGPRs) {
6187           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6188                                         MachinePointerInfo(), VT);
6189           MemOpChains.push_back(Load.getValue(1));
6190           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6191 
6192           ArgOffset += PtrByteSize;
6193           continue;
6194         }
6195       }
6196 
6197       if (GPR_idx == NumGPRs && Size < 8) {
6198         SDValue AddPtr = PtrOff;
6199         if (!isLittleEndian) {
6200           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6201                                           PtrOff.getValueType());
6202           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6203         }
6204         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6205                                                           CallSeqStart,
6206                                                           Flags, DAG, dl);
6207         ArgOffset += PtrByteSize;
6208         continue;
6209       }
6210       // Copy the object to parameter save area if it can not be entirely passed
6211       // by registers.
6212       // FIXME: we only need to copy the parts which need to be passed in
6213       // parameter save area. For the parts passed by registers, we don't need
6214       // to copy them to the stack although we need to allocate space for them
6215       // in parameter save area.
6216       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6217         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6218                                                           CallSeqStart,
6219                                                           Flags, DAG, dl);
6220 
6221       // When a register is available, pass a small aggregate right-justified.
6222       if (Size < 8 && GPR_idx != NumGPRs) {
6223         // The easiest way to get this right-justified in a register
6224         // is to copy the structure into the rightmost portion of a
6225         // local variable slot, then load the whole slot into the
6226         // register.
6227         // FIXME: The memcpy seems to produce pretty awful code for
6228         // small aggregates, particularly for packed ones.
6229         // FIXME: It would be preferable to use the slot in the
6230         // parameter save area instead of a new local variable.
6231         SDValue AddPtr = PtrOff;
6232         if (!isLittleEndian) {
6233           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6234           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6235         }
6236         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6237                                                           CallSeqStart,
6238                                                           Flags, DAG, dl);
6239 
6240         // Load the slot into the register.
6241         SDValue Load =
6242             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6243         MemOpChains.push_back(Load.getValue(1));
6244         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6245 
6246         // Done with this argument.
6247         ArgOffset += PtrByteSize;
6248         continue;
6249       }
6250 
6251       // For aggregates larger than PtrByteSize, copy the pieces of the
6252       // object that fit into registers from the parameter save area.
6253       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6254         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6255         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6256         if (GPR_idx != NumGPRs) {
6257           SDValue Load =
6258               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6259           MemOpChains.push_back(Load.getValue(1));
6260           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6261           ArgOffset += PtrByteSize;
6262         } else {
6263           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6264           break;
6265         }
6266       }
6267       continue;
6268     }
6269 
6270     switch (Arg.getSimpleValueType().SimpleTy) {
6271     default: llvm_unreachable("Unexpected ValueType for argument!");
6272     case MVT::i1:
6273     case MVT::i32:
6274     case MVT::i64:
6275       if (Flags.isNest()) {
6276         // The 'nest' parameter, if any, is passed in R11.
6277         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6278         break;
6279       }
6280 
6281       // These can be scalar arguments or elements of an integer array type
6282       // passed directly.  Clang may use those instead of "byval" aggregate
6283       // types to avoid forcing arguments to memory unnecessarily.
6284       if (GPR_idx != NumGPRs) {
6285         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6286       } else {
6287         if (IsFastCall)
6288           ComputePtrOff();
6289 
6290         assert(HasParameterArea &&
6291                "Parameter area must exist to pass an argument in memory.");
6292         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6293                          true, CFlags.IsTailCall, false, MemOpChains,
6294                          TailCallArguments, dl);
6295         if (IsFastCall)
6296           ArgOffset += PtrByteSize;
6297       }
6298       if (!IsFastCall)
6299         ArgOffset += PtrByteSize;
6300       break;
6301     case MVT::f32:
6302     case MVT::f64: {
6303       // These can be scalar arguments or elements of a float array type
6304       // passed directly.  The latter are used to implement ELFv2 homogenous
6305       // float aggregates.
6306 
6307       // Named arguments go into FPRs first, and once they overflow, the
6308       // remaining arguments go into GPRs and then the parameter save area.
6309       // Unnamed arguments for vararg functions always go to GPRs and
6310       // then the parameter save area.  For now, put all arguments to vararg
6311       // routines always in both locations (FPR *and* GPR or stack slot).
6312       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6313       bool NeededLoad = false;
6314 
6315       // First load the argument into the next available FPR.
6316       if (FPR_idx != NumFPRs)
6317         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6318 
6319       // Next, load the argument into GPR or stack slot if needed.
6320       if (!NeedGPROrStack)
6321         ;
6322       else if (GPR_idx != NumGPRs && !IsFastCall) {
6323         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6324         // once we support fp <-> gpr moves.
6325 
6326         // In the non-vararg case, this can only ever happen in the
6327         // presence of f32 array types, since otherwise we never run
6328         // out of FPRs before running out of GPRs.
6329         SDValue ArgVal;
6330 
6331         // Double values are always passed in a single GPR.
6332         if (Arg.getValueType() != MVT::f32) {
6333           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6334 
6335         // Non-array float values are extended and passed in a GPR.
6336         } else if (!Flags.isInConsecutiveRegs()) {
6337           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6338           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6339 
6340         // If we have an array of floats, we collect every odd element
6341         // together with its predecessor into one GPR.
6342         } else if (ArgOffset % PtrByteSize != 0) {
6343           SDValue Lo, Hi;
6344           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6345           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6346           if (!isLittleEndian)
6347             std::swap(Lo, Hi);
6348           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6349 
6350         // The final element, if even, goes into the first half of a GPR.
6351         } else if (Flags.isInConsecutiveRegsLast()) {
6352           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6353           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6354           if (!isLittleEndian)
6355             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6356                                  DAG.getConstant(32, dl, MVT::i32));
6357 
6358         // Non-final even elements are skipped; they will be handled
6359         // together the with subsequent argument on the next go-around.
6360         } else
6361           ArgVal = SDValue();
6362 
6363         if (ArgVal.getNode())
6364           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6365       } else {
6366         if (IsFastCall)
6367           ComputePtrOff();
6368 
6369         // Single-precision floating-point values are mapped to the
6370         // second (rightmost) word of the stack doubleword.
6371         if (Arg.getValueType() == MVT::f32 &&
6372             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6373           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6374           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6375         }
6376 
6377         assert(HasParameterArea &&
6378                "Parameter area must exist to pass an argument in memory.");
6379         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6380                          true, CFlags.IsTailCall, false, MemOpChains,
6381                          TailCallArguments, dl);
6382 
6383         NeededLoad = true;
6384       }
6385       // When passing an array of floats, the array occupies consecutive
6386       // space in the argument area; only round up to the next doubleword
6387       // at the end of the array.  Otherwise, each float takes 8 bytes.
6388       if (!IsFastCall || NeededLoad) {
6389         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6390                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6391         if (Flags.isInConsecutiveRegsLast())
6392           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6393       }
6394       break;
6395     }
6396     case MVT::v4f32:
6397     case MVT::v4i32:
6398     case MVT::v8i16:
6399     case MVT::v16i8:
6400     case MVT::v2f64:
6401     case MVT::v2i64:
6402     case MVT::v1i128:
6403     case MVT::f128:
6404       // These can be scalar arguments or elements of a vector array type
6405       // passed directly.  The latter are used to implement ELFv2 homogenous
6406       // vector aggregates.
6407 
6408       // For a varargs call, named arguments go into VRs or on the stack as
6409       // usual; unnamed arguments always go to the stack or the corresponding
6410       // GPRs when within range.  For now, we always put the value in both
6411       // locations (or even all three).
6412       if (CFlags.IsVarArg) {
6413         assert(HasParameterArea &&
6414                "Parameter area must exist if we have a varargs call.");
6415         // We could elide this store in the case where the object fits
6416         // entirely in R registers.  Maybe later.
6417         SDValue Store =
6418             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6419         MemOpChains.push_back(Store);
6420         if (VR_idx != NumVRs) {
6421           SDValue Load =
6422               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6423           MemOpChains.push_back(Load.getValue(1));
6424           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6425         }
6426         ArgOffset += 16;
6427         for (unsigned i=0; i<16; i+=PtrByteSize) {
6428           if (GPR_idx == NumGPRs)
6429             break;
6430           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6431                                    DAG.getConstant(i, dl, PtrVT));
6432           SDValue Load =
6433               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6434           MemOpChains.push_back(Load.getValue(1));
6435           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6436         }
6437         break;
6438       }
6439 
6440       // Non-varargs Altivec params go into VRs or on the stack.
6441       if (VR_idx != NumVRs) {
6442         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6443       } else {
6444         if (IsFastCall)
6445           ComputePtrOff();
6446 
6447         assert(HasParameterArea &&
6448                "Parameter area must exist to pass an argument in memory.");
6449         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6450                          true, CFlags.IsTailCall, true, MemOpChains,
6451                          TailCallArguments, dl);
6452         if (IsFastCall)
6453           ArgOffset += 16;
6454       }
6455 
6456       if (!IsFastCall)
6457         ArgOffset += 16;
6458       break;
6459     }
6460   }
6461 
6462   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6463          "mismatch in size of parameter area");
6464   (void)NumBytesActuallyUsed;
6465 
6466   if (!MemOpChains.empty())
6467     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6468 
6469   // Check if this is an indirect call (MTCTR/BCTRL).
6470   // See prepareDescriptorIndirectCall and buildCallOperands for more
6471   // information about calls through function pointers in the 64-bit SVR4 ABI.
6472   if (CFlags.IsIndirect) {
6473     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6474     // caller in the TOC save area.
6475     if (isTOCSaveRestoreRequired(Subtarget)) {
6476       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6477       // Load r2 into a virtual register and store it to the TOC save area.
6478       setUsesTOCBasePtr(DAG);
6479       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6480       // TOC save area offset.
6481       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6482       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6483       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6484       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6485                            MachinePointerInfo::getStack(
6486                                DAG.getMachineFunction(), TOCSaveOffset));
6487     }
6488     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6489     // This does not mean the MTCTR instruction must use R12; it's easier
6490     // to model this as an extra parameter, so do that.
6491     if (isELFv2ABI && !CFlags.IsPatchPoint)
6492       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6493   }
6494 
6495   // Build a sequence of copy-to-reg nodes chained together with token chain
6496   // and flag operands which copy the outgoing args into the appropriate regs.
6497   SDValue InFlag;
6498   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6499     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6500                              RegsToPass[i].second, InFlag);
6501     InFlag = Chain.getValue(1);
6502   }
6503 
6504   if (CFlags.IsTailCall && !IsSibCall)
6505     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6506                     TailCallArguments);
6507 
6508   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6509                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6510 }
6511 
6512 // Returns true when the shadow of a general purpose argument register
6513 // in the parameter save area is aligned to at least 'RequiredAlign'.
6514 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6515   assert(RequiredAlign.value() <= 16 &&
6516          "Required alignment greater than stack alignment.");
6517   switch (Reg) {
6518   default:
6519     report_fatal_error("called on invalid register.");
6520   case PPC::R5:
6521   case PPC::R9:
6522   case PPC::X3:
6523   case PPC::X5:
6524   case PPC::X7:
6525   case PPC::X9:
6526     // These registers are 16 byte aligned which is the most strict aligment
6527     // we can support.
6528     return true;
6529   case PPC::R3:
6530   case PPC::R7:
6531   case PPC::X4:
6532   case PPC::X6:
6533   case PPC::X8:
6534   case PPC::X10:
6535     // The shadow of these registers in the PSA is 8 byte aligned.
6536     return RequiredAlign <= 8;
6537   case PPC::R4:
6538   case PPC::R6:
6539   case PPC::R8:
6540   case PPC::R10:
6541     return RequiredAlign <= 4;
6542   }
6543 }
6544 
6545 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6546                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6547                    CCState &S) {
6548   AIXCCState &State = static_cast<AIXCCState &>(S);
6549   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6550       State.getMachineFunction().getSubtarget());
6551   const bool IsPPC64 = Subtarget.isPPC64();
6552   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6553   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6554 
6555   if (ValVT == MVT::f128)
6556     report_fatal_error("f128 is unimplemented on AIX.");
6557 
6558   if (ArgFlags.isNest())
6559     report_fatal_error("Nest arguments are unimplemented.");
6560 
6561   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6562                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6563                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6564   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6565                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6566                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6567 
6568   static const MCPhysReg VR[] = {// Vector registers.
6569                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6570                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6571                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6572 
6573   if (ArgFlags.isByVal()) {
6574     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6575       report_fatal_error("Pass-by-value arguments with alignment greater than "
6576                          "register width are not supported.");
6577 
6578     const unsigned ByValSize = ArgFlags.getByValSize();
6579 
6580     // An empty aggregate parameter takes up no storage and no registers,
6581     // but needs a MemLoc for a stack slot for the formal arguments side.
6582     if (ByValSize == 0) {
6583       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6584                                        State.getNextStackOffset(), RegVT,
6585                                        LocInfo));
6586       return false;
6587     }
6588 
6589     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6590     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6591     for (const unsigned E = Offset + StackSize; Offset < E;
6592          Offset += PtrAlign.value()) {
6593       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6594         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6595       else {
6596         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6597                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6598                                          LocInfo));
6599         break;
6600       }
6601     }
6602     return false;
6603   }
6604 
6605   // Arguments always reserve parameter save area.
6606   switch (ValVT.SimpleTy) {
6607   default:
6608     report_fatal_error("Unhandled value type for argument.");
6609   case MVT::i64:
6610     // i64 arguments should have been split to i32 for PPC32.
6611     assert(IsPPC64 && "PPC32 should have split i64 values.");
6612     LLVM_FALLTHROUGH;
6613   case MVT::i1:
6614   case MVT::i32: {
6615     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6616     // AIX integer arguments are always passed in register width.
6617     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6618       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6619                                   : CCValAssign::LocInfo::ZExt;
6620     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6621       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6622     else
6623       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6624 
6625     return false;
6626   }
6627   case MVT::f32:
6628   case MVT::f64: {
6629     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6630     const unsigned StoreSize = LocVT.getStoreSize();
6631     // Floats are always 4-byte aligned in the PSA on AIX.
6632     // This includes f64 in 64-bit mode for ABI compatibility.
6633     const unsigned Offset =
6634         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6635     unsigned FReg = State.AllocateReg(FPR);
6636     if (FReg)
6637       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6638 
6639     // Reserve and initialize GPRs or initialize the PSA as required.
6640     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6641       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6642         assert(FReg && "An FPR should be available when a GPR is reserved.");
6643         if (State.isVarArg()) {
6644           // Successfully reserved GPRs are only initialized for vararg calls.
6645           // Custom handling is required for:
6646           //   f64 in PPC32 needs to be split into 2 GPRs.
6647           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6648           State.addLoc(
6649               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6650         }
6651       } else {
6652         // If there are insufficient GPRs, the PSA needs to be initialized.
6653         // Initialization occurs even if an FPR was initialized for
6654         // compatibility with the AIX XL compiler. The full memory for the
6655         // argument will be initialized even if a prior word is saved in GPR.
6656         // A custom memLoc is used when the argument also passes in FPR so
6657         // that the callee handling can skip over it easily.
6658         State.addLoc(
6659             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6660                                              LocInfo)
6661                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6662         break;
6663       }
6664     }
6665 
6666     return false;
6667   }
6668   case MVT::v4f32:
6669   case MVT::v4i32:
6670   case MVT::v8i16:
6671   case MVT::v16i8:
6672   case MVT::v2i64:
6673   case MVT::v2f64:
6674   case MVT::v1i128: {
6675     const unsigned VecSize = 16;
6676     const Align VecAlign(VecSize);
6677 
6678     if (!State.isVarArg()) {
6679       // If there are vector registers remaining we don't consume any stack
6680       // space.
6681       if (unsigned VReg = State.AllocateReg(VR)) {
6682         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6683         return false;
6684       }
6685       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6686       // might be allocated in the portion of the PSA that is shadowed by the
6687       // GPRs.
6688       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6689       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6690       return false;
6691     }
6692 
6693     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6694     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6695 
6696     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6697     // Burn any underaligned registers and their shadowed stack space until
6698     // we reach the required alignment.
6699     while (NextRegIndex != GPRs.size() &&
6700            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6701       // Shadow allocate register and its stack shadow.
6702       unsigned Reg = State.AllocateReg(GPRs);
6703       State.AllocateStack(PtrSize, PtrAlign);
6704       assert(Reg && "Allocating register unexpectedly failed.");
6705       (void)Reg;
6706       NextRegIndex = State.getFirstUnallocated(GPRs);
6707     }
6708 
6709     // Vectors that are passed as fixed arguments are handled differently.
6710     // They are passed in VRs if any are available (unlike arguments passed
6711     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6712     // functions)
6713     if (State.isFixed(ValNo)) {
6714       if (unsigned VReg = State.AllocateReg(VR)) {
6715         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6716         // Shadow allocate GPRs and stack space even though we pass in a VR.
6717         for (unsigned I = 0; I != VecSize; I += PtrSize)
6718           State.AllocateReg(GPRs);
6719         State.AllocateStack(VecSize, VecAlign);
6720         return false;
6721       }
6722       // No vector registers remain so pass on the stack.
6723       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6724       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6725       return false;
6726     }
6727 
6728     // If all GPRS are consumed then we pass the argument fully on the stack.
6729     if (NextRegIndex == GPRs.size()) {
6730       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6731       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6732       return false;
6733     }
6734 
6735     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6736     // half of the argument, and then need to pass the remaining half on the
6737     // stack.
6738     if (GPRs[NextRegIndex] == PPC::R9) {
6739       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6740       State.addLoc(
6741           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6742 
6743       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6744       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6745       assert(FirstReg && SecondReg &&
6746              "Allocating R9 or R10 unexpectedly failed.");
6747       State.addLoc(
6748           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6749       State.addLoc(
6750           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6751       return false;
6752     }
6753 
6754     // We have enough GPRs to fully pass the vector argument, and we have
6755     // already consumed any underaligned registers. Start with the custom
6756     // MemLoc and then the custom RegLocs.
6757     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6758     State.addLoc(
6759         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6760     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6761       const unsigned Reg = State.AllocateReg(GPRs);
6762       assert(Reg && "Failed to allocated register for vararg vector argument");
6763       State.addLoc(
6764           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6765     }
6766     return false;
6767   }
6768   }
6769   return true;
6770 }
6771 
6772 // So far, this function is only used by LowerFormalArguments_AIX()
6773 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6774                                                     bool IsPPC64,
6775                                                     bool HasP8Vector,
6776                                                     bool HasVSX) {
6777   assert((IsPPC64 || SVT != MVT::i64) &&
6778          "i64 should have been split for 32-bit codegen.");
6779 
6780   switch (SVT) {
6781   default:
6782     report_fatal_error("Unexpected value type for formal argument");
6783   case MVT::i1:
6784   case MVT::i32:
6785   case MVT::i64:
6786     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6787   case MVT::f32:
6788     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6789   case MVT::f64:
6790     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6791   case MVT::v4f32:
6792   case MVT::v4i32:
6793   case MVT::v8i16:
6794   case MVT::v16i8:
6795   case MVT::v2i64:
6796   case MVT::v2f64:
6797   case MVT::v1i128:
6798     return &PPC::VRRCRegClass;
6799   }
6800 }
6801 
6802 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6803                                         SelectionDAG &DAG, SDValue ArgValue,
6804                                         MVT LocVT, const SDLoc &dl) {
6805   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6806   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6807 
6808   if (Flags.isSExt())
6809     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6810                            DAG.getValueType(ValVT));
6811   else if (Flags.isZExt())
6812     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6813                            DAG.getValueType(ValVT));
6814 
6815   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6816 }
6817 
6818 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6819   const unsigned LASize = FL->getLinkageSize();
6820 
6821   if (PPC::GPRCRegClass.contains(Reg)) {
6822     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6823            "Reg must be a valid argument register!");
6824     return LASize + 4 * (Reg - PPC::R3);
6825   }
6826 
6827   if (PPC::G8RCRegClass.contains(Reg)) {
6828     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6829            "Reg must be a valid argument register!");
6830     return LASize + 8 * (Reg - PPC::X3);
6831   }
6832 
6833   llvm_unreachable("Only general purpose registers expected.");
6834 }
6835 
6836 //   AIX ABI Stack Frame Layout:
6837 //
6838 //   Low Memory +--------------------------------------------+
6839 //   SP   +---> | Back chain                                 | ---+
6840 //        |     +--------------------------------------------+    |
6841 //        |     | Saved Condition Register                   |    |
6842 //        |     +--------------------------------------------+    |
6843 //        |     | Saved Linkage Register                     |    |
6844 //        |     +--------------------------------------------+    | Linkage Area
6845 //        |     | Reserved for compilers                     |    |
6846 //        |     +--------------------------------------------+    |
6847 //        |     | Reserved for binders                       |    |
6848 //        |     +--------------------------------------------+    |
6849 //        |     | Saved TOC pointer                          | ---+
6850 //        |     +--------------------------------------------+
6851 //        |     | Parameter save area                        |
6852 //        |     +--------------------------------------------+
6853 //        |     | Alloca space                               |
6854 //        |     +--------------------------------------------+
6855 //        |     | Local variable space                       |
6856 //        |     +--------------------------------------------+
6857 //        |     | Float/int conversion temporary             |
6858 //        |     +--------------------------------------------+
6859 //        |     | Save area for AltiVec registers            |
6860 //        |     +--------------------------------------------+
6861 //        |     | AltiVec alignment padding                  |
6862 //        |     +--------------------------------------------+
6863 //        |     | Save area for VRSAVE register              |
6864 //        |     +--------------------------------------------+
6865 //        |     | Save area for General Purpose registers    |
6866 //        |     +--------------------------------------------+
6867 //        |     | Save area for Floating Point registers     |
6868 //        |     +--------------------------------------------+
6869 //        +---- | Back chain                                 |
6870 // High Memory  +--------------------------------------------+
6871 //
6872 //  Specifications:
6873 //  AIX 7.2 Assembler Language Reference
6874 //  Subroutine linkage convention
6875 
6876 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6877     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6878     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6879     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6880 
6881   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6882           CallConv == CallingConv::Fast) &&
6883          "Unexpected calling convention!");
6884 
6885   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6886     report_fatal_error("Tail call support is unimplemented on AIX.");
6887 
6888   if (useSoftFloat())
6889     report_fatal_error("Soft float support is unimplemented on AIX.");
6890 
6891   const PPCSubtarget &Subtarget =
6892       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
6893 
6894   const bool IsPPC64 = Subtarget.isPPC64();
6895   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6896 
6897   // Assign locations to all of the incoming arguments.
6898   SmallVector<CCValAssign, 16> ArgLocs;
6899   MachineFunction &MF = DAG.getMachineFunction();
6900   MachineFrameInfo &MFI = MF.getFrameInfo();
6901   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6902   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6903 
6904   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6905   // Reserve space for the linkage area on the stack.
6906   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6907   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6908   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6909 
6910   SmallVector<SDValue, 8> MemOps;
6911 
6912   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6913     CCValAssign &VA = ArgLocs[I++];
6914     MVT LocVT = VA.getLocVT();
6915     MVT ValVT = VA.getValVT();
6916     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6917     // For compatibility with the AIX XL compiler, the float args in the
6918     // parameter save area are initialized even if the argument is available
6919     // in register.  The caller is required to initialize both the register
6920     // and memory, however, the callee can choose to expect it in either.
6921     // The memloc is dismissed here because the argument is retrieved from
6922     // the register.
6923     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6924       continue;
6925 
6926     auto HandleMemLoc = [&]() {
6927       const unsigned LocSize = LocVT.getStoreSize();
6928       const unsigned ValSize = ValVT.getStoreSize();
6929       assert((ValSize <= LocSize) &&
6930              "Object size is larger than size of MemLoc");
6931       int CurArgOffset = VA.getLocMemOffset();
6932       // Objects are right-justified because AIX is big-endian.
6933       if (LocSize > ValSize)
6934         CurArgOffset += LocSize - ValSize;
6935       // Potential tail calls could cause overwriting of argument stack slots.
6936       const bool IsImmutable =
6937           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6938             (CallConv == CallingConv::Fast));
6939       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6940       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6941       SDValue ArgValue =
6942           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6943       InVals.push_back(ArgValue);
6944     };
6945 
6946     // Vector arguments to VaArg functions are passed both on the stack, and
6947     // in any available GPRs. Load the value from the stack and add the GPRs
6948     // as live ins.
6949     if (VA.isMemLoc() && VA.needsCustom()) {
6950       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6951       assert(isVarArg && "Only use custom memloc for vararg.");
6952       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6953       // matching custom RegLocs.
6954       const unsigned OriginalValNo = VA.getValNo();
6955       (void)OriginalValNo;
6956 
6957       auto HandleCustomVecRegLoc = [&]() {
6958         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6959                "Missing custom RegLoc.");
6960         VA = ArgLocs[I++];
6961         assert(VA.getValVT().isVector() &&
6962                "Unexpected Val type for custom RegLoc.");
6963         assert(VA.getValNo() == OriginalValNo &&
6964                "ValNo mismatch between custom MemLoc and RegLoc.");
6965         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
6966         MF.addLiveIn(VA.getLocReg(),
6967                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
6968                                        Subtarget.hasVSX()));
6969       };
6970 
6971       HandleMemLoc();
6972       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
6973       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
6974       // R10.
6975       HandleCustomVecRegLoc();
6976       HandleCustomVecRegLoc();
6977 
6978       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
6979       // we passed the vector in R5, R6, R7 and R8.
6980       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
6981         assert(!IsPPC64 &&
6982                "Only 2 custom RegLocs expected for 64-bit codegen.");
6983         HandleCustomVecRegLoc();
6984         HandleCustomVecRegLoc();
6985       }
6986 
6987       continue;
6988     }
6989 
6990     if (VA.isRegLoc()) {
6991       if (VA.getValVT().isScalarInteger())
6992         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
6993       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
6994         switch (VA.getValVT().SimpleTy) {
6995         default:
6996           report_fatal_error("Unhandled value type for argument.");
6997         case MVT::f32:
6998           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
6999           break;
7000         case MVT::f64:
7001           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7002           break;
7003         }
7004       } else if (VA.getValVT().isVector()) {
7005         switch (VA.getValVT().SimpleTy) {
7006         default:
7007           report_fatal_error("Unhandled value type for argument.");
7008         case MVT::v16i8:
7009           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7010           break;
7011         case MVT::v8i16:
7012           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7013           break;
7014         case MVT::v4i32:
7015         case MVT::v2i64:
7016         case MVT::v1i128:
7017           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7018           break;
7019         case MVT::v4f32:
7020         case MVT::v2f64:
7021           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7022           break;
7023         }
7024       }
7025     }
7026 
7027     if (Flags.isByVal() && VA.isMemLoc()) {
7028       const unsigned Size =
7029           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7030                   PtrByteSize);
7031       const int FI = MF.getFrameInfo().CreateFixedObject(
7032           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7033           /* IsAliased */ true);
7034       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7035       InVals.push_back(FIN);
7036 
7037       continue;
7038     }
7039 
7040     if (Flags.isByVal()) {
7041       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7042 
7043       const MCPhysReg ArgReg = VA.getLocReg();
7044       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7045 
7046       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7047         report_fatal_error("Over aligned byvals not supported yet.");
7048 
7049       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7050       const int FI = MF.getFrameInfo().CreateFixedObject(
7051           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7052           /* IsAliased */ true);
7053       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7054       InVals.push_back(FIN);
7055 
7056       // Add live ins for all the RegLocs for the same ByVal.
7057       const TargetRegisterClass *RegClass =
7058           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7059 
7060       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7061                                                unsigned Offset) {
7062         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7063         // Since the callers side has left justified the aggregate in the
7064         // register, we can simply store the entire register into the stack
7065         // slot.
7066         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7067         // The store to the fixedstack object is needed becuase accessing a
7068         // field of the ByVal will use a gep and load. Ideally we will optimize
7069         // to extracting the value from the register directly, and elide the
7070         // stores when the arguments address is not taken, but that will need to
7071         // be future work.
7072         SDValue Store = DAG.getStore(
7073             CopyFrom.getValue(1), dl, CopyFrom,
7074             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7075             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7076 
7077         MemOps.push_back(Store);
7078       };
7079 
7080       unsigned Offset = 0;
7081       HandleRegLoc(VA.getLocReg(), Offset);
7082       Offset += PtrByteSize;
7083       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7084            Offset += PtrByteSize) {
7085         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7086                "RegLocs should be for ByVal argument.");
7087 
7088         const CCValAssign RL = ArgLocs[I++];
7089         HandleRegLoc(RL.getLocReg(), Offset);
7090         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7091       }
7092 
7093       if (Offset != StackSize) {
7094         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7095                "Expected MemLoc for remaining bytes.");
7096         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7097         // Consume the MemLoc.The InVal has already been emitted, so nothing
7098         // more needs to be done.
7099         ++I;
7100       }
7101 
7102       continue;
7103     }
7104 
7105     if (VA.isRegLoc() && !VA.needsCustom()) {
7106       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7107       Register VReg =
7108           MF.addLiveIn(VA.getLocReg(),
7109                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7110                                          Subtarget.hasVSX()));
7111       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7112       if (ValVT.isScalarInteger() &&
7113           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7114         ArgValue =
7115             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7116       }
7117       InVals.push_back(ArgValue);
7118       continue;
7119     }
7120     if (VA.isMemLoc()) {
7121       HandleMemLoc();
7122       continue;
7123     }
7124   }
7125 
7126   // On AIX a minimum of 8 words is saved to the parameter save area.
7127   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7128   // Area that is at least reserved in the caller of this function.
7129   unsigned CallerReservedArea =
7130       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7131 
7132   // Set the size that is at least reserved in caller of this function. Tail
7133   // call optimized function's reserved stack space needs to be aligned so
7134   // that taking the difference between two stack areas will result in an
7135   // aligned stack.
7136   CallerReservedArea =
7137       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7138   FuncInfo->setMinReservedArea(CallerReservedArea);
7139 
7140   if (isVarArg) {
7141     FuncInfo->setVarArgsFrameIndex(
7142         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7143     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7144 
7145     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7146                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7147 
7148     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7149                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7150     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7151 
7152     // The fixed integer arguments of a variadic function are stored to the
7153     // VarArgsFrameIndex on the stack so that they may be loaded by
7154     // dereferencing the result of va_next.
7155     for (unsigned GPRIndex =
7156              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7157          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7158 
7159       const Register VReg =
7160           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7161                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7162 
7163       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7164       SDValue Store =
7165           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7166       MemOps.push_back(Store);
7167       // Increment the address for the next argument to store.
7168       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7169       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7170     }
7171   }
7172 
7173   if (!MemOps.empty())
7174     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7175 
7176   return Chain;
7177 }
7178 
7179 SDValue PPCTargetLowering::LowerCall_AIX(
7180     SDValue Chain, SDValue Callee, CallFlags CFlags,
7181     const SmallVectorImpl<ISD::OutputArg> &Outs,
7182     const SmallVectorImpl<SDValue> &OutVals,
7183     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7184     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7185     const CallBase *CB) const {
7186   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7187   // AIX ABI stack frame layout.
7188 
7189   assert((CFlags.CallConv == CallingConv::C ||
7190           CFlags.CallConv == CallingConv::Cold ||
7191           CFlags.CallConv == CallingConv::Fast) &&
7192          "Unexpected calling convention!");
7193 
7194   if (CFlags.IsPatchPoint)
7195     report_fatal_error("This call type is unimplemented on AIX.");
7196 
7197   const PPCSubtarget& Subtarget =
7198       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7199 
7200   MachineFunction &MF = DAG.getMachineFunction();
7201   SmallVector<CCValAssign, 16> ArgLocs;
7202   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7203                     *DAG.getContext());
7204 
7205   // Reserve space for the linkage save area (LSA) on the stack.
7206   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7207   //   [SP][CR][LR][2 x reserved][TOC].
7208   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7209   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7210   const bool IsPPC64 = Subtarget.isPPC64();
7211   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7212   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7213   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7214   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7215 
7216   // The prolog code of the callee may store up to 8 GPR argument registers to
7217   // the stack, allowing va_start to index over them in memory if the callee
7218   // is variadic.
7219   // Because we cannot tell if this is needed on the caller side, we have to
7220   // conservatively assume that it is needed.  As such, make sure we have at
7221   // least enough stack space for the caller to store the 8 GPRs.
7222   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7223   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7224                                      CCInfo.getNextStackOffset());
7225 
7226   // Adjust the stack pointer for the new arguments...
7227   // These operations are automatically eliminated by the prolog/epilog pass.
7228   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7229   SDValue CallSeqStart = Chain;
7230 
7231   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7232   SmallVector<SDValue, 8> MemOpChains;
7233 
7234   // Set up a copy of the stack pointer for loading and storing any
7235   // arguments that may not fit in the registers available for argument
7236   // passing.
7237   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7238                                    : DAG.getRegister(PPC::R1, MVT::i32);
7239 
7240   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7241     const unsigned ValNo = ArgLocs[I].getValNo();
7242     SDValue Arg = OutVals[ValNo];
7243     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7244 
7245     if (Flags.isByVal()) {
7246       const unsigned ByValSize = Flags.getByValSize();
7247 
7248       // Nothing to do for zero-sized ByVals on the caller side.
7249       if (!ByValSize) {
7250         ++I;
7251         continue;
7252       }
7253 
7254       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7255         return DAG.getExtLoad(
7256             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7257             (LoadOffset != 0)
7258                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7259                 : Arg,
7260             MachinePointerInfo(), VT);
7261       };
7262 
7263       unsigned LoadOffset = 0;
7264 
7265       // Initialize registers, which are fully occupied by the by-val argument.
7266       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7267         SDValue Load = GetLoad(PtrVT, LoadOffset);
7268         MemOpChains.push_back(Load.getValue(1));
7269         LoadOffset += PtrByteSize;
7270         const CCValAssign &ByValVA = ArgLocs[I++];
7271         assert(ByValVA.getValNo() == ValNo &&
7272                "Unexpected location for pass-by-value argument.");
7273         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7274       }
7275 
7276       if (LoadOffset == ByValSize)
7277         continue;
7278 
7279       // There must be one more loc to handle the remainder.
7280       assert(ArgLocs[I].getValNo() == ValNo &&
7281              "Expected additional location for by-value argument.");
7282 
7283       if (ArgLocs[I].isMemLoc()) {
7284         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7285         const CCValAssign &ByValVA = ArgLocs[I++];
7286         ISD::ArgFlagsTy MemcpyFlags = Flags;
7287         // Only memcpy the bytes that don't pass in register.
7288         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7289         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7290             (LoadOffset != 0)
7291                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7292                 : Arg,
7293             DAG.getObjectPtrOffset(dl, StackPtr,
7294                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7295             CallSeqStart, MemcpyFlags, DAG, dl);
7296         continue;
7297       }
7298 
7299       // Initialize the final register residue.
7300       // Any residue that occupies the final by-val arg register must be
7301       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7302       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7303       // 2 and 1 byte loads.
7304       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7305       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7306              "Unexpected register residue for by-value argument.");
7307       SDValue ResidueVal;
7308       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7309         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7310         const MVT VT =
7311             N == 1 ? MVT::i8
7312                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7313         SDValue Load = GetLoad(VT, LoadOffset);
7314         MemOpChains.push_back(Load.getValue(1));
7315         LoadOffset += N;
7316         Bytes += N;
7317 
7318         // By-val arguments are passed left-justfied in register.
7319         // Every load here needs to be shifted, otherwise a full register load
7320         // should have been used.
7321         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7322                "Unexpected load emitted during handling of pass-by-value "
7323                "argument.");
7324         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7325         EVT ShiftAmountTy =
7326             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7327         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7328         SDValue ShiftedLoad =
7329             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7330         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7331                                               ShiftedLoad)
7332                                 : ShiftedLoad;
7333       }
7334 
7335       const CCValAssign &ByValVA = ArgLocs[I++];
7336       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7337       continue;
7338     }
7339 
7340     CCValAssign &VA = ArgLocs[I++];
7341     const MVT LocVT = VA.getLocVT();
7342     const MVT ValVT = VA.getValVT();
7343 
7344     switch (VA.getLocInfo()) {
7345     default:
7346       report_fatal_error("Unexpected argument extension type.");
7347     case CCValAssign::Full:
7348       break;
7349     case CCValAssign::ZExt:
7350       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7351       break;
7352     case CCValAssign::SExt:
7353       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7354       break;
7355     }
7356 
7357     if (VA.isRegLoc() && !VA.needsCustom()) {
7358       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7359       continue;
7360     }
7361 
7362     // Vector arguments passed to VarArg functions need custom handling when
7363     // they are passed (at least partially) in GPRs.
7364     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7365       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7366       // Store value to its stack slot.
7367       SDValue PtrOff =
7368           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7369       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7370       SDValue Store =
7371           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7372       MemOpChains.push_back(Store);
7373       const unsigned OriginalValNo = VA.getValNo();
7374       // Then load the GPRs from the stack
7375       unsigned LoadOffset = 0;
7376       auto HandleCustomVecRegLoc = [&]() {
7377         assert(I != E && "Unexpected end of CCvalAssigns.");
7378         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7379                "Expected custom RegLoc.");
7380         CCValAssign RegVA = ArgLocs[I++];
7381         assert(RegVA.getValNo() == OriginalValNo &&
7382                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7383         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7384                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7385         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7386         MemOpChains.push_back(Load.getValue(1));
7387         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7388         LoadOffset += PtrByteSize;
7389       };
7390 
7391       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7392       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7393       // R10.
7394       HandleCustomVecRegLoc();
7395       HandleCustomVecRegLoc();
7396 
7397       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7398           ArgLocs[I].getValNo() == OriginalValNo) {
7399         assert(!IsPPC64 &&
7400                "Only 2 custom RegLocs expected for 64-bit codegen.");
7401         HandleCustomVecRegLoc();
7402         HandleCustomVecRegLoc();
7403       }
7404 
7405       continue;
7406     }
7407 
7408     if (VA.isMemLoc()) {
7409       SDValue PtrOff =
7410           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7411       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7412       MemOpChains.push_back(
7413           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7414 
7415       continue;
7416     }
7417 
7418     if (!ValVT.isFloatingPoint())
7419       report_fatal_error(
7420           "Unexpected register handling for calling convention.");
7421 
7422     // Custom handling is used for GPR initializations for vararg float
7423     // arguments.
7424     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7425            LocVT.isInteger() &&
7426            "Custom register handling only expected for VarArg.");
7427 
7428     SDValue ArgAsInt =
7429         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7430 
7431     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7432       // f32 in 32-bit GPR
7433       // f64 in 64-bit GPR
7434       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7435     else if (Arg.getValueType().getFixedSizeInBits() <
7436              LocVT.getFixedSizeInBits())
7437       // f32 in 64-bit GPR.
7438       RegsToPass.push_back(std::make_pair(
7439           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7440     else {
7441       // f64 in two 32-bit GPRs
7442       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7443       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7444              "Unexpected custom register for argument!");
7445       CCValAssign &GPR1 = VA;
7446       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7447                                      DAG.getConstant(32, dl, MVT::i8));
7448       RegsToPass.push_back(std::make_pair(
7449           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7450 
7451       if (I != E) {
7452         // If only 1 GPR was available, there will only be one custom GPR and
7453         // the argument will also pass in memory.
7454         CCValAssign &PeekArg = ArgLocs[I];
7455         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7456           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7457           CCValAssign &GPR2 = ArgLocs[I++];
7458           RegsToPass.push_back(std::make_pair(
7459               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7460         }
7461       }
7462     }
7463   }
7464 
7465   if (!MemOpChains.empty())
7466     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7467 
7468   // For indirect calls, we need to save the TOC base to the stack for
7469   // restoration after the call.
7470   if (CFlags.IsIndirect) {
7471     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7472     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7473     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7474     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7475     const unsigned TOCSaveOffset =
7476         Subtarget.getFrameLowering()->getTOCSaveOffset();
7477 
7478     setUsesTOCBasePtr(DAG);
7479     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7480     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7481     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7482     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7483     Chain = DAG.getStore(
7484         Val.getValue(1), dl, Val, AddPtr,
7485         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7486   }
7487 
7488   // Build a sequence of copy-to-reg nodes chained together with token chain
7489   // and flag operands which copy the outgoing args into the appropriate regs.
7490   SDValue InFlag;
7491   for (auto Reg : RegsToPass) {
7492     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7493     InFlag = Chain.getValue(1);
7494   }
7495 
7496   const int SPDiff = 0;
7497   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7498                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7499 }
7500 
7501 bool
7502 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7503                                   MachineFunction &MF, bool isVarArg,
7504                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7505                                   LLVMContext &Context) const {
7506   SmallVector<CCValAssign, 16> RVLocs;
7507   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7508   return CCInfo.CheckReturn(
7509       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7510                 ? RetCC_PPC_Cold
7511                 : RetCC_PPC);
7512 }
7513 
7514 SDValue
7515 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7516                                bool isVarArg,
7517                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7518                                const SmallVectorImpl<SDValue> &OutVals,
7519                                const SDLoc &dl, SelectionDAG &DAG) const {
7520   SmallVector<CCValAssign, 16> RVLocs;
7521   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7522                  *DAG.getContext());
7523   CCInfo.AnalyzeReturn(Outs,
7524                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7525                            ? RetCC_PPC_Cold
7526                            : RetCC_PPC);
7527 
7528   SDValue Flag;
7529   SmallVector<SDValue, 4> RetOps(1, Chain);
7530 
7531   // Copy the result values into the output registers.
7532   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7533     CCValAssign &VA = RVLocs[i];
7534     assert(VA.isRegLoc() && "Can only return in registers!");
7535 
7536     SDValue Arg = OutVals[RealResIdx];
7537 
7538     switch (VA.getLocInfo()) {
7539     default: llvm_unreachable("Unknown loc info!");
7540     case CCValAssign::Full: break;
7541     case CCValAssign::AExt:
7542       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7543       break;
7544     case CCValAssign::ZExt:
7545       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7546       break;
7547     case CCValAssign::SExt:
7548       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7549       break;
7550     }
7551     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7552       bool isLittleEndian = Subtarget.isLittleEndian();
7553       // Legalize ret f64 -> ret 2 x i32.
7554       SDValue SVal =
7555           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7556                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7557       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7558       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7559       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7560                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7561       Flag = Chain.getValue(1);
7562       VA = RVLocs[++i]; // skip ahead to next loc
7563       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7564     } else
7565       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7566     Flag = Chain.getValue(1);
7567     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7568   }
7569 
7570   RetOps[0] = Chain;  // Update chain.
7571 
7572   // Add the flag if we have it.
7573   if (Flag.getNode())
7574     RetOps.push_back(Flag);
7575 
7576   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7577 }
7578 
7579 SDValue
7580 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7581                                                 SelectionDAG &DAG) const {
7582   SDLoc dl(Op);
7583 
7584   // Get the correct type for integers.
7585   EVT IntVT = Op.getValueType();
7586 
7587   // Get the inputs.
7588   SDValue Chain = Op.getOperand(0);
7589   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7590   // Build a DYNAREAOFFSET node.
7591   SDValue Ops[2] = {Chain, FPSIdx};
7592   SDVTList VTs = DAG.getVTList(IntVT);
7593   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7594 }
7595 
7596 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7597                                              SelectionDAG &DAG) const {
7598   // When we pop the dynamic allocation we need to restore the SP link.
7599   SDLoc dl(Op);
7600 
7601   // Get the correct type for pointers.
7602   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7603 
7604   // Construct the stack pointer operand.
7605   bool isPPC64 = Subtarget.isPPC64();
7606   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7607   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7608 
7609   // Get the operands for the STACKRESTORE.
7610   SDValue Chain = Op.getOperand(0);
7611   SDValue SaveSP = Op.getOperand(1);
7612 
7613   // Load the old link SP.
7614   SDValue LoadLinkSP =
7615       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7616 
7617   // Restore the stack pointer.
7618   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7619 
7620   // Store the old link SP.
7621   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7622 }
7623 
7624 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7625   MachineFunction &MF = DAG.getMachineFunction();
7626   bool isPPC64 = Subtarget.isPPC64();
7627   EVT PtrVT = getPointerTy(MF.getDataLayout());
7628 
7629   // Get current frame pointer save index.  The users of this index will be
7630   // primarily DYNALLOC instructions.
7631   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7632   int RASI = FI->getReturnAddrSaveIndex();
7633 
7634   // If the frame pointer save index hasn't been defined yet.
7635   if (!RASI) {
7636     // Find out what the fix offset of the frame pointer save area.
7637     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7638     // Allocate the frame index for frame pointer save area.
7639     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7640     // Save the result.
7641     FI->setReturnAddrSaveIndex(RASI);
7642   }
7643   return DAG.getFrameIndex(RASI, PtrVT);
7644 }
7645 
7646 SDValue
7647 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7648   MachineFunction &MF = DAG.getMachineFunction();
7649   bool isPPC64 = Subtarget.isPPC64();
7650   EVT PtrVT = getPointerTy(MF.getDataLayout());
7651 
7652   // Get current frame pointer save index.  The users of this index will be
7653   // primarily DYNALLOC instructions.
