1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 605 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 606 607 // To handle counter-based loop conditions. 608 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 609 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 612 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 613 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 614 615 // Comparisons that require checking two conditions. 616 if (Subtarget.hasSPE()) { 617 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 619 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 620 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 621 } 622 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 632 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 633 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 634 635 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 636 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 637 638 if (Subtarget.has64BitSupport()) { 639 // They also have instructions for converting between i64 and fp. 640 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 642 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 643 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 644 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 645 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 646 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 647 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 648 // This is just the low 32 bits of a (signed) fp->i64 conversion. 649 // We cannot do this with Promote because i64 is not a legal type. 650 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 651 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 652 653 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 654 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 655 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 656 } 657 } else { 658 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 659 if (Subtarget.hasSPE()) { 660 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 661 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 662 } else { 663 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 664 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 665 } 666 } 667 668 // With the instructions enabled under FPCVT, we can do everything. 669 if (Subtarget.hasFPCVT()) { 670 if (Subtarget.has64BitSupport()) { 671 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 673 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 674 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 675 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 676 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 677 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 678 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 679 } 680 681 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 683 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 684 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 685 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 686 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 687 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 688 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 689 } 690 691 if (Subtarget.use64BitRegs()) { 692 // 64-bit PowerPC implementations can support i64 types directly 693 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 694 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 695 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 696 // 64-bit PowerPC wants to expand i128 shifts itself. 697 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 698 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 699 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 700 } else { 701 // 32-bit PowerPC wants to expand i64 shifts itself. 702 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 703 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 704 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 705 } 706 707 // PowerPC has better expansions for funnel shifts than the generic 708 // TargetLowering::expandFunnelShift. 709 if (Subtarget.has64BitSupport()) { 710 setOperationAction(ISD::FSHL, MVT::i64, Custom); 711 setOperationAction(ISD::FSHR, MVT::i64, Custom); 712 } 713 setOperationAction(ISD::FSHL, MVT::i32, Custom); 714 setOperationAction(ISD::FSHR, MVT::i32, Custom); 715 716 if (Subtarget.hasVSX()) { 717 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 719 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 720 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 721 } 722 723 if (Subtarget.hasAltivec()) { 724 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 725 setOperationAction(ISD::SADDSAT, VT, Legal); 726 setOperationAction(ISD::SSUBSAT, VT, Legal); 727 setOperationAction(ISD::UADDSAT, VT, Legal); 728 setOperationAction(ISD::USUBSAT, VT, Legal); 729 } 730 // First set operation action for all vector types to expand. Then we 731 // will selectively turn on ones that can be effectively codegen'd. 732 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 733 // add/sub are legal for all supported vector VT's. 734 setOperationAction(ISD::ADD, VT, Legal); 735 setOperationAction(ISD::SUB, VT, Legal); 736 737 // For v2i64, these are only valid with P8Vector. This is corrected after 738 // the loop. 739 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 740 setOperationAction(ISD::SMAX, VT, Legal); 741 setOperationAction(ISD::SMIN, VT, Legal); 742 setOperationAction(ISD::UMAX, VT, Legal); 743 setOperationAction(ISD::UMIN, VT, Legal); 744 } 745 else { 746 setOperationAction(ISD::SMAX, VT, Expand); 747 setOperationAction(ISD::SMIN, VT, Expand); 748 setOperationAction(ISD::UMAX, VT, Expand); 749 setOperationAction(ISD::UMIN, VT, Expand); 750 } 751 752 if (Subtarget.hasVSX()) { 753 setOperationAction(ISD::FMAXNUM, VT, Legal); 754 setOperationAction(ISD::FMINNUM, VT, Legal); 755 } 756 757 // Vector instructions introduced in P8 758 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 759 setOperationAction(ISD::CTPOP, VT, Legal); 760 setOperationAction(ISD::CTLZ, VT, Legal); 761 } 762 else { 763 setOperationAction(ISD::CTPOP, VT, Expand); 764 setOperationAction(ISD::CTLZ, VT, Expand); 765 } 766 767 // Vector instructions introduced in P9 768 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 769 setOperationAction(ISD::CTTZ, VT, Legal); 770 else 771 setOperationAction(ISD::CTTZ, VT, Expand); 772 773 // We promote all shuffles to v16i8. 774 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 775 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 776 777 // We promote all non-typed operations to v4i32. 778 setOperationAction(ISD::AND , VT, Promote); 779 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 780 setOperationAction(ISD::OR , VT, Promote); 781 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 782 setOperationAction(ISD::XOR , VT, Promote); 783 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 784 setOperationAction(ISD::LOAD , VT, Promote); 785 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 786 setOperationAction(ISD::SELECT, VT, Promote); 787 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 788 setOperationAction(ISD::VSELECT, VT, Legal); 789 setOperationAction(ISD::SELECT_CC, VT, Promote); 790 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 791 setOperationAction(ISD::STORE, VT, Promote); 792 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 793 794 // No other operations are legal. 795 setOperationAction(ISD::MUL , VT, Expand); 796 setOperationAction(ISD::SDIV, VT, Expand); 797 setOperationAction(ISD::SREM, VT, Expand); 798 setOperationAction(ISD::UDIV, VT, Expand); 799 setOperationAction(ISD::UREM, VT, Expand); 800 setOperationAction(ISD::FDIV, VT, Expand); 801 setOperationAction(ISD::FREM, VT, Expand); 802 setOperationAction(ISD::FNEG, VT, Expand); 803 setOperationAction(ISD::FSQRT, VT, Expand); 804 setOperationAction(ISD::FLOG, VT, Expand); 805 setOperationAction(ISD::FLOG10, VT, Expand); 806 setOperationAction(ISD::FLOG2, VT, Expand); 807 setOperationAction(ISD::FEXP, VT, Expand); 808 setOperationAction(ISD::FEXP2, VT, Expand); 809 setOperationAction(ISD::FSIN, VT, Expand); 810 setOperationAction(ISD::FCOS, VT, Expand); 811 setOperationAction(ISD::FABS, VT, Expand); 812 setOperationAction(ISD::FFLOOR, VT, Expand); 813 setOperationAction(ISD::FCEIL, VT, Expand); 814 setOperationAction(ISD::FTRUNC, VT, Expand); 815 setOperationAction(ISD::FRINT, VT, Expand); 816 setOperationAction(ISD::FNEARBYINT, VT, Expand); 817 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 818 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 819 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 820 setOperationAction(ISD::MULHU, VT, Expand); 821 setOperationAction(ISD::MULHS, VT, Expand); 822 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 823 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 824 setOperationAction(ISD::UDIVREM, VT, Expand); 825 setOperationAction(ISD::SDIVREM, VT, Expand); 826 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 827 setOperationAction(ISD::FPOW, VT, Expand); 828 setOperationAction(ISD::BSWAP, VT, Expand); 829 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 830 setOperationAction(ISD::ROTL, VT, Expand); 831 setOperationAction(ISD::ROTR, VT, Expand); 832 833 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 834 setTruncStoreAction(VT, InnerVT, Expand); 835 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 836 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 837 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 838 } 839 } 840 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 841 if (!Subtarget.hasP8Vector()) { 842 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 844 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 845 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 846 } 847 848 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 849 // with merges, splats, etc. 850 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 851 852 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 853 // are cheap, so handle them before they get expanded to scalar. 854 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 857 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 858 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 859 860 setOperationAction(ISD::AND , MVT::v4i32, Legal); 861 setOperationAction(ISD::OR , MVT::v4i32, Legal); 862 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 863 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 864 setOperationAction(ISD::SELECT, MVT::v4i32, 865 Subtarget.useCRBits() ? Legal : Expand); 866 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 869 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 870 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 871 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 872 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 873 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 874 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 875 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 876 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 877 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 878 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 879 880 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 881 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 882 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 883 if (Subtarget.hasAltivec()) 884 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 885 setOperationAction(ISD::ROTL, VT, Legal); 886 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 887 if (Subtarget.hasP8Altivec()) 888 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 889 890 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 892 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 893 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 894 895 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 896 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 897 898 if (Subtarget.hasVSX()) { 899 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 900 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 901 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 902 } 903 904 if (Subtarget.hasP8Altivec()) 905 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 906 else 907 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 908 909 if (Subtarget.isISA3_1()) { 910 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 912 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 913 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 914 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 915 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 916 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 917 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 918 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 919 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 920 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 921 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 922 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 923 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 924 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 925 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 926 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 927 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 928 } 929 930 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 931 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 932 933 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 935 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 938 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 939 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 940 941 // Altivec does not contain unordered floating-point compare instructions 942 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 944 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 945 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 946 947 if (Subtarget.hasVSX()) { 948 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 949 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 950 if (Subtarget.hasP8Vector()) { 951 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 952 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 953 } 954 if (Subtarget.hasDirectMove() && isPPC64) { 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 957 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 958 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 961 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 963 } 964 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 965 966 // The nearbyint variants are not allowed to raise the inexact exception 967 // so we can only code-gen them with unsafe math. 968 if (TM.Options.UnsafeFPMath) { 969 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 970 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 971 } 972 973 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 974 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 975 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 976 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 977 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 978 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 979 setOperationAction(ISD::FROUND, MVT::f64, Legal); 980 setOperationAction(ISD::FRINT, MVT::f64, Legal); 981 982 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 983 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 984 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 985 setOperationAction(ISD::FROUND, MVT::f32, Legal); 986 setOperationAction(ISD::FRINT, MVT::f32, Legal); 987 988 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 989 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 990 991 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 992 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 993 994 // Share the Altivec comparison restrictions. 995 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 997 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 998 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 999 1000 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1001 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1002 1003 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1004 1005 if (Subtarget.hasP8Vector()) 1006 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1007 1008 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1009 1010 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1011 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1012 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1013 1014 if (Subtarget.hasP8Altivec()) { 1015 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1016 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1017 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1018 1019 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1020 // SRL, but not for SRA because of the instructions available: 1021 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1022 // doing 1023 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1024 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1025 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1026 1027 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1028 } 1029 else { 1030 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1031 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1032 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1033 1034 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1035 1036 // VSX v2i64 only supports non-arithmetic operations. 1037 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1038 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1039 } 1040 1041 if (Subtarget.isISA3_1()) 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1043 else 1044 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1045 1046 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1048 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1049 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1050 1051 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1052 1053 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1055 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1056 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1058 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1059 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1060 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1061 1062 // Custom handling for partial vectors of integers converted to 1063 // floating point. We already have optimal handling for v2i32 through 1064 // the DAG combine, so those aren't necessary. 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1067 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1068 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1071 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1072 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1075 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1076 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1079 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1080 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1081 1082 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1086 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1087 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1088 1089 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1090 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1091 1092 // Handle constrained floating-point operations of vector. 1093 // The predictor is `hasVSX` because altivec instruction has 1094 // no exception but VSX vector instruction has. 1095 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1106 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1107 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1108 1109 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1120 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1121 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1122 1123 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1124 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1125 1126 for (MVT FPT : MVT::fp_valuetypes()) 1127 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1128 1129 // Expand the SELECT to SELECT_CC 1130 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1131 1132 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1133 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1134 1135 // No implementation for these ops for PowerPC. 1136 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1137 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1138 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1139 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1140 setOperationAction(ISD::FREM, MVT::f128, Expand); 1141 } 1142 1143 if (Subtarget.hasP8Altivec()) { 1144 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1145 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1146 } 1147 1148 if (Subtarget.hasP9Vector()) { 1149 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1150 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1151 1152 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1153 // SRL, but not for SRA because of the instructions available: 1154 // VS{RL} and VS{RL}O. 1155 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1156 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1157 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1158 1159 setOperationAction(ISD::FADD, MVT::f128, Legal); 1160 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1161 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1162 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1164 1165 setOperationAction(ISD::FMA, MVT::f128, Legal); 1166 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1170 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1171 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1172 1173 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1175 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1176 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1177 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1178 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1179 1180 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1181 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1182 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1183 1184 // Handle constrained floating-point operations of fp128 1185 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1191 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1192 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1193 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1194 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1198 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1199 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1200 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1201 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1203 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1204 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1205 } else if (Subtarget.hasVSX()) { 1206 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1207 setOperationAction(ISD::STORE, MVT::f128, Promote); 1208 1209 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1210 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1211 1212 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1213 // fp_to_uint and int_to_fp. 1214 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1215 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1216 1217 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1218 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1219 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1220 setOperationAction(ISD::FABS, MVT::f128, Expand); 1221 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1222 setOperationAction(ISD::FMA, MVT::f128, Expand); 1223 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1224 1225 // Expand the fp_extend if the target type is fp128. 1226 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1227 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1228 1229 // Expand the fp_round if the source type is fp128. 1230 for (MVT VT : {MVT::f32, MVT::f64}) { 1231 setOperationAction(ISD::FP_ROUND, VT, Custom); 1232 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1233 } 1234 1235 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1236 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1237 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1238 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1239 1240 // Lower following f128 select_cc pattern: 1241 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1242 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1243 1244 // We need to handle f128 SELECT_CC with integer result type. 1245 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1246 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1247 } 1248 1249 if (Subtarget.hasP9Altivec()) { 1250 if (Subtarget.isISA3_1()) { 1251 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1252 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1253 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1254 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1255 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal); 1256 } else { 1257 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1258 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1259 } 1260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1267 } 1268 } 1269 1270 if (Subtarget.pairedVectorMemops()) { 1271 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1272 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1273 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1274 } 1275 if (Subtarget.hasMMA()) { 1276 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1277 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1278 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1279 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1280 } 1281 1282 if (Subtarget.has64BitSupport()) 1283 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1284 1285 if (Subtarget.isISA3_1()) 1286 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1287 1288 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1289 1290 if (!isPPC64) { 1291 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1292 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1293 } 1294 1295 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1296 setMaxAtomicSizeInBitsSupported(128); 1297 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1298 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1299 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1300 } 1301 1302 setBooleanContents(ZeroOrOneBooleanContent); 1303 1304 if (Subtarget.hasAltivec()) { 1305 // Altivec instructions set fields to all zeros or all ones. 1306 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1307 } 1308 1309 if (!isPPC64) { 1310 // These libcalls are not available in 32-bit. 1311 setLibcallName(RTLIB::SHL_I128, nullptr); 1312 setLibcallName(RTLIB::SRL_I128, nullptr); 1313 setLibcallName(RTLIB::SRA_I128, nullptr); 1314 setLibcallName(RTLIB::MULO_I64, nullptr); 1315 } 1316 1317 if (!isPPC64) 1318 setMaxAtomicSizeInBitsSupported(32); 1319 1320 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1321 1322 // We have target-specific dag combine patterns for the following nodes: 1323 setTargetDAGCombine(ISD::ADD); 1324 setTargetDAGCombine(ISD::SHL); 1325 setTargetDAGCombine(ISD::SRA); 1326 setTargetDAGCombine(ISD::SRL); 1327 setTargetDAGCombine(ISD::MUL); 1328 setTargetDAGCombine(ISD::FMA); 1329 setTargetDAGCombine(ISD::SINT_TO_FP); 1330 setTargetDAGCombine(ISD::BUILD_VECTOR); 1331 if (Subtarget.hasFPCVT()) 1332 setTargetDAGCombine(ISD::UINT_TO_FP); 1333 setTargetDAGCombine(ISD::LOAD); 1334 setTargetDAGCombine(ISD::STORE); 1335 setTargetDAGCombine(ISD::BR_CC); 1336 if (Subtarget.useCRBits()) 1337 setTargetDAGCombine(ISD::BRCOND); 1338 setTargetDAGCombine(ISD::BSWAP); 1339 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1340 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1341 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1342 1343 setTargetDAGCombine(ISD::SIGN_EXTEND); 1344 setTargetDAGCombine(ISD::ZERO_EXTEND); 1345 setTargetDAGCombine(ISD::ANY_EXTEND); 1346 1347 setTargetDAGCombine(ISD::TRUNCATE); 1348 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1349 1350 1351 if (Subtarget.useCRBits()) { 1352 setTargetDAGCombine(ISD::TRUNCATE); 1353 setTargetDAGCombine(ISD::SETCC); 1354 setTargetDAGCombine(ISD::SELECT_CC); 1355 } 1356 1357 if (Subtarget.hasP9Altivec()) { 1358 setTargetDAGCombine(ISD::ABS); 1359 setTargetDAGCombine(ISD::VSELECT); 1360 } 1361 1362 setLibcallName(RTLIB::LOG_F128, "logf128"); 1363 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1364 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1365 setLibcallName(RTLIB::EXP_F128, "expf128"); 1366 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1367 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1368 setLibcallName(RTLIB::COS_F128, "cosf128"); 1369 setLibcallName(RTLIB::POW_F128, "powf128"); 1370 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1371 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1372 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1373 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1374 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1375 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1376 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1377 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1378 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1379 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1380 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1381 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1382 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1383 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1384 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1385 1386 // With 32 condition bits, we don't need to sink (and duplicate) compares 1387 // aggressively in CodeGenPrep. 1388 if (Subtarget.useCRBits()) { 1389 setHasMultipleConditionRegisters(); 1390 setJumpIsExpensive(); 1391 } 1392 1393 setMinFunctionAlignment(Align(4)); 1394 1395 switch (Subtarget.getCPUDirective()) { 1396 default: break; 1397 case PPC::DIR_970: 1398 case PPC::DIR_A2: 1399 case PPC::DIR_E500: 1400 case PPC::DIR_E500mc: 1401 case PPC::DIR_E5500: 1402 case PPC::DIR_PWR4: 1403 case PPC::DIR_PWR5: 1404 case PPC::DIR_PWR5X: 1405 case PPC::DIR_PWR6: 1406 case PPC::DIR_PWR6X: 1407 case PPC::DIR_PWR7: 1408 case PPC::DIR_PWR8: 1409 case PPC::DIR_PWR9: 1410 case PPC::DIR_PWR10: 1411 case PPC::DIR_PWR_FUTURE: 1412 setPrefLoopAlignment(Align(16)); 1413 setPrefFunctionAlignment(Align(16)); 1414 break; 1415 } 1416 1417 if (Subtarget.enableMachineScheduler()) 1418 setSchedulingPreference(Sched::Source); 1419 else 1420 setSchedulingPreference(Sched::Hybrid); 1421 1422 computeRegisterProperties(STI.getRegisterInfo()); 1423 1424 // The Freescale cores do better with aggressive inlining of memcpy and 1425 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1426 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1427 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1428 MaxStoresPerMemset = 32; 1429 MaxStoresPerMemsetOptSize = 16; 1430 MaxStoresPerMemcpy = 32; 1431 MaxStoresPerMemcpyOptSize = 8; 1432 MaxStoresPerMemmove = 32; 1433 MaxStoresPerMemmoveOptSize = 8; 1434 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1435 // The A2 also benefits from (very) aggressive inlining of memcpy and 1436 // friends. The overhead of a the function call, even when warm, can be 1437 // over one hundred cycles. 1438 MaxStoresPerMemset = 128; 1439 MaxStoresPerMemcpy = 128; 1440 MaxStoresPerMemmove = 128; 1441 MaxLoadsPerMemcmp = 128; 1442 } else { 1443 MaxLoadsPerMemcmp = 8; 1444 MaxLoadsPerMemcmpOptSize = 4; 1445 } 1446 1447 IsStrictFPEnabled = true; 1448 1449 // Let the subtarget (CPU) decide if a predictable select is more expensive 1450 // than the corresponding branch. This information is used in CGP to decide 1451 // when to convert selects into branches. 1452 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1453 } 1454 1455 // *********************************** NOTE ************************************ 1456 // For selecting load and store instructions, the addressing modes are defined 1457 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1458 // patterns to match the load the store instructions. 1459 // 1460 // The TD definitions for the addressing modes correspond to their respective 1461 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1462 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1463 // address mode flags of a particular node. Afterwards, the computed address 1464 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1465 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1466 // accordingly, based on the preferred addressing mode. 1467 // 1468 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1469 // MemOpFlags contains all the possible flags that can be used to compute the 1470 // optimal addressing mode for load and store instructions. 1471 // AddrMode contains all the possible load and store addressing modes available 1472 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1473 // 1474 // When adding new load and store instructions, it is possible that new address 1475 // flags may need to be added into MemOpFlags, and a new addressing mode will 1476 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1477 // of the minimal and main distinguishing address flags for the new load/store 1478 // instructions) will need to be added into initializeAddrModeMap() below. 1479 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1480 // need to be updated to account for selecting the optimal addressing mode. 1481 // ***************************************************************************** 1482 /// Initialize the map that relates the different addressing modes of the load 1483 /// and store instructions to a set of flags. This ensures the load/store 1484 /// instruction is correctly matched during instruction selection. 1485 void PPCTargetLowering::initializeAddrModeMap() { 1486 AddrModesMap[PPC::AM_DForm] = { 1487 // LWZ, STW 1488 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1489 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1490 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1491 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1492 // LBZ, LHZ, STB, STH 1493 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1494 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1495 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1496 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1497 // LHA 1498 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1499 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1500 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1501 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1502 // LFS, LFD, STFS, STFD 1503 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1504 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1505 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1506 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1507 }; 1508 AddrModesMap[PPC::AM_DSForm] = { 1509 // LWA 1510 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1511 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1512 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1513 // LD, STD 1514 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1515 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1516 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1517 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1518 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1521 }; 1522 AddrModesMap[PPC::AM_DQForm] = { 1523 // LXV, STXV 1524 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1525 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1526 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1527 }; 1528 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1529 PPC::MOF_SubtargetP10}; 1530 // TODO: Add mapping for quadword load/store. 1531 } 1532 1533 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1534 /// the desired ByVal argument alignment. 1535 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1536 if (MaxAlign == MaxMaxAlign) 1537 return; 1538 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1539 if (MaxMaxAlign >= 32 && 1540 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1541 MaxAlign = Align(32); 1542 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1543 MaxAlign < 16) 1544 MaxAlign = Align(16); 1545 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1546 Align EltAlign; 1547 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1548 if (EltAlign > MaxAlign) 1549 MaxAlign = EltAlign; 1550 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1551 for (auto *EltTy : STy->elements()) { 1552 Align EltAlign; 1553 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1554 if (EltAlign > MaxAlign) 1555 MaxAlign = EltAlign; 1556 if (MaxAlign == MaxMaxAlign) 1557 break; 1558 } 1559 } 1560 } 1561 1562 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1563 /// function arguments in the caller parameter area. 1564 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1565 const DataLayout &DL) const { 1566 // 16byte and wider vectors are passed on 16byte boundary. 1567 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1568 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1569 if (Subtarget.hasAltivec()) 1570 getMaxByValAlign(Ty, Alignment, Align(16)); 1571 return Alignment.value(); 1572 } 1573 1574 bool PPCTargetLowering::useSoftFloat() const { 1575 return Subtarget.useSoftFloat(); 1576 } 1577 1578 bool PPCTargetLowering::hasSPE() const { 1579 return Subtarget.hasSPE(); 1580 } 1581 1582 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1583 return VT.isScalarInteger(); 1584 } 1585 1586 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1587 switch ((PPCISD::NodeType)Opcode) { 1588 case PPCISD::FIRST_NUMBER: break; 1589 case PPCISD::FSEL: return "PPCISD::FSEL"; 1590 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1591 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1592 case PPCISD::FCFID: return "PPCISD::FCFID"; 1593 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1594 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1595 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1596 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1597 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1598 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1599 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1600 case PPCISD::FP_TO_UINT_IN_VSR: 1601 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1602 case PPCISD::FP_TO_SINT_IN_VSR: 1603 return "PPCISD::FP_TO_SINT_IN_VSR"; 1604 case PPCISD::FRE: return "PPCISD::FRE"; 1605 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1606 case PPCISD::FTSQRT: 1607 return "PPCISD::FTSQRT"; 1608 case PPCISD::FSQRT: 1609 return "PPCISD::FSQRT"; 1610 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1611 case PPCISD::VPERM: return "PPCISD::VPERM"; 1612 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1613 case PPCISD::XXSPLTI_SP_TO_DP: 1614 return "PPCISD::XXSPLTI_SP_TO_DP"; 1615 case PPCISD::XXSPLTI32DX: 1616 return "PPCISD::XXSPLTI32DX"; 1617 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1618 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1619 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1620 case PPCISD::CMPB: return "PPCISD::CMPB"; 1621 case PPCISD::Hi: return "PPCISD::Hi"; 1622 case PPCISD::Lo: return "PPCISD::Lo"; 1623 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1624 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1625 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1626 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1627 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1628 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1629 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1630 case PPCISD::SRL: return "PPCISD::SRL"; 1631 case PPCISD::SRA: return "PPCISD::SRA"; 1632 case PPCISD::SHL: return "PPCISD::SHL"; 1633 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1634 case PPCISD::CALL: return "PPCISD::CALL"; 1635 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1636 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1637 case PPCISD::CALL_RM: 1638 return "PPCISD::CALL_RM"; 1639 case PPCISD::CALL_NOP_RM: 1640 return "PPCISD::CALL_NOP_RM"; 1641 case PPCISD::CALL_NOTOC_RM: 1642 return "PPCISD::CALL_NOTOC_RM"; 1643 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1644 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1645 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1646 case PPCISD::BCTRL_RM: 1647 return "PPCISD::BCTRL_RM"; 1648 case PPCISD::BCTRL_LOAD_TOC_RM: 1649 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1650 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1651 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1652 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1653 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1654 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1655 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1656 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1657 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1658 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1659 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1660 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1661 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1662 case PPCISD::ANDI_rec_1_EQ_BIT: 1663 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1664 case PPCISD::ANDI_rec_1_GT_BIT: 1665 return "PPCISD::ANDI_rec_1_GT_BIT"; 1666 case PPCISD::VCMP: return "PPCISD::VCMP"; 1667 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1668 case PPCISD::LBRX: return "PPCISD::LBRX"; 1669 case PPCISD::STBRX: return "PPCISD::STBRX"; 1670 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1671 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1672 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1673 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1674 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1675 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1676 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1677 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1678 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1679 case PPCISD::ST_VSR_SCAL_INT: 1680 return "PPCISD::ST_VSR_SCAL_INT"; 1681 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1682 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1683 case PPCISD::BDZ: return "PPCISD::BDZ"; 1684 case PPCISD::MFFS: return "PPCISD::MFFS"; 1685 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1686 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1687 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1688 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1689 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1690 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1691 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1692 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1693 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1694 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1695 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1696 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1697 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1698 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1699 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1700 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1701 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1702 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1703 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1704 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1705 case PPCISD::PADDI_DTPREL: 1706 return "PPCISD::PADDI_DTPREL"; 1707 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1708 case PPCISD::SC: return "PPCISD::SC"; 1709 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1710 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1711 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1712 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1713 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1714 case PPCISD::VABSD: return "PPCISD::VABSD"; 1715 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1716 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1717 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1718 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1719 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1720 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1721 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1722 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1723 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1724 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1725 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1726 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1727 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1728 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1729 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1730 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1731 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1732 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1733 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1734 case PPCISD::STRICT_FADDRTZ: 1735 return "PPCISD::STRICT_FADDRTZ"; 1736 case PPCISD::STRICT_FCTIDZ: 1737 return "PPCISD::STRICT_FCTIDZ"; 1738 case PPCISD::STRICT_FCTIWZ: 1739 return "PPCISD::STRICT_FCTIWZ"; 1740 case PPCISD::STRICT_FCTIDUZ: 1741 return "PPCISD::STRICT_FCTIDUZ"; 1742 case PPCISD::STRICT_FCTIWUZ: 1743 return "PPCISD::STRICT_FCTIWUZ"; 1744 case PPCISD::STRICT_FCFID: 1745 return "PPCISD::STRICT_FCFID"; 1746 case PPCISD::STRICT_FCFIDU: 1747 return "PPCISD::STRICT_FCFIDU"; 1748 case PPCISD::STRICT_FCFIDS: 1749 return "PPCISD::STRICT_FCFIDS"; 1750 case PPCISD::STRICT_FCFIDUS: 1751 return "PPCISD::STRICT_FCFIDUS"; 1752 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1753 } 1754 return nullptr; 1755 } 1756 1757 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1758 EVT VT) const { 1759 if (!VT.isVector()) 1760 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1761 1762 return VT.changeVectorElementTypeToInteger(); 1763 } 1764 1765 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1766 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1767 return true; 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // Node matching predicates, for use by the tblgen matching code. 1772 //===----------------------------------------------------------------------===// 1773 1774 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1775 static bool isFloatingPointZero(SDValue Op) { 1776 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1777 return CFP->getValueAPF().isZero(); 1778 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1779 // Maybe this has already been legalized into the constant pool? 1780 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1781 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1782 return CFP->getValueAPF().isZero(); 1783 } 1784 return false; 1785 } 1786 1787 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1788 /// true if Op is undef or if it matches the specified value. 1789 static bool isConstantOrUndef(int Op, int Val) { 1790 return Op < 0 || Op == Val; 1791 } 1792 1793 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1794 /// VPKUHUM instruction. 1795 /// The ShuffleKind distinguishes between big-endian operations with 1796 /// two different inputs (0), either-endian operations with two identical 1797 /// inputs (1), and little-endian operations with two different inputs (2). 1798 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1799 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1800 SelectionDAG &DAG) { 1801 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1802 if (ShuffleKind == 0) { 1803 if (IsLE) 1804 return false; 1805 for (unsigned i = 0; i != 16; ++i) 1806 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1807 return false; 1808 } else if (ShuffleKind == 2) { 1809 if (!IsLE) 1810 return false; 1811 for (unsigned i = 0; i != 16; ++i) 1812 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1813 return false; 1814 } else if (ShuffleKind == 1) { 1815 unsigned j = IsLE ? 0 : 1; 1816 for (unsigned i = 0; i != 8; ++i) 1817 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1818 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1819 return false; 1820 } 1821 return true; 1822 } 1823 1824 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1825 /// VPKUWUM instruction. 1826 /// The ShuffleKind distinguishes between big-endian operations with 1827 /// two different inputs (0), either-endian operations with two identical 1828 /// inputs (1), and little-endian operations with two different inputs (2). 1829 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1830 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1831 SelectionDAG &DAG) { 1832 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1833 if (ShuffleKind == 0) { 1834 if (IsLE) 1835 return false; 1836 for (unsigned i = 0; i != 16; i += 2) 1837 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1838 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1839 return false; 1840 } else if (ShuffleKind == 2) { 1841 if (!IsLE) 1842 return false; 1843 for (unsigned i = 0; i != 16; i += 2) 1844 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1845 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1846 return false; 1847 } else if (ShuffleKind == 1) { 1848 unsigned j = IsLE ? 0 : 2; 1849 for (unsigned i = 0; i != 8; i += 2) 1850 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1851 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1852 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1853 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1854 return false; 1855 } 1856 return true; 1857 } 1858 1859 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1860 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1861 /// current subtarget. 1862 /// 1863 /// The ShuffleKind distinguishes between big-endian operations with 1864 /// two different inputs (0), either-endian operations with two identical 1865 /// inputs (1), and little-endian operations with two different inputs (2). 1866 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1867 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1868 SelectionDAG &DAG) { 1869 const PPCSubtarget& Subtarget = 1870 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1871 if (!Subtarget.hasP8Vector()) 1872 return false; 1873 1874 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1875 if (ShuffleKind == 0) { 1876 if (IsLE) 1877 return false; 1878 for (unsigned i = 0; i != 16; i += 4) 1879 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1880 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1881 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1882 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1883 return false; 1884 } else if (ShuffleKind == 2) { 1885 if (!IsLE) 1886 return false; 1887 for (unsigned i = 0; i != 16; i += 4) 1888 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1889 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1890 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1891 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1892 return false; 1893 } else if (ShuffleKind == 1) { 1894 unsigned j = IsLE ? 0 : 4; 1895 for (unsigned i = 0; i != 8; i += 4) 1896 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1897 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1898 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1899 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1900 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1901 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1902 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1903 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1904 return false; 1905 } 1906 return true; 1907 } 1908 1909 /// isVMerge - Common function, used to match vmrg* shuffles. 1910 /// 1911 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1912 unsigned LHSStart, unsigned RHSStart) { 1913 if (N->getValueType(0) != MVT::v16i8) 1914 return false; 1915 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1916 "Unsupported merge size!"); 1917 1918 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1919 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1920 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1921 LHSStart+j+i*UnitSize) || 1922 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1923 RHSStart+j+i*UnitSize)) 1924 return false; 1925 } 1926 return true; 1927 } 1928 1929 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1930 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1931 /// The ShuffleKind distinguishes between big-endian merges with two 1932 /// different inputs (0), either-endian merges with two identical inputs (1), 1933 /// and little-endian merges with two different inputs (2). For the latter, 1934 /// the input operands are swapped (see PPCInstrAltivec.td). 1935 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1936 unsigned ShuffleKind, SelectionDAG &DAG) { 1937 if (DAG.getDataLayout().isLittleEndian()) { 1938 if (ShuffleKind == 1) // unary 1939 return isVMerge(N, UnitSize, 0, 0); 1940 else if (ShuffleKind == 2) // swapped 1941 return isVMerge(N, UnitSize, 0, 16); 1942 else 1943 return false; 1944 } else { 1945 if (ShuffleKind == 1) // unary 1946 return isVMerge(N, UnitSize, 8, 8); 1947 else if (ShuffleKind == 0) // normal 1948 return isVMerge(N, UnitSize, 8, 24); 1949 else 1950 return false; 1951 } 1952 } 1953 1954 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1955 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1956 /// The ShuffleKind distinguishes between big-endian merges with two 1957 /// different inputs (0), either-endian merges with two identical inputs (1), 1958 /// and little-endian merges with two different inputs (2). For the latter, 1959 /// the input operands are swapped (see PPCInstrAltivec.td). 1960 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1961 unsigned ShuffleKind, SelectionDAG &DAG) { 1962 if (DAG.getDataLayout().isLittleEndian()) { 1963 if (ShuffleKind == 1) // unary 1964 return isVMerge(N, UnitSize, 8, 8); 1965 else if (ShuffleKind == 2) // swapped 1966 return isVMerge(N, UnitSize, 8, 24); 1967 else 1968 return false; 1969 } else { 1970 if (ShuffleKind == 1) // unary 1971 return isVMerge(N, UnitSize, 0, 0); 1972 else if (ShuffleKind == 0) // normal 1973 return isVMerge(N, UnitSize, 0, 16); 1974 else 1975 return false; 1976 } 1977 } 1978 1979 /** 1980 * Common function used to match vmrgew and vmrgow shuffles 1981 * 1982 * The indexOffset determines whether to look for even or odd words in 1983 * the shuffle mask. This is based on the of the endianness of the target 1984 * machine. 1985 * - Little Endian: 1986 * - Use offset of 0 to check for odd elements 1987 * - Use offset of 4 to check for even elements 1988 * - Big Endian: 1989 * - Use offset of 0 to check for even elements 1990 * - Use offset of 4 to check for odd elements 1991 * A detailed description of the vector element ordering for little endian and 1992 * big endian can be found at 1993 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1994 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1995 * compiler differences mean to you 1996 * 1997 * The mask to the shuffle vector instruction specifies the indices of the 1998 * elements from the two input vectors to place in the result. The elements are 1999 * numbered in array-access order, starting with the first vector. These vectors 2000 * are always of type v16i8, thus each vector will contain 16 elements of size 2001 * 8. More info on the shuffle vector can be found in the 2002 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2003 * Language Reference. 2004 * 2005 * The RHSStartValue indicates whether the same input vectors are used (unary) 2006 * or two different input vectors are used, based on the following: 2007 * - If the instruction uses the same vector for both inputs, the range of the 2008 * indices will be 0 to 15. In this case, the RHSStart value passed should 2009 * be 0. 2010 * - If the instruction has two different vectors then the range of the 2011 * indices will be 0 to 31. In this case, the RHSStart value passed should 2012 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2013 * to 31 specify elements in the second vector). 2014 * 2015 * \param[in] N The shuffle vector SD Node to analyze 2016 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2017 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2018 * vector to the shuffle_vector instruction 2019 * \return true iff this shuffle vector represents an even or odd word merge 2020 */ 2021 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2022 unsigned RHSStartValue) { 2023 if (N->getValueType(0) != MVT::v16i8) 2024 return false; 2025 2026 for (unsigned i = 0; i < 2; ++i) 2027 for (unsigned j = 0; j < 4; ++j) 2028 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2029 i*RHSStartValue+j+IndexOffset) || 2030 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2031 i*RHSStartValue+j+IndexOffset+8)) 2032 return false; 2033 return true; 2034 } 2035 2036 /** 2037 * Determine if the specified shuffle mask is suitable for the vmrgew or 2038 * vmrgow instructions. 2039 * 2040 * \param[in] N The shuffle vector SD Node to analyze 2041 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2042 * \param[in] ShuffleKind Identify the type of merge: 2043 * - 0 = big-endian merge with two different inputs; 2044 * - 1 = either-endian merge with two identical inputs; 2045 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2046 * little-endian merges). 2047 * \param[in] DAG The current SelectionDAG 2048 * \return true iff this shuffle mask 2049 */ 2050 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2051 unsigned ShuffleKind, SelectionDAG &DAG) { 2052 if (DAG.getDataLayout().isLittleEndian()) { 2053 unsigned indexOffset = CheckEven ? 4 : 0; 2054 if (ShuffleKind == 1) // Unary 2055 return isVMerge(N, indexOffset, 0); 2056 else if (ShuffleKind == 2) // swapped 2057 return isVMerge(N, indexOffset, 16); 2058 else 2059 return false; 2060 } 2061 else { 2062 unsigned indexOffset = CheckEven ? 0 : 4; 2063 if (ShuffleKind == 1) // Unary 2064 return isVMerge(N, indexOffset, 0); 2065 else if (ShuffleKind == 0) // Normal 2066 return isVMerge(N, indexOffset, 16); 2067 else 2068 return false; 2069 } 2070 return false; 2071 } 2072 2073 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2074 /// amount, otherwise return -1. 2075 /// The ShuffleKind distinguishes between big-endian operations with two 2076 /// different inputs (0), either-endian operations with two identical inputs 2077 /// (1), and little-endian operations with two different inputs (2). For the 2078 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2079 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2080 SelectionDAG &DAG) { 2081 if (N->getValueType(0) != MVT::v16i8) 2082 return -1; 2083 2084 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2085 2086 // Find the first non-undef value in the shuffle mask. 2087 unsigned i; 2088 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2089 /*search*/; 2090 2091 if (i == 16) return -1; // all undef. 2092 2093 // Otherwise, check to see if the rest of the elements are consecutively 2094 // numbered from this value. 2095 unsigned ShiftAmt = SVOp->getMaskElt(i); 2096 if (ShiftAmt < i) return -1; 2097 2098 ShiftAmt -= i; 2099 bool isLE = DAG.getDataLayout().isLittleEndian(); 2100 2101 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2102 // Check the rest of the elements to see if they are consecutive. 2103 for (++i; i != 16; ++i) 2104 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2105 return -1; 2106 } else if (ShuffleKind == 1) { 2107 // Check the rest of the elements to see if they are consecutive. 2108 for (++i; i != 16; ++i) 2109 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2110 return -1; 2111 } else 2112 return -1; 2113 2114 if (isLE) 2115 ShiftAmt = 16 - ShiftAmt; 2116 2117 return ShiftAmt; 2118 } 2119 2120 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2121 /// specifies a splat of a single element that is suitable for input to 2122 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2123 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2124 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2125 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2126 2127 // The consecutive indices need to specify an element, not part of two 2128 // different elements. So abandon ship early if this isn't the case. 2129 if (N->getMaskElt(0) % EltSize != 0) 2130 return false; 2131 2132 // This is a splat operation if each element of the permute is the same, and 2133 // if the value doesn't reference the second vector. 2134 unsigned ElementBase = N->getMaskElt(0); 2135 2136 // FIXME: Handle UNDEF elements too! 2137 if (ElementBase >= 16) 2138 return false; 2139 2140 // Check that the indices are consecutive, in the case of a multi-byte element 2141 // splatted with a v16i8 mask. 2142 for (unsigned i = 1; i != EltSize; ++i) 2143 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2144 return false; 2145 2146 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2147 if (N->getMaskElt(i) < 0) continue; 2148 for (unsigned j = 0; j != EltSize; ++j) 2149 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2150 return false; 2151 } 2152 return true; 2153 } 2154 2155 /// Check that the mask is shuffling N byte elements. Within each N byte 2156 /// element of the mask, the indices could be either in increasing or 2157 /// decreasing order as long as they are consecutive. 2158 /// \param[in] N the shuffle vector SD Node to analyze 2159 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2160 /// Word/DoubleWord/QuadWord). 2161 /// \param[in] StepLen the delta indices number among the N byte element, if 2162 /// the mask is in increasing/decreasing order then it is 1/-1. 2163 /// \return true iff the mask is shuffling N byte elements. 2164 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2165 int StepLen) { 2166 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2167 "Unexpected element width."); 2168 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2169 2170 unsigned NumOfElem = 16 / Width; 2171 unsigned MaskVal[16]; // Width is never greater than 16 2172 for (unsigned i = 0; i < NumOfElem; ++i) { 2173 MaskVal[0] = N->getMaskElt(i * Width); 2174 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2175 return false; 2176 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2177 return false; 2178 } 2179 2180 for (unsigned int j = 1; j < Width; ++j) { 2181 MaskVal[j] = N->getMaskElt(i * Width + j); 2182 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2183 return false; 2184 } 2185 } 2186 } 2187 2188 return true; 2189 } 2190 2191 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2192 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2193 if (!isNByteElemShuffleMask(N, 4, 1)) 2194 return false; 2195 2196 // Now we look at mask elements 0,4,8,12 2197 unsigned M0 = N->getMaskElt(0) / 4; 2198 unsigned M1 = N->getMaskElt(4) / 4; 2199 unsigned M2 = N->getMaskElt(8) / 4; 2200 unsigned M3 = N->getMaskElt(12) / 4; 2201 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2202 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2203 2204 // Below, let H and L be arbitrary elements of the shuffle mask 2205 // where H is in the range [4,7] and L is in the range [0,3]. 2206 // H, 1, 2, 3 or L, 5, 6, 7 2207 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2208 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2209 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2210 InsertAtByte = IsLE ? 12 : 0; 2211 Swap = M0 < 4; 2212 return true; 2213 } 2214 // 0, H, 2, 3 or 4, L, 6, 7 2215 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2216 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2217 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2218 InsertAtByte = IsLE ? 8 : 4; 2219 Swap = M1 < 4; 2220 return true; 2221 } 2222 // 0, 1, H, 3 or 4, 5, L, 7 2223 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2224 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2225 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2226 InsertAtByte = IsLE ? 4 : 8; 2227 Swap = M2 < 4; 2228 return true; 2229 } 2230 // 0, 1, 2, H or 4, 5, 6, L 2231 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2232 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2233 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2234 InsertAtByte = IsLE ? 0 : 12; 2235 Swap = M3 < 4; 2236 return true; 2237 } 2238 2239 // If both vector operands for the shuffle are the same vector, the mask will 2240 // contain only elements from the first one and the second one will be undef. 2241 if (N->getOperand(1).isUndef()) { 2242 ShiftElts = 0; 2243 Swap = true; 2244 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2245 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2246 InsertAtByte = IsLE ? 12 : 0; 2247 return true; 2248 } 2249 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2250 InsertAtByte = IsLE ? 8 : 4; 2251 return true; 2252 } 2253 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2254 InsertAtByte = IsLE ? 4 : 8; 2255 return true; 2256 } 2257 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2258 InsertAtByte = IsLE ? 0 : 12; 2259 return true; 2260 } 2261 } 2262 2263 return false; 2264 } 2265 2266 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2267 bool &Swap, bool IsLE) { 2268 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2269 // Ensure each byte index of the word is consecutive. 2270 if (!isNByteElemShuffleMask(N, 4, 1)) 2271 return false; 2272 2273 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2274 unsigned M0 = N->getMaskElt(0) / 4; 2275 unsigned M1 = N->getMaskElt(4) / 4; 2276 unsigned M2 = N->getMaskElt(8) / 4; 2277 unsigned M3 = N->getMaskElt(12) / 4; 2278 2279 // If both vector operands for the shuffle are the same vector, the mask will 2280 // contain only elements from the first one and the second one will be undef. 2281 if (N->getOperand(1).isUndef()) { 2282 assert(M0 < 4 && "Indexing into an undef vector?"); 2283 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2284 return false; 2285 2286 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2287 Swap = false; 2288 return true; 2289 } 2290 2291 // Ensure each word index of the ShuffleVector Mask is consecutive. 2292 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2293 return false; 2294 2295 if (IsLE) { 2296 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2297 // Input vectors don't need to be swapped if the leading element 2298 // of the result is one of the 3 left elements of the second vector 2299 // (or if there is no shift to be done at all). 2300 Swap = false; 2301 ShiftElts = (8 - M0) % 8; 2302 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2303 // Input vectors need to be swapped if the leading element 2304 // of the result is one of the 3 left elements of the first vector 2305 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2306 Swap = true; 2307 ShiftElts = (4 - M0) % 4; 2308 } 2309 2310 return true; 2311 } else { // BE 2312 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2313 // Input vectors don't need to be swapped if the leading element 2314 // of the result is one of the 4 elements of the first vector. 2315 Swap = false; 2316 ShiftElts = M0; 2317 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2318 // Input vectors need to be swapped if the leading element 2319 // of the result is one of the 4 elements of the right vector. 2320 Swap = true; 2321 ShiftElts = M0 - 4; 2322 } 2323 2324 return true; 2325 } 2326 } 2327 2328 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2329 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2330 2331 if (!isNByteElemShuffleMask(N, Width, -1)) 2332 return false; 2333 2334 for (int i = 0; i < 16; i += Width) 2335 if (N->getMaskElt(i) != i + Width - 1) 2336 return false; 2337 2338 return true; 2339 } 2340 2341 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2342 return isXXBRShuffleMaskHelper(N, 2); 2343 } 2344 2345 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2346 return isXXBRShuffleMaskHelper(N, 4); 2347 } 2348 2349 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2350 return isXXBRShuffleMaskHelper(N, 8); 2351 } 2352 2353 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2354 return isXXBRShuffleMaskHelper(N, 16); 2355 } 2356 2357 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2358 /// if the inputs to the instruction should be swapped and set \p DM to the 2359 /// value for the immediate. 2360 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2361 /// AND element 0 of the result comes from the first input (LE) or second input 2362 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2363 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2364 /// mask. 2365 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2366 bool &Swap, bool IsLE) { 2367 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2368 2369 // Ensure each byte index of the double word is consecutive. 2370 if (!isNByteElemShuffleMask(N, 8, 1)) 2371 return false; 2372 2373 unsigned M0 = N->getMaskElt(0) / 8; 2374 unsigned M1 = N->getMaskElt(8) / 8; 2375 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2376 2377 // If both vector operands for the shuffle are the same vector, the mask will 2378 // contain only elements from the first one and the second one will be undef. 2379 if (N->getOperand(1).isUndef()) { 2380 if ((M0 | M1) < 2) { 2381 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2382 Swap = false; 2383 return true; 2384 } else 2385 return false; 2386 } 2387 2388 if (IsLE) { 2389 if (M0 > 1 && M1 < 2) { 2390 Swap = false; 2391 } else if (M0 < 2 && M1 > 1) { 2392 M0 = (M0 + 2) % 4; 2393 M1 = (M1 + 2) % 4; 2394 Swap = true; 2395 } else 2396 return false; 2397 2398 // Note: if control flow comes here that means Swap is already set above 2399 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2400 return true; 2401 } else { // BE 2402 if (M0 < 2 && M1 > 1) { 2403 Swap = false; 2404 } else if (M0 > 1 && M1 < 2) { 2405 M0 = (M0 + 2) % 4; 2406 M1 = (M1 + 2) % 4; 2407 Swap = true; 2408 } else 2409 return false; 2410 2411 // Note: if control flow comes here that means Swap is already set above 2412 DM = (M0 << 1) + (M1 & 1); 2413 return true; 2414 } 2415 } 2416 2417 2418 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2419 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2420 /// elements are counted from the left of the vector register). 2421 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2422 SelectionDAG &DAG) { 2423 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2424 assert(isSplatShuffleMask(SVOp, EltSize)); 2425 if (DAG.getDataLayout().isLittleEndian()) 2426 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2427 else 2428 return SVOp->getMaskElt(0) / EltSize; 2429 } 2430 2431 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2432 /// by using a vspltis[bhw] instruction of the specified element size, return 2433 /// the constant being splatted. The ByteSize field indicates the number of 2434 /// bytes of each element [124] -> [bhw]. 2435 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2436 SDValue OpVal; 2437 2438 // If ByteSize of the splat is bigger than the element size of the 2439 // build_vector, then we have a case where we are checking for a splat where 2440 // multiple elements of the buildvector are folded together into a single 2441 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2442 unsigned EltSize = 16/N->getNumOperands(); 2443 if (EltSize < ByteSize) { 2444 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2445 SDValue UniquedVals[4]; 2446 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2447 2448 // See if all of the elements in the buildvector agree across. 2449 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2450 if (N->getOperand(i).isUndef()) continue; 2451 // If the element isn't a constant, bail fully out. 2452 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2453 2454 if (!UniquedVals[i&(Multiple-1)].getNode()) 2455 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2456 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2457 return SDValue(); // no match. 2458 } 2459 2460 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2461 // either constant or undef values that are identical for each chunk. See 2462 // if these chunks can form into a larger vspltis*. 2463 2464 // Check to see if all of the leading entries are either 0 or -1. If 2465 // neither, then this won't fit into the immediate field. 2466 bool LeadingZero = true; 2467 bool LeadingOnes = true; 2468 for (unsigned i = 0; i != Multiple-1; ++i) { 2469 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2470 2471 LeadingZero &= isNullConstant(UniquedVals[i]); 2472 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2473 } 2474 // Finally, check the least significant entry. 2475 if (LeadingZero) { 2476 if (!UniquedVals[Multiple-1].getNode()) 2477 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2478 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2479 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2480 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2481 } 2482 if (LeadingOnes) { 2483 if (!UniquedVals[Multiple-1].getNode()) 2484 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2485 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2486 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2487 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2488 } 2489 2490 return SDValue(); 2491 } 2492 2493 // Check to see if this buildvec has a single non-undef value in its elements. 2494 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2495 if (N->getOperand(i).isUndef()) continue; 2496 if (!OpVal.getNode()) 2497 OpVal = N->getOperand(i); 2498 else if (OpVal != N->getOperand(i)) 2499 return SDValue(); 2500 } 2501 2502 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2503 2504 unsigned ValSizeInBytes = EltSize; 2505 uint64_t Value = 0; 2506 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2507 Value = CN->getZExtValue(); 2508 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2509 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2510 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2511 } 2512 2513 // If the splat value is larger than the element value, then we can never do 2514 // this splat. The only case that we could fit the replicated bits into our 2515 // immediate field for would be zero, and we prefer to use vxor for it. 2516 if (ValSizeInBytes < ByteSize) return SDValue(); 2517 2518 // If the element value is larger than the splat value, check if it consists 2519 // of a repeated bit pattern of size ByteSize. 2520 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2521 return SDValue(); 2522 2523 // Properly sign extend the value. 2524 int MaskVal = SignExtend32(Value, ByteSize * 8); 2525 2526 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2527 if (MaskVal == 0) return SDValue(); 2528 2529 // Finally, if this value fits in a 5 bit sext field, return it 2530 if (SignExtend32<5>(MaskVal) == MaskVal) 2531 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2532 return SDValue(); 2533 } 2534 2535 //===----------------------------------------------------------------------===// 2536 // Addressing Mode Selection 2537 //===----------------------------------------------------------------------===// 2538 2539 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2540 /// or 64-bit immediate, and if the value can be accurately represented as a 2541 /// sign extension from a 16-bit value. If so, this returns true and the 2542 /// immediate. 2543 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2544 if (!isa<ConstantSDNode>(N)) 2545 return false; 2546 2547 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2548 if (N->getValueType(0) == MVT::i32) 2549 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2550 else 2551 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2552 } 2553 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2554 return isIntS16Immediate(Op.getNode(), Imm); 2555 } 2556 2557 /// Used when computing address flags for selecting loads and stores. 2558 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2559 /// An OR of two provably disjoint values is equivalent to an ADD. 2560 /// Most PPC load/store instructions compute the effective address as a sum, 2561 /// so doing this conversion is useful. 2562 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2563 if (N.getOpcode() != ISD::OR) 2564 return false; 2565 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2566 if (!LHSKnown.Zero.getBoolValue()) 2567 return false; 2568 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2569 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2570 } 2571 2572 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2573 /// be represented as an indexed [r+r] operation. 2574 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2575 SDValue &Index, 2576 SelectionDAG &DAG) const { 2577 for (SDNode *U : N->uses()) { 2578 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2579 if (Memop->getMemoryVT() == MVT::f64) { 2580 Base = N.getOperand(0); 2581 Index = N.getOperand(1); 2582 return true; 2583 } 2584 } 2585 } 2586 return false; 2587 } 2588 2589 /// isIntS34Immediate - This method tests if value of node given can be 2590 /// accurately represented as a sign extension from a 34-bit value. If so, 2591 /// this returns true and the immediate. 2592 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2593 if (!isa<ConstantSDNode>(N)) 2594 return false; 2595 2596 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2597 return isInt<34>(Imm); 2598 } 2599 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2600 return isIntS34Immediate(Op.getNode(), Imm); 2601 } 2602 2603 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2604 /// can be represented as an indexed [r+r] operation. Returns false if it 2605 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2606 /// non-zero and N can be represented by a base register plus a signed 16-bit 2607 /// displacement, make a more precise judgement by checking (displacement % \p 2608 /// EncodingAlignment). 2609 bool PPCTargetLowering::SelectAddressRegReg( 2610 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2611 MaybeAlign EncodingAlignment) const { 2612 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2613 // a [pc+imm]. 2614 if (SelectAddressPCRel(N, Base)) 2615 return false; 2616 2617 int16_t Imm = 0; 2618 if (N.getOpcode() == ISD::ADD) { 2619 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2620 // SPE load/store can only handle 8-bit offsets. 2621 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2622 return true; 2623 if (isIntS16Immediate(N.getOperand(1), Imm) && 2624 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2625 return false; // r+i 2626 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2627 return false; // r+i 2628 2629 Base = N.getOperand(0); 2630 Index = N.getOperand(1); 2631 return true; 2632 } else if (N.getOpcode() == ISD::OR) { 2633 if (isIntS16Immediate(N.getOperand(1), Imm) && 2634 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2635 return false; // r+i can fold it if we can. 2636 2637 // If this is an or of disjoint bitfields, we can codegen this as an add 2638 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2639 // disjoint. 2640 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2641 2642 if (LHSKnown.Zero.getBoolValue()) { 2643 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2644 // If all of the bits are known zero on the LHS or RHS, the add won't 2645 // carry. 2646 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2647 Base = N.getOperand(0); 2648 Index = N.getOperand(1); 2649 return true; 2650 } 2651 } 2652 } 2653 2654 return false; 2655 } 2656 2657 // If we happen to be doing an i64 load or store into a stack slot that has 2658 // less than a 4-byte alignment, then the frame-index elimination may need to 2659 // use an indexed load or store instruction (because the offset may not be a 2660 // multiple of 4). The extra register needed to hold the offset comes from the 2661 // register scavenger, and it is possible that the scavenger will need to use 2662 // an emergency spill slot. As a result, we need to make sure that a spill slot 2663 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2664 // stack slot. 2665 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2666 // FIXME: This does not handle the LWA case. 2667 if (VT != MVT::i64) 2668 return; 2669 2670 // NOTE: We'll exclude negative FIs here, which come from argument 2671 // lowering, because there are no known test cases triggering this problem 2672 // using packed structures (or similar). We can remove this exclusion if 2673 // we find such a test case. The reason why this is so test-case driven is 2674 // because this entire 'fixup' is only to prevent crashes (from the 2675 // register scavenger) on not-really-valid inputs. For example, if we have: 2676 // %a = alloca i1 2677 // %b = bitcast i1* %a to i64* 2678 // store i64* a, i64 b 2679 // then the store should really be marked as 'align 1', but is not. If it 2680 // were marked as 'align 1' then the indexed form would have been 2681 // instruction-selected initially, and the problem this 'fixup' is preventing 2682 // won't happen regardless. 