7654   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7655   int FPSI = FI->getFramePointerSaveIndex();
7656 
7657   // If the frame pointer save index hasn't been defined yet.
7658   if (!FPSI) {
7659     // Find out what the fix offset of the frame pointer save area.
7660     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7661     // Allocate the frame index for frame pointer save area.
7662     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7663     // Save the result.
7664     FI->setFramePointerSaveIndex(FPSI);
7665   }
7666   return DAG.getFrameIndex(FPSI, PtrVT);
7667 }
7668 
7669 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7670                                                    SelectionDAG &DAG) const {
7671   MachineFunction &MF = DAG.getMachineFunction();
7672   // Get the inputs.
7673   SDValue Chain = Op.getOperand(0);
7674   SDValue Size  = Op.getOperand(1);
7675   SDLoc dl(Op);
7676 
7677   // Get the correct type for pointers.
7678   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7679   // Negate the size.
7680   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7681                                 DAG.getConstant(0, dl, PtrVT), Size);
7682   // Construct a node for the frame pointer save index.
7683   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7684   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7685   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7686   if (hasInlineStackProbe(MF))
7687     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7688   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7689 }
7690 
7691 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7692                                                      SelectionDAG &DAG) const {
7693   MachineFunction &MF = DAG.getMachineFunction();
7694 
7695   bool isPPC64 = Subtarget.isPPC64();
7696   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7697 
7698   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7699   return DAG.getFrameIndex(FI, PtrVT);
7700 }
7701 
7702 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7703                                                SelectionDAG &DAG) const {
7704   SDLoc DL(Op);
7705   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7706                      DAG.getVTList(MVT::i32, MVT::Other),
7707                      Op.getOperand(0), Op.getOperand(1));
7708 }
7709 
7710 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7711                                                 SelectionDAG &DAG) const {
7712   SDLoc DL(Op);
7713   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7714                      Op.getOperand(0), Op.getOperand(1));
7715 }
7716 
7717 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7718   if (Op.getValueType().isVector())
7719     return LowerVectorLoad(Op, DAG);
7720 
7721   assert(Op.getValueType() == MVT::i1 &&
7722          "Custom lowering only for i1 loads");
7723 
7724   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7725 
7726   SDLoc dl(Op);
7727   LoadSDNode *LD = cast<LoadSDNode>(Op);
7728 
7729   SDValue Chain = LD->getChain();
7730   SDValue BasePtr = LD->getBasePtr();
7731   MachineMemOperand *MMO = LD->getMemOperand();
7732 
7733   SDValue NewLD =
7734       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7735                      BasePtr, MVT::i8, MMO);
7736   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7737 
7738   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7739   return DAG.getMergeValues(Ops, dl);
7740 }
7741 
7742 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7743   if (Op.getOperand(1).getValueType().isVector())
7744     return LowerVectorStore(Op, DAG);
7745 
7746   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7747          "Custom lowering only for i1 stores");
7748 
7749   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7750 
7751   SDLoc dl(Op);
7752   StoreSDNode *ST = cast<StoreSDNode>(Op);
7753 
7754   SDValue Chain = ST->getChain();
7755   SDValue BasePtr = ST->getBasePtr();
7756   SDValue Value = ST->getValue();
7757   MachineMemOperand *MMO = ST->getMemOperand();
7758 
7759   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7760                       Value);
7761   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7762 }
7763 
7764 // FIXME: Remove this once the ANDI glue bug is fixed:
7765 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7766   assert(Op.getValueType() == MVT::i1 &&
7767          "Custom lowering only for i1 results");
7768 
7769   SDLoc DL(Op);
7770   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7771 }
7772 
7773 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7774                                                SelectionDAG &DAG) const {
7775 
7776   // Implements a vector truncate that fits in a vector register as a shuffle.
7777   // We want to legalize vector truncates down to where the source fits in
7778   // a vector register (and target is therefore smaller than vector register
7779   // size).  At that point legalization will try to custom lower the sub-legal
7780   // result and get here - where we can contain the truncate as a single target
7781   // operation.
7782 
7783   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7784   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7785   //
7786   // We will implement it for big-endian ordering as this (where x denotes
7787   // undefined):
7788   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7789   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7790   //
7791   // The same operation in little-endian ordering will be:
7792   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7793   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7794 
7795   EVT TrgVT = Op.getValueType();
7796   assert(TrgVT.isVector() && "Vector type expected.");
7797   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7798   EVT EltVT = TrgVT.getVectorElementType();
7799   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7800       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7801       !isPowerOf2_32(EltVT.getSizeInBits()))
7802     return SDValue();
7803 
7804   SDValue N1 = Op.getOperand(0);
7805   EVT SrcVT = N1.getValueType();
7806   unsigned SrcSize = SrcVT.getSizeInBits();
7807   if (SrcSize > 256 ||
7808       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7809       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7810     return SDValue();
7811   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7812     return SDValue();
7813 
7814   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7815   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7816 
7817   SDLoc DL(Op);
7818   SDValue Op1, Op2;
7819   if (SrcSize == 256) {
7820     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7821     EVT SplitVT =
7822         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7823     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7824     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7825                       DAG.getConstant(0, DL, VecIdxTy));
7826     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7827                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7828   }
7829   else {
7830     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7831     Op2 = DAG.getUNDEF(WideVT);
7832   }
7833 
7834   // First list the elements we want to keep.
7835   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7836   SmallVector<int, 16> ShuffV;
7837   if (Subtarget.isLittleEndian())
7838     for (unsigned i = 0; i < TrgNumElts; ++i)
7839       ShuffV.push_back(i * SizeMult);
7840   else
7841     for (unsigned i = 1; i <= TrgNumElts; ++i)
7842       ShuffV.push_back(i * SizeMult - 1);
7843 
7844   // Populate the remaining elements with undefs.
7845   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7846     // ShuffV.push_back(i + WideNumElts);
7847     ShuffV.push_back(WideNumElts + 1);
7848 
7849   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7850   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7851   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7852 }
7853 
7854 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7855 /// possible.
7856 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7857   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7858   EVT ResVT = Op.getValueType();
7859   EVT CmpVT = Op.getOperand(0).getValueType();
7860   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7861   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7862   SDLoc dl(Op);
7863 
7864   // Without power9-vector, we don't have native instruction for f128 comparison.
7865   // Following transformation to libcall is needed for setcc:
7866   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7867   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7868     SDValue Z = DAG.getSetCC(
7869         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7870         LHS, RHS, CC);
7871     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7872     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7873   }
7874 
7875   // Not FP, or using SPE? Not a fsel.
7876   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7877       Subtarget.hasSPE())
7878     return Op;
7879 
7880   SDNodeFlags Flags = Op.getNode()->getFlags();
7881 
7882   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7883   // presence of infinities.
7884   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7885     switch (CC) {
7886     default:
7887       break;
7888     case ISD::SETOGT:
7889     case ISD::SETGT:
7890       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7891     case ISD::SETOLT:
7892     case ISD::SETLT:
7893       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7894     }
7895   }
7896 
7897   // We might be able to do better than this under some circumstances, but in
7898   // general, fsel-based lowering of select is a finite-math-only optimization.
7899   // For more information, see section F.3 of the 2.06 ISA specification.
7900   // With ISA 3.0
7901   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7902       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7903     return Op;
7904 
7905   // If the RHS of the comparison is a 0.0, we don't need to do the
7906   // subtraction at all.
7907   SDValue Sel1;
7908   if (isFloatingPointZero(RHS))
7909     switch (CC) {
7910     default: break;       // SETUO etc aren't handled by fsel.
7911     case ISD::SETNE:
7912       std::swap(TV, FV);
7913       LLVM_FALLTHROUGH;
7914     case ISD::SETEQ:
7915       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7916         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7917       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7918       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7919         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7920       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7921                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7922     case ISD::SETULT:
7923     case ISD::SETLT:
7924       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7925       LLVM_FALLTHROUGH;
7926     case ISD::SETOGE:
7927     case ISD::SETGE:
7928       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7929         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7930       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7931     case ISD::SETUGT:
7932     case ISD::SETGT:
7933       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7934       LLVM_FALLTHROUGH;
7935     case ISD::SETOLE:
7936     case ISD::SETLE:
7937       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7938         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7939       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7940                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7941     }
7942 
7943   SDValue Cmp;
7944   switch (CC) {
7945   default: break;       // SETUO etc aren't handled by fsel.
7946   case ISD::SETNE:
7947     std::swap(TV, FV);
7948     LLVM_FALLTHROUGH;
7949   case ISD::SETEQ:
7950     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7951     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7952       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7953     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7954     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7955       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7956     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7957                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7958   case ISD::SETULT:
7959   case ISD::SETLT:
7960     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7961     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7962       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7963     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7964   case ISD::SETOGE:
7965   case ISD::SETGE:
7966     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7967     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7968       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7969     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7970   case ISD::SETUGT:
7971   case ISD::SETGT:
7972     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7973     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7974       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7975     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7976   case ISD::SETOLE:
7977   case ISD::SETLE:
7978     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7979     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7980       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7981     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7982   }
7983   return Op;
7984 }
7985 
7986 static unsigned getPPCStrictOpcode(unsigned Opc) {
7987   switch (Opc) {
7988   default:
7989     llvm_unreachable("No strict version of this opcode!");
7990   case PPCISD::FCTIDZ:
7991     return PPCISD::STRICT_FCTIDZ;
7992   case PPCISD::FCTIWZ:
7993     return PPCISD::STRICT_FCTIWZ;
7994   case PPCISD::FCTIDUZ:
7995     return PPCISD::STRICT_FCTIDUZ;
7996   case PPCISD::FCTIWUZ:
7997     return PPCISD::STRICT_FCTIWUZ;
7998   case PPCISD::FCFID:
7999     return PPCISD::STRICT_FCFID;
8000   case PPCISD::FCFIDU:
8001     return PPCISD::STRICT_FCFIDU;
8002   case PPCISD::FCFIDS:
8003     return PPCISD::STRICT_FCFIDS;
8004   case PPCISD::FCFIDUS:
8005     return PPCISD::STRICT_FCFIDUS;
8006   }
8007 }
8008 
8009 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8010                               const PPCSubtarget &Subtarget) {
8011   SDLoc dl(Op);
8012   bool IsStrict = Op->isStrictFPOpcode();
8013   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8014                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8015 
8016   // TODO: Any other flags to propagate?
8017   SDNodeFlags Flags;
8018   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8019 
8020   // For strict nodes, source is the second operand.
8021   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8022   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8023   assert(Src.getValueType().isFloatingPoint());
8024   if (Src.getValueType() == MVT::f32) {
8025     if (IsStrict) {
8026       Src =
8027           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8028                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8029       Chain = Src.getValue(1);
8030     } else
8031       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8032   }
8033   SDValue Conv;
8034   unsigned Opc = ISD::DELETED_NODE;
8035   switch (Op.getSimpleValueType().SimpleTy) {
8036   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8037   case MVT::i32:
8038     Opc = IsSigned ? PPCISD::FCTIWZ
8039                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8040     break;
8041   case MVT::i64:
8042     assert((IsSigned || Subtarget.hasFPCVT()) &&
8043            "i64 FP_TO_UINT is supported only with FPCVT");
8044     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8045   }
8046   if (IsStrict) {
8047     Opc = getPPCStrictOpcode(Opc);
8048     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8049                        {Chain, Src}, Flags);
8050   } else {
8051     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8052   }
8053   return Conv;
8054 }
8055 
8056 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8057                                                SelectionDAG &DAG,
8058                                                const SDLoc &dl) const {
8059   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8060   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8061                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8062   bool IsStrict = Op->isStrictFPOpcode();
8063 
8064   // Convert the FP value to an int value through memory.
8065   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8066                   (IsSigned || Subtarget.hasFPCVT());
8067   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8068   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8069   MachinePointerInfo MPI =
8070       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8071 
8072   // Emit a store to the stack slot.
8073   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8074   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8075   if (i32Stack) {
8076     MachineFunction &MF = DAG.getMachineFunction();
8077     Alignment = Align(4);
8078     MachineMemOperand *MMO =
8079         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8080     SDValue Ops[] = { Chain, Tmp, FIPtr };
8081     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8082               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8083   } else
8084     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8085 
8086   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8087   // add in a bias on big endian.
8088   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8089     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8090                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8091     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8092   }
8093 
8094   RLI.Chain = Chain;
8095   RLI.Ptr = FIPtr;
8096   RLI.MPI = MPI;
8097   RLI.Alignment = Alignment;
8098 }
8099 
8100 /// Custom lowers floating point to integer conversions to use
8101 /// the direct move instructions available in ISA 2.07 to avoid the
8102 /// need for load/store combinations.
8103 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8104                                                     SelectionDAG &DAG,
8105                                                     const SDLoc &dl) const {
8106   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8107   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8108   if (Op->isStrictFPOpcode())
8109     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8110   else
8111     return Mov;
8112 }
8113 
8114 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8115                                           const SDLoc &dl) const {
8116   bool IsStrict = Op->isStrictFPOpcode();
8117   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8118                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8119   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8120   EVT SrcVT = Src.getValueType();
8121   EVT DstVT = Op.getValueType();
8122 
8123   // FP to INT conversions are legal for f128.
8124   if (SrcVT == MVT::f128)
8125     return Subtarget.hasP9Vector() ? Op : SDValue();
8126 
8127   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8128   // PPC (the libcall is not available).
8129   if (SrcVT == MVT::ppcf128) {
8130     if (DstVT == MVT::i32) {
8131       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8132       // set other fast-math flags to FP operations in both strict and
8133       // non-strict cases. (FP_TO_SINT, FSUB)
8134       SDNodeFlags Flags;
8135       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8136 
8137       if (IsSigned) {
8138         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8139                                  DAG.getIntPtrConstant(0, dl));
8140         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8141                                  DAG.getIntPtrConstant(1, dl));
8142 
8143         // Add the two halves of the long double in round-to-zero mode, and use
8144         // a smaller FP_TO_SINT.
8145         if (IsStrict) {
8146           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8147                                     DAG.getVTList(MVT::f64, MVT::Other),
8148                                     {Op.getOperand(0), Lo, Hi}, Flags);
8149           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8150                              DAG.getVTList(MVT::i32, MVT::Other),
8151                              {Res.getValue(1), Res}, Flags);
8152         } else {
8153           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8154           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8155         }
8156       } else {
8157         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8158         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8159         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8160         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8161         if (IsStrict) {
8162           // Sel = Src < 0x80000000
8163           // FltOfs = select Sel, 0.0, 0x80000000
8164           // IntOfs = select Sel, 0, 0x80000000
8165           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8166           SDValue Chain = Op.getOperand(0);
8167           EVT SetCCVT =
8168               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8169           EVT DstSetCCVT =
8170               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8171           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8172                                      Chain, true);
8173           Chain = Sel.getValue(1);
8174 
8175           SDValue FltOfs = DAG.getSelect(
8176               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8177           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8178 
8179           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8180                                     DAG.getVTList(SrcVT, MVT::Other),
8181                                     {Chain, Src, FltOfs}, Flags);
8182           Chain = Val.getValue(1);
8183           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8184                                      DAG.getVTList(DstVT, MVT::Other),
8185                                      {Chain, Val}, Flags);
8186           Chain = SInt.getValue(1);
8187           SDValue IntOfs = DAG.getSelect(
8188               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8189           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8190           return DAG.getMergeValues({Result, Chain}, dl);
8191         } else {
8192           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8193           // FIXME: generated code sucks.
8194           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8195           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8196           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8197           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8198           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8199         }
8200       }
8201     }
8202 
8203     return SDValue();
8204   }
8205 
8206   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8207     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8208 
8209   ReuseLoadInfo RLI;
8210   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8211 
8212   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8213                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8214 }
8215 
8216 // We're trying to insert a regular store, S, and then a load, L. If the
8217 // incoming value, O, is a load, we might just be able to have our load use the
8218 // address used by O. However, we don't know if anything else will store to
8219 // that address before we can load from it. To prevent this situation, we need
8220 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8221 // the same chain operand as O, we create a token factor from the chain results
8222 // of O and L, and we replace all uses of O's chain result with that token
8223 // factor (see spliceIntoChain below for this last part).
8224 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8225                                             ReuseLoadInfo &RLI,
8226                                             SelectionDAG &DAG,
8227                                             ISD::LoadExtType ET) const {
8228   // Conservatively skip reusing for constrained FP nodes.
8229   if (Op->isStrictFPOpcode())
8230     return false;
8231 
8232   SDLoc dl(Op);
8233   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8234                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8235   if (ET == ISD::NON_EXTLOAD &&
8236       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8237       isOperationLegalOrCustom(Op.getOpcode(),
8238                                Op.getOperand(0).getValueType())) {
8239 
8240     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8241     return true;
8242   }
8243 
8244   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8245   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8246       LD->isNonTemporal())
8247     return false;
8248   if (LD->getMemoryVT() != MemVT)
8249     return false;
8250 
8251   // If the result of the load is an illegal type, then we can't build a
8252   // valid chain for reuse since the legalised loads and token factor node that
8253   // ties the legalised loads together uses a different output chain then the
8254   // illegal load.
8255   if (!isTypeLegal(LD->getValueType(0)))
8256     return false;
8257 
8258   RLI.Ptr = LD->getBasePtr();
8259   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8260     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8261            "Non-pre-inc AM on PPC?");
8262     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8263                           LD->getOffset());
8264   }
8265 
8266   RLI.Chain = LD->getChain();
8267   RLI.MPI = LD->getPointerInfo();
8268   RLI.IsDereferenceable = LD->isDereferenceable();
8269   RLI.IsInvariant = LD->isInvariant();
8270   RLI.Alignment = LD->getAlign();
8271   RLI.AAInfo = LD->getAAInfo();
8272   RLI.Ranges = LD->getRanges();
8273 
8274   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8275   return true;
8276 }
8277 
8278 // Given the head of the old chain, ResChain, insert a token factor containing
8279 // it and NewResChain, and make users of ResChain now be users of that token
8280 // factor.
8281 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8282 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8283                                         SDValue NewResChain,
8284                                         SelectionDAG &DAG) const {
8285   if (!ResChain)
8286     return;
8287 
8288   SDLoc dl(NewResChain);
8289 
8290   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8291                            NewResChain, DAG.getUNDEF(MVT::Other));
8292   assert(TF.getNode() != NewResChain.getNode() &&
8293          "A new TF really is required here");
8294 
8295   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8296   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8297 }
8298 
8299 /// Analyze profitability of direct move
8300 /// prefer float load to int load plus direct move
8301 /// when there is no integer use of int load
8302 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8303   SDNode *Origin = Op.getOperand(0).getNode();
8304   if (Origin->getOpcode() != ISD::LOAD)
8305     return true;
8306 
8307   // If there is no LXSIBZX/LXSIHZX, like Power8,
8308   // prefer direct move if the memory size is 1 or 2 bytes.
8309   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8310   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8311     return true;
8312 
8313   for (SDNode::use_iterator UI = Origin->use_begin(),
8314                             UE = Origin->use_end();
8315        UI != UE; ++UI) {
8316 
8317     // Only look at the users of the loaded value.
8318     if (UI.getUse().get().getResNo() != 0)
8319       continue;
8320 
8321     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8322         UI->getOpcode() != ISD::UINT_TO_FP &&
8323         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8324         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8325       return true;
8326   }
8327 
8328   return false;
8329 }
8330 
8331 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8332                               const PPCSubtarget &Subtarget,
8333                               SDValue Chain = SDValue()) {
8334   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8335                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8336   SDLoc dl(Op);
8337 
8338   // TODO: Any other flags to propagate?
8339   SDNodeFlags Flags;
8340   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8341 
8342   // If we have FCFIDS, then use it when converting to single-precision.
8343   // Otherwise, convert to double-precision and then round.
8344   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8345   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8346                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8347   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8348   if (Op->isStrictFPOpcode()) {
8349     if (!Chain)
8350       Chain = Op.getOperand(0);
8351     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8352                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8353   } else
8354     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8355 }
8356 
8357 /// Custom lowers integer to floating point conversions to use
8358 /// the direct move instructions available in ISA 2.07 to avoid the
8359 /// need for load/store combinations.
8360 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8361                                                     SelectionDAG &DAG,
8362                                                     const SDLoc &dl) const {
8363   assert((Op.getValueType() == MVT::f32 ||
8364           Op.getValueType() == MVT::f64) &&
8365          "Invalid floating point type as target of conversion");
8366   assert(Subtarget.hasFPCVT() &&
8367          "Int to FP conversions with direct moves require FPCVT");
8368   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8369   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8370   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8371                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8372   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8373   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8374   return convertIntToFP(Op, Mov, DAG, Subtarget);
8375 }
8376 
8377 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8378 
8379   EVT VecVT = Vec.getValueType();
8380   assert(VecVT.isVector() && "Expected a vector type.");
8381   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8382 
8383   EVT EltVT = VecVT.getVectorElementType();
8384   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8385   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8386 
8387   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8388   SmallVector<SDValue, 16> Ops(NumConcat);
8389   Ops[0] = Vec;
8390   SDValue UndefVec = DAG.getUNDEF(VecVT);
8391   for (unsigned i = 1; i < NumConcat; ++i)
8392     Ops[i] = UndefVec;
8393 
8394   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8395 }
8396 
8397 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8398                                                 const SDLoc &dl) const {
8399   bool IsStrict = Op->isStrictFPOpcode();
8400   unsigned Opc = Op.getOpcode();
8401   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8402   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8403           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8404          "Unexpected conversion type");
8405   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8406          "Supports conversions to v2f64/v4f32 only.");
8407 
8408   // TODO: Any other flags to propagate?
8409   SDNodeFlags Flags;
8410   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8411 
8412   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8413   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8414 
8415   SDValue Wide = widenVec(DAG, Src, dl);
8416   EVT WideVT = Wide.getValueType();
8417   unsigned WideNumElts = WideVT.getVectorNumElements();
8418   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8419 
8420   SmallVector<int, 16> ShuffV;
8421   for (unsigned i = 0; i < WideNumElts; ++i)
8422     ShuffV.push_back(i + WideNumElts);
8423 
8424   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8425   int SaveElts = FourEltRes ? 4 : 2;
8426   if (Subtarget.isLittleEndian())
8427     for (int i = 0; i < SaveElts; i++)
8428       ShuffV[i * Stride] = i;
8429   else
8430     for (int i = 1; i <= SaveElts; i++)
8431       ShuffV[i * Stride - 1] = i - 1;
8432 
8433   SDValue ShuffleSrc2 =
8434       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8435   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8436 
8437   SDValue Extend;
8438   if (SignedConv) {
8439     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8440     EVT ExtVT = Src.getValueType();
8441     if (Subtarget.hasP9Altivec())
8442       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8443                                IntermediateVT.getVectorNumElements());
8444 
8445     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8446                          DAG.getValueType(ExtVT));
8447   } else
8448     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8449 
8450   if (IsStrict)
8451     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8452                        {Op.getOperand(0), Extend}, Flags);
8453 
8454   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8455 }
8456 
8457 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8458                                           SelectionDAG &DAG) const {
8459   SDLoc dl(Op);
8460   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8461                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8462   bool IsStrict = Op->isStrictFPOpcode();
8463   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8464   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8465 
8466   // TODO: Any other flags to propagate?
8467   SDNodeFlags Flags;
8468   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8469 
8470   EVT InVT = Src.getValueType();
8471   EVT OutVT = Op.getValueType();
8472   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8473       isOperationCustom(Op.getOpcode(), InVT))
8474     return LowerINT_TO_FPVector(Op, DAG, dl);
8475 
8476   // Conversions to f128 are legal.
8477   if (Op.getValueType() == MVT::f128)
8478     return Subtarget.hasP9Vector() ? Op : SDValue();
8479 
8480   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8481   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8482     return SDValue();
8483 
8484   if (Src.getValueType() == MVT::i1) {
8485     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8486                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8487                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8488     if (IsStrict)
8489       return DAG.getMergeValues({Sel, Chain}, dl);
8490     else
8491       return Sel;
8492   }
8493 
8494   // If we have direct moves, we can do all the conversion, skip the store/load
8495   // however, without FPCVT we can't do most conversions.
8496   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8497       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8498     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8499 
8500   assert((IsSigned || Subtarget.hasFPCVT()) &&
8501          "UINT_TO_FP is supported only with FPCVT");
8502 
8503   if (Src.getValueType() == MVT::i64) {
8504     SDValue SINT = Src;
8505     // When converting to single-precision, we actually need to convert
8506     // to double-precision first and then round to single-precision.
8507     // To avoid double-rounding effects during that operation, we have
8508     // to prepare the input operand.  Bits that might be truncated when
8509     // converting to double-precision are replaced by a bit that won't
8510     // be lost at this stage, but is below the single-precision rounding
8511     // position.
8512     //
8513     // However, if -enable-unsafe-fp-math is in effect, accept double
8514     // rounding to avoid the extra overhead.
8515     if (Op.getValueType() == MVT::f32 &&
8516         !Subtarget.hasFPCVT() &&
8517         !DAG.getTarget().Options.UnsafeFPMath) {
8518 
8519       // Twiddle input to make sure the low 11 bits are zero.  (If this
8520       // is the case, we are guaranteed the value will fit into the 53 bit
8521       // mantissa of an IEEE double-precision value without rounding.)
8522       // If any of those low 11 bits were not zero originally, make sure
8523       // bit 12 (value 2048) is set instead, so that the final rounding
8524       // to single-precision gets the correct result.
8525       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8526                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8527       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8528                           Round, DAG.getConstant(2047, dl, MVT::i64));
8529       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8530       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8531                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8532 
8533       // However, we cannot use that value unconditionally: if the magnitude
8534       // of the input value is small, the bit-twiddling we did above might
8535       // end up visibly changing the output.  Fortunately, in that case, we
8536       // don't need to twiddle bits since the original input will convert
8537       // exactly to double-precision floating-point already.  Therefore,
8538       // construct a conditional to use the original value if the top 11
8539       // bits are all sign-bit copies, and use the rounded value computed
8540       // above otherwise.
8541       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8542                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8543       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8544                          Cond, DAG.getConstant(1, dl, MVT::i64));
8545       Cond = DAG.getSetCC(
8546           dl,
8547           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8548           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8549 
8550       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8551     }
8552 
8553     ReuseLoadInfo RLI;
8554     SDValue Bits;
8555 
8556     MachineFunction &MF = DAG.getMachineFunction();
8557     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8558       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8559                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8560       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8561     } else if (Subtarget.hasLFIWAX() &&
8562                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8563       MachineMemOperand *MMO =
8564         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8565                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8566       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8567       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8568                                      DAG.getVTList(MVT::f64, MVT::Other),
8569                                      Ops, MVT::i32, MMO);
8570       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8571     } else if (Subtarget.hasFPCVT() &&
8572                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8573       MachineMemOperand *MMO =
8574         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8575                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8576       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8577       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8578                                      DAG.getVTList(MVT::f64, MVT::Other),
8579                                      Ops, MVT::i32, MMO);
8580       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8581     } else if (((Subtarget.hasLFIWAX() &&
8582                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8583                 (Subtarget.hasFPCVT() &&
8584                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8585                SINT.getOperand(0).getValueType() == MVT::i32) {
8586       MachineFrameInfo &MFI = MF.getFrameInfo();
8587       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8588 
8589       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8590       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8591 
8592       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8593                                    MachinePointerInfo::getFixedStack(
8594                                        DAG.getMachineFunction(), FrameIdx));
8595       Chain = Store;
8596 
8597       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8598              "Expected an i32 store");
8599 
8600       RLI.Ptr = FIdx;
8601       RLI.Chain = Chain;
8602       RLI.MPI =
8603           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8604       RLI.Alignment = Align(4);
8605 
8606       MachineMemOperand *MMO =
8607         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8608                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8609       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8610       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8611                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8612                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8613                                      Ops, MVT::i32, MMO);
8614       Chain = Bits.getValue(1);
8615     } else
8616       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8617 
8618     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8619     if (IsStrict)
8620       Chain = FP.getValue(1);
8621 
8622     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8623       if (IsStrict)
8624         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8625                          DAG.getVTList(MVT::f32, MVT::Other),
8626                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8627       else
8628         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8629                          DAG.getIntPtrConstant(0, dl));
8630     }
8631     return FP;
8632   }
8633 
8634   assert(Src.getValueType() == MVT::i32 &&
8635          "Unhandled INT_TO_FP type in custom expander!");
8636   // Since we only generate this in 64-bit mode, we can take advantage of
8637   // 64-bit registers.  In particular, sign extend the input value into the
8638   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8639   // then lfd it and fcfid it.
8640   MachineFunction &MF = DAG.getMachineFunction();
8641   MachineFrameInfo &MFI = MF.getFrameInfo();
8642   EVT PtrVT = getPointerTy(MF.getDataLayout());
8643 
8644   SDValue Ld;
8645   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8646     ReuseLoadInfo RLI;
8647     bool ReusingLoad;
8648     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8649       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8650       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8651 
8652       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8653                                    MachinePointerInfo::getFixedStack(
8654                                        DAG.getMachineFunction(), FrameIdx));
8655       Chain = Store;
8656 
8657       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8658              "Expected an i32 store");
8659 
8660       RLI.Ptr = FIdx;
8661       RLI.Chain = Chain;
8662       RLI.MPI =
8663           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8664       RLI.Alignment = Align(4);
8665     }
8666 
8667     MachineMemOperand *MMO =
8668       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8669                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8670     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8671     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8672                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8673                                  MVT::i32, MMO);
8674     Chain = Ld.getValue(1);
8675     if (ReusingLoad)
8676       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8677   } else {
8678     assert(Subtarget.isPPC64() &&
8679            "i32->FP without LFIWAX supported only on PPC64");
8680 
8681     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8682     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8683 
8684     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8685 
8686     // STD the extended value into the stack slot.
8687     SDValue Store = DAG.getStore(
8688         Chain, dl, Ext64, FIdx,
8689         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8690     Chain = Store;
8691 
8692     // Load the value as a double.
8693     Ld = DAG.getLoad(
8694         MVT::f64, dl, Chain, FIdx,
8695         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8696     Chain = Ld.getValue(1);
8697   }
8698 
8699   // FCFID it and return it.
8700   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8701   if (IsStrict)
8702     Chain = FP.getValue(1);
8703   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8704     if (IsStrict)
8705       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8706                        DAG.getVTList(MVT::f32, MVT::Other),
8707                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8708     else
8709       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8710                        DAG.getIntPtrConstant(0, dl));
8711   }
8712   return FP;
8713 }
8714 
8715 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8716                                             SelectionDAG &DAG) const {
8717   SDLoc dl(Op);
8718   /*
8719    The rounding mode is in bits 30:31 of FPSR, and has the following
8720    settings:
8721      00 Round to nearest
8722      01 Round to 0
8723      10 Round to +inf
8724      11 Round to -inf
8725 
8726   FLT_ROUNDS, on the other hand, expects the following:
8727     -1 Undefined
8728      0 Round to 0
8729      1 Round to nearest
8730      2 Round to +inf
8731      3 Round to -inf
8732 
8733   To perform the conversion, we do:
8734     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8735   */
8736 
8737   MachineFunction &MF = DAG.getMachineFunction();
8738   EVT VT = Op.getValueType();
8739   EVT PtrVT = getPointerTy(MF.getDataLayout());
8740 
8741   // Save FP Control Word to register
8742   SDValue Chain = Op.getOperand(0);
8743   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8744   Chain = MFFS.getValue(1);
8745 
8746   SDValue CWD;
8747   if (isTypeLegal(MVT::i64)) {
8748     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8749                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8750   } else {
8751     // Save FP register to stack slot
8752     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8753     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8754     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8755 
8756     // Load FP Control Word from low 32 bits of stack slot.
8757     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8758            "Stack slot adjustment is valid only on big endian subtargets!");
8759     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8760     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8761     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8762     Chain = CWD.getValue(1);
8763   }
8764 
8765   // Transform as necessary
8766   SDValue CWD1 =
8767     DAG.getNode(ISD::AND, dl, MVT::i32,
8768                 CWD, DAG.getConstant(3, dl, MVT::i32));
8769   SDValue CWD2 =
8770     DAG.getNode(ISD::SRL, dl, MVT::i32,
8771                 DAG.getNode(ISD::AND, dl, MVT::i32,
8772                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8773                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8774                             DAG.getConstant(3, dl, MVT::i32)),
8775                 DAG.getConstant(1, dl, MVT::i32));
8776 
8777   SDValue RetVal =
8778     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8779 
8780   RetVal =
8781       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8782                   dl, VT, RetVal);
8783 
8784   return DAG.getMergeValues({RetVal, Chain}, dl);
8785 }
8786 
8787 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8788   EVT VT = Op.getValueType();
8789   unsigned BitWidth = VT.getSizeInBits();
8790   SDLoc dl(Op);
8791   assert(Op.getNumOperands() == 3 &&
8792          VT == Op.getOperand(1).getValueType() &&
8793          "Unexpected SHL!");
8794 
8795   // Expand into a bunch of logical ops.  Note that these ops
8796   // depend on the PPC behavior for oversized shift amounts.
8797   SDValue Lo = Op.getOperand(0);
8798   SDValue Hi = Op.getOperand(1);
8799   SDValue Amt = Op.getOperand(2);
8800   EVT AmtVT = Amt.getValueType();
8801 
8802   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8803                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8804   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8805   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8806   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8807   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8808                              DAG.getConstant(-BitWidth, dl, AmtVT));
8809   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8810   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8811   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8812   SDValue OutOps[] = { OutLo, OutHi };
8813   return DAG.getMergeValues(OutOps, dl);
8814 }
8815 
8816 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8817   EVT VT = Op.getValueType();
8818   SDLoc dl(Op);
8819   unsigned BitWidth = VT.getSizeInBits();
8820   assert(Op.getNumOperands() == 3 &&
8821          VT == Op.getOperand(1).getValueType() &&
8822          "Unexpected SRL!");
8823 
8824   // Expand into a bunch of logical ops.  Note that these ops
8825   // depend on the PPC behavior for oversized shift amounts.
8826   SDValue Lo = Op.getOperand(0);
8827   SDValue Hi = Op.getOperand(1);
8828   SDValue Amt = Op.getOperand(2);
8829   EVT AmtVT = Amt.getValueType();
8830 
8831   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8832                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8833   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8834   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8835   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8836   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8837                              DAG.getConstant(-BitWidth, dl, AmtVT));
8838   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8839   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8840   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8841   SDValue OutOps[] = { OutLo, OutHi };
8842   return DAG.getMergeValues(OutOps, dl);
8843 }
8844 
8845 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8846   SDLoc dl(Op);
8847   EVT VT = Op.getValueType();
8848   unsigned BitWidth = VT.getSizeInBits();
8849   assert(Op.getNumOperands() == 3 &&
8850          VT == Op.getOperand(1).getValueType() &&
8851          "Unexpected SRA!");
8852 
8853   // Expand into a bunch of logical ops, followed by a select_cc.
8854   SDValue Lo = Op.getOperand(0);
8855   SDValue Hi = Op.getOperand(1);
8856   SDValue Amt = Op.getOperand(2);
8857   EVT AmtVT = Amt.getValueType();
8858 
8859   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8860                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8861   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8862   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8863   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8864   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8865                              DAG.getConstant(-BitWidth, dl, AmtVT));
8866   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8867   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8868   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8869                                   Tmp4, Tmp6, ISD::SETLE);
8870   SDValue OutOps[] = { OutLo, OutHi };
8871   return DAG.getMergeValues(OutOps, dl);
8872 }
8873 
8874 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8875                                             SelectionDAG &DAG) const {
8876   SDLoc dl(Op);
8877   EVT VT = Op.getValueType();
8878   unsigned BitWidth = VT.getSizeInBits();
8879 
8880   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8881   SDValue X = Op.getOperand(0);
8882   SDValue Y = Op.getOperand(1);
8883   SDValue Z = Op.getOperand(2);
8884   EVT AmtVT = Z.getValueType();
8885 
8886   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8887   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8888   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8889   // on PowerPC shift by BW being well defined.
8890   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8891                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8892   SDValue SubZ =
8893       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8894   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8895   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8896   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8897 }
8898 
8899 //===----------------------------------------------------------------------===//
8900 // Vector related lowering.
8901 //
8902 
8903 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8904 /// element size of SplatSize. Cast the result to VT.
8905 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8906                                       SelectionDAG &DAG, const SDLoc &dl) {
8907   static const MVT VTys[] = { // canonical VT to use for each size.
8908     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8909   };
8910 
8911   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8912 
8913   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8914   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8915     SplatSize = 1;
8916     Val = 0xFF;
8917   }
8918 
8919   EVT CanonicalVT = VTys[SplatSize-1];
8920 
8921   // Build a canonical splat for this value.
8922   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8923 }
8924 
8925 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8926 /// specified intrinsic ID.
8927 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8928                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8929   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8930   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8931                      DAG.getConstant(IID, dl, MVT::i32), Op);
8932 }
8933 
8934 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8935 /// specified intrinsic ID.
8936 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8937                                 SelectionDAG &DAG, const SDLoc &dl,
8938                                 EVT DestVT = MVT::Other) {
8939   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8940   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8941                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8942 }
8943 
8944 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8945 /// specified intrinsic ID.
8946 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8947                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8948                                 EVT DestVT = MVT::Other) {
8949   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8950   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8951                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8952 }
8953 
8954 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8955 /// amount.  The result has the specified value type.
8956 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8957                            SelectionDAG &DAG, const SDLoc &dl) {
8958   // Force LHS/RHS to be the right type.
8959   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8960   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8961 
8962   int Ops[16];
8963   for (unsigned i = 0; i != 16; ++i)
8964     Ops[i] = i + Amt;
8965   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8966   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8967 }
8968 
8969 /// Do we have an efficient pattern in a .td file for this node?
8970 ///
8971 /// \param V - pointer to the BuildVectorSDNode being matched
8972 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8973 ///
8974 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8975 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8976 /// the opposite is true (expansion is beneficial) are:
8977 /// - The node builds a vector out of integers that are not 32 or 64-bits
8978 /// - The node builds a vector out of constants
8979 /// - The node is a "load-and-splat"
8980 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8981 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8982                                             bool HasDirectMove,
8983                                             bool HasP8Vector) {
8984   EVT VecVT = V->getValueType(0);
8985   bool RightType = VecVT == MVT::v2f64 ||
8986     (HasP8Vector && VecVT == MVT::v4f32) ||
8987     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8988   if (!RightType)
8989     return false;
8990 
8991   bool IsSplat = true;
8992   bool IsLoad = false;
8993   SDValue Op0 = V->getOperand(0);
8994 
8995   // This function is called in a block that confirms the node is not a constant
8996   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8997   // different constants.
8998   if (V->isConstant())
8999     return false;
9000   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9001     if (V->getOperand(i).isUndef())
9002       return false;
9003     // We want to expand nodes that represent load-and-splat even if the
9004     // loaded value is a floating point truncation or conversion to int.
9005     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9006         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9007          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9008         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9009          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9010         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9011          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9012       IsLoad = true;
9013     // If the operands are different or the input is not a load and has more
9014     // uses than just this BV node, then it isn't a splat.
9015     if (V->getOperand(i) != Op0 ||
9016         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9017       IsSplat = false;
9018   }
9019   return !(IsSplat && IsLoad);
9020 }
9021 
9022 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9023 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9024 
9025   SDLoc dl(Op);
9026   SDValue Op0 = Op->getOperand(0);
9027 
9028   if ((Op.getValueType() != MVT::f128) ||
9029       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9030       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9031       (Op0.getOperand(1).getValueType() != MVT::i64))
9032     return SDValue();
9033 
9034   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9035                      Op0.getOperand(1));
9036 }
9037 
9038 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9039   const SDValue *InputLoad = &Op;
9040   if (InputLoad->getOpcode() == ISD::BITCAST)
9041     InputLoad = &InputLoad->getOperand(0);
9042   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9043       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9044     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9045     InputLoad = &InputLoad->getOperand(0);
9046   }
9047   if (InputLoad->getOpcode() != ISD::LOAD)
9048     return nullptr;
9049   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9050   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9051 }
9052 
9053 // Convert the argument APFloat to a single precision APFloat if there is no
9054 // loss in information during the conversion to single precision APFloat and the
9055 // resulting number is not a denormal number. Return true if successful.
9056 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9057   APFloat APFloatToConvert = ArgAPFloat;
9058   bool LosesInfo = true;
9059   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9060                            &LosesInfo);
9061   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9062   if (Success)
9063     ArgAPFloat = APFloatToConvert;
9064   return Success;
9065 }
9066 
9067 // Bitcast the argument APInt to a double and convert it to a single precision
9068 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9069 // argument if there is no loss in information during the conversion from
9070 // double to single precision APFloat and the resulting number is not a denormal
9071 // number. Return true if successful.
9072 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9073   double DpValue = ArgAPInt.bitsToDouble();
9074   APFloat APFloatDp(DpValue);
9075   bool Success = convertToNonDenormSingle(APFloatDp);
9076   if (Success)
9077     ArgAPInt = APFloatDp.bitcastToAPInt();
9078   return Success;
9079 }
9080 
9081 // Nondestructive check for convertTonNonDenormSingle.
9082 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9083   // Only convert if it loses info, since XXSPLTIDP should
9084   // handle the other case.
9085   APFloat APFloatToConvert = ArgAPFloat;
9086   bool LosesInfo = true;
9087   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9088                            &LosesInfo);
9089 
9090   return (!LosesInfo && !APFloatToConvert.isDenormal());
9091 }
9092 
9093 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9094                              unsigned &Opcode) {
9095   const SDNode *InputNode = Op.getOperand(0).getNode();
9096   if (!InputNode || !ISD::isUNINDEXEDLoad(InputNode))
9097     return false;
9098 
9099   if (!Subtarget.hasVSX())
9100     return false;
9101 
9102   EVT Ty = Op->getValueType(0);
9103   if (Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32 ||
9104       Ty == MVT::v8i16 || Ty == MVT::v16i8)
9105     return true;
9106 
9107   if (Ty == MVT::v2i64) {
9108     // Check the extend type, when the input type is i32, and the output vector
9109     // type is v2i64.
9110     if (cast<LoadSDNode>(Op.getOperand(0))->getMemoryVT() == MVT::i32) {
9111       if (ISD::isZEXTLoad(InputNode))
9112         Opcode = PPCISD::ZEXT_LD_SPLAT;
9113       if (ISD::isSEXTLoad(InputNode))
9114         Opcode = PPCISD::SEXT_LD_SPLAT;
9115     }
9116     return true;
9117   }
9118   return false;
9119 }
9120 
9121 // If this is a case we can't handle, return null and let the default
9122 // expansion code take care of it.  If we CAN select this case, and if it
9123 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9124 // this case more efficiently than a constant pool load, lower it to the
9125 // sequence of ops that should be used.
9126 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9127                                              SelectionDAG &DAG) const {
9128   SDLoc dl(Op);
9129   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9130   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9131 
9132   // Check if this is a splat of a constant value.
9133   APInt APSplatBits, APSplatUndef;
9134   unsigned SplatBitSize;
9135   bool HasAnyUndefs;
9136   bool BVNIsConstantSplat =
9137       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9138                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9139 
9140   // If it is a splat of a double, check if we can shrink it to a 32 bit
9141   // non-denormal float which when converted back to double gives us the same
9142   // double. This is to exploit the XXSPLTIDP instruction.
9143   // If we lose precision, we use XXSPLTI32DX.
9144   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9145       Subtarget.hasPrefixInstrs()) {
9146     // Check the type first to short-circuit so we don't modify APSplatBits if
9147     // this block isn't executed.
9148     if ((Op->getValueType(0) == MVT::v2f64) &&
9149         convertToNonDenormSingle(APSplatBits)) {
9150       SDValue SplatNode = DAG.getNode(
9151           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9152           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9153       return DAG.getBitcast(Op.getValueType(), SplatNode);
9154     } else {
9155       // We may lose precision, so we have to use XXSPLTI32DX.
9156 
9157       uint32_t Hi =
9158           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9159       uint32_t Lo =
9160           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9161       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9162 
9163       if (!Hi || !Lo)
9164         // If either load is 0, then we should generate XXLXOR to set to 0.
9165         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9166 
9167       if (Hi)
9168         SplatNode = DAG.getNode(
9169             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9170             DAG.getTargetConstant(0, dl, MVT::i32),
9171             DAG.getTargetConstant(Hi, dl, MVT::i32));
9172 
9173       if (Lo)
9174         SplatNode =
9175             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9176                         DAG.getTargetConstant(1, dl, MVT::i32),
9177                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9178 
9179       return DAG.getBitcast(Op.getValueType(), SplatNode);
9180     }
9181   }
9182 
9183   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9184     unsigned NewOpcode = PPCISD::LD_SPLAT;
9185 
9186     // Handle load-and-splat patterns as we have instructions that will do this
9187     // in one go.