2683 if (FrameIdx < 0) 2684 return; 2685 2686 MachineFunction &MF = DAG.getMachineFunction(); 2687 MachineFrameInfo &MFI = MF.getFrameInfo(); 2688 2689 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2690 return; 2691 2692 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2693 FuncInfo->setHasNonRISpills(); 2694 } 2695 2696 /// Returns true if the address N can be represented by a base register plus 2697 /// a signed 16-bit displacement [r+imm], and if it is not better 2698 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2699 /// displacements that are multiples of that value. 2700 bool PPCTargetLowering::SelectAddressRegImm( 2701 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2702 MaybeAlign EncodingAlignment) const { 2703 // FIXME dl should come from parent load or store, not from address 2704 SDLoc dl(N); 2705 2706 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2707 // a [pc+imm]. 2708 if (SelectAddressPCRel(N, Base)) 2709 return false; 2710 2711 // If this can be more profitably realized as r+r, fail. 2712 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2713 return false; 2714 2715 if (N.getOpcode() == ISD::ADD) { 2716 int16_t imm = 0; 2717 if (isIntS16Immediate(N.getOperand(1), imm) && 2718 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2719 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2720 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2721 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2722 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2723 } else { 2724 Base = N.getOperand(0); 2725 } 2726 return true; // [r+i] 2727 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2728 // Match LOAD (ADD (X, Lo(G))). 2729 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2730 && "Cannot handle constant offsets yet!"); 2731 Disp = N.getOperand(1).getOperand(0); // The global address. 2732 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2733 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2734 Disp.getOpcode() == ISD::TargetConstantPool || 2735 Disp.getOpcode() == ISD::TargetJumpTable); 2736 Base = N.getOperand(0); 2737 return true; // [&g+r] 2738 } 2739 } else if (N.getOpcode() == ISD::OR) { 2740 int16_t imm = 0; 2741 if (isIntS16Immediate(N.getOperand(1), imm) && 2742 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2743 // If this is an or of disjoint bitfields, we can codegen this as an add 2744 // (for better address arithmetic) if the LHS and RHS of the OR are 2745 // provably disjoint. 2746 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2747 2748 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2749 // If all of the bits are known zero on the LHS or RHS, the add won't 2750 // carry. 2751 if (FrameIndexSDNode *FI = 2752 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2753 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2754 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2755 } else { 2756 Base = N.getOperand(0); 2757 } 2758 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2759 return true; 2760 } 2761 } 2762 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2763 // Loading from a constant address. 2764 2765 // If this address fits entirely in a 16-bit sext immediate field, codegen 2766 // this as "d, 0" 2767 int16_t Imm; 2768 if (isIntS16Immediate(CN, Imm) && 2769 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2770 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2771 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2772 CN->getValueType(0)); 2773 return true; 2774 } 2775 2776 // Handle 32-bit sext immediates with LIS + addr mode. 2777 if ((CN->getValueType(0) == MVT::i32 || 2778 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2779 (!EncodingAlignment || 2780 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2781 int Addr = (int)CN->getZExtValue(); 2782 2783 // Otherwise, break this down into an LIS + disp. 2784 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2785 2786 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2787 MVT::i32); 2788 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2789 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2790 return true; 2791 } 2792 } 2793 2794 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2795 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2796 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2797 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2798 } else 2799 Base = N; 2800 return true; // [r+0] 2801 } 2802 2803 /// Similar to the 16-bit case but for instructions that take a 34-bit 2804 /// displacement field (prefixed loads/stores). 2805 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2806 SDValue &Base, 2807 SelectionDAG &DAG) const { 2808 // Only on 64-bit targets. 2809 if (N.getValueType() != MVT::i64) 2810 return false; 2811 2812 SDLoc dl(N); 2813 int64_t Imm = 0; 2814 2815 if (N.getOpcode() == ISD::ADD) { 2816 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2817 return false; 2818 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2819 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2820 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2821 else 2822 Base = N.getOperand(0); 2823 return true; 2824 } 2825 2826 if (N.getOpcode() == ISD::OR) { 2827 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2828 return false; 2829 // If this is an or of disjoint bitfields, we can codegen this as an add 2830 // (for better address arithmetic) if the LHS and RHS of the OR are 2831 // provably disjoint. 2832 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2833 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2834 return false; 2835 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2836 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2837 else 2838 Base = N.getOperand(0); 2839 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2840 return true; 2841 } 2842 2843 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2844 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2845 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2846 return true; 2847 } 2848 2849 return false; 2850 } 2851 2852 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2853 /// represented as an indexed [r+r] operation. 2854 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2855 SDValue &Index, 2856 SelectionDAG &DAG) const { 2857 // Check to see if we can easily represent this as an [r+r] address. This 2858 // will fail if it thinks that the address is more profitably represented as 2859 // reg+imm, e.g. where imm = 0. 2860 if (SelectAddressRegReg(N, Base, Index, DAG)) 2861 return true; 2862 2863 // If the address is the result of an add, we will utilize the fact that the 2864 // address calculation includes an implicit add. However, we can reduce 2865 // register pressure if we do not materialize a constant just for use as the 2866 // index register. We only get rid of the add if it is not an add of a 2867 // value and a 16-bit signed constant and both have a single use. 2868 int16_t imm = 0; 2869 if (N.getOpcode() == ISD::ADD && 2870 (!isIntS16Immediate(N.getOperand(1), imm) || 2871 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2872 Base = N.getOperand(0); 2873 Index = N.getOperand(1); 2874 return true; 2875 } 2876 2877 // Otherwise, do it the hard way, using R0 as the base register. 2878 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2879 N.getValueType()); 2880 Index = N; 2881 return true; 2882 } 2883 2884 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2885 Ty *PCRelCand = dyn_cast<Ty>(N); 2886 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2887 } 2888 2889 /// Returns true if this address is a PC Relative address. 2890 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2891 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2892 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2893 // This is a materialize PC Relative node. Always select this as PC Relative. 2894 Base = N; 2895 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2896 return true; 2897 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2898 isValidPCRelNode<GlobalAddressSDNode>(N) || 2899 isValidPCRelNode<JumpTableSDNode>(N) || 2900 isValidPCRelNode<BlockAddressSDNode>(N)) 2901 return true; 2902 return false; 2903 } 2904 2905 /// Returns true if we should use a direct load into vector instruction 2906 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2907 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2908 2909 // If there are any other uses other than scalar to vector, then we should 2910 // keep it as a scalar load -> direct move pattern to prevent multiple 2911 // loads. 2912 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2913 if (!LD) 2914 return false; 2915 2916 EVT MemVT = LD->getMemoryVT(); 2917 if (!MemVT.isSimple()) 2918 return false; 2919 switch(MemVT.getSimpleVT().SimpleTy) { 2920 case MVT::i64: 2921 break; 2922 case MVT::i32: 2923 if (!ST.hasP8Vector()) 2924 return false; 2925 break; 2926 case MVT::i16: 2927 case MVT::i8: 2928 if (!ST.hasP9Vector()) 2929 return false; 2930 break; 2931 default: 2932 return false; 2933 } 2934 2935 SDValue LoadedVal(N, 0); 2936 if (!LoadedVal.hasOneUse()) 2937 return false; 2938 2939 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2940 UI != UE; ++UI) 2941 if (UI.getUse().get().getResNo() == 0 && 2942 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2943 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2944 return false; 2945 2946 return true; 2947 } 2948 2949 /// getPreIndexedAddressParts - returns true by value, base pointer and 2950 /// offset pointer and addressing mode by reference if the node's address 2951 /// can be legally represented as pre-indexed load / store address. 2952 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2953 SDValue &Offset, 2954 ISD::MemIndexedMode &AM, 2955 SelectionDAG &DAG) const { 2956 if (DisablePPCPreinc) return false; 2957 2958 bool isLoad = true; 2959 SDValue Ptr; 2960 EVT VT; 2961 unsigned Alignment; 2962 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2963 Ptr = LD->getBasePtr(); 2964 VT = LD->getMemoryVT(); 2965 Alignment = LD->getAlignment(); 2966 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2967 Ptr = ST->getBasePtr(); 2968 VT = ST->getMemoryVT(); 2969 Alignment = ST->getAlignment(); 2970 isLoad = false; 2971 } else 2972 return false; 2973 2974 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2975 // instructions because we can fold these into a more efficient instruction 2976 // instead, (such as LXSD). 2977 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2978 return false; 2979 } 2980 2981 // PowerPC doesn't have preinc load/store instructions for vectors 2982 if (VT.isVector()) 2983 return false; 2984 2985 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2986 // Common code will reject creating a pre-inc form if the base pointer 2987 // is a frame index, or if N is a store and the base pointer is either 2988 // the same as or a predecessor of the value being stored. Check for 2989 // those situations here, and try with swapped Base/Offset instead. 2990 bool Swap = false; 2991 2992 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2993 Swap = true; 2994 else if (!isLoad) { 2995 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2996 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2997 Swap = true; 2998 } 2999 3000 if (Swap) 3001 std::swap(Base, Offset); 3002 3003 AM = ISD::PRE_INC; 3004 return true; 3005 } 3006 3007 // LDU/STU can only handle immediates that are a multiple of 4. 3008 if (VT != MVT::i64) { 3009 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3010 return false; 3011 } else { 3012 // LDU/STU need an address with at least 4-byte alignment. 3013 if (Alignment < 4) 3014 return false; 3015 3016 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3017 return false; 3018 } 3019 3020 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3021 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3022 // sext i32 to i64 when addr mode is r+i. 3023 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3024 LD->getExtensionType() == ISD::SEXTLOAD && 3025 isa<ConstantSDNode>(Offset)) 3026 return false; 3027 } 3028 3029 AM = ISD::PRE_INC; 3030 return true; 3031 } 3032 3033 //===----------------------------------------------------------------------===// 3034 // LowerOperation implementation 3035 //===----------------------------------------------------------------------===// 3036 3037 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3038 /// and LoOpFlags to the target MO flags. 3039 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3040 unsigned &HiOpFlags, unsigned &LoOpFlags, 3041 const GlobalValue *GV = nullptr) { 3042 HiOpFlags = PPCII::MO_HA; 3043 LoOpFlags = PPCII::MO_LO; 3044 3045 // Don't use the pic base if not in PIC relocation model. 3046 if (IsPIC) { 3047 HiOpFlags |= PPCII::MO_PIC_FLAG; 3048 LoOpFlags |= PPCII::MO_PIC_FLAG; 3049 } 3050 } 3051 3052 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3053 SelectionDAG &DAG) { 3054 SDLoc DL(HiPart); 3055 EVT PtrVT = HiPart.getValueType(); 3056 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3057 3058 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3059 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3060 3061 // With PIC, the first instruction is actually "GR+hi(&G)". 3062 if (isPIC) 3063 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3064 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3065 3066 // Generate non-pic code that has direct accesses to the constant pool. 3067 // The address of the global is just (hi(&g)+lo(&g)). 3068 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3069 } 3070 3071 static void setUsesTOCBasePtr(MachineFunction &MF) { 3072 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3073 FuncInfo->setUsesTOCBasePtr(); 3074 } 3075 3076 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3077 setUsesTOCBasePtr(DAG.getMachineFunction()); 3078 } 3079 3080 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3081 SDValue GA) const { 3082 const bool Is64Bit = Subtarget.isPPC64(); 3083 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3084 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3085 : Subtarget.isAIXABI() 3086 ? DAG.getRegister(PPC::R2, VT) 3087 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3088 SDValue Ops[] = { GA, Reg }; 3089 return DAG.getMemIntrinsicNode( 3090 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3091 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3092 MachineMemOperand::MOLoad); 3093 } 3094 3095 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3096 SelectionDAG &DAG) const { 3097 EVT PtrVT = Op.getValueType(); 3098 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3099 const Constant *C = CP->getConstVal(); 3100 3101 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3102 // The actual address of the GlobalValue is stored in the TOC. 3103 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3104 if (Subtarget.isUsingPCRelativeCalls()) { 3105 SDLoc DL(CP); 3106 EVT Ty = getPointerTy(DAG.getDataLayout()); 3107 SDValue ConstPool = DAG.getTargetConstantPool( 3108 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3109 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3110 } 3111 setUsesTOCBasePtr(DAG); 3112 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3113 return getTOCEntry(DAG, SDLoc(CP), GA); 3114 } 3115 3116 unsigned MOHiFlag, MOLoFlag; 3117 bool IsPIC = isPositionIndependent(); 3118 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3119 3120 if (IsPIC && Subtarget.isSVR4ABI()) { 3121 SDValue GA = 3122 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3123 return getTOCEntry(DAG, SDLoc(CP), GA); 3124 } 3125 3126 SDValue CPIHi = 3127 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3128 SDValue CPILo = 3129 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3130 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3131 } 3132 3133 // For 64-bit PowerPC, prefer the more compact relative encodings. 3134 // This trades 32 bits per jump table entry for one or two instructions 3135 // on the jump site. 3136 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3137 if (isJumpTableRelative()) 3138 return MachineJumpTableInfo::EK_LabelDifference32; 3139 3140 return TargetLowering::getJumpTableEncoding(); 3141 } 3142 3143 bool PPCTargetLowering::isJumpTableRelative() const { 3144 if (UseAbsoluteJumpTables) 3145 return false; 3146 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3147 return true; 3148 return TargetLowering::isJumpTableRelative(); 3149 } 3150 3151 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3152 SelectionDAG &DAG) const { 3153 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3154 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3155 3156 switch (getTargetMachine().getCodeModel()) { 3157 case CodeModel::Small: 3158 case CodeModel::Medium: 3159 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3160 default: 3161 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3162 getPointerTy(DAG.getDataLayout())); 3163 } 3164 } 3165 3166 const MCExpr * 3167 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3168 unsigned JTI, 3169 MCContext &Ctx) const { 3170 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3171 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3172 3173 switch (getTargetMachine().getCodeModel()) { 3174 case CodeModel::Small: 3175 case CodeModel::Medium: 3176 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3177 default: 3178 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3179 } 3180 } 3181 3182 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3183 EVT PtrVT = Op.getValueType(); 3184 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3185 3186 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3187 if (Subtarget.isUsingPCRelativeCalls()) { 3188 SDLoc DL(JT); 3189 EVT Ty = getPointerTy(DAG.getDataLayout()); 3190 SDValue GA = 3191 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3192 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3193 return MatAddr; 3194 } 3195 3196 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3197 // The actual address of the GlobalValue is stored in the TOC. 3198 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3199 setUsesTOCBasePtr(DAG); 3200 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3201 return getTOCEntry(DAG, SDLoc(JT), GA); 3202 } 3203 3204 unsigned MOHiFlag, MOLoFlag; 3205 bool IsPIC = isPositionIndependent(); 3206 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3207 3208 if (IsPIC && Subtarget.isSVR4ABI()) { 3209 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3210 PPCII::MO_PIC_FLAG); 3211 return getTOCEntry(DAG, SDLoc(GA), GA); 3212 } 3213 3214 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3215 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3216 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3217 } 3218 3219 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3220 SelectionDAG &DAG) const { 3221 EVT PtrVT = Op.getValueType(); 3222 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3223 const BlockAddress *BA = BASDN->getBlockAddress(); 3224 3225 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3226 if (Subtarget.isUsingPCRelativeCalls()) { 3227 SDLoc DL(BASDN); 3228 EVT Ty = getPointerTy(DAG.getDataLayout()); 3229 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3230 PPCII::MO_PCREL_FLAG); 3231 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3232 return MatAddr; 3233 } 3234 3235 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3236 // The actual BlockAddress is stored in the TOC. 3237 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3238 setUsesTOCBasePtr(DAG); 3239 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3240 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3241 } 3242 3243 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3244 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3245 return getTOCEntry( 3246 DAG, SDLoc(BASDN), 3247 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3248 3249 unsigned MOHiFlag, MOLoFlag; 3250 bool IsPIC = isPositionIndependent(); 3251 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3252 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3253 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3254 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3255 } 3256 3257 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3258 SelectionDAG &DAG) const { 3259 if (Subtarget.isAIXABI()) 3260 return LowerGlobalTLSAddressAIX(Op, DAG); 3261 3262 return LowerGlobalTLSAddressLinux(Op, DAG); 3263 } 3264 3265 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3266 SelectionDAG &DAG) const { 3267 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3268 3269 if (DAG.getTarget().useEmulatedTLS()) 3270 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3271 3272 SDLoc dl(GA); 3273 const GlobalValue *GV = GA->getGlobal(); 3274 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3275 3276 // The general-dynamic model is the only access model supported for now, so 3277 // all the GlobalTLSAddress nodes are lowered with this model. 3278 // We need to generate two TOC entries, one for the variable offset, one for 3279 // the region handle. The global address for the TOC entry of the region 3280 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3281 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3282 SDValue VariableOffsetTGA = 3283 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3284 SDValue RegionHandleTGA = 3285 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3286 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3287 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3288 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3289 RegionHandle); 3290 } 3291 3292 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 // FIXME: TLS addresses currently use medium model code sequences, 3295 // which is the most useful form. Eventually support for small and 3296 // large models could be added if users need it, at the cost of 3297 // additional complexity. 3298 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3299 if (DAG.getTarget().useEmulatedTLS()) 3300 return LowerToTLSEmulatedModel(GA, DAG); 3301 3302 SDLoc dl(GA); 3303 const GlobalValue *GV = GA->getGlobal(); 3304 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3305 bool is64bit = Subtarget.isPPC64(); 3306 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3307 PICLevel::Level picLevel = M->getPICLevel(); 3308 3309 const TargetMachine &TM = getTargetMachine(); 3310 TLSModel::Model Model = TM.getTLSModel(GV); 3311 3312 if (Model == TLSModel::LocalExec) { 3313 if (Subtarget.isUsingPCRelativeCalls()) { 3314 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3315 SDValue TGA = DAG.getTargetGlobalAddress( 3316 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3317 SDValue MatAddr = 3318 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3319 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3320 } 3321 3322 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3323 PPCII::MO_TPREL_HA); 3324 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3325 PPCII::MO_TPREL_LO); 3326 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3327 : DAG.getRegister(PPC::R2, MVT::i32); 3328 3329 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3330 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3331 } 3332 3333 if (Model == TLSModel::InitialExec) { 3334 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3335 SDValue TGA = DAG.getTargetGlobalAddress( 3336 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3337 SDValue TGATLS = DAG.getTargetGlobalAddress( 3338 GV, dl, PtrVT, 0, 3339 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3340 SDValue TPOffset; 3341 if (IsPCRel) { 3342 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3343 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3344 MachinePointerInfo()); 3345 } else { 3346 SDValue GOTPtr; 3347 if (is64bit) { 3348 setUsesTOCBasePtr(DAG); 3349 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3350 GOTPtr = 3351 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3352 } else { 3353 if (!TM.isPositionIndependent()) 3354 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3355 else if (picLevel == PICLevel::SmallPIC) 3356 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3357 else 3358 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3359 } 3360 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3361 } 3362 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3363 } 3364 3365 if (Model == TLSModel::GeneralDynamic) { 3366 if (Subtarget.isUsingPCRelativeCalls()) { 3367 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3368 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3369 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3370 } 3371 3372 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3373 SDValue GOTPtr; 3374 if (is64bit) { 3375 setUsesTOCBasePtr(DAG); 3376 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3377 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3378 GOTReg, TGA); 3379 } else { 3380 if (picLevel == PICLevel::SmallPIC) 3381 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3382 else 3383 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3384 } 3385 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3386 GOTPtr, TGA, TGA); 3387 } 3388 3389 if (Model == TLSModel::LocalDynamic) { 3390 if (Subtarget.isUsingPCRelativeCalls()) { 3391 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3392 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3393 SDValue MatPCRel = 3394 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3395 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3396 } 3397 3398 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3399 SDValue GOTPtr; 3400 if (is64bit) { 3401 setUsesTOCBasePtr(DAG); 3402 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3403 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3404 GOTReg, TGA); 3405 } else { 3406 if (picLevel == PICLevel::SmallPIC) 3407 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3408 else 3409 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3410 } 3411 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3412 PtrVT, GOTPtr, TGA, TGA); 3413 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3414 PtrVT, TLSAddr, TGA); 3415 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3416 } 3417 3418 llvm_unreachable("Unknown TLS model!"); 3419 } 3420 3421 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3422 SelectionDAG &DAG) const { 3423 EVT PtrVT = Op.getValueType(); 3424 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3425 SDLoc DL(GSDN); 3426 const GlobalValue *GV = GSDN->getGlobal(); 3427 3428 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3429 // The actual address of the GlobalValue is stored in the TOC. 3430 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3431 if (Subtarget.isUsingPCRelativeCalls()) { 3432 EVT Ty = getPointerTy(DAG.getDataLayout()); 3433 if (isAccessedAsGotIndirect(Op)) { 3434 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3435 PPCII::MO_PCREL_FLAG | 3436 PPCII::MO_GOT_FLAG); 3437 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3438 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3439 MachinePointerInfo()); 3440 return Load; 3441 } else { 3442 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3443 PPCII::MO_PCREL_FLAG); 3444 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3445 } 3446 } 3447 setUsesTOCBasePtr(DAG); 3448 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3449 return getTOCEntry(DAG, DL, GA); 3450 } 3451 3452 unsigned MOHiFlag, MOLoFlag; 3453 bool IsPIC = isPositionIndependent(); 3454 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3455 3456 if (IsPIC && Subtarget.isSVR4ABI()) { 3457 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3458 GSDN->getOffset(), 3459 PPCII::MO_PIC_FLAG); 3460 return getTOCEntry(DAG, DL, GA); 3461 } 3462 3463 SDValue GAHi = 3464 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3465 SDValue GALo = 3466 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3467 3468 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3469 } 3470 3471 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3472 bool IsStrict = Op->isStrictFPOpcode(); 3473 ISD::CondCode CC = 3474 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3475 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3476 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3477 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3478 EVT LHSVT = LHS.getValueType(); 3479 SDLoc dl(Op); 3480 3481 // Soften the setcc with libcall if it is fp128. 3482 if (LHSVT == MVT::f128) { 3483 assert(!Subtarget.hasP9Vector() && 3484 "SETCC for f128 is already legal under Power9!"); 3485 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3486 Op->getOpcode() == ISD::STRICT_FSETCCS); 3487 if (RHS.getNode()) 3488 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3489 DAG.getCondCode(CC)); 3490 if (IsStrict) 3491 return DAG.getMergeValues({LHS, Chain}, dl); 3492 return LHS; 3493 } 3494 3495 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3496 3497 if (Op.getValueType() == MVT::v2i64) { 3498 // When the operands themselves are v2i64 values, we need to do something 3499 // special because VSX has no underlying comparison operations for these. 3500 if (LHS.getValueType() == MVT::v2i64) { 3501 // Equality can be handled by casting to the legal type for Altivec 3502 // comparisons, everything else needs to be expanded. 3503 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3504 return SDValue(); 3505 SDValue SetCC32 = DAG.getSetCC( 3506 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3507 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3508 int ShuffV[] = {1, 0, 3, 2}; 3509 SDValue Shuff = 3510 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3511 return DAG.getBitcast( 3512 MVT::v2i64, DAG.getNode(ISD::AND, dl, MVT::v4i32, Shuff, SetCC32)); 3513 } 3514 3515 // We handle most of these in the usual way. 3516 return Op; 3517 } 3518 3519 // If we're comparing for equality to zero, expose the fact that this is 3520 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3521 // fold the new nodes. 3522 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3523 return V; 3524 3525 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3526 // Leave comparisons against 0 and -1 alone for now, since they're usually 3527 // optimized. FIXME: revisit this when we can custom lower all setcc 3528 // optimizations. 3529 if (C->isAllOnes() || C->isZero()) 3530 return SDValue(); 3531 } 3532 3533 // If we have an integer seteq/setne, turn it into a compare against zero 3534 // by xor'ing the rhs with the lhs, which is faster than setting a 3535 // condition register, reading it back out, and masking the correct bit. The 3536 // normal approach here uses sub to do this instead of xor. Using xor exposes 3537 // the result to other bit-twiddling opportunities. 3538 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3539 EVT VT = Op.getValueType(); 3540 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3541 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3542 } 3543 return SDValue(); 3544 } 3545 3546 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3547 SDNode *Node = Op.getNode(); 3548 EVT VT = Node->getValueType(0); 3549 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3550 SDValue InChain = Node->getOperand(0); 3551 SDValue VAListPtr = Node->getOperand(1); 3552 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3553 SDLoc dl(Node); 3554 3555 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3556 3557 // gpr_index 3558 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3559 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3560 InChain = GprIndex.getValue(1); 3561 3562 if (VT == MVT::i64) { 3563 // Check if GprIndex is even 3564 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3565 DAG.getConstant(1, dl, MVT::i32)); 3566 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3567 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3568 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3569 DAG.getConstant(1, dl, MVT::i32)); 3570 // Align GprIndex to be even if it isn't 3571 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3572 GprIndex); 3573 } 3574 3575 // fpr index is 1 byte after gpr 3576 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3577 DAG.getConstant(1, dl, MVT::i32)); 3578 3579 // fpr 3580 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3581 FprPtr, MachinePointerInfo(SV), MVT::i8); 3582 InChain = FprIndex.getValue(1); 3583 3584 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3585 DAG.getConstant(8, dl, MVT::i32)); 3586 3587 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3588 DAG.getConstant(4, dl, MVT::i32)); 3589 3590 // areas 3591 SDValue OverflowArea = 3592 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3593 InChain = OverflowArea.getValue(1); 3594 3595 SDValue RegSaveArea = 3596 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3597 InChain = RegSaveArea.getValue(1); 3598 3599 // select overflow_area if index > 8 3600 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3601 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3602 3603 // adjustment constant gpr_index * 4/8 3604 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3605 VT.isInteger() ? GprIndex : FprIndex, 3606 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3607 MVT::i32)); 3608 3609 // OurReg = RegSaveArea + RegConstant 3610 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3611 RegConstant); 3612 3613 // Floating types are 32 bytes into RegSaveArea 3614 if (VT.isFloatingPoint()) 3615 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3616 DAG.getConstant(32, dl, MVT::i32)); 3617 3618 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3619 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3620 VT.isInteger() ? GprIndex : FprIndex, 3621 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3622 MVT::i32)); 3623 3624 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3625 VT.isInteger() ? VAListPtr : FprPtr, 3626 MachinePointerInfo(SV), MVT::i8); 3627 3628 // determine if we should load from reg_save_area or overflow_area 3629 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3630 3631 // increase overflow_area by 4/8 if gpr/fpr > 8 3632 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3633 DAG.getConstant(VT.isInteger() ? 4 : 8, 3634 dl, MVT::i32)); 3635 3636 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3637 OverflowAreaPlusN); 3638 3639 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3640 MachinePointerInfo(), MVT::i32); 3641 3642 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3643 } 3644 3645 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3646 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3647 3648 // We have to copy the entire va_list struct: 3649 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3650 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3651 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3652 false, true, false, MachinePointerInfo(), 3653 MachinePointerInfo()); 3654 } 3655 3656 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3657 SelectionDAG &DAG) const { 3658 if (Subtarget.isAIXABI()) 3659 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3660 3661 return Op.getOperand(0); 3662 } 3663 3664 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3665 MachineFunction &MF = DAG.getMachineFunction(); 3666 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3667 3668 assert((Op.getOpcode() == ISD::INLINEASM || 3669 Op.getOpcode() == ISD::INLINEASM_BR) && 3670 "Expecting Inline ASM node."); 3671 3672 // If an LR store is already known to be required then there is not point in 3673 // checking this ASM as well. 3674 if (MFI.isLRStoreRequired()) 3675 return Op; 3676 3677 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3678 // type MVT::Glue. We want to ignore this last operand if that is the case. 3679 unsigned NumOps = Op.getNumOperands(); 3680 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3681 --NumOps; 3682 3683 // Check all operands that may contain the LR. 3684 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3685 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3686 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3687 ++i; // Skip the ID value. 3688 3689 switch (InlineAsm::getKind(Flags)) { 3690 default: 3691 llvm_unreachable("Bad flags!"); 3692 case InlineAsm::Kind_RegUse: 3693 case InlineAsm::Kind_Imm: 3694 case InlineAsm::Kind_Mem: 3695 i += NumVals; 3696 break; 3697 case InlineAsm::Kind_Clobber: 3698 case InlineAsm::Kind_RegDef: 3699 case InlineAsm::Kind_RegDefEarlyClobber: { 3700 for (; NumVals; --NumVals, ++i) { 3701 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3702 if (Reg != PPC::LR && Reg != PPC::LR8) 3703 continue; 3704 MFI.setLRStoreRequired(); 3705 return Op; 3706 } 3707 break; 3708 } 3709 } 3710 } 3711 3712 return Op; 3713 } 3714 3715 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3716 SelectionDAG &DAG) const { 3717 if (Subtarget.isAIXABI()) 3718 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3719 3720 SDValue Chain = Op.getOperand(0); 3721 SDValue Trmp = Op.getOperand(1); // trampoline 3722 SDValue FPtr = Op.getOperand(2); // nested function 3723 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3724 SDLoc dl(Op); 3725 3726 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3727 bool isPPC64 = (PtrVT == MVT::i64); 3728 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3729 3730 TargetLowering::ArgListTy Args; 3731 TargetLowering::ArgListEntry Entry; 3732 3733 Entry.Ty = IntPtrTy; 3734 Entry.Node = Trmp; Args.push_back(Entry); 3735 3736 // TrampSize == (isPPC64 ? 48 : 40); 3737 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3738 isPPC64 ? MVT::i64 : MVT::i32); 3739 Args.push_back(Entry); 3740 3741 Entry.Node = FPtr; Args.push_back(Entry); 3742 Entry.Node = Nest; Args.push_back(Entry); 3743 3744 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3745 TargetLowering::CallLoweringInfo CLI(DAG); 3746 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3747 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3748 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3749 3750 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3751 return CallResult.second; 3752 } 3753 3754 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3755 MachineFunction &MF = DAG.getMachineFunction(); 3756 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3757 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3758 3759 SDLoc dl(Op); 3760 3761 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3762 // vastart just stores the address of the VarArgsFrameIndex slot into the 3763 // memory location argument. 3764 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3765 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3766 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3767 MachinePointerInfo(SV)); 3768 } 3769 3770 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3771 // We suppose the given va_list is already allocated. 3772 // 3773 // typedef struct { 3774 // char gpr; /* index into the array of 8 GPRs 3775 // * stored in the register save area 3776 // * gpr=0 corresponds to r3, 3777 // * gpr=1 to r4, etc. 3778 // */ 3779 // char fpr; /* index into the array of 8 FPRs 3780 // * stored in the register save area 3781 // * fpr=0 corresponds to f1, 3782 // * fpr=1 to f2, etc. 3783 // */ 3784 // char *overflow_arg_area; 3785 // /* location on stack that holds 3786 // * the next overflow argument 3787 // */ 3788 // char *reg_save_area; 3789 // /* where r3:r10 and f1:f8 (if saved) 3790 // * are stored 3791 // */ 3792 // } va_list[1]; 3793 3794 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3795 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3796 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3797 PtrVT); 3798 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3799 PtrVT); 3800 3801 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3802 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3803 3804 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3805 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3806 3807 uint64_t FPROffset = 1; 3808 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3809 3810 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3811 3812 // Store first byte : number of int regs 3813 SDValue firstStore = 3814 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3815 MachinePointerInfo(SV), MVT::i8); 3816 uint64_t nextOffset = FPROffset; 3817 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3818 ConstFPROffset); 3819 3820 // Store second byte : number of float regs 3821 SDValue secondStore = 3822 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3823 MachinePointerInfo(SV, nextOffset), MVT::i8); 3824 nextOffset += StackOffset; 3825 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3826 3827 // Store second word : arguments given on stack 3828 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3829 MachinePointerInfo(SV, nextOffset)); 3830 nextOffset += FrameOffset; 3831 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3832 3833 // Store third word : arguments given in registers 3834 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3835 MachinePointerInfo(SV, nextOffset)); 3836 } 3837 3838 /// FPR - The set of FP registers that should be allocated for arguments 3839 /// on Darwin and AIX. 3840 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3841 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3842 PPC::F11, PPC::F12, PPC::F13}; 3843 3844 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3845 /// the stack. 3846 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3847 unsigned PtrByteSize) { 3848 unsigned ArgSize = ArgVT.getStoreSize(); 3849 if (Flags.isByVal()) 3850 ArgSize = Flags.getByValSize(); 3851 3852 // Round up to multiples of the pointer size, except for array members, 3853 // which are always packed. 3854 if (!Flags.isInConsecutiveRegs()) 3855 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3856 3857 return ArgSize; 3858 } 3859 3860 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3861 /// on the stack. 3862 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3863 ISD::ArgFlagsTy Flags, 3864 unsigned PtrByteSize) { 3865 Align Alignment(PtrByteSize); 3866 3867 // Altivec parameters are padded to a 16 byte boundary. 3868 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3869 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3870 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3871 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3872 Alignment = Align(16); 3873 3874 // ByVal parameters are aligned as requested. 3875 if (Flags.isByVal()) { 3876 auto BVAlign = Flags.getNonZeroByValAlign(); 3877 if (BVAlign > PtrByteSize) { 3878 if (BVAlign.value() % PtrByteSize != 0) 3879 llvm_unreachable( 3880 "ByVal alignment is not a multiple of the pointer size"); 3881 3882 Alignment = BVAlign; 3883 } 3884 } 3885 3886 // Array members are always packed to their original alignment. 3887 if (Flags.isInConsecutiveRegs()) { 3888 // If the array member was split into multiple registers, the first 3889 // needs to be aligned to the size of the full type. (Except for 3890 // ppcf128, which is only aligned as its f64 components.) 3891 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3892 Alignment = Align(OrigVT.getStoreSize()); 3893 else 3894 Alignment = Align(ArgVT.getStoreSize()); 3895 } 3896 3897 return Alignment; 3898 } 3899 3900 /// CalculateStackSlotUsed - Return whether this argument will use its 3901 /// stack slot (instead of being passed in registers). ArgOffset, 3902 /// AvailableFPRs, and AvailableVRs must hold the current argument 3903 /// position, and will be updated to account for this argument. 3904 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3905 unsigned PtrByteSize, unsigned LinkageSize, 3906 unsigned ParamAreaSize, unsigned &ArgOffset, 3907 unsigned &AvailableFPRs, 3908 unsigned &AvailableVRs) { 3909 bool UseMemory = false; 3910 3911 // Respect alignment of argument on the stack. 3912 Align Alignment = 3913 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3914 ArgOffset = alignTo(ArgOffset, Alignment); 3915 // If there's no space left in the argument save area, we must 3916 // use memory (this check also catches zero-sized arguments). 3917 if (ArgOffset >= LinkageSize + ParamAreaSize) 3918 UseMemory = true; 3919 3920 // Allocate argument on the stack. 3921 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3922 if (Flags.isInConsecutiveRegsLast()) 3923 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3924 // If we overran the argument save area, we must use memory 3925 // (this check catches arguments passed partially in memory) 3926 if (ArgOffset > LinkageSize + ParamAreaSize) 3927 UseMemory = true; 3928 3929 // However, if the argument is actually passed in an FPR or a VR, 3930 // we don't use memory after all. 3931 if (!Flags.isByVal()) { 3932 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3933 if (AvailableFPRs > 0) { 3934 --AvailableFPRs; 3935 return false; 3936 } 3937 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3938 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3939 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3940 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3941 if (AvailableVRs > 0) { 3942 --AvailableVRs; 3943 return false; 3944 } 3945 } 3946 3947 return UseMemory; 3948 } 3949 3950 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3951 /// ensure minimum alignment required for target. 3952 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3953 unsigned NumBytes) { 3954 return alignTo(NumBytes, Lowering->getStackAlign()); 3955 } 3956 3957 SDValue PPCTargetLowering::LowerFormalArguments( 3958 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3959 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3960 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3961 if (Subtarget.isAIXABI()) 3962 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3963 InVals); 3964 if (Subtarget.is64BitELFABI()) 3965 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3966 InVals); 3967 assert(Subtarget.is32BitELFABI()); 3968 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3969 InVals); 3970 } 3971 3972 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3973 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3974 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3975 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3976 3977 // 32-bit SVR4 ABI Stack Frame Layout: 3978 // +-----------------------------------+ 3979 // +--> | Back chain | 3980 // | +-----------------------------------+ 3981 // | | Floating-point register save area | 3982 // | +-----------------------------------+ 3983 // | | General register save area | 3984 // | +-----------------------------------+ 3985 // | | CR save word | 3986 // | +-----------------------------------+ 3987 // | | VRSAVE save word | 3988 // | +-----------------------------------+ 3989 // | | Alignment padding | 3990 // | +-----------------------------------+ 3991 // | | Vector register save area | 3992 // | +-----------------------------------+ 3993 // | | Local variable space | 3994 // | +-----------------------------------+ 3995 // | | Parameter list area | 3996 // | +-----------------------------------+ 3997 // | | LR save word | 3998 // | +-----------------------------------+ 3999 // SP--> +--- | Back chain | 4000 // +-----------------------------------+ 4001 // 4002 // Specifications: 4003 // System V Application Binary Interface PowerPC Processor Supplement 4004 // AltiVec Technology Programming Interface Manual 4005 4006 MachineFunction &MF = DAG.getMachineFunction(); 4007 MachineFrameInfo &MFI = MF.getFrameInfo(); 4008 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4009 4010 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4011 // Potential tail calls could cause overwriting of argument stack slots. 4012 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4013 (CallConv == CallingConv::Fast)); 4014 const Align PtrAlign(4); 4015 4016 // Assign locations to all of the incoming arguments. 4017 SmallVector<CCValAssign, 16> ArgLocs; 4018 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4019 *DAG.getContext()); 4020 4021 // Reserve space for the linkage area on the stack. 4022 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4023 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4024 if (useSoftFloat()) 4025 CCInfo.PreAnalyzeFormalArguments(Ins); 4026 4027 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4028 CCInfo.clearWasPPCF128(); 4029 4030 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4031 CCValAssign &VA = ArgLocs[i]; 4032 4033 // Arguments stored in registers. 4034 if (VA.isRegLoc()) { 4035 const TargetRegisterClass *RC; 4036 EVT ValVT = VA.getValVT(); 4037 4038 switch (ValVT.getSimpleVT().SimpleTy) { 4039 default: 4040 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4041 case MVT::i1: 4042 case MVT::i32: 4043 RC = &PPC::GPRCRegClass; 4044 break; 4045 case MVT::f32: 4046 if (Subtarget.hasP8Vector()) 4047 RC = &PPC::VSSRCRegClass; 4048 else if (Subtarget.hasSPE()) 4049 RC = &PPC::GPRCRegClass; 4050 else 4051 RC = &PPC::F4RCRegClass; 4052 break; 4053 case MVT::f64: 4054 if (Subtarget.hasVSX()) 4055 RC = &PPC::VSFRCRegClass; 4056 else if (Subtarget.hasSPE()) 4057 // SPE passes doubles in GPR pairs. 4058 RC = &PPC::GPRCRegClass; 4059 else 4060 RC = &PPC::F8RCRegClass; 4061 break; 4062 case MVT::v16i8: 4063 case MVT::v8i16: 4064 case MVT::v4i32: 4065 RC = &PPC::VRRCRegClass; 4066 break; 4067 case MVT::v4f32: 4068 RC = &PPC::VRRCRegClass; 4069 break; 4070 case MVT::v2f64: 4071 case MVT::v2i64: 4072 RC = &PPC::VRRCRegClass; 4073 break; 4074 } 4075 4076 SDValue ArgValue; 4077 // Transform the arguments stored in physical registers into 4078 // virtual ones. 4079 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4080 assert(i + 1 < e && "No second half of double precision argument"); 4081 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4082 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4083 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4084 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4085 if (!Subtarget.isLittleEndian()) 4086 std::swap (ArgValueLo, ArgValueHi); 4087 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4088 ArgValueHi); 4089 } else { 4090 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4091 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4092 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4093 if (ValVT == MVT::i1) 4094 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4095 } 4096 4097 InVals.push_back(ArgValue); 4098 } else { 4099 // Argument stored in memory. 4100 assert(VA.isMemLoc()); 4101 4102 // Get the extended size of the argument type in stack 4103 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4104 // Get the actual size of the argument type 4105 unsigned ObjSize = VA.getValVT().getStoreSize(); 4106 unsigned ArgOffset = VA.getLocMemOffset(); 4107 // Stack objects in PPC32 are right justified. 4108 ArgOffset += ArgSize - ObjSize; 4109 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4110 4111 // Create load nodes to retrieve arguments from the stack. 4112 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4113 InVals.push_back( 4114 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4115 } 4116 } 4117 4118 // Assign locations to all of the incoming aggregate by value arguments. 4119 // Aggregates passed by value are stored in the local variable space of the 4120 // caller's stack frame, right above the parameter list area. 4121 SmallVector<CCValAssign, 16> ByValArgLocs; 4122 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4123 ByValArgLocs, *DAG.getContext()); 4124 4125 // Reserve stack space for the allocations in CCInfo. 4126 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4127 4128 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4129 4130 // Area that is at least reserved in the caller of this function. 4131 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4132 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4133 4134 // Set the size that is at least reserved in caller of this function. Tail 4135 // call optimized function's reserved stack space needs to be aligned so that 4136 // taking the difference between two stack areas will result in an aligned 4137 // stack. 4138 MinReservedArea = 4139 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4140 FuncInfo->setMinReservedArea(MinReservedArea); 4141 4142 SmallVector<SDValue, 8> MemOps; 4143 4144 // If the function takes variable number of arguments, make a frame index for 4145 // the start of the first vararg value... for expansion of llvm.va_start. 4146 if (isVarArg) { 4147 static const MCPhysReg GPArgRegs[] = { 4148 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4149 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4150 }; 4151 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4152 4153 static const MCPhysReg FPArgRegs[] = { 4154 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4155 PPC::F8 4156 }; 4157 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4158 4159 if (useSoftFloat() || hasSPE()) 4160 NumFPArgRegs = 0; 4161 4162 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4163 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4164 4165 // Make room for NumGPArgRegs and NumFPArgRegs. 4166 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4167 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4168 4169 FuncInfo->setVarArgsStackOffset( 4170 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4171 CCInfo.getNextStackOffset(), true)); 4172 4173 FuncInfo->setVarArgsFrameIndex( 4174 MFI.CreateStackObject(Depth, Align(8), false)); 4175 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4176 4177 // The fixed integer arguments of a variadic function are stored to the 4178 // VarArgsFrameIndex on the stack so that they may be loaded by 4179 // dereferencing the result of va_next. 4180 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4181 // Get an existing live-in vreg, or add a new one. 4182 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4183 if (!VReg) 4184 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4185 4186 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4187 SDValue Store = 4188 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4189 MemOps.push_back(Store); 4190 // Increment the address by four for the next argument to store 4191 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4192 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4193 } 4194 4195 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4196 // is set. 4197 // The double arguments are stored to the VarArgsFrameIndex 4198 // on the stack. 4199 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4200 // Get an existing live-in vreg, or add a new one. 4201 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4202 if (!VReg) 4203 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4204 4205 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4206 SDValue Store = 4207 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4208 MemOps.push_back(Store); 4209 // Increment the address by eight for the next argument to store 4210 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4211 PtrVT); 4212 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4213 } 4214 } 4215 4216 if (!MemOps.empty()) 4217 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4218 4219 return Chain; 4220 } 4221 4222 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4223 // value to MVT::i64 and then truncate to the correct register size. 4224 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4225 EVT ObjectVT, SelectionDAG &DAG, 4226 SDValue ArgVal, 4227 const SDLoc &dl) const { 4228 if (Flags.isSExt()) 4229 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4230 DAG.getValueType(ObjectVT)); 4231 else if (Flags.isZExt()) 4232 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4233 DAG.getValueType(ObjectVT)); 4234 4235 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4236 } 4237 4238 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4239 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4240 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4241 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4242 // TODO: add description of PPC stack frame format, or at least some docs. 4243 // 4244 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4245 bool isLittleEndian = Subtarget.isLittleEndian(); 4246 MachineFunction &MF = DAG.getMachineFunction(); 4247 MachineFrameInfo &MFI = MF.getFrameInfo(); 4248 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4249 4250 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4251 "fastcc not supported on varargs functions"); 4252 4253 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4254 // Potential tail calls could cause overwriting of argument stack slots. 4255 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4256 (CallConv == CallingConv::Fast)); 4257 unsigned PtrByteSize = 8; 4258 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4259 4260 static const MCPhysReg GPR[] = { 4261 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4262 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4263 }; 4264 static const MCPhysReg VR[] = { 4265 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4266 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4267 }; 4268 4269 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4270 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4271 const unsigned Num_VR_Regs = array_lengthof(VR); 4272 4273 // Do a first pass over the arguments to determine whether the ABI 4274 // guarantees that our caller has allocated the parameter save area 4275 // on its stack frame. In the ELFv1 ABI, this is always the case; 4276 // in the ELFv2 ABI, it is true if this is a vararg function or if 4277 // any parameter is located in a stack slot. 4278 4279 bool HasParameterArea = !isELFv2ABI || isVarArg; 4280 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4281 unsigned NumBytes = LinkageSize; 4282 unsigned AvailableFPRs = Num_FPR_Regs; 4283 unsigned AvailableVRs = Num_VR_Regs; 4284 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4285 if (Ins[i].Flags.isNest()) 4286 continue; 4287 4288 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4289 PtrByteSize, LinkageSize, ParamAreaSize, 4290 NumBytes, AvailableFPRs, AvailableVRs)) 4291 HasParameterArea = true; 4292 } 4293 4294 // Add DAG nodes to load the arguments or copy them out of registers. On 4295 // entry to a function on PPC, the arguments start after the linkage area, 4296 // although the first ones are often in registers. 4297 4298 unsigned ArgOffset = LinkageSize; 4299 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4300 SmallVector<SDValue, 8> MemOps; 4301 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4302 unsigned CurArgIdx = 0; 4303 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4304 SDValue ArgVal; 4305 bool needsLoad = false; 4306 EVT ObjectVT = Ins[ArgNo].VT; 4307 EVT OrigVT = Ins[ArgNo].ArgVT; 4308 unsigned ObjSize = ObjectVT.getStoreSize(); 4309 unsigned ArgSize = ObjSize; 4310 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4311 if (Ins[ArgNo].isOrigArg()) { 4312 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4313 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4314 } 4315 // We re-align the argument offset for each argument, except when using the 4316 // fast calling convention, when we need to make sure we do that only when 4317 // we'll actually use a stack slot. 4318 unsigned CurArgOffset; 4319 Align Alignment; 4320 auto ComputeArgOffset = [&]() { 4321 /* Respect alignment of argument on the stack. */ 4322 Alignment = 4323 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4324 ArgOffset = alignTo(ArgOffset, Alignment); 4325 CurArgOffset = ArgOffset; 4326 }; 4327 4328 if (CallConv != CallingConv::Fast) { 4329 ComputeArgOffset(); 4330 4331 /* Compute GPR index associated with argument offset. */ 4332 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4333 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4334 } 4335 4336 // FIXME the codegen can be much improved in some cases. 4337 // We do not have to keep everything in memory. 4338 if (Flags.isByVal()) { 4339 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4340 4341 if (CallConv == CallingConv::Fast) 4342 ComputeArgOffset(); 4343 4344 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4345 ObjSize = Flags.getByValSize(); 4346 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4347 // Empty aggregate parameters do not take up registers. Examples: 4348 // struct { } a; 4349 // union { } b; 4350 // int c[0]; 4351 // etc. However, we have to provide a place-holder in InVals, so 4352 // pretend we have an 8-byte item at the current address for that 4353 // purpose. 4354 if (!ObjSize) { 4355 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4356 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4357 InVals.push_back(FIN); 4358 continue; 4359 } 4360 4361 // Create a stack object covering all stack doublewords occupied 4362 // by the argument. If the argument is (fully or partially) on 4363 // the stack, or if the argument is fully in registers but the 4364 // caller has allocated the parameter save anyway, we can refer 4365 // directly to the caller's stack frame. Otherwise, create a 4366 // local copy in our own frame. 4367 int FI; 4368 if (HasParameterArea || 4369 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4370 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4371 else 4372 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4373 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4374 4375 // Handle aggregates smaller than 8 bytes. 4376 if (ObjSize < PtrByteSize) { 4377 // The value of the object is its address, which differs from the 4378 // address of the enclosing doubleword on big-endian systems. 4379 SDValue Arg = FIN; 4380 if (!isLittleEndian) { 4381 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4382 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4383 } 4384 InVals.push_back(Arg); 4385 4386 if (GPR_idx != Num_GPR_Regs) { 4387 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4388 FuncInfo->addLiveInAttr(VReg, Flags); 4389 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4390 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4391 SDValue Store = 4392 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4393 MachinePointerInfo(&*FuncArg), ObjType); 4394 MemOps.push_back(Store); 4395 } 4396 // Whether we copied from a register or not, advance the offset 4397 // into the parameter save area by a full doubleword. 4398 ArgOffset += PtrByteSize; 4399 continue; 4400 } 4401 4402 // The value of the object is its address, which is the address of 4403 // its first stack doubleword. 4404 InVals.push_back(FIN); 4405 4406 // Store whatever pieces of the object are in registers to memory. 4407 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4408 if (GPR_idx == Num_GPR_Regs) 4409 break; 4410 4411 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4412 FuncInfo->addLiveInAttr(VReg, Flags); 4413 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4414 SDValue Addr = FIN; 4415 if (j) { 4416 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4417 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4418 } 4419 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4420 MachinePointerInfo(&*FuncArg, j)); 4421 MemOps.push_back(Store); 4422 ++GPR_idx; 4423 } 4424 ArgOffset += ArgSize; 4425 continue; 4426 } 4427 4428 switch (ObjectVT.getSimpleVT().SimpleTy) { 4429 default: llvm_unreachable("Unhandled argument type!"); 4430 case MVT::i1: 4431 case MVT::i32: 4432 case MVT::i64: 4433 if (Flags.isNest()) { 4434 // The 'nest' parameter, if any, is passed in R11. 4435 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4436 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4437 4438 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4439 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4440 4441 break; 4442 } 4443 4444 // These can be scalar arguments or elements of an integer array type 4445 // passed directly. Clang may use those instead of "byval" aggregate 4446 // types to avoid forcing arguments to memory unnecessarily. 4447 if (GPR_idx != Num_GPR_Regs) { 4448 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4449 FuncInfo->addLiveInAttr(VReg, Flags); 4450 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4451 4452 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4453 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4454 // value to MVT::i64 and then truncate to the correct register size. 4455 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4456 } else { 4457 if (CallConv == CallingConv::Fast) 4458 ComputeArgOffset(); 4459 4460 needsLoad = true; 4461 ArgSize = PtrByteSize; 4462 } 4463 if (CallConv != CallingConv::Fast || needsLoad) 4464 ArgOffset += 8; 4465 break; 4466 4467 case MVT::f32: 4468 case MVT::f64: 4469 // These can be scalar arguments or elements of a float array type 4470 // passed directly. The latter are used to implement ELFv2 homogenous 4471 // float aggregates. 4472 if (FPR_idx != Num_FPR_Regs) { 4473 unsigned VReg; 4474 4475 if (ObjectVT == MVT::f32) 4476 VReg = MF.addLiveIn(FPR[FPR_idx], 4477 Subtarget.hasP8Vector() 4478 ? &PPC::VSSRCRegClass 4479 : &PPC::F4RCRegClass); 4480 else 4481 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4482 ? &PPC::VSFRCRegClass 4483 : &PPC::F8RCRegClass); 4484 4485 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4486 ++FPR_idx; 4487 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4488 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4489 // once we support fp <-> gpr moves. 4490 4491 // This can only ever happen in the presence of f32 array types, 4492 // since otherwise we never run out of FPRs before running out 4493 // of GPRs. 4494 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4495 FuncInfo->addLiveInAttr(VReg, Flags); 4496 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4497 4498 if (ObjectVT == MVT::f32) { 4499 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4500 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4501 DAG.getConstant(32, dl, MVT::i32)); 4502 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4503 } 4504 4505 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4506 } else { 4507 if (CallConv == CallingConv::Fast) 4508 ComputeArgOffset(); 4509 4510 needsLoad = true; 4511 } 4512 4513 // When passing an array of floats, the array occupies consecutive 4514 // space in the argument area; only round up to the next doubleword 4515 // at the end of the array. Otherwise, each float takes 8 bytes. 4516 if (CallConv != CallingConv::Fast || needsLoad) { 4517 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4518 ArgOffset += ArgSize; 4519 if (Flags.isInConsecutiveRegsLast()) 4520 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4521 } 4522 break; 4523 case MVT::v4f32: 4524 case MVT::v4i32: 4525 case MVT::v8i16: 4526 case MVT::v16i8: 4527 case MVT::v2f64: 4528 case MVT::v2i64: 4529 case MVT::v1i128: 4530 case MVT::f128: 4531 // These can be scalar arguments or elements of a vector array type 4532 // passed directly. The latter are used to implement ELFv2 homogenous 4533 // vector aggregates. 4534 if (VR_idx != Num_VR_Regs) { 4535 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4536 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4537 ++VR_idx; 4538 } else { 4539 if (CallConv == CallingConv::Fast) 4540 ComputeArgOffset(); 4541 needsLoad = true; 4542 } 4543 if (CallConv != CallingConv::Fast || needsLoad) 4544 ArgOffset += 16; 4545 break; 4546 } 4547 4548 // We need to load the argument to a virtual register if we determined 4549 // above that we ran out of physical registers of the appropriate type. 4550 if (needsLoad) { 4551 if (ObjSize < ArgSize && !isLittleEndian) 4552 CurArgOffset += ArgSize - ObjSize; 4553 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4554 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4555 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4556 } 4557 4558 InVals.push_back(ArgVal); 4559 } 4560 4561 // Area that is at least reserved in the caller of this function. 4562 unsigned MinReservedArea; 4563 if (HasParameterArea) 4564 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4565 else 4566 MinReservedArea = LinkageSize; 4567 4568 // Set the size that is at least reserved in caller of this function. Tail 4569 // call optimized functions' reserved stack space needs to be aligned so that 4570 // taking the difference between two stack areas will result in an aligned 4571 // stack. 4572 MinReservedArea = 4573 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4574 FuncInfo->setMinReservedArea(MinReservedArea); 4575 4576 // If the function takes variable number of arguments, make a frame index for 4577 // the start of the first vararg value... for expansion of llvm.va_start. 4578 // On ELFv2ABI spec, it writes: 4579 // C programs that are intended to be *portable* across different compilers 4580 // and architectures must use the header file <stdarg.h> to deal with variable 4581 // argument lists. 4582 if (isVarArg && MFI.hasVAStart()) { 4583 int Depth = ArgOffset; 4584 4585 FuncInfo->setVarArgsFrameIndex( 4586 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4587 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4588 4589 // If this function is vararg, store any remaining integer argument regs 4590 // to their spots on the stack so that they may be loaded by dereferencing 4591 // the result of va_next. 4592 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4593 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4594 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4595 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4596 SDValue Store = 4597 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4598 MemOps.push_back(Store); 4599 // Increment the address by four for the next argument to store 4600 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4601 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4602 } 4603 } 4604 4605 if (!MemOps.empty()) 4606 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4607 4608 return Chain; 4609 } 4610 4611 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4612 /// adjusted to accommodate the arguments for the tailcall. 4613 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4614 unsigned ParamSize) { 4615 4616 if (!isTailCall) return 0; 4617 4618 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4619 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4620 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4621 // Remember only if the new adjustment is bigger. 4622 if (SPDiff < FI->getTailCallSPDelta()) 4623 FI->setTailCallSPDelta(SPDiff); 4624 4625 return SPDiff; 4626 } 4627 4628 static bool isFunctionGlobalAddress(SDValue Callee); 4629 4630 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4631 const TargetMachine &TM) { 4632 // It does not make sense to call callsShareTOCBase() with a caller that 4633 // is PC Relative since PC Relative callers do not have a TOC. 4634 #ifndef NDEBUG 4635 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4636 assert(!STICaller->isUsingPCRelativeCalls() && 4637 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4638 #endif 4639 4640 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4641 // don't have enough information to determine if the caller and callee share 4642 // the same TOC base, so we have to pessimistically assume they don't for 4643 // correctness. 4644 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4645 if (!G) 4646 return false; 4647 4648 const GlobalValue *GV = G->getGlobal(); 4649 4650 // If the callee is preemptable, then the static linker will use a plt-stub 4651 // which saves the toc to the stack, and needs a nop after the call 4652 // instruction to convert to a toc-restore. 4653 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4654 return false; 4655 4656 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4657 // We may need a TOC restore in the situation where the caller requires a 4658 // valid TOC but the callee is PC Relative and does not. 4659 const Function *F = dyn_cast<Function>(GV); 4660 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4661 4662 // If we have an Alias we can try to get the function from there. 4663 if (Alias) { 4664 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4665 F = dyn_cast<Function>(GlobalObj); 4666 } 4667 4668 // If we still have no valid function pointer we do not have enough 4669 // information to determine if the callee uses PC Relative calls so we must 4670 // assume that it does. 4671 if (!F) 4672 return false; 4673 4674 // If the callee uses PC Relative we cannot guarantee that the callee won't 4675 // clobber the TOC of the caller and so we must assume that the two 4676 // functions do not share a TOC base. 4677 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4678 if (STICallee->isUsingPCRelativeCalls()) 4679 return false; 4680 4681 // If the GV is not a strong definition then we need to assume it can be 4682 // replaced by another function at link time. The function that replaces 4683 // it may not share the same TOC as the caller since the callee may be 4684 // replaced by a PC Relative version of the same function. 4685 if (!GV->isStrongDefinitionForLinker()) 4686 return false; 4687 4688 // The medium and large code models are expected to provide a sufficiently 4689 // large TOC to provide all data addressing needs of a module with a 4690 // single TOC. 4691 if (CodeModel::Medium == TM.getCodeModel() || 4692 CodeModel::Large == TM.getCodeModel()) 4693 return true; 4694 4695 // Any explicitly-specified sections and section prefixes must also match. 4696 // Also, if we're using -ffunction-sections, then each function is always in 4697 // a different section (the same is true for COMDAT functions). 4698 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4699 GV->getSection() != Caller->getSection()) 4700 return false; 4701 if (const auto *F = dyn_cast<Function>(GV)) { 4702 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4703 return false; 4704 } 4705 4706 return true; 4707 } 4708 4709 static bool 4710 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4711 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4712 assert(Subtarget.is64BitELFABI()); 4713 4714 const unsigned PtrByteSize = 8; 4715 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4716 4717 static const MCPhysReg GPR[] = { 4718 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4719 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4720 }; 4721 static const MCPhysReg VR[] = { 4722 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4723 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4724 }; 4725 4726 const unsigned NumGPRs = array_lengthof(GPR); 4727 const unsigned NumFPRs = 13; 4728 const unsigned NumVRs = array_lengthof(VR); 4729 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4730 4731 unsigned NumBytes = LinkageSize; 4732 unsigned AvailableFPRs = NumFPRs; 4733 unsigned AvailableVRs = NumVRs; 4734 4735 for (const ISD::OutputArg& Param : Outs) { 4736 if (Param.Flags.isNest()) continue; 4737 4738 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4739 LinkageSize, ParamAreaSize, NumBytes, 4740 AvailableFPRs, AvailableVRs)) 4741 return true; 4742 } 4743 return false; 4744 } 4745 4746 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4747 if (CB.arg_size() != CallerFn->arg_size()) 4748 return false; 4749 4750 auto CalleeArgIter = CB.arg_begin(); 4751 auto CalleeArgEnd = CB.arg_end(); 4752 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4753 4754 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4755 const Value* CalleeArg = *CalleeArgIter; 4756 const Value* CallerArg = &(*CallerArgIter); 4757 if (CalleeArg == CallerArg) 4758 continue; 4759 4760 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4761 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4762 // } 4763 // 1st argument of callee is undef and has the same type as caller. 4764 if (CalleeArg->getType() == CallerArg->getType() && 4765 isa<UndefValue>(CalleeArg)) 4766 continue; 4767 4768 return false; 4769 } 4770 4771 return true; 4772 } 4773 4774 // Returns true if TCO is possible between the callers and callees 4775 // calling conventions. 4776 static bool 4777 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4778 CallingConv::ID CalleeCC) { 4779 // Tail calls are possible with fastcc and ccc. 4780 auto isTailCallableCC = [] (CallingConv::ID CC){ 4781 return CC == CallingConv::C || CC == CallingConv::Fast; 4782 }; 4783 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4784 return false; 4785 4786 // We can safely tail call both fastcc and ccc callees from a c calling 4787 // convention caller. If the caller is fastcc, we may have less stack space 4788 // than a non-fastcc caller with the same signature so disable tail-calls in 4789 // that case. 4790 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4791 } 4792 4793 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4794 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4795 const SmallVectorImpl<ISD::OutputArg> &Outs, 4796 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4797 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4798 4799 if (DisableSCO && !TailCallOpt) return false; 4800 4801 // Variadic argument functions are not supported. 4802 if (isVarArg) return false; 4803 4804 auto &Caller = DAG.getMachineFunction().getFunction(); 4805 // Check that the calling conventions are compatible for tco. 4806 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4807 return false; 4808 4809 // Caller contains any byval parameter is not supported. 4810 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4811 return false; 4812 4813 // Callee contains any byval parameter is not supported, too. 4814 // Note: This is a quick work around, because in some cases, e.g. 4815 // caller's stack size > callee's stack size, we are still able to apply 4816 // sibling call optimization. For example, gcc is able to do SCO for caller1 4817 // in the following example, but not for caller2. 4818 // struct test { 4819 // long int a; 4820 // char ary[56]; 4821 // } gTest; 4822 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4823 // b->a = v.a; 4824 // return 0; 4825 // } 4826 // void caller1(struct test a, struct test c, struct test *b) { 4827 // callee(gTest, b); } 4828 // void caller2(struct test *b) { callee(gTest, b); } 4829 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4830 return false; 4831 4832 // If callee and caller use different calling conventions, we cannot pass 4833 // parameters on stack since offsets for the parameter area may be different. 4834 if (Caller.getCallingConv() != CalleeCC && 4835 needStackSlotPassParameters(Subtarget, Outs)) 4836 return false; 4837 4838 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4839 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4840 // callee potentially have different TOC bases then we cannot tail call since 4841 // we need to restore the TOC pointer after the call. 4842 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4843 // We cannot guarantee this for indirect calls or calls to external functions. 4844 // When PC-Relative addressing is used, the concept of the TOC is no longer 4845 // applicable so this check is not required. 4846 // Check first for indirect calls. 4847 if (!Subtarget.isUsingPCRelativeCalls() && 4848 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4849 return false; 4850 4851 // Check if we share the TOC base. 4852 if (!Subtarget.isUsingPCRelativeCalls() && 4853 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4854 return false; 4855 4856 // TCO allows altering callee ABI, so we don't have to check further. 4857 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4858 return true; 4859 4860 if (DisableSCO) return false; 4861 4862 // If callee use the same argument list that caller is using, then we can 4863 // apply SCO on this case. If it is not, then we need to check if callee needs 4864 // stack for passing arguments. 4865 // PC Relative tail calls may not have a CallBase. 4866 // If there is no CallBase we cannot verify if we have the same argument 4867 // list so assume that we don't have the same argument list. 4868 if (CB && !hasSameArgumentList(&Caller, *CB) && 4869 needStackSlotPassParameters(Subtarget, Outs)) 4870 return false; 4871 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4872 return false; 4873 4874 return true; 4875 } 4876 4877 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4878 /// for tail call optimization. Targets which want to do tail call 4879 /// optimization should implement this function. 4880 bool 4881 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4882 CallingConv::ID CalleeCC, 4883 bool isVarArg, 4884 const SmallVectorImpl<ISD::InputArg> &Ins, 4885 SelectionDAG& DAG) const { 4886 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4887 return false; 4888 4889 // Variable argument functions are not supported. 4890 if (isVarArg) 4891 return false; 4892 4893 MachineFunction &MF = DAG.getMachineFunction(); 4894 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4895 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4896 // Functions containing by val parameters are not supported. 4897 for (unsigned i = 0; i != Ins.size(); i++) { 4898 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4899 if (Flags.isByVal()) return false; 4900 } 4901 4902 // Non-PIC/GOT tail calls are supported. 4903 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4904 return true; 4905 4906 // At the moment we can only do local tail calls (in same module, hidden 4907 // or protected) if we are generating PIC. 4908 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4909 return G->getGlobal()->hasHiddenVisibility() 4910 || G->getGlobal()->hasProtectedVisibility(); 4911 } 4912 4913 return false; 4914 } 4915 4916 /// isCallCompatibleAddress - Return the immediate to use if the specified 4917 /// 32-bit value is representable in the immediate field of a BxA instruction. 4918 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4919 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4920 if (!C) return nullptr; 4921 4922 int Addr = C->getZExtValue(); 4923 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4924 SignExtend32<26>(Addr) != Addr) 4925 return nullptr; // Top 6 bits have to be sext of immediate. 4926 4927 return DAG 4928 .getConstant( 4929 (int)C->getZExtValue() >> 2, SDLoc(Op), 4930 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4931 .getNode(); 4932 } 4933 4934 namespace { 4935 4936 struct TailCallArgumentInfo { 4937 SDValue Arg; 4938 SDValue FrameIdxOp; 4939 int FrameIdx = 0; 4940 4941 TailCallArgumentInfo() = default; 4942 }; 4943 4944 } // end anonymous namespace 4945 4946 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4947 static void StoreTailCallArgumentsToStackSlot( 4948 SelectionDAG &DAG, SDValue Chain, 4949 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4950 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4951 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4952 SDValue Arg = TailCallArgs[i].Arg; 4953 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4954 int FI = TailCallArgs[i].FrameIdx; 4955 // Store relative to framepointer. 4956 MemOpChains.push_back(DAG.getStore( 4957 Chain, dl, Arg, FIN, 4958 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4959 } 4960 } 4961 4962 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4963 /// the appropriate stack slot for the tail call optimized function call. 4964 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4965 SDValue OldRetAddr, SDValue OldFP, 4966 int SPDiff, const SDLoc &dl) { 4967 if (SPDiff) { 4968 // Calculate the new stack slot for the return address. 4969 MachineFunction &MF = DAG.getMachineFunction(); 4970 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4971 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4972 bool isPPC64 = Subtarget.isPPC64(); 4973 int SlotSize = isPPC64 ? 8 : 4; 4974 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4975 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4976 NewRetAddrLoc, true); 4977 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4978 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4979 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4980 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4981 } 4982 return Chain; 4983 } 4984 4985 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4986 /// the position of the argument. 4987 static void 4988 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4989 SDValue Arg, int SPDiff, unsigned ArgOffset, 4990 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4991 int Offset = ArgOffset + SPDiff; 4992 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4993 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4994 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4995 SDValue FIN = DAG.getFrameIndex(FI, VT); 4996 TailCallArgumentInfo Info; 4997 Info.Arg = Arg; 4998 Info.FrameIdxOp = FIN; 4999 Info.FrameIdx = FI; 5000 TailCallArguments.push_back(Info); 5001 } 5002 5003 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5004 /// stack slot. Returns the chain as result and the loaded frame pointers in 5005 /// LROpOut/FPOpout. Used when tail calling. 5006 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5007 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5008 SDValue &FPOpOut, const SDLoc &dl) const { 5009 if (SPDiff) { 5010 // Load the LR and FP stack slot for later adjusting. 5011 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5012 LROpOut = getReturnAddrFrameIndex(DAG); 5013 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5014 Chain = SDValue(LROpOut.getNode(), 1); 5015 } 5016 return Chain; 5017 } 5018 5019 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5020 /// by "Src" to address "Dst" of size "Size". Alignment information is 5021 /// specified by the specific parameter attribute. The copy will be passed as 5022 /// a byval function parameter. 5023 /// Sometimes what we are copying is the end of a larger object, the part that 5024 /// does not fit in registers. 5025 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5026 SDValue Chain, ISD::ArgFlagsTy Flags, 5027 SelectionDAG &DAG, const SDLoc &dl) { 5028 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5029 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5030 Flags.getNonZeroByValAlign(), false, false, false, 5031 MachinePointerInfo(), MachinePointerInfo()); 5032 } 5033 5034 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5035 /// tail calls. 5036 static void LowerMemOpCallTo( 5037 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5038 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5039 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5040 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5041 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5042 if (!isTailCall) { 5043 if (isVector) { 5044 SDValue StackPtr; 5045 if (isPPC64) 5046 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5047 else 5048 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5049 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5050 DAG.getConstant(ArgOffset, dl, PtrVT)); 5051 } 5052 MemOpChains.push_back( 5053 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5054 // Calculate and remember argument location. 5055 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5056 TailCallArguments); 5057 } 5058 5059 static void 5060 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5061 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5062 SDValue FPOp, 5063 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5064 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5065 // might overwrite each other in case of tail call optimization. 5066 SmallVector<SDValue, 8> MemOpChains2; 5067 // Do not flag preceding copytoreg stuff together with the following stuff. 5068 InFlag = SDValue(); 5069 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5070 MemOpChains2, dl); 5071 if (!MemOpChains2.empty()) 5072 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5073 5074 // Store the return address to the appropriate stack slot. 5075 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5076 5077 // Emit callseq_end just before tailcall node. 5078 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5079 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5080 InFlag = Chain.getValue(1); 5081 } 5082 5083 // Is this global address that of a function that can be called by name? (as 5084 // opposed to something that must hold a descriptor for an indirect call). 5085 static bool isFunctionGlobalAddress(SDValue Callee) { 5086 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5087 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5088 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5089 return false; 5090 5091 return G->getGlobal()->getValueType()->isFunctionTy(); 5092 } 5093 5094 return false; 5095 } 5096 5097 SDValue PPCTargetLowering::LowerCallResult( 5098 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5099 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5100 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5101 SmallVector<CCValAssign, 16> RVLocs; 5102 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5103 *DAG.getContext()); 5104 5105 CCRetInfo.AnalyzeCallResult( 5106 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5107 ? RetCC_PPC_Cold 5108 : RetCC_PPC); 5109 5110 // Copy all of the result registers out of their specified physreg. 5111 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5112 CCValAssign &VA = RVLocs[i]; 5113 assert(VA.isRegLoc() && "Can only return in registers!"); 5114 5115 SDValue Val; 5116 5117 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5118 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5119 InFlag); 5120 Chain = Lo.getValue(1); 5121 InFlag = Lo.getValue(2); 5122 VA = RVLocs[++i]; // skip ahead to next loc 5123 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5124 InFlag); 5125 Chain = Hi.getValue(1); 5126 InFlag = Hi.getValue(2); 5127 if (!Subtarget.isLittleEndian()) 5128 std::swap (Lo, Hi); 5129 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5130 } else { 5131 Val = DAG.getCopyFromReg(Chain, dl, 5132 VA.getLocReg(), VA.getLocVT(), InFlag); 5133 Chain = Val.getValue(1); 5134 InFlag = Val.getValue(2); 5135 } 5136 5137 switch (VA.getLocInfo()) { 5138 default: llvm_unreachable("Unknown loc info!"); 5139 case CCValAssign::Full: break; 5140 case CCValAssign::AExt: 5141 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5142 break; 5143 case CCValAssign::ZExt: 5144 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5145 DAG.getValueType(VA.getValVT())); 5146 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5147 break; 5148 case CCValAssign::SExt: 5149 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5150 DAG.getValueType(VA.getValVT())); 5151 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5152 break; 5153 } 5154 5155 InVals.push_back(Val); 5156 } 5157 5158 return Chain; 5159 } 5160 5161 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5162 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5163 // PatchPoint calls are not indirect. 5164 if (isPatchPoint) 5165 return false; 5166 5167 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5168 return false; 5169 5170 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5171 // becuase the immediate function pointer points to a descriptor instead of 5172 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5173 // pointer immediate points to the global entry point, while the BLA would 5174 // need to jump to the local entry point (see rL211174). 5175 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5176 isBLACompatibleAddress(Callee, DAG)) 5177 return false; 5178 5179 return true; 5180 } 5181 5182 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5183 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5184 return Subtarget.isAIXABI() || 5185 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5186 } 5187 5188 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5189 const Function &Caller, const SDValue &Callee, 5190 const PPCSubtarget &Subtarget, 5191 const TargetMachine &TM, 5192 bool IsStrictFPCall = false) { 5193 if (CFlags.IsTailCall) 5194 return PPCISD::TC_RETURN; 5195 5196 unsigned RetOpc = 0; 5197 // This is a call through a function pointer. 5198 if (CFlags.IsIndirect) { 5199 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5200 // indirect calls. The save of the caller's TOC pointer to the stack will be 5201 // inserted into the DAG as part of call lowering. The restore of the TOC 5202 // pointer is modeled by using a pseudo instruction for the call opcode that 5203 // represents the 2 instruction sequence of an indirect branch and link, 5204 // immediately followed by a load of the TOC pointer from the the stack save 5205 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5206 // as it is not saved or used. 5207 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5208 : PPCISD::BCTRL; 5209 } else if (Subtarget.isUsingPCRelativeCalls()) { 5210 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5211 RetOpc = PPCISD::CALL_NOTOC; 5212 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5213 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5214 // immediately following the call instruction if the caller and callee may 5215 // have different TOC bases. At link time if the linker determines the calls 5216 // may not share a TOC base, the call is redirected to a trampoline inserted 5217 // by the linker. The trampoline will (among other things) save the callers 5218 // TOC pointer at an ABI designated offset in the linkage area and the 5219 // linker will rewrite the nop to be a load of the TOC pointer from the 5220 // linkage area into gpr2. 5221 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5222 : PPCISD::CALL_NOP; 5223 else 5224 RetOpc = PPCISD::CALL; 5225 if (IsStrictFPCall) { 5226 switch (RetOpc) { 5227 default: 5228 llvm_unreachable("Unknown call opcode"); 5229 case PPCISD::BCTRL_LOAD_TOC: 5230 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5231 break; 5232 case PPCISD::BCTRL: 5233 RetOpc = PPCISD::BCTRL_RM; 5234 break; 5235 case PPCISD::CALL_NOTOC: 5236 RetOpc = PPCISD::CALL_NOTOC_RM; 5237 break; 5238 case PPCISD::CALL: 5239 RetOpc = PPCISD::CALL_RM; 5240 break; 5241 case PPCISD::CALL_NOP: 5242 RetOpc = PPCISD::CALL_NOP_RM; 5243 break; 5244 } 5245 } 5246 return RetOpc; 5247 } 5248 5249 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5250 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5251 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5252 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5253 return SDValue(Dest, 0); 5254 5255 // Returns true if the callee is local, and false otherwise. 5256 auto isLocalCallee = [&]() { 5257 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5258 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5259 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5260 5261 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5262 !isa_and_nonnull<GlobalIFunc>(GV); 5263 }; 5264 5265 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5266 // a static relocation model causes some versions of GNU LD (2.17.50, at 5267 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5268 // built with secure-PLT. 5269 bool UsePlt = 5270 Subtarget.is32BitELFABI() && !isLocalCallee() && 5271 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5272 5273 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5274 const TargetMachine &TM = Subtarget.getTargetMachine(); 5275 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5276 MCSymbolXCOFF *S = 5277 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5278 5279 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5280 return DAG.getMCSymbol(S, PtrVT); 5281 }; 5282 5283 if (isFunctionGlobalAddress(Callee)) { 5284 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5285 5286 if (Subtarget.isAIXABI()) { 5287 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5288 return getAIXFuncEntryPointSymbolSDNode(GV); 5289 } 5290 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5291 UsePlt ? PPCII::MO_PLT : 0); 5292 } 5293 5294 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5295 const char *SymName = S->getSymbol(); 5296 if (Subtarget.isAIXABI()) { 5297 // If there exists a user-declared function whose name is the same as the 5298 // ExternalSymbol's, then we pick up the user-declared version. 5299 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5300 if (const Function *F = 5301 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5302 return getAIXFuncEntryPointSymbolSDNode(F); 5303 5304 // On AIX, direct function calls reference the symbol for the function's 5305 // entry point, which is named by prepending a "." before the function's 5306 // C-linkage name. A Qualname is returned here because an external 5307 // function entry point is a csect with XTY_ER property. 5308 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5309 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5310 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5311 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5312 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5313 return Sec->getQualNameSymbol(); 5314 }; 5315 5316 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5317 } 5318 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5319 UsePlt ? PPCII::MO_PLT : 0); 5320 } 5321 5322 // No transformation needed. 5323 assert(Callee.getNode() && "What no callee?"); 5324 return Callee; 5325 } 5326 5327 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5328 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5329 "Expected a CALLSEQ_STARTSDNode."); 5330 5331 // The last operand is the chain, except when the node has glue. If the node 5332 // has glue, then the last operand is the glue, and the chain is the second 5333 // last operand. 5334 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5335 if (LastValue.getValueType() != MVT::Glue) 5336 return LastValue; 5337 5338 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5339 } 5340 5341 // Creates the node that moves a functions address into the count register 5342 // to prepare for an indirect call instruction. 5343 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5344 SDValue &Glue, SDValue &Chain, 5345 const SDLoc &dl) { 5346 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5347 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5348 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5349 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5350 // The glue is the second value produced. 5351 Glue = Chain.getValue(1); 5352 } 5353 5354 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5355 SDValue &Glue, SDValue &Chain, 5356 SDValue CallSeqStart, 5357 const CallBase *CB, const SDLoc &dl, 5358 bool hasNest, 5359 const PPCSubtarget &Subtarget) { 5360 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5361 // entry point, but to the function descriptor (the function entry point 5362 // address is part of the function descriptor though). 5363 // The function descriptor is a three doubleword structure with the 5364 // following fields: function entry point, TOC base address and 5365 // environment pointer. 5366 // Thus for a call through a function pointer, the following actions need 5367 // to be performed: 5368 // 1. Save the TOC of the caller in the TOC save area of its stack 5369 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5370 // 2. Load the address of the function entry point from the function 5371 // descriptor. 5372 // 3. Load the TOC of the callee from the function descriptor into r2. 5373 // 4. Load the environment pointer from the function descriptor into 5374 // r11. 5375 // 5. Branch to the function entry point address. 5376 // 6. On return of the callee, the TOC of the caller needs to be 5377 // restored (this is done in FinishCall()). 5378 // 5379 // The loads are scheduled at the beginning of the call sequence, and the 5380 // register copies are flagged together to ensure that no other 5381 // operations can be scheduled in between. E.g. without flagging the 5382 // copies together, a TOC access in the caller could be scheduled between 5383 // the assignment of the callee TOC and the branch to the callee, which leads 5384 // to incorrect code. 5385 5386 // Start by loading the function address from the descriptor. 5387 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5388 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5389 ? (MachineMemOperand::MODereferenceable | 5390 MachineMemOperand::MOInvariant) 5391 : MachineMemOperand::MONone; 5392 5393 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5394 5395 // Registers used in building the DAG. 5396 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5397 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5398 5399 // Offsets of descriptor members. 5400 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5401 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5402 5403 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5404 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5405 5406 // One load for the functions entry point address. 5407 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5408 Alignment, MMOFlags); 5409 5410 // One for loading the TOC anchor for the module that contains the called 5411 // function. 5412 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5413 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5414 SDValue TOCPtr = 5415 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5416 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5417 5418 // One for loading the environment pointer. 5419 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5420 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5421 SDValue LoadEnvPtr = 5422 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5423 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5424 5425 5426 // Then copy the newly loaded TOC anchor to the TOC pointer. 5427 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5428 Chain = TOCVal.getValue(0); 5429 Glue = TOCVal.getValue(1); 5430 5431 // If the function call has an explicit 'nest' parameter, it takes the 5432 // place of the environment pointer. 5433 assert((!hasNest || !Subtarget.isAIXABI()) && 5434 "Nest parameter is not supported on AIX."); 5435 if (!hasNest) { 5436 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5437 Chain = EnvVal.getValue(0); 5438 Glue = EnvVal.getValue(1); 5439 } 5440 5441 // The rest of the indirect call sequence is the same as the non-descriptor 5442 // DAG. 5443 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5444 } 5445 5446 static void 5447 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5448 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5449 SelectionDAG &DAG, 5450 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5451 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5452 const PPCSubtarget &Subtarget) { 5453 const bool IsPPC64 = Subtarget.isPPC64(); 5454 // MVT for a general purpose register. 5455 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5456 5457 // First operand is always the chain. 5458 Ops.push_back(Chain); 5459 5460 // If it's a direct call pass the callee as the second operand. 5461 if (!CFlags.IsIndirect) 5462 Ops.push_back(Callee); 5463 else { 5464 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5465 5466 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5467 // on the stack (this would have been done in `LowerCall_64SVR4` or 5468 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5469 // represents both the indirect branch and a load that restores the TOC 5470 // pointer from the linkage area. The operand for the TOC restore is an add 5471 // of the TOC save offset to the stack pointer. This must be the second 5472 // operand: after the chain input but before any other variadic arguments. 5473 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5474 // saved or used. 5475 if (isTOCSaveRestoreRequired(Subtarget)) { 5476 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5477 5478 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5479 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5480 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5481 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5482 Ops.push_back(AddTOC); 5483 } 5484 5485 // Add the register used for the environment pointer. 5486 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5487 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5488 RegVT)); 5489 5490 5491 // Add CTR register as callee so a bctr can be emitted later. 5492 if (CFlags.IsTailCall) 5493 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5494 } 5495 5496 // If this is a tail call add stack pointer delta. 5497 if (CFlags.IsTailCall) 5498 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5499 5500 // Add argument registers to the end of the list so that they are known live 5501 // into the call. 5502 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5503 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5504 RegsToPass[i].second.getValueType())); 5505 5506 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5507 // no way to mark dependencies as implicit here. 5508 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5509 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5510 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5511 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5512 5513 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5514 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5515 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5516 5517 // Add a register mask operand representing the call-preserved registers. 5518 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5519 const uint32_t *Mask = 5520 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5521 assert(Mask && "Missing call preserved mask for calling convention"); 5522 Ops.push_back(DAG.getRegisterMask(Mask)); 5523 5524 // If the glue is valid, it is the last operand. 5525 if (Glue.getNode()) 5526 Ops.push_back(Glue); 5527 } 5528 5529 SDValue PPCTargetLowering::FinishCall( 5530 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5531 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5532 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5533 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5534 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5535 5536 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5537 Subtarget.isAIXABI()) 5538 setUsesTOCBasePtr(DAG); 5539 5540 unsigned CallOpc = 5541 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5542 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5543 5544 if (!CFlags.IsIndirect) 5545 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5546 else if (Subtarget.usesFunctionDescriptors()) 5547 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5548 dl, CFlags.HasNest, Subtarget); 5549 else 5550 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5551 5552 // Build the operand list for the call instruction. 5553 SmallVector<SDValue, 8> Ops; 5554 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5555 SPDiff, Subtarget); 5556 5557 // Emit tail call. 5558 if (CFlags.IsTailCall) { 5559 // Indirect tail call when using PC Relative calls do not have the same 5560 // constraints. 5561 assert(((Callee.getOpcode() == ISD::Register && 5562 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5563 Callee.getOpcode() == ISD::TargetExternalSymbol || 5564 Callee.getOpcode() == ISD::TargetGlobalAddress || 5565 isa<ConstantSDNode>(Callee) || 5566 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5567 "Expecting a global address, external symbol, absolute value, " 5568 "register or an indirect tail call when PC Relative calls are " 5569 "used."); 5570 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5571 assert(CallOpc == PPCISD::TC_RETURN && 5572 "Unexpected call opcode for a tail call."); 5573 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5574 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5575 } 5576 5577 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5578 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5579 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5580 Glue = Chain.getValue(1); 5581 5582 // When performing tail call optimization the callee pops its arguments off 5583 // the stack. Account for this here so these bytes can be pushed back on in 5584 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5585 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5586 getTargetMachine().Options.GuaranteedTailCallOpt) 5587 ? NumBytes 5588 : 0; 5589 5590 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5591 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5592 Glue, dl); 5593 Glue = Chain.getValue(1); 5594 5595 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5596 DAG, InVals); 5597 } 5598 5599 SDValue 5600 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5601 SmallVectorImpl<SDValue> &InVals) const { 5602 SelectionDAG &DAG = CLI.DAG; 5603 SDLoc &dl = CLI.DL; 5604 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5605 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5606 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5607 SDValue Chain = CLI.Chain; 5608 SDValue Callee = CLI.Callee; 5609 bool &isTailCall = CLI.IsTailCall; 5610 CallingConv::ID CallConv = CLI.CallConv; 5611 bool isVarArg = CLI.IsVarArg; 5612 bool isPatchPoint = CLI.IsPatchPoint; 5613 const CallBase *CB = CLI.CB; 5614 5615 if (isTailCall) { 5616 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5617 isTailCall = false; 5618 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5619 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5620 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5621 else 5622 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5623 Ins, DAG); 5624 if (isTailCall) { 5625 ++NumTailCalls; 5626 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5627 ++NumSiblingCalls; 5628 5629 // PC Relative calls no longer guarantee that the callee is a Global 5630 // Address Node. The callee could be an indirect tail call in which 5631 // case the SDValue for the callee could be a load (to load the address 5632 // of a function pointer) or it may be a register copy (to move the 5633 // address of the callee from a function parameter into a virtual 5634 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5635 assert((Subtarget.isUsingPCRelativeCalls() || 5636 isa<GlobalAddressSDNode>(Callee)) && 5637 "Callee should be an llvm::Function object."); 5638 5639 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5640 << "\nTCO callee: "); 5641 LLVM_DEBUG(Callee.dump()); 5642 } 5643 } 5644 5645 if (!isTailCall && CB && CB->isMustTailCall()) 5646 report_fatal_error("failed to perform tail call elimination on a call " 5647 "site marked musttail"); 5648 5649 // When long calls (i.e. indirect calls) are always used, calls are always 5650 // made via function pointer. If we have a function name, first translate it 5651 // into a pointer. 5652 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5653 !isTailCall) 5654 Callee = LowerGlobalAddress(Callee, DAG); 5655 5656 CallFlags CFlags( 5657 CallConv, isTailCall, isVarArg, isPatchPoint, 5658 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5659 // hasNest 5660 Subtarget.is64BitELFABI() && 5661 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5662 CLI.NoMerge); 5663 5664 if (Subtarget.isAIXABI()) 5665 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5666 InVals, CB); 5667 5668 assert(Subtarget.isSVR4ABI()); 5669 if (Subtarget.isPPC64()) 5670 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5671 InVals, CB); 5672 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5673 InVals, CB); 5674 } 5675 5676 SDValue PPCTargetLowering::LowerCall_32SVR4( 5677 SDValue Chain, SDValue Callee, CallFlags CFlags, 5678 const SmallVectorImpl<ISD::OutputArg> &Outs, 5679 const SmallVectorImpl<SDValue> &OutVals, 5680 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5681 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5682 const CallBase *CB) const { 5683 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5684 // of the 32-bit SVR4 ABI stack frame layout. 5685 5686 const CallingConv::ID CallConv = CFlags.CallConv; 5687 const bool IsVarArg = CFlags.IsVarArg; 5688 const bool IsTailCall = CFlags.IsTailCall; 5689 5690 assert((CallConv == CallingConv::C || 5691 CallConv == CallingConv::Cold || 5692 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5693 5694 const Align PtrAlign(4); 5695 5696 MachineFunction &MF = DAG.getMachineFunction(); 5697 5698 // Mark this function as potentially containing a function that contains a 5699 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5700 // and restoring the callers stack pointer in this functions epilog. This is 5701 // done because by tail calling the called function might overwrite the value 5702 // in this function's (MF) stack pointer stack slot 0(SP). 5703 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5704 CallConv == CallingConv::Fast) 5705 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5706 5707 // Count how many bytes are to be pushed on the stack, including the linkage 5708 // area, parameter list area and the part of the local variable space which 5709 // contains copies of aggregates which are passed by value. 5710 5711 // Assign locations to all of the outgoing arguments. 5712 SmallVector<CCValAssign, 16> ArgLocs; 5713 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5714 5715 // Reserve space for the linkage area on the stack. 5716 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5717 PtrAlign); 5718 if (useSoftFloat()) 5719 CCInfo.PreAnalyzeCallOperands(Outs); 5720 5721 if (IsVarArg) { 5722 // Handle fixed and variable vector arguments differently. 5723 // Fixed vector arguments go into registers as long as registers are 5724 // available. Variable vector arguments always go into memory. 5725 unsigned NumArgs = Outs.size(); 5726 5727 for (unsigned i = 0; i != NumArgs; ++i) { 5728 MVT ArgVT = Outs[i].VT; 5729 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5730 bool Result; 5731 5732 if (Outs[i].IsFixed) { 5733 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5734 CCInfo); 5735 } else { 5736 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5737 ArgFlags, CCInfo); 5738 } 5739 5740 if (Result) { 5741 #ifndef NDEBUG 5742 errs() << "Call operand #" << i << " has unhandled type " 5743 << EVT(ArgVT).getEVTString() << "\n"; 5744 #endif 5745 llvm_unreachable(nullptr); 5746 } 5747 } 5748 } else { 5749 // All arguments are treated the same. 5750 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5751 } 5752 CCInfo.clearWasPPCF128(); 5753 5754 // Assign locations to all of the outgoing aggregate by value arguments. 5755 SmallVector<CCValAssign, 16> ByValArgLocs; 5756 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5757 5758 // Reserve stack space for the allocations in CCInfo. 5759 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5760 5761 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5762 5763 // Size of the linkage area, parameter list area and the part of the local 5764 // space variable where copies of aggregates which are passed by value are 5765 // stored. 5766 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5767 5768 // Calculate by how many bytes the stack has to be adjusted in case of tail 5769 // call optimization. 5770 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5771 5772 // Adjust the stack pointer for the new arguments... 5773 // These operations are automatically eliminated by the prolog/epilog pass 5774 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5775 SDValue CallSeqStart = Chain; 5776 5777 // Load the return address and frame pointer so it can be moved somewhere else 5778 // later. 5779 SDValue LROp, FPOp; 5780 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5781 5782 // Set up a copy of the stack pointer for use loading and storing any 5783 // arguments that may not fit in the registers available for argument 5784 // passing. 5785 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5786 5787 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5788 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5789 SmallVector<SDValue, 8> MemOpChains; 5790 5791 bool seenFloatArg = false; 5792 // Walk the register/memloc assignments, inserting copies/loads. 5793 // i - Tracks the index into the list of registers allocated for the call 5794 // RealArgIdx - Tracks the index into the list of actual function arguments 5795 // j - Tracks the index into the list of byval arguments 5796 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5797 i != e; 5798 ++i, ++RealArgIdx) { 5799 CCValAssign &VA = ArgLocs[i]; 5800 SDValue Arg = OutVals[RealArgIdx]; 5801 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5802 5803 if (Flags.isByVal()) { 5804 // Argument is an aggregate which is passed by value, thus we need to 5805 // create a copy of it in the local variable space of the current stack 5806 // frame (which is the stack frame of the caller) and pass the address of 5807 // this copy to the callee. 5808 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5809 CCValAssign &ByValVA = ByValArgLocs[j++]; 5810 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5811 5812 // Memory reserved in the local variable space of the callers stack frame. 5813 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5814 5815 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5816 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5817 StackPtr, PtrOff); 5818 5819 // Create a copy of the argument in the local area of the current 5820 // stack frame. 5821 SDValue MemcpyCall = 5822 CreateCopyOfByValArgument(Arg, PtrOff, 5823 CallSeqStart.getNode()->getOperand(0), 5824 Flags, DAG, dl); 5825 5826 // This must go outside the CALLSEQ_START..END. 5827 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5828 SDLoc(MemcpyCall)); 5829 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5830 NewCallSeqStart.getNode()); 5831 Chain = CallSeqStart = NewCallSeqStart; 5832 5833 // Pass the address of the aggregate copy on the stack either in a 5834 // physical register or in the parameter list area of the current stack 5835 // frame to the callee. 5836 Arg = PtrOff; 5837 } 5838 5839 // When useCRBits() is true, there can be i1 arguments. 5840 // It is because getRegisterType(MVT::i1) => MVT::i1, 5841 // and for other integer types getRegisterType() => MVT::i32. 5842 // Extend i1 and ensure callee will get i32. 5843 if (Arg.getValueType() == MVT::i1) 5844 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5845 dl, MVT::i32, Arg); 5846 5847 if (VA.isRegLoc()) { 5848 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5849 // Put argument in a physical register. 5850 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5851 bool IsLE = Subtarget.isLittleEndian(); 5852 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5853 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5854 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5855 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5856 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5857 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5858 SVal.getValue(0))); 5859 } else 5860 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5861 } else { 5862 // Put argument in the parameter list area of the current stack frame. 5863 assert(VA.isMemLoc()); 5864 unsigned LocMemOffset = VA.getLocMemOffset(); 5865 5866 if (!IsTailCall) { 5867 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5868 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5869 StackPtr, PtrOff); 5870 5871 MemOpChains.push_back( 5872 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5873 } else { 5874 // Calculate and remember argument location. 5875 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5876 TailCallArguments); 5877 } 5878 } 5879 } 5880 5881 if (!MemOpChains.empty()) 5882 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5883 5884 // Build a sequence of copy-to-reg nodes chained together with token chain 5885 // and flag operands which copy the outgoing args into the appropriate regs. 5886 SDValue InFlag; 5887 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5888 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5889 RegsToPass[i].second, InFlag); 5890 InFlag = Chain.getValue(1); 5891 } 5892 5893 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5894 // registers. 5895 if (IsVarArg) { 5896 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5897 SDValue Ops[] = { Chain, InFlag }; 5898 5899 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5900 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5901 5902 InFlag = Chain.getValue(1); 5903 } 5904 5905 if (IsTailCall) 5906 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5907 TailCallArguments); 5908 5909 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5910 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5911 } 5912 5913 // Copy an argument into memory, being careful to do this outside the 5914 // call sequence for the call to which the argument belongs. 5915 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5916 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5917 SelectionDAG &DAG, const SDLoc &dl) const { 5918 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5919 CallSeqStart.getNode()->getOperand(0), 5920 Flags, DAG, dl); 5921 // The MEMCPY must go outside the CALLSEQ_START..END. 5922 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5923 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5924 SDLoc(MemcpyCall)); 5925 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5926 NewCallSeqStart.getNode()); 5927 return NewCallSeqStart; 5928 } 5929 5930 SDValue PPCTargetLowering::LowerCall_64SVR4( 5931 SDValue Chain, SDValue Callee, CallFlags CFlags, 5932 const SmallVectorImpl<ISD::OutputArg> &Outs, 5933 const SmallVectorImpl<SDValue> &OutVals, 5934 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5935 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5936 const CallBase *CB) const { 5937 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5938 bool isLittleEndian = Subtarget.isLittleEndian(); 5939 unsigned NumOps = Outs.size(); 5940 bool IsSibCall = false; 5941 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5942 5943 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5944 unsigned PtrByteSize = 8; 5945 5946 MachineFunction &MF = DAG.getMachineFunction(); 5947 5948 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5949 IsSibCall = true; 5950 5951 // Mark this function as potentially containing a function that contains a 5952 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5953 // and restoring the callers stack pointer in this functions epilog. This is 5954 // done because by tail calling the called function might overwrite the value 5955 // in this function's (MF) stack pointer stack slot 0(SP). 5956 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5957 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5958 5959 assert(!(IsFastCall && CFlags.IsVarArg) && 5960 "fastcc not supported on varargs functions"); 5961 5962 // Count how many bytes are to be pushed on the stack, including the linkage 5963 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5964 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5965 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5966 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5967 unsigned NumBytes = LinkageSize; 5968 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5969 5970 static const MCPhysReg GPR[] = { 5971 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5972 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5973 }; 5974 static const MCPhysReg VR[] = { 5975 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5976 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5977 }; 5978 5979 const unsigned NumGPRs = array_lengthof(GPR); 5980 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5981 const unsigned NumVRs = array_lengthof(VR); 5982 5983 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5984 // can be passed to the callee in registers. 5985 // For the fast calling convention, there is another check below. 5986 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5987 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5988 if (!HasParameterArea) { 5989 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5990 unsigned AvailableFPRs = NumFPRs; 5991 unsigned AvailableVRs = NumVRs; 5992 unsigned NumBytesTmp = NumBytes; 5993 for (unsigned i = 0; i != NumOps; ++i) { 5994 if (Outs[i].Flags.isNest()) continue; 5995 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5996 PtrByteSize, LinkageSize, ParamAreaSize, 5997 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5998 HasParameterArea = true; 5999 } 6000 } 6001 6002 // When using the fast calling convention, we don't provide backing for 6003 // arguments that will be in registers. 6004 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6005 6006 // Avoid allocating parameter area for fastcc functions if all the arguments 6007 // can be passed in the registers. 6008 if (IsFastCall) 6009 HasParameterArea = false; 6010 6011 // Add up all the space actually used. 6012 for (unsigned i = 0; i != NumOps; ++i) { 6013 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6014 EVT ArgVT = Outs[i].VT; 6015 EVT OrigVT = Outs[i].ArgVT; 6016 6017 if (Flags.isNest()) 6018 continue; 6019 6020 if (IsFastCall) { 6021 if (Flags.isByVal()) { 6022 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6023 if (NumGPRsUsed > NumGPRs) 6024 HasParameterArea = true; 6025 } else { 6026 switch (ArgVT.getSimpleVT().SimpleTy) { 6027 default: llvm_unreachable("Unexpected ValueType for argument!"); 6028 case MVT::i1: 6029 case MVT::i32: 6030 case MVT::i64: 6031 if (++NumGPRsUsed <= NumGPRs) 6032 continue; 6033 break; 6034 case MVT::v4i32: 6035 case MVT::v8i16: 6036 case MVT::v16i8: 6037 case MVT::v2f64: 6038 case MVT::v2i64: 6039 case MVT::v1i128: 6040 case MVT::f128: 6041 if (++NumVRsUsed <= NumVRs) 6042 continue; 6043 break; 6044 case MVT::v4f32: 6045 if (++NumVRsUsed <= NumVRs) 6046 continue; 6047 break; 6048 case MVT::f32: 6049 case MVT::f64: 6050 if (++NumFPRsUsed <= NumFPRs) 6051 continue; 6052 break; 6053 } 6054 HasParameterArea = true; 6055 } 6056 } 6057 6058 /* Respect alignment of argument on the stack. */ 6059 auto Alignement = 6060 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6061 NumBytes = alignTo(NumBytes, Alignement); 6062 6063 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6064 if (Flags.isInConsecutiveRegsLast()) 6065 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6066 } 6067 6068 unsigned NumBytesActuallyUsed = NumBytes; 6069 6070 // In the old ELFv1 ABI, 6071 // the prolog code of the callee may store up to 8 GPR argument registers to 6072 // the stack, allowing va_start to index over them in memory if its varargs. 6073 // Because we cannot tell if this is needed on the caller side, we have to 6074 // conservatively assume that it is needed. As such, make sure we have at 6075 // least enough stack space for the caller to store the 8 GPRs. 6076 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6077 // really requires memory operands, e.g. a vararg function. 6078 if (HasParameterArea) 6079 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6080 else 6081 NumBytes = LinkageSize; 6082 6083 // Tail call needs the stack to be aligned. 6084 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6085 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6086 6087 int SPDiff = 0; 6088 6089 // Calculate by how many bytes the stack has to be adjusted in case of tail 6090 // call optimization. 6091 if (!IsSibCall) 6092 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6093 6094 // To protect arguments on the stack from being clobbered in a tail call, 6095 // force all the loads to happen before doing any other lowering. 6096 if (CFlags.IsTailCall) 6097 Chain = DAG.getStackArgumentTokenFactor(Chain); 6098 6099 // Adjust the stack pointer for the new arguments... 6100 // These operations are automatically eliminated by the prolog/epilog pass 6101 if (!IsSibCall) 6102 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6103 SDValue CallSeqStart = Chain; 6104 6105 // Load the return address and frame pointer so it can be move somewhere else 6106 // later. 6107 SDValue LROp, FPOp; 6108 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6109 6110 // Set up a copy of the stack pointer for use loading and storing any 6111 // arguments that may not fit in the registers available for argument 6112 // passing. 6113 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6114 6115 // Figure out which arguments are going to go in registers, and which in 6116 // memory. Also, if this is a vararg function, floating point operations 6117 // must be stored to our stack, and loaded into integer regs as well, if 6118 // any integer regs are available for argument passing. 6119 unsigned ArgOffset = LinkageSize; 6120 6121 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6122 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6123 6124 SmallVector<SDValue, 8> MemOpChains; 6125 for (unsigned i = 0; i != NumOps; ++i) { 6126 SDValue Arg = OutVals[i]; 6127 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6128 EVT ArgVT = Outs[i].VT; 6129 EVT OrigVT = Outs[i].ArgVT; 6130 6131 // PtrOff will be used to store the current argument to the stack if a 6132 // register cannot be found for it. 6133 SDValue PtrOff; 6134 6135 // We re-align the argument offset for each argument, except when using the 6136 // fast calling convention, when we need to make sure we do that only when 6137 // we'll actually use a stack slot. 6138 auto ComputePtrOff = [&]() { 6139 /* Respect alignment of argument on the stack. */ 6140 auto Alignment = 6141 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6142 ArgOffset = alignTo(ArgOffset, Alignment); 6143 6144 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6145 6146 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6147 }; 6148 6149 if (!IsFastCall) { 6150 ComputePtrOff(); 6151 6152 /* Compute GPR index associated with argument offset. */ 6153 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6154 GPR_idx = std::min(GPR_idx, NumGPRs); 6155 } 6156 6157 // Promote integers to 64-bit values. 6158 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6159 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6160 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6161 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6162 } 6163 6164 // FIXME memcpy is used way more than necessary. Correctness first. 6165 // Note: "by value" is code for passing a structure by value, not 6166 // basic types. 6167 if (Flags.isByVal()) { 6168 // Note: Size includes alignment padding, so 6169 // struct x { short a; char b; } 6170 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6171 // These are the proper values we need for right-justifying the 6172 // aggregate in a parameter register. 6173 unsigned Size = Flags.getByValSize(); 6174 6175 // An empty aggregate parameter takes up no storage and no 6176 // registers. 6177 if (Size == 0) 6178 continue; 6179 6180 if (IsFastCall) 6181 ComputePtrOff(); 6182 6183 // All aggregates smaller than 8 bytes must be passed right-justified. 6184 if (Size==1 || Size==2 || Size==4) { 6185 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6186 if (GPR_idx != NumGPRs) { 6187 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6188 MachinePointerInfo(), VT); 6189 MemOpChains.push_back(Load.getValue(1)); 6190 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6191 6192 ArgOffset += PtrByteSize; 6193 continue; 6194 } 6195 } 6196 6197 if (GPR_idx == NumGPRs && Size < 8) { 6198 SDValue AddPtr = PtrOff; 6199 if (!isLittleEndian) { 6200 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6201 PtrOff.getValueType()); 6202 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6203 } 6204 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6205 CallSeqStart, 6206 Flags, DAG, dl); 6207 ArgOffset += PtrByteSize; 6208 continue; 6209 } 6210 // Copy the object to parameter save area if it can not be entirely passed 6211 // by registers. 6212 // FIXME: we only need to copy the parts which need to be passed in 6213 // parameter save area. For the parts passed by registers, we don't need 6214 // to copy them to the stack although we need to allocate space for them 6215 // in parameter save area. 6216 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6217 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6218 CallSeqStart, 6219 Flags, DAG, dl); 6220 6221 // When a register is available, pass a small aggregate right-justified. 6222 if (Size < 8 && GPR_idx != NumGPRs) { 6223 // The easiest way to get this right-justified in a register 6224 // is to copy the structure into the rightmost portion of a 6225 // local variable slot, then load the whole slot into the 6226 // register. 6227 // FIXME: The memcpy seems to produce pretty awful code for 6228 // small aggregates, particularly for packed ones. 6229 // FIXME: It would be preferable to use the slot in the 6230 // parameter save area instead of a new local variable. 6231 SDValue AddPtr = PtrOff; 6232 if (!isLittleEndian) { 6233 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6234 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6235 } 6236 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6237 CallSeqStart, 6238 Flags, DAG, dl); 6239 6240 // Load the slot into the register. 6241 SDValue Load = 6242 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6243 MemOpChains.push_back(Load.getValue(1)); 6244 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6245 6246 // Done with this argument. 6247 ArgOffset += PtrByteSize; 6248 continue; 6249 } 6250 6251 // For aggregates larger than PtrByteSize, copy the pieces of the 6252 // object that fit into registers from the parameter save area. 6253 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6254 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6255 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6256 if (GPR_idx != NumGPRs) { 6257 SDValue Load = 6258 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6259 MemOpChains.push_back(Load.getValue(1)); 6260 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6261 ArgOffset += PtrByteSize; 6262 } else { 6263 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6264 break; 6265 } 6266 } 6267 continue; 6268 } 6269 6270 switch (Arg.getSimpleValueType().SimpleTy) { 6271 default: llvm_unreachable("Unexpected ValueType for argument!"); 6272 case MVT::i1: 6273 case MVT::i32: 6274 case MVT::i64: 6275 if (Flags.isNest()) { 6276 // The 'nest' parameter, if any, is passed in R11. 6277 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6278 break; 6279 } 6280 6281 // These can be scalar arguments or elements of an integer array type 6282 // passed directly. Clang may use those instead of "byval" aggregate 6283 // types to avoid forcing arguments to memory unnecessarily. 6284 if (GPR_idx != NumGPRs) { 6285 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6286 } else { 6287 if (IsFastCall) 6288 ComputePtrOff(); 6289 6290 assert(HasParameterArea && 6291 "Parameter area must exist to pass an argument in memory."); 6292 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6293 true, CFlags.IsTailCall, false, MemOpChains, 6294 TailCallArguments, dl); 6295 if (IsFastCall) 6296 ArgOffset += PtrByteSize; 6297 } 6298 if (!IsFastCall) 6299 ArgOffset += PtrByteSize; 6300 break; 6301 case MVT::f32: 6302 case MVT::f64: { 6303 // These can be scalar arguments or elements of a float array type 6304 // passed directly. The latter are used to implement ELFv2 homogenous 6305 // float aggregates. 6306 6307 // Named arguments go into FPRs first, and once they overflow, the 6308 // remaining arguments go into GPRs and then the parameter save area. 6309 // Unnamed arguments for vararg functions always go to GPRs and 6310 // then the parameter save area. For now, put all arguments to vararg 6311 // routines always in both locations (FPR *and* GPR or stack slot). 6312 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6313 bool NeededLoad = false; 6314 6315 // First load the argument into the next available FPR. 6316 if (FPR_idx != NumFPRs) 6317 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6318 6319 // Next, load the argument into GPR or stack slot if needed. 6320 if (!NeedGPROrStack) 6321 ; 6322 else if (GPR_idx != NumGPRs && !IsFastCall) { 6323 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6324 // once we support fp <-> gpr moves. 6325 6326 // In the non-vararg case, this can only ever happen in the 6327 // presence of f32 array types, since otherwise we never run 6328 // out of FPRs before running out of GPRs. 6329 SDValue ArgVal; 6330 6331 // Double values are always passed in a single GPR. 6332 if (Arg.getValueType() != MVT::f32) { 6333 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6334 6335 // Non-array float values are extended and passed in a GPR. 6336 } else if (!Flags.isInConsecutiveRegs()) { 6337 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6338 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6339 6340 // If we have an array of floats, we collect every odd element 6341 // together with its predecessor into one GPR. 6342 } else if (ArgOffset % PtrByteSize != 0) { 6343 SDValue Lo, Hi; 6344 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6345 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6346 if (!isLittleEndian) 6347 std::swap(Lo, Hi); 6348 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6349 6350 // The final element, if even, goes into the first half of a GPR. 6351 } else if (Flags.isInConsecutiveRegsLast()) { 6352 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6353 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6354 if (!isLittleEndian) 6355 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6356 DAG.getConstant(32, dl, MVT::i32)); 6357 6358 // Non-final even elements are skipped; they will be handled 6359 // together the with subsequent argument on the next go-around. 6360 } else 6361 ArgVal = SDValue(); 6362 6363 if (ArgVal.getNode()) 6364 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6365 } else { 6366 if (IsFastCall) 6367 ComputePtrOff(); 6368 6369 // Single-precision floating-point values are mapped to the 6370 // second (rightmost) word of the stack doubleword. 6371 if (Arg.getValueType() == MVT::f32 && 6372 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6373 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6374 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6375 } 6376 6377 assert(HasParameterArea && 6378 "Parameter area must exist to pass an argument in memory."); 6379 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6380 true, CFlags.IsTailCall, false, MemOpChains, 6381 TailCallArguments, dl); 6382 6383 NeededLoad = true; 6384 } 6385 // When passing an array of floats, the array occupies consecutive 6386 // space in the argument area; only round up to the next doubleword 6387 // at the end of the array. Otherwise, each float takes 8 bytes. 6388 if (!IsFastCall || NeededLoad) { 6389 ArgOffset += (Arg.getValueType() == MVT::f32 && 6390 Flags.isInConsecutiveRegs()) ? 4 : 8; 6391 if (Flags.isInConsecutiveRegsLast()) 6392 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6393 } 6394 break; 6395 } 6396 case MVT::v4f32: 6397 case MVT::v4i32: 6398 case MVT::v8i16: 6399 case MVT::v16i8: 6400 case MVT::v2f64: 6401 case MVT::v2i64: 6402 case MVT::v1i128: 6403 case MVT::f128: 6404 // These can be scalar arguments or elements of a vector array type 6405 // passed directly. The latter are used to implement ELFv2 homogenous 6406 // vector aggregates. 6407 6408 // For a varargs call, named arguments go into VRs or on the stack as 6409 // usual; unnamed arguments always go to the stack or the corresponding 6410 // GPRs when within range. For now, we always put the value in both 6411 // locations (or even all three). 6412 if (CFlags.IsVarArg) { 6413 assert(HasParameterArea && 6414 "Parameter area must exist if we have a varargs call."); 6415 // We could elide this store in the case where the object fits 6416 // entirely in R registers. Maybe later. 6417 SDValue Store = 6418 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6419 MemOpChains.push_back(Store); 6420 if (VR_idx != NumVRs) { 6421 SDValue Load = 6422 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6423 MemOpChains.push_back(Load.getValue(1)); 6424 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6425 } 6426 ArgOffset += 16; 6427 for (unsigned i=0; i<16; i+=PtrByteSize) { 6428 if (GPR_idx == NumGPRs) 6429 break; 6430 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6431 DAG.getConstant(i, dl, PtrVT)); 6432 SDValue Load = 6433 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6434 MemOpChains.push_back(Load.getValue(1)); 6435 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6436 } 6437 break; 6438 } 6439 6440 // Non-varargs Altivec params go into VRs or on the stack. 6441 if (VR_idx != NumVRs) { 6442 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6443 } else { 6444 if (IsFastCall) 6445 ComputePtrOff(); 6446 6447 assert(HasParameterArea && 6448 "Parameter area must exist to pass an argument in memory."); 6449 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6450 true, CFlags.IsTailCall, true, MemOpChains, 6451 TailCallArguments, dl); 6452 if (IsFastCall) 6453 ArgOffset += 16; 6454 } 6455 6456 if (!IsFastCall) 6457 ArgOffset += 16; 6458 break; 6459 } 6460 } 6461 6462 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6463 "mismatch in size of parameter area"); 6464 (void)NumBytesActuallyUsed; 6465 6466 if (!MemOpChains.empty()) 6467 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6468 6469 // Check if this is an indirect call (MTCTR/BCTRL). 6470 // See prepareDescriptorIndirectCall and buildCallOperands for more 6471 // information about calls through function pointers in the 64-bit SVR4 ABI. 6472 if (CFlags.IsIndirect) { 6473 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6474 // caller in the TOC save area. 6475 if (isTOCSaveRestoreRequired(Subtarget)) { 6476 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6477 // Load r2 into a virtual register and store it to the TOC save area. 6478 setUsesTOCBasePtr(DAG); 6479 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6480 // TOC save area offset. 6481 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6482 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6483 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6484 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6485 MachinePointerInfo::getStack( 6486 DAG.getMachineFunction(), TOCSaveOffset)); 6487 } 6488 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6489 // This does not mean the MTCTR instruction must use R12; it's easier 6490 // to model this as an extra parameter, so do that. 6491 if (isELFv2ABI && !CFlags.IsPatchPoint) 6492 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6493 } 6494 6495 // Build a sequence of copy-to-reg nodes chained together with token chain 6496 // and flag operands which copy the outgoing args into the appropriate regs. 6497 SDValue InFlag; 6498 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6499 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6500 RegsToPass[i].second, InFlag); 6501 InFlag = Chain.getValue(1); 6502 } 6503 6504 if (CFlags.IsTailCall && !IsSibCall) 6505 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6506 TailCallArguments); 6507 6508 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6509 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6510 } 6511 6512 // Returns true when the shadow of a general purpose argument register 6513 // in the parameter save area is aligned to at least 'RequiredAlign'. 6514 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6515 assert(RequiredAlign.value() <= 16 && 6516 "Required alignment greater than stack alignment."); 6517 switch (Reg) { 6518 default: 6519 report_fatal_error("called on invalid register."); 6520 case PPC::R5: 6521 case PPC::R9: 6522 case PPC::X3: 6523 case PPC::X5: 6524 case PPC::X7: 6525 case PPC::X9: 6526 // These registers are 16 byte aligned which is the most strict aligment 6527 // we can support. 6528 return true; 6529 case PPC::R3: 6530 case PPC::R7: 6531 case PPC::X4: 6532 case PPC::X6: 6533 case PPC::X8: 6534 case PPC::X10: 6535 // The shadow of these registers in the PSA is 8 byte aligned. 6536 return RequiredAlign <= 8; 6537 case PPC::R4: 6538 case PPC::R6: 6539 case PPC::R8: 6540 case PPC::R10: 6541 return RequiredAlign <= 4; 6542 } 6543 } 6544 6545 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6546 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6547 CCState &S) { 6548 AIXCCState &State = static_cast<AIXCCState &>(S); 6549 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6550 State.getMachineFunction().getSubtarget()); 6551 const bool IsPPC64 = Subtarget.isPPC64(); 6552 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6553 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6554 6555 if (ValVT == MVT::f128) 6556 report_fatal_error("f128 is unimplemented on AIX."); 6557 6558 if (ArgFlags.isNest()) 6559 report_fatal_error("Nest arguments are unimplemented."); 6560 6561 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6562 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6563 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6564 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6565 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6566 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6567 6568 static const MCPhysReg VR[] = {// Vector registers. 6569 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6570 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6571 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6572 6573 if (ArgFlags.isByVal()) { 6574 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6575 report_fatal_error("Pass-by-value arguments with alignment greater than " 6576 "register width are not supported."); 6577 6578 const unsigned ByValSize = ArgFlags.getByValSize(); 6579 6580 // An empty aggregate parameter takes up no storage and no registers, 6581 // but needs a MemLoc for a stack slot for the formal arguments side. 6582 if (ByValSize == 0) { 6583 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6584 State.getNextStackOffset(), RegVT, 6585 LocInfo)); 6586 return false; 6587 } 6588 6589 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6590 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6591 for (const unsigned E = Offset + StackSize; Offset < E; 6592 Offset += PtrAlign.value()) { 6593 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6594 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6595 else { 6596 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6597 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6598 LocInfo)); 6599 break; 6600 } 6601 } 6602 return false; 6603 } 6604 6605 // Arguments always reserve parameter save area. 6606 switch (ValVT.SimpleTy) { 6607 default: 6608 report_fatal_error("Unhandled value type for argument."); 6609 case MVT::i64: 6610 // i64 arguments should have been split to i32 for PPC32. 6611 assert(IsPPC64 && "PPC32 should have split i64 values."); 6612 LLVM_FALLTHROUGH; 6613 case MVT::i1: 6614 case MVT::i32: { 6615 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6616 // AIX integer arguments are always passed in register width. 6617 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6618 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6619 : CCValAssign::LocInfo::ZExt; 6620 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6621 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6622 else 6623 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6624 6625 return false; 6626 } 6627 case MVT::f32: 6628 case MVT::f64: { 6629 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6630 const unsigned StoreSize = LocVT.getStoreSize(); 6631 // Floats are always 4-byte aligned in the PSA on AIX. 6632 // This includes f64 in 64-bit mode for ABI compatibility. 6633 const unsigned Offset = 6634 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6635 unsigned FReg = State.AllocateReg(FPR); 6636 if (FReg) 6637 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6638 6639 // Reserve and initialize GPRs or initialize the PSA as required. 6640 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6641 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6642 assert(FReg && "An FPR should be available when a GPR is reserved."); 6643 if (State.isVarArg()) { 6644 // Successfully reserved GPRs are only initialized for vararg calls. 6645 // Custom handling is required for: 6646 // f64 in PPC32 needs to be split into 2 GPRs. 6647 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6648 State.addLoc( 6649 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6650 } 6651 } else { 6652 // If there are insufficient GPRs, the PSA needs to be initialized. 6653 // Initialization occurs even if an FPR was initialized for 6654 // compatibility with the AIX XL compiler. The full memory for the 6655 // argument will be initialized even if a prior word is saved in GPR. 6656 // A custom memLoc is used when the argument also passes in FPR so 6657 // that the callee handling can skip over it easily. 6658 State.addLoc( 6659 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6660 LocInfo) 6661 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6662 break; 6663 } 6664 } 6665 6666 return false; 6667 } 6668 case MVT::v4f32: 6669 case MVT::v4i32: 6670 case MVT::v8i16: 6671 case MVT::v16i8: 6672 case MVT::v2i64: 6673 case MVT::v2f64: 6674 case MVT::v1i128: { 6675 const unsigned VecSize = 16; 6676 const Align VecAlign(VecSize); 6677 6678 if (!State.isVarArg()) { 6679 // If there are vector registers remaining we don't consume any stack 6680 // space. 6681 if (unsigned VReg = State.AllocateReg(VR)) { 6682 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6683 return false; 6684 } 6685 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6686 // might be allocated in the portion of the PSA that is shadowed by the 6687 // GPRs. 6688 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6689 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6690 return false; 6691 } 6692 6693 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6694 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6695 6696 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6697 // Burn any underaligned registers and their shadowed stack space until 6698 // we reach the required alignment. 6699 while (NextRegIndex != GPRs.size() && 6700 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6701 // Shadow allocate register and its stack shadow. 6702 unsigned Reg = State.AllocateReg(GPRs); 6703 State.AllocateStack(PtrSize, PtrAlign); 6704 assert(Reg && "Allocating register unexpectedly failed."); 6705 (void)Reg; 6706 NextRegIndex = State.getFirstUnallocated(GPRs); 6707 } 6708 6709 // Vectors that are passed as fixed arguments are handled differently. 6710 // They are passed in VRs if any are available (unlike arguments passed 6711 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6712 // functions) 6713 if (State.isFixed(ValNo)) { 6714 if (unsigned VReg = State.AllocateReg(VR)) { 6715 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6716 // Shadow allocate GPRs and stack space even though we pass in a VR. 6717 for (unsigned I = 0; I != VecSize; I += PtrSize) 6718 State.AllocateReg(GPRs); 6719 State.AllocateStack(VecSize, VecAlign); 6720 return false; 6721 } 6722 // No vector registers remain so pass on the stack. 6723 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6724 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6725 return false; 6726 } 6727 6728 // If all GPRS are consumed then we pass the argument fully on the stack. 6729 if (NextRegIndex == GPRs.size()) { 6730 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6731 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6732 return false; 6733 } 6734 6735 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6736 // half of the argument, and then need to pass the remaining half on the 6737 // stack. 6738 if (GPRs[NextRegIndex] == PPC::R9) { 6739 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6740 State.addLoc( 6741 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6742 6743 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6744 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6745 assert(FirstReg && SecondReg && 6746 "Allocating R9 or R10 unexpectedly failed."); 6747 State.addLoc( 6748 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6749 State.addLoc( 6750 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6751 return false; 6752 } 6753 6754 // We have enough GPRs to fully pass the vector argument, and we have 6755 // already consumed any underaligned registers. Start with the custom 6756 // MemLoc and then the custom RegLocs. 6757 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6758 State.addLoc( 6759 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6760 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6761 const unsigned Reg = State.AllocateReg(GPRs); 6762 assert(Reg && "Failed to allocated register for vararg vector argument"); 6763 State.addLoc( 6764 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6765 } 6766 return false; 6767 } 6768 } 6769 return true; 6770 } 6771 6772 // So far, this function is only used by LowerFormalArguments_AIX() 6773 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6774 bool IsPPC64, 6775 bool HasP8Vector, 6776 bool HasVSX) { 6777 assert((IsPPC64 || SVT != MVT::i64) && 6778 "i64 should have been split for 32-bit codegen."); 6779 6780 switch (SVT) { 6781 default: 6782 report_fatal_error("Unexpected value type for formal argument"); 6783 case MVT::i1: 6784 case MVT::i32: 6785 case MVT::i64: 6786 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6787 case MVT::f32: 6788 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6789 case MVT::f64: 6790 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6791 case MVT::v4f32: 6792 case MVT::v4i32: 6793 case MVT::v8i16: 6794 case MVT::v16i8: 6795 case MVT::v2i64: 6796 case MVT::v2f64: 6797 case MVT::v1i128: 6798 return &PPC::VRRCRegClass; 6799 } 6800 } 6801 6802 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6803 SelectionDAG &DAG, SDValue ArgValue, 6804 MVT LocVT, const SDLoc &dl) { 6805 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6806 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6807 6808 if (Flags.isSExt()) 6809 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6810 DAG.getValueType(ValVT)); 6811 else if (Flags.isZExt()) 6812 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6813 DAG.getValueType(ValVT)); 6814 6815 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6816 } 6817 6818 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6819 const unsigned LASize = FL->getLinkageSize(); 6820 6821 if (PPC::GPRCRegClass.contains(Reg)) { 6822 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6823 "Reg must be a valid argument register!"); 6824 return LASize + 4 * (Reg - PPC::R3); 6825 } 6826 6827 if (PPC::G8RCRegClass.contains(Reg)) { 6828 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6829 "Reg must be a valid argument register!"); 6830 return LASize + 8 * (Reg - PPC::X3); 6831 } 6832 6833 llvm_unreachable("Only general purpose registers expected."); 6834 } 6835 6836 // AIX ABI Stack Frame Layout: 6837 // 6838 // Low Memory +--------------------------------------------+ 6839 // SP +---> | Back chain | ---+ 6840 // | +--------------------------------------------+ | 6841 // | | Saved Condition Register | | 6842 // | +--------------------------------------------+ | 6843 // | | Saved Linkage Register | | 6844 // | +--------------------------------------------+ | Linkage Area 6845 // | | Reserved for compilers | | 6846 // | +--------------------------------------------+ | 6847 // | | Reserved for binders | | 6848 // | +--------------------------------------------+ | 6849 // | | Saved TOC pointer | ---+ 6850 // | +--------------------------------------------+ 6851 // | | Parameter save area | 6852 // | +--------------------------------------------+ 6853 // | | Alloca space | 6854 // | +--------------------------------------------+ 6855 // | | Local variable space | 6856 // | +--------------------------------------------+ 6857 // | | Float/int conversion temporary | 6858 // | +--------------------------------------------+ 6859 // | | Save area for AltiVec registers | 6860 // | +--------------------------------------------+ 6861 // | | AltiVec alignment padding | 6862 // | +--------------------------------------------+ 6863 // | | Save area for VRSAVE register | 6864 // | +--------------------------------------------+ 6865 // | | Save area for General Purpose registers | 6866 // | +--------------------------------------------+ 6867 // | | Save area for Floating Point registers | 6868 // | +--------------------------------------------+ 6869 // +---- | Back chain | 6870 // High Memory +--------------------------------------------+ 6871 // 6872 // Specifications: 6873 // AIX 7.2 Assembler Language Reference 6874 // Subroutine linkage convention 6875 6876 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6877 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6878 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6879 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6880 6881 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6882 CallConv == CallingConv::Fast) && 6883 "Unexpected calling convention!"); 6884 6885 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6886 report_fatal_error("Tail call support is unimplemented on AIX."); 6887 6888 if (useSoftFloat()) 6889 report_fatal_error("Soft float support is unimplemented on AIX."); 6890 6891 const PPCSubtarget &Subtarget = 6892 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6893 6894 const bool IsPPC64 = Subtarget.isPPC64(); 6895 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6896 6897 // Assign locations to all of the incoming arguments. 6898 SmallVector<CCValAssign, 16> ArgLocs; 6899 MachineFunction &MF = DAG.getMachineFunction(); 6900 MachineFrameInfo &MFI = MF.getFrameInfo(); 6901 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6902 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6903 6904 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6905 // Reserve space for the linkage area on the stack. 6906 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6907 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6908 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6909 6910 SmallVector<SDValue, 8> MemOps; 6911 6912 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6913 CCValAssign &VA = ArgLocs[I++]; 6914 MVT LocVT = VA.getLocVT(); 6915 MVT ValVT = VA.getValVT(); 6916 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6917 // For compatibility with the AIX XL compiler, the float args in the 6918 // parameter save area are initialized even if the argument is available 6919 // in register. The caller is required to initialize both the register 6920 // and memory, however, the callee can choose to expect it in either. 6921 // The memloc is dismissed here because the argument is retrieved from 6922 // the register. 6923 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6924 continue; 6925 6926 auto HandleMemLoc = [&]() { 6927 const unsigned LocSize = LocVT.getStoreSize(); 6928 const unsigned ValSize = ValVT.getStoreSize(); 6929 assert((ValSize <= LocSize) && 6930 "Object size is larger than size of MemLoc"); 6931 int CurArgOffset = VA.getLocMemOffset(); 6932 // Objects are right-justified because AIX is big-endian. 6933 if (LocSize > ValSize) 6934 CurArgOffset += LocSize - ValSize; 6935 // Potential tail calls could cause overwriting of argument stack slots. 6936 const bool IsImmutable = 6937 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6938 (CallConv == CallingConv::Fast)); 6939 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6940 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6941 SDValue ArgValue = 6942 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6943 InVals.push_back(ArgValue); 6944 }; 6945 6946 // Vector arguments to VaArg functions are passed both on the stack, and 6947 // in any available GPRs. Load the value from the stack and add the GPRs 6948 // as live ins. 6949 if (VA.isMemLoc() && VA.needsCustom()) { 6950 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6951 assert(isVarArg && "Only use custom memloc for vararg."); 6952 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6953 // matching custom RegLocs. 6954 const unsigned OriginalValNo = VA.getValNo(); 6955 (void)OriginalValNo; 6956 6957 auto HandleCustomVecRegLoc = [&]() { 6958 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6959 "Missing custom RegLoc."); 6960 VA = ArgLocs[I++]; 6961 assert(VA.getValVT().isVector() && 6962 "Unexpected Val type for custom RegLoc."); 6963 assert(VA.getValNo() == OriginalValNo && 6964 "ValNo mismatch between custom MemLoc and RegLoc."); 6965 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6966 MF.addLiveIn(VA.getLocReg(), 6967 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6968 Subtarget.hasVSX())); 6969 }; 6970 6971 HandleMemLoc(); 6972 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6973 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6974 // R10. 6975 HandleCustomVecRegLoc(); 6976 HandleCustomVecRegLoc(); 6977 6978 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6979 // we passed the vector in R5, R6, R7 and R8. 6980 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6981 assert(!IsPPC64 && 6982 "Only 2 custom RegLocs expected for 64-bit codegen."); 6983 HandleCustomVecRegLoc(); 6984 HandleCustomVecRegLoc(); 6985 } 6986 6987 continue; 6988 } 6989 6990 if (VA.isRegLoc()) { 6991 if (VA.getValVT().isScalarInteger()) 6992 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6993 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6994 switch (VA.getValVT().SimpleTy) { 6995 default: 6996 report_fatal_error("Unhandled value type for argument."); 6997 case MVT::f32: 6998 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6999 break; 7000 case MVT::f64: 7001 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7002 break; 7003 } 7004 } else if (VA.getValVT().isVector()) { 7005 switch (VA.getValVT().SimpleTy) { 7006 default: 7007 report_fatal_error("Unhandled value type for argument."); 7008 case MVT::v16i8: 7009 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7010 break; 7011 case MVT::v8i16: 7012 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7013 break; 7014 case MVT::v4i32: 7015 case MVT::v2i64: 7016 case MVT::v1i128: 7017 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7018 break; 7019 case MVT::v4f32: 7020 case MVT::v2f64: 7021 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7022 break; 7023 } 7024 } 7025 } 7026 7027 if (Flags.isByVal() && VA.isMemLoc()) { 7028 const unsigned Size = 7029 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7030 PtrByteSize); 7031 const int FI = MF.getFrameInfo().CreateFixedObject( 7032 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7033 /* IsAliased */ true); 7034 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7035 InVals.push_back(FIN); 7036 7037 continue; 7038 } 7039 7040 if (Flags.isByVal()) { 7041 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7042 7043 const MCPhysReg ArgReg = VA.getLocReg(); 7044 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7045 7046 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7047 report_fatal_error("Over aligned byvals not supported yet."); 7048 7049 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7050 const int FI = MF.getFrameInfo().CreateFixedObject( 7051 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7052 /* IsAliased */ true); 7053 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7054 InVals.push_back(FIN); 7055 7056 // Add live ins for all the RegLocs for the same ByVal. 