9188     if (DAG.isSplatValue(Op, true) &&
9189         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9190       const SDValue *InputLoad = &Op.getOperand(0);
9191       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9192 
9193       // If the input load is an extending load, it will be an i32 -> i64
9194       // extending load and isValidSplatLoad() will update NewOpcode.
9195       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9196       unsigned ElementSize =
9197           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9198 
9199       assert(((ElementSize == 2 * MemorySize)
9200                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9201                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9202                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9203              "Unmatched element size and opcode!\n");
9204 
9205       // Checking for a single use of this load, we have to check for vector
9206       // width (128 bits) / ElementSize uses (since each operand of the
9207       // BUILD_VECTOR is a separate use of the value.
9208       unsigned NumUsesOfInputLD = 128 / ElementSize;
9209       for (SDValue BVInOp : Op->ops())
9210         if (BVInOp.isUndef())
9211           NumUsesOfInputLD--;
9212 
9213       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9214       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9215       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9216       // 15", but funciton IsValidSplatLoad() now will only return true when
9217       // the data at index 0 is not nullptr. So we will not get into trouble for
9218       // these cases.
9219       //
9220       // case 1 - lfiwzx/lfiwax
9221       // 1.1: load result is i32 and is sign/zero extend to i64;
9222       // 1.2: build a v2i64 vector type with above loaded value;
9223       // 1.3: the vector has only one value at index 0, others are all undef;
9224       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9225       if (NumUsesOfInputLD == 1 &&
9226           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9227            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9228            Subtarget.hasLFIWAX()))
9229         return SDValue();
9230 
9231       // case 2 - lxvr[hb]x
9232       // 2.1: load result is at most i16;
9233       // 2.2: build a vector with above loaded value;
9234       // 2.3: the vector has only one value at index 0, others are all undef;
9235       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9236       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9237           Subtarget.isISA3_1() && ElementSize <= 16)
9238         return SDValue();
9239 
9240       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9241       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9242           Subtarget.hasVSX()) {
9243         SDValue Ops[] = {
9244           LD->getChain(),    // Chain
9245           LD->getBasePtr(),  // Ptr
9246           DAG.getValueType(Op.getValueType()) // VT
9247         };
9248         SDValue LdSplt = DAG.getMemIntrinsicNode(
9249             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9250             LD->getMemoryVT(), LD->getMemOperand());
9251         // Replace all uses of the output chain of the original load with the
9252         // output chain of the new load.
9253         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9254                                       LdSplt.getValue(1));
9255         return LdSplt;
9256       }
9257     }
9258 
9259     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9260     // 32-bits can be lowered to VSX instructions under certain conditions.
9261     // Without VSX, there is no pattern more efficient than expanding the node.
9262     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9263         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9264                                         Subtarget.hasP8Vector()))
9265       return Op;
9266     return SDValue();
9267   }
9268 
9269   uint64_t SplatBits = APSplatBits.getZExtValue();
9270   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9271   unsigned SplatSize = SplatBitSize / 8;
9272 
9273   // First, handle single instruction cases.
9274 
9275   // All zeros?
9276   if (SplatBits == 0) {
9277     // Canonicalize all zero vectors to be v4i32.
9278     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9279       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9280       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9281     }
9282     return Op;
9283   }
9284 
9285   // We have XXSPLTIW for constant splats four bytes wide.
9286   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9287   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9288   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9289   // turned into a 4-byte splat of 0xABABABAB.
9290   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9291     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9292                                   Op.getValueType(), DAG, dl);
9293 
9294   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9295     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9296                                   dl);
9297 
9298   // We have XXSPLTIB for constant splats one byte wide.
9299   if (Subtarget.hasP9Vector() && SplatSize == 1)
9300     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9301                                   dl);
9302 
9303   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9304   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9305                     (32-SplatBitSize));
9306   if (SextVal >= -16 && SextVal <= 15)
9307     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9308                                   dl);
9309 
9310   // Two instruction sequences.
9311 
9312   // If this value is in the range [-32,30] and is even, use:
9313   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9314   // If this value is in the range [17,31] and is odd, use:
9315   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9316   // If this value is in the range [-31,-17] and is odd, use:
9317   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9318   // Note the last two are three-instruction sequences.
9319   if (SextVal >= -32 && SextVal <= 31) {
9320     // To avoid having these optimizations undone by constant folding,
9321     // we convert to a pseudo that will be expanded later into one of
9322     // the above forms.
9323     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9324     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9325               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9326     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9327     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9328     if (VT == Op.getValueType())
9329       return RetVal;
9330     else
9331       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9332   }
9333 
9334   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9335   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9336   // for fneg/fabs.
9337   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9338     // Make -1 and vspltisw -1:
9339     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9340 
9341     // Make the VSLW intrinsic, computing 0x8000_0000.
9342     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9343                                    OnesV, DAG, dl);
9344 
9345     // xor by OnesV to invert it.
9346     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9347     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9348   }
9349 
9350   // Check to see if this is a wide variety of vsplti*, binop self cases.
9351   static const signed char SplatCsts[] = {
9352     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9353     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9354   };
9355 
9356   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9357     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9358     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9359     int i = SplatCsts[idx];
9360 
9361     // Figure out what shift amount will be used by altivec if shifted by i in
9362     // this splat size.
9363     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9364 
9365     // vsplti + shl self.
9366     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9367       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9368       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9369         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9370         Intrinsic::ppc_altivec_vslw
9371       };
9372       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9373       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9374     }
9375 
9376     // vsplti + srl self.
9377     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9378       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9379       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9380         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9381         Intrinsic::ppc_altivec_vsrw
9382       };
9383       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9384       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9385     }
9386 
9387     // vsplti + rol self.
9388     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9389                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9390       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9391       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9392         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9393         Intrinsic::ppc_altivec_vrlw
9394       };
9395       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9396       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9397     }
9398 
9399     // t = vsplti c, result = vsldoi t, t, 1
9400     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9401       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9402       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9403       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9404     }
9405     // t = vsplti c, result = vsldoi t, t, 2
9406     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9407       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9408       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9409       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9410     }
9411     // t = vsplti c, result = vsldoi t, t, 3
9412     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9413       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9414       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9415       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9416     }
9417   }
9418 
9419   return SDValue();
9420 }
9421 
9422 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9423 /// the specified operations to build the shuffle.
9424 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9425                                       SDValue RHS, SelectionDAG &DAG,
9426                                       const SDLoc &dl) {
9427   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9428   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9429   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9430 
9431   enum {
9432     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9433     OP_VMRGHW,
9434     OP_VMRGLW,
9435     OP_VSPLTISW0,
9436     OP_VSPLTISW1,
9437     OP_VSPLTISW2,
9438     OP_VSPLTISW3,
9439     OP_VSLDOI4,
9440     OP_VSLDOI8,
9441     OP_VSLDOI12
9442   };
9443 
9444   if (OpNum == OP_COPY) {
9445     if (LHSID == (1*9+2)*9+3) return LHS;
9446     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9447     return RHS;
9448   }
9449 
9450   SDValue OpLHS, OpRHS;
9451   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9452   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9453 
9454   int ShufIdxs[16];
9455   switch (OpNum) {
9456   default: llvm_unreachable("Unknown i32 permute!");
9457   case OP_VMRGHW:
9458     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9459     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9460     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9461     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9462     break;
9463   case OP_VMRGLW:
9464     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9465     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9466     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9467     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9468     break;
9469   case OP_VSPLTISW0:
9470     for (unsigned i = 0; i != 16; ++i)
9471       ShufIdxs[i] = (i&3)+0;
9472     break;
9473   case OP_VSPLTISW1:
9474     for (unsigned i = 0; i != 16; ++i)
9475       ShufIdxs[i] = (i&3)+4;
9476     break;
9477   case OP_VSPLTISW2:
9478     for (unsigned i = 0; i != 16; ++i)
9479       ShufIdxs[i] = (i&3)+8;
9480     break;
9481   case OP_VSPLTISW3:
9482     for (unsigned i = 0; i != 16; ++i)
9483       ShufIdxs[i] = (i&3)+12;
9484     break;
9485   case OP_VSLDOI4:
9486     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9487   case OP_VSLDOI8:
9488     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9489   case OP_VSLDOI12:
9490     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9491   }
9492   EVT VT = OpLHS.getValueType();
9493   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9494   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9495   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9496   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9497 }
9498 
9499 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9500 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9501 /// SDValue.
9502 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9503                                            SelectionDAG &DAG) const {
9504   const unsigned BytesInVector = 16;
9505   bool IsLE = Subtarget.isLittleEndian();
9506   SDLoc dl(N);
9507   SDValue V1 = N->getOperand(0);
9508   SDValue V2 = N->getOperand(1);
9509   unsigned ShiftElts = 0, InsertAtByte = 0;
9510   bool Swap = false;
9511 
9512   // Shifts required to get the byte we want at element 7.
9513   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9514                                    0, 15, 14, 13, 12, 11, 10, 9};
9515   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9516                                 1, 2,  3,  4,  5,  6,  7,  8};
9517 
9518   ArrayRef<int> Mask = N->getMask();
9519   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9520 
9521   // For each mask element, find out if we're just inserting something
9522   // from V2 into V1 or vice versa.
9523   // Possible permutations inserting an element from V2 into V1:
9524   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9525   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9526   //   ...
9527   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9528   // Inserting from V1 into V2 will be similar, except mask range will be
9529   // [16,31].
9530 
9531   bool FoundCandidate = false;
9532   // If both vector operands for the shuffle are the same vector, the mask
9533   // will contain only elements from the first one and the second one will be
9534   // undef.
9535   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9536   // Go through the mask of half-words to find an element that's being moved
9537   // from one vector to the other.
9538   for (unsigned i = 0; i < BytesInVector; ++i) {
9539     unsigned CurrentElement = Mask[i];
9540     // If 2nd operand is undefined, we should only look for element 7 in the
9541     // Mask.
9542     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9543       continue;
9544 
9545     bool OtherElementsInOrder = true;
9546     // Examine the other elements in the Mask to see if they're in original
9547     // order.
9548     for (unsigned j = 0; j < BytesInVector; ++j) {
9549       if (j == i)
9550         continue;
9551       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9552       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9553       // in which we always assume we're always picking from the 1st operand.
9554       int MaskOffset =
9555           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9556       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9557         OtherElementsInOrder = false;
9558         break;
9559       }
9560     }
9561     // If other elements are in original order, we record the number of shifts
9562     // we need to get the element we want into element 7. Also record which byte
9563     // in the vector we should insert into.
9564     if (OtherElementsInOrder) {
9565       // If 2nd operand is undefined, we assume no shifts and no swapping.
9566       if (V2.isUndef()) {
9567         ShiftElts = 0;
9568         Swap = false;
9569       } else {
9570         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9571         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9572                          : BigEndianShifts[CurrentElement & 0xF];
9573         Swap = CurrentElement < BytesInVector;
9574       }
9575       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9576       FoundCandidate = true;
9577       break;
9578     }
9579   }
9580 
9581   if (!FoundCandidate)
9582     return SDValue();
9583 
9584   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9585   // optionally with VECSHL if shift is required.
9586   if (Swap)
9587     std::swap(V1, V2);
9588   if (V2.isUndef())
9589     V2 = V1;
9590   if (ShiftElts) {
9591     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9592                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9593     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9594                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9595   }
9596   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9597                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9598 }
9599 
9600 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9601 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9602 /// SDValue.
9603 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9604                                            SelectionDAG &DAG) const {
9605   const unsigned NumHalfWords = 8;
9606   const unsigned BytesInVector = NumHalfWords * 2;
9607   // Check that the shuffle is on half-words.
9608   if (!isNByteElemShuffleMask(N, 2, 1))
9609     return SDValue();
9610 
9611   bool IsLE = Subtarget.isLittleEndian();
9612   SDLoc dl(N);
9613   SDValue V1 = N->getOperand(0);
9614   SDValue V2 = N->getOperand(1);
9615   unsigned ShiftElts = 0, InsertAtByte = 0;
9616   bool Swap = false;
9617 
9618   // Shifts required to get the half-word we want at element 3.
9619   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9620   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9621 
9622   uint32_t Mask = 0;
9623   uint32_t OriginalOrderLow = 0x1234567;
9624   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9625   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9626   // 32-bit space, only need 4-bit nibbles per element.
9627   for (unsigned i = 0; i < NumHalfWords; ++i) {
9628     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9629     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9630   }
9631 
9632   // For each mask element, find out if we're just inserting something
9633   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9634   // from V2 into V1:
9635   //   X, 1, 2, 3, 4, 5, 6, 7
9636   //   0, X, 2, 3, 4, 5, 6, 7
9637   //   0, 1, X, 3, 4, 5, 6, 7
9638   //   0, 1, 2, X, 4, 5, 6, 7
9639   //   0, 1, 2, 3, X, 5, 6, 7
9640   //   0, 1, 2, 3, 4, X, 6, 7
9641   //   0, 1, 2, 3, 4, 5, X, 7
9642   //   0, 1, 2, 3, 4, 5, 6, X
9643   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9644 
9645   bool FoundCandidate = false;
9646   // Go through the mask of half-words to find an element that's being moved
9647   // from one vector to the other.
9648   for (unsigned i = 0; i < NumHalfWords; ++i) {
9649     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9650     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9651     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9652     uint32_t TargetOrder = 0x0;
9653 
9654     // If both vector operands for the shuffle are the same vector, the mask
9655     // will contain only elements from the first one and the second one will be
9656     // undef.
9657     if (V2.isUndef()) {
9658       ShiftElts = 0;
9659       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9660       TargetOrder = OriginalOrderLow;
9661       Swap = false;
9662       // Skip if not the correct element or mask of other elements don't equal
9663       // to our expected order.
9664       if (MaskOneElt == VINSERTHSrcElem &&
9665           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9666         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9667         FoundCandidate = true;
9668         break;
9669       }
9670     } else { // If both operands are defined.
9671       // Target order is [8,15] if the current mask is between [0,7].
9672       TargetOrder =
9673           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9674       // Skip if mask of other elements don't equal our expected order.
9675       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9676         // We only need the last 3 bits for the number of shifts.
9677         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9678                          : BigEndianShifts[MaskOneElt & 0x7];
9679         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9680         Swap = MaskOneElt < NumHalfWords;
9681         FoundCandidate = true;
9682         break;
9683       }
9684     }
9685   }
9686 
9687   if (!FoundCandidate)
9688     return SDValue();
9689 
9690   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9691   // optionally with VECSHL if shift is required.
9692   if (Swap)
9693     std::swap(V1, V2);
9694   if (V2.isUndef())
9695     V2 = V1;
9696   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9697   if (ShiftElts) {
9698     // Double ShiftElts because we're left shifting on v16i8 type.
9699     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9700                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9701     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9702     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9703                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9704     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9705   }
9706   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9707   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9708                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9709   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9710 }
9711 
9712 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9713 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9714 /// return the default SDValue.
9715 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9716                                               SelectionDAG &DAG) const {
9717   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9718   // to v16i8. Peek through the bitcasts to get the actual operands.
9719   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9720   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9721 
9722   auto ShuffleMask = SVN->getMask();
9723   SDValue VecShuffle(SVN, 0);
9724   SDLoc DL(SVN);
9725 
9726   // Check that we have a four byte shuffle.
9727   if (!isNByteElemShuffleMask(SVN, 4, 1))
9728     return SDValue();
9729 
9730   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9731   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9732     std::swap(LHS, RHS);
9733     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9734     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9735   }
9736 
9737   // Ensure that the RHS is a vector of constants.
9738   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9739   if (!BVN)
9740     return SDValue();
9741 
9742   // Check if RHS is a splat of 4-bytes (or smaller).
9743   APInt APSplatValue, APSplatUndef;
9744   unsigned SplatBitSize;
9745   bool HasAnyUndefs;
9746   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9747                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9748       SplatBitSize > 32)
9749     return SDValue();
9750 
9751   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9752   // The instruction splats a constant C into two words of the source vector
9753   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9754   // Thus we check that the shuffle mask is the equivalent  of
9755   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9756   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9757   // within each word are consecutive, so we only need to check the first byte.
9758   SDValue Index;
9759   bool IsLE = Subtarget.isLittleEndian();
9760   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9761       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9762        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9763     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9764   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9765            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9766             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9767     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9768   else
9769     return SDValue();
9770 
9771   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9772   // for XXSPLTI32DX.
9773   unsigned SplatVal = APSplatValue.getZExtValue();
9774   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9775     SplatVal |= (SplatVal << SplatBitSize);
9776 
9777   SDValue SplatNode = DAG.getNode(
9778       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9779       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9780   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9781 }
9782 
9783 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9784 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9785 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9786 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9787 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9788   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9789   assert(Op.getValueType() == MVT::v1i128 &&
9790          "Only set v1i128 as custom, other type shouldn't reach here!");
9791   SDLoc dl(Op);
9792   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9793   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9794   unsigned SHLAmt = N1.getConstantOperandVal(0);
9795   if (SHLAmt % 8 == 0) {
9796     SmallVector<int, 16> Mask(16, 0);
9797     std::iota(Mask.begin(), Mask.end(), 0);
9798     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9799     if (SDValue Shuffle =
9800             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9801                                  DAG.getUNDEF(MVT::v16i8), Mask))
9802       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9803   }
9804   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9805   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9806                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9807   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9808                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9809   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9810   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9811 }
9812 
9813 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9814 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9815 /// return the code it can be lowered into.  Worst case, it can always be
9816 /// lowered into a vperm.
9817 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9818                                                SelectionDAG &DAG) const {
9819   SDLoc dl(Op);
9820   SDValue V1 = Op.getOperand(0);
9821   SDValue V2 = Op.getOperand(1);
9822   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9823 
9824   // Any nodes that were combined in the target-independent combiner prior
9825   // to vector legalization will not be sent to the target combine. Try to
9826   // combine it here.
9827   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9828     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9829       return NewShuffle;
9830     Op = NewShuffle;
9831     SVOp = cast<ShuffleVectorSDNode>(Op);
9832     V1 = Op.getOperand(0);
9833     V2 = Op.getOperand(1);
9834   }
9835   EVT VT = Op.getValueType();
9836   bool isLittleEndian = Subtarget.isLittleEndian();
9837 
9838   unsigned ShiftElts, InsertAtByte;
9839   bool Swap = false;
9840 
9841   // If this is a load-and-splat, we can do that with a single instruction
9842   // in some cases. However if the load has multiple uses, we don't want to
9843   // combine it because that will just produce multiple loads.
9844   bool IsPermutedLoad = false;
9845   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9846   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9847       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9848       InputLoad->hasOneUse()) {
9849     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9850     int SplatIdx =
9851       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9852 
9853     // The splat index for permuted loads will be in the left half of the vector
9854     // which is strictly wider than the loaded value by 8 bytes. So we need to
9855     // adjust the splat index to point to the correct address in memory.
9856     if (IsPermutedLoad) {
9857       assert((isLittleEndian || IsFourByte) &&
9858              "Unexpected size for permuted load on big endian target");
9859       SplatIdx += IsFourByte ? 2 : 1;
9860       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9861              "Splat of a value outside of the loaded memory");
9862     }
9863 
9864     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9865     // For 4-byte load-and-splat, we need Power9.
9866     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9867       uint64_t Offset = 0;
9868       if (IsFourByte)
9869         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9870       else
9871         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9872 
9873       // If the width of the load is the same as the width of the splat,
9874       // loading with an offset would load the wrong memory.
9875       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9876         Offset = 0;
9877 
9878       SDValue BasePtr = LD->getBasePtr();
9879       if (Offset != 0)
9880         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9881                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9882       SDValue Ops[] = {
9883         LD->getChain(),    // Chain
9884         BasePtr,           // BasePtr
9885         DAG.getValueType(Op.getValueType()) // VT
9886       };
9887       SDVTList VTL =
9888         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9889       SDValue LdSplt =
9890         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9891                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9892       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9893       if (LdSplt.getValueType() != SVOp->getValueType(0))
9894         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9895       return LdSplt;
9896     }
9897   }
9898   if (Subtarget.hasP9Vector() &&
9899       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9900                            isLittleEndian)) {
9901     if (Swap)
9902       std::swap(V1, V2);
9903     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9904     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9905     if (ShiftElts) {
9906       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9907                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9908       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9909                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9910       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9911     }
9912     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9913                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9914     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9915   }
9916 
9917   if (Subtarget.hasPrefixInstrs()) {
9918     SDValue SplatInsertNode;
9919     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9920       return SplatInsertNode;
9921   }
9922 
9923   if (Subtarget.hasP9Altivec()) {
9924     SDValue NewISDNode;
9925     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9926       return NewISDNode;
9927 
9928     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9929       return NewISDNode;
9930   }
9931 
9932   if (Subtarget.hasVSX() &&
9933       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9934     if (Swap)
9935       std::swap(V1, V2);
9936     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9937     SDValue Conv2 =
9938         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9939 
9940     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9941                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9942     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9943   }
9944 
9945   if (Subtarget.hasVSX() &&
9946     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9947     if (Swap)
9948       std::swap(V1, V2);
9949     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9950     SDValue Conv2 =
9951         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9952 
9953     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9954                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9955     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9956   }
9957 
9958   if (Subtarget.hasP9Vector()) {
9959      if (PPC::isXXBRHShuffleMask(SVOp)) {
9960       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9961       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9962       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9963     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9964       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9965       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9966       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9967     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9968       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9969       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9970       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9971     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9972       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9973       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9974       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9975     }
9976   }
9977 
9978   if (Subtarget.hasVSX()) {
9979     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9980       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9981 
9982       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9983       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9984                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9985       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9986     }
9987 
9988     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9989     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9990       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9991       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9992       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9993     }
9994   }
9995 
9996   // Cases that are handled by instructions that take permute immediates
9997   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9998   // selected by the instruction selector.
9999   if (V2.isUndef()) {
10000     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10001         PPC::isSplatShuffleMask(SVOp, 2) ||
10002         PPC::isSplatShuffleMask(SVOp, 4) ||
10003         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10004         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10005         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10006         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10007         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10008         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10009         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10010         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10011         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10012         (Subtarget.hasP8Altivec() && (
10013          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10014          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10015          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10016       return Op;
10017     }
10018   }
10019 
10020   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10021   // and produce a fixed permutation.  If any of these match, do not lower to
10022   // VPERM.
10023   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10024   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10025       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10026       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10027       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10028       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10029       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10030       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10031       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10032       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10033       (Subtarget.hasP8Altivec() && (
10034        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10035        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10036        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10037     return Op;
10038 
10039   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10040   // perfect shuffle table to emit an optimal matching sequence.
10041   ArrayRef<int> PermMask = SVOp->getMask();
10042 
10043   unsigned PFIndexes[4];
10044   bool isFourElementShuffle = true;
10045   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
10046     unsigned EltNo = 8;   // Start out undef.
10047     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
10048       if (PermMask[i*4+j] < 0)
10049         continue;   // Undef, ignore it.
10050 
10051       unsigned ByteSource = PermMask[i*4+j];
10052       if ((ByteSource & 3) != j) {
10053         isFourElementShuffle = false;
10054         break;
10055       }
10056 
10057       if (EltNo == 8) {
10058         EltNo = ByteSource/4;
10059       } else if (EltNo != ByteSource/4) {
10060         isFourElementShuffle = false;
10061         break;
10062       }
10063     }
10064     PFIndexes[i] = EltNo;
10065   }
10066 
10067   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10068   // perfect shuffle vector to determine if it is cost effective to do this as
10069   // discrete instructions, or whether we should use a vperm.
10070   // For now, we skip this for little endian until such time as we have a
10071   // little-endian perfect shuffle table.
10072   if (isFourElementShuffle && !isLittleEndian) {
10073     // Compute the index in the perfect shuffle table.
10074     unsigned PFTableIndex =
10075       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10076 
10077     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10078     unsigned Cost  = (PFEntry >> 30);
10079 
10080     // Determining when to avoid vperm is tricky.  Many things affect the cost
10081     // of vperm, particularly how many times the perm mask needs to be computed.
10082     // For example, if the perm mask can be hoisted out of a loop or is already
10083     // used (perhaps because there are multiple permutes with the same shuffle
10084     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10085     // the loop requires an extra register.
10086     //
10087     // As a compromise, we only emit discrete instructions if the shuffle can be
10088     // generated in 3 or fewer operations.  When we have loop information
10089     // available, if this block is within a loop, we should avoid using vperm
10090     // for 3-operation perms and use a constant pool load instead.
10091     if (Cost < 3)
10092       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10093   }
10094 
10095   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10096   // vector that will get spilled to the constant pool.
10097   if (V2.isUndef()) V2 = V1;
10098 
10099   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10100   // that it is in input element units, not in bytes.  Convert now.
10101 
10102   // For little endian, the order of the input vectors is reversed, and
10103   // the permutation mask is complemented with respect to 31.  This is
10104   // necessary to produce proper semantics with the big-endian-biased vperm
10105   // instruction.
10106   EVT EltVT = V1.getValueType().getVectorElementType();
10107   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10108 
10109   SmallVector<SDValue, 16> ResultMask;
10110   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10111     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10112 
10113     for (unsigned j = 0; j != BytesPerElement; ++j)
10114       if (isLittleEndian)
10115         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10116                                              dl, MVT::i32));
10117       else
10118         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10119                                              MVT::i32));
10120   }
10121 
10122   ShufflesHandledWithVPERM++;
10123   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10124   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10125   LLVM_DEBUG(SVOp->dump());
10126   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10127   LLVM_DEBUG(VPermMask.dump());
10128 
10129   if (isLittleEndian)
10130     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10131                        V2, V1, VPermMask);
10132   else
10133     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10134                        V1, V2, VPermMask);
10135 }
10136 
10137 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10138 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10139 /// information about the intrinsic.
10140 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10141                                  bool &isDot, const PPCSubtarget &Subtarget) {
10142   unsigned IntrinsicID =
10143       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10144   CompareOpc = -1;
10145   isDot = false;
10146   switch (IntrinsicID) {
10147   default:
10148     return false;
10149   // Comparison predicates.
10150   case Intrinsic::ppc_altivec_vcmpbfp_p:
10151     CompareOpc = 966;
10152     isDot = true;
10153     break;
10154   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10155     CompareOpc = 198;
10156     isDot = true;
10157     break;
10158   case Intrinsic::ppc_altivec_vcmpequb_p:
10159     CompareOpc = 6;
10160     isDot = true;
10161     break;
10162   case Intrinsic::ppc_altivec_vcmpequh_p:
10163     CompareOpc = 70;
10164     isDot = true;
10165     break;
10166   case Intrinsic::ppc_altivec_vcmpequw_p:
10167     CompareOpc = 134;
10168     isDot = true;
10169     break;
10170   case Intrinsic::ppc_altivec_vcmpequd_p:
10171     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10172       CompareOpc = 199;
10173       isDot = true;
10174     } else
10175       return false;
10176     break;
10177   case Intrinsic::ppc_altivec_vcmpneb_p:
10178   case Intrinsic::ppc_altivec_vcmpneh_p:
10179   case Intrinsic::ppc_altivec_vcmpnew_p:
10180   case Intrinsic::ppc_altivec_vcmpnezb_p:
10181   case Intrinsic::ppc_altivec_vcmpnezh_p:
10182   case Intrinsic::ppc_altivec_vcmpnezw_p:
10183     if (Subtarget.hasP9Altivec()) {
10184       switch (IntrinsicID) {
10185       default:
10186         llvm_unreachable("Unknown comparison intrinsic.");
10187       case Intrinsic::ppc_altivec_vcmpneb_p:
10188         CompareOpc = 7;
10189         break;
10190       case Intrinsic::ppc_altivec_vcmpneh_p:
10191         CompareOpc = 71;
10192         break;
10193       case Intrinsic::ppc_altivec_vcmpnew_p:
10194         CompareOpc = 135;
10195         break;
10196       case Intrinsic::ppc_altivec_vcmpnezb_p:
10197         CompareOpc = 263;
10198         break;
10199       case Intrinsic::ppc_altivec_vcmpnezh_p:
10200         CompareOpc = 327;
10201         break;
10202       case Intrinsic::ppc_altivec_vcmpnezw_p:
10203         CompareOpc = 391;
10204         break;
10205       }
10206       isDot = true;
10207     } else
10208       return false;
10209     break;
10210   case Intrinsic::ppc_altivec_vcmpgefp_p:
10211     CompareOpc = 454;
10212     isDot = true;
10213     break;
10214   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10215     CompareOpc = 710;
10216     isDot = true;
10217     break;
10218   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10219     CompareOpc = 774;
10220     isDot = true;
10221     break;
10222   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10223     CompareOpc = 838;
10224     isDot = true;
10225     break;
10226   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10227     CompareOpc = 902;
10228     isDot = true;
10229     break;
10230   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10231     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10232       CompareOpc = 967;
10233       isDot = true;
10234     } else
10235       return false;
10236     break;
10237   case Intrinsic::ppc_altivec_vcmpgtub_p:
10238     CompareOpc = 518;
10239     isDot = true;
10240     break;
10241   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10242     CompareOpc = 582;
10243     isDot = true;
10244     break;
10245   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10246     CompareOpc = 646;
10247     isDot = true;
10248     break;
10249   case Intrinsic::ppc_altivec_vcmpgtud_p:
10250     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10251       CompareOpc = 711;
10252       isDot = true;
10253     } else
10254       return false;
10255     break;
10256 
10257   case Intrinsic::ppc_altivec_vcmpequq:
10258   case Intrinsic::ppc_altivec_vcmpgtsq:
10259   case Intrinsic::ppc_altivec_vcmpgtuq:
10260     if (!Subtarget.isISA3_1())
10261       return false;
10262     switch (IntrinsicID) {
10263     default:
10264       llvm_unreachable("Unknown comparison intrinsic.");
10265     case Intrinsic::ppc_altivec_vcmpequq:
10266       CompareOpc = 455;
10267       break;
10268     case Intrinsic::ppc_altivec_vcmpgtsq:
10269       CompareOpc = 903;
10270       break;
10271     case Intrinsic::ppc_altivec_vcmpgtuq:
10272       CompareOpc = 647;
10273       break;
10274     }
10275     break;
10276 
10277   // VSX predicate comparisons use the same infrastructure
10278   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10279   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10280   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10281   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10282   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10283   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10284     if (Subtarget.hasVSX()) {
10285       switch (IntrinsicID) {
10286       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10287         CompareOpc = 99;
10288         break;
10289       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10290         CompareOpc = 115;
10291         break;
10292       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10293         CompareOpc = 107;
10294         break;
10295       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10296         CompareOpc = 67;
10297         break;
10298       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10299         CompareOpc = 83;
10300         break;
10301       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10302         CompareOpc = 75;
10303         break;
10304       }
10305       isDot = true;
10306     } else
10307       return false;
10308     break;
10309 
10310   // Normal Comparisons.
10311   case Intrinsic::ppc_altivec_vcmpbfp:
10312     CompareOpc = 966;
10313     break;
10314   case Intrinsic::ppc_altivec_vcmpeqfp:
10315     CompareOpc = 198;
10316     break;
10317   case Intrinsic::ppc_altivec_vcmpequb:
10318     CompareOpc = 6;
10319     break;
10320   case Intrinsic::ppc_altivec_vcmpequh:
10321     CompareOpc = 70;
10322     break;
10323   case Intrinsic::ppc_altivec_vcmpequw:
10324     CompareOpc = 134;
10325     break;
10326   case Intrinsic::ppc_altivec_vcmpequd:
10327     if (Subtarget.hasP8Altivec())
10328       CompareOpc = 199;
10329     else
10330       return false;
10331     break;
10332   case Intrinsic::ppc_altivec_vcmpneb:
10333   case Intrinsic::ppc_altivec_vcmpneh:
10334   case Intrinsic::ppc_altivec_vcmpnew:
10335   case Intrinsic::ppc_altivec_vcmpnezb:
10336   case Intrinsic::ppc_altivec_vcmpnezh:
10337   case Intrinsic::ppc_altivec_vcmpnezw:
10338     if (Subtarget.hasP9Altivec())
10339       switch (IntrinsicID) {
10340       default:
10341         llvm_unreachable("Unknown comparison intrinsic.");
10342       case Intrinsic::ppc_altivec_vcmpneb:
10343         CompareOpc = 7;
10344         break;
10345       case Intrinsic::ppc_altivec_vcmpneh:
10346         CompareOpc = 71;
10347         break;
10348       case Intrinsic::ppc_altivec_vcmpnew:
10349         CompareOpc = 135;
10350         break;
10351       case Intrinsic::ppc_altivec_vcmpnezb:
10352         CompareOpc = 263;
10353         break;
10354       case Intrinsic::ppc_altivec_vcmpnezh:
10355         CompareOpc = 327;
10356         break;
10357       case Intrinsic::ppc_altivec_vcmpnezw:
10358         CompareOpc = 391;
10359         break;
10360       }
10361     else
10362       return false;
10363     break;
10364   case Intrinsic::ppc_altivec_vcmpgefp:
10365     CompareOpc = 454;
10366     break;
10367   case Intrinsic::ppc_altivec_vcmpgtfp:
10368     CompareOpc = 710;
10369     break;
10370   case Intrinsic::ppc_altivec_vcmpgtsb:
10371     CompareOpc = 774;
10372     break;
10373   case Intrinsic::ppc_altivec_vcmpgtsh:
10374     CompareOpc = 838;
10375     break;
10376   case Intrinsic::ppc_altivec_vcmpgtsw:
10377     CompareOpc = 902;
10378     break;
10379   case Intrinsic::ppc_altivec_vcmpgtsd:
10380     if (Subtarget.hasP8Altivec())
10381       CompareOpc = 967;
10382     else
10383       return false;
10384     break;
10385   case Intrinsic::ppc_altivec_vcmpgtub:
10386     CompareOpc = 518;
10387     break;
10388   case Intrinsic::ppc_altivec_vcmpgtuh:
10389     CompareOpc = 582;
10390     break;
10391   case Intrinsic::ppc_altivec_vcmpgtuw:
10392     CompareOpc = 646;
10393     break;
10394   case Intrinsic::ppc_altivec_vcmpgtud:
10395     if (Subtarget.hasP8Altivec())
10396       CompareOpc = 711;
10397     else
10398       return false;
10399     break;
10400   case Intrinsic::ppc_altivec_vcmpequq_p:
10401   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10402   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10403     if (!Subtarget.isISA3_1())
10404       return false;
10405     switch (IntrinsicID) {
10406     default:
10407       llvm_unreachable("Unknown comparison intrinsic.");
10408     case Intrinsic::ppc_altivec_vcmpequq_p:
10409       CompareOpc = 455;
10410       break;
10411     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10412       CompareOpc = 903;
10413       break;
10414     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10415       CompareOpc = 647;
10416       break;
10417     }
10418     isDot = true;
10419     break;
10420   }
10421   return true;
10422 }
10423 
10424 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10425 /// lower, do it, otherwise return null.
10426 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10427                                                    SelectionDAG &DAG) const {
10428   unsigned IntrinsicID =
10429     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10430 
10431   SDLoc dl(Op);
10432 
10433   switch (IntrinsicID) {
10434   case Intrinsic::thread_pointer:
10435     // Reads the thread pointer register, used for __builtin_thread_pointer.
10436     if (Subtarget.isPPC64())
10437       return DAG.getRegister(PPC::X13, MVT::i64);
10438     return DAG.getRegister(PPC::R2, MVT::i32);
10439 
10440   case Intrinsic::ppc_mma_disassemble_acc:
10441   case Intrinsic::ppc_vsx_disassemble_pair: {
10442     int NumVecs = 2;
10443     SDValue WideVec = Op.getOperand(1);
10444     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10445       NumVecs = 4;
10446       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10447     }
10448     SmallVector<SDValue, 4> RetOps;
10449     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10450       SDValue Extract = DAG.getNode(
10451           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10452           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10453                                                      : VecNo,
10454                           dl, getPointerTy(DAG.getDataLayout())));
10455       RetOps.push_back(Extract);
10456     }
10457     return DAG.getMergeValues(RetOps, dl);
10458   }
10459 
10460   case Intrinsic::ppc_unpack_longdouble: {
10461     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10462     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10463            "Argument of long double unpack must be 0 or 1!");
10464     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10465                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10466                                        Idx->getValueType(0)));
10467   }
10468 
10469   case Intrinsic::ppc_compare_exp_lt:
10470   case Intrinsic::ppc_compare_exp_gt:
10471   case Intrinsic::ppc_compare_exp_eq:
10472   case Intrinsic::ppc_compare_exp_uo: {
10473     unsigned Pred;
10474     switch (IntrinsicID) {
10475     case Intrinsic::ppc_compare_exp_lt:
10476       Pred = PPC::PRED_LT;
10477       break;
10478     case Intrinsic::ppc_compare_exp_gt:
10479       Pred = PPC::PRED_GT;
10480       break;
10481     case Intrinsic::ppc_compare_exp_eq:
10482       Pred = PPC::PRED_EQ;
10483       break;
10484     case Intrinsic::ppc_compare_exp_uo:
10485       Pred = PPC::PRED_UN;
10486       break;
10487     }
10488     return SDValue(
10489         DAG.getMachineNode(
10490             PPC::SELECT_CC_I4, dl, MVT::i32,
10491             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10492                                         Op.getOperand(1), Op.getOperand(2)),
10493                      0),
10494              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10495              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10496         0);
10497   }
10498   case Intrinsic::ppc_test_data_class_d:
10499   case Intrinsic::ppc_test_data_class_f: {
10500     unsigned CmprOpc = PPC::XSTSTDCDP;
10501     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10502       CmprOpc = PPC::XSTSTDCSP;
10503     return SDValue(
10504         DAG.getMachineNode(
10505             PPC::SELECT_CC_I4, dl, MVT::i32,
10506             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10507                                         Op.getOperand(1)),
10508                      0),
10509              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10510              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10511         0);
10512   }
10513   case Intrinsic::ppc_convert_f128_to_ppcf128:
10514   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10515     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10516                             ? RTLIB::CONVERT_PPCF128_F128
10517                             : RTLIB::CONVERT_F128_PPCF128;
10518     MakeLibCallOptions CallOptions;
10519     std::pair<SDValue, SDValue> Result =
10520         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10521                     dl, SDValue());
10522     return Result.first;
10523   }
10524   }
10525 
10526   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10527   // opcode number of the comparison.
10528   int CompareOpc;
10529   bool isDot;
10530   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10531     return SDValue();    // Don't custom lower most intrinsics.
10532 
10533   // If this is a non-dot comparison, make the VCMP node and we are done.
10534   if (!isDot) {
10535     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10536                               Op.getOperand(1), Op.getOperand(2),
10537                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10538     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10539   }
10540 
10541   // Create the PPCISD altivec 'dot' comparison node.
10542   SDValue Ops[] = {
10543     Op.getOperand(2),  // LHS
10544     Op.getOperand(3),  // RHS
10545     DAG.getConstant(CompareOpc, dl, MVT::i32)
10546   };
10547   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10548   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10549 
10550   // Now that we have the comparison, emit a copy from the CR to a GPR.
10551   // This is flagged to the above dot comparison.
10552   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10553                                 DAG.getRegister(PPC::CR6, MVT::i32),
10554                                 CompNode.getValue(1));
10555 
10556   // Unpack the result based on how the target uses it.
10557   unsigned BitNo;   // Bit # of CR6.
10558   bool InvertBit;   // Invert result?
10559   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10560   default:  // Can't happen, don't crash on invalid number though.
10561   case 0:   // Return the value of the EQ bit of CR6.
10562     BitNo = 0; InvertBit = false;
10563     break;
10564   case 1:   // Return the inverted value of the EQ bit of CR6.
10565     BitNo = 0; InvertBit = true;
10566     break;
10567   case 2:   // Return the value of the LT bit of CR6.
10568     BitNo = 2; InvertBit = false;
10569     break;
10570   case 3:   // Return the inverted value of the LT bit of CR6.
10571     BitNo = 2; InvertBit = true;
10572     break;
10573   }
10574 
10575   // Shift the bit into the low position.
10576   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10577                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10578   // Isolate the bit.
10579   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10580                       DAG.getConstant(1, dl, MVT::i32));
10581 
10582   // If we are supposed to, toggle the bit.
10583   if (InvertBit)
10584     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10585                         DAG.getConstant(1, dl, MVT::i32));
10586   return Flags;
10587 }
10588 
10589 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10590                                                SelectionDAG &DAG) const {
10591   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10592   // the beginning of the argument list.
10593   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10594   SDLoc DL(Op);
10595   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10596   case Intrinsic::ppc_cfence: {
10597     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10598     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10599     SDValue Val = Op.getOperand(ArgStart + 1);
10600     EVT Ty = Val.getValueType();
10601     if (Ty == MVT::i128) {
10602       // FIXME: Testing one of two paired registers is sufficient to guarantee
10603       // ordering?
10604       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10605     }
10606     return SDValue(
10607         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10608                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10609                            Op.getOperand(0)),
10610         0);
10611   }
10612   default:
10613     break;
10614   }
10615   return SDValue();
10616 }
10617 
10618 // Lower scalar BSWAP64 to xxbrd.
10619 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10620   SDLoc dl(Op);
10621   if (!Subtarget.isPPC64())
10622     return Op;
10623   // MTVSRDD
10624   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10625                    Op.getOperand(0));
10626   // XXBRD
10627   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10628   // MFVSRD
10629   int VectorIndex = 0;
10630   if (Subtarget.isLittleEndian())
10631     VectorIndex = 1;
10632   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10633                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10634   return Op;
10635 }
10636 
10637 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10638 // compared to a value that is atomically loaded (atomic loads zero-extend).
10639 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10640                                                 SelectionDAG &DAG) const {
10641   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10642          "Expecting an atomic compare-and-swap here.");
10643   SDLoc dl(Op);
10644   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10645   EVT MemVT = AtomicNode->getMemoryVT();
10646   if (MemVT.getSizeInBits() >= 32)
10647     return Op;
10648 
10649   SDValue CmpOp = Op.getOperand(2);
10650   // If this is already correctly zero-extended, leave it alone.
10651   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10652   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10653     return Op;
10654 
10655   // Clear the high bits of the compare operand.
10656   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10657   SDValue NewCmpOp =
10658     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10659                 DAG.getConstant(MaskVal, dl, MVT::i32));
10660 
10661   // Replace the existing compare operand with the properly zero-extended one.
10662   SmallVector<SDValue, 4> Ops;
10663   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10664     Ops.push_back(AtomicNode->getOperand(i));
10665   Ops[2] = NewCmpOp;
10666   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10667   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10668   auto NodeTy =
10669     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10670   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10671 }
10672 
10673 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10674                                                   SelectionDAG &DAG) const {
10675   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10676   EVT MemVT = N->getMemoryVT();
10677   assert(MemVT.getSimpleVT() == MVT::i128 &&
10678          "Expect quadword atomic operations");
10679   SDLoc dl(N);
10680   unsigned Opc = N->getOpcode();
10681   switch (Opc) {
10682   case ISD::ATOMIC_LOAD: {
10683     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10684     // lowered to ppc instructions by pattern matching instruction selector.
10685     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10686     SmallVector<SDValue, 4> Ops{
10687         N->getOperand(0),
10688         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10689     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10690       Ops.push_back(N->getOperand(I));
10691     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10692                                                 Ops, MemVT, N->getMemOperand());
10693     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10694     SDValue ValHi =
10695         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10696     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10697                         DAG.getConstant(64, dl, MVT::i32));
10698     SDValue Val =
10699         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10700     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10701                        {Val, LoadedVal.getValue(2)});
10702   }
10703   case ISD::ATOMIC_STORE: {
10704     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10705     // lowered to ppc instructions by pattern matching instruction selector.
10706     SDVTList Tys = DAG.getVTList(MVT::Other);
10707     SmallVector<SDValue, 4> Ops{
10708         N->getOperand(0),
10709         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10710     SDValue Val = N->getOperand(2);
10711     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10712     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10713                                 DAG.getConstant(64, dl, MVT::i32));
10714     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10715     Ops.push_back(ValLo);
10716     Ops.push_back(ValHi);
10717     Ops.push_back(N->getOperand(1));
10718     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10719                                    N->getMemOperand());
10720   }
10721   default:
10722     llvm_unreachable("Unexpected atomic opcode");
10723   }
10724 }
10725 
10726 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10727                                                  SelectionDAG &DAG) const {
10728   SDLoc dl(Op);
10729   // Create a stack slot that is 16-byte aligned.
10730   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10731   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10732   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10733   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10734 
10735   // Store the input value into Value#0 of the stack slot.
10736   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10737                                MachinePointerInfo());
10738   // Load it out.
10739   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10740 }
10741 
10742 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10743                                                   SelectionDAG &DAG) const {
10744   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10745          "Should only be called for ISD::INSERT_VECTOR_ELT");
10746 
10747   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10748 
10749   EVT VT = Op.getValueType();
10750   SDLoc dl(Op);
10751   SDValue V1 = Op.getOperand(0);
10752   SDValue V2 = Op.getOperand(1);
10753 
10754   if (VT == MVT::v2f64 && C)
10755     return Op;
10756 
10757   if (Subtarget.isISA3_1()) {
10758     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10759       return SDValue();
10760     // On P10, we have legal lowering for constant and variable indices for
10761     // all vectors.