7057 const TargetRegisterClass *RegClass = 7058 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7059 7060 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7061 unsigned Offset) { 7062 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7063 // Since the callers side has left justified the aggregate in the 7064 // register, we can simply store the entire register into the stack 7065 // slot. 7066 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7067 // The store to the fixedstack object is needed becuase accessing a 7068 // field of the ByVal will use a gep and load. Ideally we will optimize 7069 // to extracting the value from the register directly, and elide the 7070 // stores when the arguments address is not taken, but that will need to 7071 // be future work. 7072 SDValue Store = DAG.getStore( 7073 CopyFrom.getValue(1), dl, CopyFrom, 7074 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7075 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7076 7077 MemOps.push_back(Store); 7078 }; 7079 7080 unsigned Offset = 0; 7081 HandleRegLoc(VA.getLocReg(), Offset); 7082 Offset += PtrByteSize; 7083 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7084 Offset += PtrByteSize) { 7085 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7086 "RegLocs should be for ByVal argument."); 7087 7088 const CCValAssign RL = ArgLocs[I++]; 7089 HandleRegLoc(RL.getLocReg(), Offset); 7090 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7091 } 7092 7093 if (Offset != StackSize) { 7094 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7095 "Expected MemLoc for remaining bytes."); 7096 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7097 // Consume the MemLoc.The InVal has already been emitted, so nothing 7098 // more needs to be done. 7099 ++I; 7100 } 7101 7102 continue; 7103 } 7104 7105 if (VA.isRegLoc() && !VA.needsCustom()) { 7106 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7107 Register VReg = 7108 MF.addLiveIn(VA.getLocReg(), 7109 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7110 Subtarget.hasVSX())); 7111 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7112 if (ValVT.isScalarInteger() && 7113 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7114 ArgValue = 7115 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7116 } 7117 InVals.push_back(ArgValue); 7118 continue; 7119 } 7120 if (VA.isMemLoc()) { 7121 HandleMemLoc(); 7122 continue; 7123 } 7124 } 7125 7126 // On AIX a minimum of 8 words is saved to the parameter save area. 7127 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7128 // Area that is at least reserved in the caller of this function. 7129 unsigned CallerReservedArea = 7130 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7131 7132 // Set the size that is at least reserved in caller of this function. Tail 7133 // call optimized function's reserved stack space needs to be aligned so 7134 // that taking the difference between two stack areas will result in an 7135 // aligned stack. 7136 CallerReservedArea = 7137 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7138 FuncInfo->setMinReservedArea(CallerReservedArea); 7139 7140 if (isVarArg) { 7141 FuncInfo->setVarArgsFrameIndex( 7142 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7143 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7144 7145 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7146 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7147 7148 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7149 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7150 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7151 7152 // The fixed integer arguments of a variadic function are stored to the 7153 // VarArgsFrameIndex on the stack so that they may be loaded by 7154 // dereferencing the result of va_next. 7155 for (unsigned GPRIndex = 7156 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7157 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7158 7159 const Register VReg = 7160 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7161 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7162 7163 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7164 SDValue Store = 7165 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7166 MemOps.push_back(Store); 7167 // Increment the address for the next argument to store. 7168 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7169 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7170 } 7171 } 7172 7173 if (!MemOps.empty()) 7174 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7175 7176 return Chain; 7177 } 7178 7179 SDValue PPCTargetLowering::LowerCall_AIX( 7180 SDValue Chain, SDValue Callee, CallFlags CFlags, 7181 const SmallVectorImpl<ISD::OutputArg> &Outs, 7182 const SmallVectorImpl<SDValue> &OutVals, 7183 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7184 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7185 const CallBase *CB) const { 7186 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7187 // AIX ABI stack frame layout. 7188 7189 assert((CFlags.CallConv == CallingConv::C || 7190 CFlags.CallConv == CallingConv::Cold || 7191 CFlags.CallConv == CallingConv::Fast) && 7192 "Unexpected calling convention!"); 7193 7194 if (CFlags.IsPatchPoint) 7195 report_fatal_error("This call type is unimplemented on AIX."); 7196 7197 const PPCSubtarget& Subtarget = 7198 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7199 7200 MachineFunction &MF = DAG.getMachineFunction(); 7201 SmallVector<CCValAssign, 16> ArgLocs; 7202 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7203 *DAG.getContext()); 7204 7205 // Reserve space for the linkage save area (LSA) on the stack. 7206 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7207 // [SP][CR][LR][2 x reserved][TOC]. 7208 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7209 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7210 const bool IsPPC64 = Subtarget.isPPC64(); 7211 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7212 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7213 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7214 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7215 7216 // The prolog code of the callee may store up to 8 GPR argument registers to 7217 // the stack, allowing va_start to index over them in memory if the callee 7218 // is variadic. 7219 // Because we cannot tell if this is needed on the caller side, we have to 7220 // conservatively assume that it is needed. As such, make sure we have at 7221 // least enough stack space for the caller to store the 8 GPRs. 7222 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7223 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7224 CCInfo.getNextStackOffset()); 7225 7226 // Adjust the stack pointer for the new arguments... 7227 // These operations are automatically eliminated by the prolog/epilog pass. 7228 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7229 SDValue CallSeqStart = Chain; 7230 7231 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7232 SmallVector<SDValue, 8> MemOpChains; 7233 7234 // Set up a copy of the stack pointer for loading and storing any 7235 // arguments that may not fit in the registers available for argument 7236 // passing. 7237 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7238 : DAG.getRegister(PPC::R1, MVT::i32); 7239 7240 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7241 const unsigned ValNo = ArgLocs[I].getValNo(); 7242 SDValue Arg = OutVals[ValNo]; 7243 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7244 7245 if (Flags.isByVal()) { 7246 const unsigned ByValSize = Flags.getByValSize(); 7247 7248 // Nothing to do for zero-sized ByVals on the caller side. 7249 if (!ByValSize) { 7250 ++I; 7251 continue; 7252 } 7253 7254 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7255 return DAG.getExtLoad( 7256 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7257 (LoadOffset != 0) 7258 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7259 : Arg, 7260 MachinePointerInfo(), VT); 7261 }; 7262 7263 unsigned LoadOffset = 0; 7264 7265 // Initialize registers, which are fully occupied by the by-val argument. 7266 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7267 SDValue Load = GetLoad(PtrVT, LoadOffset); 7268 MemOpChains.push_back(Load.getValue(1)); 7269 LoadOffset += PtrByteSize; 7270 const CCValAssign &ByValVA = ArgLocs[I++]; 7271 assert(ByValVA.getValNo() == ValNo && 7272 "Unexpected location for pass-by-value argument."); 7273 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7274 } 7275 7276 if (LoadOffset == ByValSize) 7277 continue; 7278 7279 // There must be one more loc to handle the remainder. 7280 assert(ArgLocs[I].getValNo() == ValNo && 7281 "Expected additional location for by-value argument."); 7282 7283 if (ArgLocs[I].isMemLoc()) { 7284 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7285 const CCValAssign &ByValVA = ArgLocs[I++]; 7286 ISD::ArgFlagsTy MemcpyFlags = Flags; 7287 // Only memcpy the bytes that don't pass in register. 7288 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7289 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7290 (LoadOffset != 0) 7291 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7292 : Arg, 7293 DAG.getObjectPtrOffset(dl, StackPtr, 7294 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7295 CallSeqStart, MemcpyFlags, DAG, dl); 7296 continue; 7297 } 7298 7299 // Initialize the final register residue. 7300 // Any residue that occupies the final by-val arg register must be 7301 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7302 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7303 // 2 and 1 byte loads. 7304 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7305 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7306 "Unexpected register residue for by-value argument."); 7307 SDValue ResidueVal; 7308 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7309 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7310 const MVT VT = 7311 N == 1 ? MVT::i8 7312 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7313 SDValue Load = GetLoad(VT, LoadOffset); 7314 MemOpChains.push_back(Load.getValue(1)); 7315 LoadOffset += N; 7316 Bytes += N; 7317 7318 // By-val arguments are passed left-justfied in register. 7319 // Every load here needs to be shifted, otherwise a full register load 7320 // should have been used. 7321 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7322 "Unexpected load emitted during handling of pass-by-value " 7323 "argument."); 7324 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7325 EVT ShiftAmountTy = 7326 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7327 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7328 SDValue ShiftedLoad = 7329 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7330 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7331 ShiftedLoad) 7332 : ShiftedLoad; 7333 } 7334 7335 const CCValAssign &ByValVA = ArgLocs[I++]; 7336 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7337 continue; 7338 } 7339 7340 CCValAssign &VA = ArgLocs[I++]; 7341 const MVT LocVT = VA.getLocVT(); 7342 const MVT ValVT = VA.getValVT(); 7343 7344 switch (VA.getLocInfo()) { 7345 default: 7346 report_fatal_error("Unexpected argument extension type."); 7347 case CCValAssign::Full: 7348 break; 7349 case CCValAssign::ZExt: 7350 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7351 break; 7352 case CCValAssign::SExt: 7353 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7354 break; 7355 } 7356 7357 if (VA.isRegLoc() && !VA.needsCustom()) { 7358 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7359 continue; 7360 } 7361 7362 // Vector arguments passed to VarArg functions need custom handling when 7363 // they are passed (at least partially) in GPRs. 7364 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7365 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7366 // Store value to its stack slot. 7367 SDValue PtrOff = 7368 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7369 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7370 SDValue Store = 7371 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7372 MemOpChains.push_back(Store); 7373 const unsigned OriginalValNo = VA.getValNo(); 7374 // Then load the GPRs from the stack 7375 unsigned LoadOffset = 0; 7376 auto HandleCustomVecRegLoc = [&]() { 7377 assert(I != E && "Unexpected end of CCvalAssigns."); 7378 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7379 "Expected custom RegLoc."); 7380 CCValAssign RegVA = ArgLocs[I++]; 7381 assert(RegVA.getValNo() == OriginalValNo && 7382 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7383 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7384 DAG.getConstant(LoadOffset, dl, PtrVT)); 7385 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7386 MemOpChains.push_back(Load.getValue(1)); 7387 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7388 LoadOffset += PtrByteSize; 7389 }; 7390 7391 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7392 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7393 // R10. 7394 HandleCustomVecRegLoc(); 7395 HandleCustomVecRegLoc(); 7396 7397 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7398 ArgLocs[I].getValNo() == OriginalValNo) { 7399 assert(!IsPPC64 && 7400 "Only 2 custom RegLocs expected for 64-bit codegen."); 7401 HandleCustomVecRegLoc(); 7402 HandleCustomVecRegLoc(); 7403 } 7404 7405 continue; 7406 } 7407 7408 if (VA.isMemLoc()) { 7409 SDValue PtrOff = 7410 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7411 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7412 MemOpChains.push_back( 7413 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7414 7415 continue; 7416 } 7417 7418 if (!ValVT.isFloatingPoint()) 7419 report_fatal_error( 7420 "Unexpected register handling for calling convention."); 7421 7422 // Custom handling is used for GPR initializations for vararg float 7423 // arguments. 7424 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7425 LocVT.isInteger() && 7426 "Custom register handling only expected for VarArg."); 7427 7428 SDValue ArgAsInt = 7429 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7430 7431 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7432 // f32 in 32-bit GPR 7433 // f64 in 64-bit GPR 7434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7435 else if (Arg.getValueType().getFixedSizeInBits() < 7436 LocVT.getFixedSizeInBits()) 7437 // f32 in 64-bit GPR. 7438 RegsToPass.push_back(std::make_pair( 7439 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7440 else { 7441 // f64 in two 32-bit GPRs 7442 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7443 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7444 "Unexpected custom register for argument!"); 7445 CCValAssign &GPR1 = VA; 7446 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7447 DAG.getConstant(32, dl, MVT::i8)); 7448 RegsToPass.push_back(std::make_pair( 7449 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7450 7451 if (I != E) { 7452 // If only 1 GPR was available, there will only be one custom GPR and 7453 // the argument will also pass in memory. 7454 CCValAssign &PeekArg = ArgLocs[I]; 7455 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7456 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7457 CCValAssign &GPR2 = ArgLocs[I++]; 7458 RegsToPass.push_back(std::make_pair( 7459 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7460 } 7461 } 7462 } 7463 } 7464 7465 if (!MemOpChains.empty()) 7466 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7467 7468 // For indirect calls, we need to save the TOC base to the stack for 7469 // restoration after the call. 7470 if (CFlags.IsIndirect) { 7471 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7472 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7473 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7474 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7475 const unsigned TOCSaveOffset = 7476 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7477 7478 setUsesTOCBasePtr(DAG); 7479 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7480 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7481 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7482 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7483 Chain = DAG.getStore( 7484 Val.getValue(1), dl, Val, AddPtr, 7485 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7486 } 7487 7488 // Build a sequence of copy-to-reg nodes chained together with token chain 7489 // and flag operands which copy the outgoing args into the appropriate regs. 7490 SDValue InFlag; 7491 for (auto Reg : RegsToPass) { 7492 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7493 InFlag = Chain.getValue(1); 7494 } 7495 7496 const int SPDiff = 0; 7497 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7498 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7499 } 7500 7501 bool 7502 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7503 MachineFunction &MF, bool isVarArg, 7504 const SmallVectorImpl<ISD::OutputArg> &Outs, 7505 LLVMContext &Context) const { 7506 SmallVector<CCValAssign, 16> RVLocs; 7507 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7508 return CCInfo.CheckReturn( 7509 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7510 ? RetCC_PPC_Cold 7511 : RetCC_PPC); 7512 } 7513 7514 SDValue 7515 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7516 bool isVarArg, 7517 const SmallVectorImpl<ISD::OutputArg> &Outs, 7518 const SmallVectorImpl<SDValue> &OutVals, 7519 const SDLoc &dl, SelectionDAG &DAG) const { 7520 SmallVector<CCValAssign, 16> RVLocs; 7521 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7522 *DAG.getContext()); 7523 CCInfo.AnalyzeReturn(Outs, 7524 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7525 ? RetCC_PPC_Cold 7526 : RetCC_PPC); 7527 7528 SDValue Flag; 7529 SmallVector<SDValue, 4> RetOps(1, Chain); 7530 7531 // Copy the result values into the output registers. 7532 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7533 CCValAssign &VA = RVLocs[i]; 7534 assert(VA.isRegLoc() && "Can only return in registers!"); 7535 7536 SDValue Arg = OutVals[RealResIdx]; 7537 7538 switch (VA.getLocInfo()) { 7539 default: llvm_unreachable("Unknown loc info!"); 7540 case CCValAssign::Full: break; 7541 case CCValAssign::AExt: 7542 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7543 break; 7544 case CCValAssign::ZExt: 7545 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7546 break; 7547 case CCValAssign::SExt: 7548 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7549 break; 7550 } 7551 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7552 bool isLittleEndian = Subtarget.isLittleEndian(); 7553 // Legalize ret f64 -> ret 2 x i32. 7554 SDValue SVal = 7555 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7556 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7557 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7558 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7559 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7560 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7561 Flag = Chain.getValue(1); 7562 VA = RVLocs[++i]; // skip ahead to next loc 7563 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7564 } else 7565 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7566 Flag = Chain.getValue(1); 7567 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7568 } 7569 7570 RetOps[0] = Chain; // Update chain. 7571 7572 // Add the flag if we have it. 7573 if (Flag.getNode()) 7574 RetOps.push_back(Flag); 7575 7576 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7577 } 7578 7579 SDValue 7580 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7581 SelectionDAG &DAG) const { 7582 SDLoc dl(Op); 7583 7584 // Get the correct type for integers. 7585 EVT IntVT = Op.getValueType(); 7586 7587 // Get the inputs. 7588 SDValue Chain = Op.getOperand(0); 7589 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7590 // Build a DYNAREAOFFSET node. 7591 SDValue Ops[2] = {Chain, FPSIdx}; 7592 SDVTList VTs = DAG.getVTList(IntVT); 7593 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7594 } 7595 7596 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7597 SelectionDAG &DAG) const { 7598 // When we pop the dynamic allocation we need to restore the SP link. 7599 SDLoc dl(Op); 7600 7601 // Get the correct type for pointers. 7602 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7603 7604 // Construct the stack pointer operand. 7605 bool isPPC64 = Subtarget.isPPC64(); 7606 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7607 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7608 7609 // Get the operands for the STACKRESTORE. 7610 SDValue Chain = Op.getOperand(0); 7611 SDValue SaveSP = Op.getOperand(1); 7612 7613 // Load the old link SP. 7614 SDValue LoadLinkSP = 7615 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7616 7617 // Restore the stack pointer. 7618 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7619 7620 // Store the old link SP. 7621 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7622 } 7623 7624 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7625 MachineFunction &MF = DAG.getMachineFunction(); 7626 bool isPPC64 = Subtarget.isPPC64(); 7627 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7628 7629 // Get current frame pointer save index. The users of this index will be 7630 // primarily DYNALLOC instructions. 7631 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7632 int RASI = FI->getReturnAddrSaveIndex(); 7633 7634 // If the frame pointer save index hasn't been defined yet. 7635 if (!RASI) { 7636 // Find out what the fix offset of the frame pointer save area. 7637 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7638 // Allocate the frame index for frame pointer save area. 7639 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7640 // Save the result. 7641 FI->setReturnAddrSaveIndex(RASI); 7642 } 7643 return DAG.getFrameIndex(RASI, PtrVT); 7644 } 7645 7646 SDValue 7647 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7648 MachineFunction &MF = DAG.getMachineFunction(); 7649 bool isPPC64 = Subtarget.isPPC64(); 7650 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7651 7652 // Get current frame pointer save index. The users of this index will be 7653 // primarily DYNALLOC instructions. 7654 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7655 int FPSI = FI->getFramePointerSaveIndex(); 7656 7657 // If the frame pointer save index hasn't been defined yet. 7658 if (!FPSI) { 7659 // Find out what the fix offset of the frame pointer save area. 7660 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7661 // Allocate the frame index for frame pointer save area. 7662 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7663 // Save the result. 7664 FI->setFramePointerSaveIndex(FPSI); 7665 } 7666 return DAG.getFrameIndex(FPSI, PtrVT); 7667 } 7668 7669 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7670 SelectionDAG &DAG) const { 7671 MachineFunction &MF = DAG.getMachineFunction(); 7672 // Get the inputs. 7673 SDValue Chain = Op.getOperand(0); 7674 SDValue Size = Op.getOperand(1); 7675 SDLoc dl(Op); 7676 7677 // Get the correct type for pointers. 7678 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7679 // Negate the size. 7680 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7681 DAG.getConstant(0, dl, PtrVT), Size); 7682 // Construct a node for the frame pointer save index. 7683 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7684 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7685 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7686 if (hasInlineStackProbe(MF)) 7687 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7688 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7689 } 7690 7691 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7692 SelectionDAG &DAG) const { 7693 MachineFunction &MF = DAG.getMachineFunction(); 7694 7695 bool isPPC64 = Subtarget.isPPC64(); 7696 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7697 7698 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7699 return DAG.getFrameIndex(FI, PtrVT); 7700 } 7701 7702 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7703 SelectionDAG &DAG) const { 7704 SDLoc DL(Op); 7705 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7706 DAG.getVTList(MVT::i32, MVT::Other), 7707 Op.getOperand(0), Op.getOperand(1)); 7708 } 7709 7710 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7711 SelectionDAG &DAG) const { 7712 SDLoc DL(Op); 7713 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7714 Op.getOperand(0), Op.getOperand(1)); 7715 } 7716 7717 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7718 if (Op.getValueType().isVector()) 7719 return LowerVectorLoad(Op, DAG); 7720 7721 assert(Op.getValueType() == MVT::i1 && 7722 "Custom lowering only for i1 loads"); 7723 7724 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7725 7726 SDLoc dl(Op); 7727 LoadSDNode *LD = cast<LoadSDNode>(Op); 7728 7729 SDValue Chain = LD->getChain(); 7730 SDValue BasePtr = LD->getBasePtr(); 7731 MachineMemOperand *MMO = LD->getMemOperand(); 7732 7733 SDValue NewLD = 7734 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7735 BasePtr, MVT::i8, MMO); 7736 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7737 7738 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7739 return DAG.getMergeValues(Ops, dl); 7740 } 7741 7742 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7743 if (Op.getOperand(1).getValueType().isVector()) 7744 return LowerVectorStore(Op, DAG); 7745 7746 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7747 "Custom lowering only for i1 stores"); 7748 7749 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7750 7751 SDLoc dl(Op); 7752 StoreSDNode *ST = cast<StoreSDNode>(Op); 7753 7754 SDValue Chain = ST->getChain(); 7755 SDValue BasePtr = ST->getBasePtr(); 7756 SDValue Value = ST->getValue(); 7757 MachineMemOperand *MMO = ST->getMemOperand(); 7758 7759 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7760 Value); 7761 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7762 } 7763 7764 // FIXME: Remove this once the ANDI glue bug is fixed: 7765 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7766 assert(Op.getValueType() == MVT::i1 && 7767 "Custom lowering only for i1 results"); 7768 7769 SDLoc DL(Op); 7770 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7771 } 7772 7773 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7774 SelectionDAG &DAG) const { 7775 7776 // Implements a vector truncate that fits in a vector register as a shuffle. 7777 // We want to legalize vector truncates down to where the source fits in 7778 // a vector register (and target is therefore smaller than vector register 7779 // size). At that point legalization will try to custom lower the sub-legal 7780 // result and get here - where we can contain the truncate as a single target 7781 // operation. 7782 7783 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7784 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7785 // 7786 // We will implement it for big-endian ordering as this (where x denotes 7787 // undefined): 7788 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7789 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7790 // 7791 // The same operation in little-endian ordering will be: 7792 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7793 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7794 7795 EVT TrgVT = Op.getValueType(); 7796 assert(TrgVT.isVector() && "Vector type expected."); 7797 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7798 EVT EltVT = TrgVT.getVectorElementType(); 7799 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7800 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7801 !isPowerOf2_32(EltVT.getSizeInBits())) 7802 return SDValue(); 7803 7804 SDValue N1 = Op.getOperand(0); 7805 EVT SrcVT = N1.getValueType(); 7806 unsigned SrcSize = SrcVT.getSizeInBits(); 7807 if (SrcSize > 256 || 7808 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7809 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7810 return SDValue(); 7811 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7812 return SDValue(); 7813 7814 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7815 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7816 7817 SDLoc DL(Op); 7818 SDValue Op1, Op2; 7819 if (SrcSize == 256) { 7820 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7821 EVT SplitVT = 7822 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7823 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7824 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7825 DAG.getConstant(0, DL, VecIdxTy)); 7826 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7827 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7828 } 7829 else { 7830 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7831 Op2 = DAG.getUNDEF(WideVT); 7832 } 7833 7834 // First list the elements we want to keep. 7835 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7836 SmallVector<int, 16> ShuffV; 7837 if (Subtarget.isLittleEndian()) 7838 for (unsigned i = 0; i < TrgNumElts; ++i) 7839 ShuffV.push_back(i * SizeMult); 7840 else 7841 for (unsigned i = 1; i <= TrgNumElts; ++i) 7842 ShuffV.push_back(i * SizeMult - 1); 7843 7844 // Populate the remaining elements with undefs. 7845 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7846 // ShuffV.push_back(i + WideNumElts); 7847 ShuffV.push_back(WideNumElts + 1); 7848 7849 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7850 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7851 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7852 } 7853 7854 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7855 /// possible. 7856 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7857 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7858 EVT ResVT = Op.getValueType(); 7859 EVT CmpVT = Op.getOperand(0).getValueType(); 7860 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7861 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7862 SDLoc dl(Op); 7863 7864 // Without power9-vector, we don't have native instruction for f128 comparison. 7865 // Following transformation to libcall is needed for setcc: 7866 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7867 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7868 SDValue Z = DAG.getSetCC( 7869 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7870 LHS, RHS, CC); 7871 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7872 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7873 } 7874 7875 // Not FP, or using SPE? Not a fsel. 7876 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7877 Subtarget.hasSPE()) 7878 return Op; 7879 7880 SDNodeFlags Flags = Op.getNode()->getFlags(); 7881 7882 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7883 // presence of infinities. 7884 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7885 switch (CC) { 7886 default: 7887 break; 7888 case ISD::SETOGT: 7889 case ISD::SETGT: 7890 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7891 case ISD::SETOLT: 7892 case ISD::SETLT: 7893 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7894 } 7895 } 7896 7897 // We might be able to do better than this under some circumstances, but in 7898 // general, fsel-based lowering of select is a finite-math-only optimization. 7899 // For more information, see section F.3 of the 2.06 ISA specification. 7900 // With ISA 3.0 7901 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7902 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7903 return Op; 7904 7905 // If the RHS of the comparison is a 0.0, we don't need to do the 7906 // subtraction at all. 7907 SDValue Sel1; 7908 if (isFloatingPointZero(RHS)) 7909 switch (CC) { 7910 default: break; // SETUO etc aren't handled by fsel. 7911 case ISD::SETNE: 7912 std::swap(TV, FV); 7913 LLVM_FALLTHROUGH; 7914 case ISD::SETEQ: 7915 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7916 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7917 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7918 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7919 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7920 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7921 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7922 case ISD::SETULT: 7923 case ISD::SETLT: 7924 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7925 LLVM_FALLTHROUGH; 7926 case ISD::SETOGE: 7927 case ISD::SETGE: 7928 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7929 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7930 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7931 case ISD::SETUGT: 7932 case ISD::SETGT: 7933 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7934 LLVM_FALLTHROUGH; 7935 case ISD::SETOLE: 7936 case ISD::SETLE: 7937 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7938 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7939 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7940 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7941 } 7942 7943 SDValue Cmp; 7944 switch (CC) { 7945 default: break; // SETUO etc aren't handled by fsel. 7946 case ISD::SETNE: 7947 std::swap(TV, FV); 7948 LLVM_FALLTHROUGH; 7949 case ISD::SETEQ: 7950 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7951 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7952 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7953 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7954 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7955 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7956 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7957 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7958 case ISD::SETULT: 7959 case ISD::SETLT: 7960 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7961 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7962 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7963 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7964 case ISD::SETOGE: 7965 case ISD::SETGE: 7966 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7967 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7968 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7969 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7970 case ISD::SETUGT: 7971 case ISD::SETGT: 7972 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7973 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7974 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7975 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7976 case ISD::SETOLE: 7977 case ISD::SETLE: 7978 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7979 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7980 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7981 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7982 } 7983 return Op; 7984 } 7985 7986 static unsigned getPPCStrictOpcode(unsigned Opc) { 7987 switch (Opc) { 7988 default: 7989 llvm_unreachable("No strict version of this opcode!"); 7990 case PPCISD::FCTIDZ: 7991 return PPCISD::STRICT_FCTIDZ; 7992 case PPCISD::FCTIWZ: 7993 return PPCISD::STRICT_FCTIWZ; 7994 case PPCISD::FCTIDUZ: 7995 return PPCISD::STRICT_FCTIDUZ; 7996 case PPCISD::FCTIWUZ: 7997 return PPCISD::STRICT_FCTIWUZ; 7998 case PPCISD::FCFID: 7999 return PPCISD::STRICT_FCFID; 8000 case PPCISD::FCFIDU: 8001 return PPCISD::STRICT_FCFIDU; 8002 case PPCISD::FCFIDS: 8003 return PPCISD::STRICT_FCFIDS; 8004 case PPCISD::FCFIDUS: 8005 return PPCISD::STRICT_FCFIDUS; 8006 } 8007 } 8008 8009 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8010 const PPCSubtarget &Subtarget) { 8011 SDLoc dl(Op); 8012 bool IsStrict = Op->isStrictFPOpcode(); 8013 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8014 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8015 8016 // TODO: Any other flags to propagate? 8017 SDNodeFlags Flags; 8018 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8019 8020 // For strict nodes, source is the second operand. 8021 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8022 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8023 assert(Src.getValueType().isFloatingPoint()); 8024 if (Src.getValueType() == MVT::f32) { 8025 if (IsStrict) { 8026 Src = 8027 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8028 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8029 Chain = Src.getValue(1); 8030 } else 8031 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8032 } 8033 SDValue Conv; 8034 unsigned Opc = ISD::DELETED_NODE; 8035 switch (Op.getSimpleValueType().SimpleTy) { 8036 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8037 case MVT::i32: 8038 Opc = IsSigned ? PPCISD::FCTIWZ 8039 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8040 break; 8041 case MVT::i64: 8042 assert((IsSigned || Subtarget.hasFPCVT()) && 8043 "i64 FP_TO_UINT is supported only with FPCVT"); 8044 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8045 } 8046 if (IsStrict) { 8047 Opc = getPPCStrictOpcode(Opc); 8048 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8049 {Chain, Src}, Flags); 8050 } else { 8051 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8052 } 8053 return Conv; 8054 } 8055 8056 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8057 SelectionDAG &DAG, 8058 const SDLoc &dl) const { 8059 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8060 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8061 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8062 bool IsStrict = Op->isStrictFPOpcode(); 8063 8064 // Convert the FP value to an int value through memory. 8065 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8066 (IsSigned || Subtarget.hasFPCVT()); 8067 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8068 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8069 MachinePointerInfo MPI = 8070 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8071 8072 // Emit a store to the stack slot. 8073 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8074 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8075 if (i32Stack) { 8076 MachineFunction &MF = DAG.getMachineFunction(); 8077 Alignment = Align(4); 8078 MachineMemOperand *MMO = 8079 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8080 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8081 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8082 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8083 } else 8084 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8085 8086 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8087 // add in a bias on big endian. 8088 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8089 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8090 DAG.getConstant(4, dl, FIPtr.getValueType())); 8091 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8092 } 8093 8094 RLI.Chain = Chain; 8095 RLI.Ptr = FIPtr; 8096 RLI.MPI = MPI; 8097 RLI.Alignment = Alignment; 8098 } 8099 8100 /// Custom lowers floating point to integer conversions to use 8101 /// the direct move instructions available in ISA 2.07 to avoid the 8102 /// need for load/store combinations. 8103 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8104 SelectionDAG &DAG, 8105 const SDLoc &dl) const { 8106 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8107 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8108 if (Op->isStrictFPOpcode()) 8109 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8110 else 8111 return Mov; 8112 } 8113 8114 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8115 const SDLoc &dl) const { 8116 bool IsStrict = Op->isStrictFPOpcode(); 8117 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8118 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8119 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8120 EVT SrcVT = Src.getValueType(); 8121 EVT DstVT = Op.getValueType(); 8122 8123 // FP to INT conversions are legal for f128. 8124 if (SrcVT == MVT::f128) 8125 return Subtarget.hasP9Vector() ? Op : SDValue(); 8126 8127 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8128 // PPC (the libcall is not available). 8129 if (SrcVT == MVT::ppcf128) { 8130 if (DstVT == MVT::i32) { 8131 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8132 // set other fast-math flags to FP operations in both strict and 8133 // non-strict cases. (FP_TO_SINT, FSUB) 8134 SDNodeFlags Flags; 8135 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8136 8137 if (IsSigned) { 8138 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8139 DAG.getIntPtrConstant(0, dl)); 8140 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8141 DAG.getIntPtrConstant(1, dl)); 8142 8143 // Add the two halves of the long double in round-to-zero mode, and use 8144 // a smaller FP_TO_SINT. 8145 if (IsStrict) { 8146 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8147 DAG.getVTList(MVT::f64, MVT::Other), 8148 {Op.getOperand(0), Lo, Hi}, Flags); 8149 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8150 DAG.getVTList(MVT::i32, MVT::Other), 8151 {Res.getValue(1), Res}, Flags); 8152 } else { 8153 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8154 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8155 } 8156 } else { 8157 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8158 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8159 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8160 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8161 if (IsStrict) { 8162 // Sel = Src < 0x80000000 8163 // FltOfs = select Sel, 0.0, 0x80000000 8164 // IntOfs = select Sel, 0, 0x80000000 8165 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8166 SDValue Chain = Op.getOperand(0); 8167 EVT SetCCVT = 8168 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8169 EVT DstSetCCVT = 8170 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8171 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8172 Chain, true); 8173 Chain = Sel.getValue(1); 8174 8175 SDValue FltOfs = DAG.getSelect( 8176 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8177 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8178 8179 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8180 DAG.getVTList(SrcVT, MVT::Other), 8181 {Chain, Src, FltOfs}, Flags); 8182 Chain = Val.getValue(1); 8183 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8184 DAG.getVTList(DstVT, MVT::Other), 8185 {Chain, Val}, Flags); 8186 Chain = SInt.getValue(1); 8187 SDValue IntOfs = DAG.getSelect( 8188 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8189 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8190 return DAG.getMergeValues({Result, Chain}, dl); 8191 } else { 8192 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8193 // FIXME: generated code sucks. 8194 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8195 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8196 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8197 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8198 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8199 } 8200 } 8201 } 8202 8203 return SDValue(); 8204 } 8205 8206 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8207 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8208 8209 ReuseLoadInfo RLI; 8210 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8211 8212 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8213 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8214 } 8215 8216 // We're trying to insert a regular store, S, and then a load, L. If the 8217 // incoming value, O, is a load, we might just be able to have our load use the 8218 // address used by O. However, we don't know if anything else will store to 8219 // that address before we can load from it. To prevent this situation, we need 8220 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8221 // the same chain operand as O, we create a token factor from the chain results 8222 // of O and L, and we replace all uses of O's chain result with that token 8223 // factor (see spliceIntoChain below for this last part). 8224 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8225 ReuseLoadInfo &RLI, 8226 SelectionDAG &DAG, 8227 ISD::LoadExtType ET) const { 8228 // Conservatively skip reusing for constrained FP nodes. 8229 if (Op->isStrictFPOpcode()) 8230 return false; 8231 8232 SDLoc dl(Op); 8233 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8234 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8235 if (ET == ISD::NON_EXTLOAD && 8236 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8237 isOperationLegalOrCustom(Op.getOpcode(), 8238 Op.getOperand(0).getValueType())) { 8239 8240 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8241 return true; 8242 } 8243 8244 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8245 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8246 LD->isNonTemporal()) 8247 return false; 8248 if (LD->getMemoryVT() != MemVT) 8249 return false; 8250 8251 // If the result of the load is an illegal type, then we can't build a 8252 // valid chain for reuse since the legalised loads and token factor node that 8253 // ties the legalised loads together uses a different output chain then the 8254 // illegal load. 8255 if (!isTypeLegal(LD->getValueType(0))) 8256 return false; 8257 8258 RLI.Ptr = LD->getBasePtr(); 8259 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8260 assert(LD->getAddressingMode() == ISD::PRE_INC && 8261 "Non-pre-inc AM on PPC?"); 8262 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8263 LD->getOffset()); 8264 } 8265 8266 RLI.Chain = LD->getChain(); 8267 RLI.MPI = LD->getPointerInfo(); 8268 RLI.IsDereferenceable = LD->isDereferenceable(); 8269 RLI.IsInvariant = LD->isInvariant(); 8270 RLI.Alignment = LD->getAlign(); 8271 RLI.AAInfo = LD->getAAInfo(); 8272 RLI.Ranges = LD->getRanges(); 8273 8274 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8275 return true; 8276 } 8277 8278 // Given the head of the old chain, ResChain, insert a token factor containing 8279 // it and NewResChain, and make users of ResChain now be users of that token 8280 // factor. 8281 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8282 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8283 SDValue NewResChain, 8284 SelectionDAG &DAG) const { 8285 if (!ResChain) 8286 return; 8287 8288 SDLoc dl(NewResChain); 8289 8290 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8291 NewResChain, DAG.getUNDEF(MVT::Other)); 8292 assert(TF.getNode() != NewResChain.getNode() && 8293 "A new TF really is required here"); 8294 8295 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8296 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8297 } 8298 8299 /// Analyze profitability of direct move 8300 /// prefer float load to int load plus direct move 8301 /// when there is no integer use of int load 8302 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8303 SDNode *Origin = Op.getOperand(0).getNode(); 8304 if (Origin->getOpcode() != ISD::LOAD) 8305 return true; 8306 8307 // If there is no LXSIBZX/LXSIHZX, like Power8, 8308 // prefer direct move if the memory size is 1 or 2 bytes. 8309 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8310 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8311 return true; 8312 8313 for (SDNode::use_iterator UI = Origin->use_begin(), 8314 UE = Origin->use_end(); 8315 UI != UE; ++UI) { 8316 8317 // Only look at the users of the loaded value. 8318 if (UI.getUse().get().getResNo() != 0) 8319 continue; 8320 8321 if (UI->getOpcode() != ISD::SINT_TO_FP && 8322 UI->getOpcode() != ISD::UINT_TO_FP && 8323 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8324 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8325 return true; 8326 } 8327 8328 return false; 8329 } 8330 8331 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8332 const PPCSubtarget &Subtarget, 8333 SDValue Chain = SDValue()) { 8334 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8335 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8336 SDLoc dl(Op); 8337 8338 // TODO: Any other flags to propagate? 8339 SDNodeFlags Flags; 8340 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8341 8342 // If we have FCFIDS, then use it when converting to single-precision. 8343 // Otherwise, convert to double-precision and then round. 8344 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8345 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8346 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8347 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8348 if (Op->isStrictFPOpcode()) { 8349 if (!Chain) 8350 Chain = Op.getOperand(0); 8351 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8352 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8353 } else 8354 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8355 } 8356 8357 /// Custom lowers integer to floating point conversions to use 8358 /// the direct move instructions available in ISA 2.07 to avoid the 8359 /// need for load/store combinations. 8360 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8361 SelectionDAG &DAG, 8362 const SDLoc &dl) const { 8363 assert((Op.getValueType() == MVT::f32 || 8364 Op.getValueType() == MVT::f64) && 8365 "Invalid floating point type as target of conversion"); 8366 assert(Subtarget.hasFPCVT() && 8367 "Int to FP conversions with direct moves require FPCVT"); 8368 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8369 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8370 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8371 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8372 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8373 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8374 return convertIntToFP(Op, Mov, DAG, Subtarget); 8375 } 8376 8377 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8378 8379 EVT VecVT = Vec.getValueType(); 8380 assert(VecVT.isVector() && "Expected a vector type."); 8381 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8382 8383 EVT EltVT = VecVT.getVectorElementType(); 8384 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8385 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8386 8387 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8388 SmallVector<SDValue, 16> Ops(NumConcat); 8389 Ops[0] = Vec; 8390 SDValue UndefVec = DAG.getUNDEF(VecVT); 8391 for (unsigned i = 1; i < NumConcat; ++i) 8392 Ops[i] = UndefVec; 8393 8394 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8395 } 8396 8397 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8398 const SDLoc &dl) const { 8399 bool IsStrict = Op->isStrictFPOpcode(); 8400 unsigned Opc = Op.getOpcode(); 8401 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8402 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8403 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8404 "Unexpected conversion type"); 8405 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8406 "Supports conversions to v2f64/v4f32 only."); 8407 8408 // TODO: Any other flags to propagate? 8409 SDNodeFlags Flags; 8410 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8411 8412 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8413 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8414 8415 SDValue Wide = widenVec(DAG, Src, dl); 8416 EVT WideVT = Wide.getValueType(); 8417 unsigned WideNumElts = WideVT.getVectorNumElements(); 8418 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8419 8420 SmallVector<int, 16> ShuffV; 8421 for (unsigned i = 0; i < WideNumElts; ++i) 8422 ShuffV.push_back(i + WideNumElts); 8423 8424 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8425 int SaveElts = FourEltRes ? 4 : 2; 8426 if (Subtarget.isLittleEndian()) 8427 for (int i = 0; i < SaveElts; i++) 8428 ShuffV[i * Stride] = i; 8429 else 8430 for (int i = 1; i <= SaveElts; i++) 8431 ShuffV[i * Stride - 1] = i - 1; 8432 8433 SDValue ShuffleSrc2 = 8434 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8435 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8436 8437 SDValue Extend; 8438 if (SignedConv) { 8439 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8440 EVT ExtVT = Src.getValueType(); 8441 if (Subtarget.hasP9Altivec()) 8442 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8443 IntermediateVT.getVectorNumElements()); 8444 8445 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8446 DAG.getValueType(ExtVT)); 8447 } else 8448 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8449 8450 if (IsStrict) 8451 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8452 {Op.getOperand(0), Extend}, Flags); 8453 8454 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8455 } 8456 8457 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8458 SelectionDAG &DAG) const { 8459 SDLoc dl(Op); 8460 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8461 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8462 bool IsStrict = Op->isStrictFPOpcode(); 8463 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8464 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8465 8466 // TODO: Any other flags to propagate? 8467 SDNodeFlags Flags; 8468 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8469 8470 EVT InVT = Src.getValueType(); 8471 EVT OutVT = Op.getValueType(); 8472 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8473 isOperationCustom(Op.getOpcode(), InVT)) 8474 return LowerINT_TO_FPVector(Op, DAG, dl); 8475 8476 // Conversions to f128 are legal. 8477 if (Op.getValueType() == MVT::f128) 8478 return Subtarget.hasP9Vector() ? Op : SDValue(); 8479 8480 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8481 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8482 return SDValue(); 8483 8484 if (Src.getValueType() == MVT::i1) { 8485 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8486 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8487 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8488 if (IsStrict) 8489 return DAG.getMergeValues({Sel, Chain}, dl); 8490 else 8491 return Sel; 8492 } 8493 8494 // If we have direct moves, we can do all the conversion, skip the store/load 8495 // however, without FPCVT we can't do most conversions. 8496 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8497 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8498 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8499 8500 assert((IsSigned || Subtarget.hasFPCVT()) && 8501 "UINT_TO_FP is supported only with FPCVT"); 8502 8503 if (Src.getValueType() == MVT::i64) { 8504 SDValue SINT = Src; 8505 // When converting to single-precision, we actually need to convert 8506 // to double-precision first and then round to single-precision. 8507 // To avoid double-rounding effects during that operation, we have 8508 // to prepare the input operand. Bits that might be truncated when 8509 // converting to double-precision are replaced by a bit that won't 8510 // be lost at this stage, but is below the single-precision rounding 8511 // position. 8512 // 8513 // However, if -enable-unsafe-fp-math is in effect, accept double 8514 // rounding to avoid the extra overhead. 8515 if (Op.getValueType() == MVT::f32 && 8516 !Subtarget.hasFPCVT() && 8517 !DAG.getTarget().Options.UnsafeFPMath) { 8518 8519 // Twiddle input to make sure the low 11 bits are zero. (If this 8520 // is the case, we are guaranteed the value will fit into the 53 bit 8521 // mantissa of an IEEE double-precision value without rounding.) 8522 // If any of those low 11 bits were not zero originally, make sure 8523 // bit 12 (value 2048) is set instead, so that the final rounding 8524 // to single-precision gets the correct result. 8525 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8526 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8527 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8528 Round, DAG.getConstant(2047, dl, MVT::i64)); 8529 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8530 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8531 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8532 8533 // However, we cannot use that value unconditionally: if the magnitude 8534 // of the input value is small, the bit-twiddling we did above might 8535 // end up visibly changing the output. Fortunately, in that case, we 8536 // don't need to twiddle bits since the original input will convert 8537 // exactly to double-precision floating-point already. Therefore, 8538 // construct a conditional to use the original value if the top 11 8539 // bits are all sign-bit copies, and use the rounded value computed 8540 // above otherwise. 8541 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8542 SINT, DAG.getConstant(53, dl, MVT::i32)); 8543 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8544 Cond, DAG.getConstant(1, dl, MVT::i64)); 8545 Cond = DAG.getSetCC( 8546 dl, 8547 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8548 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8549 8550 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8551 } 8552 8553 ReuseLoadInfo RLI; 8554 SDValue Bits; 8555 8556 MachineFunction &MF = DAG.getMachineFunction(); 8557 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8558 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8559 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8560 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8561 } else if (Subtarget.hasLFIWAX() && 8562 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8563 MachineMemOperand *MMO = 8564 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8565 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8566 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8567 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8568 DAG.getVTList(MVT::f64, MVT::Other), 8569 Ops, MVT::i32, MMO); 8570 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8571 } else if (Subtarget.hasFPCVT() && 8572 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8573 MachineMemOperand *MMO = 8574 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8575 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8576 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8577 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8578 DAG.getVTList(MVT::f64, MVT::Other), 8579 Ops, MVT::i32, MMO); 8580 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8581 } else if (((Subtarget.hasLFIWAX() && 8582 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8583 (Subtarget.hasFPCVT() && 8584 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8585 SINT.getOperand(0).getValueType() == MVT::i32) { 8586 MachineFrameInfo &MFI = MF.getFrameInfo(); 8587 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8588 8589 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8590 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8591 8592 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8593 MachinePointerInfo::getFixedStack( 8594 DAG.getMachineFunction(), FrameIdx)); 8595 Chain = Store; 8596 8597 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8598 "Expected an i32 store"); 8599 8600 RLI.Ptr = FIdx; 8601 RLI.Chain = Chain; 8602 RLI.MPI = 8603 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8604 RLI.Alignment = Align(4); 8605 8606 MachineMemOperand *MMO = 8607 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8608 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8609 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8610 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8611 PPCISD::LFIWZX : PPCISD::LFIWAX, 8612 dl, DAG.getVTList(MVT::f64, MVT::Other), 8613 Ops, MVT::i32, MMO); 8614 Chain = Bits.getValue(1); 8615 } else 8616 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8617 8618 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8619 if (IsStrict) 8620 Chain = FP.getValue(1); 8621 8622 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8623 if (IsStrict) 8624 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8625 DAG.getVTList(MVT::f32, MVT::Other), 8626 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8627 else 8628 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8629 DAG.getIntPtrConstant(0, dl)); 8630 } 8631 return FP; 8632 } 8633 8634 assert(Src.getValueType() == MVT::i32 && 8635 "Unhandled INT_TO_FP type in custom expander!"); 8636 // Since we only generate this in 64-bit mode, we can take advantage of 8637 // 64-bit registers. In particular, sign extend the input value into the 8638 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8639 // then lfd it and fcfid it. 8640 MachineFunction &MF = DAG.getMachineFunction(); 8641 MachineFrameInfo &MFI = MF.getFrameInfo(); 8642 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8643 8644 SDValue Ld; 8645 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8646 ReuseLoadInfo RLI; 8647 bool ReusingLoad; 8648 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8649 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8650 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8651 8652 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8653 MachinePointerInfo::getFixedStack( 8654 DAG.getMachineFunction(), FrameIdx)); 8655 Chain = Store; 8656 8657 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8658 "Expected an i32 store"); 8659 8660 RLI.Ptr = FIdx; 8661 RLI.Chain = Chain; 8662 RLI.MPI = 8663 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8664 RLI.Alignment = Align(4); 8665 } 8666 8667 MachineMemOperand *MMO = 8668 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8669 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8670 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8671 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8672 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8673 MVT::i32, MMO); 8674 Chain = Ld.getValue(1); 8675 if (ReusingLoad) 8676 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8677 } else { 8678 assert(Subtarget.isPPC64() && 8679 "i32->FP without LFIWAX supported only on PPC64"); 8680 8681 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8682 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8683 8684 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8685 8686 // STD the extended value into the stack slot. 8687 SDValue Store = DAG.getStore( 8688 Chain, dl, Ext64, FIdx, 8689 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8690 Chain = Store; 8691 8692 // Load the value as a double. 8693 Ld = DAG.getLoad( 8694 MVT::f64, dl, Chain, FIdx, 8695 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8696 Chain = Ld.getValue(1); 8697 } 8698 8699 // FCFID it and return it. 8700 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8701 if (IsStrict) 8702 Chain = FP.getValue(1); 8703 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8704 if (IsStrict) 8705 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8706 DAG.getVTList(MVT::f32, MVT::Other), 8707 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8708 else 8709 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8710 DAG.getIntPtrConstant(0, dl)); 8711 } 8712 return FP; 8713 } 8714 8715 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8716 SelectionDAG &DAG) const { 8717 SDLoc dl(Op); 8718 /* 8719 The rounding mode is in bits 30:31 of FPSR, and has the following 8720 settings: 8721 00 Round to nearest 8722 01 Round to 0 8723 10 Round to +inf 8724 11 Round to -inf 8725 8726 FLT_ROUNDS, on the other hand, expects the following: 8727 -1 Undefined 8728 0 Round to 0 8729 1 Round to nearest 8730 2 Round to +inf 8731 3 Round to -inf 8732 8733 To perform the conversion, we do: 8734 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8735 */ 8736 8737 MachineFunction &MF = DAG.getMachineFunction(); 8738 EVT VT = Op.getValueType(); 8739 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8740 8741 // Save FP Control Word to register 8742 SDValue Chain = Op.getOperand(0); 8743 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8744 Chain = MFFS.getValue(1); 8745 8746 SDValue CWD; 8747 if (isTypeLegal(MVT::i64)) { 8748 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8749 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8750 } else { 8751 // Save FP register to stack slot 8752 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8753 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8754 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8755 8756 // Load FP Control Word from low 32 bits of stack slot. 8757 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8758 "Stack slot adjustment is valid only on big endian subtargets!"); 8759 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8760 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8761 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8762 Chain = CWD.getValue(1); 8763 } 8764 8765 // Transform as necessary 8766 SDValue CWD1 = 8767 DAG.getNode(ISD::AND, dl, MVT::i32, 8768 CWD, DAG.getConstant(3, dl, MVT::i32)); 8769 SDValue CWD2 = 8770 DAG.getNode(ISD::SRL, dl, MVT::i32, 8771 DAG.getNode(ISD::AND, dl, MVT::i32, 8772 DAG.getNode(ISD::XOR, dl, MVT::i32, 8773 CWD, DAG.getConstant(3, dl, MVT::i32)), 8774 DAG.getConstant(3, dl, MVT::i32)), 8775 DAG.getConstant(1, dl, MVT::i32)); 8776 8777 SDValue RetVal = 8778 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8779 8780 RetVal = 8781 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8782 dl, VT, RetVal); 8783 8784 return DAG.getMergeValues({RetVal, Chain}, dl); 8785 } 8786 8787 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8788 EVT VT = Op.getValueType(); 8789 unsigned BitWidth = VT.getSizeInBits(); 8790 SDLoc dl(Op); 8791 assert(Op.getNumOperands() == 3 && 8792 VT == Op.getOperand(1).getValueType() && 8793 "Unexpected SHL!"); 8794 8795 // Expand into a bunch of logical ops. Note that these ops 8796 // depend on the PPC behavior for oversized shift amounts. 8797 SDValue Lo = Op.getOperand(0); 8798 SDValue Hi = Op.getOperand(1); 8799 SDValue Amt = Op.getOperand(2); 8800 EVT AmtVT = Amt.getValueType(); 8801 8802 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8803 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8804 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8805 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8806 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8807 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8808 DAG.getConstant(-BitWidth, dl, AmtVT)); 8809 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8810 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8811 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8812 SDValue OutOps[] = { OutLo, OutHi }; 8813 return DAG.getMergeValues(OutOps, dl); 8814 } 8815 8816 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8817 EVT VT = Op.getValueType(); 8818 SDLoc dl(Op); 8819 unsigned BitWidth = VT.getSizeInBits(); 8820 assert(Op.getNumOperands() == 3 && 8821 VT == Op.getOperand(1).getValueType() && 8822 "Unexpected SRL!"); 8823 8824 // Expand into a bunch of logical ops. Note that these ops 8825 // depend on the PPC behavior for oversized shift amounts. 8826 SDValue Lo = Op.getOperand(0); 8827 SDValue Hi = Op.getOperand(1); 8828 SDValue Amt = Op.getOperand(2); 8829 EVT AmtVT = Amt.getValueType(); 8830 8831 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8832 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8833 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8834 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8835 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8836 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8837 DAG.getConstant(-BitWidth, dl, AmtVT)); 8838 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8839 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8840 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8841 SDValue OutOps[] = { OutLo, OutHi }; 8842 return DAG.getMergeValues(OutOps, dl); 8843 } 8844 8845 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8846 SDLoc dl(Op); 8847 EVT VT = Op.getValueType(); 8848 unsigned BitWidth = VT.getSizeInBits(); 8849 assert(Op.getNumOperands() == 3 && 8850 VT == Op.getOperand(1).getValueType() && 8851 "Unexpected SRA!"); 8852 8853 // Expand into a bunch of logical ops, followed by a select_cc. 8854 SDValue Lo = Op.getOperand(0); 8855 SDValue Hi = Op.getOperand(1); 8856 SDValue Amt = Op.getOperand(2); 8857 EVT AmtVT = Amt.getValueType(); 8858 8859 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8860 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8861 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8862 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8863 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8864 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8865 DAG.getConstant(-BitWidth, dl, AmtVT)); 8866 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8867 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8868 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8869 Tmp4, Tmp6, ISD::SETLE); 8870 SDValue OutOps[] = { OutLo, OutHi }; 8871 return DAG.getMergeValues(OutOps, dl); 8872 } 8873 8874 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8875 SelectionDAG &DAG) const { 8876 SDLoc dl(Op); 8877 EVT VT = Op.getValueType(); 8878 unsigned BitWidth = VT.getSizeInBits(); 8879 8880 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8881 SDValue X = Op.getOperand(0); 8882 SDValue Y = Op.getOperand(1); 8883 SDValue Z = Op.getOperand(2); 8884 EVT AmtVT = Z.getValueType(); 8885 8886 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8887 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8888 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8889 // on PowerPC shift by BW being well defined. 8890 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8891 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8892 SDValue SubZ = 8893 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8894 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8895 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8896 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8897 } 8898 8899 //===----------------------------------------------------------------------===// 8900 // Vector related lowering. 8901 // 8902 8903 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8904 /// element size of SplatSize. Cast the result to VT. 8905 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8906 SelectionDAG &DAG, const SDLoc &dl) { 8907 static const MVT VTys[] = { // canonical VT to use for each size. 8908 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8909 }; 8910 8911 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8912 8913 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8914 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8915 SplatSize = 1; 8916 Val = 0xFF; 8917 } 8918 8919 EVT CanonicalVT = VTys[SplatSize-1]; 8920 8921 // Build a canonical splat for this value. 8922 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8923 } 8924 8925 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8926 /// specified intrinsic ID. 8927 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8928 const SDLoc &dl, EVT DestVT = MVT::Other) { 8929 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8930 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8931 DAG.getConstant(IID, dl, MVT::i32), Op); 8932 } 8933 8934 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8935 /// specified intrinsic ID. 8936 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8937 SelectionDAG &DAG, const SDLoc &dl, 8938 EVT DestVT = MVT::Other) { 8939 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8940 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8941 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8942 } 8943 8944 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8945 /// specified intrinsic ID. 8946 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8947 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8948 EVT DestVT = MVT::Other) { 8949 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8950 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8951 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8952 } 8953 8954 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8955 /// amount. The result has the specified value type. 8956 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8957 SelectionDAG &DAG, const SDLoc &dl) { 8958 // Force LHS/RHS to be the right type. 8959 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8960 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8961 8962 int Ops[16]; 8963 for (unsigned i = 0; i != 16; ++i) 8964 Ops[i] = i + Amt; 8965 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8966 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8967 } 8968 8969 /// Do we have an efficient pattern in a .td file for this node? 8970 /// 8971 /// \param V - pointer to the BuildVectorSDNode being matched 8972 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8973 /// 8974 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8975 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8976 /// the opposite is true (expansion is beneficial) are: 8977 /// - The node builds a vector out of integers that are not 32 or 64-bits 8978 /// - The node builds a vector out of constants 8979 /// - The node is a "load-and-splat" 8980 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8981 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8982 bool HasDirectMove, 8983 bool HasP8Vector) { 8984 EVT VecVT = V->getValueType(0); 8985 bool RightType = VecVT == MVT::v2f64 || 8986 (HasP8Vector && VecVT == MVT::v4f32) || 8987 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8988 if (!RightType) 8989 return false; 8990 8991 bool IsSplat = true; 8992 bool IsLoad = false; 8993 SDValue Op0 = V->getOperand(0); 8994 8995 // This function is called in a block that confirms the node is not a constant 8996 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8997 // different constants. 8998 if (V->isConstant()) 8999 return false; 9000 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9001 if (V->getOperand(i).isUndef()) 9002 return false; 9003 // We want to expand nodes that represent load-and-splat even if the 9004 // loaded value is a floating point truncation or conversion to int. 9005 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9006 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9007 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9008 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9009 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9010 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9011 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9012 IsLoad = true; 9013 // If the operands are different or the input is not a load and has more 9014 // uses than just this BV node, then it isn't a splat. 9015 if (V->getOperand(i) != Op0 || 9016 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9017 IsSplat = false; 9018 } 9019 return !(IsSplat && IsLoad); 9020 } 9021 9022 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9023 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9024 9025 SDLoc dl(Op); 9026 SDValue Op0 = Op->getOperand(0); 9027 9028 if ((Op.getValueType() != MVT::f128) || 9029 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9030 (Op0.getOperand(0).getValueType() != MVT::i64) || 9031 (Op0.getOperand(1).getValueType() != MVT::i64)) 9032 return SDValue(); 9033 9034 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9035 Op0.getOperand(1)); 9036 } 9037 9038 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9039 const SDValue *InputLoad = &Op; 9040 if (InputLoad->getOpcode() == ISD::BITCAST) 9041 InputLoad = &InputLoad->getOperand(0); 9042 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9043 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9044 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9045 InputLoad = &InputLoad->getOperand(0); 9046 } 9047 if (InputLoad->getOpcode() != ISD::LOAD) 9048 return nullptr; 9049 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9050 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9051 } 9052 9053 // Convert the argument APFloat to a single precision APFloat if there is no 9054 // loss in information during the conversion to single precision APFloat and the 9055 // resulting number is not a denormal number. Return true if successful. 9056 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9057 APFloat APFloatToConvert = ArgAPFloat; 9058 bool LosesInfo = true; 9059 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9060 &LosesInfo); 9061 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9062 if (Success) 9063 ArgAPFloat = APFloatToConvert; 9064 return Success; 9065 } 9066 9067 // Bitcast the argument APInt to a double and convert it to a single precision 9068 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9069 // argument if there is no loss in information during the conversion from 9070 // double to single precision APFloat and the resulting number is not a denormal 9071 // number. Return true if successful. 9072 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9073 double DpValue = ArgAPInt.bitsToDouble(); 9074 APFloat APFloatDp(DpValue); 9075 bool Success = convertToNonDenormSingle(APFloatDp); 9076 if (Success) 9077 ArgAPInt = APFloatDp.bitcastToAPInt(); 9078 return Success; 9079 } 9080 9081 // Nondestructive check for convertTonNonDenormSingle. 9082 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9083 // Only convert if it loses info, since XXSPLTIDP should 9084 // handle the other case. 9085 APFloat APFloatToConvert = ArgAPFloat; 9086 bool LosesInfo = true; 9087 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9088 &LosesInfo); 9089 9090 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9091 } 9092 9093 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9094 unsigned &Opcode) { 9095 const SDNode *InputNode = Op.getOperand(0).getNode(); 9096 if (!InputNode || !ISD::isUNINDEXEDLoad(InputNode)) 9097 return false; 9098 9099 if (!Subtarget.hasVSX()) 9100 return false; 9101 9102 EVT Ty = Op->getValueType(0); 9103 if (Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32 || 9104 Ty == MVT::v8i16 || Ty == MVT::v16i8) 9105 return true; 9106 9107 if (Ty == MVT::v2i64) { 9108 // Check the extend type, when the input type is i32, and the output vector 9109 // type is v2i64. 9110 if (cast<LoadSDNode>(Op.getOperand(0))->getMemoryVT() == MVT::i32) { 9111 if (ISD::isZEXTLoad(InputNode)) 9112 Opcode = PPCISD::ZEXT_LD_SPLAT; 9113 if (ISD::isSEXTLoad(InputNode)) 9114 Opcode = PPCISD::SEXT_LD_SPLAT; 9115 } 9116 return true; 9117 } 9118 return false; 9119 } 9120 9121 // If this is a case we can't handle, return null and let the default 9122 // expansion code take care of it. If we CAN select this case, and if it 9123 // selects to a single instruction, return Op. Otherwise, if we can codegen 9124 // this case more efficiently than a constant pool load, lower it to the 9125 // sequence of ops that should be used. 9126 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9127 SelectionDAG &DAG) const { 9128 SDLoc dl(Op); 9129 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9130 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9131 9132 // Check if this is a splat of a constant value. 9133 APInt APSplatBits, APSplatUndef; 9134 unsigned SplatBitSize; 9135 bool HasAnyUndefs; 9136 bool BVNIsConstantSplat = 9137 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9138 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9139 9140 // If it is a splat of a double, check if we can shrink it to a 32 bit 9141 // non-denormal float which when converted back to double gives us the same 9142 // double. This is to exploit the XXSPLTIDP instruction. 9143 // If we lose precision, we use XXSPLTI32DX. 9144 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9145 Subtarget.hasPrefixInstrs()) { 9146 // Check the type first to short-circuit so we don't modify APSplatBits if 9147 // this block isn't executed. 9148 if ((Op->getValueType(0) == MVT::v2f64) && 9149 convertToNonDenormSingle(APSplatBits)) { 9150 SDValue SplatNode = DAG.getNode( 9151 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9152 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9153 return DAG.getBitcast(Op.getValueType(), SplatNode); 9154 } else { 9155 // We may lose precision, so we have to use XXSPLTI32DX. 9156 9157 uint32_t Hi = 9158 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9159 uint32_t Lo = 9160 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9161 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9162 9163 if (!Hi || !Lo) 9164 // If either load is 0, then we should generate XXLXOR to set to 0. 9165 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9166 9167 if (Hi) 9168 SplatNode = DAG.getNode( 9169 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9170 DAG.getTargetConstant(0, dl, MVT::i32), 9171 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9172 9173 if (Lo) 9174 SplatNode = 9175 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9176 DAG.getTargetConstant(1, dl, MVT::i32), 9177 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9178 9179 return DAG.getBitcast(Op.getValueType(), SplatNode); 9180 } 9181 } 9182 9183 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9184 unsigned NewOpcode = PPCISD::LD_SPLAT; 9185 9186 // Handle load-and-splat patterns as we have instructions that will do this 9187 // in one go. 9188 if (DAG.isSplatValue(Op, true) && 9189 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9190 const SDValue *InputLoad = &Op.getOperand(0); 9191 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9192 9193 // If the input load is an extending load, it will be an i32 -> i64 9194 // extending load and isValidSplatLoad() will update NewOpcode. 