10762     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10763         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10764       return Op;
10765   }
10766 
10767   // Before P10, we have legal lowering for constant indices but not for
10768   // variable ones.
10769   if (!C)
10770     return SDValue();
10771 
10772   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10773   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10774     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10775     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10776     unsigned InsertAtElement = C->getZExtValue();
10777     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10778     if (Subtarget.isLittleEndian()) {
10779       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10780     }
10781     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10782                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10783   }
10784   return Op;
10785 }
10786 
10787 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10788                                            SelectionDAG &DAG) const {
10789   SDLoc dl(Op);
10790   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10791   SDValue LoadChain = LN->getChain();
10792   SDValue BasePtr = LN->getBasePtr();
10793   EVT VT = Op.getValueType();
10794 
10795   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10796     return Op;
10797 
10798   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10799   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10800   // 2 or 4 vsx registers.
10801   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10802          "Type unsupported without MMA");
10803   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10804          "Type unsupported without paired vector support");
10805   Align Alignment = LN->getAlign();
10806   SmallVector<SDValue, 4> Loads;
10807   SmallVector<SDValue, 4> LoadChains;
10808   unsigned NumVecs = VT.getSizeInBits() / 128;
10809   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10810     SDValue Load =
10811         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10812                     LN->getPointerInfo().getWithOffset(Idx * 16),
10813                     commonAlignment(Alignment, Idx * 16),
10814                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10815     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10816                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10817     Loads.push_back(Load);
10818     LoadChains.push_back(Load.getValue(1));
10819   }
10820   if (Subtarget.isLittleEndian()) {
10821     std::reverse(Loads.begin(), Loads.end());
10822     std::reverse(LoadChains.begin(), LoadChains.end());
10823   }
10824   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10825   SDValue Value =
10826       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10827                   dl, VT, Loads);
10828   SDValue RetOps[] = {Value, TF};
10829   return DAG.getMergeValues(RetOps, dl);
10830 }
10831 
10832 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10833                                             SelectionDAG &DAG) const {
10834   SDLoc dl(Op);
10835   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10836   SDValue StoreChain = SN->getChain();
10837   SDValue BasePtr = SN->getBasePtr();
10838   SDValue Value = SN->getValue();
10839   EVT StoreVT = Value.getValueType();
10840 
10841   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10842     return Op;
10843 
10844   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10845   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10846   // underlying registers individually.
10847   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10848          "Type unsupported without MMA");
10849   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10850          "Type unsupported without paired vector support");
10851   Align Alignment = SN->getAlign();
10852   SmallVector<SDValue, 4> Stores;
10853   unsigned NumVecs = 2;
10854   if (StoreVT == MVT::v512i1) {
10855     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10856     NumVecs = 4;
10857   }
10858   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10859     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10860     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10861                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10862     SDValue Store =
10863         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10864                      SN->getPointerInfo().getWithOffset(Idx * 16),
10865                      commonAlignment(Alignment, Idx * 16),
10866                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10867     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10868                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10869     Stores.push_back(Store);
10870   }
10871   SDValue TF = DAG.getTokenFactor(dl, Stores);
10872   return TF;
10873 }
10874 
10875 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10876   SDLoc dl(Op);
10877   if (Op.getValueType() == MVT::v4i32) {
10878     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10879 
10880     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10881     // +16 as shift amt.
10882     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10883     SDValue RHSSwap =   // = vrlw RHS, 16
10884       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10885 
10886     // Shrinkify inputs to v8i16.
10887     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10888     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10889     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10890 
10891     // Low parts multiplied together, generating 32-bit results (we ignore the
10892     // top parts).
10893     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10894                                         LHS, RHS, DAG, dl, MVT::v4i32);
10895 
10896     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10897                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10898     // Shift the high parts up 16 bits.
10899     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10900                               Neg16, DAG, dl);
10901     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10902   } else if (Op.getValueType() == MVT::v16i8) {
10903     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10904     bool isLittleEndian = Subtarget.isLittleEndian();
10905 
10906     // Multiply the even 8-bit parts, producing 16-bit sums.
10907     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10908                                            LHS, RHS, DAG, dl, MVT::v8i16);
10909     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10910 
10911     // Multiply the odd 8-bit parts, producing 16-bit sums.
10912     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10913                                           LHS, RHS, DAG, dl, MVT::v8i16);
10914     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10915 
10916     // Merge the results together.  Because vmuleub and vmuloub are
10917     // instructions with a big-endian bias, we must reverse the
10918     // element numbering and reverse the meaning of "odd" and "even"
10919     // when generating little endian code.
10920     int Ops[16];
10921     for (unsigned i = 0; i != 8; ++i) {
10922       if (isLittleEndian) {
10923         Ops[i*2  ] = 2*i;
10924         Ops[i*2+1] = 2*i+16;
10925       } else {
10926         Ops[i*2  ] = 2*i+1;
10927         Ops[i*2+1] = 2*i+1+16;
10928       }
10929     }
10930     if (isLittleEndian)
10931       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10932     else
10933       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10934   } else {
10935     llvm_unreachable("Unknown mul to lower!");
10936   }
10937 }
10938 
10939 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
10940   bool IsStrict = Op->isStrictFPOpcode();
10941   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
10942       !Subtarget.hasP9Vector())
10943     return SDValue();
10944 
10945   return Op;
10946 }
10947 
10948 // Custom lowering for fpext vf32 to v2f64
10949 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10950 
10951   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10952          "Should only be called for ISD::FP_EXTEND");
10953 
10954   // FIXME: handle extends from half precision float vectors on P9.
10955   // We only want to custom lower an extend from v2f32 to v2f64.
10956   if (Op.getValueType() != MVT::v2f64 ||
10957       Op.getOperand(0).getValueType() != MVT::v2f32)
10958     return SDValue();
10959 
10960   SDLoc dl(Op);
10961   SDValue Op0 = Op.getOperand(0);
10962 
10963   switch (Op0.getOpcode()) {
10964   default:
10965     return SDValue();
10966   case ISD::EXTRACT_SUBVECTOR: {
10967     assert(Op0.getNumOperands() == 2 &&
10968            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10969            "Node should have 2 operands with second one being a constant!");
10970 
10971     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10972       return SDValue();
10973 
10974     // Custom lower is only done for high or low doubleword.
10975     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10976     if (Idx % 2 != 0)
10977       return SDValue();
10978 
10979     // Since input is v4f32, at this point Idx is either 0 or 2.
10980     // Shift to get the doubleword position we want.
10981     int DWord = Idx >> 1;
10982 
10983     // High and low word positions are different on little endian.
10984     if (Subtarget.isLittleEndian())
10985       DWord ^= 0x1;
10986 
10987     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10988                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10989   }
10990   case ISD::FADD:
10991   case ISD::FMUL:
10992   case ISD::FSUB: {
10993     SDValue NewLoad[2];
10994     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10995       // Ensure both input are loads.
10996       SDValue LdOp = Op0.getOperand(i);
10997       if (LdOp.getOpcode() != ISD::LOAD)
10998         return SDValue();
10999       // Generate new load node.
11000       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11001       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11002       NewLoad[i] = DAG.getMemIntrinsicNode(
11003           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11004           LD->getMemoryVT(), LD->getMemOperand());
11005     }
11006     SDValue NewOp =
11007         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11008                     NewLoad[1], Op0.getNode()->getFlags());
11009     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11010                        DAG.getConstant(0, dl, MVT::i32));
11011   }
11012   case ISD::LOAD: {
11013     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11014     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11015     SDValue NewLd = DAG.getMemIntrinsicNode(
11016         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11017         LD->getMemoryVT(), LD->getMemOperand());
11018     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11019                        DAG.getConstant(0, dl, MVT::i32));
11020   }
11021   }
11022   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11023 }
11024 
11025 /// LowerOperation - Provide custom lowering hooks for some operations.
11026 ///
11027 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11028   switch (Op.getOpcode()) {
11029   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11030   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11031   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11032   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11033   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11034   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11035   case ISD::STRICT_FSETCC:
11036   case ISD::STRICT_FSETCCS:
11037   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11038   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11039   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11040 
11041   case ISD::INLINEASM:
11042   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11043   // Variable argument lowering.
11044   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11045   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11046   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11047 
11048   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11049   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11050   case ISD::GET_DYNAMIC_AREA_OFFSET:
11051     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11052 
11053   // Exception handling lowering.
11054   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11055   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11056   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11057 
11058   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11059   case ISD::STORE:              return LowerSTORE(Op, DAG);
11060   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11061   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11062   case ISD::STRICT_FP_TO_UINT:
11063   case ISD::STRICT_FP_TO_SINT:
11064   case ISD::FP_TO_UINT:
11065   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11066   case ISD::STRICT_UINT_TO_FP:
11067   case ISD::STRICT_SINT_TO_FP:
11068   case ISD::UINT_TO_FP:
11069   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11070   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11071 
11072   // Lower 64-bit shifts.
11073   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11074   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11075   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11076 
11077   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11078   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11079 
11080   // Vector-related lowering.
11081   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11082   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11083   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11084   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11085   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11086   case ISD::MUL:                return LowerMUL(Op, DAG);
11087   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11088   case ISD::STRICT_FP_ROUND:
11089   case ISD::FP_ROUND:
11090     return LowerFP_ROUND(Op, DAG);
11091   case ISD::ROTL:               return LowerROTL(Op, DAG);
11092 
11093   // For counter-based loop handling.
11094   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11095 
11096   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11097 
11098   // Frame & Return address.
11099   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11100   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11101 
11102   case ISD::INTRINSIC_VOID:
11103     return LowerINTRINSIC_VOID(Op, DAG);
11104   case ISD::BSWAP:
11105     return LowerBSWAP(Op, DAG);
11106   case ISD::ATOMIC_CMP_SWAP:
11107     return LowerATOMIC_CMP_SWAP(Op, DAG);
11108   case ISD::ATOMIC_STORE:
11109     return LowerATOMIC_LOAD_STORE(Op, DAG);
11110   }
11111 }
11112 
11113 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11114                                            SmallVectorImpl<SDValue>&Results,
11115                                            SelectionDAG &DAG) const {
11116   SDLoc dl(N);
11117   switch (N->getOpcode()) {
11118   default:
11119     llvm_unreachable("Do not know how to custom type legalize this operation!");
11120   case ISD::ATOMIC_LOAD: {
11121     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11122     Results.push_back(Res);
11123     Results.push_back(Res.getValue(1));
11124     break;
11125   }
11126   case ISD::READCYCLECOUNTER: {
11127     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11128     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11129 
11130     Results.push_back(
11131         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11132     Results.push_back(RTB.getValue(2));
11133     break;
11134   }
11135   case ISD::INTRINSIC_W_CHAIN: {
11136     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11137         Intrinsic::loop_decrement)
11138       break;
11139 
11140     assert(N->getValueType(0) == MVT::i1 &&
11141            "Unexpected result type for CTR decrement intrinsic");
11142     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11143                                  N->getValueType(0));
11144     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11145     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11146                                  N->getOperand(1));
11147 
11148     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11149     Results.push_back(NewInt.getValue(1));
11150     break;
11151   }
11152   case ISD::INTRINSIC_WO_CHAIN: {
11153     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11154     case Intrinsic::ppc_pack_longdouble:
11155       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11156                                     N->getOperand(2), N->getOperand(1)));
11157       break;
11158     case Intrinsic::ppc_convert_f128_to_ppcf128:
11159       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11160       break;
11161     }
11162     break;
11163   }
11164   case ISD::VAARG: {
11165     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11166       return;
11167 
11168     EVT VT = N->getValueType(0);
11169 
11170     if (VT == MVT::i64) {
11171       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11172 
11173       Results.push_back(NewNode);
11174       Results.push_back(NewNode.getValue(1));
11175     }
11176     return;
11177   }
11178   case ISD::STRICT_FP_TO_SINT:
11179   case ISD::STRICT_FP_TO_UINT:
11180   case ISD::FP_TO_SINT:
11181   case ISD::FP_TO_UINT: {
11182     // LowerFP_TO_INT() can only handle f32 and f64.
11183     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11184         MVT::ppcf128)
11185       return;
11186     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11187     Results.push_back(LoweredValue);
11188     if (N->isStrictFPOpcode())
11189       Results.push_back(LoweredValue.getValue(1));
11190     return;
11191   }
11192   case ISD::TRUNCATE: {
11193     if (!N->getValueType(0).isVector())
11194       return;
11195     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11196     if (Lowered)
11197       Results.push_back(Lowered);
11198     return;
11199   }
11200   case ISD::FSHL:
11201   case ISD::FSHR:
11202     // Don't handle funnel shifts here.
11203     return;
11204   case ISD::BITCAST:
11205     // Don't handle bitcast here.
11206     return;
11207   case ISD::FP_EXTEND:
11208     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11209     if (Lowered)
11210       Results.push_back(Lowered);
11211     return;
11212   }
11213 }
11214 
11215 //===----------------------------------------------------------------------===//
11216 //  Other Lowering Code
11217 //===----------------------------------------------------------------------===//
11218 
11219 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11220   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11221   Function *Func = Intrinsic::getDeclaration(M, Id);
11222   return Builder.CreateCall(Func, {});
11223 }
11224 
11225 // The mappings for emitLeading/TrailingFence is taken from
11226 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11227 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11228                                                  Instruction *Inst,
11229                                                  AtomicOrdering Ord) const {
11230   if (Ord == AtomicOrdering::SequentiallyConsistent)
11231     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11232   if (isReleaseOrStronger(Ord))
11233     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11234   return nullptr;
11235 }
11236 
11237 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11238                                                   Instruction *Inst,
11239                                                   AtomicOrdering Ord) const {
11240   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11241     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11242     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11243     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11244     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11245       return Builder.CreateCall(
11246           Intrinsic::getDeclaration(
11247               Builder.GetInsertBlock()->getParent()->getParent(),
11248               Intrinsic::ppc_cfence, {Inst->getType()}),
11249           {Inst});
11250     // FIXME: Can use isync for rmw operation.
11251     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11252   }
11253   return nullptr;
11254 }
11255 
11256 MachineBasicBlock *
11257 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11258                                     unsigned AtomicSize,
11259                                     unsigned BinOpcode,
11260                                     unsigned CmpOpcode,
11261                                     unsigned CmpPred) const {
11262   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11263   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11264 
11265   auto LoadMnemonic = PPC::LDARX;
11266   auto StoreMnemonic = PPC::STDCX;
11267   switch (AtomicSize) {
11268   default:
11269     llvm_unreachable("Unexpected size of atomic entity");
11270   case 1:
11271     LoadMnemonic = PPC::LBARX;
11272     StoreMnemonic = PPC::STBCX;
11273     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11274     break;
11275   case 2:
11276     LoadMnemonic = PPC::LHARX;
11277     StoreMnemonic = PPC::STHCX;
11278     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11279     break;
11280   case 4:
11281     LoadMnemonic = PPC::LWARX;
11282     StoreMnemonic = PPC::STWCX;
11283     break;
11284   case 8:
11285     LoadMnemonic = PPC::LDARX;
11286     StoreMnemonic = PPC::STDCX;
11287     break;
11288   }
11289 
11290   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11291   MachineFunction *F = BB->getParent();
11292   MachineFunction::iterator It = ++BB->getIterator();
11293 
11294   Register dest = MI.getOperand(0).getReg();
11295   Register ptrA = MI.getOperand(1).getReg();
11296   Register ptrB = MI.getOperand(2).getReg();
11297   Register incr = MI.getOperand(3).getReg();
11298   DebugLoc dl = MI.getDebugLoc();
11299 
11300   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11301   MachineBasicBlock *loop2MBB =
11302     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11303   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11304   F->insert(It, loopMBB);
11305   if (CmpOpcode)
11306     F->insert(It, loop2MBB);
11307   F->insert(It, exitMBB);
11308   exitMBB->splice(exitMBB->begin(), BB,
11309                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11310   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11311 
11312   MachineRegisterInfo &RegInfo = F->getRegInfo();
11313   Register TmpReg = (!BinOpcode) ? incr :
11314     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11315                                            : &PPC::GPRCRegClass);
11316 
11317   //  thisMBB:
11318   //   ...
11319   //   fallthrough --> loopMBB
11320   BB->addSuccessor(loopMBB);
11321 
11322   //  loopMBB:
11323   //   l[wd]arx dest, ptr
11324   //   add r0, dest, incr
11325   //   st[wd]cx. r0, ptr
11326   //   bne- loopMBB
11327   //   fallthrough --> exitMBB
11328 
11329   // For max/min...
11330   //  loopMBB:
11331   //   l[wd]arx dest, ptr
11332   //   cmpl?[wd] incr, dest
11333   //   bgt exitMBB
11334   //  loop2MBB:
11335   //   st[wd]cx. dest, ptr
11336   //   bne- loopMBB
11337   //   fallthrough --> exitMBB
11338 
11339   BB = loopMBB;
11340   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11341     .addReg(ptrA).addReg(ptrB);
11342   if (BinOpcode)
11343     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11344   if (CmpOpcode) {
11345     // Signed comparisons of byte or halfword values must be sign-extended.
11346     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11347       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11348       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11349               ExtReg).addReg(dest);
11350       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11351         .addReg(incr).addReg(ExtReg);
11352     } else
11353       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11354         .addReg(incr).addReg(dest);
11355 
11356     BuildMI(BB, dl, TII->get(PPC::BCC))
11357       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11358     BB->addSuccessor(loop2MBB);
11359     BB->addSuccessor(exitMBB);
11360     BB = loop2MBB;
11361   }
11362   BuildMI(BB, dl, TII->get(StoreMnemonic))
11363     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11364   BuildMI(BB, dl, TII->get(PPC::BCC))
11365     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11366   BB->addSuccessor(loopMBB);
11367   BB->addSuccessor(exitMBB);
11368 
11369   //  exitMBB:
11370   //   ...
11371   BB = exitMBB;
11372   return BB;
11373 }
11374 
11375 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11376   switch(MI.getOpcode()) {
11377   default:
11378     return false;
11379   case PPC::COPY:
11380     return TII->isSignExtended(MI);
11381   case PPC::LHA:
11382   case PPC::LHA8:
11383   case PPC::LHAU:
11384   case PPC::LHAU8:
11385   case PPC::LHAUX:
11386   case PPC::LHAUX8:
11387   case PPC::LHAX:
11388   case PPC::LHAX8:
11389   case PPC::LWA:
11390   case PPC::LWAUX:
11391   case PPC::LWAX:
11392   case PPC::LWAX_32:
11393   case PPC::LWA_32:
11394   case PPC::PLHA:
11395   case PPC::PLHA8:
11396   case PPC::PLHA8pc:
11397   case PPC::PLHApc:
11398   case PPC::PLWA:
11399   case PPC::PLWA8:
11400   case PPC::PLWA8pc:
11401   case PPC::PLWApc:
11402   case PPC::EXTSB:
11403   case PPC::EXTSB8:
11404   case PPC::EXTSB8_32_64:
11405   case PPC::EXTSB8_rec:
11406   case PPC::EXTSB_rec:
11407   case PPC::EXTSH:
11408   case PPC::EXTSH8:
11409   case PPC::EXTSH8_32_64:
11410   case PPC::EXTSH8_rec:
11411   case PPC::EXTSH_rec:
11412   case PPC::EXTSW:
11413   case PPC::EXTSWSLI:
11414   case PPC::EXTSWSLI_32_64:
11415   case PPC::EXTSWSLI_32_64_rec:
11416   case PPC::EXTSWSLI_rec:
11417   case PPC::EXTSW_32:
11418   case PPC::EXTSW_32_64:
11419   case PPC::EXTSW_32_64_rec:
11420   case PPC::EXTSW_rec:
11421   case PPC::SRAW:
11422   case PPC::SRAWI:
11423   case PPC::SRAWI_rec:
11424   case PPC::SRAW_rec:
11425     return true;
11426   }
11427   return false;
11428 }
11429 
11430 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11431     MachineInstr &MI, MachineBasicBlock *BB,
11432     bool is8bit, // operation
11433     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11434   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11435   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11436 
11437   // If this is a signed comparison and the value being compared is not known
11438   // to be sign extended, sign extend it here.
11439   DebugLoc dl = MI.getDebugLoc();
11440   MachineFunction *F = BB->getParent();
11441   MachineRegisterInfo &RegInfo = F->getRegInfo();
11442   Register incr = MI.getOperand(3).getReg();
11443   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11444     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11445 
11446   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11447     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11448     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11449         .addReg(MI.getOperand(3).getReg());
11450     MI.getOperand(3).setReg(ValueReg);
11451   }
11452   // If we support part-word atomic mnemonics, just use them
11453   if (Subtarget.hasPartwordAtomics())
11454     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11455                             CmpPred);
11456 
11457   // In 64 bit mode we have to use 64 bits for addresses, even though the
11458   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11459   // registers without caring whether they're 32 or 64, but here we're
11460   // doing actual arithmetic on the addresses.
11461   bool is64bit = Subtarget.isPPC64();
11462   bool isLittleEndian = Subtarget.isLittleEndian();
11463   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11464 
11465   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11466   MachineFunction::iterator It = ++BB->getIterator();
11467 
11468   Register dest = MI.getOperand(0).getReg();
11469   Register ptrA = MI.getOperand(1).getReg();
11470   Register ptrB = MI.getOperand(2).getReg();
11471 
11472   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11473   MachineBasicBlock *loop2MBB =
11474       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11475   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11476   F->insert(It, loopMBB);
11477   if (CmpOpcode)
11478     F->insert(It, loop2MBB);
11479   F->insert(It, exitMBB);
11480   exitMBB->splice(exitMBB->begin(), BB,
11481                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11482   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11483 
11484   const TargetRegisterClass *RC =
11485       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11486   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11487 
11488   Register PtrReg = RegInfo.createVirtualRegister(RC);
11489   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11490   Register ShiftReg =
11491       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11492   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11493   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11494   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11495   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11496   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11497   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11498   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11499   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11500   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11501   Register Ptr1Reg;
11502   Register TmpReg =
11503       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11504 
11505   //  thisMBB:
11506   //   ...
11507   //   fallthrough --> loopMBB
11508   BB->addSuccessor(loopMBB);
11509 
11510   // The 4-byte load must be aligned, while a char or short may be
11511   // anywhere in the word.  Hence all this nasty bookkeeping code.
11512   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11513   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11514   //   xori shift, shift1, 24 [16]
11515   //   rlwinm ptr, ptr1, 0, 0, 29
11516   //   slw incr2, incr, shift
11517   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11518   //   slw mask, mask2, shift
11519   //  loopMBB:
11520   //   lwarx tmpDest, ptr
11521   //   add tmp, tmpDest, incr2
11522   //   andc tmp2, tmpDest, mask
11523   //   and tmp3, tmp, mask
11524   //   or tmp4, tmp3, tmp2
11525   //   stwcx. tmp4, ptr
11526   //   bne- loopMBB
11527   //   fallthrough --> exitMBB
11528   //   srw SrwDest, tmpDest, shift
11529   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11530   if (ptrA != ZeroReg) {
11531     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11532     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11533         .addReg(ptrA)
11534         .addReg(ptrB);
11535   } else {
11536     Ptr1Reg = ptrB;
11537   }
11538   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11539   // mode.
11540   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11541       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11542       .addImm(3)
11543       .addImm(27)
11544       .addImm(is8bit ? 28 : 27);
11545   if (!isLittleEndian)
11546     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11547         .addReg(Shift1Reg)
11548         .addImm(is8bit ? 24 : 16);
11549   if (is64bit)
11550     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11551         .addReg(Ptr1Reg)
11552         .addImm(0)
11553         .addImm(61);
11554   else
11555     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11556         .addReg(Ptr1Reg)
11557         .addImm(0)
11558         .addImm(0)
11559         .addImm(29);
11560   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11561   if (is8bit)
11562     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11563   else {
11564     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11565     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11566         .addReg(Mask3Reg)
11567         .addImm(65535);
11568   }
11569   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11570       .addReg(Mask2Reg)
11571       .addReg(ShiftReg);
11572 
11573   BB = loopMBB;
11574   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11575       .addReg(ZeroReg)
11576       .addReg(PtrReg);
11577   if (BinOpcode)
11578     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11579         .addReg(Incr2Reg)
11580         .addReg(TmpDestReg);
11581   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11582       .addReg(TmpDestReg)
11583       .addReg(MaskReg);
11584   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11585   if (CmpOpcode) {
11586     // For unsigned comparisons, we can directly compare the shifted values.
11587     // For signed comparisons we shift and sign extend.
11588     Register SReg = RegInfo.createVirtualRegister(GPRC);
11589     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11590         .addReg(TmpDestReg)
11591         .addReg(MaskReg);
11592     unsigned ValueReg = SReg;
11593     unsigned CmpReg = Incr2Reg;
11594     if (CmpOpcode == PPC::CMPW) {
11595       ValueReg = RegInfo.createVirtualRegister(GPRC);
11596       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11597           .addReg(SReg)
11598           .addReg(ShiftReg);
11599       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11600       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11601           .addReg(ValueReg);
11602       ValueReg = ValueSReg;
11603       CmpReg = incr;
11604     }
11605     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11606         .addReg(CmpReg)
11607         .addReg(ValueReg);
11608     BuildMI(BB, dl, TII->get(PPC::BCC))
11609         .addImm(CmpPred)
11610         .addReg(PPC::CR0)
11611         .addMBB(exitMBB);
11612     BB->addSuccessor(loop2MBB);
11613     BB->addSuccessor(exitMBB);
11614     BB = loop2MBB;
11615   }
11616   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11617   BuildMI(BB, dl, TII->get(PPC::STWCX))
11618       .addReg(Tmp4Reg)
11619       .addReg(ZeroReg)
11620       .addReg(PtrReg);
11621   BuildMI(BB, dl, TII->get(PPC::BCC))
11622       .addImm(PPC::PRED_NE)
11623       .addReg(PPC::CR0)
11624       .addMBB(loopMBB);
11625   BB->addSuccessor(loopMBB);
11626   BB->addSuccessor(exitMBB);
11627 
11628   //  exitMBB:
11629   //   ...
11630   BB = exitMBB;
11631   // Since the shift amount is not a constant, we need to clear
11632   // the upper bits with a separate RLWINM.
11633   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11634       .addReg(SrwDestReg)
11635       .addImm(0)
11636       .addImm(is8bit ? 24 : 16)
11637       .addImm(31);
11638   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11639       .addReg(TmpDestReg)
11640       .addReg(ShiftReg);
11641   return BB;
11642 }
11643 
11644 llvm::MachineBasicBlock *
11645 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11646                                     MachineBasicBlock *MBB) const {
11647   DebugLoc DL = MI.getDebugLoc();
11648   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11649   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11650 
11651   MachineFunction *MF = MBB->getParent();
11652   MachineRegisterInfo &MRI = MF->getRegInfo();
11653 
11654   const BasicBlock *BB = MBB->getBasicBlock();
11655   MachineFunction::iterator I = ++MBB->getIterator();
11656 
11657   Register DstReg = MI.getOperand(0).getReg();
11658   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11659   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11660   Register mainDstReg = MRI.createVirtualRegister(RC);
11661   Register restoreDstReg = MRI.createVirtualRegister(RC);
11662 
11663   MVT PVT = getPointerTy(MF->getDataLayout());
11664   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11665          "Invalid Pointer Size!");
11666   // For v = setjmp(buf), we generate
11667   //
11668   // thisMBB:
11669   //  SjLjSetup mainMBB
11670   //  bl mainMBB
11671   //  v_restore = 1
11672   //  b sinkMBB
11673   //
11674   // mainMBB:
11675   //  buf[LabelOffset] = LR
11676   //  v_main = 0
11677   //
11678   // sinkMBB:
11679   //  v = phi(main, restore)
11680   //
11681 
11682   MachineBasicBlock *thisMBB = MBB;
11683   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11684   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11685   MF->insert(I, mainMBB);
11686   MF->insert(I, sinkMBB);
11687 
11688   MachineInstrBuilder MIB;
11689 
11690   // Transfer the remainder of BB and its successor edges to sinkMBB.
11691   sinkMBB->splice(sinkMBB->begin(), MBB,
11692                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11693   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11694 
11695   // Note that the structure of the jmp_buf used here is not compatible
11696   // with that used by libc, and is not designed to be. Specifically, it
11697   // stores only those 'reserved' registers that LLVM does not otherwise
11698   // understand how to spill. Also, by convention, by the time this
11699   // intrinsic is called, Clang has already stored the frame address in the
11700   // first slot of the buffer and stack address in the third. Following the
11701   // X86 target code, we'll store the jump address in the second slot. We also
11702   // need to save the TOC pointer (R2) to handle jumps between shared
11703   // libraries, and that will be stored in the fourth slot. The thread
11704   // identifier (R13) is not affected.
11705 
11706   // thisMBB:
11707   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11708   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11709   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11710 
11711   // Prepare IP either in reg.
11712   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11713   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11714   Register BufReg = MI.getOperand(1).getReg();
11715 
11716   if (Subtarget.is64BitELFABI()) {
11717     setUsesTOCBasePtr(*MBB->getParent());
11718     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11719               .addReg(PPC::X2)
11720               .addImm(TOCOffset)
11721               .addReg(BufReg)
11722               .cloneMemRefs(MI);
11723   }
11724 
11725   // Naked functions never have a base pointer, and so we use r1. For all
11726   // other functions, this decision must be delayed until during PEI.
11727   unsigned BaseReg;
11728   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11729     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11730   else
11731     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11732 
11733   MIB = BuildMI(*thisMBB, MI, DL,
11734                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11735             .addReg(BaseReg)
11736             .addImm(BPOffset)
11737             .addReg(BufReg)
11738             .cloneMemRefs(MI);
11739 
11740   // Setup
11741   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11742   MIB.addRegMask(TRI->getNoPreservedMask());
11743 
11744   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11745 
11746   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11747           .addMBB(mainMBB);
11748   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11749 
11750   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11751   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11752 
11753   // mainMBB:
11754   //  mainDstReg = 0
11755   MIB =
11756       BuildMI(mainMBB, DL,
11757               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11758 
11759   // Store IP
11760   if (Subtarget.isPPC64()) {
11761     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11762             .addReg(LabelReg)
11763             .addImm(LabelOffset)
11764             .addReg(BufReg);
11765   } else {
11766     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11767             .addReg(LabelReg)
11768             .addImm(LabelOffset)
11769             .addReg(BufReg);
11770   }
11771   MIB.cloneMemRefs(MI);
11772 
11773   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11774   mainMBB->addSuccessor(sinkMBB);
11775 
11776   // sinkMBB:
11777   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11778           TII->get(PPC::PHI), DstReg)
11779     .addReg(mainDstReg).addMBB(mainMBB)
11780     .addReg(restoreDstReg).addMBB(thisMBB);
11781 
11782   MI.eraseFromParent();
11783   return sinkMBB;
11784 }
11785 
11786 MachineBasicBlock *
11787 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11788                                      MachineBasicBlock *MBB) const {
11789   DebugLoc DL = MI.getDebugLoc();
11790   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11791 
11792   MachineFunction *MF = MBB->getParent();
11793   MachineRegisterInfo &MRI = MF->getRegInfo();
11794 
11795   MVT PVT = getPointerTy(MF->getDataLayout());
11796   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11797          "Invalid Pointer Size!");
11798 
11799   const TargetRegisterClass *RC =
11800     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11801   Register Tmp = MRI.createVirtualRegister(RC);
11802   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11803   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11804   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11805   unsigned BP =
11806       (PVT == MVT::i64)
11807           ? PPC::X30
11808           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11809                                                               : PPC::R30);
11810 
11811   MachineInstrBuilder MIB;
11812 
11813   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11814   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11815   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11816   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11817 
11818   Register BufReg = MI.getOperand(0).getReg();
11819 
11820   // Reload FP (the jumped-to function may not have had a
11821   // frame pointer, and if so, then its r31 will be restored
11822   // as necessary).
11823   if (PVT == MVT::i64) {
11824     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11825             .addImm(0)
11826             .addReg(BufReg);
11827   } else {
11828     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11829             .addImm(0)
11830             .addReg(BufReg);
11831   }
11832   MIB.cloneMemRefs(MI);
11833 
11834   // Reload IP
11835   if (PVT == MVT::i64) {
11836     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11837             .addImm(LabelOffset)
11838             .addReg(BufReg);
11839   } else {
11840     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11841             .addImm(LabelOffset)
11842             .addReg(BufReg);
11843   }
11844   MIB.cloneMemRefs(MI);
11845 
11846   // Reload SP
11847   if (PVT == MVT::i64) {
11848     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11849             .addImm(SPOffset)
11850             .addReg(BufReg);
11851   } else {
11852     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11853             .addImm(SPOffset)
11854             .addReg(BufReg);
11855   }
11856   MIB.cloneMemRefs(MI);
11857 
11858   // Reload BP
11859   if (PVT == MVT::i64) {
11860     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11861             .addImm(BPOffset)
11862             .addReg(BufReg);
11863   } else {
11864     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11865             .addImm(BPOffset)
11866             .addReg(BufReg);
11867   }
11868   MIB.cloneMemRefs(MI);
11869 
11870   // Reload TOC
11871   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11872     setUsesTOCBasePtr(*MBB->getParent());
11873     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11874               .addImm(TOCOffset)
11875               .addReg(BufReg)
11876               .cloneMemRefs(MI);
11877   }
11878 
11879   // Jump
11880   BuildMI(*MBB, MI, DL,
11881           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11882   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11883 
11884   MI.eraseFromParent();
11885   return MBB;
11886 }
11887 
11888 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11889   // If the function specifically requests inline stack probes, emit them.
11890   if (MF.getFunction().hasFnAttribute("probe-stack"))
11891     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11892            "inline-asm";
11893   return false;
11894 }
11895 
11896 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11897   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11898   unsigned StackAlign = TFI->getStackAlignment();
11899   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11900          "Unexpected stack alignment");
11901   // The default stack probe size is 4096 if the function has no
11902   // stack-probe-size attribute.
11903   unsigned StackProbeSize = 4096;
11904   const Function &Fn = MF.getFunction();
11905   if (Fn.hasFnAttribute("stack-probe-size"))
11906     Fn.getFnAttribute("stack-probe-size")
11907         .getValueAsString()
11908         .getAsInteger(0, StackProbeSize);
11909   // Round down to the stack alignment.
11910   StackProbeSize &= ~(StackAlign - 1);
11911   return StackProbeSize ? StackProbeSize : StackAlign;
11912 }
11913 
11914 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11915 // into three phases. In the first phase, it uses pseudo instruction
11916 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11917 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11918 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11919 // MaxCallFrameSize so that it can calculate correct data area pointer.
11920 MachineBasicBlock *
11921 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11922                                     MachineBasicBlock *MBB) const {
11923   const bool isPPC64 = Subtarget.isPPC64();
11924   MachineFunction *MF = MBB->getParent();
11925   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11926   DebugLoc DL = MI.getDebugLoc();
11927   const unsigned ProbeSize = getStackProbeSize(*MF);
11928   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11929   MachineRegisterInfo &MRI = MF->getRegInfo();
11930   // The CFG of probing stack looks as
11931   //         +-----+
11932   //         | MBB |
11933   //         +--+--+
11934   //            |
11935   //       +----v----+
11936   //  +--->+ TestMBB +---+
11937   //  |    +----+----+   |
11938   //  |         |        |
11939   //  |   +-----v----+   |
11940   //  +---+ BlockMBB |   |
11941   //      +----------+   |
11942   //                     |
11943   //       +---------+   |
11944   //       | TailMBB +<--+
11945   //       +---------+
11946   // In MBB, calculate previous frame pointer and final stack pointer.
11947   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11948   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11949   // TailMBB is spliced via \p MI.
11950   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11951   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11952   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11953 
11954   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11955   MF->insert(MBBIter, TestMBB);
11956   MF->insert(MBBIter, BlockMBB);
11957   MF->insert(MBBIter, TailMBB);
11958 
11959   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11960   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11961 
11962   Register DstReg = MI.getOperand(0).getReg();
11963   Register NegSizeReg = MI.getOperand(1).getReg();
11964   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11965   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11966   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11967   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11968 
11969   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11970   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11971   // NegSize.
11972   unsigned ProbeOpc;
11973   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11974     ProbeOpc =
11975         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11976   else
11977     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11978     // and NegSizeReg will be allocated in the same phyreg to avoid
11979     // redundant copy when NegSizeReg has only one use which is current MI and
11980     // will be replaced by PREPARE_PROBED_ALLOCA then.
11981     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11982                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11983   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11984       .addDef(ActualNegSizeReg)
11985       .addReg(NegSizeReg)
11986       .add(MI.getOperand(2))
11987       .add(MI.getOperand(3));
11988 
11989   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11990   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11991           FinalStackPtr)
11992       .addReg(SPReg)
11993       .addReg(ActualNegSizeReg);
11994 
11995   // Materialize a scratch register for update.
11996   int64_t NegProbeSize = -(int64_t)ProbeSize;
11997   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11998   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11999   if (!isInt<16>(NegProbeSize)) {
12000     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12001     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12002         .addImm(NegProbeSize >> 16);
12003     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12004             ScratchReg)
12005         .addReg(TempReg)
12006         .addImm(NegProbeSize & 0xFFFF);
12007   } else
12008     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12009         .addImm(NegProbeSize);
12010 
12011   {
12012     // Probing leading residual part.
12013     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12014     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12015         .addReg(ActualNegSizeReg)
12016         .addReg(ScratchReg);
12017     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12018     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12019         .addReg(Div)
12020         .addReg(ScratchReg);
12021     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12022     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12023         .addReg(Mul)
12024         .addReg(ActualNegSizeReg);
12025     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12026         .addReg(FramePointer)
12027         .addReg(SPReg)
12028         .addReg(NegMod);
12029   }
12030 
12031   {
12032     // Remaining part should be multiple of ProbeSize.
12033     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12034     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12035         .addReg(SPReg)
12036         .addReg(FinalStackPtr);
12037     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12038         .addImm(PPC::PRED_EQ)
12039         .addReg(CmpResult)
12040         .addMBB(TailMBB);
12041     TestMBB->addSuccessor(BlockMBB);
12042     TestMBB->addSuccessor(TailMBB);
12043   }
12044 
12045   {
12046     // Touch the block.
12047     // |P...|P...|P...
12048     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12049         .addReg(FramePointer)
12050         .addReg(SPReg)
12051         .addReg(ScratchReg);
12052     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12053     BlockMBB->addSuccessor(TestMBB);
12054   }
12055 
12056   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12057   // DYNAREAOFFSET pseudo instruction to get the future result.
12058   Register MaxCallFrameSizeReg =
12059       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12060   BuildMI(TailMBB, DL,
12061           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12062           MaxCallFrameSizeReg)
12063       .add(MI.getOperand(2))
12064       .add(MI.getOperand(3));
12065   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12066       .addReg(SPReg)
12067       .addReg(MaxCallFrameSizeReg);
12068 
12069   // Splice instructions after MI to TailMBB.
12070   TailMBB->splice(TailMBB->end(), MBB,
12071                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12072   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12073   MBB->addSuccessor(TestMBB);
12074 
12075   // Delete the pseudo instruction.
12076   MI.eraseFromParent();
12077 
12078   ++NumDynamicAllocaProbed;
12079   return TailMBB;
12080 }
12081 
12082 MachineBasicBlock *
12083 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12084                                                MachineBasicBlock *BB) const {
12085   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12086       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12087     if (Subtarget.is64BitELFABI() &&
12088         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12089         !Subtarget.isUsingPCRelativeCalls()) {
12090       // Call lowering should have added an r2 operand to indicate a dependence
12091       // on the TOC base pointer value. It can't however, because there is no
12092       // way to mark the dependence as implicit there, and so the stackmap code
12093       // will confuse it with a regular operand. Instead, add the dependence
12094       // here.
12095       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12096     }
12097 
12098     return emitPatchPoint(MI, BB);
12099   }
12100 
12101   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12102       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12103     return emitEHSjLjSetJmp(MI, BB);
12104   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12105              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12106     return emitEHSjLjLongJmp(MI, BB);
12107   }
12108 
12109   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12110 
12111   // To "insert" these instructions we actually have to insert their
12112   // control-flow patterns.
12113   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12114   MachineFunction::iterator It = ++BB->getIterator();
12115 
12116   MachineFunction *F = BB->getParent();
12117   MachineRegisterInfo &MRI = F->getRegInfo();
12118 
12119   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12120       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12121       MI.getOpcode() == PPC::SELECT_I8) {
12122     SmallVector<MachineOperand, 2> Cond;
12123     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12124         MI.getOpcode() == PPC::SELECT_CC_I8)
12125       Cond.push_back(MI.getOperand(4));
12126     else
12127       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12128     Cond.push_back(MI.getOperand(1));
12129 
12130     DebugLoc dl = MI.getDebugLoc();
12131     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12132                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12133   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12134              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12135              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12136              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12137              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12138              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12139              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12140              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12141              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12142              MI.getOpcode() == PPC::SELECT_F4 ||
12143              MI.getOpcode() == PPC::SELECT_F8 ||
12144              MI.getOpcode() == PPC::SELECT_F16 ||
12145              MI.getOpcode() == PPC::SELECT_SPE ||
12146              MI.getOpcode() == PPC::SELECT_SPE4 ||
12147              MI.getOpcode() == PPC::SELECT_VRRC ||
12148              MI.getOpcode() == PPC::SELECT_VSFRC ||
12149              MI.getOpcode() == PPC::SELECT_VSSRC ||
12150              MI.getOpcode() == PPC::SELECT_VSRC) {
12151     // The incoming instruction knows the destination vreg to set, the
12152     // condition code register to branch on, the true/false values to
12153     // select between, and a branch opcode to use.
12154 
12155     //  thisMBB:
12156     //  ...
12157     //   TrueVal = ...
12158     //   cmpTY ccX, r1, r2
12159     //   bCC copy1MBB
12160     //   fallthrough --> copy0MBB
12161     MachineBasicBlock *thisMBB = BB;
12162     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12163     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12164     DebugLoc dl = MI.getDebugLoc();
12165     F->insert(It, copy0MBB);
12166     F->insert(It, sinkMBB);
12167 
12168     // Transfer the remainder of BB and its successor edges to sinkMBB.
12169     sinkMBB->splice(sinkMBB->begin(), BB,
12170                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12171     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12172 
12173     // Next, add the true and fallthrough blocks as its successors.
12174     BB->addSuccessor(copy0MBB);
12175     BB->addSuccessor(sinkMBB);
12176 
12177     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12178         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12179         MI.getOpcode() == PPC::SELECT_F16 ||
12180         MI.getOpcode() == PPC::SELECT_SPE4 ||
12181         MI.getOpcode() == PPC::SELECT_SPE ||
12182         MI.getOpcode() == PPC::SELECT_VRRC ||
12183         MI.getOpcode() == PPC::SELECT_VSFRC ||
12184         MI.getOpcode() == PPC::SELECT_VSSRC ||
12185         MI.getOpcode() == PPC::SELECT_VSRC) {
12186       BuildMI(BB, dl, TII->get(PPC::BC))
12187           .addReg(MI.getOperand(1).getReg())
12188           .addMBB(sinkMBB);
12189     } else {
12190       unsigned SelectPred = MI.getOperand(4).getImm();
12191       BuildMI(BB, dl, TII->get(PPC::BCC))
12192           .addImm(SelectPred)
12193           .addReg(MI.getOperand(1).getReg())
12194           .addMBB(sinkMBB);
12195     }
12196 
12197     //  copy0MBB:
12198     //   %FalseValue = ...
12199     //   # fallthrough to sinkMBB
12200     BB = copy0MBB;
12201 
12202     // Update machine-CFG edges
12203     BB->addSuccessor(sinkMBB);
12204 
12205     //  sinkMBB:
12206     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12207     //  ...
12208     BB = sinkMBB;
12209     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12210         .addReg(MI.getOperand(3).getReg())
12211         .addMBB(copy0MBB)
12212         .addReg(MI.getOperand(2).getReg())
12213         .addMBB(thisMBB);
12214   } else if (MI.getOpcode() == PPC::ReadTB) {
12215     // To read the 64-bit time-base register on a 32-bit target, we read the
12216     // two halves. Should the counter have wrapped while it was being read, we
12217     // need to try again.
12218     // ...
12219     // readLoop:
12220     // mfspr Rx,TBU # load from TBU
12221     // mfspr Ry,TB  # load from TB
12222     // mfspr Rz,TBU # load from TBU
12223     // cmpw crX,Rx,Rz # check if 'old'='new'
12224     // bne readLoop   # branch if they're not equal
12225     // ...
12226 
12227     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12228     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12229     DebugLoc dl = MI.getDebugLoc();
12230     F->insert(It, readMBB);
12231     F->insert(It, sinkMBB);
12232 
12233     // Transfer the remainder of BB and its successor edges to sinkMBB.