9195 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9196 unsigned ElementSize = 9197 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9198 9199 assert(((ElementSize == 2 * MemorySize) 9200 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9201 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9202 : (NewOpcode == PPCISD::LD_SPLAT)) && 9203 "Unmatched element size and opcode!\n"); 9204 9205 // Checking for a single use of this load, we have to check for vector 9206 // width (128 bits) / ElementSize uses (since each operand of the 9207 // BUILD_VECTOR is a separate use of the value. 9208 unsigned NumUsesOfInputLD = 128 / ElementSize; 9209 for (SDValue BVInOp : Op->ops()) 9210 if (BVInOp.isUndef()) 9211 NumUsesOfInputLD--; 9212 9213 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9214 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9215 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9216 // 15", but funciton IsValidSplatLoad() now will only return true when 9217 // the data at index 0 is not nullptr. So we will not get into trouble for 9218 // these cases. 9219 // 9220 // case 1 - lfiwzx/lfiwax 9221 // 1.1: load result is i32 and is sign/zero extend to i64; 9222 // 1.2: build a v2i64 vector type with above loaded value; 9223 // 1.3: the vector has only one value at index 0, others are all undef; 9224 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9225 if (NumUsesOfInputLD == 1 && 9226 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9227 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9228 Subtarget.hasLFIWAX())) 9229 return SDValue(); 9230 9231 // case 2 - lxvr[hb]x 9232 // 2.1: load result is at most i16; 9233 // 2.2: build a vector with above loaded value; 9234 // 2.3: the vector has only one value at index 0, others are all undef; 9235 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9236 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9237 Subtarget.isISA3_1() && ElementSize <= 16) 9238 return SDValue(); 9239 9240 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9241 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9242 Subtarget.hasVSX()) { 9243 SDValue Ops[] = { 9244 LD->getChain(), // Chain 9245 LD->getBasePtr(), // Ptr 9246 DAG.getValueType(Op.getValueType()) // VT 9247 }; 9248 SDValue LdSplt = DAG.getMemIntrinsicNode( 9249 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9250 LD->getMemoryVT(), LD->getMemOperand()); 9251 // Replace all uses of the output chain of the original load with the 9252 // output chain of the new load. 9253 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9254 LdSplt.getValue(1)); 9255 return LdSplt; 9256 } 9257 } 9258 9259 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9260 // 32-bits can be lowered to VSX instructions under certain conditions. 9261 // Without VSX, there is no pattern more efficient than expanding the node. 9262 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9263 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9264 Subtarget.hasP8Vector())) 9265 return Op; 9266 return SDValue(); 9267 } 9268 9269 uint64_t SplatBits = APSplatBits.getZExtValue(); 9270 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9271 unsigned SplatSize = SplatBitSize / 8; 9272 9273 // First, handle single instruction cases. 9274 9275 // All zeros? 9276 if (SplatBits == 0) { 9277 // Canonicalize all zero vectors to be v4i32. 9278 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9279 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9280 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9281 } 9282 return Op; 9283 } 9284 9285 // We have XXSPLTIW for constant splats four bytes wide. 9286 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9287 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9288 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9289 // turned into a 4-byte splat of 0xABABABAB. 9290 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9291 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9292 Op.getValueType(), DAG, dl); 9293 9294 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9295 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9296 dl); 9297 9298 // We have XXSPLTIB for constant splats one byte wide. 9299 if (Subtarget.hasP9Vector() && SplatSize == 1) 9300 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9301 dl); 9302 9303 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9304 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9305 (32-SplatBitSize)); 9306 if (SextVal >= -16 && SextVal <= 15) 9307 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9308 dl); 9309 9310 // Two instruction sequences. 9311 9312 // If this value is in the range [-32,30] and is even, use: 9313 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9314 // If this value is in the range [17,31] and is odd, use: 9315 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9316 // If this value is in the range [-31,-17] and is odd, use: 9317 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9318 // Note the last two are three-instruction sequences. 9319 if (SextVal >= -32 && SextVal <= 31) { 9320 // To avoid having these optimizations undone by constant folding, 9321 // we convert to a pseudo that will be expanded later into one of 9322 // the above forms. 9323 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9324 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9325 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9326 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9327 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9328 if (VT == Op.getValueType()) 9329 return RetVal; 9330 else 9331 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9332 } 9333 9334 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9335 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9336 // for fneg/fabs. 9337 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9338 // Make -1 and vspltisw -1: 9339 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9340 9341 // Make the VSLW intrinsic, computing 0x8000_0000. 9342 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9343 OnesV, DAG, dl); 9344 9345 // xor by OnesV to invert it. 9346 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9347 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9348 } 9349 9350 // Check to see if this is a wide variety of vsplti*, binop self cases. 9351 static const signed char SplatCsts[] = { 9352 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9353 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9354 }; 9355 9356 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9357 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9358 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9359 int i = SplatCsts[idx]; 9360 9361 // Figure out what shift amount will be used by altivec if shifted by i in 9362 // this splat size. 9363 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9364 9365 // vsplti + shl self. 9366 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9367 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9368 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9369 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9370 Intrinsic::ppc_altivec_vslw 9371 }; 9372 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9373 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9374 } 9375 9376 // vsplti + srl self. 9377 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9378 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9379 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9380 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9381 Intrinsic::ppc_altivec_vsrw 9382 }; 9383 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9384 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9385 } 9386 9387 // vsplti + rol self. 9388 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9389 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9390 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9391 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9392 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9393 Intrinsic::ppc_altivec_vrlw 9394 }; 9395 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9396 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9397 } 9398 9399 // t = vsplti c, result = vsldoi t, t, 1 9400 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9401 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9402 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9403 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9404 } 9405 // t = vsplti c, result = vsldoi t, t, 2 9406 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9407 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9408 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9409 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9410 } 9411 // t = vsplti c, result = vsldoi t, t, 3 9412 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9413 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9414 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9415 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9416 } 9417 } 9418 9419 return SDValue(); 9420 } 9421 9422 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9423 /// the specified operations to build the shuffle. 9424 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9425 SDValue RHS, SelectionDAG &DAG, 9426 const SDLoc &dl) { 9427 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9428 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9429 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9430 9431 enum { 9432 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9433 OP_VMRGHW, 9434 OP_VMRGLW, 9435 OP_VSPLTISW0, 9436 OP_VSPLTISW1, 9437 OP_VSPLTISW2, 9438 OP_VSPLTISW3, 9439 OP_VSLDOI4, 9440 OP_VSLDOI8, 9441 OP_VSLDOI12 9442 }; 9443 9444 if (OpNum == OP_COPY) { 9445 if (LHSID == (1*9+2)*9+3) return LHS; 9446 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9447 return RHS; 9448 } 9449 9450 SDValue OpLHS, OpRHS; 9451 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9452 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9453 9454 int ShufIdxs[16]; 9455 switch (OpNum) { 9456 default: llvm_unreachable("Unknown i32 permute!"); 9457 case OP_VMRGHW: 9458 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9459 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9460 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9461 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9462 break; 9463 case OP_VMRGLW: 9464 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9465 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9466 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9467 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9468 break; 9469 case OP_VSPLTISW0: 9470 for (unsigned i = 0; i != 16; ++i) 9471 ShufIdxs[i] = (i&3)+0; 9472 break; 9473 case OP_VSPLTISW1: 9474 for (unsigned i = 0; i != 16; ++i) 9475 ShufIdxs[i] = (i&3)+4; 9476 break; 9477 case OP_VSPLTISW2: 9478 for (unsigned i = 0; i != 16; ++i) 9479 ShufIdxs[i] = (i&3)+8; 9480 break; 9481 case OP_VSPLTISW3: 9482 for (unsigned i = 0; i != 16; ++i) 9483 ShufIdxs[i] = (i&3)+12; 9484 break; 9485 case OP_VSLDOI4: 9486 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9487 case OP_VSLDOI8: 9488 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9489 case OP_VSLDOI12: 9490 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9491 } 9492 EVT VT = OpLHS.getValueType(); 9493 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9494 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9495 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9496 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9497 } 9498 9499 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9500 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9501 /// SDValue. 9502 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9503 SelectionDAG &DAG) const { 9504 const unsigned BytesInVector = 16; 9505 bool IsLE = Subtarget.isLittleEndian(); 9506 SDLoc dl(N); 9507 SDValue V1 = N->getOperand(0); 9508 SDValue V2 = N->getOperand(1); 9509 unsigned ShiftElts = 0, InsertAtByte = 0; 9510 bool Swap = false; 9511 9512 // Shifts required to get the byte we want at element 7. 9513 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9514 0, 15, 14, 13, 12, 11, 10, 9}; 9515 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9516 1, 2, 3, 4, 5, 6, 7, 8}; 9517 9518 ArrayRef<int> Mask = N->getMask(); 9519 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9520 9521 // For each mask element, find out if we're just inserting something 9522 // from V2 into V1 or vice versa. 9523 // Possible permutations inserting an element from V2 into V1: 9524 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9525 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9526 // ... 9527 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9528 // Inserting from V1 into V2 will be similar, except mask range will be 9529 // [16,31]. 9530 9531 bool FoundCandidate = false; 9532 // If both vector operands for the shuffle are the same vector, the mask 9533 // will contain only elements from the first one and the second one will be 9534 // undef. 9535 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9536 // Go through the mask of half-words to find an element that's being moved 9537 // from one vector to the other. 9538 for (unsigned i = 0; i < BytesInVector; ++i) { 9539 unsigned CurrentElement = Mask[i]; 9540 // If 2nd operand is undefined, we should only look for element 7 in the 9541 // Mask. 9542 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9543 continue; 9544 9545 bool OtherElementsInOrder = true; 9546 // Examine the other elements in the Mask to see if they're in original 9547 // order. 9548 for (unsigned j = 0; j < BytesInVector; ++j) { 9549 if (j == i) 9550 continue; 9551 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9552 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9553 // in which we always assume we're always picking from the 1st operand. 9554 int MaskOffset = 9555 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9556 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9557 OtherElementsInOrder = false; 9558 break; 9559 } 9560 } 9561 // If other elements are in original order, we record the number of shifts 9562 // we need to get the element we want into element 7. Also record which byte 9563 // in the vector we should insert into. 9564 if (OtherElementsInOrder) { 9565 // If 2nd operand is undefined, we assume no shifts and no swapping. 9566 if (V2.isUndef()) { 9567 ShiftElts = 0; 9568 Swap = false; 9569 } else { 9570 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9571 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9572 : BigEndianShifts[CurrentElement & 0xF]; 9573 Swap = CurrentElement < BytesInVector; 9574 } 9575 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9576 FoundCandidate = true; 9577 break; 9578 } 9579 } 9580 9581 if (!FoundCandidate) 9582 return SDValue(); 9583 9584 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9585 // optionally with VECSHL if shift is required. 9586 if (Swap) 9587 std::swap(V1, V2); 9588 if (V2.isUndef()) 9589 V2 = V1; 9590 if (ShiftElts) { 9591 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9592 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9593 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9594 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9595 } 9596 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9597 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9598 } 9599 9600 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9601 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9602 /// SDValue. 9603 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9604 SelectionDAG &DAG) const { 9605 const unsigned NumHalfWords = 8; 9606 const unsigned BytesInVector = NumHalfWords * 2; 9607 // Check that the shuffle is on half-words. 9608 if (!isNByteElemShuffleMask(N, 2, 1)) 9609 return SDValue(); 9610 9611 bool IsLE = Subtarget.isLittleEndian(); 9612 SDLoc dl(N); 9613 SDValue V1 = N->getOperand(0); 9614 SDValue V2 = N->getOperand(1); 9615 unsigned ShiftElts = 0, InsertAtByte = 0; 9616 bool Swap = false; 9617 9618 // Shifts required to get the half-word we want at element 3. 9619 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9620 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9621 9622 uint32_t Mask = 0; 9623 uint32_t OriginalOrderLow = 0x1234567; 9624 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9625 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9626 // 32-bit space, only need 4-bit nibbles per element. 9627 for (unsigned i = 0; i < NumHalfWords; ++i) { 9628 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9629 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9630 } 9631 9632 // For each mask element, find out if we're just inserting something 9633 // from V2 into V1 or vice versa. Possible permutations inserting an element 9634 // from V2 into V1: 9635 // X, 1, 2, 3, 4, 5, 6, 7 9636 // 0, X, 2, 3, 4, 5, 6, 7 9637 // 0, 1, X, 3, 4, 5, 6, 7 9638 // 0, 1, 2, X, 4, 5, 6, 7 9639 // 0, 1, 2, 3, X, 5, 6, 7 9640 // 0, 1, 2, 3, 4, X, 6, 7 9641 // 0, 1, 2, 3, 4, 5, X, 7 9642 // 0, 1, 2, 3, 4, 5, 6, X 9643 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9644 9645 bool FoundCandidate = false; 9646 // Go through the mask of half-words to find an element that's being moved 9647 // from one vector to the other. 9648 for (unsigned i = 0; i < NumHalfWords; ++i) { 9649 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9650 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9651 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9652 uint32_t TargetOrder = 0x0; 9653 9654 // If both vector operands for the shuffle are the same vector, the mask 9655 // will contain only elements from the first one and the second one will be 9656 // undef. 9657 if (V2.isUndef()) { 9658 ShiftElts = 0; 9659 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9660 TargetOrder = OriginalOrderLow; 9661 Swap = false; 9662 // Skip if not the correct element or mask of other elements don't equal 9663 // to our expected order. 9664 if (MaskOneElt == VINSERTHSrcElem && 9665 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9666 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9667 FoundCandidate = true; 9668 break; 9669 } 9670 } else { // If both operands are defined. 9671 // Target order is [8,15] if the current mask is between [0,7]. 9672 TargetOrder = 9673 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9674 // Skip if mask of other elements don't equal our expected order. 9675 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9676 // We only need the last 3 bits for the number of shifts. 9677 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9678 : BigEndianShifts[MaskOneElt & 0x7]; 9679 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9680 Swap = MaskOneElt < NumHalfWords; 9681 FoundCandidate = true; 9682 break; 9683 } 9684 } 9685 } 9686 9687 if (!FoundCandidate) 9688 return SDValue(); 9689 9690 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9691 // optionally with VECSHL if shift is required. 9692 if (Swap) 9693 std::swap(V1, V2); 9694 if (V2.isUndef()) 9695 V2 = V1; 9696 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9697 if (ShiftElts) { 9698 // Double ShiftElts because we're left shifting on v16i8 type. 9699 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9700 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9701 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9702 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9703 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9704 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9705 } 9706 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9707 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9708 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9709 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9710 } 9711 9712 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9713 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9714 /// return the default SDValue. 9715 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9716 SelectionDAG &DAG) const { 9717 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9718 // to v16i8. Peek through the bitcasts to get the actual operands. 9719 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9720 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9721 9722 auto ShuffleMask = SVN->getMask(); 9723 SDValue VecShuffle(SVN, 0); 9724 SDLoc DL(SVN); 9725 9726 // Check that we have a four byte shuffle. 9727 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9728 return SDValue(); 9729 9730 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9731 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9732 std::swap(LHS, RHS); 9733 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9734 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9735 } 9736 9737 // Ensure that the RHS is a vector of constants. 9738 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9739 if (!BVN) 9740 return SDValue(); 9741 9742 // Check if RHS is a splat of 4-bytes (or smaller). 9743 APInt APSplatValue, APSplatUndef; 9744 unsigned SplatBitSize; 9745 bool HasAnyUndefs; 9746 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9747 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9748 SplatBitSize > 32) 9749 return SDValue(); 9750 9751 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9752 // The instruction splats a constant C into two words of the source vector 9753 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9754 // Thus we check that the shuffle mask is the equivalent of 9755 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9756 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9757 // within each word are consecutive, so we only need to check the first byte. 9758 SDValue Index; 9759 bool IsLE = Subtarget.isLittleEndian(); 9760 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9761 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9762 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9763 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9764 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9765 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9766 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9767 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9768 else 9769 return SDValue(); 9770 9771 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9772 // for XXSPLTI32DX. 9773 unsigned SplatVal = APSplatValue.getZExtValue(); 9774 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9775 SplatVal |= (SplatVal << SplatBitSize); 9776 9777 SDValue SplatNode = DAG.getNode( 9778 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9779 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9780 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9781 } 9782 9783 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9784 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9785 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9786 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9787 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9788 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9789 assert(Op.getValueType() == MVT::v1i128 && 9790 "Only set v1i128 as custom, other type shouldn't reach here!"); 9791 SDLoc dl(Op); 9792 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9793 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9794 unsigned SHLAmt = N1.getConstantOperandVal(0); 9795 if (SHLAmt % 8 == 0) { 9796 SmallVector<int, 16> Mask(16, 0); 9797 std::iota(Mask.begin(), Mask.end(), 0); 9798 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9799 if (SDValue Shuffle = 9800 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9801 DAG.getUNDEF(MVT::v16i8), Mask)) 9802 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9803 } 9804 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9805 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9806 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9807 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9808 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9809 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9810 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9811 } 9812 9813 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9814 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9815 /// return the code it can be lowered into. Worst case, it can always be 9816 /// lowered into a vperm. 9817 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9818 SelectionDAG &DAG) const { 9819 SDLoc dl(Op); 9820 SDValue V1 = Op.getOperand(0); 9821 SDValue V2 = Op.getOperand(1); 9822 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9823 9824 // Any nodes that were combined in the target-independent combiner prior 9825 // to vector legalization will not be sent to the target combine. Try to 9826 // combine it here. 9827 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9828 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9829 return NewShuffle; 9830 Op = NewShuffle; 9831 SVOp = cast<ShuffleVectorSDNode>(Op); 9832 V1 = Op.getOperand(0); 9833 V2 = Op.getOperand(1); 9834 } 9835 EVT VT = Op.getValueType(); 9836 bool isLittleEndian = Subtarget.isLittleEndian(); 9837 9838 unsigned ShiftElts, InsertAtByte; 9839 bool Swap = false; 9840 9841 // If this is a load-and-splat, we can do that with a single instruction 9842 // in some cases. However if the load has multiple uses, we don't want to 9843 // combine it because that will just produce multiple loads. 9844 bool IsPermutedLoad = false; 9845 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9846 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9847 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9848 InputLoad->hasOneUse()) { 9849 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9850 int SplatIdx = 9851 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9852 9853 // The splat index for permuted loads will be in the left half of the vector 9854 // which is strictly wider than the loaded value by 8 bytes. So we need to 9855 // adjust the splat index to point to the correct address in memory. 9856 if (IsPermutedLoad) { 9857 assert((isLittleEndian || IsFourByte) && 9858 "Unexpected size for permuted load on big endian target"); 9859 SplatIdx += IsFourByte ? 2 : 1; 9860 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9861 "Splat of a value outside of the loaded memory"); 9862 } 9863 9864 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9865 // For 4-byte load-and-splat, we need Power9. 9866 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9867 uint64_t Offset = 0; 9868 if (IsFourByte) 9869 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9870 else 9871 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9872 9873 // If the width of the load is the same as the width of the splat, 9874 // loading with an offset would load the wrong memory. 9875 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9876 Offset = 0; 9877 9878 SDValue BasePtr = LD->getBasePtr(); 9879 if (Offset != 0) 9880 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9881 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9882 SDValue Ops[] = { 9883 LD->getChain(), // Chain 9884 BasePtr, // BasePtr 9885 DAG.getValueType(Op.getValueType()) // VT 9886 }; 9887 SDVTList VTL = 9888 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9889 SDValue LdSplt = 9890 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9891 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9892 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9893 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9894 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9895 return LdSplt; 9896 } 9897 } 9898 if (Subtarget.hasP9Vector() && 9899 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9900 isLittleEndian)) { 9901 if (Swap) 9902 std::swap(V1, V2); 9903 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9904 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9905 if (ShiftElts) { 9906 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9907 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9908 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9909 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9910 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9911 } 9912 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9913 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9914 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9915 } 9916 9917 if (Subtarget.hasPrefixInstrs()) { 9918 SDValue SplatInsertNode; 9919 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9920 return SplatInsertNode; 9921 } 9922 9923 if (Subtarget.hasP9Altivec()) { 9924 SDValue NewISDNode; 9925 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9926 return NewISDNode; 9927 9928 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9929 return NewISDNode; 9930 } 9931 9932 if (Subtarget.hasVSX() && 9933 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9934 if (Swap) 9935 std::swap(V1, V2); 9936 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9937 SDValue Conv2 = 9938 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9939 9940 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9941 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9942 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9943 } 9944 9945 if (Subtarget.hasVSX() && 9946 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9947 if (Swap) 9948 std::swap(V1, V2); 9949 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9950 SDValue Conv2 = 9951 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9952 9953 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9954 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9955 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9956 } 9957 9958 if (Subtarget.hasP9Vector()) { 9959 if (PPC::isXXBRHShuffleMask(SVOp)) { 9960 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9961 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9962 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9963 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9964 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9965 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9966 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9967 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9968 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9969 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9970 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9971 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9972 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9973 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9974 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9975 } 9976 } 9977 9978 if (Subtarget.hasVSX()) { 9979 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9980 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9981 9982 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9983 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9984 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9985 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9986 } 9987 9988 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9989 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9990 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9991 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9992 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9993 } 9994 } 9995 9996 // Cases that are handled by instructions that take permute immediates 9997 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9998 // selected by the instruction selector. 9999 if (V2.isUndef()) { 10000 if (PPC::isSplatShuffleMask(SVOp, 1) || 10001 PPC::isSplatShuffleMask(SVOp, 2) || 10002 PPC::isSplatShuffleMask(SVOp, 4) || 10003 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10004 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10005 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10006 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10007 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10008 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10009 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10010 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10011 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10012 (Subtarget.hasP8Altivec() && ( 10013 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10014 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10015 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10016 return Op; 10017 } 10018 } 10019 10020 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10021 // and produce a fixed permutation. If any of these match, do not lower to 10022 // VPERM. 10023 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10024 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10025 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10026 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10027 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10028 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10029 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10030 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10031 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10032 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10033 (Subtarget.hasP8Altivec() && ( 10034 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10035 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10036 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10037 return Op; 10038 10039 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10040 // perfect shuffle table to emit an optimal matching sequence. 10041 ArrayRef<int> PermMask = SVOp->getMask(); 10042 10043 unsigned PFIndexes[4]; 10044 bool isFourElementShuffle = true; 10045 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 10046 unsigned EltNo = 8; // Start out undef. 10047 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10048 if (PermMask[i*4+j] < 0) 10049 continue; // Undef, ignore it. 10050 10051 unsigned ByteSource = PermMask[i*4+j]; 10052 if ((ByteSource & 3) != j) { 10053 isFourElementShuffle = false; 10054 break; 10055 } 10056 10057 if (EltNo == 8) { 10058 EltNo = ByteSource/4; 10059 } else if (EltNo != ByteSource/4) { 10060 isFourElementShuffle = false; 10061 break; 10062 } 10063 } 10064 PFIndexes[i] = EltNo; 10065 } 10066 10067 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10068 // perfect shuffle vector to determine if it is cost effective to do this as 10069 // discrete instructions, or whether we should use a vperm. 10070 // For now, we skip this for little endian until such time as we have a 10071 // little-endian perfect shuffle table. 10072 if (isFourElementShuffle && !isLittleEndian) { 10073 // Compute the index in the perfect shuffle table. 10074 unsigned PFTableIndex = 10075 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10076 10077 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10078 unsigned Cost = (PFEntry >> 30); 10079 10080 // Determining when to avoid vperm is tricky. Many things affect the cost 10081 // of vperm, particularly how many times the perm mask needs to be computed. 10082 // For example, if the perm mask can be hoisted out of a loop or is already 10083 // used (perhaps because there are multiple permutes with the same shuffle 10084 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10085 // the loop requires an extra register. 10086 // 10087 // As a compromise, we only emit discrete instructions if the shuffle can be 10088 // generated in 3 or fewer operations. When we have loop information 10089 // available, if this block is within a loop, we should avoid using vperm 10090 // for 3-operation perms and use a constant pool load instead. 10091 if (Cost < 3) 10092 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10093 } 10094 10095 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10096 // vector that will get spilled to the constant pool. 10097 if (V2.isUndef()) V2 = V1; 10098 10099 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10100 // that it is in input element units, not in bytes. Convert now. 10101 10102 // For little endian, the order of the input vectors is reversed, and 10103 // the permutation mask is complemented with respect to 31. This is 10104 // necessary to produce proper semantics with the big-endian-biased vperm 10105 // instruction. 10106 EVT EltVT = V1.getValueType().getVectorElementType(); 10107 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10108 10109 SmallVector<SDValue, 16> ResultMask; 10110 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10111 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10112 10113 for (unsigned j = 0; j != BytesPerElement; ++j) 10114 if (isLittleEndian) 10115 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10116 dl, MVT::i32)); 10117 else 10118 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10119 MVT::i32)); 10120 } 10121 10122 ShufflesHandledWithVPERM++; 10123 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10124 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10125 LLVM_DEBUG(SVOp->dump()); 10126 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10127 LLVM_DEBUG(VPermMask.dump()); 10128 10129 if (isLittleEndian) 10130 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10131 V2, V1, VPermMask); 10132 else 10133 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10134 V1, V2, VPermMask); 10135 } 10136 10137 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10138 /// vector comparison. If it is, return true and fill in Opc/isDot with 10139 /// information about the intrinsic. 10140 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10141 bool &isDot, const PPCSubtarget &Subtarget) { 10142 unsigned IntrinsicID = 10143 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10144 CompareOpc = -1; 10145 isDot = false; 10146 switch (IntrinsicID) { 10147 default: 10148 return false; 10149 // Comparison predicates. 10150 case Intrinsic::ppc_altivec_vcmpbfp_p: 10151 CompareOpc = 966; 10152 isDot = true; 10153 break; 10154 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10155 CompareOpc = 198; 10156 isDot = true; 10157 break; 10158 case Intrinsic::ppc_altivec_vcmpequb_p: 10159 CompareOpc = 6; 10160 isDot = true; 10161 break; 10162 case Intrinsic::ppc_altivec_vcmpequh_p: 10163 CompareOpc = 70; 10164 isDot = true; 10165 break; 10166 case Intrinsic::ppc_altivec_vcmpequw_p: 10167 CompareOpc = 134; 10168 isDot = true; 10169 break; 10170 case Intrinsic::ppc_altivec_vcmpequd_p: 10171 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10172 CompareOpc = 199; 10173 isDot = true; 10174 } else 10175 return false; 10176 break; 10177 case Intrinsic::ppc_altivec_vcmpneb_p: 10178 case Intrinsic::ppc_altivec_vcmpneh_p: 10179 case Intrinsic::ppc_altivec_vcmpnew_p: 10180 case Intrinsic::ppc_altivec_vcmpnezb_p: 10181 case Intrinsic::ppc_altivec_vcmpnezh_p: 10182 case Intrinsic::ppc_altivec_vcmpnezw_p: 10183 if (Subtarget.hasP9Altivec()) { 10184 switch (IntrinsicID) { 10185 default: 10186 llvm_unreachable("Unknown comparison intrinsic."); 10187 case Intrinsic::ppc_altivec_vcmpneb_p: 10188 CompareOpc = 7; 10189 break; 10190 case Intrinsic::ppc_altivec_vcmpneh_p: 10191 CompareOpc = 71; 10192 break; 10193 case Intrinsic::ppc_altivec_vcmpnew_p: 10194 CompareOpc = 135; 10195 break; 10196 case Intrinsic::ppc_altivec_vcmpnezb_p: 10197 CompareOpc = 263; 10198 break; 10199 case Intrinsic::ppc_altivec_vcmpnezh_p: 10200 CompareOpc = 327; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpnezw_p: 10203 CompareOpc = 391; 10204 break; 10205 } 10206 isDot = true; 10207 } else 10208 return false; 10209 break; 10210 case Intrinsic::ppc_altivec_vcmpgefp_p: 10211 CompareOpc = 454; 10212 isDot = true; 10213 break; 10214 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10215 CompareOpc = 710; 10216 isDot = true; 10217 break; 10218 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10219 CompareOpc = 774; 10220 isDot = true; 10221 break; 10222 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10223 CompareOpc = 838; 10224 isDot = true; 10225 break; 10226 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10227 CompareOpc = 902; 10228 isDot = true; 10229 break; 10230 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10231 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10232 CompareOpc = 967; 10233 isDot = true; 10234 } else 10235 return false; 10236 break; 10237 case Intrinsic::ppc_altivec_vcmpgtub_p: 10238 CompareOpc = 518; 10239 isDot = true; 10240 break; 10241 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10242 CompareOpc = 582; 10243 isDot = true; 10244 break; 10245 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10246 CompareOpc = 646; 10247 isDot = true; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpgtud_p: 10250 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10251 CompareOpc = 711; 10252 isDot = true; 10253 } else 10254 return false; 10255 break; 10256 10257 case Intrinsic::ppc_altivec_vcmpequq: 10258 case Intrinsic::ppc_altivec_vcmpgtsq: 10259 case Intrinsic::ppc_altivec_vcmpgtuq: 10260 if (!Subtarget.isISA3_1()) 10261 return false; 10262 switch (IntrinsicID) { 10263 default: 10264 llvm_unreachable("Unknown comparison intrinsic."); 10265 case Intrinsic::ppc_altivec_vcmpequq: 10266 CompareOpc = 455; 10267 break; 10268 case Intrinsic::ppc_altivec_vcmpgtsq: 10269 CompareOpc = 903; 10270 break; 10271 case Intrinsic::ppc_altivec_vcmpgtuq: 10272 CompareOpc = 647; 10273 break; 10274 } 10275 break; 10276 10277 // VSX predicate comparisons use the same infrastructure 10278 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10279 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10280 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10281 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10282 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10283 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10284 if (Subtarget.hasVSX()) { 10285 switch (IntrinsicID) { 10286 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10287 CompareOpc = 99; 10288 break; 10289 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10290 CompareOpc = 115; 10291 break; 10292 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10293 CompareOpc = 107; 10294 break; 10295 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10296 CompareOpc = 67; 10297 break; 10298 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10299 CompareOpc = 83; 10300 break; 10301 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10302 CompareOpc = 75; 10303 break; 10304 } 10305 isDot = true; 10306 } else 10307 return false; 10308 break; 10309 10310 // Normal Comparisons. 10311 case Intrinsic::ppc_altivec_vcmpbfp: 10312 CompareOpc = 966; 10313 break; 10314 case Intrinsic::ppc_altivec_vcmpeqfp: 10315 CompareOpc = 198; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpequb: 10318 CompareOpc = 6; 10319 break; 10320 case Intrinsic::ppc_altivec_vcmpequh: 10321 CompareOpc = 70; 10322 break; 10323 case Intrinsic::ppc_altivec_vcmpequw: 10324 CompareOpc = 134; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpequd: 10327 if (Subtarget.hasP8Altivec()) 10328 CompareOpc = 199; 10329 else 10330 return false; 10331 break; 10332 case Intrinsic::ppc_altivec_vcmpneb: 10333 case Intrinsic::ppc_altivec_vcmpneh: 10334 case Intrinsic::ppc_altivec_vcmpnew: 10335 case Intrinsic::ppc_altivec_vcmpnezb: 10336 case Intrinsic::ppc_altivec_vcmpnezh: 10337 case Intrinsic::ppc_altivec_vcmpnezw: 10338 if (Subtarget.hasP9Altivec()) 10339 switch (IntrinsicID) { 10340 default: 10341 llvm_unreachable("Unknown comparison intrinsic."); 10342 case Intrinsic::ppc_altivec_vcmpneb: 10343 CompareOpc = 7; 10344 break; 10345 case Intrinsic::ppc_altivec_vcmpneh: 10346 CompareOpc = 71; 10347 break; 10348 case Intrinsic::ppc_altivec_vcmpnew: 10349 CompareOpc = 135; 10350 break; 10351 case Intrinsic::ppc_altivec_vcmpnezb: 10352 CompareOpc = 263; 10353 break; 10354 case Intrinsic::ppc_altivec_vcmpnezh: 10355 CompareOpc = 327; 10356 break; 10357 case Intrinsic::ppc_altivec_vcmpnezw: 10358 CompareOpc = 391; 10359 break; 10360 } 10361 else 10362 return false; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpgefp: 10365 CompareOpc = 454; 10366 break; 10367 case Intrinsic::ppc_altivec_vcmpgtfp: 10368 CompareOpc = 710; 10369 break; 10370 case Intrinsic::ppc_altivec_vcmpgtsb: 10371 CompareOpc = 774; 10372 break; 10373 case Intrinsic::ppc_altivec_vcmpgtsh: 10374 CompareOpc = 838; 10375 break; 10376 case Intrinsic::ppc_altivec_vcmpgtsw: 10377 CompareOpc = 902; 10378 break; 10379 case Intrinsic::ppc_altivec_vcmpgtsd: 10380 if (Subtarget.hasP8Altivec()) 10381 CompareOpc = 967; 10382 else 10383 return false; 10384 break; 10385 case Intrinsic::ppc_altivec_vcmpgtub: 10386 CompareOpc = 518; 10387 break; 10388 case Intrinsic::ppc_altivec_vcmpgtuh: 10389 CompareOpc = 582; 10390 break; 10391 case Intrinsic::ppc_altivec_vcmpgtuw: 10392 CompareOpc = 646; 10393 break; 10394 case Intrinsic::ppc_altivec_vcmpgtud: 10395 if (Subtarget.hasP8Altivec()) 10396 CompareOpc = 711; 10397 else 10398 return false; 10399 break; 10400 case Intrinsic::ppc_altivec_vcmpequq_p: 10401 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10402 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10403 if (!Subtarget.isISA3_1()) 10404 return false; 10405 switch (IntrinsicID) { 10406 default: 10407 llvm_unreachable("Unknown comparison intrinsic."); 10408 case Intrinsic::ppc_altivec_vcmpequq_p: 10409 CompareOpc = 455; 10410 break; 10411 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10412 CompareOpc = 903; 10413 break; 10414 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10415 CompareOpc = 647; 10416 break; 10417 } 10418 isDot = true; 10419 break; 10420 } 10421 return true; 10422 } 10423 10424 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10425 /// lower, do it, otherwise return null. 10426 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10427 SelectionDAG &DAG) const { 10428 unsigned IntrinsicID = 10429 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10430 10431 SDLoc dl(Op); 10432 10433 switch (IntrinsicID) { 10434 case Intrinsic::thread_pointer: 10435 // Reads the thread pointer register, used for __builtin_thread_pointer. 10436 if (Subtarget.isPPC64()) 10437 return DAG.getRegister(PPC::X13, MVT::i64); 10438 return DAG.getRegister(PPC::R2, MVT::i32); 10439 10440 case Intrinsic::ppc_mma_disassemble_acc: 10441 case Intrinsic::ppc_vsx_disassemble_pair: { 10442 int NumVecs = 2; 10443 SDValue WideVec = Op.getOperand(1); 10444 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10445 NumVecs = 4; 10446 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10447 } 10448 SmallVector<SDValue, 4> RetOps; 10449 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10450 SDValue Extract = DAG.getNode( 10451 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10452 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10453 : VecNo, 10454 dl, getPointerTy(DAG.getDataLayout()))); 10455 RetOps.push_back(Extract); 10456 } 10457 return DAG.getMergeValues(RetOps, dl); 10458 } 10459 10460 case Intrinsic::ppc_unpack_longdouble: { 10461 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10462 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10463 "Argument of long double unpack must be 0 or 1!"); 10464 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10465 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10466 Idx->getValueType(0))); 10467 } 10468 10469 case Intrinsic::ppc_compare_exp_lt: 10470 case Intrinsic::ppc_compare_exp_gt: 10471 case Intrinsic::ppc_compare_exp_eq: 10472 case Intrinsic::ppc_compare_exp_uo: { 10473 unsigned Pred; 10474 switch (IntrinsicID) { 10475 case Intrinsic::ppc_compare_exp_lt: 10476 Pred = PPC::PRED_LT; 10477 break; 10478 case Intrinsic::ppc_compare_exp_gt: 10479 Pred = PPC::PRED_GT; 10480 break; 10481 case Intrinsic::ppc_compare_exp_eq: 10482 Pred = PPC::PRED_EQ; 10483 break; 10484 case Intrinsic::ppc_compare_exp_uo: 10485 Pred = PPC::PRED_UN; 10486 break; 10487 } 10488 return SDValue( 10489 DAG.getMachineNode( 10490 PPC::SELECT_CC_I4, dl, MVT::i32, 10491 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10492 Op.getOperand(1), Op.getOperand(2)), 10493 0), 10494 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10495 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10496 0); 10497 } 10498 case Intrinsic::ppc_test_data_class_d: 10499 case Intrinsic::ppc_test_data_class_f: { 10500 unsigned CmprOpc = PPC::XSTSTDCDP; 10501 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10502 CmprOpc = PPC::XSTSTDCSP; 10503 return SDValue( 10504 DAG.getMachineNode( 10505 PPC::SELECT_CC_I4, dl, MVT::i32, 10506 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10507 Op.getOperand(1)), 10508 0), 10509 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10510 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10511 0); 10512 } 10513 case Intrinsic::ppc_convert_f128_to_ppcf128: 10514 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10515 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10516 ? RTLIB::CONVERT_PPCF128_F128 10517 : RTLIB::CONVERT_F128_PPCF128; 10518 MakeLibCallOptions CallOptions; 10519 std::pair<SDValue, SDValue> Result = 10520 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10521 dl, SDValue()); 10522 return Result.first; 10523 } 10524 } 10525 10526 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10527 // opcode number of the comparison. 10528 int CompareOpc; 10529 bool isDot; 10530 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10531 return SDValue(); // Don't custom lower most intrinsics. 10532 10533 // If this is a non-dot comparison, make the VCMP node and we are done. 10534 if (!isDot) { 10535 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10536 Op.getOperand(1), Op.getOperand(2), 10537 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10538 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10539 } 10540 10541 // Create the PPCISD altivec 'dot' comparison node. 10542 SDValue Ops[] = { 10543 Op.getOperand(2), // LHS 10544 Op.getOperand(3), // RHS 10545 DAG.getConstant(CompareOpc, dl, MVT::i32) 10546 }; 10547 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10548 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10549 10550 // Now that we have the comparison, emit a copy from the CR to a GPR. 10551 // This is flagged to the above dot comparison. 10552 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10553 DAG.getRegister(PPC::CR6, MVT::i32), 10554 CompNode.getValue(1)); 10555 10556 // Unpack the result based on how the target uses it. 10557 unsigned BitNo; // Bit # of CR6. 10558 bool InvertBit; // Invert result? 10559 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10560 default: // Can't happen, don't crash on invalid number though. 10561 case 0: // Return the value of the EQ bit of CR6. 10562 BitNo = 0; InvertBit = false; 10563 break; 10564 case 1: // Return the inverted value of the EQ bit of CR6. 10565 BitNo = 0; InvertBit = true; 10566 break; 10567 case 2: // Return the value of the LT bit of CR6. 10568 BitNo = 2; InvertBit = false; 10569 break; 10570 case 3: // Return the inverted value of the LT bit of CR6. 10571 BitNo = 2; InvertBit = true; 10572 break; 10573 } 10574 10575 // Shift the bit into the low position. 10576 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10577 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10578 // Isolate the bit. 10579 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10580 DAG.getConstant(1, dl, MVT::i32)); 10581 10582 // If we are supposed to, toggle the bit. 10583 if (InvertBit) 10584 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10585 DAG.getConstant(1, dl, MVT::i32)); 10586 return Flags; 10587 } 10588 10589 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10590 SelectionDAG &DAG) const { 10591 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10592 // the beginning of the argument list. 10593 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10594 SDLoc DL(Op); 10595 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10596 case Intrinsic::ppc_cfence: { 10597 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10598 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10599 SDValue Val = Op.getOperand(ArgStart + 1); 10600 EVT Ty = Val.getValueType(); 10601 if (Ty == MVT::i128) { 10602 // FIXME: Testing one of two paired registers is sufficient to guarantee 10603 // ordering? 10604 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10605 } 10606 return SDValue( 10607 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10608 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10609 Op.getOperand(0)), 10610 0); 10611 } 10612 default: 10613 break; 10614 } 10615 return SDValue(); 10616 } 10617 10618 // Lower scalar BSWAP64 to xxbrd. 10619 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10620 SDLoc dl(Op); 10621 if (!Subtarget.isPPC64()) 10622 return Op; 10623 // MTVSRDD 10624 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10625 Op.getOperand(0)); 10626 // XXBRD 10627 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10628 // MFVSRD 10629 int VectorIndex = 0; 10630 if (Subtarget.isLittleEndian()) 10631 VectorIndex = 1; 10632 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10633 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10634 return Op; 10635 } 10636 10637 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10638 // compared to a value that is atomically loaded (atomic loads zero-extend). 10639 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10640 SelectionDAG &DAG) const { 10641 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10642 "Expecting an atomic compare-and-swap here."); 10643 SDLoc dl(Op); 10644 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10645 EVT MemVT = AtomicNode->getMemoryVT(); 10646 if (MemVT.getSizeInBits() >= 32) 10647 return Op; 10648 10649 SDValue CmpOp = Op.getOperand(2); 10650 // If this is already correctly zero-extended, leave it alone. 10651 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10652 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10653 return Op; 10654 10655 // Clear the high bits of the compare operand. 10656 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10657 SDValue NewCmpOp = 10658 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10659 DAG.getConstant(MaskVal, dl, MVT::i32)); 10660 10661 // Replace the existing compare operand with the properly zero-extended one. 10662 SmallVector<SDValue, 4> Ops; 10663 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10664 Ops.push_back(AtomicNode->getOperand(i)); 10665 Ops[2] = NewCmpOp; 10666 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10667 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10668 auto NodeTy = 10669 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10670 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10671 } 10672 10673 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10674 SelectionDAG &DAG) const { 10675 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10676 EVT MemVT = N->getMemoryVT(); 10677 assert(MemVT.getSimpleVT() == MVT::i128 && 10678 "Expect quadword atomic operations"); 10679 SDLoc dl(N); 10680 unsigned Opc = N->getOpcode(); 10681 switch (Opc) { 10682 case ISD::ATOMIC_LOAD: { 10683 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10684 // lowered to ppc instructions by pattern matching instruction selector. 10685 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10686 SmallVector<SDValue, 4> Ops{ 10687 N->getOperand(0), 10688 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10689 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10690 Ops.push_back(N->getOperand(I)); 10691 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10692 Ops, MemVT, N->getMemOperand()); 10693 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10694 SDValue ValHi = 10695 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10696 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10697 DAG.getConstant(64, dl, MVT::i32)); 10698 SDValue Val = 10699 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10700 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10701 {Val, LoadedVal.getValue(2)}); 10702 } 10703 case ISD::ATOMIC_STORE: { 10704 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10705 // lowered to ppc instructions by pattern matching instruction selector. 10706 SDVTList Tys = DAG.getVTList(MVT::Other); 10707 SmallVector<SDValue, 4> Ops{ 10708 N->getOperand(0), 10709 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10710 SDValue Val = N->getOperand(2); 10711 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10712 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10713 DAG.getConstant(64, dl, MVT::i32)); 10714 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10715 Ops.push_back(ValLo); 10716 Ops.push_back(ValHi); 10717 Ops.push_back(N->getOperand(1)); 10718 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10719 N->getMemOperand()); 10720 } 10721 default: 10722 llvm_unreachable("Unexpected atomic opcode"); 10723 } 10724 } 10725 10726 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10727 SelectionDAG &DAG) const { 10728 SDLoc dl(Op); 10729 // Create a stack slot that is 16-byte aligned. 10730 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10731 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10732 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10733 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10734 10735 // Store the input value into Value#0 of the stack slot. 10736 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10737 MachinePointerInfo()); 10738 // Load it out. 10739 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10740 } 10741 10742 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10743 SelectionDAG &DAG) const { 10744 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10745 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10746 10747 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10748 10749 EVT VT = Op.getValueType(); 10750 SDLoc dl(Op); 10751 SDValue V1 = Op.getOperand(0); 10752 SDValue V2 = Op.getOperand(1); 10753 10754 if (VT == MVT::v2f64 && C) 10755 return Op; 10756 10757 if (Subtarget.isISA3_1()) { 10758 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10759 return SDValue(); 10760 // On P10, we have legal lowering for constant and variable indices for 10761 // all vectors. 10762 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10763 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10764 return Op; 10765 } 10766 10767 // Before P10, we have legal lowering for constant indices but not for 10768 // variable ones. 10769 if (!C) 10770 return SDValue(); 10771 10772 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10773 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10774 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10775 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10776 unsigned InsertAtElement = C->getZExtValue(); 10777 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10778 if (Subtarget.isLittleEndian()) { 10779 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10780 } 10781 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10782 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10783 } 10784 return Op; 10785 } 10786 10787 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10788 SelectionDAG &DAG) const { 10789 SDLoc dl(Op); 10790 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10791 SDValue LoadChain = LN->getChain(); 10792 SDValue BasePtr = LN->getBasePtr(); 10793 EVT VT = Op.getValueType(); 10794 10795 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10796 return Op; 10797 10798 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10799 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10800 // 2 or 4 vsx registers. 10801 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10802 "Type unsupported without MMA"); 10803 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10804 "Type unsupported without paired vector support"); 10805 Align Alignment = LN->getAlign(); 10806 SmallVector<SDValue, 4> Loads; 10807 SmallVector<SDValue, 4> LoadChains; 10808 unsigned NumVecs = VT.getSizeInBits() / 128; 10809 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10810 SDValue Load = 10811 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10812 LN->getPointerInfo().getWithOffset(Idx * 16), 10813 commonAlignment(Alignment, Idx * 16), 10814 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10815 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10816 DAG.getConstant(16, dl, BasePtr.getValueType())); 10817 Loads.push_back(Load); 10818 LoadChains.push_back(Load.getValue(1)); 10819 } 10820 if (Subtarget.isLittleEndian()) { 10821 std::reverse(Loads.begin(), Loads.end()); 10822 std::reverse(LoadChains.begin(), LoadChains.end()); 10823 } 10824 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10825 SDValue Value = 10826 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10827 dl, VT, Loads); 10828 SDValue RetOps[] = {Value, TF}; 10829 return DAG.getMergeValues(RetOps, dl); 10830 } 10831 10832 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10833 SelectionDAG &DAG) const { 10834 SDLoc dl(Op); 10835 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10836 SDValue StoreChain = SN->getChain(); 10837 SDValue BasePtr = SN->getBasePtr(); 10838 SDValue Value = SN->getValue(); 10839 EVT StoreVT = Value.getValueType(); 10840 10841 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10842 return Op; 10843 10844 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10845 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10846 // underlying registers individually. 10847 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10848 "Type unsupported without MMA"); 10849 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10850 "Type unsupported without paired vector support"); 10851 Align Alignment = SN->getAlign(); 10852 SmallVector<SDValue, 4> Stores; 10853 unsigned NumVecs = 2; 10854 if (StoreVT == MVT::v512i1) { 10855 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10856 NumVecs = 4; 10857 } 10858 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10859 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10860 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10861 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10862 SDValue Store = 10863 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10864 SN->getPointerInfo().getWithOffset(Idx * 16), 10865 commonAlignment(Alignment, Idx * 16), 10866 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10867 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10868 DAG.getConstant(16, dl, BasePtr.getValueType())); 10869 Stores.push_back(Store); 10870 } 10871 SDValue TF = DAG.getTokenFactor(dl, Stores); 10872 return TF; 10873 } 10874 10875 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10876 SDLoc dl(Op); 10877 if (Op.getValueType() == MVT::v4i32) { 10878 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10879 10880 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10881 // +16 as shift amt. 10882 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10883 SDValue RHSSwap = // = vrlw RHS, 16 10884 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10885 10886 // Shrinkify inputs to v8i16. 10887 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10888 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10889 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10890 10891 // Low parts multiplied together, generating 32-bit results (we ignore the 10892 // top parts). 10893 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10894 LHS, RHS, DAG, dl, MVT::v4i32); 10895 10896 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10897 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10898 // Shift the high parts up 16 bits. 10899 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10900 Neg16, DAG, dl); 10901 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10902 } else if (Op.getValueType() == MVT::v16i8) { 10903 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10904 bool isLittleEndian = Subtarget.isLittleEndian(); 10905 10906 // Multiply the even 8-bit parts, producing 16-bit sums. 10907 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10908 LHS, RHS, DAG, dl, MVT::v8i16); 10909 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10910 10911 // Multiply the odd 8-bit parts, producing 16-bit sums. 10912 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10913 LHS, RHS, DAG, dl, MVT::v8i16); 10914 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10915 10916 // Merge the results together. Because vmuleub and vmuloub are 10917 // instructions with a big-endian bias, we must reverse the 10918 // element numbering and reverse the meaning of "odd" and "even" 10919 // when generating little endian code. 10920 int Ops[16]; 10921 for (unsigned i = 0; i != 8; ++i) { 10922 if (isLittleEndian) { 10923 Ops[i*2 ] = 2*i; 10924 Ops[i*2+1] = 2*i+16; 10925 } else { 10926 Ops[i*2 ] = 2*i+1; 10927 Ops[i*2+1] = 2*i+1+16; 10928 } 10929 } 10930 if (isLittleEndian) 10931 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10932 else 10933 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10934 } else { 10935 llvm_unreachable("Unknown mul to lower!"); 10936 } 10937 } 10938 10939 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10940 bool IsStrict = Op->isStrictFPOpcode(); 10941 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10942 !Subtarget.hasP9Vector()) 10943 return SDValue(); 10944 10945 return Op; 10946 } 10947 10948 // Custom lowering for fpext vf32 to v2f64 10949 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10950 10951 assert(Op.getOpcode() == ISD::FP_EXTEND && 10952 "Should only be called for ISD::FP_EXTEND"); 10953 10954 // FIXME: handle extends from half precision float vectors on P9. 10955 // We only want to custom lower an extend from v2f32 to v2f64. 10956 if (Op.getValueType() != MVT::v2f64 || 10957 Op.getOperand(0).getValueType() != MVT::v2f32) 10958 return SDValue(); 10959 10960 SDLoc dl(Op); 10961 SDValue Op0 = Op.getOperand(0); 10962 10963 switch (Op0.getOpcode()) { 10964 default: 10965 return SDValue(); 10966 case ISD::EXTRACT_SUBVECTOR: { 10967 assert(Op0.getNumOperands() == 2 && 10968 isa<ConstantSDNode>(Op0->getOperand(1)) && 10969 "Node should have 2 operands with second one being a constant!"); 10970 10971 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10972 return SDValue(); 10973 10974 // Custom lower is only done for high or low doubleword. 10975 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10976 if (Idx % 2 != 0) 10977 return SDValue(); 10978 10979 // Since input is v4f32, at this point Idx is either 0 or 2. 10980 // Shift to get the doubleword position we want. 10981 int DWord = Idx >> 1; 10982 10983 // High and low word positions are different on little endian. 10984 if (Subtarget.isLittleEndian()) 10985 DWord ^= 0x1; 10986 10987 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10988 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10989 } 10990 case ISD::FADD: 10991 case ISD::FMUL: 10992 case ISD::FSUB: { 10993 SDValue NewLoad[2]; 10994 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10995 // Ensure both input are loads. 10996 SDValue LdOp = Op0.getOperand(i); 10997 if (LdOp.getOpcode() != ISD::LOAD) 10998 return SDValue(); 10999 // Generate new load node. 11000 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11001 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11002 NewLoad[i] = DAG.getMemIntrinsicNode( 11003 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11004 LD->getMemoryVT(), LD->getMemOperand()); 11005 } 11006 SDValue NewOp = 11007 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11008 NewLoad[1], Op0.getNode()->getFlags()); 11009 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11010 DAG.getConstant(0, dl, MVT::i32)); 11011 } 11012 case ISD::LOAD: { 11013 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11014 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11015 SDValue NewLd = DAG.getMemIntrinsicNode( 11016 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11017 LD->getMemoryVT(), LD->getMemOperand()); 11018 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11019 DAG.getConstant(0, dl, MVT::i32)); 11020 } 11021 } 11022 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11023 } 11024 11025 /// LowerOperation - Provide custom lowering hooks for some operations. 11026 /// 11027 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11028 switch (Op.getOpcode()) { 11029 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11030 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11031 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11032 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11033 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11034 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11035 case ISD::STRICT_FSETCC: 11036 case ISD::STRICT_FSETCCS: 11037 case ISD::SETCC: return LowerSETCC(Op, DAG); 11038 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11039 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11040 11041 case ISD::INLINEASM: 11042 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11043 // Variable argument lowering. 11044 case ISD::VASTART: return LowerVASTART(Op, DAG); 11045 case ISD::VAARG: return LowerVAARG(Op, DAG); 11046 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11047 11048 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11049 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11050 case ISD::GET_DYNAMIC_AREA_OFFSET: 11051 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11052 11053 // Exception handling lowering. 11054 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11055 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11056 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11057 11058 case ISD::LOAD: return LowerLOAD(Op, DAG); 11059 case ISD::STORE: return LowerSTORE(Op, DAG); 11060 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11061 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11062 case ISD::STRICT_FP_TO_UINT: 11063 case ISD::STRICT_FP_TO_SINT: 11064 case ISD::FP_TO_UINT: 11065 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11066 case ISD::STRICT_UINT_TO_FP: 11067 case ISD::STRICT_SINT_TO_FP: 11068 case ISD::UINT_TO_FP: 11069 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11070 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11071 11072 // Lower 64-bit shifts. 11073 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11074 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11075 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11076 11077 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11078 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11079 11080 // Vector-related lowering. 11081 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11082 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11083 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11084 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11085 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11086 case ISD::MUL: return LowerMUL(Op, DAG); 11087 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11088 case ISD::STRICT_FP_ROUND: 11089 case ISD::FP_ROUND: 11090 return LowerFP_ROUND(Op, DAG); 11091 case ISD::ROTL: return LowerROTL(Op, DAG); 11092 11093 // For counter-based loop handling. 11094 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11095 11096 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11097 11098 // Frame & Return address. 11099 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11100 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11101 11102 case ISD::INTRINSIC_VOID: 11103 return LowerINTRINSIC_VOID(Op, DAG); 11104 case ISD::BSWAP: 11105 return LowerBSWAP(Op, DAG); 11106 case ISD::ATOMIC_CMP_SWAP: 11107 return LowerATOMIC_CMP_SWAP(Op, DAG); 11108 case ISD::ATOMIC_STORE: 11109 return LowerATOMIC_LOAD_STORE(Op, DAG); 11110 } 11111 } 11112 11113 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11114 SmallVectorImpl<SDValue>&Results, 11115 SelectionDAG &DAG) const { 11116 SDLoc dl(N); 11117 switch (N->getOpcode()) { 11118 default: 11119 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11120 case ISD::ATOMIC_LOAD: { 11121 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11122 Results.push_back(Res); 11123 Results.push_back(Res.getValue(1)); 11124 break; 11125 } 11126 case ISD::READCYCLECOUNTER: { 11127 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11128 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11129 11130 Results.push_back( 11131 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11132 Results.push_back(RTB.getValue(2)); 11133 break; 11134 } 11135 case ISD::INTRINSIC_W_CHAIN: { 11136 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11137 Intrinsic::loop_decrement) 11138 break; 11139 11140 assert(N->getValueType(0) == MVT::i1 && 11141 "Unexpected result type for CTR decrement intrinsic"); 11142 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11143 N->getValueType(0)); 11144 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11145 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11146 N->getOperand(1)); 11147 11148 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11149 Results.push_back(NewInt.getValue(1)); 11150 break; 11151 } 11152 case ISD::INTRINSIC_WO_CHAIN: { 11153 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11154 case Intrinsic::ppc_pack_longdouble: 11155 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11156 N->getOperand(2), N->getOperand(1))); 11157 break; 11158 case Intrinsic::ppc_convert_f128_to_ppcf128: 11159 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11160 break; 11161 } 11162 break; 11163 } 11164 case ISD::VAARG: { 11165 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11166 return; 11167 11168 EVT VT = N->getValueType(0); 11169 11170 if (VT == MVT::i64) { 11171 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11172 11173 Results.push_back(NewNode); 11174 Results.push_back(NewNode.getValue(1)); 11175 } 11176 return; 11177 } 11178 case ISD::STRICT_FP_TO_SINT: 11179 case ISD::STRICT_FP_TO_UINT: 11180 case ISD::FP_TO_SINT: 11181 case ISD::FP_TO_UINT: { 11182 // LowerFP_TO_INT() can only handle f32 and f64. 11183 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11184 MVT::ppcf128) 11185 return; 11186 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11187 Results.push_back(LoweredValue); 11188 if (N->isStrictFPOpcode()) 11189 Results.push_back(LoweredValue.getValue(1)); 11190 return; 11191 } 11192 case ISD::TRUNCATE: { 11193 if (!N->getValueType(0).isVector()) 11194 return; 11195 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11196 if (Lowered) 11197 Results.push_back(Lowered); 11198 return; 11199 } 11200 case ISD::FSHL: 11201 case ISD::FSHR: 11202 // Don't handle funnel shifts here. 11203 return; 11204 case ISD::BITCAST: 11205 // Don't handle bitcast here. 11206 return; 11207 case ISD::FP_EXTEND: 11208 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11209 if (Lowered) 11210 Results.push_back(Lowered); 11211 return; 11212 } 11213 } 11214 11215 //===----------------------------------------------------------------------===// 11216 // Other Lowering Code 11217 //===----------------------------------------------------------------------===// 11218 11219 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11220 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11221 Function *Func = Intrinsic::getDeclaration(M, Id); 11222 return Builder.CreateCall(Func, {}); 11223 } 11224 11225 // The mappings for emitLeading/TrailingFence is taken from 11226 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11227 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11228 Instruction *Inst, 11229 AtomicOrdering Ord) const { 11230 if (Ord == AtomicOrdering::SequentiallyConsistent) 11231 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11232 if (isReleaseOrStronger(Ord)) 11233 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11234 return nullptr; 11235 } 11236 11237 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11238 Instruction *Inst, 11239 AtomicOrdering Ord) const { 11240 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11241 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11242 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11243 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11244 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11245 return Builder.CreateCall( 11246 Intrinsic::getDeclaration( 11247 Builder.GetInsertBlock()->getParent()->getParent(), 11248 Intrinsic::ppc_cfence, {Inst->getType()}), 11249 {Inst}); 11250 // FIXME: Can use isync for rmw operation. 11251 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11252 } 11253 return nullptr; 11254 } 11255 11256 MachineBasicBlock * 11257 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11258 unsigned AtomicSize, 11259 unsigned BinOpcode, 11260 unsigned CmpOpcode, 11261 unsigned CmpPred) const { 11262 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11263 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11264 11265 auto LoadMnemonic = PPC::LDARX; 11266 auto StoreMnemonic = PPC::STDCX; 11267 switch (AtomicSize) { 11268 default: 11269 llvm_unreachable("Unexpected size of atomic entity"); 11270 case 1: 11271 LoadMnemonic = PPC::LBARX; 11272 StoreMnemonic = PPC::STBCX; 11273 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11274 break; 11275 case 2: 11276 LoadMnemonic = PPC::LHARX; 11277 StoreMnemonic = PPC::STHCX; 11278 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11279 break; 11280 case 4: 11281 LoadMnemonic = PPC::LWARX; 11282 StoreMnemonic = PPC::STWCX; 11283 break; 11284 case 8: 11285 LoadMnemonic = PPC::LDARX; 11286 StoreMnemonic = PPC::STDCX; 11287 break; 11288 } 11289 11290 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11291 MachineFunction *F = BB->getParent(); 11292 MachineFunction::iterator It = ++BB->getIterator(); 11293 11294 Register dest = MI.getOperand(0).getReg(); 11295 Register ptrA = MI.getOperand(1).getReg(); 11296 Register ptrB = MI.getOperand(2).getReg(); 11297 Register incr = MI.getOperand(3).getReg(); 11298 DebugLoc dl = MI.getDebugLoc(); 11299 11300 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11301 MachineBasicBlock *loop2MBB = 11302 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11303 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11304 F->insert(It, loopMBB); 11305 if (CmpOpcode) 11306 F->insert(It, loop2MBB); 11307 F->insert(It, exitMBB); 11308 exitMBB->splice(exitMBB->begin(), BB, 11309 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11310 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11311 11312 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11313 Register TmpReg = (!BinOpcode) ? incr : 11314 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11315 : &PPC::GPRCRegClass); 11316 11317 // thisMBB: 11318 // ... 11319 // fallthrough --> loopMBB 11320 BB->addSuccessor(loopMBB); 11321 11322 // loopMBB: 11323 // l[wd]arx dest, ptr 11324 // add r0, dest, incr 11325 // st[wd]cx. r0, ptr 11326 // bne- loopMBB 11327 // fallthrough --> exitMBB 11328 11329 // For max/min... 11330 // loopMBB: 11331 // l[wd]arx dest, ptr 11332 // cmpl?[wd] incr, dest 11333 // bgt exitMBB 11334 // loop2MBB: 11335 // st[wd]cx. dest, ptr 11336 // bne- loopMBB 11337 // fallthrough --> exitMBB 11338 11339 BB = loopMBB; 11340 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11341 .addReg(ptrA).addReg(ptrB); 11342 if (BinOpcode) 11343 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11344 if (CmpOpcode) { 11345 // Signed comparisons of byte or halfword values must be sign-extended. 11346 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11347 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11348 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11349 ExtReg).addReg(dest); 11350 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11351 .addReg(incr).addReg(ExtReg); 11352 } else 11353 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11354 .addReg(incr).addReg(dest); 11355 11356 BuildMI(BB, dl, TII->get(PPC::BCC)) 11357 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11358 BB->addSuccessor(loop2MBB); 11359 BB->addSuccessor(exitMBB); 11360 BB = loop2MBB; 11361 } 11362 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11363 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11364 BuildMI(BB, dl, TII->get(PPC::BCC)) 11365 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11366 BB->addSuccessor(loopMBB); 11367 BB->addSuccessor(exitMBB); 11368 11369 // exitMBB: 11370 // ... 11371 BB = exitMBB; 11372 return BB; 11373 } 11374 11375 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11376 switch(MI.getOpcode()) { 11377 default: 11378 return false; 11379 case PPC::COPY: 11380 return TII->isSignExtended(MI); 11381 case PPC::LHA: 11382 case PPC::LHA8: 11383 case PPC::LHAU: 11384 case PPC::LHAU8: 11385 case PPC::LHAUX: 11386 case PPC::LHAUX8: 11387 case PPC::LHAX: 11388 case PPC::LHAX8: 11389 case PPC::LWA: 11390 case PPC::LWAUX: 11391 case PPC::LWAX: 11392 case PPC::LWAX_32: 11393 case PPC::LWA_32: 11394 case PPC::PLHA: 11395 case PPC::PLHA8: 11396 case PPC::PLHA8pc: 11397 case PPC::PLHApc: 11398 case PPC::PLWA: 11399 case PPC::PLWA8: 11400 case PPC::PLWA8pc: 11401 case PPC::PLWApc: 11402 case PPC::EXTSB: 11403 case PPC::EXTSB8: 11404 case PPC::EXTSB8_32_64: 11405 case PPC::EXTSB8_rec: 11406 case PPC::EXTSB_rec: 11407 case PPC::EXTSH: 11408 case PPC::EXTSH8: 11409 case PPC::EXTSH8_32_64: 11410 case PPC::EXTSH8_rec: 11411 case PPC::EXTSH_rec: 11412 case PPC::EXTSW: 11413 case PPC::EXTSWSLI: 11414 case PPC::EXTSWSLI_32_64: 11415 case PPC::EXTSWSLI_32_64_rec: 11416 case PPC::EXTSWSLI_rec: 11417 case PPC::EXTSW_32: 11418 case PPC::EXTSW_32_64: 11419 case PPC::EXTSW_32_64_rec: 11420 case PPC::EXTSW_rec: 11421 case PPC::SRAW: 11422 case PPC::SRAWI: 11423 case PPC::SRAWI_rec: 11424 case PPC::SRAW_rec: 11425 return true; 11426 } 11427 return false; 11428 } 11429 11430 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11431 MachineInstr &MI, MachineBasicBlock *BB, 11432 bool is8bit, // operation 11433 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11434 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11435 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11436 11437 // If this is a signed comparison and the value being compared is not known 11438 // to be sign extended, sign extend it here. 11439 DebugLoc dl = MI.getDebugLoc(); 11440 MachineFunction *F = BB->getParent(); 11441 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11442 Register incr = MI.getOperand(3).getReg(); 11443 bool IsSignExtended = Register::isVirtualRegister(incr) && 11444 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11445 11446 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11447 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11448 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11449 .addReg(MI.getOperand(3).getReg()); 11450 MI.getOperand(3).setReg(ValueReg); 11451 } 11452 // If we support part-word atomic mnemonics, just use them 11453 if (Subtarget.hasPartwordAtomics()) 11454 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11455 CmpPred); 11456 11457 // In 64 bit mode we have to use 64 bits for addresses, even though the 11458 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11459 // registers without caring whether they're 32 or 64, but here we're 11460 // doing actual arithmetic on the addresses. 