12234     sinkMBB->splice(sinkMBB->begin(), BB,
12235                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12236     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12237 
12238     BB->addSuccessor(readMBB);
12239     BB = readMBB;
12240 
12241     MachineRegisterInfo &RegInfo = F->getRegInfo();
12242     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12243     Register LoReg = MI.getOperand(0).getReg();
12244     Register HiReg = MI.getOperand(1).getReg();
12245 
12246     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12247     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12248     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12249 
12250     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12251 
12252     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12253         .addReg(HiReg)
12254         .addReg(ReadAgainReg);
12255     BuildMI(BB, dl, TII->get(PPC::BCC))
12256         .addImm(PPC::PRED_NE)
12257         .addReg(CmpReg)
12258         .addMBB(readMBB);
12259 
12260     BB->addSuccessor(readMBB);
12261     BB->addSuccessor(sinkMBB);
12262   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12263     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12264   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12265     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12266   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12267     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12268   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12269     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12270 
12271   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12272     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12273   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12274     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12275   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12276     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12277   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12278     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12279 
12280   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12281     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12282   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12283     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12284   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12285     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12286   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12287     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12288 
12289   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12290     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12291   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12292     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12293   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12294     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12295   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12296     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12297 
12298   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12299     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12300   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12301     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12302   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12303     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12304   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12305     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12306 
12307   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12308     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12309   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12310     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12311   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12312     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12313   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12314     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12315 
12316   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12317     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12318   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12319     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12320   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12321     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12322   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12323     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12324 
12325   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12326     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12327   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12328     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12330     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12331   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12332     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12333 
12334   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12335     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12336   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12337     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12339     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12340   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12341     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12342 
12343   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12344     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12345   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12346     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12348     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12349   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12350     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12351 
12352   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12353     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12354   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12355     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12356   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12357     BB = EmitAtomicBinary(MI, BB, 4, 0);
12358   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12359     BB = EmitAtomicBinary(MI, BB, 8, 0);
12360   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12361            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12362            (Subtarget.hasPartwordAtomics() &&
12363             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12364            (Subtarget.hasPartwordAtomics() &&
12365             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12366     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12367 
12368     auto LoadMnemonic = PPC::LDARX;
12369     auto StoreMnemonic = PPC::STDCX;
12370     switch (MI.getOpcode()) {
12371     default:
12372       llvm_unreachable("Compare and swap of unknown size");
12373     case PPC::ATOMIC_CMP_SWAP_I8:
12374       LoadMnemonic = PPC::LBARX;
12375       StoreMnemonic = PPC::STBCX;
12376       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12377       break;
12378     case PPC::ATOMIC_CMP_SWAP_I16:
12379       LoadMnemonic = PPC::LHARX;
12380       StoreMnemonic = PPC::STHCX;
12381       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12382       break;
12383     case PPC::ATOMIC_CMP_SWAP_I32:
12384       LoadMnemonic = PPC::LWARX;
12385       StoreMnemonic = PPC::STWCX;
12386       break;
12387     case PPC::ATOMIC_CMP_SWAP_I64:
12388       LoadMnemonic = PPC::LDARX;
12389       StoreMnemonic = PPC::STDCX;
12390       break;
12391     }
12392     Register dest = MI.getOperand(0).getReg();
12393     Register ptrA = MI.getOperand(1).getReg();
12394     Register ptrB = MI.getOperand(2).getReg();
12395     Register oldval = MI.getOperand(3).getReg();
12396     Register newval = MI.getOperand(4).getReg();
12397     DebugLoc dl = MI.getDebugLoc();
12398 
12399     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12400     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12401     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12402     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12403     F->insert(It, loop1MBB);
12404     F->insert(It, loop2MBB);
12405     F->insert(It, midMBB);
12406     F->insert(It, exitMBB);
12407     exitMBB->splice(exitMBB->begin(), BB,
12408                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12409     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12410 
12411     //  thisMBB:
12412     //   ...
12413     //   fallthrough --> loopMBB
12414     BB->addSuccessor(loop1MBB);
12415 
12416     // loop1MBB:
12417     //   l[bhwd]arx dest, ptr
12418     //   cmp[wd] dest, oldval
12419     //   bne- midMBB
12420     // loop2MBB:
12421     //   st[bhwd]cx. newval, ptr
12422     //   bne- loopMBB
12423     //   b exitBB
12424     // midMBB:
12425     //   st[bhwd]cx. dest, ptr
12426     // exitBB:
12427     BB = loop1MBB;
12428     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12429     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12430         .addReg(oldval)
12431         .addReg(dest);
12432     BuildMI(BB, dl, TII->get(PPC::BCC))
12433         .addImm(PPC::PRED_NE)
12434         .addReg(PPC::CR0)
12435         .addMBB(midMBB);
12436     BB->addSuccessor(loop2MBB);
12437     BB->addSuccessor(midMBB);
12438 
12439     BB = loop2MBB;
12440     BuildMI(BB, dl, TII->get(StoreMnemonic))
12441         .addReg(newval)
12442         .addReg(ptrA)
12443         .addReg(ptrB);
12444     BuildMI(BB, dl, TII->get(PPC::BCC))
12445         .addImm(PPC::PRED_NE)
12446         .addReg(PPC::CR0)
12447         .addMBB(loop1MBB);
12448     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12449     BB->addSuccessor(loop1MBB);
12450     BB->addSuccessor(exitMBB);
12451 
12452     BB = midMBB;
12453     BuildMI(BB, dl, TII->get(StoreMnemonic))
12454         .addReg(dest)
12455         .addReg(ptrA)
12456         .addReg(ptrB);
12457     BB->addSuccessor(exitMBB);
12458 
12459     //  exitMBB:
12460     //   ...
12461     BB = exitMBB;
12462   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12463              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12464     // We must use 64-bit registers for addresses when targeting 64-bit,
12465     // since we're actually doing arithmetic on them.  Other registers
12466     // can be 32-bit.
12467     bool is64bit = Subtarget.isPPC64();
12468     bool isLittleEndian = Subtarget.isLittleEndian();
12469     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12470 
12471     Register dest = MI.getOperand(0).getReg();
12472     Register ptrA = MI.getOperand(1).getReg();
12473     Register ptrB = MI.getOperand(2).getReg();
12474     Register oldval = MI.getOperand(3).getReg();
12475     Register newval = MI.getOperand(4).getReg();
12476     DebugLoc dl = MI.getDebugLoc();
12477 
12478     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12479     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12480     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12481     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12482     F->insert(It, loop1MBB);
12483     F->insert(It, loop2MBB);
12484     F->insert(It, midMBB);
12485     F->insert(It, exitMBB);
12486     exitMBB->splice(exitMBB->begin(), BB,
12487                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12488     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12489 
12490     MachineRegisterInfo &RegInfo = F->getRegInfo();
12491     const TargetRegisterClass *RC =
12492         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12493     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12494 
12495     Register PtrReg = RegInfo.createVirtualRegister(RC);
12496     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12497     Register ShiftReg =
12498         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12499     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12500     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12501     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12502     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12503     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12504     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12505     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12506     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12507     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12508     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12509     Register Ptr1Reg;
12510     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12511     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12512     //  thisMBB:
12513     //   ...
12514     //   fallthrough --> loopMBB
12515     BB->addSuccessor(loop1MBB);
12516 
12517     // The 4-byte load must be aligned, while a char or short may be
12518     // anywhere in the word.  Hence all this nasty bookkeeping code.
12519     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12520     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12521     //   xori shift, shift1, 24 [16]
12522     //   rlwinm ptr, ptr1, 0, 0, 29
12523     //   slw newval2, newval, shift
12524     //   slw oldval2, oldval,shift
12525     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12526     //   slw mask, mask2, shift
12527     //   and newval3, newval2, mask
12528     //   and oldval3, oldval2, mask
12529     // loop1MBB:
12530     //   lwarx tmpDest, ptr
12531     //   and tmp, tmpDest, mask
12532     //   cmpw tmp, oldval3
12533     //   bne- midMBB
12534     // loop2MBB:
12535     //   andc tmp2, tmpDest, mask
12536     //   or tmp4, tmp2, newval3
12537     //   stwcx. tmp4, ptr
12538     //   bne- loop1MBB
12539     //   b exitBB
12540     // midMBB:
12541     //   stwcx. tmpDest, ptr
12542     // exitBB:
12543     //   srw dest, tmpDest, shift
12544     if (ptrA != ZeroReg) {
12545       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12546       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12547           .addReg(ptrA)
12548           .addReg(ptrB);
12549     } else {
12550       Ptr1Reg = ptrB;
12551     }
12552 
12553     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12554     // mode.
12555     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12556         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12557         .addImm(3)
12558         .addImm(27)
12559         .addImm(is8bit ? 28 : 27);
12560     if (!isLittleEndian)
12561       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12562           .addReg(Shift1Reg)
12563           .addImm(is8bit ? 24 : 16);
12564     if (is64bit)
12565       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12566           .addReg(Ptr1Reg)
12567           .addImm(0)
12568           .addImm(61);
12569     else
12570       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12571           .addReg(Ptr1Reg)
12572           .addImm(0)
12573           .addImm(0)
12574           .addImm(29);
12575     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12576         .addReg(newval)
12577         .addReg(ShiftReg);
12578     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12579         .addReg(oldval)
12580         .addReg(ShiftReg);
12581     if (is8bit)
12582       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12583     else {
12584       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12585       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12586           .addReg(Mask3Reg)
12587           .addImm(65535);
12588     }
12589     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12590         .addReg(Mask2Reg)
12591         .addReg(ShiftReg);
12592     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12593         .addReg(NewVal2Reg)
12594         .addReg(MaskReg);
12595     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12596         .addReg(OldVal2Reg)
12597         .addReg(MaskReg);
12598 
12599     BB = loop1MBB;
12600     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12601         .addReg(ZeroReg)
12602         .addReg(PtrReg);
12603     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12604         .addReg(TmpDestReg)
12605         .addReg(MaskReg);
12606     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12607         .addReg(TmpReg)
12608         .addReg(OldVal3Reg);
12609     BuildMI(BB, dl, TII->get(PPC::BCC))
12610         .addImm(PPC::PRED_NE)
12611         .addReg(PPC::CR0)
12612         .addMBB(midMBB);
12613     BB->addSuccessor(loop2MBB);
12614     BB->addSuccessor(midMBB);
12615 
12616     BB = loop2MBB;
12617     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12618         .addReg(TmpDestReg)
12619         .addReg(MaskReg);
12620     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12621         .addReg(Tmp2Reg)
12622         .addReg(NewVal3Reg);
12623     BuildMI(BB, dl, TII->get(PPC::STWCX))
12624         .addReg(Tmp4Reg)
12625         .addReg(ZeroReg)
12626         .addReg(PtrReg);
12627     BuildMI(BB, dl, TII->get(PPC::BCC))
12628         .addImm(PPC::PRED_NE)
12629         .addReg(PPC::CR0)
12630         .addMBB(loop1MBB);
12631     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12632     BB->addSuccessor(loop1MBB);
12633     BB->addSuccessor(exitMBB);
12634 
12635     BB = midMBB;
12636     BuildMI(BB, dl, TII->get(PPC::STWCX))
12637         .addReg(TmpDestReg)
12638         .addReg(ZeroReg)
12639         .addReg(PtrReg);
12640     BB->addSuccessor(exitMBB);
12641 
12642     //  exitMBB:
12643     //   ...
12644     BB = exitMBB;
12645     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12646         .addReg(TmpReg)
12647         .addReg(ShiftReg);
12648   } else if (MI.getOpcode() == PPC::FADDrtz) {
12649     // This pseudo performs an FADD with rounding mode temporarily forced
12650     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12651     // is not modeled at the SelectionDAG level.
12652     Register Dest = MI.getOperand(0).getReg();
12653     Register Src1 = MI.getOperand(1).getReg();
12654     Register Src2 = MI.getOperand(2).getReg();
12655     DebugLoc dl = MI.getDebugLoc();
12656 
12657     MachineRegisterInfo &RegInfo = F->getRegInfo();
12658     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12659 
12660     // Save FPSCR value.
12661     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12662 
12663     // Set rounding mode to round-to-zero.
12664     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12665         .addImm(31)
12666         .addReg(PPC::RM, RegState::ImplicitDefine);
12667 
12668     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12669         .addImm(30)
12670         .addReg(PPC::RM, RegState::ImplicitDefine);
12671 
12672     // Perform addition.
12673     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12674                    .addReg(Src1)
12675                    .addReg(Src2);
12676     if (MI.getFlag(MachineInstr::NoFPExcept))
12677       MIB.setMIFlag(MachineInstr::NoFPExcept);
12678 
12679     // Restore FPSCR value.
12680     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12681   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12682              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12683              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12684              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12685     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12686                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12687                           ? PPC::ANDI8_rec
12688                           : PPC::ANDI_rec;
12689     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12690                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12691 
12692     MachineRegisterInfo &RegInfo = F->getRegInfo();
12693     Register Dest = RegInfo.createVirtualRegister(
12694         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12695 
12696     DebugLoc Dl = MI.getDebugLoc();
12697     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12698         .addReg(MI.getOperand(1).getReg())
12699         .addImm(1);
12700     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12701             MI.getOperand(0).getReg())
12702         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12703   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12704     DebugLoc Dl = MI.getDebugLoc();
12705     MachineRegisterInfo &RegInfo = F->getRegInfo();
12706     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12707     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12708     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12709             MI.getOperand(0).getReg())
12710         .addReg(CRReg);
12711   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12712     DebugLoc Dl = MI.getDebugLoc();
12713     unsigned Imm = MI.getOperand(1).getImm();
12714     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12715     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12716             MI.getOperand(0).getReg())
12717         .addReg(PPC::CR0EQ);
12718   } else if (MI.getOpcode() == PPC::SETRNDi) {
12719     DebugLoc dl = MI.getDebugLoc();
12720     Register OldFPSCRReg = MI.getOperand(0).getReg();
12721 
12722     // Save FPSCR value.
12723     if (MRI.use_empty(OldFPSCRReg))
12724       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12725     else
12726       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12727 
12728     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12729     // the following settings:
12730     //   00 Round to nearest
12731     //   01 Round to 0
12732     //   10 Round to +inf
12733     //   11 Round to -inf
12734 
12735     // When the operand is immediate, using the two least significant bits of
12736     // the immediate to set the bits 62:63 of FPSCR.
12737     unsigned Mode = MI.getOperand(1).getImm();
12738     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12739         .addImm(31)
12740         .addReg(PPC::RM, RegState::ImplicitDefine);
12741 
12742     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12743         .addImm(30)
12744         .addReg(PPC::RM, RegState::ImplicitDefine);
12745   } else if (MI.getOpcode() == PPC::SETRND) {
12746     DebugLoc dl = MI.getDebugLoc();
12747 
12748     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12749     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12750     // If the target doesn't have DirectMove, we should use stack to do the
12751     // conversion, because the target doesn't have the instructions like mtvsrd
12752     // or mfvsrd to do this conversion directly.
12753     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12754       if (Subtarget.hasDirectMove()) {
12755         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12756           .addReg(SrcReg);
12757       } else {
12758         // Use stack to do the register copy.
12759         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12760         MachineRegisterInfo &RegInfo = F->getRegInfo();
12761         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12762         if (RC == &PPC::F8RCRegClass) {
12763           // Copy register from F8RCRegClass to G8RCRegclass.
12764           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12765                  "Unsupported RegClass.");
12766 
12767           StoreOp = PPC::STFD;
12768           LoadOp = PPC::LD;
12769         } else {
12770           // Copy register from G8RCRegClass to F8RCRegclass.
12771           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12772                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12773                  "Unsupported RegClass.");
12774         }
12775 
12776         MachineFrameInfo &MFI = F->getFrameInfo();
12777         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12778 
12779         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12780             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12781             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12782             MFI.getObjectAlign(FrameIdx));
12783 
12784         // Store the SrcReg into the stack.
12785         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12786           .addReg(SrcReg)
12787           .addImm(0)
12788           .addFrameIndex(FrameIdx)
12789           .addMemOperand(MMOStore);
12790 
12791         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12792             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12793             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12794             MFI.getObjectAlign(FrameIdx));
12795 
12796         // Load from the stack where SrcReg is stored, and save to DestReg,
12797         // so we have done the RegClass conversion from RegClass::SrcReg to
12798         // RegClass::DestReg.
12799         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12800           .addImm(0)
12801           .addFrameIndex(FrameIdx)
12802           .addMemOperand(MMOLoad);
12803       }
12804     };
12805 
12806     Register OldFPSCRReg = MI.getOperand(0).getReg();
12807 
12808     // Save FPSCR value.
12809     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12810 
12811     // When the operand is gprc register, use two least significant bits of the
12812     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12813     //
12814     // copy OldFPSCRTmpReg, OldFPSCRReg
12815     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12816     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12817     // copy NewFPSCRReg, NewFPSCRTmpReg
12818     // mtfsf 255, NewFPSCRReg
12819     MachineOperand SrcOp = MI.getOperand(1);
12820     MachineRegisterInfo &RegInfo = F->getRegInfo();
12821     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12822 
12823     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12824 
12825     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12826     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12827 
12828     // The first operand of INSERT_SUBREG should be a register which has
12829     // subregisters, we only care about its RegClass, so we should use an
12830     // IMPLICIT_DEF register.
12831     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12832     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12833       .addReg(ImDefReg)
12834       .add(SrcOp)
12835       .addImm(1);
12836 
12837     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12838     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12839       .addReg(OldFPSCRTmpReg)
12840       .addReg(ExtSrcReg)
12841       .addImm(0)
12842       .addImm(62);
12843 
12844     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12845     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12846 
12847     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12848     // bits of FPSCR.
12849     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12850       .addImm(255)
12851       .addReg(NewFPSCRReg)
12852       .addImm(0)
12853       .addImm(0);
12854   } else if (MI.getOpcode() == PPC::SETFLM) {
12855     DebugLoc Dl = MI.getDebugLoc();
12856 
12857     // Result of setflm is previous FPSCR content, so we need to save it first.
12858     Register OldFPSCRReg = MI.getOperand(0).getReg();
12859     if (MRI.use_empty(OldFPSCRReg))
12860       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12861     else
12862       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12863 
12864     // Put bits in 32:63 to FPSCR.
12865     Register NewFPSCRReg = MI.getOperand(1).getReg();
12866     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12867         .addImm(255)
12868         .addReg(NewFPSCRReg)
12869         .addImm(0)
12870         .addImm(0);
12871   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12872              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12873     return emitProbedAlloca(MI, BB);
12874   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12875     DebugLoc DL = MI.getDebugLoc();
12876     Register Src = MI.getOperand(2).getReg();
12877     Register Lo = MI.getOperand(0).getReg();
12878     Register Hi = MI.getOperand(1).getReg();
12879     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12880         .addDef(Lo)
12881         .addUse(Src, 0, PPC::sub_gp8_x1);
12882     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12883         .addDef(Hi)
12884         .addUse(Src, 0, PPC::sub_gp8_x0);
12885   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
12886              MI.getOpcode() == PPC::STQX_PSEUDO) {
12887     DebugLoc DL = MI.getDebugLoc();
12888     // Ptr is used as the ptr_rc_no_r0 part
12889     // of LQ/STQ's memory operand and adding result of RA and RB,
12890     // so it has to be g8rc_and_g8rc_nox0.
12891     Register Ptr =
12892         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
12893     Register Val = MI.getOperand(0).getReg();
12894     Register RA = MI.getOperand(1).getReg();
12895     Register RB = MI.getOperand(2).getReg();
12896     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
12897     BuildMI(*BB, MI, DL,
12898             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
12899                                               : TII->get(PPC::STQ))
12900         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
12901         .addImm(0)
12902         .addReg(Ptr);
12903   } else {
12904     llvm_unreachable("Unexpected instr type to insert");
12905   }
12906 
12907   MI.eraseFromParent(); // The pseudo instruction is gone now.
12908   return BB;
12909 }
12910 
12911 //===----------------------------------------------------------------------===//
12912 // Target Optimization Hooks
12913 //===----------------------------------------------------------------------===//
12914 
12915 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12916   // For the estimates, convergence is quadratic, so we essentially double the
12917   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12918   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12919   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12920   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12921   if (VT.getScalarType() == MVT::f64)
12922     RefinementSteps++;
12923   return RefinementSteps;
12924 }
12925 
12926 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
12927                                             const DenormalMode &Mode) const {
12928   // We only have VSX Vector Test for software Square Root.
12929   EVT VT = Op.getValueType();
12930   if (!isTypeLegal(MVT::i1) ||
12931       (VT != MVT::f64 &&
12932        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
12933     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
12934 
12935   SDLoc DL(Op);
12936   // The output register of FTSQRT is CR field.
12937   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
12938   // ftsqrt BF,FRB
12939   // Let e_b be the unbiased exponent of the double-precision
12940   // floating-point operand in register FRB.
12941   // fe_flag is set to 1 if either of the following conditions occurs.
12942   //   - The double-precision floating-point operand in register FRB is a zero,
12943   //     a NaN, or an infinity, or a negative value.
12944   //   - e_b is less than or equal to -970.
12945   // Otherwise fe_flag is set to 0.
12946   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
12947   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
12948   // exponent is less than -970)
12949   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
12950   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
12951                                     FTSQRT, SRIdxVal),
12952                  0);
12953 }
12954 
12955 SDValue
12956 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
12957                                                SelectionDAG &DAG) const {
12958   // We only have VSX Vector Square Root.
12959   EVT VT = Op.getValueType();
12960   if (VT != MVT::f64 &&
12961       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
12962     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
12963 
12964   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
12965 }
12966 
12967 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12968                                            int Enabled, int &RefinementSteps,
12969                                            bool &UseOneConstNR,
12970                                            bool Reciprocal) const {
12971   EVT VT = Operand.getValueType();
12972   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12973       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12974       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12975       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12976     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12977       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12978 
12979     // The Newton-Raphson computation with a single constant does not provide
12980     // enough accuracy on some CPUs.
12981     UseOneConstNR = !Subtarget.needsTwoConstNR();
12982     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12983   }
12984   return SDValue();
12985 }
12986 
12987 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12988                                             int Enabled,
12989                                             int &RefinementSteps) const {
12990   EVT VT = Operand.getValueType();
12991   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12992       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12993       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12994       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12995     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12996       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12997     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12998   }
12999   return SDValue();
13000 }
13001 
13002 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13003   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13004   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13005   // enabled for division), this functionality is redundant with the default
13006   // combiner logic (once the division -> reciprocal/multiply transformation
13007   // has taken place). As a result, this matters more for older cores than for
13008   // newer ones.
13009 
13010   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13011   // reciprocal if there are two or more FDIVs (for embedded cores with only
13012   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13013   switch (Subtarget.getCPUDirective()) {
13014   default:
13015     return 3;
13016   case PPC::DIR_440:
13017   case PPC::DIR_A2:
13018   case PPC::DIR_E500:
13019   case PPC::DIR_E500mc:
13020   case PPC::DIR_E5500:
13021     return 2;
13022   }
13023 }
13024 
13025 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13026 // collapsed, and so we need to look through chains of them.
13027 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13028                                      int64_t& Offset, SelectionDAG &DAG) {
13029   if (DAG.isBaseWithConstantOffset(Loc)) {
13030     Base = Loc.getOperand(0);
13031     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13032 
13033     // The base might itself be a base plus an offset, and if so, accumulate
13034     // that as well.
13035     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13036   }
13037 }
13038 
13039 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13040                             unsigned Bytes, int Dist,
13041                             SelectionDAG &DAG) {
13042   if (VT.getSizeInBits() / 8 != Bytes)
13043     return false;
13044 
13045   SDValue BaseLoc = Base->getBasePtr();
13046   if (Loc.getOpcode() == ISD::FrameIndex) {
13047     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13048       return false;
13049     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13050     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13051     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13052     int FS  = MFI.getObjectSize(FI);
13053     int BFS = MFI.getObjectSize(BFI);
13054     if (FS != BFS || FS != (int)Bytes) return false;
13055     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13056   }
13057 
13058   SDValue Base1 = Loc, Base2 = BaseLoc;
13059   int64_t Offset1 = 0, Offset2 = 0;
13060   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13061   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13062   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13063     return true;
13064 
13065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13066   const GlobalValue *GV1 = nullptr;
13067   const GlobalValue *GV2 = nullptr;
13068   Offset1 = 0;
13069   Offset2 = 0;
13070   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13071   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13072   if (isGA1 && isGA2 && GV1 == GV2)
13073     return Offset1 == (Offset2 + Dist*Bytes);
13074   return false;
13075 }
13076 
13077 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13078 // not enforce equality of the chain operands.
13079 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13080                             unsigned Bytes, int Dist,
13081                             SelectionDAG &DAG) {
13082   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13083     EVT VT = LS->getMemoryVT();
13084     SDValue Loc = LS->getBasePtr();
13085     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13086   }
13087 
13088   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13089     EVT VT;
13090     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13091     default: return false;
13092     case Intrinsic::ppc_altivec_lvx:
13093     case Intrinsic::ppc_altivec_lvxl:
13094     case Intrinsic::ppc_vsx_lxvw4x:
13095     case Intrinsic::ppc_vsx_lxvw4x_be:
13096       VT = MVT::v4i32;
13097       break;
13098     case Intrinsic::ppc_vsx_lxvd2x:
13099     case Intrinsic::ppc_vsx_lxvd2x_be:
13100       VT = MVT::v2f64;
13101       break;
13102     case Intrinsic::ppc_altivec_lvebx:
13103       VT = MVT::i8;
13104       break;
13105     case Intrinsic::ppc_altivec_lvehx:
13106       VT = MVT::i16;
13107       break;
13108     case Intrinsic::ppc_altivec_lvewx:
13109       VT = MVT::i32;
13110       break;
13111     }
13112 
13113     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13114   }
13115 
13116   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13117     EVT VT;
13118     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13119     default: return false;
13120     case Intrinsic::ppc_altivec_stvx:
13121     case Intrinsic::ppc_altivec_stvxl:
13122     case Intrinsic::ppc_vsx_stxvw4x:
13123       VT = MVT::v4i32;
13124       break;
13125     case Intrinsic::ppc_vsx_stxvd2x:
13126       VT = MVT::v2f64;
13127       break;
13128     case Intrinsic::ppc_vsx_stxvw4x_be:
13129       VT = MVT::v4i32;
13130       break;
13131     case Intrinsic::ppc_vsx_stxvd2x_be:
13132       VT = MVT::v2f64;
13133       break;
13134     case Intrinsic::ppc_altivec_stvebx:
13135       VT = MVT::i8;
13136       break;
13137     case Intrinsic::ppc_altivec_stvehx:
13138       VT = MVT::i16;
13139       break;
13140     case Intrinsic::ppc_altivec_stvewx:
13141       VT = MVT::i32;
13142       break;
13143     }
13144 
13145     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13146   }
13147 
13148   return false;
13149 }
13150 
13151 // Return true is there is a nearyby consecutive load to the one provided
13152 // (regardless of alignment). We search up and down the chain, looking though
13153 // token factors and other loads (but nothing else). As a result, a true result
13154 // indicates that it is safe to create a new consecutive load adjacent to the
13155 // load provided.
13156 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13157   SDValue Chain = LD->getChain();
13158   EVT VT = LD->getMemoryVT();
13159 
13160   SmallSet<SDNode *, 16> LoadRoots;
13161   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13162   SmallSet<SDNode *, 16> Visited;
13163 
13164   // First, search up the chain, branching to follow all token-factor operands.
13165   // If we find a consecutive load, then we're done, otherwise, record all
13166   // nodes just above the top-level loads and token factors.
13167   while (!Queue.empty()) {
13168     SDNode *ChainNext = Queue.pop_back_val();
13169     if (!Visited.insert(ChainNext).second)
13170       continue;
13171 
13172     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13173       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13174         return true;
13175 
13176       if (!Visited.count(ChainLD->getChain().getNode()))
13177         Queue.push_back(ChainLD->getChain().getNode());
13178     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13179       for (const SDUse &O : ChainNext->ops())
13180         if (!Visited.count(O.getNode()))
13181           Queue.push_back(O.getNode());
13182     } else
13183       LoadRoots.insert(ChainNext);
13184   }
13185 
13186   // Second, search down the chain, starting from the top-level nodes recorded
13187   // in the first phase. These top-level nodes are the nodes just above all
13188   // loads and token factors. Starting with their uses, recursively look though
13189   // all loads (just the chain uses) and token factors to find a consecutive
13190   // load.
13191   Visited.clear();
13192   Queue.clear();
13193 
13194   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13195        IE = LoadRoots.end(); I != IE; ++I) {
13196     Queue.push_back(*I);
13197 
13198     while (!Queue.empty()) {
13199       SDNode *LoadRoot = Queue.pop_back_val();
13200       if (!Visited.insert(LoadRoot).second)
13201         continue;
13202 
13203       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13204         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13205           return true;
13206 
13207       for (SDNode *U : LoadRoot->uses())
13208         if (((isa<MemSDNode>(U) &&
13209               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13210              U->getOpcode() == ISD::TokenFactor) &&
13211             !Visited.count(U))
13212           Queue.push_back(U);
13213     }
13214   }
13215 
13216   return false;
13217 }
13218 
13219 /// This function is called when we have proved that a SETCC node can be replaced
13220 /// by subtraction (and other supporting instructions) so that the result of
13221 /// comparison is kept in a GPR instead of CR. This function is purely for
13222 /// codegen purposes and has some flags to guide the codegen process.
13223 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13224                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13225   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13226 
13227   // Zero extend the operands to the largest legal integer. Originally, they
13228   // must be of a strictly smaller size.
13229   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13230                          DAG.getConstant(Size, DL, MVT::i32));
13231   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13232                          DAG.getConstant(Size, DL, MVT::i32));
13233 
13234   // Swap if needed. Depends on the condition code.
13235   if (Swap)
13236     std::swap(Op0, Op1);
13237 
13238   // Subtract extended integers.
13239   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13240 
13241   // Move the sign bit to the least significant position and zero out the rest.
13242   // Now the least significant bit carries the result of original comparison.
13243   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13244                              DAG.getConstant(Size - 1, DL, MVT::i32));
13245   auto Final = Shifted;
13246 
13247   // Complement the result if needed. Based on the condition code.
13248   if (Complement)
13249     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13250                         DAG.getConstant(1, DL, MVT::i64));
13251 
13252   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13253 }
13254 
13255 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13256                                                   DAGCombinerInfo &DCI) const {
13257   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13258 
13259   SelectionDAG &DAG = DCI.DAG;
13260   SDLoc DL(N);
13261 
13262   // Size of integers being compared has a critical role in the following
13263   // analysis, so we prefer to do this when all types are legal.
13264   if (!DCI.isAfterLegalizeDAG())
13265     return SDValue();
13266 
13267   // If all users of SETCC extend its value to a legal integer type
13268   // then we replace SETCC with a subtraction
13269   for (const SDNode *U : N->uses())
13270     if (U->getOpcode() != ISD::ZERO_EXTEND)
13271       return SDValue();
13272 
13273   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13274   auto OpSize = N->getOperand(0).getValueSizeInBits();
13275 
13276   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13277 
13278   if (OpSize < Size) {
13279     switch (CC) {
13280     default: break;
13281     case ISD::SETULT:
13282       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13283     case ISD::SETULE:
13284       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13285     case ISD::SETUGT:
13286       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13287     case ISD::SETUGE:
13288       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13289     }
13290   }
13291 
13292   return SDValue();
13293 }
13294 
13295 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13296                                                   DAGCombinerInfo &DCI) const {
13297   SelectionDAG &DAG = DCI.DAG;
13298   SDLoc dl(N);
13299 
13300   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13301   // If we're tracking CR bits, we need to be careful that we don't have:
13302   //   trunc(binary-ops(zext(x), zext(y)))
13303   // or
13304   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13305   // such that we're unnecessarily moving things into GPRs when it would be
13306   // better to keep them in CR bits.
13307 
13308   // Note that trunc here can be an actual i1 trunc, or can be the effective
13309   // truncation that comes from a setcc or select_cc.
13310   if (N->getOpcode() == ISD::TRUNCATE &&
13311       N->getValueType(0) != MVT::i1)
13312     return SDValue();
13313 
13314   if (N->getOperand(0).getValueType() != MVT::i32 &&
13315       N->getOperand(0).getValueType() != MVT::i64)
13316     return SDValue();
13317 
13318   if (N->getOpcode() == ISD::SETCC ||
13319       N->getOpcode() == ISD::SELECT_CC) {
13320     // If we're looking at a comparison, then we need to make sure that the
13321     // high bits (all except for the first) don't matter the result.
13322     ISD::CondCode CC =
13323       cast<CondCodeSDNode>(N->getOperand(
13324         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13325     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13326 
13327     if (ISD::isSignedIntSetCC(CC)) {
13328       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13329           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13330         return SDValue();
13331     } else if (ISD::isUnsignedIntSetCC(CC)) {
13332       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13333                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13334           !DAG.MaskedValueIsZero(N->getOperand(1),
13335                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13336         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13337                                              : SDValue());
13338     } else {
13339       // This is neither a signed nor an unsigned comparison, just make sure
13340       // that the high bits are equal.
13341       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13342       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13343 
13344       // We don't really care about what is known about the first bit (if
13345       // anything), so pretend that it is known zero for both to ensure they can
13346       // be compared as constants.
13347       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13348       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13349 
13350       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13351           Op1Known.getConstant() != Op2Known.getConstant())
13352         return SDValue();
13353     }
13354   }
13355 
13356   // We now know that the higher-order bits are irrelevant, we just need to
13357   // make sure that all of the intermediate operations are bit operations, and
13358   // all inputs are extensions.
13359   if (N->getOperand(0).getOpcode() != ISD::AND &&
13360       N->getOperand(0).getOpcode() != ISD::OR  &&
13361       N->getOperand(0).getOpcode() != ISD::XOR &&
13362       N->getOperand(0).getOpcode() != ISD::SELECT &&
13363       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13364       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13365       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13366       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13367       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13368     return SDValue();
13369 
13370   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13371       N->getOperand(1).getOpcode() != ISD::AND &&
13372       N->getOperand(1).getOpcode() != ISD::OR  &&
13373       N->getOperand(1).getOpcode() != ISD::XOR &&
13374       N->getOperand(1).getOpcode() != ISD::SELECT &&
13375       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13376       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13377       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13378       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13379       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13380     return SDValue();
13381 
13382   SmallVector<SDValue, 4> Inputs;
13383   SmallVector<SDValue, 8> BinOps, PromOps;
13384   SmallPtrSet<SDNode *, 16> Visited;
13385 
13386   for (unsigned i = 0; i < 2; ++i) {
13387     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13388           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13389           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13390           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13391         isa<ConstantSDNode>(N->getOperand(i)))
13392       Inputs.push_back(N->getOperand(i));
13393     else
13394       BinOps.push_back(N->getOperand(i));
13395 
13396     if (N->getOpcode() == ISD::TRUNCATE)
13397       break;
13398   }
13399 
13400   // Visit all inputs, collect all binary operations (and, or, xor and
13401   // select) that are all fed by extensions.
13402   while (!BinOps.empty()) {
13403     SDValue BinOp = BinOps.pop_back_val();
13404 
13405     if (!Visited.insert(BinOp.getNode()).second)
13406       continue;
13407 
13408     PromOps.push_back(BinOp);
13409 
13410     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13411       // The condition of the select is not promoted.
13412       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13413         continue;
13414       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13415         continue;
13416 
13417       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13418             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13419             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13420            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13421           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13422         Inputs.push_back(BinOp.getOperand(i));
13423       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13424                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13425                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13426                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13427                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13428                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13429                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13430                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13431                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13432         BinOps.push_back(BinOp.getOperand(i));
13433       } else {
13434         // We have an input that is not an extension or another binary
13435         // operation; we'll abort this transformation.
13436         return SDValue();
13437       }
13438     }
13439   }
13440 
13441   // Make sure that this is a self-contained cluster of operations (which
13442   // is not quite the same thing as saying that everything has only one
13443   // use).
13444   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13445     if (isa<ConstantSDNode>(Inputs[i]))
13446       continue;
13447 
13448     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13449       if (User != N && !Visited.count(User))
13450         return SDValue();
13451 
13452       // Make sure that we're not going to promote the non-output-value
13453       // operand(s) or SELECT or SELECT_CC.
13454       // FIXME: Although we could sometimes handle this, and it does occur in
13455       // practice that one of the condition inputs to the select is also one of
13456       // the outputs, we currently can't deal with this.
13457       if (User->getOpcode() == ISD::SELECT) {
13458         if (User->getOperand(0) == Inputs[i])
13459           return SDValue();
13460       } else if (User->getOpcode() == ISD::SELECT_CC) {
13461         if (User->getOperand(0) == Inputs[i] ||
13462             User->getOperand(1) == Inputs[i])
13463           return SDValue();
13464       }
13465     }
13466   }
13467 
13468   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13469     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13470       if (User != N && !Visited.count(User))
13471         return SDValue();
13472 
13473       // Make sure that we're not going to promote the non-output-value
13474       // operand(s) or SELECT or SELECT_CC.
13475       // FIXME: Although we could sometimes handle this, and it does occur in
13476       // practice that one of the condition inputs to the select is also one of
13477       // the outputs, we currently can't deal with this.
13478       if (User->getOpcode() == ISD::SELECT) {
13479         if (User->getOperand(0) == PromOps[i])
13480           return SDValue();
13481       } else if (User->getOpcode() == ISD::SELECT_CC) {
13482         if (User->getOperand(0) == PromOps[i] ||
13483             User->getOperand(1) == PromOps[i])
13484           return SDValue();
13485       }
13486     }
13487   }
13488 
13489   // Replace all inputs with the extension operand.
13490   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13491     // Constants may have users outside the cluster of to-be-promoted nodes,
13492     // and so we need to replace those as we do the promotions.
13493     if (isa<ConstantSDNode>(Inputs[i]))
13494       continue;
13495     else
13496       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13497   }
13498 
13499   std::list<HandleSDNode> PromOpHandles;
13500   for (auto &PromOp : PromOps)
13501     PromOpHandles.emplace_back(PromOp);
13502 
13503   // Replace all operations (these are all the same, but have a different
13504   // (i1) return type). DAG.getNode will validate that the types of
13505   // a binary operator match, so go through the list in reverse so that
13506   // we've likely promoted both operands first. Any intermediate truncations or
13507   // extensions disappear.
13508   while (!PromOpHandles.empty()) {
13509     SDValue PromOp = PromOpHandles.back().getValue();
13510     PromOpHandles.pop_back();
13511 
13512     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13513         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13514         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13515         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13516       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13517           PromOp.getOperand(0).getValueType() != MVT::i1) {
13518         // The operand is not yet ready (see comment below).
13519         PromOpHandles.emplace_front(PromOp);
13520         continue;
13521       }
13522 
13523       SDValue RepValue = PromOp.getOperand(0);
13524       if (isa<ConstantSDNode>(RepValue))
13525         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13526 
13527       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13528       continue;
13529     }
13530 
13531     unsigned C;
13532     switch (PromOp.getOpcode()) {
13533     default:             C = 0; break;
13534     case ISD::SELECT:    C = 1; break;
13535     case ISD::SELECT_CC: C = 2; break;
13536     }
13537 
13538     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13539          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13540         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13541          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13542       // The to-be-promoted operands of this node have not yet been
13543       // promoted (this should be rare because we're going through the
13544       // list backward, but if one of the operands has several users in
13545       // this cluster of to-be-promoted nodes, it is possible).
13546       PromOpHandles.emplace_front(PromOp);
13547       continue;
13548     }
13549 
13550     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13551                                 PromOp.getNode()->op_end());
13552 
13553     // If there are any constant inputs, make sure they're replaced now.
13554     for (unsigned i = 0; i < 2; ++i)
13555       if (isa<ConstantSDNode>(Ops[C+i]))
13556         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13557 
13558     DAG.ReplaceAllUsesOfValueWith(PromOp,
13559       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13560   }
13561 
13562   // Now we're left with the initial truncation itself.
13563   if (N->getOpcode() == ISD::TRUNCATE)
13564     return N->getOperand(0);
13565 
13566   // Otherwise, this is a comparison. The operands to be compared have just
13567   // changed type (to i1), but everything else is the same.
13568   return SDValue(N, 0);
13569 }
13570 
13571 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13572                                                   DAGCombinerInfo &DCI) const {
13573   SelectionDAG &DAG = DCI.DAG;
13574   SDLoc dl(N);
13575 
13576   // If we're tracking CR bits, we need to be careful that we don't have:
13577   //   zext(binary-ops(trunc(x), trunc(y)))
13578   // or
13579   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13580   // such that we're unnecessarily moving things into CR bits that can more
13581   // efficiently stay in GPRs. Note that if we're not certain that the high
13582   // bits are set as required by the final extension, we still may need to do
13583   // some masking to get the proper behavior.
13584 
13585   // This same functionality is important on PPC64 when dealing with
13586   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13587   // the return values of functions. Because it is so similar, it is handled
13588   // here as well.
13589 
13590   if (N->getValueType(0) != MVT::i32 &&
13591       N->getValueType(0) != MVT::i64)
13592     return SDValue();
13593 
13594   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13595         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13596     return SDValue();
13597 
13598   if (N->getOperand(0).getOpcode() != ISD::AND &&
13599       N->getOperand(0).getOpcode() != ISD::OR  &&
13600       N->getOperand(0).getOpcode() != ISD::XOR &&
13601       N->getOperand(0).getOpcode() != ISD::SELECT &&
13602       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13603     return SDValue();
13604 
13605   SmallVector<SDValue, 4> Inputs;
13606   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13607   SmallPtrSet<SDNode *, 16> Visited;
13608 
13609   // Visit all inputs, collect all binary operations (and, or, xor and
13610   // select) that are all fed by truncations.
13611   while (!BinOps.empty()) {
13612     SDValue BinOp = BinOps.pop_back_val();
13613 
13614     if (!Visited.insert(BinOp.getNode()).second)
13615       continue;
13616 
13617     PromOps.push_back(BinOp);
13618 
13619     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13620       // The condition of the select is not promoted.
13621       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13622         continue;
13623       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13624         continue;
13625 
13626       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13627           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13628         Inputs.push_back(BinOp.getOperand(i));
13629       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13630                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13631                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13632                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13633                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13634         BinOps.push_back(BinOp.getOperand(i));
13635       } else {
13636         // We have an input that is not a truncation or another binary
13637         // operation; we'll abort this transformation.
13638         return SDValue();
13639       }
13640     }
13641   }
13642 
13643   // The operands of a select that must be truncated when the select is
13644   // promoted because the operand is actually part of the to-be-promoted set.
13645   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13646 
13647   // Make sure that this is a self-contained cluster of operations (which
13648   // is not quite the same thing as saying that everything has only one
13649   // use).
13650   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13651     if (isa<ConstantSDNode>(Inputs[i]))
13652       continue;
13653 
13654     for (SDNode *User : Inputs[i].getNode()->uses()) {
13655       if (User != N && !Visited.count(User))
13656         return SDValue();
13657 
13658       // If we're going to promote the non-output-value operand(s) or SELECT or
13659       // SELECT_CC, record them for truncation.
13660       if (User->getOpcode() == ISD::SELECT) {
13661         if (User->getOperand(0) == Inputs[i])
13662           SelectTruncOp[0].insert(std::make_pair(User,
13663                                     User->getOperand(0).getValueType()));
13664       } else if (User->getOpcode() == ISD::SELECT_CC) {
13665         if (User->getOperand(0) == Inputs[i])
13666           SelectTruncOp[0].insert(std::make_pair(User,
13667                                     User->getOperand(0).getValueType()));
13668         if (User->getOperand(1) == Inputs[i])
13669           SelectTruncOp[1].insert(std::make_pair(User,
13670                                     User->getOperand(1).getValueType()));
13671       }
13672     }
13673   }
13674 
13675   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13676     for (SDNode *User : PromOps[i].getNode()->uses()) {
13677       if (User != N && !Visited.count(User))
13678         return SDValue();
13679 
13680       // If we're going to promote the non-output-value operand(s) or SELECT or
13681       // SELECT_CC, record them for truncation.
13682       if (User->getOpcode() == ISD::SELECT) {
13683         if (User->getOperand(0) == PromOps[i])
13684           SelectTruncOp[0].insert(std::make_pair(User,
13685                                     User->getOperand(0).getValueType()));
13686       } else if (User->getOpcode() == ISD::SELECT_CC) {
13687         if (User->getOperand(0) == PromOps[i])
13688           SelectTruncOp[0].insert(std::make_pair(User,
13689                                     User->getOperand(0).getValueType()));
13690         if (User->getOperand(1) == PromOps[i])
13691           SelectTruncOp[1].insert(std::make_pair(User,
13692                                     User->getOperand(1).getValueType()));
13693       }
13694     }
13695   }
13696 
13697   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13698   bool ReallyNeedsExt = false;
13699   if (N->getOpcode() != ISD::ANY_EXTEND) {
13700     // If all of the inputs are not already sign/zero extended, then
13701     // we'll still need to do that at the end.
13702     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13703       if (isa<ConstantSDNode>(Inputs[i]))
13704         continue;
13705 
13706       unsigned OpBits =
13707         Inputs[i].getOperand(0).getValueSizeInBits();
13708       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13709 
13710       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13711            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13712                                   APInt::getHighBitsSet(OpBits,
13713                                                         OpBits-PromBits))) ||
13714           (N->getOpcode() == ISD::SIGN_EXTEND &&
13715            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13716              (OpBits-(PromBits-1)))) {
13717         ReallyNeedsExt = true;
13718         break;
13719       }
13720     }
13721   }
13722 
13723   // Replace all inputs, either with the truncation operand, or a
13724   // truncation or extension to the final output type.
13725   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13726     // Constant inputs need to be replaced with the to-be-promoted nodes that
13727     // use them because they might have users outside of the cluster of
13728     // promoted nodes.
13729     if (isa<ConstantSDNode>(Inputs[i]))
13730       continue;
13731 
13732     SDValue InSrc = Inputs[i].getOperand(0);
13733     if (Inputs[i].getValueType() == N->getValueType(0))
13734       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13735     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13736       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13737         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13738     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13739       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13740         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13741     else
13742       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13743         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13744   }
13745 
13746   std::list<HandleSDNode> PromOpHandles;
13747   for (auto &PromOp : PromOps)
13748     PromOpHandles.emplace_back(PromOp);
13749 
13750   // Replace all operations (these are all the same, but have a different
13751   // (promoted) return type). DAG.getNode will validate that the types of
13752   // a binary operator match, so go through the list in reverse so that
13753   // we've likely promoted both operands first.
13754   while (!PromOpHandles.empty()) {
13755     SDValue PromOp = PromOpHandles.back().getValue();
13756     PromOpHandles.pop_back();
13757 
13758     unsigned C;
13759     switch (PromOp.getOpcode()) {
13760     default:             C = 0; break;
13761     case ISD::SELECT:    C = 1; break;
13762     case ISD::SELECT_CC: C = 2; break;
13763     }
13764 
13765     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13766          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13767         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13768          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13769       // The to-be-promoted operands of this node have not yet been
13770       // promoted (this should be rare because we're going through the
13771       // list backward, but if one of the operands has several users in
13772       // this cluster of to-be-promoted nodes, it is possible).
13773       PromOpHandles.emplace_front(PromOp);
13774       continue;
13775     }
13776 
13777     // For SELECT and SELECT_CC nodes, we do a similar check for any
13778     // to-be-promoted comparison inputs.
13779     if (PromOp.getOpcode() == ISD::SELECT ||
13780         PromOp.getOpcode() == ISD::SELECT_CC) {
13781       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13782            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13783           (SelectTruncOp[1].count(PromOp.getNode()) &&
13784            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13785         PromOpHandles.emplace_front(PromOp);
13786         continue;
13787       }
13788     }
13789 
13790     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13791                                 PromOp.getNode()->op_end());
13792 
13793     // If this node has constant inputs, then they'll need to be promoted here.
13794     for (unsigned i = 0; i < 2; ++i) {
13795       if (!isa<ConstantSDNode>(Ops[C+i]))
13796         continue;
13797       if (Ops[C+i].getValueType() == N->getValueType(0))
13798         continue;
13799 
13800       if (N->getOpcode() == ISD::SIGN_EXTEND)
13801         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13802       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13803         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13804       else
13805         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13806     }
13807 
13808     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13809     // truncate them again to the original value type.
13810     if (PromOp.getOpcode() == ISD::SELECT ||
13811         PromOp.getOpcode() == ISD::SELECT_CC) {
13812       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13813       if (SI0 != SelectTruncOp[0].end())
13814         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13815       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13816       if (SI1 != SelectTruncOp[1].end())
13817         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13818     }
13819 
13820     DAG.ReplaceAllUsesOfValueWith(PromOp,
13821       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13822   }
13823 
13824   // Now we're left with the initial extension itself.
13825   if (!ReallyNeedsExt)
13826     return N->getOperand(0);
13827 
13828   // To zero extend, just mask off everything except for the first bit (in the
13829   // i1 case).
13830   if (N->getOpcode() == ISD::ZERO_EXTEND)
13831     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13832                        DAG.getConstant(APInt::getLowBitsSet(
13833                                          N->getValueSizeInBits(0), PromBits),
13834                                        dl, N->getValueType(0)));
13835 
13836   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13837          "Invalid extension type");
13838   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13839   SDValue ShiftCst =
13840       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13841   return DAG.getNode(
13842       ISD::SRA, dl, N->getValueType(0),
13843       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13844       ShiftCst);
13845 }
13846 
13847 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13848                                         DAGCombinerInfo &DCI) const {
13849   assert(N->getOpcode() == ISD::SETCC &&
13850          "Should be called with a SETCC node");
13851 
13852   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13853   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13854     SDValue LHS = N->getOperand(0);
13855     SDValue RHS = N->getOperand(1);
13856 
13857     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13858     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13859         LHS.hasOneUse())
13860       std::swap(LHS, RHS);
13861 
13862     // x == 0-y --> x+y == 0
13863     // x != 0-y --> x+y != 0
13864     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13865         RHS.hasOneUse()) {
13866       SDLoc DL(N);
13867       SelectionDAG &DAG = DCI.DAG;
13868       EVT VT = N->getValueType(0);
13869       EVT OpVT = LHS.getValueType();
13870       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13871       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13872     }
13873   }
13874 
13875   return DAGCombineTruncBoolExt(N, DCI);
13876 }
13877 
13878 // Is this an extending load from an f32 to an f64?
13879 static bool isFPExtLoad(SDValue Op) {
13880   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13881     return LD->getExtensionType() == ISD::EXTLOAD &&
13882       Op.getValueType() == MVT::f64;
13883   return false;
13884 }
13885 
13886 /// Reduces the number of fp-to-int conversion when building a vector.
13887 ///
13888 /// If this vector is built out of floating to integer conversions,
13889 /// transform it to a vector built out of floating point values followed by a
13890 /// single floating to integer conversion of the vector.
13891 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13892 /// becomes (fptosi (build_vector ($A, $B, ...)))
13893 SDValue PPCTargetLowering::
13894 combineElementTruncationToVectorTruncation(SDNode *N,
13895                                            DAGCombinerInfo &DCI) const {
13896   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13897          "Should be called with a BUILD_VECTOR node");
13898 
13899   SelectionDAG &DAG = DCI.DAG;
13900   SDLoc dl(N);
13901 
13902   SDValue FirstInput = N->getOperand(0);
13903   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13904          "The input operand must be an fp-to-int conversion.");
13905 
13906   // This combine happens after legalization so the fp_to_[su]i nodes are
13907   // already converted to PPCSISD nodes.
13908   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13909   if (FirstConversion == PPCISD::FCTIDZ ||
13910       FirstConversion == PPCISD::FCTIDUZ ||
13911       FirstConversion == PPCISD::FCTIWZ ||
13912       FirstConversion == PPCISD::FCTIWUZ) {
13913     bool IsSplat = true;
13914     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13915       FirstConversion == PPCISD::FCTIWUZ;
13916     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13917     SmallVector<SDValue, 4> Ops;
13918     EVT TargetVT = N->getValueType(0);
13919     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13920       SDValue NextOp = N->getOperand(i);
13921       if (NextOp.getOpcode() != PPCISD::MFVSR)
13922         return SDValue();
13923       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13924       if (NextConversion != FirstConversion)
13925         return SDValue();
13926       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13927       // This is not valid if the input was originally double precision. It is
13928       // also not profitable to do unless this is an extending load in which
13929       // case doing this combine will allow us to combine consecutive loads.
13930       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13931         return SDValue();
13932       if (N->getOperand(i) != FirstInput)
13933         IsSplat = false;
13934     }
13935 
13936     // If this is a splat, we leave it as-is since there will be only a single
13937     // fp-to-int conversion followed by a splat of the integer. This is better
13938     // for 32-bit and smaller ints and neutral for 64-bit ints.
13939     if (IsSplat)
13940       return SDValue();
13941 
13942     // Now that we know we have the right type of node, get its operands
13943     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13944       SDValue In = N->getOperand(i).getOperand(0);
13945       if (Is32Bit) {
13946         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13947         // here, we know that all inputs are extending loads so this is safe).
13948         if (In.isUndef())
13949           Ops.push_back(DAG.getUNDEF(SrcVT));
13950         else {
13951           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13952                                       MVT::f32, In.getOperand(0),
13953                                       DAG.getIntPtrConstant(1, dl));
13954           Ops.push_back(Trunc);
13955         }
13956       } else
13957         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13958     }
13959 
13960     unsigned Opcode;
13961     if (FirstConversion == PPCISD::FCTIDZ ||
13962         FirstConversion == PPCISD::FCTIWZ)
13963       Opcode = ISD::FP_TO_SINT;
13964     else
13965       Opcode = ISD::FP_TO_UINT;
13966 
13967     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13968     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13969     return DAG.getNode(Opcode, dl, TargetVT, BV);
13970   }
13971   return SDValue();
13972 }
13973 
13974 /// Reduce the number of loads when building a vector.
13975 ///
13976 /// Building a vector out of multiple loads can be converted to a load
13977 /// of the vector type if the loads are consecutive. If the loads are
13978 /// consecutive but in descending order, a shuffle is added at the end
13979 /// to reorder the vector.
13980 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13981   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13982          "Should be called with a BUILD_VECTOR node");
13983 
13984   SDLoc dl(N);
13985 
13986   // Return early for non byte-sized type, as they can't be consecutive.
13987   if (!N->getValueType(0).getVectorElementType().isByteSized())
13988     return SDValue();
13989 
13990   bool InputsAreConsecutiveLoads = true;
13991   bool InputsAreReverseConsecutive = true;
13992   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13993   SDValue FirstInput = N->getOperand(0);
13994   bool IsRoundOfExtLoad = false;
13995 
13996   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13997       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13998     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13999     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
14000   }
14001   // Not a build vector of (possibly fp_rounded) loads.
14002   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14003       N->getNumOperands() == 1)
14004     return SDValue();
14005 
14006   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14007     // If any inputs are fp_round(extload), they all must be.
14008     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14009       return SDValue();
14010 
14011     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14012       N->getOperand(i);
14013     if (NextInput.getOpcode() != ISD::LOAD)
14014       return SDValue();
14015 
14016     SDValue PreviousInput =
14017       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14018     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14019     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14020 
14021     // If any inputs are fp_round(extload), they all must be.
14022     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14023       return SDValue();
14024 
14025     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14026       InputsAreConsecutiveLoads = false;
14027     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14028       InputsAreReverseConsecutive = false;
14029 
14030     // Exit early if the loads are neither consecutive nor reverse consecutive.
14031     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14032       return SDValue();
14033   }
14034 
14035   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14036          "The loads cannot be both consecutive and reverse consecutive.");
14037 
14038   SDValue FirstLoadOp =
14039     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14040   SDValue LastLoadOp =
14041     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14042                        N->getOperand(N->getNumOperands()-1);
14043 
14044   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14045   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14046   if (InputsAreConsecutiveLoads) {
14047     assert(LD1 && "Input needs to be a LoadSDNode.");
14048     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14049                        LD1->getBasePtr(), LD1->getPointerInfo(),
14050                        LD1->getAlignment());
14051   }
14052   if (InputsAreReverseConsecutive) {
14053     assert(LDL && "Input needs to be a LoadSDNode.");
14054     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
14055                                LDL->getBasePtr(), LDL->getPointerInfo(),
14056                                LDL->getAlignment());
14057     SmallVector<int, 16> Ops;
14058     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14059       Ops.push_back(i);
14060 
14061     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14062                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14063   }
14064   return SDValue();
14065 }
14066 
14067 // This function adds the required vector_shuffle needed to get
14068 // the elements of the vector extract in the correct position
14069 // as specified by the CorrectElems encoding.
14070 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14071                                       SDValue Input, uint64_t Elems,
14072                                       uint64_t CorrectElems) {
14073   SDLoc dl(N);
14074 
14075   unsigned NumElems = Input.getValueType().getVectorNumElements();
14076   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14077 
14078   // Knowing the element indices being extracted from the original
14079   // vector and the order in which they're being inserted, just put
14080   // them at element indices required for the instruction.
14081   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14082     if (DAG.getDataLayout().isLittleEndian())
14083       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14084     else
14085       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14086     CorrectElems = CorrectElems >> 8;
14087     Elems = Elems >> 8;
14088   }
14089 
14090   SDValue Shuffle =
14091       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14092                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14093 
14094   EVT VT = N->getValueType(0);
14095   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14096 
14097   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14098                                Input.getValueType().getVectorElementType(),
14099                                VT.getVectorNumElements());
14100   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14101                      DAG.getValueType(ExtVT));
14102 }
14103 
14104 // Look for build vector patterns where input operands come from sign
14105 // extended vector_extract elements of specific indices. If the correct indices
14106 // aren't used, add a vector shuffle to fix up the indices and create
14107 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14108 // during instruction selection.
14109 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14110   // This array encodes the indices that the vector sign extend instructions
14111   // extract from when extending from one type to another for both BE and LE.
14112   // The right nibble of each byte corresponds to the LE incides.
14113   // and the left nibble of each byte corresponds to the BE incides.
14114   // For example: 0x3074B8FC  byte->word
14115   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14116   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14117   // For example: 0x000070F8  byte->double word
14118   // For LE: the allowed indices are: 0x0,0x8
14119   // For BE: the allowed indices are: 0x7,0xF
14120   uint64_t TargetElems[] = {
14121       0x3074B8FC, // b->w
14122       0x000070F8, // b->d
14123       0x10325476, // h->w
14124       0x00003074, // h->d
14125       0x00001032, // w->d
14126   };
14127 
14128   uint64_t Elems = 0;
14129   int Index;
14130   SDValue Input;
14131 
14132   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14133     if (!Op)
14134       return false;
14135     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14136         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14137       return false;
14138 
14139     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14140     // of the right width.
14141     SDValue Extract = Op.getOperand(0);
14142     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14143       Extract = Extract.getOperand(0);
14144     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14145       return false;
14146 
14147     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14148     if (!ExtOp)
14149       return false;
14150 
14151     Index = ExtOp->getZExtValue();
14152     if (Input && Input != Extract.getOperand(0))
14153       return false;
14154 
14155     if (!Input)
14156       Input = Extract.getOperand(0);
14157 
14158     Elems = Elems << 8;
14159     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14160     Elems |= Index;
14161 
14162     return true;
14163   };
14164 
14165   // If the build vector operands aren't sign extended vector extracts,
14166   // of the same input vector, then return.
14167   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14168     if (!isSExtOfVecExtract(N->getOperand(i))) {
14169       return SDValue();
14170     }
14171   }
14172 
14173   // If the vector extract indicies are not correct, add the appropriate
14174   // vector_shuffle.
14175   int TgtElemArrayIdx;
14176   int InputSize = Input.getValueType().getScalarSizeInBits();
14177   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14178   if (InputSize + OutputSize == 40)
14179     TgtElemArrayIdx = 0;
14180   else if (InputSize + OutputSize == 72)
14181     TgtElemArrayIdx = 1;
14182   else if (InputSize + OutputSize == 48)
14183     TgtElemArrayIdx = 2;
14184   else if (InputSize + OutputSize == 80)
14185     TgtElemArrayIdx = 3;
14186   else if (InputSize + OutputSize == 96)
14187     TgtElemArrayIdx = 4;
14188   else
14189     return SDValue();
14190 
14191   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14192   CorrectElems = DAG.getDataLayout().isLittleEndian()
14193                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14194                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14195   if (Elems != CorrectElems) {
14196     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14197   }
14198 
14199   // Regular lowering will catch cases where a shuffle is not needed.
14200   return SDValue();
14201 }
14202 
14203 // Look for the pattern of a load from a narrow width to i128, feeding
14204 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14205 // (LXVRZX). This node represents a zero extending load that will be matched
14206 // to the Load VSX Vector Rightmost instructions.
14207 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14208   SDLoc DL(N);
14209 
14210   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14211   if (N->getValueType(0) != MVT::v1i128)
14212     return SDValue();
14213 
14214   SDValue Operand = N->getOperand(0);
14215   // Proceed with the transformation if the operand to the BUILD_VECTOR
14216   // is a load instruction.
14217   if (Operand.getOpcode() != ISD::LOAD)
14218     return SDValue();
14219 
14220   auto *LD = cast<LoadSDNode>(Operand);
14221   EVT MemoryType = LD->getMemoryVT();
14222 
14223   // This transformation is only valid if the we are loading either a byte,
14224   // halfword, word, or doubleword.
14225   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14226                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14227 
14228   // Ensure that the load from the narrow width is being zero extended to i128.
14229   if (!ValidLDType ||
14230       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14231        LD->getExtensionType() != ISD::EXTLOAD))
14232     return SDValue();
14233 
14234   SDValue LoadOps[] = {
14235       LD->getChain(), LD->getBasePtr(),
14236       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14237 
14238   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14239                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14240                                  LoadOps, MemoryType, LD->getMemOperand());
14241 }
14242 
14243 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14244                                                  DAGCombinerInfo &DCI) const {
14245   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14246          "Should be called with a BUILD_VECTOR node");
14247 
14248   SelectionDAG &DAG = DCI.DAG;
14249   SDLoc dl(N);
14250 
14251   if (!Subtarget.hasVSX())
14252     return SDValue();
14253 
14254   // The target independent DAG combiner will leave a build_vector of
14255   // float-to-int conversions intact. We can generate MUCH better code for
14256   // a float-to-int conversion of a vector of floats.
14257   SDValue FirstInput = N->getOperand(0);
14258   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14259     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14260     if (Reduced)
14261       return Reduced;
14262   }
14263 
14264   // If we're building a vector out of consecutive loads, just load that
14265   // vector type.
14266   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14267   if (Reduced)
14268     return Reduced;
14269 
14270   // If we're building a vector out of extended elements from another vector
14271   // we have P9 vector integer extend instructions. The code assumes legal
14272   // input types (i.e. it can't handle things like v4i16) so do not run before
14273   // legalization.
14274   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14275     Reduced = combineBVOfVecSExt(N, DAG);
14276     if (Reduced)
14277       return Reduced;
14278   }
14279 
14280   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14281   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14282   // is a load from <valid narrow width> to i128.
14283   if (Subtarget.isISA3_1()) {
14284     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14285     if (BVOfZLoad)
14286       return BVOfZLoad;
14287   }
14288 
14289   if (N->getValueType(0) != MVT::v2f64)
14290     return SDValue();
14291 
14292   // Looking for:
14293   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14294   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14295       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14296     return SDValue();
14297   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14298       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14299     return SDValue();
14300   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14301     return SDValue();
14302 
14303   SDValue Ext1 = FirstInput.getOperand(0);
14304   SDValue Ext2 = N->getOperand(1).getOperand(0);
14305   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14306      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14307     return SDValue();
14308 
14309   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14310   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14311   if (!Ext1Op || !Ext2Op)
14312     return SDValue();
14313   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14314       Ext1.getOperand(0) != Ext2.getOperand(0))
14315     return SDValue();
14316 
14317   int FirstElem = Ext1Op->getZExtValue();
14318   int SecondElem = Ext2Op->getZExtValue();
14319   int SubvecIdx;
14320   if (FirstElem == 0 && SecondElem == 1)
14321     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14322   else if (FirstElem == 2 && SecondElem == 3)
14323     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14324   else
14325     return SDValue();
14326 
14327   SDValue SrcVec = Ext1.getOperand(0);
14328   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14329     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14330   return DAG.getNode(NodeType, dl, MVT::v2f64,
14331                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14332 }
14333 
14334 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14335                                               DAGCombinerInfo &DCI) const {
14336   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14337           N->getOpcode() == ISD::UINT_TO_FP) &&
14338          "Need an int -> FP conversion node here");
14339 
14340   if (useSoftFloat() || !Subtarget.has64BitSupport())
14341     return SDValue();
14342 
14343   SelectionDAG &DAG = DCI.DAG;
14344   SDLoc dl(N);
14345   SDValue Op(N, 0);
14346 
14347   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14348   // from the hardware.
14349   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14350     return SDValue();
14351   if (!Op.getOperand(0).getValueType().isSimple())
14352     return SDValue();
14353   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14354       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14355     return SDValue();
14356 
14357   SDValue FirstOperand(Op.getOperand(0));
14358   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14359     (FirstOperand.getValueType() == MVT::i8 ||
14360      FirstOperand.getValueType() == MVT::i16);
14361   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14362     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14363     bool DstDouble = Op.getValueType() == MVT::f64;
14364     unsigned ConvOp = Signed ?
14365       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14366       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14367     SDValue WidthConst =
14368       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14369                             dl, false);
14370     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14371     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14372     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14373                                          DAG.getVTList(MVT::f64, MVT::Other),
14374                                          Ops, MVT::i8, LDN->getMemOperand());
14375 
14376     // For signed conversion, we need to sign-extend the value in the VSR
14377     if (Signed) {
14378       SDValue ExtOps[] = { Ld, WidthConst };
14379       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14380       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14381     } else
14382       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14383   }
14384 
14385 
14386   // For i32 intermediate values, unfortunately, the conversion functions
14387   // leave the upper 32 bits of the value are undefined. Within the set of
14388   // scalar instructions, we have no method for zero- or sign-extending the
14389   // value. Thus, we cannot handle i32 intermediate values here.
14390   if (Op.getOperand(0).getValueType() == MVT::i32)
14391     return SDValue();
14392 
14393   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14394          "UINT_TO_FP is supported only with FPCVT");
14395 
14396   // If we have FCFIDS, then use it when converting to single-precision.
14397   // Otherwise, convert to double-precision and then round.
14398   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14399                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14400                                                             : PPCISD::FCFIDS)
14401                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14402                                                             : PPCISD::FCFID);
14403   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14404                   ? MVT::f32
14405                   : MVT::f64;
14406 
14407   // If we're converting from a float, to an int, and back to a float again,
14408   // then we don't need the store/load pair at all.
14409   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14410        Subtarget.hasFPCVT()) ||
14411       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14412     SDValue Src = Op.getOperand(0).getOperand(0);
14413     if (Src.getValueType() == MVT::f32) {
14414       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14415       DCI.AddToWorklist(Src.getNode());
14416     } else if (Src.getValueType() != MVT::f64) {
14417       // Make sure that we don't pick up a ppc_fp128 source value.
14418       return SDValue();
14419     }
14420 
14421     unsigned FCTOp =
14422       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14423                                                         PPCISD::FCTIDUZ;
14424 
14425     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14426     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14427 
14428     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14429       FP = DAG.getNode(ISD::FP_ROUND, dl,
14430                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14431       DCI.AddToWorklist(FP.getNode());
14432     }
14433 
14434     return FP;
14435   }
14436 
14437   return SDValue();
14438 }
14439 
14440 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14441 // builtins) into loads with swaps.
14442 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14443                                               DAGCombinerInfo &DCI) const {
14444   SelectionDAG &DAG = DCI.DAG;
14445   SDLoc dl(N);
14446   SDValue Chain;
14447   SDValue Base;
14448   MachineMemOperand *MMO;
14449 
14450   switch (N->getOpcode()) {
14451   default:
14452     llvm_unreachable("Unexpected opcode for little endian VSX load");
14453   case ISD::LOAD: {
14454     LoadSDNode *LD = cast<LoadSDNode>(N);
14455     Chain = LD->getChain();
14456     Base = LD->getBasePtr();
14457     MMO = LD->getMemOperand();
14458     // If the MMO suggests this isn't a load of a full vector, leave
14459     // things alone.  For a built-in, we have to make the change for
14460     // correctness, so if there is a size problem that will be a bug.
14461     if (MMO->getSize() < 16)
14462       return SDValue();
14463     break;
14464   }
14465   case ISD::INTRINSIC_W_CHAIN: {
14466     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14467     Chain = Intrin->getChain();
14468     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14469     // us what we want. Get operand 2 instead.
14470     Base = Intrin->getOperand(2);
14471     MMO = Intrin->getMemOperand();
14472     break;
14473   }
14474   }
14475 
14476   MVT VecTy = N->getValueType(0).getSimpleVT();
14477 
14478   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14479   // aligned and the type is a vector with elements up to 4 bytes
14480   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14481       VecTy.getScalarSizeInBits() <= 32) {
14482     return SDValue();
14483   }
14484 
14485   SDValue LoadOps[] = { Chain, Base };
14486   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14487                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14488                                          LoadOps, MVT::v2f64, MMO);
14489 
14490   DCI.AddToWorklist(Load.getNode());
14491   Chain = Load.getValue(1);
14492   SDValue Swap = DAG.getNode(
14493       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14494   DCI.AddToWorklist(Swap.getNode());
14495 
14496   // Add a bitcast if the resulting load type doesn't match v2f64.
14497   if (VecTy != MVT::v2f64) {
14498     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14499     DCI.AddToWorklist(N.getNode());
14500     // Package {bitcast value, swap's chain} to match Load's shape.
14501     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14502                        N, Swap.getValue(1));
14503   }
14504 
14505   return Swap;
14506 }
14507 
14508 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14509 // builtins) into stores with swaps.
14510 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14511                                                DAGCombinerInfo &DCI) const {
14512   SelectionDAG &DAG = DCI.DAG;
14513   SDLoc dl(N);
14514   SDValue Chain;
14515   SDValue Base;
14516   unsigned SrcOpnd;
14517   MachineMemOperand *MMO;
14518 
14519   switch (N->getOpcode()) {
14520   default:
14521     llvm_unreachable("Unexpected opcode for little endian VSX store");
14522   case ISD::STORE: {
14523     StoreSDNode *ST = cast<StoreSDNode>(N);
14524     Chain = ST->getChain();
14525     Base = ST->getBasePtr();
14526     MMO = ST->getMemOperand();
14527     SrcOpnd = 1;
14528     // If the MMO suggests this isn't a store of a full vector, leave
14529     // things alone.  For a built-in, we have to make the change for
14530     // correctness, so if there is a size problem that will be a bug.
14531     if (MMO->getSize() < 16)
14532       return SDValue();
14533     break;
14534   }
14535   case ISD::INTRINSIC_VOID: {
14536     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14537     Chain = Intrin->getChain();
14538     // Intrin->getBasePtr() oddly does not get what we want.
14539     Base = Intrin->getOperand(3);
14540     MMO = Intrin->getMemOperand();
14541     SrcOpnd = 2;
14542     break;
14543   }
14544   }
14545 
14546   SDValue Src = N->getOperand(SrcOpnd);
14547   MVT VecTy = Src.getValueType().getSimpleVT();
14548 
14549   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14550   // aligned and the type is a vector with elements up to 4 bytes
14551   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14552       VecTy.getScalarSizeInBits() <= 32) {
14553     return SDValue();
14554   }
14555 
14556   // All stores are done as v2f64 and possible bit cast.
14557   if (VecTy != MVT::v2f64) {
14558     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14559     DCI.AddToWorklist(Src.getNode());
14560   }
14561 
14562   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14563                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14564   DCI.AddToWorklist(Swap.getNode());
14565   Chain = Swap.getValue(1);
14566   SDValue StoreOps[] = { Chain, Swap, Base };
14567   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14568                                           DAG.getVTList(MVT::Other),
14569                                           StoreOps, VecTy, MMO);
14570   DCI.AddToWorklist(Store.getNode());
14571   return Store;
14572 }
14573 
14574 // Handle DAG combine for STORE (FP_TO_INT F).
14575 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14576                                                DAGCombinerInfo &DCI) const {
14577 
14578   SelectionDAG &DAG = DCI.DAG;
14579   SDLoc dl(N);
14580   unsigned Opcode = N->getOperand(1).getOpcode();
14581 
14582   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14583          && "Not a FP_TO_INT Instruction!");
14584 
14585   SDValue Val = N->getOperand(1).getOperand(0);
14586   EVT Op1VT = N->getOperand(1).getValueType();
14587   EVT ResVT = Val.getValueType();
14588 
14589   if (!isTypeLegal(ResVT))
14590     return SDValue();
14591 
14592   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14593   bool ValidTypeForStoreFltAsInt =
14594         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14595          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14596 
14597   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14598     return SDValue();
14599 
14600   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14601       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14602     return SDValue();
14603 
14604   // Extend f32 values to f64
14605   if (ResVT.getScalarSizeInBits() == 32) {
14606     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14607     DCI.AddToWorklist(Val.getNode());
14608   }
14609 
14610   // Set signed or unsigned conversion opcode.
14611   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14612                           PPCISD::FP_TO_SINT_IN_VSR :
14613                           PPCISD::FP_TO_UINT_IN_VSR;
14614 
14615   Val = DAG.getNode(ConvOpcode,
14616                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14617   DCI.AddToWorklist(Val.getNode());
14618 
14619   // Set number of bytes being converted.
14620   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14621   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14622                     DAG.getIntPtrConstant(ByteSize, dl, false),
14623                     DAG.getValueType(Op1VT) };
14624 
14625   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14626           DAG.getVTList(MVT::Other), Ops,
14627           cast<StoreSDNode>(N)->getMemoryVT(),
14628           cast<StoreSDNode>(N)->getMemOperand());
14629 
14630   DCI.AddToWorklist(Val.getNode());
14631   return Val;
14632 }
14633 
14634 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14635   // Check that the source of the element keeps flipping
14636   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14637   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14638   for (int i = 1, e = Mask.size(); i < e; i++) {
14639     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14640       return false;
14641     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14642       return false;
14643     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14644   }
14645   return true;
14646 }
14647 
14648 static bool isSplatBV(SDValue Op) {
14649   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14650     return false;
14651   SDValue FirstOp;
14652 
14653   // Find first non-undef input.
14654   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14655     FirstOp = Op.getOperand(i);
14656     if (!FirstOp.isUndef())
14657       break;
14658   }
14659 
14660   // All inputs are undef or the same as the first non-undef input.
14661   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14662     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14663       return false;
14664   return true;
14665 }
14666 
14667 static SDValue isScalarToVec(SDValue Op) {
14668   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14669     return Op;
14670   if (Op.getOpcode() != ISD::BITCAST)
14671     return SDValue();
14672   Op = Op.getOperand(0);
14673   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14674     return Op;
14675   return SDValue();
14676 }
14677 
14678 // Fix up the shuffle mask to account for the fact that the result of
14679 // scalar_to_vector is not in lane zero. This just takes all values in
14680 // the ranges specified by the min/max indices and adds the number of
14681 // elements required to ensure each element comes from the respective
14682 // position in the valid lane.
14683 // On little endian, that's just the corresponding element in the other
14684 // half of the vector. On big endian, it is in the same half but right
14685 // justified rather than left justified in that half.
14686 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14687                                             int LHSMaxIdx, int RHSMinIdx,
14688                                             int RHSMaxIdx, int HalfVec,
14689                                             unsigned ValidLaneWidth,
14690                                             const PPCSubtarget &Subtarget) {
14691   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14692     int Idx = ShuffV[i];
14693     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14694       ShuffV[i] +=
14695           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14696   }
14697 }
14698 
14699 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14700 // the original is:
14701 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14702 // In such a case, just change the shuffle mask to extract the element
14703 // from the permuted index.
14704 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14705                                const PPCSubtarget &Subtarget) {
14706   SDLoc dl(OrigSToV);
14707   EVT VT = OrigSToV.getValueType();
14708   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14709          "Expecting a SCALAR_TO_VECTOR here");
14710   SDValue Input = OrigSToV.getOperand(0);
14711 
14712   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14713     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14714     SDValue OrigVector = Input.getOperand(0);
14715 
14716     // Can't handle non-const element indices or different vector types
14717     // for the input to the extract and the output of the scalar_to_vector.
14718     if (Idx && VT == OrigVector.getValueType()) {
14719       unsigned NumElts = VT.getVectorNumElements();
14720       assert(
14721           NumElts > 1 &&
14722           "Cannot produce a permuted scalar_to_vector for one element vector");
14723       SmallVector<int, 16> NewMask(NumElts, -1);
14724       unsigned ResultInElt = NumElts / 2;
14725       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14726       NewMask[ResultInElt] = Idx->getZExtValue();
14727       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14728     }
14729   }
14730   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14731                      OrigSToV.getOperand(0));
14732 }
14733 
14734 // On little endian subtargets, combine shuffles such as:
14735 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14736 // into:
14737 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14738 // because the latter can be matched to a single instruction merge.
14739 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14740 // to put the value into element zero. Adjust the shuffle mask so that the
14741 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14742 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14743 // nodes with elements smaller than doubleword because all the ways
14744 // of getting scalar data into a vector register put the value in the
14745 // rightmost element of the left half of the vector.
14746 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14747                                                 SelectionDAG &DAG) const {
14748   SDValue LHS = SVN->getOperand(0);
14749   SDValue RHS = SVN->getOperand(1);
14750   auto Mask = SVN->getMask();
14751   int NumElts = LHS.getValueType().getVectorNumElements();
14752   SDValue Res(SVN, 0);
14753   SDLoc dl(SVN);
14754   bool IsLittleEndian = Subtarget.isLittleEndian();
14755 
14756   // On big endian targets this is only useful for subtargets with direct moves.
14757   // On little endian targets it would be useful for all subtargets with VSX.
14758   // However adding special handling for LE subtargets without direct moves
14759   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14760   // which includes direct moves.
14761   if (!Subtarget.hasDirectMove())
14762     return Res;
14763 
14764   // If this is not a shuffle of a shuffle and the first element comes from
14765   // the second vector, canonicalize to the commuted form. This will make it
14766   // more likely to match one of the single instruction patterns.
14767   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14768       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14769     std::swap(LHS, RHS);
14770     Res = DAG.getCommutedVectorShuffle(*SVN);
14771     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14772   }
14773 
14774   // Adjust the shuffle mask if either input vector comes from a
14775   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14776   // form (to prevent the need for a swap).
14777   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14778   SDValue SToVLHS = isScalarToVec(LHS);
14779   SDValue SToVRHS = isScalarToVec(RHS);
14780   if (SToVLHS || SToVRHS) {
14781     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14782                             : SToVRHS.getValueType().getVectorNumElements();
14783     int NumEltsOut = ShuffV.size();
14784     // The width of the "valid lane" (i.e. the lane that contains the value that
14785     // is vectorized) needs to be expressed in terms of the number of elements
14786     // of the shuffle. It is thereby the ratio of the values before and after
14787     // any bitcast.
14788     unsigned ValidLaneWidth =
14789         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14790                       LHS.getValueType().getScalarSizeInBits()
14791                 : SToVRHS.getValueType().getScalarSizeInBits() /
14792                       RHS.getValueType().getScalarSizeInBits();
14793 
14794     // Initially assume that neither input is permuted. These will be adjusted
14795     // accordingly if either input is.
14796     int LHSMaxIdx = -1;
14797     int RHSMinIdx = -1;
14798     int RHSMaxIdx = -1;
14799     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14800 
14801     // Get the permuted scalar to vector nodes for the source(s) that come from
14802     // ISD::SCALAR_TO_VECTOR.
14803     // On big endian systems, this only makes sense for element sizes smaller
14804     // than 64 bits since for 64-bit elements, all instructions already put
14805     // the value into element zero. Since scalar size of LHS and RHS may differ
14806     // after isScalarToVec, this should be checked using their own sizes.
14807     if (SToVLHS) {
14808       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14809         return Res;
14810       // Set up the values for the shuffle vector fixup.
14811       LHSMaxIdx = NumEltsOut / NumEltsIn;
14812       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14813       if (SToVLHS.getValueType() != LHS.getValueType())
14814         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14815       LHS = SToVLHS;
14816     }
14817     if (SToVRHS) {
14818       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14819         return Res;
14820       RHSMinIdx = NumEltsOut;
14821       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14822       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14823       if (SToVRHS.getValueType() != RHS.getValueType())
14824         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14825       RHS = SToVRHS;
14826     }
14827 
14828     // Fix up the shuffle mask to reflect where the desired element actually is.
14829     // The minimum and maximum indices that correspond to element zero for both
14830     // the LHS and RHS are computed and will control which shuffle mask entries
14831     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14832     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14833     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14834                                     HalfVec, ValidLaneWidth, Subtarget);
14835     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14836 
14837     // We may have simplified away the shuffle. We won't be able to do anything
14838     // further with it here.
14839     if (!isa<ShuffleVectorSDNode>(Res))
14840       return Res;
14841     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14842   }
14843 
14844   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14845   // The common case after we commuted the shuffle is that the RHS is a splat
14846   // and we have elements coming in from the splat at indices that are not
14847   // conducive to using a merge.
14848   // Example:
14849   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14850   if (!isSplatBV(TheSplat))
14851     return Res;
14852 
14853   // We are looking for a mask such that all even elements are from
14854   // one vector and all odd elements from the other.
14855   if (!isAlternatingShuffMask(Mask, NumElts))
14856     return Res;
14857 
14858   // Adjust the mask so we are pulling in the same index from the splat
14859   // as the index from the interesting vector in consecutive elements.
14860   if (IsLittleEndian) {
14861     // Example (even elements from first vector):
14862     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14863     if (Mask[0] < NumElts)
14864       for (int i = 1, e = Mask.size(); i < e; i += 2)
14865         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14866     // Example (odd elements from first vector):
14867     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14868     else
14869       for (int i = 0, e = Mask.size(); i < e; i += 2)
14870         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14871   } else {
14872     // Example (even elements from first vector):
14873     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
14874     if (Mask[0] < NumElts)
14875       for (int i = 0, e = Mask.size(); i < e; i += 2)
14876         ShuffV[i] = ShuffV[i + 1] - NumElts;
14877     // Example (odd elements from first vector):
14878     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
14879     else
14880       for (int i = 1, e = Mask.size(); i < e; i += 2)
14881         ShuffV[i] = ShuffV[i - 1] - NumElts;
14882   }
14883 
14884   // If the RHS has undefs, we need to remove them since we may have created
14885   // a shuffle that adds those instead of the splat value.
14886   SDValue SplatVal =
14887       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
14888   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
14889 
14890   if (IsLittleEndian)
14891     RHS = TheSplat;
14892   else
14893     LHS = TheSplat;
14894   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14895 }
14896 
14897 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14898                                                 LSBaseSDNode *LSBase,
14899                                                 DAGCombinerInfo &DCI) const {
14900   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14901         "Not a reverse memop pattern!");
14902 
14903   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14904     auto Mask = SVN->getMask();
14905     int i = 0;
14906     auto I = Mask.rbegin();
14907     auto E = Mask.rend();
14908 
14909     for (; I != E; ++I) {
14910       if (*I != i)
14911         return false;
14912       i++;
14913     }
14914     return true;
14915   };
14916 
14917   SelectionDAG &DAG = DCI.DAG;
14918   EVT VT = SVN->getValueType(0);
14919 
14920   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14921     return SDValue();
14922 
14923   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14924   // See comment in PPCVSXSwapRemoval.cpp.
14925   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14926   if (!Subtarget.hasP9Vector())
14927     return SDValue();
14928 
14929   if(!IsElementReverse(SVN))
14930     return SDValue();
14931 
14932   if (LSBase->getOpcode() == ISD::LOAD) {
14933     // If the load return value 0 has more than one user except the
14934     // shufflevector instruction, it is not profitable to replace the
14935     // shufflevector with a reverse load.
14936     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
14937          UI != UE; ++UI)
14938       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
14939         return SDValue();
14940 
14941     SDLoc dl(LSBase);
14942     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14943     return DAG.getMemIntrinsicNode(
14944         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14945         LSBase->getMemoryVT(), LSBase->getMemOperand());
14946   }
14947 
14948   if (LSBase->getOpcode() == ISD::STORE) {
14949     // If there are other uses of the shuffle, the swap cannot be avoided.
14950     // Forcing the use of an X-Form (since swapped stores only have
14951     // X-Forms) without removing the swap is unprofitable.
14952     if (!SVN->hasOneUse())
14953       return SDValue();
14954 
14955     SDLoc dl(LSBase);
14956     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14957                           LSBase->getBasePtr()};
14958     return DAG.getMemIntrinsicNode(
14959         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14960         LSBase->getMemoryVT(), LSBase->getMemOperand());
14961   }
14962 
14963   llvm_unreachable("Expected a load or store node here");
14964 }
14965 
14966 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14967                                              DAGCombinerInfo &DCI) const {
14968   SelectionDAG &DAG = DCI.DAG;
14969   SDLoc dl(N);
14970   switch (N->getOpcode()) {
14971   default: break;
14972   case ISD::ADD:
14973     return combineADD(N, DCI);
14974   case ISD::SHL:
14975     return combineSHL(N, DCI);
14976   case ISD::SRA:
14977     return combineSRA(N, DCI);
14978   case ISD::SRL:
14979     return combineSRL(N, DCI);
14980   case ISD::MUL:
14981     return combineMUL(N, DCI);
14982   case ISD::FMA:
14983   case PPCISD::FNMSUB:
14984     return combineFMALike(N, DCI);
14985   case PPCISD::SHL:
14986     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14987         return N->getOperand(0);
14988     break;
14989   case PPCISD::SRL:
14990     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14991         return N->getOperand(0);
14992     break;
14993   case PPCISD::SRA:
14994     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14995       if (C->isZero() ||  //  0 >>s V -> 0.
14996           C->isAllOnes()) // -1 >>s V -> -1.
14997         return N->getOperand(0);
14998     }
14999     break;
15000   case ISD::SIGN_EXTEND:
15001   case ISD::ZERO_EXTEND:
15002   case ISD::ANY_EXTEND:
15003     return DAGCombineExtBoolTrunc(N, DCI);
15004   case ISD::TRUNCATE:
15005     return combineTRUNCATE(N, DCI);
15006   case ISD::SETCC:
15007     if (SDValue CSCC = combineSetCC(N, DCI))
15008       return CSCC;
15009     LLVM_FALLTHROUGH;
15010   case ISD::SELECT_CC:
15011     return DAGCombineTruncBoolExt(N, DCI);
15012   case ISD::SINT_TO_FP:
15013   case ISD::UINT_TO_FP:
15014     return combineFPToIntToFP(N, DCI);
15015   case ISD::VECTOR_SHUFFLE:
15016     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15017       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15018       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15019     }
15020     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15021   case ISD::STORE: {
15022 
15023     EVT Op1VT = N->getOperand(1).getValueType();
15024     unsigned Opcode = N->getOperand(1).getOpcode();
15025 
15026     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15027       SDValue Val= combineStoreFPToInt(N, DCI);
15028       if (Val)
15029         return Val;
15030     }
15031 
15032     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15033       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15034       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15035       if (Val)
15036         return Val;
15037     }
15038 
15039     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15040     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15041         N->getOperand(1).getNode()->hasOneUse() &&
15042         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15043          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15044 
15045       // STBRX can only handle simple types and it makes no sense to store less
15046       // two bytes in byte-reversed order.
15047       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15048       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15049         break;
15050 
15051       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15052       // Do an any-extend to 32-bits if this is a half-word input.
15053       if (BSwapOp.getValueType() == MVT::i16)
15054         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15055 
15056       // If the type of BSWAP operand is wider than stored memory width
15057       // it need to be shifted to the right side before STBRX.
15058       if (Op1VT.bitsGT(mVT)) {
15059         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15060         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15061                               DAG.getConstant(Shift, dl, MVT::i32));
15062         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15063         if (Op1VT == MVT::i64)
15064           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15065       }
15066 
15067       SDValue Ops[] = {
15068         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15069       };
15070       return
15071         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15072                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15073                                 cast<StoreSDNode>(N)->getMemOperand());
15074     }
15075 
15076     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15077     // So it can increase the chance of CSE constant construction.
15078     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15079         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15080       // Need to sign-extended to 64-bits to handle negative values.
15081       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15082       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15083                                     MemVT.getSizeInBits());
15084       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15085 
15086       // DAG.getTruncStore() can't be used here because it doesn't accept
15087       // the general (base + offset) addressing mode.
15088       // So we use UpdateNodeOperands and setTruncatingStore instead.
15089       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15090                              N->getOperand(3));
15091       cast<StoreSDNode>(N)->setTruncatingStore(true);
15092       return SDValue(N, 0);
15093     }
15094 
15095     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15096     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15097     if (Op1VT.isSimple()) {
15098       MVT StoreVT = Op1VT.getSimpleVT();
15099       if (Subtarget.needsSwapsForVSXMemOps() &&
15100           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15101            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15102         return expandVSXStoreForLE(N, DCI);
15103     }
15104     break;
15105   }
15106   case ISD::LOAD: {
15107     LoadSDNode *LD = cast<LoadSDNode>(N);
15108     EVT VT = LD->getValueType(0);
15109 
15110     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15111     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15112     if (VT.isSimple()) {
15113       MVT LoadVT = VT.getSimpleVT();
15114       if (Subtarget.needsSwapsForVSXMemOps() &&
15115           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15116            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15117         return expandVSXLoadForLE(N, DCI);
15118     }
15119 
15120     // We sometimes end up with a 64-bit integer load, from which we extract
15121     // two single-precision floating-point numbers. This happens with
15122     // std::complex<float>, and other similar structures, because of the way we
15123     // canonicalize structure copies. However, if we lack direct moves,
15124     // then the final bitcasts from the extracted integer values to the
15125     // floating-point numbers turn into store/load pairs. Even with direct moves,
15126     // just loading the two floating-point numbers is likely better.