11461 bool is64bit = Subtarget.isPPC64(); 11462 bool isLittleEndian = Subtarget.isLittleEndian(); 11463 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11464 11465 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11466 MachineFunction::iterator It = ++BB->getIterator(); 11467 11468 Register dest = MI.getOperand(0).getReg(); 11469 Register ptrA = MI.getOperand(1).getReg(); 11470 Register ptrB = MI.getOperand(2).getReg(); 11471 11472 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11473 MachineBasicBlock *loop2MBB = 11474 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11475 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11476 F->insert(It, loopMBB); 11477 if (CmpOpcode) 11478 F->insert(It, loop2MBB); 11479 F->insert(It, exitMBB); 11480 exitMBB->splice(exitMBB->begin(), BB, 11481 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11482 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11483 11484 const TargetRegisterClass *RC = 11485 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11486 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11487 11488 Register PtrReg = RegInfo.createVirtualRegister(RC); 11489 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11490 Register ShiftReg = 11491 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11492 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11493 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11494 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11495 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11496 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11497 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11498 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11499 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11500 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11501 Register Ptr1Reg; 11502 Register TmpReg = 11503 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11504 11505 // thisMBB: 11506 // ... 11507 // fallthrough --> loopMBB 11508 BB->addSuccessor(loopMBB); 11509 11510 // The 4-byte load must be aligned, while a char or short may be 11511 // anywhere in the word. Hence all this nasty bookkeeping code. 11512 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11513 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11514 // xori shift, shift1, 24 [16] 11515 // rlwinm ptr, ptr1, 0, 0, 29 11516 // slw incr2, incr, shift 11517 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11518 // slw mask, mask2, shift 11519 // loopMBB: 11520 // lwarx tmpDest, ptr 11521 // add tmp, tmpDest, incr2 11522 // andc tmp2, tmpDest, mask 11523 // and tmp3, tmp, mask 11524 // or tmp4, tmp3, tmp2 11525 // stwcx. tmp4, ptr 11526 // bne- loopMBB 11527 // fallthrough --> exitMBB 11528 // srw SrwDest, tmpDest, shift 11529 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11530 if (ptrA != ZeroReg) { 11531 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11532 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11533 .addReg(ptrA) 11534 .addReg(ptrB); 11535 } else { 11536 Ptr1Reg = ptrB; 11537 } 11538 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11539 // mode. 11540 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11541 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11542 .addImm(3) 11543 .addImm(27) 11544 .addImm(is8bit ? 28 : 27); 11545 if (!isLittleEndian) 11546 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11547 .addReg(Shift1Reg) 11548 .addImm(is8bit ? 24 : 16); 11549 if (is64bit) 11550 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11551 .addReg(Ptr1Reg) 11552 .addImm(0) 11553 .addImm(61); 11554 else 11555 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11556 .addReg(Ptr1Reg) 11557 .addImm(0) 11558 .addImm(0) 11559 .addImm(29); 11560 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11561 if (is8bit) 11562 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11563 else { 11564 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11565 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11566 .addReg(Mask3Reg) 11567 .addImm(65535); 11568 } 11569 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11570 .addReg(Mask2Reg) 11571 .addReg(ShiftReg); 11572 11573 BB = loopMBB; 11574 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11575 .addReg(ZeroReg) 11576 .addReg(PtrReg); 11577 if (BinOpcode) 11578 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11579 .addReg(Incr2Reg) 11580 .addReg(TmpDestReg); 11581 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11582 .addReg(TmpDestReg) 11583 .addReg(MaskReg); 11584 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11585 if (CmpOpcode) { 11586 // For unsigned comparisons, we can directly compare the shifted values. 11587 // For signed comparisons we shift and sign extend. 11588 Register SReg = RegInfo.createVirtualRegister(GPRC); 11589 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11590 .addReg(TmpDestReg) 11591 .addReg(MaskReg); 11592 unsigned ValueReg = SReg; 11593 unsigned CmpReg = Incr2Reg; 11594 if (CmpOpcode == PPC::CMPW) { 11595 ValueReg = RegInfo.createVirtualRegister(GPRC); 11596 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11597 .addReg(SReg) 11598 .addReg(ShiftReg); 11599 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11600 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11601 .addReg(ValueReg); 11602 ValueReg = ValueSReg; 11603 CmpReg = incr; 11604 } 11605 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11606 .addReg(CmpReg) 11607 .addReg(ValueReg); 11608 BuildMI(BB, dl, TII->get(PPC::BCC)) 11609 .addImm(CmpPred) 11610 .addReg(PPC::CR0) 11611 .addMBB(exitMBB); 11612 BB->addSuccessor(loop2MBB); 11613 BB->addSuccessor(exitMBB); 11614 BB = loop2MBB; 11615 } 11616 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11617 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11618 .addReg(Tmp4Reg) 11619 .addReg(ZeroReg) 11620 .addReg(PtrReg); 11621 BuildMI(BB, dl, TII->get(PPC::BCC)) 11622 .addImm(PPC::PRED_NE) 11623 .addReg(PPC::CR0) 11624 .addMBB(loopMBB); 11625 BB->addSuccessor(loopMBB); 11626 BB->addSuccessor(exitMBB); 11627 11628 // exitMBB: 11629 // ... 11630 BB = exitMBB; 11631 // Since the shift amount is not a constant, we need to clear 11632 // the upper bits with a separate RLWINM. 11633 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11634 .addReg(SrwDestReg) 11635 .addImm(0) 11636 .addImm(is8bit ? 24 : 16) 11637 .addImm(31); 11638 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11639 .addReg(TmpDestReg) 11640 .addReg(ShiftReg); 11641 return BB; 11642 } 11643 11644 llvm::MachineBasicBlock * 11645 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11646 MachineBasicBlock *MBB) const { 11647 DebugLoc DL = MI.getDebugLoc(); 11648 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11649 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11650 11651 MachineFunction *MF = MBB->getParent(); 11652 MachineRegisterInfo &MRI = MF->getRegInfo(); 11653 11654 const BasicBlock *BB = MBB->getBasicBlock(); 11655 MachineFunction::iterator I = ++MBB->getIterator(); 11656 11657 Register DstReg = MI.getOperand(0).getReg(); 11658 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11659 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11660 Register mainDstReg = MRI.createVirtualRegister(RC); 11661 Register restoreDstReg = MRI.createVirtualRegister(RC); 11662 11663 MVT PVT = getPointerTy(MF->getDataLayout()); 11664 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11665 "Invalid Pointer Size!"); 11666 // For v = setjmp(buf), we generate 11667 // 11668 // thisMBB: 11669 // SjLjSetup mainMBB 11670 // bl mainMBB 11671 // v_restore = 1 11672 // b sinkMBB 11673 // 11674 // mainMBB: 11675 // buf[LabelOffset] = LR 11676 // v_main = 0 11677 // 11678 // sinkMBB: 11679 // v = phi(main, restore) 11680 // 11681 11682 MachineBasicBlock *thisMBB = MBB; 11683 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11684 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11685 MF->insert(I, mainMBB); 11686 MF->insert(I, sinkMBB); 11687 11688 MachineInstrBuilder MIB; 11689 11690 // Transfer the remainder of BB and its successor edges to sinkMBB. 11691 sinkMBB->splice(sinkMBB->begin(), MBB, 11692 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11693 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11694 11695 // Note that the structure of the jmp_buf used here is not compatible 11696 // with that used by libc, and is not designed to be. Specifically, it 11697 // stores only those 'reserved' registers that LLVM does not otherwise 11698 // understand how to spill. Also, by convention, by the time this 11699 // intrinsic is called, Clang has already stored the frame address in the 11700 // first slot of the buffer and stack address in the third. Following the 11701 // X86 target code, we'll store the jump address in the second slot. We also 11702 // need to save the TOC pointer (R2) to handle jumps between shared 11703 // libraries, and that will be stored in the fourth slot. The thread 11704 // identifier (R13) is not affected. 11705 11706 // thisMBB: 11707 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11708 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11709 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11710 11711 // Prepare IP either in reg. 11712 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11713 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11714 Register BufReg = MI.getOperand(1).getReg(); 11715 11716 if (Subtarget.is64BitELFABI()) { 11717 setUsesTOCBasePtr(*MBB->getParent()); 11718 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11719 .addReg(PPC::X2) 11720 .addImm(TOCOffset) 11721 .addReg(BufReg) 11722 .cloneMemRefs(MI); 11723 } 11724 11725 // Naked functions never have a base pointer, and so we use r1. For all 11726 // other functions, this decision must be delayed until during PEI. 11727 unsigned BaseReg; 11728 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11729 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11730 else 11731 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11732 11733 MIB = BuildMI(*thisMBB, MI, DL, 11734 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11735 .addReg(BaseReg) 11736 .addImm(BPOffset) 11737 .addReg(BufReg) 11738 .cloneMemRefs(MI); 11739 11740 // Setup 11741 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11742 MIB.addRegMask(TRI->getNoPreservedMask()); 11743 11744 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11745 11746 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11747 .addMBB(mainMBB); 11748 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11749 11750 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11751 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11752 11753 // mainMBB: 11754 // mainDstReg = 0 11755 MIB = 11756 BuildMI(mainMBB, DL, 11757 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11758 11759 // Store IP 11760 if (Subtarget.isPPC64()) { 11761 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11762 .addReg(LabelReg) 11763 .addImm(LabelOffset) 11764 .addReg(BufReg); 11765 } else { 11766 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11767 .addReg(LabelReg) 11768 .addImm(LabelOffset) 11769 .addReg(BufReg); 11770 } 11771 MIB.cloneMemRefs(MI); 11772 11773 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11774 mainMBB->addSuccessor(sinkMBB); 11775 11776 // sinkMBB: 11777 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11778 TII->get(PPC::PHI), DstReg) 11779 .addReg(mainDstReg).addMBB(mainMBB) 11780 .addReg(restoreDstReg).addMBB(thisMBB); 11781 11782 MI.eraseFromParent(); 11783 return sinkMBB; 11784 } 11785 11786 MachineBasicBlock * 11787 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11788 MachineBasicBlock *MBB) const { 11789 DebugLoc DL = MI.getDebugLoc(); 11790 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11791 11792 MachineFunction *MF = MBB->getParent(); 11793 MachineRegisterInfo &MRI = MF->getRegInfo(); 11794 11795 MVT PVT = getPointerTy(MF->getDataLayout()); 11796 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11797 "Invalid Pointer Size!"); 11798 11799 const TargetRegisterClass *RC = 11800 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11801 Register Tmp = MRI.createVirtualRegister(RC); 11802 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11803 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11804 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11805 unsigned BP = 11806 (PVT == MVT::i64) 11807 ? PPC::X30 11808 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11809 : PPC::R30); 11810 11811 MachineInstrBuilder MIB; 11812 11813 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11814 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11815 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11816 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11817 11818 Register BufReg = MI.getOperand(0).getReg(); 11819 11820 // Reload FP (the jumped-to function may not have had a 11821 // frame pointer, and if so, then its r31 will be restored 11822 // as necessary). 11823 if (PVT == MVT::i64) { 11824 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11825 .addImm(0) 11826 .addReg(BufReg); 11827 } else { 11828 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11829 .addImm(0) 11830 .addReg(BufReg); 11831 } 11832 MIB.cloneMemRefs(MI); 11833 11834 // Reload IP 11835 if (PVT == MVT::i64) { 11836 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11837 .addImm(LabelOffset) 11838 .addReg(BufReg); 11839 } else { 11840 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11841 .addImm(LabelOffset) 11842 .addReg(BufReg); 11843 } 11844 MIB.cloneMemRefs(MI); 11845 11846 // Reload SP 11847 if (PVT == MVT::i64) { 11848 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11849 .addImm(SPOffset) 11850 .addReg(BufReg); 11851 } else { 11852 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11853 .addImm(SPOffset) 11854 .addReg(BufReg); 11855 } 11856 MIB.cloneMemRefs(MI); 11857 11858 // Reload BP 11859 if (PVT == MVT::i64) { 11860 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11861 .addImm(BPOffset) 11862 .addReg(BufReg); 11863 } else { 11864 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11865 .addImm(BPOffset) 11866 .addReg(BufReg); 11867 } 11868 MIB.cloneMemRefs(MI); 11869 11870 // Reload TOC 11871 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11872 setUsesTOCBasePtr(*MBB->getParent()); 11873 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11874 .addImm(TOCOffset) 11875 .addReg(BufReg) 11876 .cloneMemRefs(MI); 11877 } 11878 11879 // Jump 11880 BuildMI(*MBB, MI, DL, 11881 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11882 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11883 11884 MI.eraseFromParent(); 11885 return MBB; 11886 } 11887 11888 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11889 // If the function specifically requests inline stack probes, emit them. 11890 if (MF.getFunction().hasFnAttribute("probe-stack")) 11891 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11892 "inline-asm"; 11893 return false; 11894 } 11895 11896 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11897 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11898 unsigned StackAlign = TFI->getStackAlignment(); 11899 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11900 "Unexpected stack alignment"); 11901 // The default stack probe size is 4096 if the function has no 11902 // stack-probe-size attribute. 11903 unsigned StackProbeSize = 4096; 11904 const Function &Fn = MF.getFunction(); 11905 if (Fn.hasFnAttribute("stack-probe-size")) 11906 Fn.getFnAttribute("stack-probe-size") 11907 .getValueAsString() 11908 .getAsInteger(0, StackProbeSize); 11909 // Round down to the stack alignment. 11910 StackProbeSize &= ~(StackAlign - 1); 11911 return StackProbeSize ? StackProbeSize : StackAlign; 11912 } 11913 11914 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11915 // into three phases. In the first phase, it uses pseudo instruction 11916 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11917 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11918 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11919 // MaxCallFrameSize so that it can calculate correct data area pointer. 11920 MachineBasicBlock * 11921 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11922 MachineBasicBlock *MBB) const { 11923 const bool isPPC64 = Subtarget.isPPC64(); 11924 MachineFunction *MF = MBB->getParent(); 11925 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11926 DebugLoc DL = MI.getDebugLoc(); 11927 const unsigned ProbeSize = getStackProbeSize(*MF); 11928 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11929 MachineRegisterInfo &MRI = MF->getRegInfo(); 11930 // The CFG of probing stack looks as 11931 // +-----+ 11932 // | MBB | 11933 // +--+--+ 11934 // | 11935 // +----v----+ 11936 // +--->+ TestMBB +---+ 11937 // | +----+----+ | 11938 // | | | 11939 // | +-----v----+ | 11940 // +---+ BlockMBB | | 11941 // +----------+ | 11942 // | 11943 // +---------+ | 11944 // | TailMBB +<--+ 11945 // +---------+ 11946 // In MBB, calculate previous frame pointer and final stack pointer. 11947 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11948 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11949 // TailMBB is spliced via \p MI. 11950 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11951 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11952 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11953 11954 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11955 MF->insert(MBBIter, TestMBB); 11956 MF->insert(MBBIter, BlockMBB); 11957 MF->insert(MBBIter, TailMBB); 11958 11959 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11960 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11961 11962 Register DstReg = MI.getOperand(0).getReg(); 11963 Register NegSizeReg = MI.getOperand(1).getReg(); 11964 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11965 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11966 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11967 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11968 11969 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11970 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11971 // NegSize. 11972 unsigned ProbeOpc; 11973 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11974 ProbeOpc = 11975 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11976 else 11977 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11978 // and NegSizeReg will be allocated in the same phyreg to avoid 11979 // redundant copy when NegSizeReg has only one use which is current MI and 11980 // will be replaced by PREPARE_PROBED_ALLOCA then. 11981 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11982 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11983 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11984 .addDef(ActualNegSizeReg) 11985 .addReg(NegSizeReg) 11986 .add(MI.getOperand(2)) 11987 .add(MI.getOperand(3)); 11988 11989 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11990 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11991 FinalStackPtr) 11992 .addReg(SPReg) 11993 .addReg(ActualNegSizeReg); 11994 11995 // Materialize a scratch register for update. 11996 int64_t NegProbeSize = -(int64_t)ProbeSize; 11997 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11998 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11999 if (!isInt<16>(NegProbeSize)) { 12000 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12001 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12002 .addImm(NegProbeSize >> 16); 12003 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12004 ScratchReg) 12005 .addReg(TempReg) 12006 .addImm(NegProbeSize & 0xFFFF); 12007 } else 12008 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12009 .addImm(NegProbeSize); 12010 12011 { 12012 // Probing leading residual part. 12013 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12014 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12015 .addReg(ActualNegSizeReg) 12016 .addReg(ScratchReg); 12017 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12018 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12019 .addReg(Div) 12020 .addReg(ScratchReg); 12021 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12022 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12023 .addReg(Mul) 12024 .addReg(ActualNegSizeReg); 12025 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12026 .addReg(FramePointer) 12027 .addReg(SPReg) 12028 .addReg(NegMod); 12029 } 12030 12031 { 12032 // Remaining part should be multiple of ProbeSize. 12033 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12034 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12035 .addReg(SPReg) 12036 .addReg(FinalStackPtr); 12037 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12038 .addImm(PPC::PRED_EQ) 12039 .addReg(CmpResult) 12040 .addMBB(TailMBB); 12041 TestMBB->addSuccessor(BlockMBB); 12042 TestMBB->addSuccessor(TailMBB); 12043 } 12044 12045 { 12046 // Touch the block. 12047 // |P...|P...|P... 12048 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12049 .addReg(FramePointer) 12050 .addReg(SPReg) 12051 .addReg(ScratchReg); 12052 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12053 BlockMBB->addSuccessor(TestMBB); 12054 } 12055 12056 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12057 // DYNAREAOFFSET pseudo instruction to get the future result. 12058 Register MaxCallFrameSizeReg = 12059 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12060 BuildMI(TailMBB, DL, 12061 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12062 MaxCallFrameSizeReg) 12063 .add(MI.getOperand(2)) 12064 .add(MI.getOperand(3)); 12065 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12066 .addReg(SPReg) 12067 .addReg(MaxCallFrameSizeReg); 12068 12069 // Splice instructions after MI to TailMBB. 12070 TailMBB->splice(TailMBB->end(), MBB, 12071 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12072 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12073 MBB->addSuccessor(TestMBB); 12074 12075 // Delete the pseudo instruction. 12076 MI.eraseFromParent(); 12077 12078 ++NumDynamicAllocaProbed; 12079 return TailMBB; 12080 } 12081 12082 MachineBasicBlock * 12083 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12084 MachineBasicBlock *BB) const { 12085 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12086 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12087 if (Subtarget.is64BitELFABI() && 12088 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12089 !Subtarget.isUsingPCRelativeCalls()) { 12090 // Call lowering should have added an r2 operand to indicate a dependence 12091 // on the TOC base pointer value. It can't however, because there is no 12092 // way to mark the dependence as implicit there, and so the stackmap code 12093 // will confuse it with a regular operand. Instead, add the dependence 12094 // here. 12095 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12096 } 12097 12098 return emitPatchPoint(MI, BB); 12099 } 12100 12101 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12102 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12103 return emitEHSjLjSetJmp(MI, BB); 12104 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12105 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12106 return emitEHSjLjLongJmp(MI, BB); 12107 } 12108 12109 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12110 12111 // To "insert" these instructions we actually have to insert their 12112 // control-flow patterns. 12113 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12114 MachineFunction::iterator It = ++BB->getIterator(); 12115 12116 MachineFunction *F = BB->getParent(); 12117 MachineRegisterInfo &MRI = F->getRegInfo(); 12118 12119 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12120 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12121 MI.getOpcode() == PPC::SELECT_I8) { 12122 SmallVector<MachineOperand, 2> Cond; 12123 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12124 MI.getOpcode() == PPC::SELECT_CC_I8) 12125 Cond.push_back(MI.getOperand(4)); 12126 else 12127 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12128 Cond.push_back(MI.getOperand(1)); 12129 12130 DebugLoc dl = MI.getDebugLoc(); 12131 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12132 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12133 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12134 MI.getOpcode() == PPC::SELECT_CC_F8 || 12135 MI.getOpcode() == PPC::SELECT_CC_F16 || 12136 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12137 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12138 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12139 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12140 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12141 MI.getOpcode() == PPC::SELECT_CC_SPE || 12142 MI.getOpcode() == PPC::SELECT_F4 || 12143 MI.getOpcode() == PPC::SELECT_F8 || 12144 MI.getOpcode() == PPC::SELECT_F16 || 12145 MI.getOpcode() == PPC::SELECT_SPE || 12146 MI.getOpcode() == PPC::SELECT_SPE4 || 12147 MI.getOpcode() == PPC::SELECT_VRRC || 12148 MI.getOpcode() == PPC::SELECT_VSFRC || 12149 MI.getOpcode() == PPC::SELECT_VSSRC || 12150 MI.getOpcode() == PPC::SELECT_VSRC) { 12151 // The incoming instruction knows the destination vreg to set, the 12152 // condition code register to branch on, the true/false values to 12153 // select between, and a branch opcode to use. 12154 12155 // thisMBB: 12156 // ... 12157 // TrueVal = ... 12158 // cmpTY ccX, r1, r2 12159 // bCC copy1MBB 12160 // fallthrough --> copy0MBB 12161 MachineBasicBlock *thisMBB = BB; 12162 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12163 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12164 DebugLoc dl = MI.getDebugLoc(); 12165 F->insert(It, copy0MBB); 12166 F->insert(It, sinkMBB); 12167 12168 // Transfer the remainder of BB and its successor edges to sinkMBB. 12169 sinkMBB->splice(sinkMBB->begin(), BB, 12170 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12171 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12172 12173 // Next, add the true and fallthrough blocks as its successors. 12174 BB->addSuccessor(copy0MBB); 12175 BB->addSuccessor(sinkMBB); 12176 12177 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12178 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12179 MI.getOpcode() == PPC::SELECT_F16 || 12180 MI.getOpcode() == PPC::SELECT_SPE4 || 12181 MI.getOpcode() == PPC::SELECT_SPE || 12182 MI.getOpcode() == PPC::SELECT_VRRC || 12183 MI.getOpcode() == PPC::SELECT_VSFRC || 12184 MI.getOpcode() == PPC::SELECT_VSSRC || 12185 MI.getOpcode() == PPC::SELECT_VSRC) { 12186 BuildMI(BB, dl, TII->get(PPC::BC)) 12187 .addReg(MI.getOperand(1).getReg()) 12188 .addMBB(sinkMBB); 12189 } else { 12190 unsigned SelectPred = MI.getOperand(4).getImm(); 12191 BuildMI(BB, dl, TII->get(PPC::BCC)) 12192 .addImm(SelectPred) 12193 .addReg(MI.getOperand(1).getReg()) 12194 .addMBB(sinkMBB); 12195 } 12196 12197 // copy0MBB: 12198 // %FalseValue = ... 12199 // # fallthrough to sinkMBB 12200 BB = copy0MBB; 12201 12202 // Update machine-CFG edges 12203 BB->addSuccessor(sinkMBB); 12204 12205 // sinkMBB: 12206 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12207 // ... 12208 BB = sinkMBB; 12209 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12210 .addReg(MI.getOperand(3).getReg()) 12211 .addMBB(copy0MBB) 12212 .addReg(MI.getOperand(2).getReg()) 12213 .addMBB(thisMBB); 12214 } else if (MI.getOpcode() == PPC::ReadTB) { 12215 // To read the 64-bit time-base register on a 32-bit target, we read the 12216 // two halves. Should the counter have wrapped while it was being read, we 12217 // need to try again. 12218 // ... 12219 // readLoop: 12220 // mfspr Rx,TBU # load from TBU 12221 // mfspr Ry,TB # load from TB 12222 // mfspr Rz,TBU # load from TBU 12223 // cmpw crX,Rx,Rz # check if 'old'='new' 12224 // bne readLoop # branch if they're not equal 12225 // ... 12226 12227 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12228 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12229 DebugLoc dl = MI.getDebugLoc(); 12230 F->insert(It, readMBB); 12231 F->insert(It, sinkMBB); 12232 12233 // Transfer the remainder of BB and its successor edges to sinkMBB. 12234 sinkMBB->splice(sinkMBB->begin(), BB, 12235 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12236 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12237 12238 BB->addSuccessor(readMBB); 12239 BB = readMBB; 12240 12241 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12242 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12243 Register LoReg = MI.getOperand(0).getReg(); 12244 Register HiReg = MI.getOperand(1).getReg(); 12245 12246 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12247 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12248 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12249 12250 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12251 12252 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12253 .addReg(HiReg) 12254 .addReg(ReadAgainReg); 12255 BuildMI(BB, dl, TII->get(PPC::BCC)) 12256 .addImm(PPC::PRED_NE) 12257 .addReg(CmpReg) 12258 .addMBB(readMBB); 12259 12260 BB->addSuccessor(readMBB); 12261 BB->addSuccessor(sinkMBB); 12262 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12263 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12264 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12265 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12266 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12267 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12268 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12269 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12270 12271 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12272 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12273 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12274 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12275 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12276 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12277 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12278 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12279 12280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12281 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12282 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12283 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12284 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12285 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12286 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12287 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12288 12289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12290 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12291 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12292 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12293 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12294 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12295 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12296 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12297 12298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12299 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12300 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12301 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12302 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12303 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12304 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12305 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12306 12307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12308 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12309 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12310 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12311 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12312 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12313 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12314 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12315 12316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12317 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12318 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12319 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12320 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12321 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12322 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12323 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12324 12325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12326 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12327 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12328 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12329 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12330 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12331 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12332 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12333 12334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12335 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12336 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12337 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12338 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12339 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12340 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12341 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12342 12343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12344 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12345 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12346 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12347 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12348 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12349 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12350 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12351 12352 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12353 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12354 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12355 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12356 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12357 BB = EmitAtomicBinary(MI, BB, 4, 0); 12358 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12359 BB = EmitAtomicBinary(MI, BB, 8, 0); 12360 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12361 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12362 (Subtarget.hasPartwordAtomics() && 12363 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12364 (Subtarget.hasPartwordAtomics() && 12365 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12366 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12367 12368 auto LoadMnemonic = PPC::LDARX; 12369 auto StoreMnemonic = PPC::STDCX; 12370 switch (MI.getOpcode()) { 12371 default: 12372 llvm_unreachable("Compare and swap of unknown size"); 12373 case PPC::ATOMIC_CMP_SWAP_I8: 12374 LoadMnemonic = PPC::LBARX; 12375 StoreMnemonic = PPC::STBCX; 12376 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12377 break; 12378 case PPC::ATOMIC_CMP_SWAP_I16: 12379 LoadMnemonic = PPC::LHARX; 12380 StoreMnemonic = PPC::STHCX; 12381 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12382 break; 12383 case PPC::ATOMIC_CMP_SWAP_I32: 12384 LoadMnemonic = PPC::LWARX; 12385 StoreMnemonic = PPC::STWCX; 12386 break; 12387 case PPC::ATOMIC_CMP_SWAP_I64: 12388 LoadMnemonic = PPC::LDARX; 12389 StoreMnemonic = PPC::STDCX; 12390 break; 12391 } 12392 Register dest = MI.getOperand(0).getReg(); 12393 Register ptrA = MI.getOperand(1).getReg(); 12394 Register ptrB = MI.getOperand(2).getReg(); 12395 Register oldval = MI.getOperand(3).getReg(); 12396 Register newval = MI.getOperand(4).getReg(); 12397 DebugLoc dl = MI.getDebugLoc(); 12398 12399 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12400 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12401 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12402 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12403 F->insert(It, loop1MBB); 12404 F->insert(It, loop2MBB); 12405 F->insert(It, midMBB); 12406 F->insert(It, exitMBB); 12407 exitMBB->splice(exitMBB->begin(), BB, 12408 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12409 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12410 12411 // thisMBB: 12412 // ... 12413 // fallthrough --> loopMBB 12414 BB->addSuccessor(loop1MBB); 12415 12416 // loop1MBB: 12417 // l[bhwd]arx dest, ptr 12418 // cmp[wd] dest, oldval 12419 // bne- midMBB 12420 // loop2MBB: 12421 // st[bhwd]cx. newval, ptr 12422 // bne- loopMBB 12423 // b exitBB 12424 // midMBB: 12425 // st[bhwd]cx. dest, ptr 12426 // exitBB: 12427 BB = loop1MBB; 12428 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12429 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12430 .addReg(oldval) 12431 .addReg(dest); 12432 BuildMI(BB, dl, TII->get(PPC::BCC)) 12433 .addImm(PPC::PRED_NE) 12434 .addReg(PPC::CR0) 12435 .addMBB(midMBB); 12436 BB->addSuccessor(loop2MBB); 12437 BB->addSuccessor(midMBB); 12438 12439 BB = loop2MBB; 12440 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12441 .addReg(newval) 12442 .addReg(ptrA) 12443 .addReg(ptrB); 12444 BuildMI(BB, dl, TII->get(PPC::BCC)) 12445 .addImm(PPC::PRED_NE) 12446 .addReg(PPC::CR0) 12447 .addMBB(loop1MBB); 12448 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12449 BB->addSuccessor(loop1MBB); 12450 BB->addSuccessor(exitMBB); 12451 12452 BB = midMBB; 12453 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12454 .addReg(dest) 12455 .addReg(ptrA) 12456 .addReg(ptrB); 12457 BB->addSuccessor(exitMBB); 12458 12459 // exitMBB: 12460 // ... 12461 BB = exitMBB; 12462 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12463 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12464 // We must use 64-bit registers for addresses when targeting 64-bit, 12465 // since we're actually doing arithmetic on them. Other registers 12466 // can be 32-bit. 12467 bool is64bit = Subtarget.isPPC64(); 12468 bool isLittleEndian = Subtarget.isLittleEndian(); 12469 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12470 12471 Register dest = MI.getOperand(0).getReg(); 12472 Register ptrA = MI.getOperand(1).getReg(); 12473 Register ptrB = MI.getOperand(2).getReg(); 12474 Register oldval = MI.getOperand(3).getReg(); 12475 Register newval = MI.getOperand(4).getReg(); 12476 DebugLoc dl = MI.getDebugLoc(); 12477 12478 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12479 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12480 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12481 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12482 F->insert(It, loop1MBB); 12483 F->insert(It, loop2MBB); 12484 F->insert(It, midMBB); 12485 F->insert(It, exitMBB); 12486 exitMBB->splice(exitMBB->begin(), BB, 12487 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12488 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12489 12490 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12491 const TargetRegisterClass *RC = 12492 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12493 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12494 12495 Register PtrReg = RegInfo.createVirtualRegister(RC); 12496 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12497 Register ShiftReg = 12498 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12499 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12500 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12501 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12502 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12503 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12504 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12505 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12506 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12507 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12508 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12509 Register Ptr1Reg; 12510 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12511 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12512 // thisMBB: 12513 // ... 12514 // fallthrough --> loopMBB 12515 BB->addSuccessor(loop1MBB); 12516 12517 // The 4-byte load must be aligned, while a char or short may be 12518 // anywhere in the word. Hence all this nasty bookkeeping code. 12519 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12520 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12521 // xori shift, shift1, 24 [16] 12522 // rlwinm ptr, ptr1, 0, 0, 29 12523 // slw newval2, newval, shift 12524 // slw oldval2, oldval,shift 12525 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12526 // slw mask, mask2, shift 12527 // and newval3, newval2, mask 12528 // and oldval3, oldval2, mask 12529 // loop1MBB: 12530 // lwarx tmpDest, ptr 12531 // and tmp, tmpDest, mask 12532 // cmpw tmp, oldval3 12533 // bne- midMBB 12534 // loop2MBB: 12535 // andc tmp2, tmpDest, mask 12536 // or tmp4, tmp2, newval3 12537 // stwcx. tmp4, ptr 12538 // bne- loop1MBB 12539 // b exitBB 12540 // midMBB: 12541 // stwcx. tmpDest, ptr 12542 // exitBB: 12543 // srw dest, tmpDest, shift 12544 if (ptrA != ZeroReg) { 12545 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12546 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12547 .addReg(ptrA) 12548 .addReg(ptrB); 12549 } else { 12550 Ptr1Reg = ptrB; 12551 } 12552 12553 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12554 // mode. 12555 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12556 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12557 .addImm(3) 12558 .addImm(27) 12559 .addImm(is8bit ? 28 : 27); 12560 if (!isLittleEndian) 12561 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12562 .addReg(Shift1Reg) 12563 .addImm(is8bit ? 24 : 16); 12564 if (is64bit) 12565 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12566 .addReg(Ptr1Reg) 12567 .addImm(0) 12568 .addImm(61); 12569 else 12570 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12571 .addReg(Ptr1Reg) 12572 .addImm(0) 12573 .addImm(0) 12574 .addImm(29); 12575 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12576 .addReg(newval) 12577 .addReg(ShiftReg); 12578 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12579 .addReg(oldval) 12580 .addReg(ShiftReg); 12581 if (is8bit) 12582 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12583 else { 12584 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12585 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12586 .addReg(Mask3Reg) 12587 .addImm(65535); 12588 } 12589 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12590 .addReg(Mask2Reg) 12591 .addReg(ShiftReg); 12592 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12593 .addReg(NewVal2Reg) 12594 .addReg(MaskReg); 12595 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12596 .addReg(OldVal2Reg) 12597 .addReg(MaskReg); 12598 12599 BB = loop1MBB; 12600 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12601 .addReg(ZeroReg) 12602 .addReg(PtrReg); 12603 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12604 .addReg(TmpDestReg) 12605 .addReg(MaskReg); 12606 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12607 .addReg(TmpReg) 12608 .addReg(OldVal3Reg); 12609 BuildMI(BB, dl, TII->get(PPC::BCC)) 12610 .addImm(PPC::PRED_NE) 12611 .addReg(PPC::CR0) 12612 .addMBB(midMBB); 12613 BB->addSuccessor(loop2MBB); 12614 BB->addSuccessor(midMBB); 12615 12616 BB = loop2MBB; 12617 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12618 .addReg(TmpDestReg) 12619 .addReg(MaskReg); 12620 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12621 .addReg(Tmp2Reg) 12622 .addReg(NewVal3Reg); 12623 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12624 .addReg(Tmp4Reg) 12625 .addReg(ZeroReg) 12626 .addReg(PtrReg); 12627 BuildMI(BB, dl, TII->get(PPC::BCC)) 12628 .addImm(PPC::PRED_NE) 12629 .addReg(PPC::CR0) 12630 .addMBB(loop1MBB); 12631 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12632 BB->addSuccessor(loop1MBB); 12633 BB->addSuccessor(exitMBB); 12634 12635 BB = midMBB; 12636 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12637 .addReg(TmpDestReg) 12638 .addReg(ZeroReg) 12639 .addReg(PtrReg); 12640 BB->addSuccessor(exitMBB); 12641 12642 // exitMBB: 12643 // ... 12644 BB = exitMBB; 12645 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12646 .addReg(TmpReg) 12647 .addReg(ShiftReg); 12648 } else if (MI.getOpcode() == PPC::FADDrtz) { 12649 // This pseudo performs an FADD with rounding mode temporarily forced 12650 // to round-to-zero. We emit this via custom inserter since the FPSCR 12651 // is not modeled at the SelectionDAG level. 12652 Register Dest = MI.getOperand(0).getReg(); 12653 Register Src1 = MI.getOperand(1).getReg(); 12654 Register Src2 = MI.getOperand(2).getReg(); 12655 DebugLoc dl = MI.getDebugLoc(); 12656 12657 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12658 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12659 12660 // Save FPSCR value. 12661 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12662 12663 // Set rounding mode to round-to-zero. 12664 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12665 .addImm(31) 12666 .addReg(PPC::RM, RegState::ImplicitDefine); 12667 12668 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12669 .addImm(30) 12670 .addReg(PPC::RM, RegState::ImplicitDefine); 12671 12672 // Perform addition. 12673 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12674 .addReg(Src1) 12675 .addReg(Src2); 12676 if (MI.getFlag(MachineInstr::NoFPExcept)) 12677 MIB.setMIFlag(MachineInstr::NoFPExcept); 12678 12679 // Restore FPSCR value. 12680 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12681 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12682 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12683 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12684 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12685 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12686 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12687 ? PPC::ANDI8_rec 12688 : PPC::ANDI_rec; 12689 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12690 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12691 12692 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12693 Register Dest = RegInfo.createVirtualRegister( 12694 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12695 12696 DebugLoc Dl = MI.getDebugLoc(); 12697 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12698 .addReg(MI.getOperand(1).getReg()) 12699 .addImm(1); 12700 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12701 MI.getOperand(0).getReg()) 12702 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12703 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12704 DebugLoc Dl = MI.getDebugLoc(); 12705 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12706 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12707 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12708 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12709 MI.getOperand(0).getReg()) 12710 .addReg(CRReg); 12711 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12712 DebugLoc Dl = MI.getDebugLoc(); 12713 unsigned Imm = MI.getOperand(1).getImm(); 12714 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12715 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12716 MI.getOperand(0).getReg()) 12717 .addReg(PPC::CR0EQ); 12718 } else if (MI.getOpcode() == PPC::SETRNDi) { 12719 DebugLoc dl = MI.getDebugLoc(); 12720 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12721 12722 // Save FPSCR value. 12723 if (MRI.use_empty(OldFPSCRReg)) 12724 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12725 else 12726 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12727 12728 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12729 // the following settings: 12730 // 00 Round to nearest 12731 // 01 Round to 0 12732 // 10 Round to +inf 12733 // 11 Round to -inf 12734 12735 // When the operand is immediate, using the two least significant bits of 12736 // the immediate to set the bits 62:63 of FPSCR. 12737 unsigned Mode = MI.getOperand(1).getImm(); 12738 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12739 .addImm(31) 12740 .addReg(PPC::RM, RegState::ImplicitDefine); 12741 12742 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12743 .addImm(30) 12744 .addReg(PPC::RM, RegState::ImplicitDefine); 12745 } else if (MI.getOpcode() == PPC::SETRND) { 12746 DebugLoc dl = MI.getDebugLoc(); 12747 12748 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12749 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12750 // If the target doesn't have DirectMove, we should use stack to do the 12751 // conversion, because the target doesn't have the instructions like mtvsrd 12752 // or mfvsrd to do this conversion directly. 12753 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12754 if (Subtarget.hasDirectMove()) { 12755 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12756 .addReg(SrcReg); 12757 } else { 12758 // Use stack to do the register copy. 12759 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12760 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12761 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12762 if (RC == &PPC::F8RCRegClass) { 12763 // Copy register from F8RCRegClass to G8RCRegclass. 12764 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12765 "Unsupported RegClass."); 12766 12767 StoreOp = PPC::STFD; 12768 LoadOp = PPC::LD; 12769 } else { 12770 // Copy register from G8RCRegClass to F8RCRegclass. 12771 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12772 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12773 "Unsupported RegClass."); 12774 } 12775 12776 MachineFrameInfo &MFI = F->getFrameInfo(); 12777 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12778 12779 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12780 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12781 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12782 MFI.getObjectAlign(FrameIdx)); 12783 12784 // Store the SrcReg into the stack. 12785 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12786 .addReg(SrcReg) 12787 .addImm(0) 12788 .addFrameIndex(FrameIdx) 12789 .addMemOperand(MMOStore); 12790 12791 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12792 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12793 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12794 MFI.getObjectAlign(FrameIdx)); 12795 12796 // Load from the stack where SrcReg is stored, and save to DestReg, 12797 // so we have done the RegClass conversion from RegClass::SrcReg to 12798 // RegClass::DestReg. 12799 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12800 .addImm(0) 12801 .addFrameIndex(FrameIdx) 12802 .addMemOperand(MMOLoad); 12803 } 12804 }; 12805 12806 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12807 12808 // Save FPSCR value. 12809 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12810 12811 // When the operand is gprc register, use two least significant bits of the 12812 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12813 // 12814 // copy OldFPSCRTmpReg, OldFPSCRReg 12815 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12816 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12817 // copy NewFPSCRReg, NewFPSCRTmpReg 12818 // mtfsf 255, NewFPSCRReg 12819 MachineOperand SrcOp = MI.getOperand(1); 12820 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12821 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12822 12823 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12824 12825 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12826 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12827 12828 // The first operand of INSERT_SUBREG should be a register which has 12829 // subregisters, we only care about its RegClass, so we should use an 12830 // IMPLICIT_DEF register. 12831 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12832 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12833 .addReg(ImDefReg) 12834 .add(SrcOp) 12835 .addImm(1); 12836 12837 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12838 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12839 .addReg(OldFPSCRTmpReg) 12840 .addReg(ExtSrcReg) 12841 .addImm(0) 12842 .addImm(62); 12843 12844 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12845 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12846 12847 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12848 // bits of FPSCR. 12849 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12850 .addImm(255) 12851 .addReg(NewFPSCRReg) 12852 .addImm(0) 12853 .addImm(0); 12854 } else if (MI.getOpcode() == PPC::SETFLM) { 12855 DebugLoc Dl = MI.getDebugLoc(); 12856 12857 // Result of setflm is previous FPSCR content, so we need to save it first. 12858 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12859 if (MRI.use_empty(OldFPSCRReg)) 12860 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12861 else 12862 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12863 12864 // Put bits in 32:63 to FPSCR. 12865 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12866 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12867 .addImm(255) 12868 .addReg(NewFPSCRReg) 12869 .addImm(0) 12870 .addImm(0); 12871 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12872 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12873 return emitProbedAlloca(MI, BB); 12874 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12875 DebugLoc DL = MI.getDebugLoc(); 12876 Register Src = MI.getOperand(2).getReg(); 12877 Register Lo = MI.getOperand(0).getReg(); 12878 Register Hi = MI.getOperand(1).getReg(); 12879 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12880 .addDef(Lo) 12881 .addUse(Src, 0, PPC::sub_gp8_x1); 12882 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12883 .addDef(Hi) 12884 .addUse(Src, 0, PPC::sub_gp8_x0); 12885 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12886 MI.getOpcode() == PPC::STQX_PSEUDO) { 12887 DebugLoc DL = MI.getDebugLoc(); 12888 // Ptr is used as the ptr_rc_no_r0 part 12889 // of LQ/STQ's memory operand and adding result of RA and RB, 12890 // so it has to be g8rc_and_g8rc_nox0. 12891 Register Ptr = 12892 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12893 Register Val = MI.getOperand(0).getReg(); 12894 Register RA = MI.getOperand(1).getReg(); 12895 Register RB = MI.getOperand(2).getReg(); 12896 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12897 BuildMI(*BB, MI, DL, 12898 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12899 : TII->get(PPC::STQ)) 12900 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12901 .addImm(0) 12902 .addReg(Ptr); 12903 } else { 12904 llvm_unreachable("Unexpected instr type to insert"); 12905 } 12906 12907 MI.eraseFromParent(); // The pseudo instruction is gone now. 12908 return BB; 12909 } 12910 12911 //===----------------------------------------------------------------------===// 12912 // Target Optimization Hooks 12913 //===----------------------------------------------------------------------===// 12914 12915 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12916 // For the estimates, convergence is quadratic, so we essentially double the 12917 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12918 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12919 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12920 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12921 if (VT.getScalarType() == MVT::f64) 12922 RefinementSteps++; 12923 return RefinementSteps; 12924 } 12925 12926 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12927 const DenormalMode &Mode) const { 12928 // We only have VSX Vector Test for software Square Root. 12929 EVT VT = Op.getValueType(); 12930 if (!isTypeLegal(MVT::i1) || 12931 (VT != MVT::f64 && 12932 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12933 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12934 12935 SDLoc DL(Op); 12936 // The output register of FTSQRT is CR field. 12937 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12938 // ftsqrt BF,FRB 12939 // Let e_b be the unbiased exponent of the double-precision 12940 // floating-point operand in register FRB. 12941 // fe_flag is set to 1 if either of the following conditions occurs. 12942 // - The double-precision floating-point operand in register FRB is a zero, 12943 // a NaN, or an infinity, or a negative value. 12944 // - e_b is less than or equal to -970. 12945 // Otherwise fe_flag is set to 0. 12946 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12947 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12948 // exponent is less than -970) 12949 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12950 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12951 FTSQRT, SRIdxVal), 12952 0); 12953 } 12954 12955 SDValue 12956 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12957 SelectionDAG &DAG) const { 12958 // We only have VSX Vector Square Root. 12959 EVT VT = Op.getValueType(); 12960 if (VT != MVT::f64 && 12961 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12962 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12963 12964 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12965 } 12966 12967 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12968 int Enabled, int &RefinementSteps, 12969 bool &UseOneConstNR, 12970 bool Reciprocal) const { 12971 EVT VT = Operand.getValueType(); 12972 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12973 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12974 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12975 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12976 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12977 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12978 12979 // The Newton-Raphson computation with a single constant does not provide 12980 // enough accuracy on some CPUs. 12981 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12982 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12983 } 12984 return SDValue(); 12985 } 12986 12987 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12988 int Enabled, 12989 int &RefinementSteps) const { 12990 EVT VT = Operand.getValueType(); 12991 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12992 (VT == MVT::f64 && Subtarget.hasFRE()) || 12993 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12994 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12995 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12996 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12997 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12998 } 12999 return SDValue(); 13000 } 13001 13002 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13003 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13004 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13005 // enabled for division), this functionality is redundant with the default 13006 // combiner logic (once the division -> reciprocal/multiply transformation 13007 // has taken place). As a result, this matters more for older cores than for 13008 // newer ones. 13009 13010 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13011 // reciprocal if there are two or more FDIVs (for embedded cores with only 13012 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13013 switch (Subtarget.getCPUDirective()) { 13014 default: 13015 return 3; 13016 case PPC::DIR_440: 13017 case PPC::DIR_A2: 13018 case PPC::DIR_E500: 13019 case PPC::DIR_E500mc: 13020 case PPC::DIR_E5500: 13021 return 2; 13022 } 13023 } 13024 13025 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13026 // collapsed, and so we need to look through chains of them. 13027 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13028 int64_t& Offset, SelectionDAG &DAG) { 13029 if (DAG.isBaseWithConstantOffset(Loc)) { 13030 Base = Loc.getOperand(0); 13031 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13032 13033 // The base might itself be a base plus an offset, and if so, accumulate 13034 // that as well. 13035 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13036 } 13037 } 13038 13039 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13040 unsigned Bytes, int Dist, 13041 SelectionDAG &DAG) { 13042 if (VT.getSizeInBits() / 8 != Bytes) 13043 return false; 13044 13045 SDValue BaseLoc = Base->getBasePtr(); 13046 if (Loc.getOpcode() == ISD::FrameIndex) { 13047 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13048 return false; 13049 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13050 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13051 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13052 int FS = MFI.getObjectSize(FI); 13053 int BFS = MFI.getObjectSize(BFI); 13054 if (FS != BFS || FS != (int)Bytes) return false; 13055 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13056 } 13057 13058 SDValue Base1 = Loc, Base2 = BaseLoc; 13059 int64_t Offset1 = 0, Offset2 = 0; 13060 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13061 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13062 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13063 return true; 13064 13065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13066 const GlobalValue *GV1 = nullptr; 13067 const GlobalValue *GV2 = nullptr; 13068 Offset1 = 0; 13069 Offset2 = 0; 13070 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13071 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13072 if (isGA1 && isGA2 && GV1 == GV2) 13073 return Offset1 == (Offset2 + Dist*Bytes); 13074 return false; 13075 } 13076 13077 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13078 // not enforce equality of the chain operands. 13079 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13080 unsigned Bytes, int Dist, 13081 SelectionDAG &DAG) { 13082 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13083 EVT VT = LS->getMemoryVT(); 13084 SDValue Loc = LS->getBasePtr(); 13085 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13086 } 13087 13088 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13089 EVT VT; 13090 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13091 default: return false; 13092 case Intrinsic::ppc_altivec_lvx: 13093 case Intrinsic::ppc_altivec_lvxl: 13094 case Intrinsic::ppc_vsx_lxvw4x: 13095 case Intrinsic::ppc_vsx_lxvw4x_be: 13096 VT = MVT::v4i32; 13097 break; 13098 case Intrinsic::ppc_vsx_lxvd2x: 13099 case Intrinsic::ppc_vsx_lxvd2x_be: 13100 VT = MVT::v2f64; 13101 break; 13102 case Intrinsic::ppc_altivec_lvebx: 13103 VT = MVT::i8; 13104 break; 13105 case Intrinsic::ppc_altivec_lvehx: 13106 VT = MVT::i16; 13107 break; 13108 case Intrinsic::ppc_altivec_lvewx: 13109 VT = MVT::i32; 13110 break; 13111 } 13112 13113 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13114 } 13115 13116 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13117 EVT VT; 13118 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13119 default: return false; 13120 case Intrinsic::ppc_altivec_stvx: 13121 case Intrinsic::ppc_altivec_stvxl: 13122 case Intrinsic::ppc_vsx_stxvw4x: 13123 VT = MVT::v4i32; 13124 break; 13125 case Intrinsic::ppc_vsx_stxvd2x: 13126 VT = MVT::v2f64; 13127 break; 13128 case Intrinsic::ppc_vsx_stxvw4x_be: 13129 VT = MVT::v4i32; 13130 break; 13131 case Intrinsic::ppc_vsx_stxvd2x_be: 13132 VT = MVT::v2f64; 13133 break; 13134 case Intrinsic::ppc_altivec_stvebx: 13135 VT = MVT::i8; 13136 break; 13137 case Intrinsic::ppc_altivec_stvehx: 13138 VT = MVT::i16; 13139 break; 13140 case Intrinsic::ppc_altivec_stvewx: 13141 VT = MVT::i32; 13142 break; 13143 } 13144 13145 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13146 } 13147 13148 return false; 13149 } 13150 13151 // Return true is there is a nearyby consecutive load to the one provided 13152 // (regardless of alignment). We search up and down the chain, looking though 13153 // token factors and other loads (but nothing else). As a result, a true result 13154 // indicates that it is safe to create a new consecutive load adjacent to the 13155 // load provided. 13156 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13157 SDValue Chain = LD->getChain(); 13158 EVT VT = LD->getMemoryVT(); 13159 13160 SmallSet<SDNode *, 16> LoadRoots; 13161 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13162 SmallSet<SDNode *, 16> Visited; 13163 13164 // First, search up the chain, branching to follow all token-factor operands. 13165 // If we find a consecutive load, then we're done, otherwise, record all 13166 // nodes just above the top-level loads and token factors. 13167 while (!Queue.empty()) { 13168 SDNode *ChainNext = Queue.pop_back_val(); 13169 if (!Visited.insert(ChainNext).second) 13170 continue; 13171 13172 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13173 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13174 return true; 13175 13176 if (!Visited.count(ChainLD->getChain().getNode())) 13177 Queue.push_back(ChainLD->getChain().getNode()); 13178 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13179 for (const SDUse &O : ChainNext->ops()) 13180 if (!Visited.count(O.getNode())) 13181 Queue.push_back(O.getNode()); 13182 } else 13183 LoadRoots.insert(ChainNext); 13184 } 13185 13186 // Second, search down the chain, starting from the top-level nodes recorded 13187 // in the first phase. These top-level nodes are the nodes just above all 13188 // loads and token factors. Starting with their uses, recursively look though 13189 // all loads (just the chain uses) and token factors to find a consecutive 13190 // load. 13191 Visited.clear(); 13192 Queue.clear(); 13193 13194 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13195 IE = LoadRoots.end(); I != IE; ++I) { 13196 Queue.push_back(*I); 13197 13198 while (!Queue.empty()) { 13199 SDNode *LoadRoot = Queue.pop_back_val(); 13200 if (!Visited.insert(LoadRoot).second) 13201 continue; 13202 13203 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13204 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13205 return true; 13206 13207 for (SDNode *U : LoadRoot->uses()) 13208 if (((isa<MemSDNode>(U) && 13209 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13210 U->getOpcode() == ISD::TokenFactor) && 13211 !Visited.count(U)) 13212 Queue.push_back(U); 13213 } 13214 } 13215 13216 return false; 13217 } 13218 13219 /// This function is called when we have proved that a SETCC node can be replaced 13220 /// by subtraction (and other supporting instructions) so that the result of 13221 /// comparison is kept in a GPR instead of CR. This function is purely for 13222 /// codegen purposes and has some flags to guide the codegen process. 13223 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13224 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13225 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13226 13227 // Zero extend the operands to the largest legal integer. Originally, they 13228 // must be of a strictly smaller size. 13229 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13230 DAG.getConstant(Size, DL, MVT::i32)); 13231 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13232 DAG.getConstant(Size, DL, MVT::i32)); 13233 13234 // Swap if needed. Depends on the condition code. 13235 if (Swap) 13236 std::swap(Op0, Op1); 13237 13238 // Subtract extended integers. 13239 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13240 13241 // Move the sign bit to the least significant position and zero out the rest. 13242 // Now the least significant bit carries the result of original comparison. 13243 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13244 DAG.getConstant(Size - 1, DL, MVT::i32)); 13245 auto Final = Shifted; 13246 13247 // Complement the result if needed. Based on the condition code. 13248 if (Complement) 13249 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13250 DAG.getConstant(1, DL, MVT::i64)); 13251 13252 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13253 } 13254 13255 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13256 DAGCombinerInfo &DCI) const { 13257 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13258 13259 SelectionDAG &DAG = DCI.DAG; 13260 SDLoc DL(N); 13261 13262 // Size of integers being compared has a critical role in the following 13263 // analysis, so we prefer to do this when all types are legal. 13264 if (!DCI.isAfterLegalizeDAG()) 13265 return SDValue(); 13266 13267 // If all users of SETCC extend its value to a legal integer type 13268 // then we replace SETCC with a subtraction 13269 for (const SDNode *U : N->uses()) 13270 if (U->getOpcode() != ISD::ZERO_EXTEND) 13271 return SDValue(); 13272 13273 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13274 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13275 13276 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13277 13278 if (OpSize < Size) { 13279 switch (CC) { 13280 default: break; 13281 case ISD::SETULT: 13282 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13283 case ISD::SETULE: 13284 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13285 case ISD::SETUGT: 13286 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13287 case ISD::SETUGE: 13288 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13289 } 13290 } 13291 13292 return SDValue(); 13293 } 13294 13295 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13296 DAGCombinerInfo &DCI) const { 13297 SelectionDAG &DAG = DCI.DAG; 13298 SDLoc dl(N); 13299 13300 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13301 // If we're tracking CR bits, we need to be careful that we don't have: 13302 // trunc(binary-ops(zext(x), zext(y))) 13303 // or 13304 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13305 // such that we're unnecessarily moving things into GPRs when it would be 13306 // better to keep them in CR bits. 13307 13308 // Note that trunc here can be an actual i1 trunc, or can be the effective 13309 // truncation that comes from a setcc or select_cc. 13310 if (N->getOpcode() == ISD::TRUNCATE && 13311 N->getValueType(0) != MVT::i1) 13312 return SDValue(); 13313 13314 if (N->getOperand(0).getValueType() != MVT::i32 && 13315 N->getOperand(0).getValueType() != MVT::i64) 13316 return SDValue(); 13317 13318 if (N->getOpcode() == ISD::SETCC || 13319 N->getOpcode() == ISD::SELECT_CC) { 13320 // If we're looking at a comparison, then we need to make sure that the 13321 // high bits (all except for the first) don't matter the result. 13322 ISD::CondCode CC = 13323 cast<CondCodeSDNode>(N->getOperand( 13324 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13325 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13326 13327 if (ISD::isSignedIntSetCC(CC)) { 13328 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13329 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13330 return SDValue(); 13331 } else if (ISD::isUnsignedIntSetCC(CC)) { 13332 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13333 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13334 !DAG.MaskedValueIsZero(N->getOperand(1), 13335 APInt::getHighBitsSet(OpBits, OpBits-1))) 13336 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13337 : SDValue()); 13338 } else { 13339 // This is neither a signed nor an unsigned comparison, just make sure 13340 // that the high bits are equal. 13341 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13342 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13343 13344 // We don't really care about what is known about the first bit (if 13345 // anything), so pretend that it is known zero for both to ensure they can 13346 // be compared as constants. 13347 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13348 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13349 13350 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13351 Op1Known.getConstant() != Op2Known.getConstant()) 13352 return SDValue(); 13353 } 13354 } 13355 13356 // We now know that the higher-order bits are irrelevant, we just need to 13357 // make sure that all of the intermediate operations are bit operations, and 13358 // all inputs are extensions. 13359 if (N->getOperand(0).getOpcode() != ISD::AND && 13360 N->getOperand(0).getOpcode() != ISD::OR && 13361 N->getOperand(0).getOpcode() != ISD::XOR && 13362 N->getOperand(0).getOpcode() != ISD::SELECT && 13363 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13364 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13365 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13366 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13367 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13368 return SDValue(); 13369 13370 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13371 N->getOperand(1).getOpcode() != ISD::AND && 13372 N->getOperand(1).getOpcode() != ISD::OR && 13373 N->getOperand(1).getOpcode() != ISD::XOR && 13374 N->getOperand(1).getOpcode() != ISD::SELECT && 13375 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13376 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13377 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13378 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13379 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13380 return SDValue(); 13381 13382 SmallVector<SDValue, 4> Inputs; 13383 SmallVector<SDValue, 8> BinOps, PromOps; 13384 SmallPtrSet<SDNode *, 16> Visited; 13385 13386 for (unsigned i = 0; i < 2; ++i) { 13387 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13388 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13389 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13390 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13391 isa<ConstantSDNode>(N->getOperand(i))) 13392 Inputs.push_back(N->getOperand(i)); 13393 else 13394 BinOps.push_back(N->getOperand(i)); 13395 13396 if (N->getOpcode() == ISD::TRUNCATE) 13397 break; 13398 } 13399 13400 // Visit all inputs, collect all binary operations (and, or, xor and 13401 // select) that are all fed by extensions. 13402 while (!BinOps.empty()) { 13403 SDValue BinOp = BinOps.pop_back_val(); 13404 13405 if (!Visited.insert(BinOp.getNode()).second) 13406 continue; 13407 13408 PromOps.push_back(BinOp); 13409 13410 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13411 // The condition of the select is not promoted. 13412 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13413 continue; 13414 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13415 continue; 13416 13417 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13418 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13419 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13420 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13421 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13422 Inputs.push_back(BinOp.getOperand(i)); 13423 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13424 BinOp.getOperand(i).getOpcode() == ISD::OR || 13425 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13426 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13427 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13428 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13429 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13430 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13431 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13432 BinOps.push_back(BinOp.getOperand(i)); 13433 } else { 13434 // We have an input that is not an extension or another binary 13435 // operation; we'll abort this transformation. 13436 return SDValue(); 13437 } 13438 } 13439 } 13440 13441 // Make sure that this is a self-contained cluster of operations (which 13442 // is not quite the same thing as saying that everything has only one 13443 // use). 13444 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13445 if (isa<ConstantSDNode>(Inputs[i])) 13446 continue; 13447 13448 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13449 if (User != N && !Visited.count(User)) 13450 return SDValue(); 13451 13452 // Make sure that we're not going to promote the non-output-value 13453 // operand(s) or SELECT or SELECT_CC. 13454 // FIXME: Although we could sometimes handle this, and it does occur in 13455 // practice that one of the condition inputs to the select is also one of 13456 // the outputs, we currently can't deal with this. 13457 if (User->getOpcode() == ISD::SELECT) { 13458 if (User->getOperand(0) == Inputs[i]) 13459 return SDValue(); 13460 } else if (User->getOpcode() == ISD::SELECT_CC) { 13461 if (User->getOperand(0) == Inputs[i] || 13462 User->getOperand(1) == Inputs[i]) 13463 return SDValue(); 13464 } 13465 } 13466 } 13467 13468 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13469 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13470 if (User != N && !Visited.count(User)) 13471 return SDValue(); 13472 13473 // Make sure that we're not going to promote the non-output-value 13474 // operand(s) or SELECT or SELECT_CC. 13475 // FIXME: Although we could sometimes handle this, and it does occur in 13476 // practice that one of the condition inputs to the select is also one of 13477 // the outputs, we currently can't deal with this. 13478 if (User->getOpcode() == ISD::SELECT) { 13479 if (User->getOperand(0) == PromOps[i]) 13480 return SDValue(); 13481 } else if (User->getOpcode() == ISD::SELECT_CC) { 13482 if (User->getOperand(0) == PromOps[i] || 13483 User->getOperand(1) == PromOps[i]) 13484 return SDValue(); 13485 } 13486 } 13487 } 13488 13489 // Replace all inputs with the extension operand. 13490 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13491 // Constants may have users outside the cluster of to-be-promoted nodes, 13492 // and so we need to replace those as we do the promotions. 13493 if (isa<ConstantSDNode>(Inputs[i])) 13494 continue; 13495 else 13496 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13497 } 13498 13499 std::list<HandleSDNode> PromOpHandles; 13500 for (auto &PromOp : PromOps) 13501 PromOpHandles.emplace_back(PromOp); 13502 13503 // Replace all operations (these are all the same, but have a different 13504 // (i1) return type). DAG.getNode will validate that the types of 13505 // a binary operator match, so go through the list in reverse so that 13506 // we've likely promoted both operands first. Any intermediate truncations or 13507 // extensions disappear. 13508 while (!PromOpHandles.empty()) { 13509 SDValue PromOp = PromOpHandles.back().getValue(); 13510 PromOpHandles.pop_back(); 13511 13512 if (PromOp.getOpcode() == ISD::TRUNCATE || 13513 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13514 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13515 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13516 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13517 PromOp.getOperand(0).getValueType() != MVT::i1) { 13518 // The operand is not yet ready (see comment below). 13519 PromOpHandles.emplace_front(PromOp); 13520 continue; 13521 } 13522 13523 SDValue RepValue = PromOp.getOperand(0); 13524 if (isa<ConstantSDNode>(RepValue)) 13525 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13526 13527 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13528 continue; 13529 } 13530 13531 unsigned C; 13532 switch (PromOp.getOpcode()) { 13533 default: C = 0; break; 13534 case ISD::SELECT: C = 1; break; 13535 case ISD::SELECT_CC: C = 2; break; 13536 } 13537 13538 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13539 PromOp.getOperand(C).getValueType() != MVT::i1) || 13540 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13541 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13542 // The to-be-promoted operands of this node have not yet been 13543 // promoted (this should be rare because we're going through the 13544 // list backward, but if one of the operands has several users in 13545 // this cluster of to-be-promoted nodes, it is possible). 13546 PromOpHandles.emplace_front(PromOp); 13547 continue; 13548 } 13549 13550 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13551 PromOp.getNode()->op_end()); 13552 13553 // If there are any constant inputs, make sure they're replaced now. 13554 for (unsigned i = 0; i < 2; ++i) 13555 if (isa<ConstantSDNode>(Ops[C+i])) 13556 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13557 13558 DAG.ReplaceAllUsesOfValueWith(PromOp, 13559 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13560 } 13561 13562 // Now we're left with the initial truncation itself. 13563 if (N->getOpcode() == ISD::TRUNCATE) 13564 return N->getOperand(0); 13565 13566 // Otherwise, this is a comparison. The operands to be compared have just 13567 // changed type (to i1), but everything else is the same. 13568 return SDValue(N, 0); 13569 } 13570 13571 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13572 DAGCombinerInfo &DCI) const { 13573 SelectionDAG &DAG = DCI.DAG; 13574 SDLoc dl(N); 13575 13576 // If we're tracking CR bits, we need to be careful that we don't have: 13577 // zext(binary-ops(trunc(x), trunc(y))) 13578 // or 13579 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13580 // such that we're unnecessarily moving things into CR bits that can more 13581 // efficiently stay in GPRs. Note that if we're not certain that the high 13582 // bits are set as required by the final extension, we still may need to do 13583 // some masking to get the proper behavior. 