15127     auto ReplaceTwoFloatLoad = [&]() {
15128       if (VT != MVT::i64)
15129         return false;
15130 
15131       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15132           LD->isVolatile())
15133         return false;
15134 
15135       //  We're looking for a sequence like this:
15136       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15137       //      t16: i64 = srl t13, Constant:i32<32>
15138       //    t17: i32 = truncate t16
15139       //  t18: f32 = bitcast t17
15140       //    t19: i32 = truncate t13
15141       //  t20: f32 = bitcast t19
15142 
15143       if (!LD->hasNUsesOfValue(2, 0))
15144         return false;
15145 
15146       auto UI = LD->use_begin();
15147       while (UI.getUse().getResNo() != 0) ++UI;
15148       SDNode *Trunc = *UI++;
15149       while (UI.getUse().getResNo() != 0) ++UI;
15150       SDNode *RightShift = *UI;
15151       if (Trunc->getOpcode() != ISD::TRUNCATE)
15152         std::swap(Trunc, RightShift);
15153 
15154       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15155           Trunc->getValueType(0) != MVT::i32 ||
15156           !Trunc->hasOneUse())
15157         return false;
15158       if (RightShift->getOpcode() != ISD::SRL ||
15159           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15160           RightShift->getConstantOperandVal(1) != 32 ||
15161           !RightShift->hasOneUse())
15162         return false;
15163 
15164       SDNode *Trunc2 = *RightShift->use_begin();
15165       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15166           Trunc2->getValueType(0) != MVT::i32 ||
15167           !Trunc2->hasOneUse())
15168         return false;
15169 
15170       SDNode *Bitcast = *Trunc->use_begin();
15171       SDNode *Bitcast2 = *Trunc2->use_begin();
15172 
15173       if (Bitcast->getOpcode() != ISD::BITCAST ||
15174           Bitcast->getValueType(0) != MVT::f32)
15175         return false;
15176       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15177           Bitcast2->getValueType(0) != MVT::f32)
15178         return false;
15179 
15180       if (Subtarget.isLittleEndian())
15181         std::swap(Bitcast, Bitcast2);
15182 
15183       // Bitcast has the second float (in memory-layout order) and Bitcast2
15184       // has the first one.
15185 
15186       SDValue BasePtr = LD->getBasePtr();
15187       if (LD->isIndexed()) {
15188         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15189                "Non-pre-inc AM on PPC?");
15190         BasePtr =
15191           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15192                       LD->getOffset());
15193       }
15194 
15195       auto MMOFlags =
15196           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15197       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15198                                       LD->getPointerInfo(), LD->getAlignment(),
15199                                       MMOFlags, LD->getAAInfo());
15200       SDValue AddPtr =
15201         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15202                     BasePtr, DAG.getIntPtrConstant(4, dl));
15203       SDValue FloatLoad2 = DAG.getLoad(
15204           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15205           LD->getPointerInfo().getWithOffset(4),
15206           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
15207 
15208       if (LD->isIndexed()) {
15209         // Note that DAGCombine should re-form any pre-increment load(s) from
15210         // what is produced here if that makes sense.
15211         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15212       }
15213 
15214       DCI.CombineTo(Bitcast2, FloatLoad);
15215       DCI.CombineTo(Bitcast, FloatLoad2);
15216 
15217       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15218                                     SDValue(FloatLoad2.getNode(), 1));
15219       return true;
15220     };
15221 
15222     if (ReplaceTwoFloatLoad())
15223       return SDValue(N, 0);
15224 
15225     EVT MemVT = LD->getMemoryVT();
15226     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15227     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15228     if (LD->isUnindexed() && VT.isVector() &&
15229         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15230           // P8 and later hardware should just use LOAD.
15231           !Subtarget.hasP8Vector() &&
15232           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15233            VT == MVT::v4f32))) &&
15234         LD->getAlign() < ABIAlignment) {
15235       // This is a type-legal unaligned Altivec load.
15236       SDValue Chain = LD->getChain();
15237       SDValue Ptr = LD->getBasePtr();
15238       bool isLittleEndian = Subtarget.isLittleEndian();
15239 
15240       // This implements the loading of unaligned vectors as described in
15241       // the venerable Apple Velocity Engine overview. Specifically:
15242       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15243       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15244       //
15245       // The general idea is to expand a sequence of one or more unaligned
15246       // loads into an alignment-based permutation-control instruction (lvsl
15247       // or lvsr), a series of regular vector loads (which always truncate
15248       // their input address to an aligned address), and a series of
15249       // permutations.  The results of these permutations are the requested
15250       // loaded values.  The trick is that the last "extra" load is not taken
15251       // from the address you might suspect (sizeof(vector) bytes after the
15252       // last requested load), but rather sizeof(vector) - 1 bytes after the
15253       // last requested vector. The point of this is to avoid a page fault if
15254       // the base address happened to be aligned. This works because if the
15255       // base address is aligned, then adding less than a full vector length
15256       // will cause the last vector in the sequence to be (re)loaded.
15257       // Otherwise, the next vector will be fetched as you might suspect was
15258       // necessary.
15259 
15260       // We might be able to reuse the permutation generation from
15261       // a different base address offset from this one by an aligned amount.
15262       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15263       // optimization later.
15264       Intrinsic::ID Intr, IntrLD, IntrPerm;
15265       MVT PermCntlTy, PermTy, LDTy;
15266       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15267                             : Intrinsic::ppc_altivec_lvsl;
15268       IntrLD = Intrinsic::ppc_altivec_lvx;
15269       IntrPerm = Intrinsic::ppc_altivec_vperm;
15270       PermCntlTy = MVT::v16i8;
15271       PermTy = MVT::v4i32;
15272       LDTy = MVT::v4i32;
15273 
15274       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15275 
15276       // Create the new MMO for the new base load. It is like the original MMO,
15277       // but represents an area in memory almost twice the vector size centered
15278       // on the original address. If the address is unaligned, we might start
15279       // reading up to (sizeof(vector)-1) bytes below the address of the
15280       // original unaligned load.
15281       MachineFunction &MF = DAG.getMachineFunction();
15282       MachineMemOperand *BaseMMO =
15283         MF.getMachineMemOperand(LD->getMemOperand(),
15284                                 -(long)MemVT.getStoreSize()+1,
15285                                 2*MemVT.getStoreSize()-1);
15286 
15287       // Create the new base load.
15288       SDValue LDXIntID =
15289           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15290       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15291       SDValue BaseLoad =
15292         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15293                                 DAG.getVTList(PermTy, MVT::Other),
15294                                 BaseLoadOps, LDTy, BaseMMO);
15295 
15296       // Note that the value of IncOffset (which is provided to the next
15297       // load's pointer info offset value, and thus used to calculate the
15298       // alignment), and the value of IncValue (which is actually used to
15299       // increment the pointer value) are different! This is because we
15300       // require the next load to appear to be aligned, even though it
15301       // is actually offset from the base pointer by a lesser amount.
15302       int IncOffset = VT.getSizeInBits() / 8;
15303       int IncValue = IncOffset;
15304 
15305       // Walk (both up and down) the chain looking for another load at the real
15306       // (aligned) offset (the alignment of the other load does not matter in
15307       // this case). If found, then do not use the offset reduction trick, as
15308       // that will prevent the loads from being later combined (as they would
15309       // otherwise be duplicates).
15310       if (!findConsecutiveLoad(LD, DAG))
15311         --IncValue;
15312 
15313       SDValue Increment =
15314           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15315       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15316 
15317       MachineMemOperand *ExtraMMO =
15318         MF.getMachineMemOperand(LD->getMemOperand(),
15319                                 1, 2*MemVT.getStoreSize()-1);
15320       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15321       SDValue ExtraLoad =
15322         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15323                                 DAG.getVTList(PermTy, MVT::Other),
15324                                 ExtraLoadOps, LDTy, ExtraMMO);
15325 
15326       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15327         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15328 
15329       // Because vperm has a big-endian bias, we must reverse the order
15330       // of the input vectors and complement the permute control vector
15331       // when generating little endian code.  We have already handled the
15332       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15333       // and ExtraLoad here.
15334       SDValue Perm;
15335       if (isLittleEndian)
15336         Perm = BuildIntrinsicOp(IntrPerm,
15337                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15338       else
15339         Perm = BuildIntrinsicOp(IntrPerm,
15340                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15341 
15342       if (VT != PermTy)
15343         Perm = Subtarget.hasAltivec()
15344                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15345                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15346                                  DAG.getTargetConstant(1, dl, MVT::i64));
15347                                // second argument is 1 because this rounding
15348                                // is always exact.
15349 
15350       // The output of the permutation is our loaded result, the TokenFactor is
15351       // our new chain.
15352       DCI.CombineTo(N, Perm, TF);
15353       return SDValue(N, 0);
15354     }
15355     }
15356     break;
15357     case ISD::INTRINSIC_WO_CHAIN: {
15358       bool isLittleEndian = Subtarget.isLittleEndian();
15359       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15360       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15361                                            : Intrinsic::ppc_altivec_lvsl);
15362       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15363         SDValue Add = N->getOperand(1);
15364 
15365         int Bits = 4 /* 16 byte alignment */;
15366 
15367         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15368                                   APInt::getAllOnes(Bits /* alignment */)
15369                                       .zext(Add.getScalarValueSizeInBits()))) {
15370           SDNode *BasePtr = Add->getOperand(0).getNode();
15371           for (SDNode *U : BasePtr->uses()) {
15372             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15373                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15374               // We've found another LVSL/LVSR, and this address is an aligned
15375               // multiple of that one. The results will be the same, so use the
15376               // one we've just found instead.
15377 
15378               return SDValue(U, 0);
15379             }
15380           }
15381         }
15382 
15383         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15384           SDNode *BasePtr = Add->getOperand(0).getNode();
15385           for (SDNode *U : BasePtr->uses()) {
15386             if (U->getOpcode() == ISD::ADD &&
15387                 isa<ConstantSDNode>(U->getOperand(1)) &&
15388                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15389                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15390                         (1ULL << Bits) ==
15391                     0) {
15392               SDNode *OtherAdd = U;
15393               for (SDNode *V : OtherAdd->uses()) {
15394                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15395                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15396                         IID) {
15397                   return SDValue(V, 0);
15398                 }
15399               }
15400             }
15401           }
15402         }
15403       }
15404 
15405       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15406       // Expose the vabsduw/h/b opportunity for down stream
15407       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15408           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15409            IID == Intrinsic::ppc_altivec_vmaxsh ||
15410            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15411         SDValue V1 = N->getOperand(1);
15412         SDValue V2 = N->getOperand(2);
15413         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15414              V1.getSimpleValueType() == MVT::v8i16 ||
15415              V1.getSimpleValueType() == MVT::v16i8) &&
15416             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15417           // (0-a, a)
15418           if (V1.getOpcode() == ISD::SUB &&
15419               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15420               V1.getOperand(1) == V2) {
15421             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15422           }
15423           // (a, 0-a)
15424           if (V2.getOpcode() == ISD::SUB &&
15425               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15426               V2.getOperand(1) == V1) {
15427             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15428           }
15429           // (x-y, y-x)
15430           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15431               V1.getOperand(0) == V2.getOperand(1) &&
15432               V1.getOperand(1) == V2.getOperand(0)) {
15433             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15434           }
15435         }
15436       }
15437     }
15438 
15439     break;
15440   case ISD::INTRINSIC_W_CHAIN:
15441     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15442     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15443     if (Subtarget.needsSwapsForVSXMemOps()) {
15444       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15445       default:
15446         break;
15447       case Intrinsic::ppc_vsx_lxvw4x:
15448       case Intrinsic::ppc_vsx_lxvd2x:
15449         return expandVSXLoadForLE(N, DCI);
15450       }
15451     }
15452     break;
15453   case ISD::INTRINSIC_VOID:
15454     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15455     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15456     if (Subtarget.needsSwapsForVSXMemOps()) {
15457       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15458       default:
15459         break;
15460       case Intrinsic::ppc_vsx_stxvw4x:
15461       case Intrinsic::ppc_vsx_stxvd2x:
15462         return expandVSXStoreForLE(N, DCI);
15463       }
15464     }
15465     break;
15466   case ISD::BSWAP: {
15467     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15468     // For subtargets without LDBRX, we can still do better than the default
15469     // expansion even for 64-bit BSWAP (LOAD).
15470     bool Is64BitBswapOn64BitTgt =
15471         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15472     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15473                                N->getOperand(0).hasOneUse();
15474     if (IsSingleUseNormalLd &&
15475         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15476          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15477       SDValue Load = N->getOperand(0);
15478       LoadSDNode *LD = cast<LoadSDNode>(Load);
15479       // Create the byte-swapping load.
15480       SDValue Ops[] = {
15481         LD->getChain(),    // Chain
15482         LD->getBasePtr(),  // Ptr
15483         DAG.getValueType(N->getValueType(0)) // VT
15484       };
15485       SDValue BSLoad =
15486         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15487                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15488                                               MVT::i64 : MVT::i32, MVT::Other),
15489                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15490 
15491       // If this is an i16 load, insert the truncate.
15492       SDValue ResVal = BSLoad;
15493       if (N->getValueType(0) == MVT::i16)
15494         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15495 
15496       // First, combine the bswap away.  This makes the value produced by the
15497       // load dead.
15498       DCI.CombineTo(N, ResVal);
15499 
15500       // Next, combine the load away, we give it a bogus result value but a real
15501       // chain result.  The result value is dead because the bswap is dead.
15502       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15503 
15504       // Return N so it doesn't get rechecked!
15505       return SDValue(N, 0);
15506     }
15507     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15508     // before legalization so that the BUILD_PAIR is handled correctly.
15509     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15510         !IsSingleUseNormalLd)
15511       return SDValue();
15512     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15513 
15514     // Can't split volatile or atomic loads.
15515     if (!LD->isSimple())
15516       return SDValue();
15517     SDValue BasePtr = LD->getBasePtr();
15518     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15519                              LD->getPointerInfo(), LD->getAlignment());
15520     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15521     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15522                           DAG.getIntPtrConstant(4, dl));
15523     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15524         LD->getMemOperand(), 4, 4);
15525     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15526     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15527     SDValue Res;
15528     if (Subtarget.isLittleEndian())
15529       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15530     else
15531       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15532     SDValue TF =
15533         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15534                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15535     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15536     return Res;
15537   }
15538   case PPCISD::VCMP:
15539     // If a VCMP_rec node already exists with exactly the same operands as this
15540     // node, use its result instead of this node (VCMP_rec computes both a CR6
15541     // and a normal output).
15542     //
15543     if (!N->getOperand(0).hasOneUse() &&
15544         !N->getOperand(1).hasOneUse() &&
15545         !N->getOperand(2).hasOneUse()) {
15546 
15547       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15548       SDNode *VCMPrecNode = nullptr;
15549 
15550       SDNode *LHSN = N->getOperand(0).getNode();
15551       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15552            UI != E; ++UI)
15553         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15554             UI->getOperand(1) == N->getOperand(1) &&
15555             UI->getOperand(2) == N->getOperand(2) &&
15556             UI->getOperand(0) == N->getOperand(0)) {
15557           VCMPrecNode = *UI;
15558           break;
15559         }
15560 
15561       // If there is no VCMP_rec node, or if the flag value has a single use,
15562       // don't transform this.
15563       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15564         break;
15565 
15566       // Look at the (necessarily single) use of the flag value.  If it has a
15567       // chain, this transformation is more complex.  Note that multiple things
15568       // could use the value result, which we should ignore.
15569       SDNode *FlagUser = nullptr;
15570       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15571            FlagUser == nullptr; ++UI) {
15572         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15573         SDNode *User = *UI;
15574         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15575           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15576             FlagUser = User;
15577             break;
15578           }
15579         }
15580       }
15581 
15582       // If the user is a MFOCRF instruction, we know this is safe.
15583       // Otherwise we give up for right now.
15584       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15585         return SDValue(VCMPrecNode, 0);
15586     }
15587     break;
15588   case ISD::BRCOND: {
15589     SDValue Cond = N->getOperand(1);
15590     SDValue Target = N->getOperand(2);
15591 
15592     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15593         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15594           Intrinsic::loop_decrement) {
15595 
15596       // We now need to make the intrinsic dead (it cannot be instruction
15597       // selected).
15598       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15599       assert(Cond.getNode()->hasOneUse() &&
15600              "Counter decrement has more than one use");
15601 
15602       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15603                          N->getOperand(0), Target);
15604     }
15605   }
15606   break;
15607   case ISD::BR_CC: {
15608     // If this is a branch on an altivec predicate comparison, lower this so
15609     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15610     // lowering is done pre-legalize, because the legalizer lowers the predicate
15611     // compare down to code that is difficult to reassemble.
15612     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15613     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15614 
15615     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15616     // value. If so, pass-through the AND to get to the intrinsic.
15617     if (LHS.getOpcode() == ISD::AND &&
15618         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15619         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15620           Intrinsic::loop_decrement &&
15621         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15622         !isNullConstant(LHS.getOperand(1)))
15623       LHS = LHS.getOperand(0);
15624 
15625     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15626         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15627           Intrinsic::loop_decrement &&
15628         isa<ConstantSDNode>(RHS)) {
15629       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15630              "Counter decrement comparison is not EQ or NE");
15631 
15632       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15633       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15634                     (CC == ISD::SETNE && !Val);
15635 
15636       // We now need to make the intrinsic dead (it cannot be instruction
15637       // selected).
15638       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15639       assert(LHS.getNode()->hasOneUse() &&
15640              "Counter decrement has more than one use");
15641 
15642       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15643                          N->getOperand(0), N->getOperand(4));
15644     }
15645 
15646     int CompareOpc;
15647     bool isDot;
15648 
15649     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15650         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15651         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15652       assert(isDot && "Can't compare against a vector result!");
15653 
15654       // If this is a comparison against something other than 0/1, then we know
15655       // that the condition is never/always true.
15656       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15657       if (Val != 0 && Val != 1) {
15658         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15659           return N->getOperand(0);
15660         // Always !=, turn it into an unconditional branch.
15661         return DAG.getNode(ISD::BR, dl, MVT::Other,
15662                            N->getOperand(0), N->getOperand(4));
15663       }
15664 
15665       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15666 
15667       // Create the PPCISD altivec 'dot' comparison node.
15668       SDValue Ops[] = {
15669         LHS.getOperand(2),  // LHS of compare
15670         LHS.getOperand(3),  // RHS of compare
15671         DAG.getConstant(CompareOpc, dl, MVT::i32)
15672       };
15673       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15674       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15675 
15676       // Unpack the result based on how the target uses it.
15677       PPC::Predicate CompOpc;
15678       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15679       default:  // Can't happen, don't crash on invalid number though.
15680       case 0:   // Branch on the value of the EQ bit of CR6.
15681         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15682         break;
15683       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15684         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15685         break;
15686       case 2:   // Branch on the value of the LT bit of CR6.
15687         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15688         break;
15689       case 3:   // Branch on the inverted value of the LT bit of CR6.
15690         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15691         break;
15692       }
15693 
15694       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15695                          DAG.getConstant(CompOpc, dl, MVT::i32),
15696                          DAG.getRegister(PPC::CR6, MVT::i32),
15697                          N->getOperand(4), CompNode.getValue(1));
15698     }
15699     break;
15700   }
15701   case ISD::BUILD_VECTOR:
15702     return DAGCombineBuildVector(N, DCI);
15703   case ISD::ABS:
15704     return combineABS(N, DCI);
15705   case ISD::VSELECT:
15706     return combineVSelect(N, DCI);
15707   }
15708 
15709   return SDValue();
15710 }
15711 
15712 SDValue
15713 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15714                                  SelectionDAG &DAG,
15715                                  SmallVectorImpl<SDNode *> &Created) const {
15716   // fold (sdiv X, pow2)
15717   EVT VT = N->getValueType(0);
15718   if (VT == MVT::i64 && !Subtarget.isPPC64())
15719     return SDValue();
15720   if ((VT != MVT::i32 && VT != MVT::i64) ||
15721       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15722     return SDValue();
15723 
15724   SDLoc DL(N);
15725   SDValue N0 = N->getOperand(0);
15726 
15727   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15728   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15729   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15730 
15731   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15732   Created.push_back(Op.getNode());
15733 
15734   if (IsNegPow2) {
15735     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15736     Created.push_back(Op.getNode());
15737   }
15738 
15739   return Op;
15740 }
15741 
15742 //===----------------------------------------------------------------------===//
15743 // Inline Assembly Support
15744 //===----------------------------------------------------------------------===//
15745 
15746 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15747                                                       KnownBits &Known,
15748                                                       const APInt &DemandedElts,
15749                                                       const SelectionDAG &DAG,
15750                                                       unsigned Depth) const {
15751   Known.resetAll();
15752   switch (Op.getOpcode()) {
15753   default: break;
15754   case PPCISD::LBRX: {
15755     // lhbrx is known to have the top bits cleared out.
15756     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15757       Known.Zero = 0xFFFF0000;
15758     break;
15759   }
15760   case ISD::INTRINSIC_WO_CHAIN: {
15761     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15762     default: break;
15763     case Intrinsic::ppc_altivec_vcmpbfp_p:
15764     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15765     case Intrinsic::ppc_altivec_vcmpequb_p:
15766     case Intrinsic::ppc_altivec_vcmpequh_p:
15767     case Intrinsic::ppc_altivec_vcmpequw_p:
15768     case Intrinsic::ppc_altivec_vcmpequd_p:
15769     case Intrinsic::ppc_altivec_vcmpequq_p:
15770     case Intrinsic::ppc_altivec_vcmpgefp_p:
15771     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15772     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15773     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15774     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15775     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15776     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15777     case Intrinsic::ppc_altivec_vcmpgtub_p:
15778     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15779     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15780     case Intrinsic::ppc_altivec_vcmpgtud_p:
15781     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15782       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15783       break;
15784     }
15785     break;
15786   }
15787   case ISD::INTRINSIC_W_CHAIN: {
15788     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15789     default:
15790       break;
15791     case Intrinsic::ppc_load2r:
15792       // Top bits are cleared for load2r (which is the same as lhbrx).
15793       Known.Zero = 0xFFFF0000;
15794       break;
15795     }
15796     break;
15797   }
15798   }
15799 }
15800 
15801 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15802   switch (Subtarget.getCPUDirective()) {
15803   default: break;
15804   case PPC::DIR_970:
15805   case PPC::DIR_PWR4:
15806   case PPC::DIR_PWR5:
15807   case PPC::DIR_PWR5X:
15808   case PPC::DIR_PWR6:
15809   case PPC::DIR_PWR6X:
15810   case PPC::DIR_PWR7:
15811   case PPC::DIR_PWR8:
15812   case PPC::DIR_PWR9:
15813   case PPC::DIR_PWR10:
15814   case PPC::DIR_PWR_FUTURE: {
15815     if (!ML)
15816       break;
15817 
15818     if (!DisableInnermostLoopAlign32) {
15819       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15820       // so that we can decrease cache misses and branch-prediction misses.
15821       // Actual alignment of the loop will depend on the hotness check and other
15822       // logic in alignBlocks.
15823       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15824         return Align(32);
15825     }
15826 
15827     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15828 
15829     // For small loops (between 5 and 8 instructions), align to a 32-byte
15830     // boundary so that the entire loop fits in one instruction-cache line.
15831     uint64_t LoopSize = 0;
15832     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15833       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15834         LoopSize += TII->getInstSizeInBytes(*J);
15835         if (LoopSize > 32)
15836           break;
15837       }
15838 
15839     if (LoopSize > 16 && LoopSize <= 32)
15840       return Align(32);
15841 
15842     break;
15843   }
15844   }
15845 
15846   return TargetLowering::getPrefLoopAlignment(ML);
15847 }
15848 
15849 /// getConstraintType - Given a constraint, return the type of
15850 /// constraint it is for this target.
15851 PPCTargetLowering::ConstraintType
15852 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15853   if (Constraint.size() == 1) {
15854     switch (Constraint[0]) {
15855     default: break;
15856     case 'b':
15857     case 'r':
15858     case 'f':
15859     case 'd':
15860     case 'v':
15861     case 'y':
15862       return C_RegisterClass;
15863     case 'Z':
15864       // FIXME: While Z does indicate a memory constraint, it specifically
15865       // indicates an r+r address (used in conjunction with the 'y' modifier
15866       // in the replacement string). Currently, we're forcing the base
15867       // register to be r0 in the asm printer (which is interpreted as zero)
15868       // and forming the complete address in the second register. This is
15869       // suboptimal.
15870       return C_Memory;
15871     }
15872   } else if (Constraint == "wc") { // individual CR bits.
15873     return C_RegisterClass;
15874   } else if (Constraint == "wa" || Constraint == "wd" ||
15875              Constraint == "wf" || Constraint == "ws" ||
15876              Constraint == "wi" || Constraint == "ww") {
15877     return C_RegisterClass; // VSX registers.
15878   }
15879   return TargetLowering::getConstraintType(Constraint);
15880 }
15881 
15882 /// Examine constraint type and operand type and determine a weight value.
15883 /// This object must already have been set up with the operand type
15884 /// and the current alternative constraint selected.
15885 TargetLowering::ConstraintWeight
15886 PPCTargetLowering::getSingleConstraintMatchWeight(
15887     AsmOperandInfo &info, const char *constraint) const {
15888   ConstraintWeight weight = CW_Invalid;
15889   Value *CallOperandVal = info.CallOperandVal;
15890     // If we don't have a value, we can't do a match,
15891     // but allow it at the lowest weight.
15892   if (!CallOperandVal)
15893     return CW_Default;
15894   Type *type = CallOperandVal->getType();
15895 
15896   // Look at the constraint type.
15897   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15898     return CW_Register; // an individual CR bit.
15899   else if ((StringRef(constraint) == "wa" ||
15900             StringRef(constraint) == "wd" ||
15901             StringRef(constraint) == "wf") &&
15902            type->isVectorTy())
15903     return CW_Register;
15904   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15905     return CW_Register; // just hold 64-bit integers data.
15906   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15907     return CW_Register;
15908   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15909     return CW_Register;
15910 
15911   switch (*constraint) {
15912   default:
15913     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15914     break;
15915   case 'b':
15916     if (type->isIntegerTy())
15917       weight = CW_Register;
15918     break;
15919   case 'f':
15920     if (type->isFloatTy())
15921       weight = CW_Register;
15922     break;
15923   case 'd':
15924     if (type->isDoubleTy())
15925       weight = CW_Register;
15926     break;
15927   case 'v':
15928     if (type->isVectorTy())
15929       weight = CW_Register;
15930     break;
15931   case 'y':
15932     weight = CW_Register;
15933     break;
15934   case 'Z':
15935     weight = CW_Memory;
15936     break;
15937   }
15938   return weight;
15939 }
15940 
15941 std::pair<unsigned, const TargetRegisterClass *>
15942 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15943                                                 StringRef Constraint,
15944                                                 MVT VT) const {
15945   if (Constraint.size() == 1) {
15946     // GCC RS6000 Constraint Letters
15947     switch (Constraint[0]) {
15948     case 'b':   // R1-R31
15949       if (VT == MVT::i64 && Subtarget.isPPC64())
15950         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15951       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15952     case 'r':   // R0-R31
15953       if (VT == MVT::i64 && Subtarget.isPPC64())
15954         return std::make_pair(0U, &PPC::G8RCRegClass);
15955       return std::make_pair(0U, &PPC::GPRCRegClass);
15956     // 'd' and 'f' constraints are both defined to be "the floating point
15957     // registers", where one is for 32-bit and the other for 64-bit. We don't
15958     // really care overly much here so just give them all the same reg classes.
15959     case 'd':
15960     case 'f':
15961       if (Subtarget.hasSPE()) {
15962         if (VT == MVT::f32 || VT == MVT::i32)
15963           return std::make_pair(0U, &PPC::GPRCRegClass);
15964         if (VT == MVT::f64 || VT == MVT::i64)
15965           return std::make_pair(0U, &PPC::SPERCRegClass);
15966       } else {
15967         if (VT == MVT::f32 || VT == MVT::i32)
15968           return std::make_pair(0U, &PPC::F4RCRegClass);
15969         if (VT == MVT::f64 || VT == MVT::i64)
15970           return std::make_pair(0U, &PPC::F8RCRegClass);
15971       }
15972       break;
15973     case 'v':
15974       if (Subtarget.hasAltivec() && VT.isVector())
15975         return std::make_pair(0U, &PPC::VRRCRegClass);
15976       else if (Subtarget.hasVSX())
15977         // Scalars in Altivec registers only make sense with VSX.
15978         return std::make_pair(0U, &PPC::VFRCRegClass);
15979       break;
15980     case 'y':   // crrc
15981       return std::make_pair(0U, &PPC::CRRCRegClass);
15982     }
15983   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15984     // An individual CR bit.
15985     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15986   } else if ((Constraint == "wa" || Constraint == "wd" ||
15987              Constraint == "wf" || Constraint == "wi") &&
15988              Subtarget.hasVSX()) {
15989     // A VSX register for either a scalar (FP) or vector. There is no
15990     // support for single precision scalars on subtargets prior to Power8.
15991     if (VT.isVector())
15992       return std::make_pair(0U, &PPC::VSRCRegClass);
15993     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15994       return std::make_pair(0U, &PPC::VSSRCRegClass);
15995     return std::make_pair(0U, &PPC::VSFRCRegClass);
15996   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15997     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15998       return std::make_pair(0U, &PPC::VSSRCRegClass);
15999     else
16000       return std::make_pair(0U, &PPC::VSFRCRegClass);
16001   } else if (Constraint == "lr") {
16002     if (VT == MVT::i64)
16003       return std::make_pair(0U, &PPC::LR8RCRegClass);
16004     else
16005       return std::make_pair(0U, &PPC::LRRCRegClass);
16006   }
16007 
16008   // Handle special cases of physical registers that are not properly handled
16009   // by the base class.
16010   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16011     // If we name a VSX register, we can't defer to the base class because it
16012     // will not recognize the correct register (their names will be VSL{0-31}
16013     // and V{0-31} so they won't match). So we match them here.
16014     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16015       int VSNum = atoi(Constraint.data() + 3);
16016       assert(VSNum >= 0 && VSNum <= 63 &&
16017              "Attempted to access a vsr out of range");
16018       if (VSNum < 32)
16019         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16020       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16021     }
16022 
16023     // For float registers, we can't defer to the base class as it will match
16024     // the SPILLTOVSRRC class.
16025     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16026       int RegNum = atoi(Constraint.data() + 2);
16027       if (RegNum > 31 || RegNum < 0)
16028         report_fatal_error("Invalid floating point register number");
16029       if (VT == MVT::f32 || VT == MVT::i32)
16030         return Subtarget.hasSPE()
16031                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16032                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16033       if (VT == MVT::f64 || VT == MVT::i64)
16034         return Subtarget.hasSPE()
16035                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16036                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16037     }
16038   }
16039 
16040   std::pair<unsigned, const TargetRegisterClass *> R =
16041       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16042 
16043   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16044   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16045   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16046   // register.
16047   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16048   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16049   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16050       PPC::GPRCRegClass.contains(R.first))
16051     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16052                             PPC::sub_32, &PPC::G8RCRegClass),
16053                           &PPC::G8RCRegClass);
16054 
16055   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16056   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16057     R.first = PPC::CR0;
16058     R.second = &PPC::CRRCRegClass;
16059   }
16060   // FIXME: This warning should ideally be emitted in the front end.
16061   const auto &TM = getTargetMachine();
16062   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16063     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16064          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16065         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16066       errs() << "warning: vector registers 20 to 32 are reserved in the "
16067                 "default AIX AltiVec ABI and cannot be used\n";
16068   }
16069 
16070   return R;
16071 }
16072 
16073 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16074 /// vector.  If it is invalid, don't add anything to Ops.
16075 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16076                                                      std::string &Constraint,
16077                                                      std::vector<SDValue>&Ops,
16078                                                      SelectionDAG &DAG) const {
16079   SDValue Result;
16080 
16081   // Only support length 1 constraints.
16082   if (Constraint.length() > 1) return;
16083 
16084   char Letter = Constraint[0];
16085   switch (Letter) {
16086   default: break;
16087   case 'I':
16088   case 'J':
16089   case 'K':
16090   case 'L':
16091   case 'M':
16092   case 'N':
16093   case 'O':
16094   case 'P': {
16095     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16096     if (!CST) return; // Must be an immediate to match.
16097     SDLoc dl(Op);
16098     int64_t Value = CST->getSExtValue();
16099     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16100                          // numbers are printed as such.
16101     switch (Letter) {
16102     default: llvm_unreachable("Unknown constraint letter!");
16103     case 'I':  // "I" is a signed 16-bit constant.
16104       if (isInt<16>(Value))
16105         Result = DAG.getTargetConstant(Value, dl, TCVT);
16106       break;
16107     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16108       if (isShiftedUInt<16, 16>(Value))
16109         Result = DAG.getTargetConstant(Value, dl, TCVT);
16110       break;
16111     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16112       if (isShiftedInt<16, 16>(Value))
16113         Result = DAG.getTargetConstant(Value, dl, TCVT);
16114       break;
16115     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16116       if (isUInt<16>(Value))
16117         Result = DAG.getTargetConstant(Value, dl, TCVT);
16118       break;
16119     case 'M':  // "M" is a constant that is greater than 31.
16120       if (Value > 31)
16121         Result = DAG.getTargetConstant(Value, dl, TCVT);
16122       break;
16123     case 'N':  // "N" is a positive constant that is an exact power of two.
16124       if (Value > 0 && isPowerOf2_64(Value))
16125         Result = DAG.getTargetConstant(Value, dl, TCVT);
16126       break;
16127     case 'O':  // "O" is the constant zero.
16128       if (Value == 0)
16129         Result = DAG.getTargetConstant(Value, dl, TCVT);
16130       break;
16131     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16132       if (isInt<16>(-Value))
16133         Result = DAG.getTargetConstant(Value, dl, TCVT);
16134       break;
16135     }
16136     break;
16137   }
16138   }
16139 
16140   if (Result.getNode()) {
16141     Ops.push_back(Result);
16142     return;
16143   }
16144 
16145   // Handle standard constraint letters.
16146   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16147 }
16148 
16149 // isLegalAddressingMode - Return true if the addressing mode represented
16150 // by AM is legal for this target, for a load/store of the specified type.
16151 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16152                                               const AddrMode &AM, Type *Ty,
16153                                               unsigned AS,
16154                                               Instruction *I) const {
16155   // Vector type r+i form is supported since power9 as DQ form. We don't check
16156   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16157   // imm form is preferred and the offset can be adjusted to use imm form later
16158   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16159   // max offset to check legal addressing mode, we should be a little aggressive
16160   // to contain other offsets for that LSRUse.
16161   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16162     return false;
16163 
16164   // PPC allows a sign-extended 16-bit immediate field.
16165   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16166     return false;
16167 
16168   // No global is ever allowed as a base.
16169   if (AM.BaseGV)
16170     return false;
16171 
16172   // PPC only support r+r,
16173   switch (AM.Scale) {
16174   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16175     break;
16176   case 1:
16177     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16178       return false;
16179     // Otherwise we have r+r or r+i.
16180     break;
16181   case 2:
16182     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16183       return false;
16184     // Allow 2*r as r+r.
16185     break;
16186   default:
16187     // No other scales are supported.
16188     return false;
16189   }
16190 
16191   return true;
16192 }
16193 
16194 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16195                                            SelectionDAG &DAG) const {
16196   MachineFunction &MF = DAG.getMachineFunction();
16197   MachineFrameInfo &MFI = MF.getFrameInfo();
16198   MFI.setReturnAddressIsTaken(true);
16199 
16200   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16201     return SDValue();
16202 
16203   SDLoc dl(Op);
16204   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16205 
16206   // Make sure the function does not optimize away the store of the RA to
16207   // the stack.
16208   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16209   FuncInfo->setLRStoreRequired();
16210   bool isPPC64 = Subtarget.isPPC64();
16211   auto PtrVT = getPointerTy(MF.getDataLayout());
16212 
16213   if (Depth > 0) {
16214     // The link register (return address) is saved in the caller's frame
16215     // not the callee's stack frame. So we must get the caller's frame
16216     // address and load the return address at the LR offset from there.
16217     SDValue FrameAddr =
16218         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16219                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16220     SDValue Offset =
16221         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16222                         isPPC64 ? MVT::i64 : MVT::i32);
16223     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16224                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16225                        MachinePointerInfo());
16226   }
16227 
16228   // Just load the return address off the stack.
16229   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16230   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16231                      MachinePointerInfo());
16232 }
16233 
16234 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16235                                           SelectionDAG &DAG) const {
16236   SDLoc dl(Op);
16237   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16238 
16239   MachineFunction &MF = DAG.getMachineFunction();
16240   MachineFrameInfo &MFI = MF.getFrameInfo();
16241   MFI.setFrameAddressIsTaken(true);
16242 
16243   EVT PtrVT = getPointerTy(MF.getDataLayout());
16244   bool isPPC64 = PtrVT == MVT::i64;
16245 
16246   // Naked functions never have a frame pointer, and so we use r1. For all
16247   // other functions, this decision must be delayed until during PEI.
16248   unsigned FrameReg;
16249   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16250     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16251   else
16252     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16253 
16254   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16255                                          PtrVT);
16256   while (Depth--)
16257     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16258                             FrameAddr, MachinePointerInfo());
16259   return FrameAddr;
16260 }
16261 
16262 // FIXME? Maybe this could be a TableGen attribute on some registers and
16263 // this table could be generated automatically from RegInfo.
16264 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16265                                               const MachineFunction &MF) const {
16266   bool isPPC64 = Subtarget.isPPC64();
16267 
16268   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16269   if (!is64Bit && VT != LLT::scalar(32))
16270     report_fatal_error("Invalid register global variable type");
16271 
16272   Register Reg = StringSwitch<Register>(RegName)
16273                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16274                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16275                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16276                      .Default(Register());
16277 
16278   if (Reg)
16279     return Reg;
16280   report_fatal_error("Invalid register name global variable");
16281 }
16282 
16283 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16284   // 32-bit SVR4 ABI access everything as got-indirect.
16285   if (Subtarget.is32BitELFABI())
16286     return true;
16287 
16288   // AIX accesses everything indirectly through the TOC, which is similar to
16289   // the GOT.
16290   if (Subtarget.isAIXABI())
16291     return true;
16292 
16293   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16294   // If it is small or large code model, module locals are accessed
16295   // indirectly by loading their address from .toc/.got.
16296   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16297     return true;
16298 
16299   // JumpTable and BlockAddress are accessed as got-indirect.
16300   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16301     return true;
16302 
16303   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16304     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16305 
16306   return false;
16307 }
16308 
16309 bool
16310 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16311   // The PowerPC target isn't yet aware of offsets.
16312   return false;
16313 }
16314 
16315 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16316                                            const CallInst &I,
16317                                            MachineFunction &MF,
16318                                            unsigned Intrinsic) const {
16319   switch (Intrinsic) {
16320   case Intrinsic::ppc_atomicrmw_xchg_i128:
16321   case Intrinsic::ppc_atomicrmw_add_i128:
16322   case Intrinsic::ppc_atomicrmw_sub_i128:
16323   case Intrinsic::ppc_atomicrmw_nand_i128:
16324   case Intrinsic::ppc_atomicrmw_and_i128:
16325   case Intrinsic::ppc_atomicrmw_or_i128:
16326   case Intrinsic::ppc_atomicrmw_xor_i128:
16327   case Intrinsic::ppc_cmpxchg_i128:
16328     Info.opc = ISD::INTRINSIC_W_CHAIN;
16329     Info.memVT = MVT::i128;
16330     Info.ptrVal = I.getArgOperand(0);
16331     Info.offset = 0;
16332     Info.align = Align(16);
16333     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16334                  MachineMemOperand::MOVolatile;
16335     return true;
16336   case Intrinsic::ppc_atomic_load_i128:
16337     Info.opc = ISD::INTRINSIC_W_CHAIN;
16338     Info.memVT = MVT::i128;
16339     Info.ptrVal = I.getArgOperand(0);
16340     Info.offset = 0;
16341     Info.align = Align(16);
16342     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16343     return true;
16344   case Intrinsic::ppc_atomic_store_i128:
16345     Info.opc = ISD::INTRINSIC_VOID;
16346     Info.memVT = MVT::i128;
16347     Info.ptrVal = I.getArgOperand(2);
16348     Info.offset = 0;
16349     Info.align = Align(16);
16350     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16351     return true;
16352   case Intrinsic::ppc_altivec_lvx:
16353   case Intrinsic::ppc_altivec_lvxl:
16354   case Intrinsic::ppc_altivec_lvebx:
16355   case Intrinsic::ppc_altivec_lvehx:
16356   case Intrinsic::ppc_altivec_lvewx:
16357   case Intrinsic::ppc_vsx_lxvd2x:
16358   case Intrinsic::ppc_vsx_lxvw4x:
16359   case Intrinsic::ppc_vsx_lxvd2x_be:
16360   case Intrinsic::ppc_vsx_lxvw4x_be:
16361   case Intrinsic::ppc_vsx_lxvl:
16362   case Intrinsic::ppc_vsx_lxvll: {
16363     EVT VT;
16364     switch (Intrinsic) {
16365     case Intrinsic::ppc_altivec_lvebx:
16366       VT = MVT::i8;
16367       break;
16368     case Intrinsic::ppc_altivec_lvehx:
16369       VT = MVT::i16;
16370       break;
16371     case Intrinsic::ppc_altivec_lvewx:
16372       VT = MVT::i32;
16373       break;
16374     case Intrinsic::ppc_vsx_lxvd2x:
16375     case Intrinsic::ppc_vsx_lxvd2x_be:
16376       VT = MVT::v2f64;
16377       break;
16378     default:
16379       VT = MVT::v4i32;
16380       break;
16381     }
16382 
16383     Info.opc = ISD::INTRINSIC_W_CHAIN;
16384     Info.memVT = VT;
16385     Info.ptrVal = I.getArgOperand(0);
16386     Info.offset = -VT.getStoreSize()+1;
16387     Info.size = 2*VT.getStoreSize()-1;
16388     Info.align = Align(1);
16389     Info.flags = MachineMemOperand::MOLoad;
16390     return true;
16391   }
16392   case Intrinsic::ppc_altivec_stvx:
16393   case Intrinsic::ppc_altivec_stvxl:
16394   case Intrinsic::ppc_altivec_stvebx:
16395   case Intrinsic::ppc_altivec_stvehx:
16396   case Intrinsic::ppc_altivec_stvewx:
16397   case Intrinsic::ppc_vsx_stxvd2x:
16398   case Intrinsic::ppc_vsx_stxvw4x:
16399   case Intrinsic::ppc_vsx_stxvd2x_be:
16400   case Intrinsic::ppc_vsx_stxvw4x_be:
16401   case Intrinsic::ppc_vsx_stxvl:
16402   case Intrinsic::ppc_vsx_stxvll: {
16403     EVT VT;
16404     switch (Intrinsic) {
16405     case Intrinsic::ppc_altivec_stvebx:
16406       VT = MVT::i8;
16407       break;
16408     case Intrinsic::ppc_altivec_stvehx:
16409       VT = MVT::i16;
16410       break;
16411     case Intrinsic::ppc_altivec_stvewx:
16412       VT = MVT::i32;
16413       break;
16414     case Intrinsic::ppc_vsx_stxvd2x:
16415     case Intrinsic::ppc_vsx_stxvd2x_be:
16416       VT = MVT::v2f64;
16417       break;
16418     default:
16419       VT = MVT::v4i32;
16420       break;
16421     }
16422 
16423     Info.opc = ISD::INTRINSIC_VOID;
16424     Info.memVT = VT;
16425     Info.ptrVal = I.getArgOperand(1);
16426     Info.offset = -VT.getStoreSize()+1;
16427     Info.size = 2*VT.getStoreSize()-1;
16428     Info.align = Align(1);
16429     Info.flags = MachineMemOperand::MOStore;
16430     return true;
16431   }
16432   default:
16433     break;
16434   }
16435 
16436   return false;
16437 }
16438 
16439 /// It returns EVT::Other if the type should be determined using generic
16440 /// target-independent logic.
16441 EVT PPCTargetLowering::getOptimalMemOpType(
16442     const MemOp &Op, const AttributeList &FuncAttributes) const {
16443   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16444     // We should use Altivec/VSX loads and stores when available. For unaligned
16445     // addresses, unaligned VSX loads are only fast starting with the P8.
16446     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16447         (Op.isAligned(Align(16)) ||
16448          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16449       return MVT::v4i32;
16450   }
16451 
16452   if (Subtarget.isPPC64()) {
16453     return MVT::i64;
16454   }
16455 
16456   return MVT::i32;
16457 }
16458 
16459 /// Returns true if it is beneficial to convert a load of a constant
16460 /// to just the constant itself.
16461 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16462                                                           Type *Ty) const {
16463   assert(Ty->isIntegerTy());
16464 
16465   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16466   return !(BitSize == 0 || BitSize > 64);
16467 }
16468 
16469 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16470   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16471     return false;
16472   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16473   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16474   return NumBits1 == 64 && NumBits2 == 32;
16475 }
16476 
16477 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16478   if (!VT1.isInteger() || !VT2.isInteger())
16479     return false;
16480   unsigned NumBits1 = VT1.getSizeInBits();
16481   unsigned NumBits2 = VT2.getSizeInBits();
16482   return NumBits1 == 64 && NumBits2 == 32;
16483 }
16484 
16485 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16486   // Generally speaking, zexts are not free, but they are free when they can be
16487   // folded with other operations.
16488   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16489     EVT MemVT = LD->getMemoryVT();
16490     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16491          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16492         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16493          LD->getExtensionType() == ISD::ZEXTLOAD))
16494       return true;
16495   }
16496 
16497   // FIXME: Add other cases...
16498   //  - 32-bit shifts with a zext to i64
16499   //  - zext after ctlz, bswap, etc.
16500   //  - zext after and by a constant mask
16501 
16502   return TargetLowering::isZExtFree(Val, VT2);
16503 }
16504 
16505 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16506   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16507          "invalid fpext types");
16508   // Extending to float128 is not free.
16509   if (DestVT == MVT::f128)
16510     return false;
16511   return true;
16512 }
16513 
16514 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16515   return isInt<16>(Imm) || isUInt<16>(Imm);
16516 }
16517 
16518 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16519   return isInt<16>(Imm) || isUInt<16>(Imm);
16520 }
16521 
16522 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16523                                                        MachineMemOperand::Flags,
16524                                                        bool *Fast) const {
16525   if (DisablePPCUnaligned)
16526     return false;
16527 
16528   // PowerPC supports unaligned memory access for simple non-vector types.
16529   // Although accessing unaligned addresses is not as efficient as accessing
16530   // aligned addresses, it is generally more efficient than manual expansion,
16531   // and generally only traps for software emulation when crossing page
16532   // boundaries.
16533 
16534   if (!VT.isSimple())
16535     return false;
16536 
16537   if (VT.isFloatingPoint() && !VT.isVector() &&
16538       !Subtarget.allowsUnalignedFPAccess())
16539     return false;
16540 
16541   if (VT.getSimpleVT().isVector()) {
16542     if (Subtarget.hasVSX()) {
16543       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16544           VT != MVT::v4f32 && VT != MVT::v4i32)
16545         return false;
16546     } else {
16547       return false;
16548     }
16549   }
16550 
16551   if (VT == MVT::ppcf128)
16552     return false;
16553 
16554   if (Fast)
16555     *Fast = true;
16556 
16557   return true;
16558 }
16559 
16560 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16561                                                SDValue C) const {
16562   // Check integral scalar types.
16563   if (!VT.isScalarInteger())
16564     return false;
16565   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16566     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16567       return false;
16568     // This transformation will generate >= 2 operations. But the following
16569     // cases will generate <= 2 instructions during ISEL. So exclude them.
16570     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16571     // HW instruction, ie. MULLI
16572     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16573     // instruction is needed than case 1, ie. MULLI and RLDICR
16574     int64_t Imm = ConstNode->getSExtValue();
16575     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16576     Imm >>= Shift;
16577     if (isInt<16>(Imm))
16578       return false;
16579     uint64_t UImm = static_cast<uint64_t>(Imm);
16580     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16581         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16582       return true;
16583   }
16584   return false;
16585 }
16586 
16587 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16588                                                    EVT VT) const {
16589   return isFMAFasterThanFMulAndFAdd(
16590       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16591 }
16592 
16593 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16594                                                    Type *Ty) const {
16595   switch (Ty->getScalarType()->getTypeID()) {
16596   case Type::FloatTyID:
16597   case Type::DoubleTyID:
16598     return true;
16599   case Type::FP128TyID:
16600     return Subtarget.hasP9Vector();
16601   default:
16602     return false;
16603   }
16604 }
16605 
16606 // FIXME: add more patterns which are not profitable to hoist.
16607 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16608   if (!I->hasOneUse())
16609     return true;
16610 
16611   Instruction *User = I->user_back();
16612   assert(User && "A single use instruction with no uses.");
16613 
16614   switch (I->getOpcode()) {
16615   case Instruction::FMul: {
16616     // Don't break FMA, PowerPC prefers FMA.
16617     if (User->getOpcode() != Instruction::FSub &&
16618         User->getOpcode() != Instruction::FAdd)
16619       return true;
16620 
16621     const TargetOptions &Options = getTargetMachine().Options;
16622     const Function *F = I->getFunction();
16623     const DataLayout &DL = F->getParent()->getDataLayout();
16624     Type *Ty = User->getOperand(0)->getType();
16625 
16626     return !(
16627         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16628         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16629         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16630   }
16631   case Instruction::Load: {
16632     // Don't break "store (load float*)" pattern, this pattern will be combined
16633     // to "store (load int32)" in later InstCombine pass. See function
16634     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16635     // cycles than loading a 32 bit integer.
16636     LoadInst *LI = cast<LoadInst>(I);
16637     // For the loads that combineLoadToOperationType does nothing, like
16638     // ordered load, it should be profitable to hoist them.
16639     // For swifterror load, it can only be used for pointer to pointer type, so
16640     // later type check should get rid of this case.
16641     if (!LI->isUnordered())
16642       return true;
16643 
16644     if (User->getOpcode() != Instruction::Store)
16645       return true;
16646 
16647     if (I->getType()->getTypeID() != Type::FloatTyID)
16648       return true;
16649 
16650     return false;
16651   }
16652   default:
16653     return true;
16654   }
16655   return true;
16656 }
16657 
16658 const MCPhysReg *
16659 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16660   // LR is a callee-save register, but we must treat it as clobbered by any call
16661   // site. Hence we include LR in the scratch registers, which are in turn added
16662   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16663   // to CTR, which is used by any indirect call.
16664   static const MCPhysReg ScratchRegs[] = {
16665     PPC::X12, PPC::LR8, PPC::CTR8, 0
16666   };
16667 
16668   return ScratchRegs;
16669 }
16670 
16671 Register PPCTargetLowering::getExceptionPointerRegister(
16672     const Constant *PersonalityFn) const {
16673   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16674 }
16675 
16676 Register PPCTargetLowering::getExceptionSelectorRegister(
16677     const Constant *PersonalityFn) const {
16678   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16679 }
16680 
16681 bool
16682 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16683                      EVT VT , unsigned DefinedValues) const {
16684   if (VT == MVT::v2i64)
16685     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16686 
16687   if (Subtarget.hasVSX())
16688     return true;
16689 
16690   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16691 }
16692 
16693 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16694   if (DisableILPPref || Subtarget.enableMachineScheduler())
16695     return TargetLowering::getSchedulingPreference(N);
16696 
16697   return Sched::ILP;
16698 }
16699 
16700 // Create a fast isel object.
16701 FastISel *
16702 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16703                                   const TargetLibraryInfo *LibInfo) const {
16704   return PPC::createFastISel(FuncInfo, LibInfo);
16705 }
16706 
16707 // 'Inverted' means the FMA opcode after negating one multiplicand.
16708 // For example, (fma -a b c) = (fnmsub a b c)
16709 static unsigned invertFMAOpcode(unsigned Opc) {
16710   switch (Opc) {
16711   default:
16712     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16713   case ISD::FMA:
16714     return PPCISD::FNMSUB;
16715   case PPCISD::FNMSUB:
16716     return ISD::FMA;
16717   }
16718 }
16719 
16720 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16721                                                 bool LegalOps, bool OptForSize,
16722                                                 NegatibleCost &Cost,
16723                                                 unsigned Depth) const {
16724   if (Depth > SelectionDAG::MaxRecursionDepth)
16725     return SDValue();
16726 
16727   unsigned Opc = Op.getOpcode();
16728   EVT VT = Op.getValueType();
16729   SDNodeFlags Flags = Op.getNode()->getFlags();
16730 
16731   switch (Opc) {
16732   case PPCISD::FNMSUB:
16733     if (!Op.hasOneUse() || !isTypeLegal(VT))
16734       break;
16735 
16736     const TargetOptions &Options = getTargetMachine().Options;
16737     SDValue N0 = Op.getOperand(0);
16738     SDValue N1 = Op.getOperand(1);
16739     SDValue N2 = Op.getOperand(2);
16740     SDLoc Loc(Op);
16741 
16742     NegatibleCost N2Cost = NegatibleCost::Expensive;
16743     SDValue NegN2 =
16744         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16745 
16746     if (!NegN2)
16747       return SDValue();
16748 
16749     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16750     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16751     // These transformations may change sign of zeroes. For example,
16752     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16753     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16754       // Try and choose the cheaper one to negate.
16755       NegatibleCost N0Cost = NegatibleCost::Expensive;
16756       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16757                                            N0Cost, Depth + 1);
16758 
16759       NegatibleCost N1Cost = NegatibleCost::Expensive;
16760       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16761                                            N1Cost, Depth + 1);
16762 
16763       if (NegN0 && N0Cost <= N1Cost) {
16764         Cost = std::min(N0Cost, N2Cost);
16765         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16766       } else if (NegN1) {
16767         Cost = std::min(N1Cost, N2Cost);
16768         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16769       }
16770     }
16771 
16772     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16773     if (isOperationLegal(ISD::FMA, VT)) {
16774       Cost = N2Cost;
16775       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16776     }
16777 
16778     break;
16779   }
16780 
16781   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16782                                               Cost, Depth);
16783 }
16784 
16785 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16786 bool PPCTargetLowering::useLoadStackGuardNode() const {
16787   if (!Subtarget.isTargetLinux())
16788     return TargetLowering::useLoadStackGuardNode();
16789   return true;
16790 }
16791 
16792 // Override to disable global variable loading on Linux and insert AIX canary
16793 // word declaration.
16794 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16795   if (Subtarget.isAIXABI()) {
16796     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16797                         Type::getInt8PtrTy(M.getContext()));
16798     return;
16799   }
16800   if (!Subtarget.isTargetLinux())
16801     return TargetLowering::insertSSPDeclarations(M);
16802 }
16803 
16804 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16805   if (Subtarget.isAIXABI())
16806     return M.getGlobalVariable(AIXSSPCanaryWordName);
16807   return TargetLowering::getSDagStackGuard(M);
16808 }
16809 
16810 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16811                                      bool ForCodeSize) const {
16812   if (!VT.isSimple() || !Subtarget.hasVSX())
16813     return false;
16814 
16815   switch(VT.getSimpleVT().SimpleTy) {
16816   default:
16817     // For FP types that are currently not supported by PPC backend, return
16818     // false. Examples: f16, f80.
16819     return false;
16820   case MVT::f32:
16821   case MVT::f64:
16822     if (Subtarget.hasPrefixInstrs()) {
16823       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16824       return true;
16825     }
16826     LLVM_FALLTHROUGH;
16827   case MVT::ppcf128:
16828     return Imm.isPosZero();
16829   }
16830 }
16831 
16832 // For vector shift operation op, fold
16833 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16834 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16835                                   SelectionDAG &DAG) {
16836   SDValue N0 = N->getOperand(0);
16837   SDValue N1 = N->getOperand(1);
16838   EVT VT = N0.getValueType();
16839   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16840   unsigned Opcode = N->getOpcode();
16841   unsigned TargetOpcode;
16842 
16843   switch (Opcode) {
16844   default:
16845     llvm_unreachable("Unexpected shift operation");
16846   case ISD::SHL:
16847     TargetOpcode = PPCISD::SHL;
16848     break;
16849   case ISD::SRL:
16850     TargetOpcode = PPCISD::SRL;
16851     break;
16852   case ISD::SRA:
16853     TargetOpcode = PPCISD::SRA;
16854     break;
16855   }
16856 
16857   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16858       N1->getOpcode() == ISD::AND)
16859     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16860       if (Mask->getZExtValue() == OpSizeInBits - 1)
16861         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16862 
16863   return SDValue();
16864 }
16865 
16866 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16867   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16868     return Value;
16869 
16870   SDValue N0 = N->getOperand(0);
16871   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16872   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
16873       N0.getOpcode() != ISD::SIGN_EXTEND ||
16874       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
16875       N->getValueType(0) != MVT::i64)
16876     return SDValue();
16877 
16878   // We can't save an operation here if the value is already extended, and
16879   // the existing shift is easier to combine.
16880   SDValue ExtsSrc = N0.getOperand(0);
16881   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16882       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16883     return SDValue();
16884 
16885   SDLoc DL(N0);
16886   SDValue ShiftBy = SDValue(CN1, 0);
16887   // We want the shift amount to be i32 on the extswli, but the shift could
16888   // have an i64.
16889   if (ShiftBy.getValueType() == MVT::i64)
16890     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16891 
16892   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16893                          ShiftBy);
16894 }
16895 
16896 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16897   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16898     return Value;
16899 
16900   return SDValue();
16901 }
16902 
16903 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16904   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16905     return Value;
16906 
16907   return SDValue();
16908 }
16909 
16910 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16911 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16912 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16913 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16914 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16915                                  const PPCSubtarget &Subtarget) {
16916   if (!Subtarget.isPPC64())
16917     return SDValue();
16918 
16919   SDValue LHS = N->getOperand(0);
16920   SDValue RHS = N->getOperand(1);
16921 
16922   auto isZextOfCompareWithConstant = [](SDValue Op) {
16923     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16924         Op.getValueType() != MVT::i64)
16925       return false;
16926 
16927     SDValue Cmp = Op.getOperand(0);
16928     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16929         Cmp.getOperand(0).getValueType() != MVT::i64)
16930       return false;
16931 
16932     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16933       int64_t NegConstant = 0 - Constant->getSExtValue();
16934       // Due to the limitations of the addi instruction,
16935       // -C is required to be [-32768, 32767].
16936       return isInt<16>(NegConstant);
16937     }
16938 
16939     return false;
16940   };
16941 
16942   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16943   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16944 
16945   // If there is a pattern, canonicalize a zext operand to the RHS.
16946   if (LHSHasPattern && !RHSHasPattern)
16947     std::swap(LHS, RHS);
16948   else if (!LHSHasPattern && !RHSHasPattern)
16949     return SDValue();
16950 
16951   SDLoc DL(N);
16952   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16953   SDValue Cmp = RHS.getOperand(0);
16954   SDValue Z = Cmp.getOperand(0);
16955   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
16956   int64_t NegConstant = 0 - Constant->getSExtValue();
16957 
16958   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16959   default: break;
16960   case ISD::SETNE: {
16961     //                                 when C == 0
16962     //                             --> addze X, (addic Z, -1).carry
16963     //                            /
16964     // add X, (zext(setne Z, C))--
16965     //                            \    when -32768 <= -C <= 32767 && C != 0
16966     //                             --> addze X, (addic (addi Z, -C), -1).carry
16967     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16968                               DAG.getConstant(NegConstant, DL, MVT::i64));
16969     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16970     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16971                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16972     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16973                        SDValue(Addc.getNode(), 1));
16974     }
16975   case ISD::SETEQ: {
16976     //                                 when C == 0
16977     //                             --> addze X, (subfic Z, 0).carry
16978     //                            /
16979     // add X, (zext(sete  Z, C))--
16980     //                            \    when -32768 <= -C <= 32767 && C != 0
16981     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16982     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16983                               DAG.getConstant(NegConstant, DL, MVT::i64));
16984     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16985     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16986                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16987     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16988                        SDValue(Subc.getNode(), 1));
16989     }
16990   }
16991 
16992   return SDValue();
16993 }
16994 
16995 // Transform
16996 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16997 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16998 // In this case both C1 and C2 must be known constants.
16999 // C1+C2 must fit into a 34 bit signed integer.
17000 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17001                                           const PPCSubtarget &Subtarget) {
17002   if (!Subtarget.isUsingPCRelativeCalls())
17003     return SDValue();
17004 
17005   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17006   // If we find that node try to cast the Global Address and the Constant.
17007   SDValue LHS = N->getOperand(0);
17008   SDValue RHS = N->getOperand(1);
17009 
17010   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17011     std::swap(LHS, RHS);
17012 
17013   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17014     return SDValue();
17015 
17016   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17017   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17018   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17019 
17020   // Check that both casts succeeded.
17021   if (!GSDN || !ConstNode)
17022     return SDValue();
17023 
17024   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17025   SDLoc DL(GSDN);
17026 
17027   // The signed int offset needs to fit in 34 bits.
17028   if (!isInt<34>(NewOffset))
17029     return SDValue();
17030 
17031   // The new global address is a copy of the old global address except
17032   // that it has the updated Offset.
17033   SDValue GA =
17034       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17035                                  NewOffset, GSDN->getTargetFlags());
17036   SDValue MatPCRel =
17037       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17038   return MatPCRel;
17039 }
17040 
17041 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17042   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17043     return Value;
17044 
17045   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17046     return Value;
17047 
17048   return SDValue();
17049 }
17050 
17051 // Detect TRUNCATE operations on bitcasts of float128 values.
17052 // What we are looking for here is the situtation where we extract a subset
17053 // of bits from a 128 bit float.
17054 // This can be of two forms:
17055 // 1) BITCAST of f128 feeding TRUNCATE
17056 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17057 // The reason this is required is because we do not have a legal i128 type
17058 // and so we want to prevent having to store the f128 and then reload part
17059 // of it.
17060 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17061                                            DAGCombinerInfo &DCI) const {
17062   // If we are using CRBits then try that first.
17063   if (Subtarget.useCRBits()) {
17064     // Check if CRBits did anything and return that if it did.
17065     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17066       return CRTruncValue;
17067   }
17068 
17069   SDLoc dl(N);
17070   SDValue Op0 = N->getOperand(0);
17071 
17072   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17073   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17074     EVT VT = N->getValueType(0);
17075     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17076       return SDValue();
17077     SDValue Sub = Op0.getOperand(0);
17078     if (Sub.getOpcode() == ISD::SUB) {
17079       SDValue SubOp0 = Sub.getOperand(0);
17080       SDValue SubOp1 = Sub.getOperand(1);
17081       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17082           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17083         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17084                                SubOp1.getOperand(0),
17085                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17086       }
17087     }
17088   }
17089 
17090   // Looking for a truncate of i128 to i64.
17091   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17092     return SDValue();
17093 
17094   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17095 
17096   // SRL feeding TRUNCATE.
17097   if (Op0.getOpcode() == ISD::SRL) {
17098     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17099     // The right shift has to be by 64 bits.
17100     if (!ConstNode || ConstNode->getZExtValue() != 64)
17101       return SDValue();
17102 
17103     // Switch the element number to extract.
17104     EltToExtract = EltToExtract ? 0 : 1;
17105     // Update Op0 past the SRL.
17106     Op0 = Op0.getOperand(0);
17107   }
17108 
17109   // BITCAST feeding a TRUNCATE possibly via SRL.
17110   if (Op0.getOpcode() == ISD::BITCAST &&
17111       Op0.getValueType() == MVT::i128 &&
17112       Op0.getOperand(0).getValueType() == MVT::f128) {
17113     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17114     return DCI.DAG.getNode(
17115         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17116         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17117   }
17118   return SDValue();
17119 }
17120 
17121 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17122   SelectionDAG &DAG = DCI.DAG;
17123 
17124   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17125   if (!ConstOpOrElement)
17126     return SDValue();
17127 
17128   // An imul is usually smaller than the alternative sequence for legal type.
17129   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17130       isOperationLegal(ISD::MUL, N->getValueType(0)))
17131     return SDValue();
17132 
17133   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17134     switch (this->Subtarget.getCPUDirective()) {
17135     default:
17136       // TODO: enhance the condition for subtarget before pwr8
17137       return false;
17138     case PPC::DIR_PWR8:
17139       //  type        mul     add    shl
17140       // scalar        4       1      1
17141       // vector        7       2      2
17142       return true;
17143     case PPC::DIR_PWR9:
17144     case PPC::DIR_PWR10:
17145     case PPC::DIR_PWR_FUTURE:
17146       //  type        mul     add    shl
17147       // scalar        5       2      2
17148       // vector        7       2      2
17149 
17150       // The cycle RATIO of related operations are showed as a table above.
17151       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17152       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17153       // are 4, it is always profitable; but for 3 instrs patterns
17154       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17155       // So we should only do it for vector type.
17156       return IsAddOne && IsNeg ? VT.isVector() : true;
17157     }
17158   };
17159 
17160   EVT VT = N->getValueType(0);
17161   SDLoc DL(N);
17162 
17163   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17164   bool IsNeg = MulAmt.isNegative();
17165   APInt MulAmtAbs = MulAmt.abs();
17166 
17167   if ((MulAmtAbs - 1).isPowerOf2()) {
17168     // (mul x, 2^N + 1) => (add (shl x, N), x)
17169     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17170 
17171     if (!IsProfitable(IsNeg, true, VT))
17172       return SDValue();
17173 
17174     SDValue Op0 = N->getOperand(0);
17175     SDValue Op1 =
17176         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17177                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17178     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17179 
17180     if (!IsNeg)
17181       return Res;
17182 
17183     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17184   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17185     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17186     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17187 
17188     if (!IsProfitable(IsNeg, false, VT))
17189       return SDValue();
17190 
17191     SDValue Op0 = N->getOperand(0);
17192     SDValue Op1 =
17193         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17194                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17195 
17196     if (!IsNeg)
17197       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17198     else
17199       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17200 
17201   } else {
17202     return SDValue();
17203   }
17204 }
17205 
17206 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17207 // in combiner since we need to check SD flags and other subtarget features.
17208 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17209                                           DAGCombinerInfo &DCI) const {
17210   SDValue N0 = N->getOperand(0);
17211   SDValue N1 = N->getOperand(1);
17212   SDValue N2 = N->getOperand(2);
17213   SDNodeFlags Flags = N->getFlags();
17214   EVT VT = N->getValueType(0);
17215   SelectionDAG &DAG = DCI.DAG;
17216   const TargetOptions &Options = getTargetMachine().Options;
17217   unsigned Opc = N->getOpcode();
17218   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17219   bool LegalOps = !DCI.isBeforeLegalizeOps();
17220   SDLoc Loc(N);
17221 
17222   if (!isOperationLegal(ISD::FMA, VT))
17223     return SDValue();
17224 
17225   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17226   // since (fnmsub a b c)=-0 while c-ab=+0.
17227   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17228     return SDValue();
17229 
17230   // (fma (fneg a) b c) => (fnmsub a b c)
17231   // (fnmsub (fneg a) b c) => (fma a b c)
17232   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17233     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17234 
17235   // (fma a (fneg b) c) => (fnmsub a b c)
17236   // (fnmsub a (fneg b) c) => (fma a b c)
17237   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17238     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17239 
17240   return SDValue();
17241 }
17242 
17243 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17244   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17245   if (!Subtarget.is64BitELFABI())
17246     return false;
17247 
17248   // If not a tail call then no need to proceed.
17249   if (!CI->isTailCall())
17250     return false;
17251 
17252   // If sibling calls have been disabled and tail-calls aren't guaranteed
17253   // there is no reason to duplicate.
17254   auto &TM = getTargetMachine();
17255   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17256     return false;
17257 
17258   // Can't tail call a function called indirectly, or if it has variadic args.
17259   const Function *Callee = CI->getCalledFunction();
17260   if (!Callee || Callee->isVarArg())
17261     return false;
17262 
17263   // Make sure the callee and caller calling conventions are eligible for tco.
17264   const Function *Caller = CI->getParent()->getParent();
17265   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17266                                            CI->getCallingConv()))
17267       return false;
17268 
17269   // If the function is local then we have a good chance at tail-calling it
17270   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17271 }
17272 
17273 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17274   if (!Subtarget.hasVSX())
17275     return false;
17276   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17277     return true;
17278   return VT == MVT::f32 || VT == MVT::f64 ||
17279     VT == MVT::v4f32 || VT == MVT::v2f64;
17280 }
17281 
17282 bool PPCTargetLowering::
17283 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17284   const Value *Mask = AndI.getOperand(1);
17285   // If the mask is suitable for andi. or andis. we should sink the and.
17286   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17287     // Can't handle constants wider than 64-bits.
17288     if (CI->getBitWidth() > 64)
17289       return false;
17290     int64_t ConstVal = CI->getZExtValue();
17291     return isUInt<16>(ConstVal) ||
17292       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17293   }
17294 
17295   // For non-constant masks, we can always use the record-form and.
17296   return true;
17297 }
17298 
17299 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17300 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17301 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17302 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17303 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17304 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17305   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17306   assert(Subtarget.hasP9Altivec() &&
17307          "Only combine this when P9 altivec supported!");
17308   EVT VT = N->getValueType(0);
17309   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17310     return SDValue();
17311 
17312   SelectionDAG &DAG = DCI.DAG;
17313   SDLoc dl(N);
17314   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17315     // Even for signed integers, if it's known to be positive (as signed
17316     // integer) due to zero-extended inputs.
17317     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17318     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17319     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17320          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17321         (SubOpcd1 == ISD::ZERO_EXTEND ||
17322          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17323       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17324                          N->getOperand(0)->getOperand(0),
17325                          N->getOperand(0)->getOperand(1),
17326                          DAG.getTargetConstant(0, dl, MVT::i32));
17327     }
17328 
17329     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17330     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17331         N->getOperand(0).hasOneUse()) {
17332       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17333                          N->getOperand(0)->getOperand(0),
17334                          N->getOperand(0)->getOperand(1),
17335                          DAG.getTargetConstant(1, dl, MVT::i32));
17336     }
17337   }
17338 
17339   return SDValue();
17340 }
17341 
17342 // For type v4i32/v8ii16/v16i8, transform
17343 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17344 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17345 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17346 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17347 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17348                                           DAGCombinerInfo &DCI) const {
17349   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17350   assert(Subtarget.hasP9Altivec() &&
17351          "Only combine this when P9 altivec supported!");
17352 
17353   SelectionDAG &DAG = DCI.DAG;
17354   SDLoc dl(N);
17355   SDValue Cond = N->getOperand(0);
17356   SDValue TrueOpnd = N->getOperand(1);
17357   SDValue FalseOpnd = N->getOperand(2);
17358   EVT VT = N->getOperand(1).getValueType();
17359 
17360   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17361       FalseOpnd.getOpcode() != ISD::SUB)
17362     return SDValue();
17363 
17364   // ABSD only available for type v4i32/v8i16/v16i8
17365   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17366     return SDValue();
17367 
17368   // At least to save one more dependent computation
17369   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17370     return SDValue();
17371 
17372   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17373 
17374   // Can only handle unsigned comparison here
17375   switch (CC) {
17376   default:
17377     return SDValue();
17378   case ISD::SETUGT:
17379   case ISD::SETUGE:
17380     break;
17381   case ISD::SETULT:
17382   case ISD::SETULE:
17383     std::swap(TrueOpnd, FalseOpnd);
17384     break;
17385   }
17386 
17387   SDValue CmpOpnd1 = Cond.getOperand(0);
17388   SDValue CmpOpnd2 = Cond.getOperand(1);
17389 
17390   // SETCC CmpOpnd1 CmpOpnd2 cond
17391   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17392   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17393   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17394       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17395       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17396       FalseOpnd.getOperand(1) == CmpOpnd1) {
17397     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17398                        CmpOpnd1, CmpOpnd2,
17399                        DAG.getTargetConstant(0, dl, MVT::i32));
17400   }
17401 
17402   return SDValue();
17403 }
17404 
17405 /// getAddrModeForFlags - Based on the set of address flags, select the most
17406 /// optimal instruction format to match by.
17407 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17408   // This is not a node we should be handling here.
17409   if (Flags == PPC::MOF_None)
17410     return PPC::AM_None;
17411   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17412   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17413     if ((Flags & FlagSet) == FlagSet)
17414       return PPC::AM_DForm;
17415   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17416     if ((Flags & FlagSet) == FlagSet)
17417       return PPC::AM_DSForm;
17418   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17419     if ((Flags & FlagSet) == FlagSet)
17420       return PPC::AM_DQForm;
17421   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17422     if ((Flags & FlagSet) == FlagSet)
17423       return PPC::AM_PrefixDForm;
17424   // If no other forms are selected, return an X-Form as it is the most
17425   // general addressing mode.
17426   return PPC::AM_XForm;
17427 }
17428 
17429 /// Set alignment flags based on whether or not the Frame Index is aligned.
17430 /// Utilized when computing flags for address computation when selecting
17431 /// load and store instructions.
17432 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17433                                SelectionDAG &DAG) {
17434   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17435   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17436   if (!FI)
17437     return;
17438   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17439   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17440   // If this is (add $FI, $S16Imm), the alignment flags are already set
17441   // based on the immediate. We just need to clear the alignment flags
17442   // if the FI alignment is weaker.
17443   if ((FrameIndexAlign % 4) != 0)
17444     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17445   if ((FrameIndexAlign % 16) != 0)
17446     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17447   // If the address is a plain FrameIndex, set alignment flags based on
17448   // FI alignment.
17449   if (!IsAdd) {
17450     if ((FrameIndexAlign % 4) == 0)
17451       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17452     if ((FrameIndexAlign % 16) == 0)
17453       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17454   }
17455 }
17456 
17457 /// Given a node, compute flags that are used for address computation when
17458 /// selecting load and store instructions. The flags computed are stored in
17459 /// FlagSet. This function takes into account whether the node is a constant,
17460 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17461 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17462                                               SelectionDAG &DAG) {
17463   // Set the alignment flags for the node depending on if the node is
17464   // 4-byte or 16-byte aligned.
17465   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17466     if ((Imm & 0x3) == 0)
17467       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17468     if ((Imm & 0xf) == 0)
17469       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17470   };
17471 
17472   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17473     // All 32-bit constants can be computed as LIS + Disp.
17474     const APInt &ConstImm = CN->getAPIntValue();
17475     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17476       FlagSet |= PPC::MOF_AddrIsSImm32;
17477       SetAlignFlagsForImm(ConstImm.getZExtValue());
17478       setAlignFlagsForFI(N, FlagSet, DAG);
17479     }
17480     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17481       FlagSet |= PPC::MOF_RPlusSImm34;
17482     else // Let constant materialization handle large constants.
17483       FlagSet |= PPC::MOF_NotAddNorCst;
17484   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17485     // This address can be represented as an addition of:
17486     // - Register + Imm16 (possibly a multiple of 4/16)
17487     // - Register + Imm34
17488     // - Register + PPCISD::Lo
17489     // - Register + Register
17490     // In any case, we won't have to match this as Base + Zero.
17491     SDValue RHS = N.getOperand(1);
17492     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17493       const APInt &ConstImm = CN->getAPIntValue();
17494       if (ConstImm.isSignedIntN(16)) {
17495         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17496         SetAlignFlagsForImm(ConstImm.getZExtValue());
17497         setAlignFlagsForFI(N, FlagSet, DAG);
17498       }
17499       if (ConstImm.isSignedIntN(34))
17500         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17501       else
17502         FlagSet |= PPC::MOF_RPlusR; // Register.
17503     } else if (RHS.getOpcode() == PPCISD::Lo &&
17504                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17505       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17506     else
17507       FlagSet |= PPC::MOF_RPlusR;
17508   } else { // The address computation is not a constant or an addition.
17509     setAlignFlagsForFI(N, FlagSet, DAG);
17510     FlagSet |= PPC::MOF_NotAddNorCst;
17511   }
17512 }
17513 
17514 static bool isPCRelNode(SDValue N) {
17515   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17516       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17517       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17518       isValidPCRelNode<JumpTableSDNode>(N) ||
17519       isValidPCRelNode<BlockAddressSDNode>(N));
17520 }
17521 
17522 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17523 /// the address flags of the load/store instruction that is to be matched.
17524 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17525                                            SelectionDAG &DAG) const {
17526   unsigned FlagSet = PPC::MOF_None;
17527 
17528   // Compute subtarget flags.
17529   if (!Subtarget.hasP9Vector())
17530     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17531   else {
17532     FlagSet |= PPC::MOF_SubtargetP9;
17533     if (Subtarget.hasPrefixInstrs())
17534       FlagSet |= PPC::MOF_SubtargetP10;
17535   }
17536   if (Subtarget.hasSPE())
17537     FlagSet |= PPC::MOF_SubtargetSPE;
17538 
17539   // Check if we have a PCRel node and return early.
17540   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17541     return FlagSet;
17542 
17543   // If the node is the paired load/store intrinsics, compute flags for
17544   // address computation and return early.
17545   unsigned ParentOp = Parent->getOpcode();
17546   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17547                                (ParentOp == ISD::INTRINSIC_VOID))) {
17548     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17549     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17550       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17551                              ? Parent->getOperand(2)
17552                              : Parent->getOperand(3);
17553       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17554       FlagSet |= PPC::MOF_Vector;
17555       return FlagSet;
17556     }
17557   }
17558 
17559   // Mark this as something we don't want to handle here if it is atomic
17560   // or pre-increment instruction.
17561   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17562     if (LSB->isIndexed())
17563       return PPC::MOF_None;
17564 
17565   // Compute in-memory type flags. This is based on if there are scalars,
17566   // floats or vectors.
17567   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17568   assert(MN && "Parent should be a MemSDNode!");
17569   EVT MemVT = MN->getMemoryVT();
17570   unsigned Size = MemVT.getSizeInBits();
17571   if (MemVT.isScalarInteger()) {
17572     assert(Size <= 128 &&
17573            "Not expecting scalar integers larger than 16 bytes!");
17574     if (Size < 32)
17575       FlagSet |= PPC::MOF_SubWordInt;
17576     else if (Size == 32)
17577       FlagSet |= PPC::MOF_WordInt;
17578     else
17579       FlagSet |= PPC::MOF_DoubleWordInt;
17580   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17581     if (Size == 128)
17582       FlagSet |= PPC::MOF_Vector;
17583     else if (Size == 256) {
17584       assert(Subtarget.pairedVectorMemops() &&
17585              "256-bit vectors are only available when paired vector memops is "
17586              "enabled!");
17587       FlagSet |= PPC::MOF_Vector;
17588     } else
17589       llvm_unreachable("Not expecting illegal vectors!");
17590   } else { // Floating point type: can be scalar, f128 or vector types.
17591     if (Size == 32 || Size == 64)
17592       FlagSet |= PPC::MOF_ScalarFloat;
17593     else if (MemVT == MVT::f128 || MemVT.isVector())
17594       FlagSet |= PPC::MOF_Vector;
17595     else
17596       llvm_unreachable("Not expecting illegal scalar floats!");
17597   }
17598 
17599   // Compute flags for address computation.
17600   computeFlagsForAddressComputation(N, FlagSet, DAG);
17601 
17602   // Compute type extension flags.
17603   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17604     switch (LN->getExtensionType()) {
17605     case ISD::SEXTLOAD:
17606       FlagSet |= PPC::MOF_SExt;
17607       break;
17608     case ISD::EXTLOAD:
17609     case ISD::ZEXTLOAD:
17610       FlagSet |= PPC::MOF_ZExt;
17611       break;
17612     case ISD::NON_EXTLOAD:
17613       FlagSet |= PPC::MOF_NoExt;
17614       break;
17615     }
17616   } else
17617     FlagSet |= PPC::MOF_NoExt;
17618 
17619   // For integers, no extension is the same as zero extension.
17620   // We set the extension mode to zero extension so we don't have
17621   // to add separate entries in AddrModesMap for loads and stores.
17622   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17623     FlagSet |= PPC::MOF_ZExt;
17624     FlagSet &= ~PPC::MOF_NoExt;
17625   }
17626 
17627   // If we don't have prefixed instructions, 34-bit constants should be
17628   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17629   bool IsNonP1034BitConst =
17630       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17631        FlagSet) == PPC::MOF_RPlusSImm34;
17632   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17633       IsNonP1034BitConst)
17634     FlagSet |= PPC::MOF_NotAddNorCst;
17635 
17636   return FlagSet;
17637 }
17638 
17639 /// SelectForceXFormMode - Given the specified address, force it to be
17640 /// represented as an indexed [r+r] operation (an XForm instruction).
17641 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17642                                                       SDValue &Base,
17643                                                       SelectionDAG &DAG) const {
17644 
17645   PPC::AddrMode Mode = PPC::AM_XForm;
17646   int16_t ForceXFormImm = 0;
17647   if (provablyDisjointOr(DAG, N) &&
17648       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17649     Disp = N.getOperand(0);
17650     Base = N.getOperand(1);
17651     return Mode;
17652   }
17653 
17654   // If the address is the result of an add, we will utilize the fact that the
17655   // address calculation includes an implicit add.  However, we can reduce
17656   // register pressure if we do not materialize a constant just for use as the
17657   // index register.  We only get rid of the add if it is not an add of a
17658   // value and a 16-bit signed constant and both have a single use.
17659   if (N.getOpcode() == ISD::ADD &&
17660       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17661        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17662     Disp = N.getOperand(0);
17663     Base = N.getOperand(1);
17664     return Mode;
17665   }
17666 
17667   // Otherwise, use R0 as the base register.
17668   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17669                          N.getValueType());
17670   Base = N;
17671 
17672   return Mode;
17673 }
17674 
17675 bool PPCTargetLowering::splitValueIntoRegisterParts(
17676     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17677     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17678   EVT ValVT = Val.getValueType();
17679   // If we are splitting a scalar integer into f64 parts (i.e. so they
17680   // can be placed into VFRC registers), we need to zero extend and
17681   // bitcast the values. This will ensure the value is placed into a
17682   // VSR using direct moves or stack operations as needed.
17683   if (PartVT == MVT::f64 &&
17684       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17685     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17686     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17687     Parts[0] = Val;
17688     return true;
17689   }
17690   return false;
17691 }
17692 
17693 // If we happen to match to an aligned D-Form, check if the Frame Index is
17694 // adequately aligned. If it is not, reset the mode to match to X-Form.
17695 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17696                                    PPC::AddrMode &Mode) {
17697   if (!isa<FrameIndexSDNode>(N))
17698     return;
17699   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17700       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17701     Mode = PPC::AM_XForm;
17702 }
17703 
17704 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17705 /// compute the address flags of the node, get the optimal address mode based
17706 /// on the flags, and set the Base and Disp based on the address mode.
17707 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17708                                                        SDValue N, SDValue &Disp,
17709                                                        SDValue &Base,
17710                                                        SelectionDAG &DAG,
17711                                                        MaybeAlign Align) const {
17712   SDLoc DL(Parent);
17713 
17714   // Compute the address flags.
17715   unsigned Flags = computeMOFlags(Parent, N, DAG);
17716 
17717   // Get the optimal address mode based on the Flags.
17718   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17719 
17720   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17721   // Select an X-Form load if it is not.
17722   setXFormForUnalignedFI(N, Flags, Mode);
17723 
17724   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17725   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17726     assert(Subtarget.isUsingPCRelativeCalls() &&
17727            "Must be using PC-Relative calls when a valid PC-Relative node is "
17728            "present!");
17729     Mode = PPC::AM_PCRel;
17730   }
17731 
17732   // Set Base and Disp accordingly depending on the address mode.
17733   switch (Mode) {
17734   case PPC::AM_DForm:
17735   case PPC::AM_DSForm:
17736   case PPC::AM_DQForm: {
17737     // This is a register plus a 16-bit immediate. The base will be the
17738     // register and the displacement will be the immediate unless it
17739     // isn't sufficiently aligned.
17740     if (Flags & PPC::MOF_RPlusSImm16) {
17741       SDValue Op0 = N.getOperand(0);
17742       SDValue Op1 = N.getOperand(1);
17743       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17744       if (!Align || isAligned(*Align, Imm)) {
17745         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17746         Base = Op0;
17747         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17748           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17749           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17750         }
17751         break;
17752       }
17753     }
17754     // This is a register plus the @lo relocation. The base is the register
17755     // and the displacement is the global address.
17756     else if (Flags & PPC::MOF_RPlusLo) {
17757       Disp = N.getOperand(1).getOperand(0); // The global address.
17758       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
17759              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
17760              Disp.getOpcode() == ISD::TargetConstantPool ||
17761              Disp.getOpcode() == ISD::TargetJumpTable);
17762       Base = N.getOperand(0);
17763       break;
17764     }
17765     // This is a constant address at most 32 bits. The base will be
17766     // zero or load-immediate-shifted and the displacement will be
17767     // the low 16 bits of the address.
17768     else if (Flags & PPC::MOF_AddrIsSImm32) {
17769       auto *CN = cast<ConstantSDNode>(N);
17770       EVT CNType = CN->getValueType(0);
17771       uint64_t CNImm = CN->getZExtValue();
17772       // If this address fits entirely in a 16-bit sext immediate field, codegen
17773       // this as "d, 0".
17774       int16_t Imm;
17775       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
17776         Disp = DAG.getTargetConstant(Imm, DL, CNType);
17777         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17778                                CNType);
17779         break;
17780       }
17781       // Handle 32-bit sext immediate with LIS + Addr mode.
17782       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
17783           (!Align || isAligned(*Align, CNImm))) {
17784         int32_t Addr = (int32_t)CNImm;
17785         // Otherwise, break this down into LIS + Disp.
17786         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
17787         Base =
17788             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
17789         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
17790         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
17791         break;
17792       }
17793     }
17794     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
17795     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
17796     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
17797       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17798       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17799     } else
17800       Base = N;
17801     break;
17802   }
17803   case PPC::AM_PrefixDForm: {
17804     int64_t Imm34 = 0;
17805     unsigned Opcode = N.getOpcode();
17806     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
17807         (isIntS34Immediate(N.getOperand(1), Imm34))) {
17808       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
17809       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17810       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
17811         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17812       else
17813         Base = N.getOperand(0);
17814     } else if (isIntS34Immediate(N, Imm34)) {
17815       // The address is a 34-bit signed immediate.
17816       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
17817       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
17818     }
17819     break;
17820   }
17821   case PPC::AM_PCRel: {
17822     // When selecting PC-Relative instructions, "Base" is not utilized as
17823     // we select the address as [PC+imm].
17824     Disp = N;
17825     break;
17826   }
17827   case PPC::AM_None:
17828     break;
17829   default: { // By default, X-Form is always available to be selected.
17830     // When a frame index is not aligned, we also match by XForm.
17831     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
17832     Base = FI ? N : N.getOperand(1);
17833     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17834                                 N.getValueType())
17835               : N.getOperand(0);
17836     break;
17837   }
17838   }
17839   return Mode;
17840 }
17841 
17842 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
17843                                                  bool Return,
17844                                                  bool IsVarArg) const {
17845   switch (CC) {
17846   case CallingConv::Cold:
17847     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
17848   default:
17849     return CC_PPC64_ELF_FIS;
17850   }
17851 }
17852 
17853 TargetLowering::AtomicExpansionKind
17854 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
17855   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
17856   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17857     return AtomicExpansionKind::MaskedIntrinsic;
17858   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
17859 }
17860 
17861 TargetLowering::AtomicExpansionKind
17862 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
17863   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
17864   if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128)
17865     return AtomicExpansionKind::MaskedIntrinsic;
17866   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
17867 }
17868 
17869 static Intrinsic::ID
17870 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
17871   switch (BinOp) {
17872   default:
17873     llvm_unreachable("Unexpected AtomicRMW BinOp");
17874   case AtomicRMWInst::Xchg:
17875     return Intrinsic::ppc_atomicrmw_xchg_i128;
17876   case AtomicRMWInst::Add:
17877     return Intrinsic::ppc_atomicrmw_add_i128;
17878   case AtomicRMWInst::Sub:
17879     return Intrinsic::ppc_atomicrmw_sub_i128;
17880   case AtomicRMWInst::And:
17881     return Intrinsic::ppc_atomicrmw_and_i128;
17882   case AtomicRMWInst::Or:
17883     return Intrinsic::ppc_atomicrmw_or_i128;
17884   case AtomicRMWInst::Xor:
17885     return Intrinsic::ppc_atomicrmw_xor_i128;
17886   case AtomicRMWInst::Nand:
17887     return Intrinsic::ppc_atomicrmw_nand_i128;
17888   }
17889 }
17890 
17891 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
17892     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
17893     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
17894   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17895          "Only support quadword now");
17896   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17897   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17898   assert(ValTy->getPrimitiveSizeInBits() == 128);
17899   Function *RMW = Intrinsic::getDeclaration(
17900       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
17901   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17902   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
17903   Value *IncrHi =
17904       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
17905   Value *Addr =
17906       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17907   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
17908   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17909   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17910   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17911   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17912   return Builder.CreateOr(
17913       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17914 }
17915 
17916 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
17917     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
17918     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
17919   assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() &&
17920          "Only support quadword now");
17921   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
17922   Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType();
17923   assert(ValTy->getPrimitiveSizeInBits() == 128);
17924   Function *IntCmpXchg =
17925       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
17926   Type *Int64Ty = Type::getInt64Ty(M->getContext());
17927   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
17928   Value *CmpHi =
17929       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
17930   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
17931   Value *NewHi =
17932       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
17933   Value *Addr =
17934       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
17935   emitLeadingFence(Builder, CI, Ord);
17936   Value *LoHi =
17937       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
17938   emitTrailingFence(Builder, CI, Ord);
17939   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
17940   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
17941   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
17942   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
17943   return Builder.CreateOr(
17944       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
17945 }
17946