13584 13585 // This same functionality is important on PPC64 when dealing with 13586 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13587 // the return values of functions. Because it is so similar, it is handled 13588 // here as well. 13589 13590 if (N->getValueType(0) != MVT::i32 && 13591 N->getValueType(0) != MVT::i64) 13592 return SDValue(); 13593 13594 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13595 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13596 return SDValue(); 13597 13598 if (N->getOperand(0).getOpcode() != ISD::AND && 13599 N->getOperand(0).getOpcode() != ISD::OR && 13600 N->getOperand(0).getOpcode() != ISD::XOR && 13601 N->getOperand(0).getOpcode() != ISD::SELECT && 13602 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13603 return SDValue(); 13604 13605 SmallVector<SDValue, 4> Inputs; 13606 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13607 SmallPtrSet<SDNode *, 16> Visited; 13608 13609 // Visit all inputs, collect all binary operations (and, or, xor and 13610 // select) that are all fed by truncations. 13611 while (!BinOps.empty()) { 13612 SDValue BinOp = BinOps.pop_back_val(); 13613 13614 if (!Visited.insert(BinOp.getNode()).second) 13615 continue; 13616 13617 PromOps.push_back(BinOp); 13618 13619 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13620 // The condition of the select is not promoted. 13621 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13622 continue; 13623 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13624 continue; 13625 13626 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13627 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13628 Inputs.push_back(BinOp.getOperand(i)); 13629 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13630 BinOp.getOperand(i).getOpcode() == ISD::OR || 13631 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13632 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13633 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13634 BinOps.push_back(BinOp.getOperand(i)); 13635 } else { 13636 // We have an input that is not a truncation or another binary 13637 // operation; we'll abort this transformation. 13638 return SDValue(); 13639 } 13640 } 13641 } 13642 13643 // The operands of a select that must be truncated when the select is 13644 // promoted because the operand is actually part of the to-be-promoted set. 13645 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13646 13647 // Make sure that this is a self-contained cluster of operations (which 13648 // is not quite the same thing as saying that everything has only one 13649 // use). 13650 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13651 if (isa<ConstantSDNode>(Inputs[i])) 13652 continue; 13653 13654 for (SDNode *User : Inputs[i].getNode()->uses()) { 13655 if (User != N && !Visited.count(User)) 13656 return SDValue(); 13657 13658 // If we're going to promote the non-output-value operand(s) or SELECT or 13659 // SELECT_CC, record them for truncation. 13660 if (User->getOpcode() == ISD::SELECT) { 13661 if (User->getOperand(0) == Inputs[i]) 13662 SelectTruncOp[0].insert(std::make_pair(User, 13663 User->getOperand(0).getValueType())); 13664 } else if (User->getOpcode() == ISD::SELECT_CC) { 13665 if (User->getOperand(0) == Inputs[i]) 13666 SelectTruncOp[0].insert(std::make_pair(User, 13667 User->getOperand(0).getValueType())); 13668 if (User->getOperand(1) == Inputs[i]) 13669 SelectTruncOp[1].insert(std::make_pair(User, 13670 User->getOperand(1).getValueType())); 13671 } 13672 } 13673 } 13674 13675 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13676 for (SDNode *User : PromOps[i].getNode()->uses()) { 13677 if (User != N && !Visited.count(User)) 13678 return SDValue(); 13679 13680 // If we're going to promote the non-output-value operand(s) or SELECT or 13681 // SELECT_CC, record them for truncation. 13682 if (User->getOpcode() == ISD::SELECT) { 13683 if (User->getOperand(0) == PromOps[i]) 13684 SelectTruncOp[0].insert(std::make_pair(User, 13685 User->getOperand(0).getValueType())); 13686 } else if (User->getOpcode() == ISD::SELECT_CC) { 13687 if (User->getOperand(0) == PromOps[i]) 13688 SelectTruncOp[0].insert(std::make_pair(User, 13689 User->getOperand(0).getValueType())); 13690 if (User->getOperand(1) == PromOps[i]) 13691 SelectTruncOp[1].insert(std::make_pair(User, 13692 User->getOperand(1).getValueType())); 13693 } 13694 } 13695 } 13696 13697 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13698 bool ReallyNeedsExt = false; 13699 if (N->getOpcode() != ISD::ANY_EXTEND) { 13700 // If all of the inputs are not already sign/zero extended, then 13701 // we'll still need to do that at the end. 13702 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13703 if (isa<ConstantSDNode>(Inputs[i])) 13704 continue; 13705 13706 unsigned OpBits = 13707 Inputs[i].getOperand(0).getValueSizeInBits(); 13708 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13709 13710 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13711 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13712 APInt::getHighBitsSet(OpBits, 13713 OpBits-PromBits))) || 13714 (N->getOpcode() == ISD::SIGN_EXTEND && 13715 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13716 (OpBits-(PromBits-1)))) { 13717 ReallyNeedsExt = true; 13718 break; 13719 } 13720 } 13721 } 13722 13723 // Replace all inputs, either with the truncation operand, or a 13724 // truncation or extension to the final output type. 13725 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13726 // Constant inputs need to be replaced with the to-be-promoted nodes that 13727 // use them because they might have users outside of the cluster of 13728 // promoted nodes. 13729 if (isa<ConstantSDNode>(Inputs[i])) 13730 continue; 13731 13732 SDValue InSrc = Inputs[i].getOperand(0); 13733 if (Inputs[i].getValueType() == N->getValueType(0)) 13734 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13735 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13736 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13737 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13738 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13739 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13740 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13741 else 13742 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13743 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13744 } 13745 13746 std::list<HandleSDNode> PromOpHandles; 13747 for (auto &PromOp : PromOps) 13748 PromOpHandles.emplace_back(PromOp); 13749 13750 // Replace all operations (these are all the same, but have a different 13751 // (promoted) return type). DAG.getNode will validate that the types of 13752 // a binary operator match, so go through the list in reverse so that 13753 // we've likely promoted both operands first. 13754 while (!PromOpHandles.empty()) { 13755 SDValue PromOp = PromOpHandles.back().getValue(); 13756 PromOpHandles.pop_back(); 13757 13758 unsigned C; 13759 switch (PromOp.getOpcode()) { 13760 default: C = 0; break; 13761 case ISD::SELECT: C = 1; break; 13762 case ISD::SELECT_CC: C = 2; break; 13763 } 13764 13765 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13766 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13767 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13768 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13769 // The to-be-promoted operands of this node have not yet been 13770 // promoted (this should be rare because we're going through the 13771 // list backward, but if one of the operands has several users in 13772 // this cluster of to-be-promoted nodes, it is possible). 13773 PromOpHandles.emplace_front(PromOp); 13774 continue; 13775 } 13776 13777 // For SELECT and SELECT_CC nodes, we do a similar check for any 13778 // to-be-promoted comparison inputs. 13779 if (PromOp.getOpcode() == ISD::SELECT || 13780 PromOp.getOpcode() == ISD::SELECT_CC) { 13781 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13782 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13783 (SelectTruncOp[1].count(PromOp.getNode()) && 13784 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13785 PromOpHandles.emplace_front(PromOp); 13786 continue; 13787 } 13788 } 13789 13790 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13791 PromOp.getNode()->op_end()); 13792 13793 // If this node has constant inputs, then they'll need to be promoted here. 13794 for (unsigned i = 0; i < 2; ++i) { 13795 if (!isa<ConstantSDNode>(Ops[C+i])) 13796 continue; 13797 if (Ops[C+i].getValueType() == N->getValueType(0)) 13798 continue; 13799 13800 if (N->getOpcode() == ISD::SIGN_EXTEND) 13801 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13802 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13803 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13804 else 13805 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13806 } 13807 13808 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13809 // truncate them again to the original value type. 13810 if (PromOp.getOpcode() == ISD::SELECT || 13811 PromOp.getOpcode() == ISD::SELECT_CC) { 13812 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13813 if (SI0 != SelectTruncOp[0].end()) 13814 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13815 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13816 if (SI1 != SelectTruncOp[1].end()) 13817 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13818 } 13819 13820 DAG.ReplaceAllUsesOfValueWith(PromOp, 13821 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13822 } 13823 13824 // Now we're left with the initial extension itself. 13825 if (!ReallyNeedsExt) 13826 return N->getOperand(0); 13827 13828 // To zero extend, just mask off everything except for the first bit (in the 13829 // i1 case). 13830 if (N->getOpcode() == ISD::ZERO_EXTEND) 13831 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13832 DAG.getConstant(APInt::getLowBitsSet( 13833 N->getValueSizeInBits(0), PromBits), 13834 dl, N->getValueType(0))); 13835 13836 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13837 "Invalid extension type"); 13838 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13839 SDValue ShiftCst = 13840 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13841 return DAG.getNode( 13842 ISD::SRA, dl, N->getValueType(0), 13843 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13844 ShiftCst); 13845 } 13846 13847 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13848 DAGCombinerInfo &DCI) const { 13849 assert(N->getOpcode() == ISD::SETCC && 13850 "Should be called with a SETCC node"); 13851 13852 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13853 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13854 SDValue LHS = N->getOperand(0); 13855 SDValue RHS = N->getOperand(1); 13856 13857 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13858 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13859 LHS.hasOneUse()) 13860 std::swap(LHS, RHS); 13861 13862 // x == 0-y --> x+y == 0 13863 // x != 0-y --> x+y != 0 13864 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13865 RHS.hasOneUse()) { 13866 SDLoc DL(N); 13867 SelectionDAG &DAG = DCI.DAG; 13868 EVT VT = N->getValueType(0); 13869 EVT OpVT = LHS.getValueType(); 13870 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13871 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13872 } 13873 } 13874 13875 return DAGCombineTruncBoolExt(N, DCI); 13876 } 13877 13878 // Is this an extending load from an f32 to an f64? 13879 static bool isFPExtLoad(SDValue Op) { 13880 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13881 return LD->getExtensionType() == ISD::EXTLOAD && 13882 Op.getValueType() == MVT::f64; 13883 return false; 13884 } 13885 13886 /// Reduces the number of fp-to-int conversion when building a vector. 13887 /// 13888 /// If this vector is built out of floating to integer conversions, 13889 /// transform it to a vector built out of floating point values followed by a 13890 /// single floating to integer conversion of the vector. 13891 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13892 /// becomes (fptosi (build_vector ($A, $B, ...))) 13893 SDValue PPCTargetLowering:: 13894 combineElementTruncationToVectorTruncation(SDNode *N, 13895 DAGCombinerInfo &DCI) const { 13896 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13897 "Should be called with a BUILD_VECTOR node"); 13898 13899 SelectionDAG &DAG = DCI.DAG; 13900 SDLoc dl(N); 13901 13902 SDValue FirstInput = N->getOperand(0); 13903 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13904 "The input operand must be an fp-to-int conversion."); 13905 13906 // This combine happens after legalization so the fp_to_[su]i nodes are 13907 // already converted to PPCSISD nodes. 13908 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13909 if (FirstConversion == PPCISD::FCTIDZ || 13910 FirstConversion == PPCISD::FCTIDUZ || 13911 FirstConversion == PPCISD::FCTIWZ || 13912 FirstConversion == PPCISD::FCTIWUZ) { 13913 bool IsSplat = true; 13914 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13915 FirstConversion == PPCISD::FCTIWUZ; 13916 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13917 SmallVector<SDValue, 4> Ops; 13918 EVT TargetVT = N->getValueType(0); 13919 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13920 SDValue NextOp = N->getOperand(i); 13921 if (NextOp.getOpcode() != PPCISD::MFVSR) 13922 return SDValue(); 13923 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13924 if (NextConversion != FirstConversion) 13925 return SDValue(); 13926 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13927 // This is not valid if the input was originally double precision. It is 13928 // also not profitable to do unless this is an extending load in which 13929 // case doing this combine will allow us to combine consecutive loads. 13930 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13931 return SDValue(); 13932 if (N->getOperand(i) != FirstInput) 13933 IsSplat = false; 13934 } 13935 13936 // If this is a splat, we leave it as-is since there will be only a single 13937 // fp-to-int conversion followed by a splat of the integer. This is better 13938 // for 32-bit and smaller ints and neutral for 64-bit ints. 13939 if (IsSplat) 13940 return SDValue(); 13941 13942 // Now that we know we have the right type of node, get its operands 13943 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13944 SDValue In = N->getOperand(i).getOperand(0); 13945 if (Is32Bit) { 13946 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13947 // here, we know that all inputs are extending loads so this is safe). 13948 if (In.isUndef()) 13949 Ops.push_back(DAG.getUNDEF(SrcVT)); 13950 else { 13951 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13952 MVT::f32, In.getOperand(0), 13953 DAG.getIntPtrConstant(1, dl)); 13954 Ops.push_back(Trunc); 13955 } 13956 } else 13957 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13958 } 13959 13960 unsigned Opcode; 13961 if (FirstConversion == PPCISD::FCTIDZ || 13962 FirstConversion == PPCISD::FCTIWZ) 13963 Opcode = ISD::FP_TO_SINT; 13964 else 13965 Opcode = ISD::FP_TO_UINT; 13966 13967 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13968 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13969 return DAG.getNode(Opcode, dl, TargetVT, BV); 13970 } 13971 return SDValue(); 13972 } 13973 13974 /// Reduce the number of loads when building a vector. 13975 /// 13976 /// Building a vector out of multiple loads can be converted to a load 13977 /// of the vector type if the loads are consecutive. If the loads are 13978 /// consecutive but in descending order, a shuffle is added at the end 13979 /// to reorder the vector. 13980 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13981 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13982 "Should be called with a BUILD_VECTOR node"); 13983 13984 SDLoc dl(N); 13985 13986 // Return early for non byte-sized type, as they can't be consecutive. 13987 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13988 return SDValue(); 13989 13990 bool InputsAreConsecutiveLoads = true; 13991 bool InputsAreReverseConsecutive = true; 13992 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13993 SDValue FirstInput = N->getOperand(0); 13994 bool IsRoundOfExtLoad = false; 13995 13996 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13997 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13998 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13999 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14000 } 14001 // Not a build vector of (possibly fp_rounded) loads. 14002 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14003 N->getNumOperands() == 1) 14004 return SDValue(); 14005 14006 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14007 // If any inputs are fp_round(extload), they all must be. 14008 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14009 return SDValue(); 14010 14011 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14012 N->getOperand(i); 14013 if (NextInput.getOpcode() != ISD::LOAD) 14014 return SDValue(); 14015 14016 SDValue PreviousInput = 14017 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14018 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14019 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14020 14021 // If any inputs are fp_round(extload), they all must be. 14022 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14023 return SDValue(); 14024 14025 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14026 InputsAreConsecutiveLoads = false; 14027 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14028 InputsAreReverseConsecutive = false; 14029 14030 // Exit early if the loads are neither consecutive nor reverse consecutive. 14031 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14032 return SDValue(); 14033 } 14034 14035 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14036 "The loads cannot be both consecutive and reverse consecutive."); 14037 14038 SDValue FirstLoadOp = 14039 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14040 SDValue LastLoadOp = 14041 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14042 N->getOperand(N->getNumOperands()-1); 14043 14044 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14045 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14046 if (InputsAreConsecutiveLoads) { 14047 assert(LD1 && "Input needs to be a LoadSDNode."); 14048 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14049 LD1->getBasePtr(), LD1->getPointerInfo(), 14050 LD1->getAlignment()); 14051 } 14052 if (InputsAreReverseConsecutive) { 14053 assert(LDL && "Input needs to be a LoadSDNode."); 14054 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14055 LDL->getBasePtr(), LDL->getPointerInfo(), 14056 LDL->getAlignment()); 14057 SmallVector<int, 16> Ops; 14058 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14059 Ops.push_back(i); 14060 14061 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14062 DAG.getUNDEF(N->getValueType(0)), Ops); 14063 } 14064 return SDValue(); 14065 } 14066 14067 // This function adds the required vector_shuffle needed to get 14068 // the elements of the vector extract in the correct position 14069 // as specified by the CorrectElems encoding. 14070 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14071 SDValue Input, uint64_t Elems, 14072 uint64_t CorrectElems) { 14073 SDLoc dl(N); 14074 14075 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14076 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14077 14078 // Knowing the element indices being extracted from the original 14079 // vector and the order in which they're being inserted, just put 14080 // them at element indices required for the instruction. 14081 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14082 if (DAG.getDataLayout().isLittleEndian()) 14083 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14084 else 14085 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14086 CorrectElems = CorrectElems >> 8; 14087 Elems = Elems >> 8; 14088 } 14089 14090 SDValue Shuffle = 14091 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14092 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14093 14094 EVT VT = N->getValueType(0); 14095 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14096 14097 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14098 Input.getValueType().getVectorElementType(), 14099 VT.getVectorNumElements()); 14100 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14101 DAG.getValueType(ExtVT)); 14102 } 14103 14104 // Look for build vector patterns where input operands come from sign 14105 // extended vector_extract elements of specific indices. If the correct indices 14106 // aren't used, add a vector shuffle to fix up the indices and create 14107 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14108 // during instruction selection. 14109 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14110 // This array encodes the indices that the vector sign extend instructions 14111 // extract from when extending from one type to another for both BE and LE. 14112 // The right nibble of each byte corresponds to the LE incides. 14113 // and the left nibble of each byte corresponds to the BE incides. 14114 // For example: 0x3074B8FC byte->word 14115 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14116 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14117 // For example: 0x000070F8 byte->double word 14118 // For LE: the allowed indices are: 0x0,0x8 14119 // For BE: the allowed indices are: 0x7,0xF 14120 uint64_t TargetElems[] = { 14121 0x3074B8FC, // b->w 14122 0x000070F8, // b->d 14123 0x10325476, // h->w 14124 0x00003074, // h->d 14125 0x00001032, // w->d 14126 }; 14127 14128 uint64_t Elems = 0; 14129 int Index; 14130 SDValue Input; 14131 14132 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14133 if (!Op) 14134 return false; 14135 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14136 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14137 return false; 14138 14139 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14140 // of the right width. 14141 SDValue Extract = Op.getOperand(0); 14142 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14143 Extract = Extract.getOperand(0); 14144 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14145 return false; 14146 14147 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14148 if (!ExtOp) 14149 return false; 14150 14151 Index = ExtOp->getZExtValue(); 14152 if (Input && Input != Extract.getOperand(0)) 14153 return false; 14154 14155 if (!Input) 14156 Input = Extract.getOperand(0); 14157 14158 Elems = Elems << 8; 14159 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14160 Elems |= Index; 14161 14162 return true; 14163 }; 14164 14165 // If the build vector operands aren't sign extended vector extracts, 14166 // of the same input vector, then return. 14167 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14168 if (!isSExtOfVecExtract(N->getOperand(i))) { 14169 return SDValue(); 14170 } 14171 } 14172 14173 // If the vector extract indicies are not correct, add the appropriate 14174 // vector_shuffle. 14175 int TgtElemArrayIdx; 14176 int InputSize = Input.getValueType().getScalarSizeInBits(); 14177 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14178 if (InputSize + OutputSize == 40) 14179 TgtElemArrayIdx = 0; 14180 else if (InputSize + OutputSize == 72) 14181 TgtElemArrayIdx = 1; 14182 else if (InputSize + OutputSize == 48) 14183 TgtElemArrayIdx = 2; 14184 else if (InputSize + OutputSize == 80) 14185 TgtElemArrayIdx = 3; 14186 else if (InputSize + OutputSize == 96) 14187 TgtElemArrayIdx = 4; 14188 else 14189 return SDValue(); 14190 14191 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14192 CorrectElems = DAG.getDataLayout().isLittleEndian() 14193 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14194 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14195 if (Elems != CorrectElems) { 14196 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14197 } 14198 14199 // Regular lowering will catch cases where a shuffle is not needed. 14200 return SDValue(); 14201 } 14202 14203 // Look for the pattern of a load from a narrow width to i128, feeding 14204 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14205 // (LXVRZX). This node represents a zero extending load that will be matched 14206 // to the Load VSX Vector Rightmost instructions. 14207 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14208 SDLoc DL(N); 14209 14210 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14211 if (N->getValueType(0) != MVT::v1i128) 14212 return SDValue(); 14213 14214 SDValue Operand = N->getOperand(0); 14215 // Proceed with the transformation if the operand to the BUILD_VECTOR 14216 // is a load instruction. 14217 if (Operand.getOpcode() != ISD::LOAD) 14218 return SDValue(); 14219 14220 auto *LD = cast<LoadSDNode>(Operand); 14221 EVT MemoryType = LD->getMemoryVT(); 14222 14223 // This transformation is only valid if the we are loading either a byte, 14224 // halfword, word, or doubleword. 14225 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14226 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14227 14228 // Ensure that the load from the narrow width is being zero extended to i128. 14229 if (!ValidLDType || 14230 (LD->getExtensionType() != ISD::ZEXTLOAD && 14231 LD->getExtensionType() != ISD::EXTLOAD)) 14232 return SDValue(); 14233 14234 SDValue LoadOps[] = { 14235 LD->getChain(), LD->getBasePtr(), 14236 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14237 14238 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14239 DAG.getVTList(MVT::v1i128, MVT::Other), 14240 LoadOps, MemoryType, LD->getMemOperand()); 14241 } 14242 14243 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14244 DAGCombinerInfo &DCI) const { 14245 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14246 "Should be called with a BUILD_VECTOR node"); 14247 14248 SelectionDAG &DAG = DCI.DAG; 14249 SDLoc dl(N); 14250 14251 if (!Subtarget.hasVSX()) 14252 return SDValue(); 14253 14254 // The target independent DAG combiner will leave a build_vector of 14255 // float-to-int conversions intact. We can generate MUCH better code for 14256 // a float-to-int conversion of a vector of floats. 14257 SDValue FirstInput = N->getOperand(0); 14258 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14259 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14260 if (Reduced) 14261 return Reduced; 14262 } 14263 14264 // If we're building a vector out of consecutive loads, just load that 14265 // vector type. 14266 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14267 if (Reduced) 14268 return Reduced; 14269 14270 // If we're building a vector out of extended elements from another vector 14271 // we have P9 vector integer extend instructions. The code assumes legal 14272 // input types (i.e. it can't handle things like v4i16) so do not run before 14273 // legalization. 14274 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14275 Reduced = combineBVOfVecSExt(N, DAG); 14276 if (Reduced) 14277 return Reduced; 14278 } 14279 14280 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14281 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14282 // is a load from <valid narrow width> to i128. 14283 if (Subtarget.isISA3_1()) { 14284 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14285 if (BVOfZLoad) 14286 return BVOfZLoad; 14287 } 14288 14289 if (N->getValueType(0) != MVT::v2f64) 14290 return SDValue(); 14291 14292 // Looking for: 14293 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14294 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14295 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14296 return SDValue(); 14297 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14298 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14299 return SDValue(); 14300 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14301 return SDValue(); 14302 14303 SDValue Ext1 = FirstInput.getOperand(0); 14304 SDValue Ext2 = N->getOperand(1).getOperand(0); 14305 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14306 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14307 return SDValue(); 14308 14309 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14310 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14311 if (!Ext1Op || !Ext2Op) 14312 return SDValue(); 14313 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14314 Ext1.getOperand(0) != Ext2.getOperand(0)) 14315 return SDValue(); 14316 14317 int FirstElem = Ext1Op->getZExtValue(); 14318 int SecondElem = Ext2Op->getZExtValue(); 14319 int SubvecIdx; 14320 if (FirstElem == 0 && SecondElem == 1) 14321 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14322 else if (FirstElem == 2 && SecondElem == 3) 14323 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14324 else 14325 return SDValue(); 14326 14327 SDValue SrcVec = Ext1.getOperand(0); 14328 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14329 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14330 return DAG.getNode(NodeType, dl, MVT::v2f64, 14331 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14332 } 14333 14334 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14335 DAGCombinerInfo &DCI) const { 14336 assert((N->getOpcode() == ISD::SINT_TO_FP || 14337 N->getOpcode() == ISD::UINT_TO_FP) && 14338 "Need an int -> FP conversion node here"); 14339 14340 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14341 return SDValue(); 14342 14343 SelectionDAG &DAG = DCI.DAG; 14344 SDLoc dl(N); 14345 SDValue Op(N, 0); 14346 14347 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14348 // from the hardware. 14349 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14350 return SDValue(); 14351 if (!Op.getOperand(0).getValueType().isSimple()) 14352 return SDValue(); 14353 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14354 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14355 return SDValue(); 14356 14357 SDValue FirstOperand(Op.getOperand(0)); 14358 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14359 (FirstOperand.getValueType() == MVT::i8 || 14360 FirstOperand.getValueType() == MVT::i16); 14361 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14362 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14363 bool DstDouble = Op.getValueType() == MVT::f64; 14364 unsigned ConvOp = Signed ? 14365 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14366 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14367 SDValue WidthConst = 14368 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14369 dl, false); 14370 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14371 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14372 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14373 DAG.getVTList(MVT::f64, MVT::Other), 14374 Ops, MVT::i8, LDN->getMemOperand()); 14375 14376 // For signed conversion, we need to sign-extend the value in the VSR 14377 if (Signed) { 14378 SDValue ExtOps[] = { Ld, WidthConst }; 14379 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14380 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14381 } else 14382 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14383 } 14384 14385 14386 // For i32 intermediate values, unfortunately, the conversion functions 14387 // leave the upper 32 bits of the value are undefined. Within the set of 14388 // scalar instructions, we have no method for zero- or sign-extending the 14389 // value. Thus, we cannot handle i32 intermediate values here. 14390 if (Op.getOperand(0).getValueType() == MVT::i32) 14391 return SDValue(); 14392 14393 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14394 "UINT_TO_FP is supported only with FPCVT"); 14395 14396 // If we have FCFIDS, then use it when converting to single-precision. 14397 // Otherwise, convert to double-precision and then round. 14398 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14399 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14400 : PPCISD::FCFIDS) 14401 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14402 : PPCISD::FCFID); 14403 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14404 ? MVT::f32 14405 : MVT::f64; 14406 14407 // If we're converting from a float, to an int, and back to a float again, 14408 // then we don't need the store/load pair at all. 14409 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14410 Subtarget.hasFPCVT()) || 14411 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14412 SDValue Src = Op.getOperand(0).getOperand(0); 14413 if (Src.getValueType() == MVT::f32) { 14414 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14415 DCI.AddToWorklist(Src.getNode()); 14416 } else if (Src.getValueType() != MVT::f64) { 14417 // Make sure that we don't pick up a ppc_fp128 source value. 14418 return SDValue(); 14419 } 14420 14421 unsigned FCTOp = 14422 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14423 PPCISD::FCTIDUZ; 14424 14425 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14426 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14427 14428 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14429 FP = DAG.getNode(ISD::FP_ROUND, dl, 14430 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14431 DCI.AddToWorklist(FP.getNode()); 14432 } 14433 14434 return FP; 14435 } 14436 14437 return SDValue(); 14438 } 14439 14440 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14441 // builtins) into loads with swaps. 14442 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14443 DAGCombinerInfo &DCI) const { 14444 SelectionDAG &DAG = DCI.DAG; 14445 SDLoc dl(N); 14446 SDValue Chain; 14447 SDValue Base; 14448 MachineMemOperand *MMO; 14449 14450 switch (N->getOpcode()) { 14451 default: 14452 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14453 case ISD::LOAD: { 14454 LoadSDNode *LD = cast<LoadSDNode>(N); 14455 Chain = LD->getChain(); 14456 Base = LD->getBasePtr(); 14457 MMO = LD->getMemOperand(); 14458 // If the MMO suggests this isn't a load of a full vector, leave 14459 // things alone. For a built-in, we have to make the change for 14460 // correctness, so if there is a size problem that will be a bug. 14461 if (MMO->getSize() < 16) 14462 return SDValue(); 14463 break; 14464 } 14465 case ISD::INTRINSIC_W_CHAIN: { 14466 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14467 Chain = Intrin->getChain(); 14468 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14469 // us what we want. Get operand 2 instead. 14470 Base = Intrin->getOperand(2); 14471 MMO = Intrin->getMemOperand(); 14472 break; 14473 } 14474 } 14475 14476 MVT VecTy = N->getValueType(0).getSimpleVT(); 14477 14478 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14479 // aligned and the type is a vector with elements up to 4 bytes 14480 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14481 VecTy.getScalarSizeInBits() <= 32) { 14482 return SDValue(); 14483 } 14484 14485 SDValue LoadOps[] = { Chain, Base }; 14486 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14487 DAG.getVTList(MVT::v2f64, MVT::Other), 14488 LoadOps, MVT::v2f64, MMO); 14489 14490 DCI.AddToWorklist(Load.getNode()); 14491 Chain = Load.getValue(1); 14492 SDValue Swap = DAG.getNode( 14493 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14494 DCI.AddToWorklist(Swap.getNode()); 14495 14496 // Add a bitcast if the resulting load type doesn't match v2f64. 14497 if (VecTy != MVT::v2f64) { 14498 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14499 DCI.AddToWorklist(N.getNode()); 14500 // Package {bitcast value, swap's chain} to match Load's shape. 14501 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14502 N, Swap.getValue(1)); 14503 } 14504 14505 return Swap; 14506 } 14507 14508 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14509 // builtins) into stores with swaps. 14510 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14511 DAGCombinerInfo &DCI) const { 14512 SelectionDAG &DAG = DCI.DAG; 14513 SDLoc dl(N); 14514 SDValue Chain; 14515 SDValue Base; 14516 unsigned SrcOpnd; 14517 MachineMemOperand *MMO; 14518 14519 switch (N->getOpcode()) { 14520 default: 14521 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14522 case ISD::STORE: { 14523 StoreSDNode *ST = cast<StoreSDNode>(N); 14524 Chain = ST->getChain(); 14525 Base = ST->getBasePtr(); 14526 MMO = ST->getMemOperand(); 14527 SrcOpnd = 1; 14528 // If the MMO suggests this isn't a store of a full vector, leave 14529 // things alone. For a built-in, we have to make the change for 14530 // correctness, so if there is a size problem that will be a bug. 14531 if (MMO->getSize() < 16) 14532 return SDValue(); 14533 break; 14534 } 14535 case ISD::INTRINSIC_VOID: { 14536 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14537 Chain = Intrin->getChain(); 14538 // Intrin->getBasePtr() oddly does not get what we want. 14539 Base = Intrin->getOperand(3); 14540 MMO = Intrin->getMemOperand(); 14541 SrcOpnd = 2; 14542 break; 14543 } 14544 } 14545 14546 SDValue Src = N->getOperand(SrcOpnd); 14547 MVT VecTy = Src.getValueType().getSimpleVT(); 14548 14549 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14550 // aligned and the type is a vector with elements up to 4 bytes 14551 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14552 VecTy.getScalarSizeInBits() <= 32) { 14553 return SDValue(); 14554 } 14555 14556 // All stores are done as v2f64 and possible bit cast. 14557 if (VecTy != MVT::v2f64) { 14558 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14559 DCI.AddToWorklist(Src.getNode()); 14560 } 14561 14562 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14563 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14564 DCI.AddToWorklist(Swap.getNode()); 14565 Chain = Swap.getValue(1); 14566 SDValue StoreOps[] = { Chain, Swap, Base }; 14567 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14568 DAG.getVTList(MVT::Other), 14569 StoreOps, VecTy, MMO); 14570 DCI.AddToWorklist(Store.getNode()); 14571 return Store; 14572 } 14573 14574 // Handle DAG combine for STORE (FP_TO_INT F). 14575 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14576 DAGCombinerInfo &DCI) const { 14577 14578 SelectionDAG &DAG = DCI.DAG; 14579 SDLoc dl(N); 14580 unsigned Opcode = N->getOperand(1).getOpcode(); 14581 14582 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14583 && "Not a FP_TO_INT Instruction!"); 14584 14585 SDValue Val = N->getOperand(1).getOperand(0); 14586 EVT Op1VT = N->getOperand(1).getValueType(); 14587 EVT ResVT = Val.getValueType(); 14588 14589 if (!isTypeLegal(ResVT)) 14590 return SDValue(); 14591 14592 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14593 bool ValidTypeForStoreFltAsInt = 14594 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14595 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14596 14597 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14598 return SDValue(); 14599 14600 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14601 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14602 return SDValue(); 14603 14604 // Extend f32 values to f64 14605 if (ResVT.getScalarSizeInBits() == 32) { 14606 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14607 DCI.AddToWorklist(Val.getNode()); 14608 } 14609 14610 // Set signed or unsigned conversion opcode. 14611 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14612 PPCISD::FP_TO_SINT_IN_VSR : 14613 PPCISD::FP_TO_UINT_IN_VSR; 14614 14615 Val = DAG.getNode(ConvOpcode, 14616 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14617 DCI.AddToWorklist(Val.getNode()); 14618 14619 // Set number of bytes being converted. 14620 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14621 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14622 DAG.getIntPtrConstant(ByteSize, dl, false), 14623 DAG.getValueType(Op1VT) }; 14624 14625 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14626 DAG.getVTList(MVT::Other), Ops, 14627 cast<StoreSDNode>(N)->getMemoryVT(), 14628 cast<StoreSDNode>(N)->getMemOperand()); 14629 14630 DCI.AddToWorklist(Val.getNode()); 14631 return Val; 14632 } 14633 14634 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14635 // Check that the source of the element keeps flipping 14636 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14637 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14638 for (int i = 1, e = Mask.size(); i < e; i++) { 14639 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14640 return false; 14641 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14642 return false; 14643 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14644 } 14645 return true; 14646 } 14647 14648 static bool isSplatBV(SDValue Op) { 14649 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14650 return false; 14651 SDValue FirstOp; 14652 14653 // Find first non-undef input. 14654 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14655 FirstOp = Op.getOperand(i); 14656 if (!FirstOp.isUndef()) 14657 break; 14658 } 14659 14660 // All inputs are undef or the same as the first non-undef input. 14661 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14662 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14663 return false; 14664 return true; 14665 } 14666 14667 static SDValue isScalarToVec(SDValue Op) { 14668 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14669 return Op; 14670 if (Op.getOpcode() != ISD::BITCAST) 14671 return SDValue(); 14672 Op = Op.getOperand(0); 14673 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14674 return Op; 14675 return SDValue(); 14676 } 14677 14678 // Fix up the shuffle mask to account for the fact that the result of 14679 // scalar_to_vector is not in lane zero. This just takes all values in 14680 // the ranges specified by the min/max indices and adds the number of 14681 // elements required to ensure each element comes from the respective 14682 // position in the valid lane. 14683 // On little endian, that's just the corresponding element in the other 14684 // half of the vector. On big endian, it is in the same half but right 14685 // justified rather than left justified in that half. 14686 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14687 int LHSMaxIdx, int RHSMinIdx, 14688 int RHSMaxIdx, int HalfVec, 14689 unsigned ValidLaneWidth, 14690 const PPCSubtarget &Subtarget) { 14691 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14692 int Idx = ShuffV[i]; 14693 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14694 ShuffV[i] += 14695 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14696 } 14697 } 14698 14699 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14700 // the original is: 14701 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14702 // In such a case, just change the shuffle mask to extract the element 14703 // from the permuted index. 14704 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14705 const PPCSubtarget &Subtarget) { 14706 SDLoc dl(OrigSToV); 14707 EVT VT = OrigSToV.getValueType(); 14708 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14709 "Expecting a SCALAR_TO_VECTOR here"); 14710 SDValue Input = OrigSToV.getOperand(0); 14711 14712 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14713 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14714 SDValue OrigVector = Input.getOperand(0); 14715 14716 // Can't handle non-const element indices or different vector types 14717 // for the input to the extract and the output of the scalar_to_vector. 14718 if (Idx && VT == OrigVector.getValueType()) { 14719 unsigned NumElts = VT.getVectorNumElements(); 14720 assert( 14721 NumElts > 1 && 14722 "Cannot produce a permuted scalar_to_vector for one element vector"); 14723 SmallVector<int, 16> NewMask(NumElts, -1); 14724 unsigned ResultInElt = NumElts / 2; 14725 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14726 NewMask[ResultInElt] = Idx->getZExtValue(); 14727 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14728 } 14729 } 14730 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14731 OrigSToV.getOperand(0)); 14732 } 14733 14734 // On little endian subtargets, combine shuffles such as: 14735 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14736 // into: 14737 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14738 // because the latter can be matched to a single instruction merge. 14739 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14740 // to put the value into element zero. Adjust the shuffle mask so that the 14741 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14742 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14743 // nodes with elements smaller than doubleword because all the ways 14744 // of getting scalar data into a vector register put the value in the 14745 // rightmost element of the left half of the vector. 14746 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14747 SelectionDAG &DAG) const { 14748 SDValue LHS = SVN->getOperand(0); 14749 SDValue RHS = SVN->getOperand(1); 14750 auto Mask = SVN->getMask(); 14751 int NumElts = LHS.getValueType().getVectorNumElements(); 14752 SDValue Res(SVN, 0); 14753 SDLoc dl(SVN); 14754 bool IsLittleEndian = Subtarget.isLittleEndian(); 14755 14756 // On big endian targets this is only useful for subtargets with direct moves. 14757 // On little endian targets it would be useful for all subtargets with VSX. 14758 // However adding special handling for LE subtargets without direct moves 14759 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14760 // which includes direct moves. 14761 if (!Subtarget.hasDirectMove()) 14762 return Res; 14763 14764 // If this is not a shuffle of a shuffle and the first element comes from 14765 // the second vector, canonicalize to the commuted form. This will make it 14766 // more likely to match one of the single instruction patterns. 14767 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14768 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14769 std::swap(LHS, RHS); 14770 Res = DAG.getCommutedVectorShuffle(*SVN); 14771 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14772 } 14773 14774 // Adjust the shuffle mask if either input vector comes from a 14775 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14776 // form (to prevent the need for a swap). 14777 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14778 SDValue SToVLHS = isScalarToVec(LHS); 14779 SDValue SToVRHS = isScalarToVec(RHS); 14780 if (SToVLHS || SToVRHS) { 14781 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14782 : SToVRHS.getValueType().getVectorNumElements(); 14783 int NumEltsOut = ShuffV.size(); 14784 // The width of the "valid lane" (i.e. the lane that contains the value that 14785 // is vectorized) needs to be expressed in terms of the number of elements 14786 // of the shuffle. It is thereby the ratio of the values before and after 14787 // any bitcast. 14788 unsigned ValidLaneWidth = 14789 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14790 LHS.getValueType().getScalarSizeInBits() 14791 : SToVRHS.getValueType().getScalarSizeInBits() / 14792 RHS.getValueType().getScalarSizeInBits(); 14793 14794 // Initially assume that neither input is permuted. These will be adjusted 14795 // accordingly if either input is. 14796 int LHSMaxIdx = -1; 14797 int RHSMinIdx = -1; 14798 int RHSMaxIdx = -1; 14799 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14800 14801 // Get the permuted scalar to vector nodes for the source(s) that come from 14802 // ISD::SCALAR_TO_VECTOR. 14803 // On big endian systems, this only makes sense for element sizes smaller 14804 // than 64 bits since for 64-bit elements, all instructions already put 14805 // the value into element zero. Since scalar size of LHS and RHS may differ 14806 // after isScalarToVec, this should be checked using their own sizes. 14807 if (SToVLHS) { 14808 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14809 return Res; 14810 // Set up the values for the shuffle vector fixup. 14811 LHSMaxIdx = NumEltsOut / NumEltsIn; 14812 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14813 if (SToVLHS.getValueType() != LHS.getValueType()) 14814 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14815 LHS = SToVLHS; 14816 } 14817 if (SToVRHS) { 14818 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14819 return Res; 14820 RHSMinIdx = NumEltsOut; 14821 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14822 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14823 if (SToVRHS.getValueType() != RHS.getValueType()) 14824 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14825 RHS = SToVRHS; 14826 } 14827 14828 // Fix up the shuffle mask to reflect where the desired element actually is. 14829 // The minimum and maximum indices that correspond to element zero for both 14830 // the LHS and RHS are computed and will control which shuffle mask entries 14831 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14832 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14833 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14834 HalfVec, ValidLaneWidth, Subtarget); 14835 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14836 14837 // We may have simplified away the shuffle. We won't be able to do anything 14838 // further with it here. 14839 if (!isa<ShuffleVectorSDNode>(Res)) 14840 return Res; 14841 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14842 } 14843 14844 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14845 // The common case after we commuted the shuffle is that the RHS is a splat 14846 // and we have elements coming in from the splat at indices that are not 14847 // conducive to using a merge. 14848 // Example: 14849 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14850 if (!isSplatBV(TheSplat)) 14851 return Res; 14852 14853 // We are looking for a mask such that all even elements are from 14854 // one vector and all odd elements from the other. 14855 if (!isAlternatingShuffMask(Mask, NumElts)) 14856 return Res; 14857 14858 // Adjust the mask so we are pulling in the same index from the splat 14859 // as the index from the interesting vector in consecutive elements. 14860 if (IsLittleEndian) { 14861 // Example (even elements from first vector): 14862 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14863 if (Mask[0] < NumElts) 14864 for (int i = 1, e = Mask.size(); i < e; i += 2) 14865 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14866 // Example (odd elements from first vector): 14867 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14868 else 14869 for (int i = 0, e = Mask.size(); i < e; i += 2) 14870 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14871 } else { 14872 // Example (even elements from first vector): 14873 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14874 if (Mask[0] < NumElts) 14875 for (int i = 0, e = Mask.size(); i < e; i += 2) 14876 ShuffV[i] = ShuffV[i + 1] - NumElts; 14877 // Example (odd elements from first vector): 14878 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14879 else 14880 for (int i = 1, e = Mask.size(); i < e; i += 2) 14881 ShuffV[i] = ShuffV[i - 1] - NumElts; 14882 } 14883 14884 // If the RHS has undefs, we need to remove them since we may have created 14885 // a shuffle that adds those instead of the splat value. 14886 SDValue SplatVal = 14887 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14888 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14889 14890 if (IsLittleEndian) 14891 RHS = TheSplat; 14892 else 14893 LHS = TheSplat; 14894 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14895 } 14896 14897 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14898 LSBaseSDNode *LSBase, 14899 DAGCombinerInfo &DCI) const { 14900 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14901 "Not a reverse memop pattern!"); 14902 14903 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14904 auto Mask = SVN->getMask(); 14905 int i = 0; 14906 auto I = Mask.rbegin(); 14907 auto E = Mask.rend(); 14908 14909 for (; I != E; ++I) { 14910 if (*I != i) 14911 return false; 14912 i++; 14913 } 14914 return true; 14915 }; 14916 14917 SelectionDAG &DAG = DCI.DAG; 14918 EVT VT = SVN->getValueType(0); 14919 14920 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14921 return SDValue(); 14922 14923 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14924 // See comment in PPCVSXSwapRemoval.cpp. 14925 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14926 if (!Subtarget.hasP9Vector()) 14927 return SDValue(); 14928 14929 if(!IsElementReverse(SVN)) 14930 return SDValue(); 14931 14932 if (LSBase->getOpcode() == ISD::LOAD) { 14933 // If the load return value 0 has more than one user except the 14934 // shufflevector instruction, it is not profitable to replace the 14935 // shufflevector with a reverse load. 14936 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14937 UI != UE; ++UI) 14938 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14939 return SDValue(); 14940 14941 SDLoc dl(LSBase); 14942 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14943 return DAG.getMemIntrinsicNode( 14944 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14945 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14946 } 14947 14948 if (LSBase->getOpcode() == ISD::STORE) { 14949 // If there are other uses of the shuffle, the swap cannot be avoided. 14950 // Forcing the use of an X-Form (since swapped stores only have 14951 // X-Forms) without removing the swap is unprofitable. 14952 if (!SVN->hasOneUse()) 14953 return SDValue(); 14954 14955 SDLoc dl(LSBase); 14956 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14957 LSBase->getBasePtr()}; 14958 return DAG.getMemIntrinsicNode( 14959 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14960 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14961 } 14962 14963 llvm_unreachable("Expected a load or store node here"); 14964 } 14965 14966 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14967 DAGCombinerInfo &DCI) const { 14968 SelectionDAG &DAG = DCI.DAG; 14969 SDLoc dl(N); 14970 switch (N->getOpcode()) { 14971 default: break; 14972 case ISD::ADD: 14973 return combineADD(N, DCI); 14974 case ISD::SHL: 14975 return combineSHL(N, DCI); 14976 case ISD::SRA: 14977 return combineSRA(N, DCI); 14978 case ISD::SRL: 14979 return combineSRL(N, DCI); 14980 case ISD::MUL: 14981 return combineMUL(N, DCI); 14982 case ISD::FMA: 14983 case PPCISD::FNMSUB: 14984 return combineFMALike(N, DCI); 14985 case PPCISD::SHL: 14986 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14987 return N->getOperand(0); 14988 break; 14989 case PPCISD::SRL: 14990 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14991 return N->getOperand(0); 14992 break; 14993 case PPCISD::SRA: 14994 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14995 if (C->isZero() || // 0 >>s V -> 0. 14996 C->isAllOnes()) // -1 >>s V -> -1. 14997 return N->getOperand(0); 14998 } 14999 break; 15000 case ISD::SIGN_EXTEND: 15001 case ISD::ZERO_EXTEND: 15002 case ISD::ANY_EXTEND: 15003 return DAGCombineExtBoolTrunc(N, DCI); 15004 case ISD::TRUNCATE: 15005 return combineTRUNCATE(N, DCI); 15006 case ISD::SETCC: 15007 if (SDValue CSCC = combineSetCC(N, DCI)) 15008 return CSCC; 15009 LLVM_FALLTHROUGH; 15010 case ISD::SELECT_CC: 15011 return DAGCombineTruncBoolExt(N, DCI); 15012 case ISD::SINT_TO_FP: 15013 case ISD::UINT_TO_FP: 15014 return combineFPToIntToFP(N, DCI); 15015 case ISD::VECTOR_SHUFFLE: 15016 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15017 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15018 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15019 } 15020 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15021 case ISD::STORE: { 15022 15023 EVT Op1VT = N->getOperand(1).getValueType(); 15024 unsigned Opcode = N->getOperand(1).getOpcode(); 15025 15026 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15027 SDValue Val= combineStoreFPToInt(N, DCI); 15028 if (Val) 15029 return Val; 15030 } 15031 15032 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15033 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15034 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15035 if (Val) 15036 return Val; 15037 } 15038 15039 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15040 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15041 N->getOperand(1).getNode()->hasOneUse() && 15042 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15043 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15044 15045 // STBRX can only handle simple types and it makes no sense to store less 15046 // two bytes in byte-reversed order. 15047 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15048 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15049 break; 15050 15051 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15052 // Do an any-extend to 32-bits if this is a half-word input. 15053 if (BSwapOp.getValueType() == MVT::i16) 15054 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15055 15056 // If the type of BSWAP operand is wider than stored memory width 15057 // it need to be shifted to the right side before STBRX. 15058 if (Op1VT.bitsGT(mVT)) { 15059 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15060 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15061 DAG.getConstant(Shift, dl, MVT::i32)); 15062 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15063 if (Op1VT == MVT::i64) 15064 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15065 } 15066 15067 SDValue Ops[] = { 15068 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15069 }; 15070 return 15071 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15072 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15073 cast<StoreSDNode>(N)->getMemOperand()); 15074 } 15075 15076 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15077 // So it can increase the chance of CSE constant construction. 15078 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15079 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15080 // Need to sign-extended to 64-bits to handle negative values. 15081 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15082 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15083 MemVT.getSizeInBits()); 15084 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15085 15086 // DAG.getTruncStore() can't be used here because it doesn't accept 15087 // the general (base + offset) addressing mode. 15088 // So we use UpdateNodeOperands and setTruncatingStore instead. 15089 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15090 N->getOperand(3)); 15091 cast<StoreSDNode>(N)->setTruncatingStore(true); 15092 return SDValue(N, 0); 15093 } 15094 15095 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15096 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15097 if (Op1VT.isSimple()) { 15098 MVT StoreVT = Op1VT.getSimpleVT(); 15099 if (Subtarget.needsSwapsForVSXMemOps() && 15100 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15101 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15102 return expandVSXStoreForLE(N, DCI); 15103 } 15104 break; 15105 } 15106 case ISD::LOAD: { 15107 LoadSDNode *LD = cast<LoadSDNode>(N); 15108 EVT VT = LD->getValueType(0); 15109 15110 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15111 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15112 if (VT.isSimple()) { 15113 MVT LoadVT = VT.getSimpleVT(); 15114 if (Subtarget.needsSwapsForVSXMemOps() && 15115 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15116 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15117 return expandVSXLoadForLE(N, DCI); 15118 } 15119 15120 // We sometimes end up with a 64-bit integer load, from which we extract 15121 // two single-precision floating-point numbers. This happens with 15122 // std::complex<float>, and other similar structures, because of the way we 15123 // canonicalize structure copies. However, if we lack direct moves, 15124 // then the final bitcasts from the extracted integer values to the 15125 // floating-point numbers turn into store/load pairs. Even with direct moves, 15126 // just loading the two floating-point numbers is likely better. 15127 auto ReplaceTwoFloatLoad = [&]() { 15128 if (VT != MVT::i64) 15129 return false; 15130 15131 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15132 LD->isVolatile()) 15133 return false; 15134 15135 // We're looking for a sequence like this: 15136 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15137 // t16: i64 = srl t13, Constant:i32<32> 15138 // t17: i32 = truncate t16 15139 // t18: f32 = bitcast t17 15140 // t19: i32 = truncate t13 15141 // t20: f32 = bitcast t19 15142 15143 if (!LD->hasNUsesOfValue(2, 0)) 15144 return false; 15145 15146 auto UI = LD->use_begin(); 15147 while (UI.getUse().getResNo() != 0) ++UI; 15148 SDNode *Trunc = *UI++; 15149 while (UI.getUse().getResNo() != 0) ++UI; 15150 SDNode *RightShift = *UI; 15151 if (Trunc->getOpcode() != ISD::TRUNCATE) 15152 std::swap(Trunc, RightShift); 15153 15154 if (Trunc->getOpcode() != ISD::TRUNCATE || 15155 Trunc->getValueType(0) != MVT::i32 || 15156 !Trunc->hasOneUse()) 15157 return false; 15158 if (RightShift->getOpcode() != ISD::SRL || 15159 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15160 RightShift->getConstantOperandVal(1) != 32 || 15161 !RightShift->hasOneUse()) 15162 return false; 15163 15164 SDNode *Trunc2 = *RightShift->use_begin(); 15165 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15166 Trunc2->getValueType(0) != MVT::i32 || 15167 !Trunc2->hasOneUse()) 15168 return false; 15169 15170 SDNode *Bitcast = *Trunc->use_begin(); 15171 SDNode *Bitcast2 = *Trunc2->use_begin(); 15172 15173 if (Bitcast->getOpcode() != ISD::BITCAST || 15174 Bitcast->getValueType(0) != MVT::f32) 15175 return false; 15176 if (Bitcast2->getOpcode() != ISD::BITCAST || 15177 Bitcast2->getValueType(0) != MVT::f32) 15178 return false; 15179 15180 if (Subtarget.isLittleEndian()) 15181 std::swap(Bitcast, Bitcast2); 15182 15183 // Bitcast has the second float (in memory-layout order) and Bitcast2 15184 // has the first one. 15185 15186 SDValue BasePtr = LD->getBasePtr(); 15187 if (LD->isIndexed()) { 15188 assert(LD->getAddressingMode() == ISD::PRE_INC && 15189 "Non-pre-inc AM on PPC?"); 15190 BasePtr = 15191 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15192 LD->getOffset()); 15193 } 15194 15195 auto MMOFlags = 15196 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15197 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15198 LD->getPointerInfo(), LD->getAlignment(), 15199 MMOFlags, LD->getAAInfo()); 15200 SDValue AddPtr = 15201 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15202 BasePtr, DAG.getIntPtrConstant(4, dl)); 15203 SDValue FloatLoad2 = DAG.getLoad( 15204 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15205 LD->getPointerInfo().getWithOffset(4), 15206 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15207 15208 if (LD->isIndexed()) { 15209 // Note that DAGCombine should re-form any pre-increment load(s) from 15210 // what is produced here if that makes sense. 15211 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15212 } 15213 15214 DCI.CombineTo(Bitcast2, FloatLoad); 15215 DCI.CombineTo(Bitcast, FloatLoad2); 15216 15217 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15218 SDValue(FloatLoad2.getNode(), 1)); 15219 return true; 15220 }; 15221 15222 if (ReplaceTwoFloatLoad()) 15223 return SDValue(N, 0); 15224 15225 EVT MemVT = LD->getMemoryVT(); 15226 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15227 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15228 if (LD->isUnindexed() && VT.isVector() && 15229 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15230 // P8 and later hardware should just use LOAD. 15231 !Subtarget.hasP8Vector() && 15232 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15233 VT == MVT::v4f32))) && 15234 LD->getAlign() < ABIAlignment) { 15235 // This is a type-legal unaligned Altivec load. 15236 SDValue Chain = LD->getChain(); 15237 SDValue Ptr = LD->getBasePtr(); 15238 bool isLittleEndian = Subtarget.isLittleEndian(); 15239 15240 // This implements the loading of unaligned vectors as described in 15241 // the venerable Apple Velocity Engine overview. Specifically: 15242 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15243 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15244 // 15245 // The general idea is to expand a sequence of one or more unaligned 15246 // loads into an alignment-based permutation-control instruction (lvsl 15247 // or lvsr), a series of regular vector loads (which always truncate 15248 // their input address to an aligned address), and a series of 15249 // permutations. The results of these permutations are the requested 15250 // loaded values. The trick is that the last "extra" load is not taken 15251 // from the address you might suspect (sizeof(vector) bytes after the 15252 // last requested load), but rather sizeof(vector) - 1 bytes after the 15253 // last requested vector. The point of this is to avoid a page fault if 15254 // the base address happened to be aligned. This works because if the 15255 // base address is aligned, then adding less than a full vector length 15256 // will cause the last vector in the sequence to be (re)loaded. 15257 // Otherwise, the next vector will be fetched as you might suspect was 15258 // necessary. 15259 15260 // We might be able to reuse the permutation generation from 15261 // a different base address offset from this one by an aligned amount. 15262 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15263 // optimization later. 15264 Intrinsic::ID Intr, IntrLD, IntrPerm; 15265 MVT PermCntlTy, PermTy, LDTy; 15266 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15267 : Intrinsic::ppc_altivec_lvsl; 15268 IntrLD = Intrinsic::ppc_altivec_lvx; 15269 IntrPerm = Intrinsic::ppc_altivec_vperm; 15270 PermCntlTy = MVT::v16i8; 15271 PermTy = MVT::v4i32; 15272 LDTy = MVT::v4i32; 15273 15274 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15275 15276 // Create the new MMO for the new base load. It is like the original MMO, 15277 // but represents an area in memory almost twice the vector size centered 15278 // on the original address. If the address is unaligned, we might start 15279 // reading up to (sizeof(vector)-1) bytes below the address of the 15280 // original unaligned load. 15281 MachineFunction &MF = DAG.getMachineFunction(); 15282 MachineMemOperand *BaseMMO = 15283 MF.getMachineMemOperand(LD->getMemOperand(), 15284 -(long)MemVT.getStoreSize()+1, 15285 2*MemVT.getStoreSize()-1); 15286 15287 // Create the new base load. 15288 SDValue LDXIntID = 15289 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15290 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15291 SDValue BaseLoad = 15292 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15293 DAG.getVTList(PermTy, MVT::Other), 15294 BaseLoadOps, LDTy, BaseMMO); 15295 15296 // Note that the value of IncOffset (which is provided to the next 15297 // load's pointer info offset value, and thus used to calculate the 15298 // alignment), and the value of IncValue (which is actually used to 15299 // increment the pointer value) are different! This is because we 15300 // require the next load to appear to be aligned, even though it 15301 // is actually offset from the base pointer by a lesser amount. 15302 int IncOffset = VT.getSizeInBits() / 8; 15303 int IncValue = IncOffset; 15304 15305 // Walk (both up and down) the chain looking for another load at the real 15306 // (aligned) offset (the alignment of the other load does not matter in 15307 // this case). If found, then do not use the offset reduction trick, as 15308 // that will prevent the loads from being later combined (as they would 15309 // otherwise be duplicates). 15310 if (!findConsecutiveLoad(LD, DAG)) 15311 --IncValue; 15312 15313 SDValue Increment = 15314 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15315 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15316 15317 MachineMemOperand *ExtraMMO = 15318 MF.getMachineMemOperand(LD->getMemOperand(), 15319 1, 2*MemVT.getStoreSize()-1); 15320 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15321 SDValue ExtraLoad = 15322 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15323 DAG.getVTList(PermTy, MVT::Other), 15324 ExtraLoadOps, LDTy, ExtraMMO); 15325 15326 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15327 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15328 15329 // Because vperm has a big-endian bias, we must reverse the order 15330 // of the input vectors and complement the permute control vector 15331 // when generating little endian code. We have already handled the 15332 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15333 // and ExtraLoad here. 15334 SDValue Perm; 15335 if (isLittleEndian) 15336 Perm = BuildIntrinsicOp(IntrPerm, 15337 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15338 else 15339 Perm = BuildIntrinsicOp(IntrPerm, 15340 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15341 15342 if (VT != PermTy) 15343 Perm = Subtarget.hasAltivec() 15344 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15345 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15346 DAG.getTargetConstant(1, dl, MVT::i64)); 15347 // second argument is 1 because this rounding 15348 // is always exact. 15349 15350 // The output of the permutation is our loaded result, the TokenFactor is 15351 // our new chain. 15352 DCI.CombineTo(N, Perm, TF); 15353 return SDValue(N, 0); 15354 } 15355 } 15356 break; 15357 case ISD::INTRINSIC_WO_CHAIN: { 15358 bool isLittleEndian = Subtarget.isLittleEndian(); 15359 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15360 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15361 : Intrinsic::ppc_altivec_lvsl); 15362 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15363 SDValue Add = N->getOperand(1); 15364 15365 int Bits = 4 /* 16 byte alignment */; 15366 15367 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15368 APInt::getAllOnes(Bits /* alignment */) 15369 .zext(Add.getScalarValueSizeInBits()))) { 15370 SDNode *BasePtr = Add->getOperand(0).getNode(); 15371 for (SDNode *U : BasePtr->uses()) { 15372 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15373 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15374 // We've found another LVSL/LVSR, and this address is an aligned 15375 // multiple of that one. The results will be the same, so use the 15376 // one we've just found instead. 15377 15378 return SDValue(U, 0); 15379 } 15380 } 15381 } 15382 15383 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15384 SDNode *BasePtr = Add->getOperand(0).getNode(); 15385 for (SDNode *U : BasePtr->uses()) { 15386 if (U->getOpcode() == ISD::ADD && 15387 isa<ConstantSDNode>(U->getOperand(1)) && 15388 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15389 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15390 (1ULL << Bits) == 15391 0) { 15392 SDNode *OtherAdd = U; 15393 for (SDNode *V : OtherAdd->uses()) { 15394 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15395 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15396 IID) { 15397 return SDValue(V, 0); 15398 } 15399 } 15400 } 15401 } 15402 } 15403 } 15404 15405 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15406 // Expose the vabsduw/h/b opportunity for down stream 15407 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15408 (IID == Intrinsic::ppc_altivec_vmaxsw || 15409 IID == Intrinsic::ppc_altivec_vmaxsh || 15410 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15411 SDValue V1 = N->getOperand(1); 15412 SDValue V2 = N->getOperand(2); 15413 if ((V1.getSimpleValueType() == MVT::v4i32 || 15414 V1.getSimpleValueType() == MVT::v8i16 || 15415 V1.getSimpleValueType() == MVT::v16i8) && 15416 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15417 // (0-a, a) 15418 if (V1.getOpcode() == ISD::SUB && 15419 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15420 V1.getOperand(1) == V2) { 15421 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15422 } 15423 // (a, 0-a) 15424 if (V2.getOpcode() == ISD::SUB && 15425 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15426 V2.getOperand(1) == V1) { 15427 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15428 } 15429 // (x-y, y-x) 15430 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15431 V1.getOperand(0) == V2.getOperand(1) && 15432 V1.getOperand(1) == V2.getOperand(0)) { 15433 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15434 } 15435 } 15436 } 15437 } 15438 15439 break; 15440 case ISD::INTRINSIC_W_CHAIN: 15441 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15442 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15443 if (Subtarget.needsSwapsForVSXMemOps()) { 15444 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15445 default: 15446 break; 15447 case Intrinsic::ppc_vsx_lxvw4x: 15448 case Intrinsic::ppc_vsx_lxvd2x: 15449 return expandVSXLoadForLE(N, DCI); 15450 } 15451 } 15452 break; 15453 case ISD::INTRINSIC_VOID: 15454 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15455 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15456 if (Subtarget.needsSwapsForVSXMemOps()) { 15457 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15458 default: 15459 break; 15460 case Intrinsic::ppc_vsx_stxvw4x: 15461 case Intrinsic::ppc_vsx_stxvd2x: 15462 return expandVSXStoreForLE(N, DCI); 15463 } 15464 } 15465 break; 15466 case ISD::BSWAP: { 15467 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15468 // For subtargets without LDBRX, we can still do better than the default 15469 // expansion even for 64-bit BSWAP (LOAD). 15470 bool Is64BitBswapOn64BitTgt = 15471 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15472 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15473 N->getOperand(0).hasOneUse(); 15474 if (IsSingleUseNormalLd && 15475 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15476 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15477 SDValue Load = N->getOperand(0); 15478 LoadSDNode *LD = cast<LoadSDNode>(Load); 15479 // Create the byte-swapping load. 15480 SDValue Ops[] = { 15481 LD->getChain(), // Chain 15482 LD->getBasePtr(), // Ptr 15483 DAG.getValueType(N->getValueType(0)) // VT 15484 }; 15485 SDValue BSLoad = 15486 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15487 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15488 MVT::i64 : MVT::i32, MVT::Other), 15489 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15490 15491 // If this is an i16 load, insert the truncate. 15492 SDValue ResVal = BSLoad; 15493 if (N->getValueType(0) == MVT::i16) 15494 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15495 15496 // First, combine the bswap away. This makes the value produced by the 15497 // load dead. 15498 DCI.CombineTo(N, ResVal); 15499 15500 // Next, combine the load away, we give it a bogus result value but a real 15501 // chain result. The result value is dead because the bswap is dead. 15502 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15503 15504 // Return N so it doesn't get rechecked! 15505 return SDValue(N, 0); 15506 } 15507 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15508 // before legalization so that the BUILD_PAIR is handled correctly. 15509 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15510 !IsSingleUseNormalLd) 15511 return SDValue(); 15512 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15513 15514 // Can't split volatile or atomic loads. 15515 if (!LD->isSimple()) 15516 return SDValue(); 15517 SDValue BasePtr = LD->getBasePtr(); 15518 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15519 LD->getPointerInfo(), LD->getAlignment()); 15520 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15521 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15522 DAG.getIntPtrConstant(4, dl)); 15523 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15524 LD->getMemOperand(), 4, 4); 15525 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15526 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15527 SDValue Res; 15528 if (Subtarget.isLittleEndian()) 15529 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15530 else 15531 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15532 SDValue TF = 15533 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15534 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15535 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15536 return Res; 15537 } 15538 case PPCISD::VCMP: 15539 // If a VCMP_rec node already exists with exactly the same operands as this 15540 // node, use its result instead of this node (VCMP_rec computes both a CR6 15541 // and a normal output). 15542 // 15543 if (!N->getOperand(0).hasOneUse() && 15544 !N->getOperand(1).hasOneUse() && 15545 !N->getOperand(2).hasOneUse()) { 15546 15547 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15548 SDNode *VCMPrecNode = nullptr; 15549 15550 SDNode *LHSN = N->getOperand(0).getNode(); 15551 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15552 UI != E; ++UI) 15553 if (UI->getOpcode() == PPCISD::VCMP_rec && 15554 UI->getOperand(1) == N->getOperand(1) && 15555 UI->getOperand(2) == N->getOperand(2) && 15556 UI->getOperand(0) == N->getOperand(0)) { 15557 VCMPrecNode = *UI; 15558 break; 15559 } 15560 15561 // If there is no VCMP_rec node, or if the flag value has a single use, 15562 // don't transform this. 15563 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15564 break; 15565 15566 // Look at the (necessarily single) use of the flag value. If it has a 15567 // chain, this transformation is more complex. Note that multiple things 15568 // could use the value result, which we should ignore. 15569 SDNode *FlagUser = nullptr; 15570 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15571 FlagUser == nullptr; ++UI) { 15572 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15573 SDNode *User = *UI; 15574 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15575 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15576 FlagUser = User; 15577 break; 15578 } 15579 } 15580 } 15581 15582 // If the user is a MFOCRF instruction, we know this is safe. 15583 // Otherwise we give up for right now. 15584 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15585 return SDValue(VCMPrecNode, 0); 15586 } 15587 break; 15588 case ISD::BRCOND: { 15589 SDValue Cond = N->getOperand(1); 15590 SDValue Target = N->getOperand(2); 15591 15592 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15593 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15594 Intrinsic::loop_decrement) { 15595 15596 // We now need to make the intrinsic dead (it cannot be instruction 15597 // selected). 15598 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15599 assert(Cond.getNode()->hasOneUse() && 15600 "Counter decrement has more than one use"); 15601 15602 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15603 N->getOperand(0), Target); 15604 } 15605 } 15606 break; 15607 case ISD::BR_CC: { 15608 // If this is a branch on an altivec predicate comparison, lower this so 15609 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15610 // lowering is done pre-legalize, because the legalizer lowers the predicate 15611 // compare down to code that is difficult to reassemble. 15612 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15613 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15614 15615 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15616 // value. If so, pass-through the AND to get to the intrinsic. 15617 if (LHS.getOpcode() == ISD::AND && 15618 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15619 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15620 Intrinsic::loop_decrement && 15621 isa<ConstantSDNode>(LHS.getOperand(1)) && 15622 !isNullConstant(LHS.getOperand(1))) 15623 LHS = LHS.getOperand(0); 15624 15625 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15626 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15627 Intrinsic::loop_decrement && 15628 isa<ConstantSDNode>(RHS)) { 15629 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15630 "Counter decrement comparison is not EQ or NE"); 15631 15632 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15633 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15634 (CC == ISD::SETNE && !Val); 15635 15636 // We now need to make the intrinsic dead (it cannot be instruction 15637 // selected). 15638 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15639 assert(LHS.getNode()->hasOneUse() && 15640 "Counter decrement has more than one use"); 15641 15642 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15643 N->getOperand(0), N->getOperand(4)); 15644 } 15645 15646 int CompareOpc; 15647 bool isDot; 15648 15649 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15650 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15651 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15652 assert(isDot && "Can't compare against a vector result!"); 15653 15654 // If this is a comparison against something other than 0/1, then we know 15655 // that the condition is never/always true. 15656 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15657 if (Val != 0 && Val != 1) { 15658 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15659 return N->getOperand(0); 15660 // Always !=, turn it into an unconditional branch. 15661 return DAG.getNode(ISD::BR, dl, MVT::Other, 15662 N->getOperand(0), N->getOperand(4)); 15663 } 15664 15665 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15666 15667 // Create the PPCISD altivec 'dot' comparison node. 15668 SDValue Ops[] = { 15669 LHS.getOperand(2), // LHS of compare 15670 LHS.getOperand(3), // RHS of compare 15671 DAG.getConstant(CompareOpc, dl, MVT::i32) 15672 }; 15673 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15674 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15675 15676 // Unpack the result based on how the target uses it. 15677 PPC::Predicate CompOpc; 15678 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15679 default: // Can't happen, don't crash on invalid number though. 15680 case 0: // Branch on the value of the EQ bit of CR6. 15681 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15682 break; 15683 case 1: // Branch on the inverted value of the EQ bit of CR6. 15684 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15685 break; 15686 case 2: // Branch on the value of the LT bit of CR6. 15687 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15688 break; 15689 case 3: // Branch on the inverted value of the LT bit of CR6. 15690 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15691 break; 15692 } 15693 15694 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15695 DAG.getConstant(CompOpc, dl, MVT::i32), 15696 DAG.getRegister(PPC::CR6, MVT::i32), 15697 N->getOperand(4), CompNode.getValue(1)); 15698 } 15699 break; 15700 } 15701 case ISD::BUILD_VECTOR: 15702 return DAGCombineBuildVector(N, DCI); 15703 case ISD::ABS: 15704 return combineABS(N, DCI); 15705 case ISD::VSELECT: 15706 return combineVSelect(N, DCI); 15707 } 15708 15709 return SDValue(); 15710 } 15711 15712 SDValue 15713 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15714 SelectionDAG &DAG, 15715 SmallVectorImpl<SDNode *> &Created) const { 15716 // fold (sdiv X, pow2) 15717 EVT VT = N->getValueType(0); 15718 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15719 return SDValue(); 15720 if ((VT != MVT::i32 && VT != MVT::i64) || 15721 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15722 return SDValue(); 15723 15724 SDLoc DL(N); 15725 SDValue N0 = N->getOperand(0); 15726 15727 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15728 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15729 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15730 15731 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15732 Created.push_back(Op.getNode()); 15733 15734 if (IsNegPow2) { 15735 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15736 Created.push_back(Op.getNode()); 15737 } 15738 15739 return Op; 15740 } 15741 15742 //===----------------------------------------------------------------------===// 15743 // Inline Assembly Support 15744 //===----------------------------------------------------------------------===// 15745 15746 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15747 KnownBits &Known, 15748 const APInt &DemandedElts, 15749 const SelectionDAG &DAG, 15750 unsigned Depth) const { 15751 Known.resetAll(); 15752 switch (Op.getOpcode()) { 15753 default: break; 15754 case PPCISD::LBRX: { 15755 // lhbrx is known to have the top bits cleared out. 15756 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15757 Known.Zero = 0xFFFF0000; 15758 break; 15759 } 15760 case ISD::INTRINSIC_WO_CHAIN: { 15761 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15762 default: break; 15763 case Intrinsic::ppc_altivec_vcmpbfp_p: 15764 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15765 case Intrinsic::ppc_altivec_vcmpequb_p: 15766 case Intrinsic::ppc_altivec_vcmpequh_p: 15767 case Intrinsic::ppc_altivec_vcmpequw_p: 15768 case Intrinsic::ppc_altivec_vcmpequd_p: 15769 case Intrinsic::ppc_altivec_vcmpequq_p: 15770 case Intrinsic::ppc_altivec_vcmpgefp_p: 15771 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15772 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15773 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15774 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15775 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15776 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15777 case Intrinsic::ppc_altivec_vcmpgtub_p: 15778 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15779 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15780 case Intrinsic::ppc_altivec_vcmpgtud_p: 15781 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15782 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15783 break; 15784 } 15785 break; 15786 } 15787 case ISD::INTRINSIC_W_CHAIN: { 15788 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15789 default: 15790 break; 15791 case Intrinsic::ppc_load2r: 15792 // Top bits are cleared for load2r (which is the same as lhbrx). 15793 Known.Zero = 0xFFFF0000; 15794 break; 15795 } 15796 break; 15797 } 15798 } 15799 } 15800 15801 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15802 switch (Subtarget.getCPUDirective()) { 15803 default: break; 15804 case PPC::DIR_970: 15805 case PPC::DIR_PWR4: 15806 case PPC::DIR_PWR5: 15807 case PPC::DIR_PWR5X: 15808 case PPC::DIR_PWR6: 15809 case PPC::DIR_PWR6X: 15810 case PPC::DIR_PWR7: 15811 case PPC::DIR_PWR8: 15812 case PPC::DIR_PWR9: 15813 case PPC::DIR_PWR10: 15814 case PPC::DIR_PWR_FUTURE: { 15815 if (!ML) 15816 break; 15817 15818 if (!DisableInnermostLoopAlign32) { 15819 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15820 // so that we can decrease cache misses and branch-prediction misses. 15821 // Actual alignment of the loop will depend on the hotness check and other 15822 // logic in alignBlocks. 15823 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15824 return Align(32); 15825 } 15826 15827 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15828 15829 // For small loops (between 5 and 8 instructions), align to a 32-byte 15830 // boundary so that the entire loop fits in one instruction-cache line. 15831 uint64_t LoopSize = 0; 15832 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15833 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15834 LoopSize += TII->getInstSizeInBytes(*J); 15835 if (LoopSize > 32) 15836 break; 15837 } 15838 15839 if (LoopSize > 16 && LoopSize <= 32) 15840 return Align(32); 15841 15842 break; 15843 } 15844 } 15845 15846 return TargetLowering::getPrefLoopAlignment(ML); 15847 } 15848 15849 /// getConstraintType - Given a constraint, return the type of 15850 /// constraint it is for this target. 15851 PPCTargetLowering::ConstraintType 15852 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15853 if (Constraint.size() == 1) { 15854 switch (Constraint[0]) { 15855 default: break; 15856 case 'b': 15857 case 'r': 15858 case 'f': 15859 case 'd': 15860 case 'v': 15861 case 'y': 15862 return C_RegisterClass; 15863 case 'Z': 15864 // FIXME: While Z does indicate a memory constraint, it specifically 15865 // indicates an r+r address (used in conjunction with the 'y' modifier 15866 // in the replacement string). Currently, we're forcing the base 15867 // register to be r0 in the asm printer (which is interpreted as zero) 15868 // and forming the complete address in the second register. This is 15869 // suboptimal. 15870 return C_Memory; 15871 } 15872 } else if (Constraint == "wc") { // individual CR bits. 15873 return C_RegisterClass; 15874 } else if (Constraint == "wa" || Constraint == "wd" || 15875 Constraint == "wf" || Constraint == "ws" || 15876 Constraint == "wi" || Constraint == "ww") { 15877 return C_RegisterClass; // VSX registers. 15878 } 15879 return TargetLowering::getConstraintType(Constraint); 15880 } 15881 15882 /// Examine constraint type and operand type and determine a weight value. 15883 /// This object must already have been set up with the operand type 15884 /// and the current alternative constraint selected. 15885 TargetLowering::ConstraintWeight 15886 PPCTargetLowering::getSingleConstraintMatchWeight( 15887 AsmOperandInfo &info, const char *constraint) const { 15888 ConstraintWeight weight = CW_Invalid; 15889 Value *CallOperandVal = info.CallOperandVal; 15890 // If we don't have a value, we can't do a match, 15891 // but allow it at the lowest weight. 15892 if (!CallOperandVal) 15893 return CW_Default; 15894 Type *type = CallOperandVal->getType(); 15895 15896 // Look at the constraint type. 15897 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15898 return CW_Register; // an individual CR bit. 15899 else if ((StringRef(constraint) == "wa" || 15900 StringRef(constraint) == "wd" || 15901 StringRef(constraint) == "wf") && 15902 type->isVectorTy()) 15903 return CW_Register; 15904 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15905 return CW_Register; // just hold 64-bit integers data. 15906 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15907 return CW_Register; 15908 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15909 return CW_Register; 15910 15911 switch (*constraint) { 15912 default: 15913 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15914 break; 15915 case 'b': 15916 if (type->isIntegerTy()) 15917 weight = CW_Register; 15918 break; 15919 case 'f': 15920 if (type->isFloatTy()) 15921 weight = CW_Register; 15922 break; 15923 case 'd': 15924 if (type->isDoubleTy()) 15925 weight = CW_Register; 15926 break; 15927 case 'v': 15928 if (type->isVectorTy()) 15929 weight = CW_Register; 15930 break; 15931 case 'y': 15932 weight = CW_Register; 15933 break; 15934 case 'Z': 15935 weight = CW_Memory; 15936 break; 15937 } 15938 return weight; 15939 } 15940 15941 std::pair<unsigned, const TargetRegisterClass *> 15942 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15943 StringRef Constraint, 15944 MVT VT) const { 15945 if (Constraint.size() == 1) { 15946 // GCC RS6000 Constraint Letters 15947 switch (Constraint[0]) { 15948 case 'b': // R1-R31 15949 if (VT == MVT::i64 && Subtarget.isPPC64()) 15950 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15951 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15952 case 'r': // R0-R31 15953 if (VT == MVT::i64 && Subtarget.isPPC64()) 15954 return std::make_pair(0U, &PPC::G8RCRegClass); 15955 return std::make_pair(0U, &PPC::GPRCRegClass); 15956 // 'd' and 'f' constraints are both defined to be "the floating point 15957 // registers", where one is for 32-bit and the other for 64-bit. We don't 15958 // really care overly much here so just give them all the same reg classes. 15959 case 'd': 15960 case 'f': 15961 if (Subtarget.hasSPE()) { 15962 if (VT == MVT::f32 || VT == MVT::i32) 15963 return std::make_pair(0U, &PPC::GPRCRegClass); 15964 if (VT == MVT::f64 || VT == MVT::i64) 15965 return std::make_pair(0U, &PPC::SPERCRegClass); 15966 } else { 15967 if (VT == MVT::f32 || VT == MVT::i32) 15968 return std::make_pair(0U, &PPC::F4RCRegClass); 15969 if (VT == MVT::f64 || VT == MVT::i64) 15970 return std::make_pair(0U, &PPC::F8RCRegClass); 15971 } 15972 break; 15973 case 'v': 15974 if (Subtarget.hasAltivec() && VT.isVector()) 15975 return std::make_pair(0U, &PPC::VRRCRegClass); 15976 else if (Subtarget.hasVSX()) 15977 // Scalars in Altivec registers only make sense with VSX. 15978 return std::make_pair(0U, &PPC::VFRCRegClass); 15979 break; 15980 case 'y': // crrc 15981 return std::make_pair(0U, &PPC::CRRCRegClass); 15982 } 15983 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15984 // An individual CR bit. 15985 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15986 } else if ((Constraint == "wa" || Constraint == "wd" || 15987 Constraint == "wf" || Constraint == "wi") && 15988 Subtarget.hasVSX()) { 15989 // A VSX register for either a scalar (FP) or vector. There is no 15990 // support for single precision scalars on subtargets prior to Power8. 15991 if (VT.isVector()) 15992 return std::make_pair(0U, &PPC::VSRCRegClass); 15993 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15994 return std::make_pair(0U, &PPC::VSSRCRegClass); 15995 return std::make_pair(0U, &PPC::VSFRCRegClass); 15996 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15997 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15998 return std::make_pair(0U, &PPC::VSSRCRegClass); 15999 else 16000 return std::make_pair(0U, &PPC::VSFRCRegClass); 16001 } else if (Constraint == "lr") { 16002 if (VT == MVT::i64) 16003 return std::make_pair(0U, &PPC::LR8RCRegClass); 16004 else 16005 return std::make_pair(0U, &PPC::LRRCRegClass); 16006 } 16007 16008 // Handle special cases of physical registers that are not properly handled 16009 // by the base class. 16010 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16011 // If we name a VSX register, we can't defer to the base class because it 16012 // will not recognize the correct register (their names will be VSL{0-31} 16013 // and V{0-31} so they won't match). So we match them here. 16014 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16015 int VSNum = atoi(Constraint.data() + 3); 16016 assert(VSNum >= 0 && VSNum <= 63 && 16017 "Attempted to access a vsr out of range"); 16018 if (VSNum < 32) 16019 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16020 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16021 } 16022 16023 // For float registers, we can't defer to the base class as it will match 16024 // the SPILLTOVSRRC class. 16025 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16026 int RegNum = atoi(Constraint.data() + 2); 16027 if (RegNum > 31 || RegNum < 0) 16028 report_fatal_error("Invalid floating point register number"); 16029 if (VT == MVT::f32 || VT == MVT::i32) 16030 return Subtarget.hasSPE() 16031 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16032 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16033 if (VT == MVT::f64 || VT == MVT::i64) 16034 return Subtarget.hasSPE() 16035 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16036 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16037 } 16038 } 16039 16040 std::pair<unsigned, const TargetRegisterClass *> R = 16041 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16042 16043 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16044 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16045 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16046 // register. 16047 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16048 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16049 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16050 PPC::GPRCRegClass.contains(R.first)) 16051 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16052 PPC::sub_32, &PPC::G8RCRegClass), 16053 &PPC::G8RCRegClass); 16054 16055 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16056 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16057 R.first = PPC::CR0; 16058 R.second = &PPC::CRRCRegClass; 16059 } 16060 // FIXME: This warning should ideally be emitted in the front end. 16061 const auto &TM = getTargetMachine(); 16062 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16063 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16064 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16065 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16066 errs() << "warning: vector registers 20 to 32 are reserved in the " 16067 "default AIX AltiVec ABI and cannot be used\n"; 16068 } 16069 16070 return R; 16071 } 16072 16073 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16074 /// vector. If it is invalid, don't add anything to Ops. 16075 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16076 std::string &Constraint, 16077 std::vector<SDValue>&Ops, 16078 SelectionDAG &DAG) const { 16079 SDValue Result; 16080 16081 // Only support length 1 constraints. 16082 if (Constraint.length() > 1) return; 16083 16084 char Letter = Constraint[0]; 16085 switch (Letter) { 16086 default: break; 16087 case 'I': 16088 case 'J': 16089 case 'K': 16090 case 'L': 16091 case 'M': 16092 case 'N': 16093 case 'O': 16094 case 'P': { 16095 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16096 if (!CST) return; // Must be an immediate to match. 16097 SDLoc dl(Op); 16098 int64_t Value = CST->getSExtValue(); 16099 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16100 // numbers are printed as such. 16101 switch (Letter) { 16102 default: llvm_unreachable("Unknown constraint letter!"); 16103 case 'I': // "I" is a signed 16-bit constant. 16104 if (isInt<16>(Value)) 16105 Result = DAG.getTargetConstant(Value, dl, TCVT); 16106 break; 16107 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16108 if (isShiftedUInt<16, 16>(Value)) 16109 Result = DAG.getTargetConstant(Value, dl, TCVT); 16110 break; 16111 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16112 if (isShiftedInt<16, 16>(Value)) 16113 Result = DAG.getTargetConstant(Value, dl, TCVT); 16114 break; 16115 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16116 if (isUInt<16>(Value)) 16117 Result = DAG.getTargetConstant(Value, dl, TCVT); 16118 break; 16119 case 'M': // "M" is a constant that is greater than 31. 16120 if (Value > 31) 16121 Result = DAG.getTargetConstant(Value, dl, TCVT); 16122 break; 16123 case 'N': // "N" is a positive constant that is an exact power of two. 16124 if (Value > 0 && isPowerOf2_64(Value)) 16125 Result = DAG.getTargetConstant(Value, dl, TCVT); 16126 break; 16127 case 'O': // "O" is the constant zero. 16128 if (Value == 0) 16129 Result = DAG.getTargetConstant(Value, dl, TCVT); 16130 break; 16131 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16132 if (isInt<16>(-Value)) 16133 Result = DAG.getTargetConstant(Value, dl, TCVT); 16134 break; 16135 } 16136 break; 16137 } 16138 } 16139 16140 if (Result.getNode()) { 16141 Ops.push_back(Result); 16142 return; 16143 } 16144 16145 // Handle standard constraint letters. 16146 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16147 } 16148 16149 // isLegalAddressingMode - Return true if the addressing mode represented 16150 // by AM is legal for this target, for a load/store of the specified type. 16151 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16152 const AddrMode &AM, Type *Ty, 16153 unsigned AS, 16154 Instruction *I) const { 16155 // Vector type r+i form is supported since power9 as DQ form. We don't check 16156 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16157 // imm form is preferred and the offset can be adjusted to use imm form later 16158 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16159 // max offset to check legal addressing mode, we should be a little aggressive 16160 // to contain other offsets for that LSRUse. 16161 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16162 return false; 16163 16164 // PPC allows a sign-extended 16-bit immediate field. 16165 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16166 return false; 16167 16168 // No global is ever allowed as a base. 16169 if (AM.BaseGV) 16170 return false; 16171 16172 // PPC only support r+r, 16173 switch (AM.Scale) { 16174 case 0: // "r+i" or just "i", depending on HasBaseReg. 16175 break; 16176 case 1: 16177 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16178 return false; 16179 // Otherwise we have r+r or r+i. 16180 break; 16181 case 2: 16182 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16183 return false; 16184 // Allow 2*r as r+r. 16185 break; 16186 default: 16187 // No other scales are supported. 16188 return false; 16189 } 16190 16191 return true; 16192 } 16193 16194 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16195 SelectionDAG &DAG) const { 16196 MachineFunction &MF = DAG.getMachineFunction(); 16197 MachineFrameInfo &MFI = MF.getFrameInfo(); 16198 MFI.setReturnAddressIsTaken(true); 16199 16200 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16201 return SDValue(); 16202 16203 SDLoc dl(Op); 16204 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16205 16206 // Make sure the function does not optimize away the store of the RA to 16207 // the stack. 16208 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16209 FuncInfo->setLRStoreRequired(); 16210 bool isPPC64 = Subtarget.isPPC64(); 16211 auto PtrVT = getPointerTy(MF.getDataLayout()); 16212 16213 if (Depth > 0) { 16214 // The link register (return address) is saved in the caller's frame 16215 // not the callee's stack frame. So we must get the caller's frame 16216 // address and load the return address at the LR offset from there. 16217 SDValue FrameAddr = 16218 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16219 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16220 SDValue Offset = 16221 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16222 isPPC64 ? MVT::i64 : MVT::i32); 16223 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16224 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16225 MachinePointerInfo()); 16226 } 16227 16228 // Just load the return address off the stack. 16229 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16230 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16231 MachinePointerInfo()); 16232 } 16233 16234 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16235 SelectionDAG &DAG) const { 16236 SDLoc dl(Op); 16237 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16238 16239 MachineFunction &MF = DAG.getMachineFunction(); 16240 MachineFrameInfo &MFI = MF.getFrameInfo(); 16241 MFI.setFrameAddressIsTaken(true); 16242 16243 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16244 bool isPPC64 = PtrVT == MVT::i64; 16245 16246 // Naked functions never have a frame pointer, and so we use r1. For all 16247 // other functions, this decision must be delayed until during PEI. 16248 unsigned FrameReg; 16249 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16250 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16251 else 16252 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16253 16254 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16255 PtrVT); 16256 while (Depth--) 16257 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16258 FrameAddr, MachinePointerInfo()); 16259 return FrameAddr; 16260 } 16261 16262 // FIXME? Maybe this could be a TableGen attribute on some registers and 16263 // this table could be generated automatically from RegInfo. 16264 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16265 const MachineFunction &MF) const { 16266 bool isPPC64 = Subtarget.isPPC64(); 16267 16268 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16269 if (!is64Bit && VT != LLT::scalar(32)) 16270 report_fatal_error("Invalid register global variable type"); 16271 16272 Register Reg = StringSwitch<Register>(RegName) 16273 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16274 .Case("r2", isPPC64 ? Register() : PPC::R2) 16275 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16276 .Default(Register()); 16277 16278 if (Reg) 16279 return Reg; 16280 report_fatal_error("Invalid register name global variable"); 16281 } 16282 16283 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16284 // 32-bit SVR4 ABI access everything as got-indirect. 16285 if (Subtarget.is32BitELFABI()) 16286 return true; 16287 16288 // AIX accesses everything indirectly through the TOC, which is similar to 16289 // the GOT. 16290 if (Subtarget.isAIXABI()) 16291 return true; 16292 16293 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16294 // If it is small or large code model, module locals are accessed 16295 // indirectly by loading their address from .toc/.got. 16296 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16297 return true; 16298 16299 // JumpTable and BlockAddress are accessed as got-indirect. 16300 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16301 return true; 16302 16303 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16304 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16305 16306 return false; 16307 } 16308 16309 bool 16310 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16311 // The PowerPC target isn't yet aware of offsets. 16312 return false; 16313 } 16314 16315 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16316 const CallInst &I, 16317 MachineFunction &MF, 16318 unsigned Intrinsic) const { 16319 switch (Intrinsic) { 16320 case Intrinsic::ppc_atomicrmw_xchg_i128: 16321 case Intrinsic::ppc_atomicrmw_add_i128: 16322 case Intrinsic::ppc_atomicrmw_sub_i128: 16323 case Intrinsic::ppc_atomicrmw_nand_i128: 16324 case Intrinsic::ppc_atomicrmw_and_i128: 16325 case Intrinsic::ppc_atomicrmw_or_i128: 16326 case Intrinsic::ppc_atomicrmw_xor_i128: 16327 case Intrinsic::ppc_cmpxchg_i128: 16328 Info.opc = ISD::INTRINSIC_W_CHAIN; 16329 Info.memVT = MVT::i128; 16330 Info.ptrVal = I.getArgOperand(0); 16331 Info.offset = 0; 16332 Info.align = Align(16); 16333 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16334 MachineMemOperand::MOVolatile; 16335 return true; 16336 case Intrinsic::ppc_atomic_load_i128: 16337 Info.opc = ISD::INTRINSIC_W_CHAIN; 16338 Info.memVT = MVT::i128; 16339 Info.ptrVal = I.getArgOperand(0); 16340 Info.offset = 0; 16341 Info.align = Align(16); 16342 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16343 return true; 16344 case Intrinsic::ppc_atomic_store_i128: 16345 Info.opc = ISD::INTRINSIC_VOID; 16346 Info.memVT = MVT::i128; 16347 Info.ptrVal = I.getArgOperand(2); 16348 Info.offset = 0; 16349 Info.align = Align(16); 16350 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16351 return true; 16352 case Intrinsic::ppc_altivec_lvx: 16353 case Intrinsic::ppc_altivec_lvxl: 16354 case Intrinsic::ppc_altivec_lvebx: 16355 case Intrinsic::ppc_altivec_lvehx: 16356 case Intrinsic::ppc_altivec_lvewx: 16357 case Intrinsic::ppc_vsx_lxvd2x: 16358 case Intrinsic::ppc_vsx_lxvw4x: 16359 case Intrinsic::ppc_vsx_lxvd2x_be: 16360 case Intrinsic::ppc_vsx_lxvw4x_be: 16361 case Intrinsic::ppc_vsx_lxvl: 16362 case Intrinsic::ppc_vsx_lxvll: { 16363 EVT VT; 16364 switch (Intrinsic) { 16365 case Intrinsic::ppc_altivec_lvebx: 16366 VT = MVT::i8; 16367 break; 16368 case Intrinsic::ppc_altivec_lvehx: 16369 VT = MVT::i16; 16370 break; 16371 case Intrinsic::ppc_altivec_lvewx: 16372 VT = MVT::i32; 16373 break; 16374 case Intrinsic::ppc_vsx_lxvd2x: 16375 case Intrinsic::ppc_vsx_lxvd2x_be: 16376 VT = MVT::v2f64; 16377 break; 16378 default: 16379 VT = MVT::v4i32; 16380 break; 16381 } 16382 16383 Info.opc = ISD::INTRINSIC_W_CHAIN; 16384 Info.memVT = VT; 16385 Info.ptrVal = I.getArgOperand(0); 16386 Info.offset = -VT.getStoreSize()+1; 16387 Info.size = 2*VT.getStoreSize()-1; 16388 Info.align = Align(1); 16389 Info.flags = MachineMemOperand::MOLoad; 16390 return true; 16391 } 16392 case Intrinsic::ppc_altivec_stvx: 16393 case Intrinsic::ppc_altivec_stvxl: 16394 case Intrinsic::ppc_altivec_stvebx: 16395 case Intrinsic::ppc_altivec_stvehx: 16396 case Intrinsic::ppc_altivec_stvewx: 16397 case Intrinsic::ppc_vsx_stxvd2x: 16398 case Intrinsic::ppc_vsx_stxvw4x: 16399 case Intrinsic::ppc_vsx_stxvd2x_be: 16400 case Intrinsic::ppc_vsx_stxvw4x_be: 16401 case Intrinsic::ppc_vsx_stxvl: 16402 case Intrinsic::ppc_vsx_stxvll: { 16403 EVT VT; 16404 switch (Intrinsic) { 16405 case Intrinsic::ppc_altivec_stvebx: 16406 VT = MVT::i8; 16407 break; 16408 case Intrinsic::ppc_altivec_stvehx: 16409 VT = MVT::i16; 16410 break; 16411 case Intrinsic::ppc_altivec_stvewx: 16412 VT = MVT::i32; 16413 break; 16414 case Intrinsic::ppc_vsx_stxvd2x: 16415 case Intrinsic::ppc_vsx_stxvd2x_be: 16416 VT = MVT::v2f64; 16417 break; 16418 default: 16419 VT = MVT::v4i32; 16420 break; 16421 } 16422 16423 Info.opc = ISD::INTRINSIC_VOID; 16424 Info.memVT = VT; 16425 Info.ptrVal = I.getArgOperand(1); 16426 Info.offset = -VT.getStoreSize()+1; 16427 Info.size = 2*VT.getStoreSize()-1; 16428 Info.align = Align(1); 16429 Info.flags = MachineMemOperand::MOStore; 16430 return true; 16431 } 16432 default: 16433 break; 16434 } 16435 16436 return false; 16437 } 16438 16439 /// It returns EVT::Other if the type should be determined using generic 16440 /// target-independent logic. 16441 EVT PPCTargetLowering::getOptimalMemOpType( 16442 const MemOp &Op, const AttributeList &FuncAttributes) const { 16443 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16444 // We should use Altivec/VSX loads and stores when available. For unaligned 16445 // addresses, unaligned VSX loads are only fast starting with the P8. 16446 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16447 (Op.isAligned(Align(16)) || 16448 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16449 return MVT::v4i32; 16450 } 16451 16452 if (Subtarget.isPPC64()) { 16453 return MVT::i64; 16454 } 16455 16456 return MVT::i32; 16457 } 16458 16459 /// Returns true if it is beneficial to convert a load of a constant 16460 /// to just the constant itself. 16461 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16462 Type *Ty) const { 16463 assert(Ty->isIntegerTy()); 16464 16465 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16466 return !(BitSize == 0 || BitSize > 64); 16467 } 16468 16469 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16470 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16471 return false; 16472 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16473 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16474 return NumBits1 == 64 && NumBits2 == 32; 16475 } 16476 16477 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16478 if (!VT1.isInteger() || !VT2.isInteger()) 16479 return false; 16480 unsigned NumBits1 = VT1.getSizeInBits(); 16481 unsigned NumBits2 = VT2.getSizeInBits(); 16482 return NumBits1 == 64 && NumBits2 == 32; 16483 } 16484 16485 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16486 // Generally speaking, zexts are not free, but they are free when they can be 16487 // folded with other operations. 16488 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16489 EVT MemVT = LD->getMemoryVT(); 16490 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16491 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16492 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16493 LD->getExtensionType() == ISD::ZEXTLOAD)) 16494 return true; 16495 } 16496 16497 // FIXME: Add other cases... 16498 // - 32-bit shifts with a zext to i64 16499 // - zext after ctlz, bswap, etc. 16500 // - zext after and by a constant mask 16501 16502 return TargetLowering::isZExtFree(Val, VT2); 16503 } 16504 16505 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16506 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16507 "invalid fpext types"); 16508 // Extending to float128 is not free. 16509 if (DestVT == MVT::f128) 16510 return false; 16511 return true; 16512 } 16513 16514 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16515 return isInt<16>(Imm) || isUInt<16>(Imm); 16516 } 16517 16518 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16519 return isInt<16>(Imm) || isUInt<16>(Imm); 16520 } 16521 16522 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16523 MachineMemOperand::Flags, 16524 bool *Fast) const { 16525 if (DisablePPCUnaligned) 16526 return false; 16527 16528 // PowerPC supports unaligned memory access for simple non-vector types. 16529 // Although accessing unaligned addresses is not as efficient as accessing 16530 // aligned addresses, it is generally more efficient than manual expansion, 16531 // and generally only traps for software emulation when crossing page 16532 // boundaries. 16533 16534 if (!VT.isSimple()) 16535 return false; 16536 16537 if (VT.isFloatingPoint() && !VT.isVector() && 16538 !Subtarget.allowsUnalignedFPAccess()) 16539 return false; 16540 16541 if (VT.getSimpleVT().isVector()) { 16542 if (Subtarget.hasVSX()) { 16543 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16544 VT != MVT::v4f32 && VT != MVT::v4i32) 16545 return false; 16546 } else { 16547 return false; 16548 } 16549 } 16550 16551 if (VT == MVT::ppcf128) 16552 return false; 16553 16554 if (Fast) 16555 *Fast = true; 16556 16557 return true; 16558 } 16559 16560 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16561 SDValue C) const { 16562 // Check integral scalar types. 16563 if (!VT.isScalarInteger()) 16564 return false; 16565 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16566 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16567 return false; 16568 // This transformation will generate >= 2 operations. But the following 16569 // cases will generate <= 2 instructions during ISEL. So exclude them. 16570 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16571 // HW instruction, ie. MULLI 16572 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16573 // instruction is needed than case 1, ie. MULLI and RLDICR 16574 int64_t Imm = ConstNode->getSExtValue(); 16575 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16576 Imm >>= Shift; 16577 if (isInt<16>(Imm)) 16578 return false; 16579 uint64_t UImm = static_cast<uint64_t>(Imm); 16580 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16581 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16582 return true; 16583 } 16584 return false; 16585 } 16586 16587 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16588 EVT VT) const { 16589 return isFMAFasterThanFMulAndFAdd( 16590 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16591 } 16592 16593 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16594 Type *Ty) const { 16595 switch (Ty->getScalarType()->getTypeID()) { 16596 case Type::FloatTyID: 16597 case Type::DoubleTyID: 16598 return true; 16599 case Type::FP128TyID: 16600 return Subtarget.hasP9Vector(); 16601 default: 16602 return false; 16603 } 16604 } 16605 16606 // FIXME: add more patterns which are not profitable to hoist. 16607 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16608 if (!I->hasOneUse()) 16609 return true; 16610 16611 Instruction *User = I->user_back(); 16612 assert(User && "A single use instruction with no uses."); 16613 16614 switch (I->getOpcode()) { 16615 case Instruction::FMul: { 16616 // Don't break FMA, PowerPC prefers FMA. 16617 if (User->getOpcode() != Instruction::FSub && 16618 User->getOpcode() != Instruction::FAdd) 16619 return true; 16620 16621 const TargetOptions &Options = getTargetMachine().Options; 16622 const Function *F = I->getFunction(); 16623 const DataLayout &DL = F->getParent()->getDataLayout(); 16624 Type *Ty = User->getOperand(0)->getType(); 16625 16626 return !( 16627 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16628 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16629 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16630 } 16631 case Instruction::Load: { 16632 // Don't break "store (load float*)" pattern, this pattern will be combined 16633 // to "store (load int32)" in later InstCombine pass. See function 16634 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16635 // cycles than loading a 32 bit integer. 16636 LoadInst *LI = cast<LoadInst>(I); 16637 // For the loads that combineLoadToOperationType does nothing, like 16638 // ordered load, it should be profitable to hoist them. 16639 // For swifterror load, it can only be used for pointer to pointer type, so 16640 // later type check should get rid of this case. 16641 if (!LI->isUnordered()) 16642 return true; 16643 16644 if (User->getOpcode() != Instruction::Store) 16645 return true; 16646 16647 if (I->getType()->getTypeID() != Type::FloatTyID) 16648 return true; 16649 16650 return false; 16651 } 16652 default: 16653 return true; 16654 } 16655 return true; 16656 } 16657 16658 const MCPhysReg * 16659 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16660 // LR is a callee-save register, but we must treat it as clobbered by any call 16661 // site. Hence we include LR in the scratch registers, which are in turn added 16662 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16663 // to CTR, which is used by any indirect call. 16664 static const MCPhysReg ScratchRegs[] = { 16665 PPC::X12, PPC::LR8, PPC::CTR8, 0 16666 }; 16667 16668 return ScratchRegs; 16669 } 16670 16671 Register PPCTargetLowering::getExceptionPointerRegister( 16672 const Constant *PersonalityFn) const { 16673 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16674 } 16675 16676 Register PPCTargetLowering::getExceptionSelectorRegister( 16677 const Constant *PersonalityFn) const { 16678 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16679 } 16680 16681 bool 16682 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16683 EVT VT , unsigned DefinedValues) const { 16684 if (VT == MVT::v2i64) 16685 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16686 16687 if (Subtarget.hasVSX()) 16688 return true; 16689 16690 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16691 } 16692 16693 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16694 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16695 return TargetLowering::getSchedulingPreference(N); 16696 16697 return Sched::ILP; 16698 } 16699 16700 // Create a fast isel object. 16701 FastISel * 16702 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16703 const TargetLibraryInfo *LibInfo) const { 16704 return PPC::createFastISel(FuncInfo, LibInfo); 16705 } 16706 16707 // 'Inverted' means the FMA opcode after negating one multiplicand. 16708 // For example, (fma -a b c) = (fnmsub a b c) 16709 static unsigned invertFMAOpcode(unsigned Opc) { 16710 switch (Opc) { 16711 default: 16712 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16713 case ISD::FMA: 16714 return PPCISD::FNMSUB; 16715 case PPCISD::FNMSUB: 16716 return ISD::FMA; 16717 } 16718 } 16719 16720 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16721 bool LegalOps, bool OptForSize, 16722 NegatibleCost &Cost, 16723 unsigned Depth) const { 16724 if (Depth > SelectionDAG::MaxRecursionDepth) 16725 return SDValue(); 16726 16727 unsigned Opc = Op.getOpcode(); 16728 EVT VT = Op.getValueType(); 16729 SDNodeFlags Flags = Op.getNode()->getFlags(); 16730 16731 switch (Opc) { 16732 case PPCISD::FNMSUB: 16733 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16734 break; 16735 16736 const TargetOptions &Options = getTargetMachine().Options; 16737 SDValue N0 = Op.getOperand(0); 16738 SDValue N1 = Op.getOperand(1); 16739 SDValue N2 = Op.getOperand(2); 16740 SDLoc Loc(Op); 16741 16742 NegatibleCost N2Cost = NegatibleCost::Expensive; 16743 SDValue NegN2 = 16744 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16745 16746 if (!NegN2) 16747 return SDValue(); 16748 16749 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16750 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16751 // These transformations may change sign of zeroes. For example, 16752 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16753 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16754 // Try and choose the cheaper one to negate. 16755 NegatibleCost N0Cost = NegatibleCost::Expensive; 16756 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16757 N0Cost, Depth + 1); 16758 16759 NegatibleCost N1Cost = NegatibleCost::Expensive; 16760 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16761 N1Cost, Depth + 1); 16762 16763 if (NegN0 && N0Cost <= N1Cost) { 16764 Cost = std::min(N0Cost, N2Cost); 16765 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16766 } else if (NegN1) { 16767 Cost = std::min(N1Cost, N2Cost); 16768 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16769 } 16770 } 16771 16772 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16773 if (isOperationLegal(ISD::FMA, VT)) { 16774 Cost = N2Cost; 16775 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16776 } 16777 16778 break; 16779 } 16780 16781 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16782 Cost, Depth); 16783 } 16784 16785 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16786 bool PPCTargetLowering::useLoadStackGuardNode() const { 16787 if (!Subtarget.isTargetLinux()) 16788 return TargetLowering::useLoadStackGuardNode(); 16789 return true; 16790 } 16791 16792 // Override to disable global variable loading on Linux and insert AIX canary 16793 // word declaration. 16794 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16795 if (Subtarget.isAIXABI()) { 16796 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16797 Type::getInt8PtrTy(M.getContext())); 16798 return; 16799 } 16800 if (!Subtarget.isTargetLinux()) 16801 return TargetLowering::insertSSPDeclarations(M); 16802 } 16803 16804 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16805 if (Subtarget.isAIXABI()) 16806 return M.getGlobalVariable(AIXSSPCanaryWordName); 16807 return TargetLowering::getSDagStackGuard(M); 16808 } 16809 16810 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16811 bool ForCodeSize) const { 16812 if (!VT.isSimple() || !Subtarget.hasVSX()) 16813 return false; 16814 16815 switch(VT.getSimpleVT().SimpleTy) { 16816 default: 16817 // For FP types that are currently not supported by PPC backend, return 16818 // false. Examples: f16, f80. 16819 return false; 16820 case MVT::f32: 16821 case MVT::f64: 16822 if (Subtarget.hasPrefixInstrs()) { 16823 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16824 return true; 16825 } 16826 LLVM_FALLTHROUGH; 16827 case MVT::ppcf128: 16828 return Imm.isPosZero(); 16829 } 16830 } 16831 16832 // For vector shift operation op, fold 16833 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16834 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16835 SelectionDAG &DAG) { 16836 SDValue N0 = N->getOperand(0); 16837 SDValue N1 = N->getOperand(1); 16838 EVT VT = N0.getValueType(); 16839 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16840 unsigned Opcode = N->getOpcode(); 16841 unsigned TargetOpcode; 16842 16843 switch (Opcode) { 16844 default: 16845 llvm_unreachable("Unexpected shift operation"); 16846 case ISD::SHL: 16847 TargetOpcode = PPCISD::SHL; 16848 break; 16849 case ISD::SRL: 16850 TargetOpcode = PPCISD::SRL; 16851 break; 16852 case ISD::SRA: 16853 TargetOpcode = PPCISD::SRA; 16854 break; 16855 } 16856 16857 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16858 N1->getOpcode() == ISD::AND) 16859 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16860 if (Mask->getZExtValue() == OpSizeInBits - 1) 16861 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16862 16863 return SDValue(); 16864 } 16865 16866 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16867 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16868 return Value; 16869 16870 SDValue N0 = N->getOperand(0); 16871 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16872 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16873 N0.getOpcode() != ISD::SIGN_EXTEND || 16874 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16875 N->getValueType(0) != MVT::i64) 16876 return SDValue(); 16877 16878 // We can't save an operation here if the value is already extended, and 16879 // the existing shift is easier to combine. 16880 SDValue ExtsSrc = N0.getOperand(0); 16881 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16882 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16883 return SDValue(); 16884 16885 SDLoc DL(N0); 16886 SDValue ShiftBy = SDValue(CN1, 0); 16887 // We want the shift amount to be i32 on the extswli, but the shift could 16888 // have an i64. 16889 if (ShiftBy.getValueType() == MVT::i64) 16890 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16891 16892 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16893 ShiftBy); 16894 } 16895 16896 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16897 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16898 return Value; 16899 16900 return SDValue(); 16901 } 16902 16903 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16904 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16905 return Value; 16906 16907 return SDValue(); 16908 } 16909 16910 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16911 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16912 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16913 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16914 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16915 const PPCSubtarget &Subtarget) { 16916 if (!Subtarget.isPPC64()) 16917 return SDValue(); 16918 16919 SDValue LHS = N->getOperand(0); 16920 SDValue RHS = N->getOperand(1); 16921 16922 auto isZextOfCompareWithConstant = [](SDValue Op) { 16923 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16924 Op.getValueType() != MVT::i64) 16925 return false; 16926 16927 SDValue Cmp = Op.getOperand(0); 16928 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16929 Cmp.getOperand(0).getValueType() != MVT::i64) 16930 return false; 16931 16932 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16933 int64_t NegConstant = 0 - Constant->getSExtValue(); 16934 // Due to the limitations of the addi instruction, 16935 // -C is required to be [-32768, 32767]. 16936 return isInt<16>(NegConstant); 16937 } 16938 16939 return false; 16940 }; 16941 16942 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16943 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16944 16945 // If there is a pattern, canonicalize a zext operand to the RHS. 16946 if (LHSHasPattern && !RHSHasPattern) 16947 std::swap(LHS, RHS); 16948 else if (!LHSHasPattern && !RHSHasPattern) 16949 return SDValue(); 16950 16951 SDLoc DL(N); 16952 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16953 SDValue Cmp = RHS.getOperand(0); 16954 SDValue Z = Cmp.getOperand(0); 16955 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16956 int64_t NegConstant = 0 - Constant->getSExtValue(); 16957 16958 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16959 default: break; 16960 case ISD::SETNE: { 16961 // when C == 0 16962 // --> addze X, (addic Z, -1).carry 16963 // / 16964 // add X, (zext(setne Z, C))-- 16965 // \ when -32768 <= -C <= 32767 && C != 0 16966 // --> addze X, (addic (addi Z, -C), -1).carry 16967 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16968 DAG.getConstant(NegConstant, DL, MVT::i64)); 16969 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16970 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16971 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16972 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16973 SDValue(Addc.getNode(), 1)); 16974 } 16975 case ISD::SETEQ: { 16976 // when C == 0 16977 // --> addze X, (subfic Z, 0).carry 16978 // / 16979 // add X, (zext(sete Z, C))-- 16980 // \ when -32768 <= -C <= 32767 && C != 0 16981 // --> addze X, (subfic (addi Z, -C), 0).carry 16982 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16983 DAG.getConstant(NegConstant, DL, MVT::i64)); 16984 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16985 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16986 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16987 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16988 SDValue(Subc.getNode(), 1)); 16989 } 16990 } 16991 16992 return SDValue(); 16993 } 16994 16995 // Transform 16996 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16997 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16998 // In this case both C1 and C2 must be known constants. 16999 // C1+C2 must fit into a 34 bit signed integer. 17000 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17001 const PPCSubtarget &Subtarget) { 17002 if (!Subtarget.isUsingPCRelativeCalls()) 17003 return SDValue(); 17004 17005 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17006 // If we find that node try to cast the Global Address and the Constant. 17007 SDValue LHS = N->getOperand(0); 17008 SDValue RHS = N->getOperand(1); 17009 17010 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17011 std::swap(LHS, RHS); 17012 17013 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17014 return SDValue(); 17015 17016 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17017 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17018 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17019 17020 // Check that both casts succeeded. 17021 if (!GSDN || !ConstNode) 17022 return SDValue(); 17023 17024 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17025 SDLoc DL(GSDN); 17026 17027 // The signed int offset needs to fit in 34 bits. 17028 if (!isInt<34>(NewOffset)) 17029 return SDValue(); 17030 17031 // The new global address is a copy of the old global address except 17032 // that it has the updated Offset. 17033 SDValue GA = 17034 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17035 NewOffset, GSDN->getTargetFlags()); 17036 SDValue MatPCRel = 17037 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17038 return MatPCRel; 17039 } 17040 17041 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17042 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17043 return Value; 17044 17045 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17046 return Value; 17047 17048 return SDValue(); 17049 } 17050 17051 // Detect TRUNCATE operations on bitcasts of float128 values. 17052 // What we are looking for here is the situtation where we extract a subset 17053 // of bits from a 128 bit float. 17054 // This can be of two forms: 17055 // 1) BITCAST of f128 feeding TRUNCATE 17056 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17057 // The reason this is required is because we do not have a legal i128 type 17058 // and so we want to prevent having to store the f128 and then reload part 17059 // of it. 17060 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17061 DAGCombinerInfo &DCI) const { 17062 // If we are using CRBits then try that first. 17063 if (Subtarget.useCRBits()) { 17064 // Check if CRBits did anything and return that if it did. 17065 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17066 return CRTruncValue; 17067 } 17068 17069 SDLoc dl(N); 17070 SDValue Op0 = N->getOperand(0); 17071 17072 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17073 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17074 EVT VT = N->getValueType(0); 17075 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17076 return SDValue(); 17077 SDValue Sub = Op0.getOperand(0); 17078 if (Sub.getOpcode() == ISD::SUB) { 17079 SDValue SubOp0 = Sub.getOperand(0); 17080 SDValue SubOp1 = Sub.getOperand(1); 17081 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17082 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17083 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17084 SubOp1.getOperand(0), 17085 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17086 } 17087 } 17088 } 17089 17090 // Looking for a truncate of i128 to i64. 17091 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17092 return SDValue(); 17093 17094 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17095 17096 // SRL feeding TRUNCATE. 17097 if (Op0.getOpcode() == ISD::SRL) { 17098 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17099 // The right shift has to be by 64 bits. 17100 if (!ConstNode || ConstNode->getZExtValue() != 64) 17101 return SDValue(); 17102 17103 // Switch the element number to extract. 17104 EltToExtract = EltToExtract ? 0 : 1; 17105 // Update Op0 past the SRL. 17106 Op0 = Op0.getOperand(0); 17107 } 17108 17109 // BITCAST feeding a TRUNCATE possibly via SRL. 17110 if (Op0.getOpcode() == ISD::BITCAST && 17111 Op0.getValueType() == MVT::i128 && 17112 Op0.getOperand(0).getValueType() == MVT::f128) { 17113 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17114 return DCI.DAG.getNode( 17115 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17116 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17117 } 17118 return SDValue(); 17119 } 17120 17121 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17122 SelectionDAG &DAG = DCI.DAG; 17123 17124 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17125 if (!ConstOpOrElement) 17126 return SDValue(); 17127 17128 // An imul is usually smaller than the alternative sequence for legal type. 17129 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17130 isOperationLegal(ISD::MUL, N->getValueType(0))) 17131 return SDValue(); 17132 17133 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17134 switch (this->Subtarget.getCPUDirective()) { 17135 default: 17136 // TODO: enhance the condition for subtarget before pwr8 17137 return false; 17138 case PPC::DIR_PWR8: 17139 // type mul add shl 17140 // scalar 4 1 1 17141 // vector 7 2 2 17142 return true; 17143 case PPC::DIR_PWR9: 17144 case PPC::DIR_PWR10: 17145 case PPC::DIR_PWR_FUTURE: 17146 // type mul add shl 17147 // scalar 5 2 2 17148 // vector 7 2 2 17149 17150 // The cycle RATIO of related operations are showed as a table above. 17151 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17152 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17153 // are 4, it is always profitable; but for 3 instrs patterns 17154 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17155 // So we should only do it for vector type. 17156 return IsAddOne && IsNeg ? VT.isVector() : true; 17157 } 17158 }; 17159 17160 EVT VT = N->getValueType(0); 17161 SDLoc DL(N); 17162 17163 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17164 bool IsNeg = MulAmt.isNegative(); 17165 APInt MulAmtAbs = MulAmt.abs(); 17166 17167 if ((MulAmtAbs - 1).isPowerOf2()) { 17168 // (mul x, 2^N + 1) => (add (shl x, N), x) 17169 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17170 17171 if (!IsProfitable(IsNeg, true, VT)) 17172 return SDValue(); 17173 17174 SDValue Op0 = N->getOperand(0); 17175 SDValue Op1 = 17176 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17177 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17178 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17179 17180 if (!IsNeg) 17181 return Res; 17182 17183 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17184 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17185 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17186 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17187 17188 if (!IsProfitable(IsNeg, false, VT)) 17189 return SDValue(); 17190 17191 SDValue Op0 = N->getOperand(0); 17192 SDValue Op1 = 17193 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17194 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17195 17196 if (!IsNeg) 17197 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17198 else 17199 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17200 17201 } else { 17202 return SDValue(); 17203 } 17204 } 17205 17206 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17207 // in combiner since we need to check SD flags and other subtarget features. 17208 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17209 DAGCombinerInfo &DCI) const { 17210 SDValue N0 = N->getOperand(0); 17211 SDValue N1 = N->getOperand(1); 17212 SDValue N2 = N->getOperand(2); 17213 SDNodeFlags Flags = N->getFlags(); 17214 EVT VT = N->getValueType(0); 17215 SelectionDAG &DAG = DCI.DAG; 17216 const TargetOptions &Options = getTargetMachine().Options; 17217 unsigned Opc = N->getOpcode(); 17218 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17219 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17220 SDLoc Loc(N); 17221 17222 if (!isOperationLegal(ISD::FMA, VT)) 17223 return SDValue(); 17224 17225 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17226 // since (fnmsub a b c)=-0 while c-ab=+0. 17227 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17228 return SDValue(); 17229 17230 // (fma (fneg a) b c) => (fnmsub a b c) 17231 // (fnmsub (fneg a) b c) => (fma a b c) 17232 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17233 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17234 17235 // (fma a (fneg b) c) => (fnmsub a b c) 17236 // (fnmsub a (fneg b) c) => (fma a b c) 17237 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17238 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17239 17240 return SDValue(); 17241 } 17242 17243 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17244 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17245 if (!Subtarget.is64BitELFABI()) 17246 return false; 17247 17248 // If not a tail call then no need to proceed. 17249 if (!CI->isTailCall()) 17250 return false; 17251 17252 // If sibling calls have been disabled and tail-calls aren't guaranteed 17253 // there is no reason to duplicate. 17254 auto &TM = getTargetMachine(); 17255 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17256 return false; 17257 17258 // Can't tail call a function called indirectly, or if it has variadic args. 17259 const Function *Callee = CI->getCalledFunction(); 17260 if (!Callee || Callee->isVarArg()) 17261 return false; 17262 17263 // Make sure the callee and caller calling conventions are eligible for tco. 17264 const Function *Caller = CI->getParent()->getParent(); 17265 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17266 CI->getCallingConv())) 17267 return false; 17268 17269 // If the function is local then we have a good chance at tail-calling it 17270 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17271 } 17272 17273 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17274 if (!Subtarget.hasVSX()) 17275 return false; 17276 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17277 return true; 17278 return VT == MVT::f32 || VT == MVT::f64 || 17279 VT == MVT::v4f32 || VT == MVT::v2f64; 17280 } 17281 17282 bool PPCTargetLowering:: 17283 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17284 const Value *Mask = AndI.getOperand(1); 17285 // If the mask is suitable for andi. or andis. we should sink the and. 17286 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17287 // Can't handle constants wider than 64-bits. 17288 if (CI->getBitWidth() > 64) 17289 return false; 17290 int64_t ConstVal = CI->getZExtValue(); 17291 return isUInt<16>(ConstVal) || 17292 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17293 } 17294 17295 // For non-constant masks, we can always use the record-form and. 17296 return true; 17297 } 17298 17299 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17300 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17301 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17302 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17303 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17304 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17305 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17306 assert(Subtarget.hasP9Altivec() && 17307 "Only combine this when P9 altivec supported!"); 17308 EVT VT = N->getValueType(0); 17309 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17310 return SDValue(); 17311 17312 SelectionDAG &DAG = DCI.DAG; 17313 SDLoc dl(N); 17314 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17315 // Even for signed integers, if it's known to be positive (as signed 17316 // integer) due to zero-extended inputs. 17317 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17318 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17319 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17320 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17321 (SubOpcd1 == ISD::ZERO_EXTEND || 17322 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17323 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17324 N->getOperand(0)->getOperand(0), 17325 N->getOperand(0)->getOperand(1), 17326 DAG.getTargetConstant(0, dl, MVT::i32)); 17327 } 17328 17329 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17330 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17331 N->getOperand(0).hasOneUse()) { 17332 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17333 N->getOperand(0)->getOperand(0), 17334 N->getOperand(0)->getOperand(1), 17335 DAG.getTargetConstant(1, dl, MVT::i32)); 17336 } 17337 } 17338 17339 return SDValue(); 17340 } 17341 17342 // For type v4i32/v8ii16/v16i8, transform 17343 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17344 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17345 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17346 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17347 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17348 DAGCombinerInfo &DCI) const { 17349 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17350 assert(Subtarget.hasP9Altivec() && 17351 "Only combine this when P9 altivec supported!"); 17352 17353 SelectionDAG &DAG = DCI.DAG; 17354 SDLoc dl(N); 17355 SDValue Cond = N->getOperand(0); 17356 SDValue TrueOpnd = N->getOperand(1); 17357 SDValue FalseOpnd = N->getOperand(2); 17358 EVT VT = N->getOperand(1).getValueType(); 17359 17360 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17361 FalseOpnd.getOpcode() != ISD::SUB) 17362 return SDValue(); 17363 17364 // ABSD only available for type v4i32/v8i16/v16i8 17365 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17366 return SDValue(); 17367 17368 // At least to save one more dependent computation 17369 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17370 return SDValue(); 17371 17372 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17373 17374 // Can only handle unsigned comparison here 17375 switch (CC) { 17376 default: 17377 return SDValue(); 17378 case ISD::SETUGT: 17379 case ISD::SETUGE: 17380 break; 17381 case ISD::SETULT: 17382 case ISD::SETULE: 17383 std::swap(TrueOpnd, FalseOpnd); 17384 break; 17385 } 17386 17387 SDValue CmpOpnd1 = Cond.getOperand(0); 17388 SDValue CmpOpnd2 = Cond.getOperand(1); 17389 17390 // SETCC CmpOpnd1 CmpOpnd2 cond 17391 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17392 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17393 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17394 TrueOpnd.getOperand(1) == CmpOpnd2 && 17395 FalseOpnd.getOperand(0) == CmpOpnd2 && 17396 FalseOpnd.getOperand(1) == CmpOpnd1) { 17397 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17398 CmpOpnd1, CmpOpnd2, 17399 DAG.getTargetConstant(0, dl, MVT::i32)); 17400 } 17401 17402 return SDValue(); 17403 } 17404 17405 /// getAddrModeForFlags - Based on the set of address flags, select the most 17406 /// optimal instruction format to match by. 17407 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17408 // This is not a node we should be handling here. 17409 if (Flags == PPC::MOF_None) 17410 return PPC::AM_None; 17411 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17412 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17413 if ((Flags & FlagSet) == FlagSet) 17414 return PPC::AM_DForm; 17415 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17416 if ((Flags & FlagSet) == FlagSet) 17417 return PPC::AM_DSForm; 17418 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17419 if ((Flags & FlagSet) == FlagSet) 17420 return PPC::AM_DQForm; 17421 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17422 if ((Flags & FlagSet) == FlagSet) 17423 return PPC::AM_PrefixDForm; 17424 // If no other forms are selected, return an X-Form as it is the most 17425 // general addressing mode. 17426 return PPC::AM_XForm; 17427 } 17428 17429 /// Set alignment flags based on whether or not the Frame Index is aligned. 17430 /// Utilized when computing flags for address computation when selecting 17431 /// load and store instructions. 17432 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17433 SelectionDAG &DAG) { 17434 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17435 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17436 if (!FI) 17437 return; 17438 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17439 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17440 // If this is (add $FI, $S16Imm), the alignment flags are already set 17441 // based on the immediate. We just need to clear the alignment flags 17442 // if the FI alignment is weaker. 17443 if ((FrameIndexAlign % 4) != 0) 17444 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17445 if ((FrameIndexAlign % 16) != 0) 17446 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17447 // If the address is a plain FrameIndex, set alignment flags based on 17448 // FI alignment. 17449 if (!IsAdd) { 17450 if ((FrameIndexAlign % 4) == 0) 17451 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17452 if ((FrameIndexAlign % 16) == 0) 17453 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17454 } 17455 } 17456 17457 /// Given a node, compute flags that are used for address computation when 17458 /// selecting load and store instructions. The flags computed are stored in 17459 /// FlagSet. This function takes into account whether the node is a constant, 17460 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17461 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17462 SelectionDAG &DAG) { 17463 // Set the alignment flags for the node depending on if the node is 17464 // 4-byte or 16-byte aligned. 17465 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17466 if ((Imm & 0x3) == 0) 17467 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17468 if ((Imm & 0xf) == 0) 17469 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17470 }; 17471 17472 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17473 // All 32-bit constants can be computed as LIS + Disp. 17474 const APInt &ConstImm = CN->getAPIntValue(); 17475 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17476 FlagSet |= PPC::MOF_AddrIsSImm32; 17477 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17478 setAlignFlagsForFI(N, FlagSet, DAG); 17479 } 17480 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17481 FlagSet |= PPC::MOF_RPlusSImm34; 17482 else // Let constant materialization handle large constants. 17483 FlagSet |= PPC::MOF_NotAddNorCst; 17484 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17485 // This address can be represented as an addition of: 17486 // - Register + Imm16 (possibly a multiple of 4/16) 17487 // - Register + Imm34 17488 // - Register + PPCISD::Lo 17489 // - Register + Register 17490 // In any case, we won't have to match this as Base + Zero. 17491 SDValue RHS = N.getOperand(1); 17492 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17493 const APInt &ConstImm = CN->getAPIntValue(); 17494 if (ConstImm.isSignedIntN(16)) { 17495 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17496 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17497 setAlignFlagsForFI(N, FlagSet, DAG); 17498 } 17499 if (ConstImm.isSignedIntN(34)) 17500 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17501 else 17502 FlagSet |= PPC::MOF_RPlusR; // Register. 17503 } else if (RHS.getOpcode() == PPCISD::Lo && 17504 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17505 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17506 else 17507 FlagSet |= PPC::MOF_RPlusR; 17508 } else { // The address computation is not a constant or an addition. 17509 setAlignFlagsForFI(N, FlagSet, DAG); 17510 FlagSet |= PPC::MOF_NotAddNorCst; 17511 } 17512 } 17513 17514 static bool isPCRelNode(SDValue N) { 17515 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17516 isValidPCRelNode<ConstantPoolSDNode>(N) || 17517 isValidPCRelNode<GlobalAddressSDNode>(N) || 17518 isValidPCRelNode<JumpTableSDNode>(N) || 17519 isValidPCRelNode<BlockAddressSDNode>(N)); 17520 } 17521 17522 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17523 /// the address flags of the load/store instruction that is to be matched. 17524 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17525 SelectionDAG &DAG) const { 17526 unsigned FlagSet = PPC::MOF_None; 17527 17528 // Compute subtarget flags. 17529 if (!Subtarget.hasP9Vector()) 17530 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17531 else { 17532 FlagSet |= PPC::MOF_SubtargetP9; 17533 if (Subtarget.hasPrefixInstrs()) 17534 FlagSet |= PPC::MOF_SubtargetP10; 17535 } 17536 if (Subtarget.hasSPE()) 17537 FlagSet |= PPC::MOF_SubtargetSPE; 17538 17539 // Check if we have a PCRel node and return early. 17540 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17541 return FlagSet; 17542 17543 // If the node is the paired load/store intrinsics, compute flags for 17544 // address computation and return early. 17545 unsigned ParentOp = Parent->getOpcode(); 17546 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17547 (ParentOp == ISD::INTRINSIC_VOID))) { 17548 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17549 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17550 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17551 ? Parent->getOperand(2) 17552 : Parent->getOperand(3); 17553 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17554 FlagSet |= PPC::MOF_Vector; 17555 return FlagSet; 17556 } 17557 } 17558 17559 // Mark this as something we don't want to handle here if it is atomic 17560 // or pre-increment instruction. 17561 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17562 if (LSB->isIndexed()) 17563 return PPC::MOF_None; 17564 17565 // Compute in-memory type flags. This is based on if there are scalars, 17566 // floats or vectors. 17567 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17568 assert(MN && "Parent should be a MemSDNode!"); 17569 EVT MemVT = MN->getMemoryVT(); 17570 unsigned Size = MemVT.getSizeInBits(); 17571 if (MemVT.isScalarInteger()) { 17572 assert(Size <= 128 && 17573 "Not expecting scalar integers larger than 16 bytes!"); 17574 if (Size < 32) 17575 FlagSet |= PPC::MOF_SubWordInt; 17576 else if (Size == 32) 17577 FlagSet |= PPC::MOF_WordInt; 17578 else 17579 FlagSet |= PPC::MOF_DoubleWordInt; 17580 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17581 if (Size == 128) 17582 FlagSet |= PPC::MOF_Vector; 17583 else if (Size == 256) { 17584 assert(Subtarget.pairedVectorMemops() && 17585 "256-bit vectors are only available when paired vector memops is " 17586 "enabled!"); 17587 FlagSet |= PPC::MOF_Vector; 17588 } else 17589 llvm_unreachable("Not expecting illegal vectors!"); 17590 } else { // Floating point type: can be scalar, f128 or vector types. 17591 if (Size == 32 || Size == 64) 17592 FlagSet |= PPC::MOF_ScalarFloat; 17593 else if (MemVT == MVT::f128 || MemVT.isVector()) 17594 FlagSet |= PPC::MOF_Vector; 17595 else 17596 llvm_unreachable("Not expecting illegal scalar floats!"); 17597 } 17598 17599 // Compute flags for address computation. 17600 computeFlagsForAddressComputation(N, FlagSet, DAG); 17601 17602 // Compute type extension flags. 17603 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17604 switch (LN->getExtensionType()) { 17605 case ISD::SEXTLOAD: 17606 FlagSet |= PPC::MOF_SExt; 17607 break; 17608 case ISD::EXTLOAD: 17609 case ISD::ZEXTLOAD: 17610 FlagSet |= PPC::MOF_ZExt; 17611 break; 17612 case ISD::NON_EXTLOAD: 17613 FlagSet |= PPC::MOF_NoExt; 17614 break; 17615 } 17616 } else 17617 FlagSet |= PPC::MOF_NoExt; 17618 17619 // For integers, no extension is the same as zero extension. 17620 // We set the extension mode to zero extension so we don't have 17621 // to add separate entries in AddrModesMap for loads and stores. 17622 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17623 FlagSet |= PPC::MOF_ZExt; 17624 FlagSet &= ~PPC::MOF_NoExt; 17625 } 17626 17627 // If we don't have prefixed instructions, 34-bit constants should be 17628 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17629 bool IsNonP1034BitConst = 17630 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17631 FlagSet) == PPC::MOF_RPlusSImm34; 17632 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17633 IsNonP1034BitConst) 17634 FlagSet |= PPC::MOF_NotAddNorCst; 17635 17636 return FlagSet; 17637 } 17638 17639 /// SelectForceXFormMode - Given the specified address, force it to be 17640 /// represented as an indexed [r+r] operation (an XForm instruction). 17641 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17642 SDValue &Base, 17643 SelectionDAG &DAG) const { 17644 17645 PPC::AddrMode Mode = PPC::AM_XForm; 17646 int16_t ForceXFormImm = 0; 17647 if (provablyDisjointOr(DAG, N) && 17648 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17649 Disp = N.getOperand(0); 17650 Base = N.getOperand(1); 17651 return Mode; 17652 } 17653 17654 // If the address is the result of an add, we will utilize the fact that the 17655 // address calculation includes an implicit add. However, we can reduce 17656 // register pressure if we do not materialize a constant just for use as the 17657 // index register. We only get rid of the add if it is not an add of a 17658 // value and a 16-bit signed constant and both have a single use. 17659 if (N.getOpcode() == ISD::ADD && 17660 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17661 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17662 Disp = N.getOperand(0); 17663 Base = N.getOperand(1); 17664 return Mode; 17665 } 17666 17667 // Otherwise, use R0 as the base register. 17668 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17669 N.getValueType()); 17670 Base = N; 17671 17672 return Mode; 17673 } 17674 17675 bool PPCTargetLowering::splitValueIntoRegisterParts( 17676 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17677 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17678 EVT ValVT = Val.getValueType(); 17679 // If we are splitting a scalar integer into f64 parts (i.e. so they 17680 // can be placed into VFRC registers), we need to zero extend and 17681 // bitcast the values. This will ensure the value is placed into a 17682 // VSR using direct moves or stack operations as needed. 17683 if (PartVT == MVT::f64 && 17684 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17685 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17686 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17687 Parts[0] = Val; 17688 return true; 17689 } 17690 return false; 17691 } 17692 17693 // If we happen to match to an aligned D-Form, check if the Frame Index is 17694 // adequately aligned. If it is not, reset the mode to match to X-Form. 17695 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17696 PPC::AddrMode &Mode) { 17697 if (!isa<FrameIndexSDNode>(N)) 17698 return; 17699 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17700 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17701 Mode = PPC::AM_XForm; 17702 } 17703 17704 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17705 /// compute the address flags of the node, get the optimal address mode based 17706 /// on the flags, and set the Base and Disp based on the address mode. 17707 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17708 SDValue N, SDValue &Disp, 17709 SDValue &Base, 17710 SelectionDAG &DAG, 17711 MaybeAlign Align) const { 17712 SDLoc DL(Parent); 17713 17714 // Compute the address flags. 17715 unsigned Flags = computeMOFlags(Parent, N, DAG); 17716 17717 // Get the optimal address mode based on the Flags. 17718 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17719 17720 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17721 // Select an X-Form load if it is not. 17722 setXFormForUnalignedFI(N, Flags, Mode); 17723 17724 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17725 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17726 assert(Subtarget.isUsingPCRelativeCalls() && 17727 "Must be using PC-Relative calls when a valid PC-Relative node is " 17728 "present!"); 17729 Mode = PPC::AM_PCRel; 17730 } 17731 17732 // Set Base and Disp accordingly depending on the address mode. 17733 switch (Mode) { 17734 case PPC::AM_DForm: 17735 case PPC::AM_DSForm: 17736 case PPC::AM_DQForm: { 17737 // This is a register plus a 16-bit immediate. The base will be the 17738 // register and the displacement will be the immediate unless it 17739 // isn't sufficiently aligned. 17740 if (Flags & PPC::MOF_RPlusSImm16) { 17741 SDValue Op0 = N.getOperand(0); 17742 SDValue Op1 = N.getOperand(1); 17743 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17744 if (!Align || isAligned(*Align, Imm)) { 17745 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17746 Base = Op0; 17747 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17748 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17749 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17750 } 17751 break; 17752 } 17753 } 17754 // This is a register plus the @lo relocation. The base is the register 17755 // and the displacement is the global address. 17756 else if (Flags & PPC::MOF_RPlusLo) { 17757 Disp = N.getOperand(1).getOperand(0); // The global address. 17758 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17759 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17760 Disp.getOpcode() == ISD::TargetConstantPool || 17761 Disp.getOpcode() == ISD::TargetJumpTable); 17762 Base = N.getOperand(0); 17763 break; 17764 } 17765 // This is a constant address at most 32 bits. The base will be 17766 // zero or load-immediate-shifted and the displacement will be 17767 // the low 16 bits of the address. 17768 else if (Flags & PPC::MOF_AddrIsSImm32) { 17769 auto *CN = cast<ConstantSDNode>(N); 17770 EVT CNType = CN->getValueType(0); 17771 uint64_t CNImm = CN->getZExtValue(); 17772 // If this address fits entirely in a 16-bit sext immediate field, codegen 17773 // this as "d, 0". 17774 int16_t Imm; 17775 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17776 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17777 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17778 CNType); 17779 break; 17780 } 17781 // Handle 32-bit sext immediate with LIS + Addr mode. 17782 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17783 (!Align || isAligned(*Align, CNImm))) { 17784 int32_t Addr = (int32_t)CNImm; 17785 // Otherwise, break this down into LIS + Disp. 17786 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17787 Base = 17788 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17789 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17790 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17791 break; 17792 } 17793 } 17794 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17795 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17796 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17797 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17798 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17799 } else 17800 Base = N; 17801 break; 17802 } 17803 case PPC::AM_PrefixDForm: { 17804 int64_t Imm34 = 0; 17805 unsigned Opcode = N.getOpcode(); 17806 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17807 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17808 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17809 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17810 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17811 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17812 else 17813 Base = N.getOperand(0); 17814 } else if (isIntS34Immediate(N, Imm34)) { 17815 // The address is a 34-bit signed immediate. 17816 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17817 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 17818 } 17819 break; 17820 } 17821 case PPC::AM_PCRel: { 17822 // When selecting PC-Relative instructions, "Base" is not utilized as 17823 // we select the address as [PC+imm]. 17824 Disp = N; 17825 break; 17826 } 17827 case PPC::AM_None: 17828 break; 17829 default: { // By default, X-Form is always available to be selected. 17830 // When a frame index is not aligned, we also match by XForm. 17831 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17832 Base = FI ? N : N.getOperand(1); 17833 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17834 N.getValueType()) 17835 : N.getOperand(0); 17836 break; 17837 } 17838 } 17839 return Mode; 17840 } 17841 17842 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17843 bool Return, 17844 bool IsVarArg) const { 17845 switch (CC) { 17846 case CallingConv::Cold: 17847 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17848 default: 17849 return CC_PPC64_ELF_FIS; 17850 } 17851 } 17852 17853 TargetLowering::AtomicExpansionKind 17854 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17855 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17856 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17857 return AtomicExpansionKind::MaskedIntrinsic; 17858 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17859 } 17860 17861 TargetLowering::AtomicExpansionKind 17862 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17863 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 17864 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17865 return AtomicExpansionKind::MaskedIntrinsic; 17866 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17867 } 17868 17869 static Intrinsic::ID 17870 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17871 switch (BinOp) { 17872 default: 17873 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17874 case AtomicRMWInst::Xchg: 17875 return Intrinsic::ppc_atomicrmw_xchg_i128; 17876 case AtomicRMWInst::Add: 17877 return Intrinsic::ppc_atomicrmw_add_i128; 17878 case AtomicRMWInst::Sub: 17879 return Intrinsic::ppc_atomicrmw_sub_i128; 17880 case AtomicRMWInst::And: 17881 return Intrinsic::ppc_atomicrmw_and_i128; 17882 case AtomicRMWInst::Or: 17883 return Intrinsic::ppc_atomicrmw_or_i128; 17884 case AtomicRMWInst::Xor: 17885 return Intrinsic::ppc_atomicrmw_xor_i128; 17886 case AtomicRMWInst::Nand: 17887 return Intrinsic::ppc_atomicrmw_nand_i128; 17888 } 17889 } 17890 17891 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17892 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17893 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17894 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17895 "Only support quadword now"); 17896 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17897 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17898 assert(ValTy->getPrimitiveSizeInBits() == 128); 17899 Function *RMW = Intrinsic::getDeclaration( 17900 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17901 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17902 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17903 Value *IncrHi = 17904 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17905 Value *Addr = 17906 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17907 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17908 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17909 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17910 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17911 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17912 return Builder.CreateOr( 17913 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17914 } 17915 17916 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17917 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17918 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17919 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17920 "Only support quadword now"); 17921 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17922 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17923 assert(ValTy->getPrimitiveSizeInBits() == 128); 17924 Function *IntCmpXchg = 17925 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17926 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17927 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17928 Value *CmpHi = 17929 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17930 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17931 Value *NewHi = 17932 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17933 Value *Addr = 17934 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17935 emitLeadingFence(Builder, CI, Ord); 17936 Value *LoHi = 17937 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17938 emitTrailingFence(Builder, CI, Ord); 17939 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17940 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17941 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17942 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17943 return Builder.CreateOr( 17944 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17945 } 17946