1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(true), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 631 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 632 633 // To handle counter-based loop conditions. 634 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 635 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 638 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 639 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 640 641 // Comparisons that require checking two conditions. 642 if (Subtarget.hasSPE()) { 643 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 645 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 646 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 647 } 648 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 660 661 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 662 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 663 664 if (Subtarget.has64BitSupport()) { 665 // They also have instructions for converting between i64 and fp. 666 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 668 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 670 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 671 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 672 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 674 // This is just the low 32 bits of a (signed) fp->i64 conversion. 675 // We cannot do this with Promote because i64 is not a legal type. 676 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 679 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 } 683 } else { 684 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 685 if (Subtarget.hasSPE()) { 686 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 687 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 688 } else { 689 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 690 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 691 } 692 } 693 694 // With the instructions enabled under FPCVT, we can do everything. 695 if (Subtarget.hasFPCVT()) { 696 if (Subtarget.has64BitSupport()) { 697 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 699 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 700 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 701 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 702 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 703 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 704 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 705 } 706 707 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 709 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 710 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 711 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 712 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 713 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 714 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 715 } 716 717 if (Subtarget.use64BitRegs()) { 718 // 64-bit PowerPC implementations can support i64 types directly 719 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 720 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 721 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 722 // 64-bit PowerPC wants to expand i128 shifts itself. 723 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 724 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 725 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 726 } else { 727 // 32-bit PowerPC wants to expand i64 shifts itself. 728 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 729 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 730 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 731 } 732 733 // PowerPC has better expansions for funnel shifts than the generic 734 // TargetLowering::expandFunnelShift. 735 if (Subtarget.has64BitSupport()) { 736 setOperationAction(ISD::FSHL, MVT::i64, Custom); 737 setOperationAction(ISD::FSHR, MVT::i64, Custom); 738 } 739 setOperationAction(ISD::FSHL, MVT::i32, Custom); 740 setOperationAction(ISD::FSHR, MVT::i32, Custom); 741 742 if (Subtarget.hasVSX()) { 743 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 745 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 746 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 747 } 748 749 if (Subtarget.hasAltivec()) { 750 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 751 setOperationAction(ISD::SADDSAT, VT, Legal); 752 setOperationAction(ISD::SSUBSAT, VT, Legal); 753 setOperationAction(ISD::UADDSAT, VT, Legal); 754 setOperationAction(ISD::USUBSAT, VT, Legal); 755 } 756 // First set operation action for all vector types to expand. Then we 757 // will selectively turn on ones that can be effectively codegen'd. 758 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 759 // add/sub are legal for all supported vector VT's. 760 setOperationAction(ISD::ADD, VT, Legal); 761 setOperationAction(ISD::SUB, VT, Legal); 762 763 // For v2i64, these are only valid with P8Vector. This is corrected after 764 // the loop. 765 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 766 setOperationAction(ISD::SMAX, VT, Legal); 767 setOperationAction(ISD::SMIN, VT, Legal); 768 setOperationAction(ISD::UMAX, VT, Legal); 769 setOperationAction(ISD::UMIN, VT, Legal); 770 } 771 else { 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::SMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::UMIN, VT, Expand); 776 } 777 778 if (Subtarget.hasVSX()) { 779 setOperationAction(ISD::FMAXNUM, VT, Legal); 780 setOperationAction(ISD::FMINNUM, VT, Legal); 781 } 782 783 // Vector instructions introduced in P8 784 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 785 setOperationAction(ISD::CTPOP, VT, Legal); 786 setOperationAction(ISD::CTLZ, VT, Legal); 787 } 788 else { 789 setOperationAction(ISD::CTPOP, VT, Expand); 790 setOperationAction(ISD::CTLZ, VT, Expand); 791 } 792 793 // Vector instructions introduced in P9 794 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 795 setOperationAction(ISD::CTTZ, VT, Legal); 796 else 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 // We promote all shuffles to v16i8. 800 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 801 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 802 803 // We promote all non-typed operations to v4i32. 804 setOperationAction(ISD::AND , VT, Promote); 805 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 806 setOperationAction(ISD::OR , VT, Promote); 807 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 808 setOperationAction(ISD::XOR , VT, Promote); 809 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 810 setOperationAction(ISD::LOAD , VT, Promote); 811 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 812 setOperationAction(ISD::SELECT, VT, Promote); 813 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 814 setOperationAction(ISD::VSELECT, VT, Legal); 815 setOperationAction(ISD::SELECT_CC, VT, Promote); 816 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 817 setOperationAction(ISD::STORE, VT, Promote); 818 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 819 820 // No other operations are legal. 821 setOperationAction(ISD::MUL , VT, Expand); 822 setOperationAction(ISD::SDIV, VT, Expand); 823 setOperationAction(ISD::SREM, VT, Expand); 824 setOperationAction(ISD::UDIV, VT, Expand); 825 setOperationAction(ISD::UREM, VT, Expand); 826 setOperationAction(ISD::FDIV, VT, Expand); 827 setOperationAction(ISD::FREM, VT, Expand); 828 setOperationAction(ISD::FNEG, VT, Expand); 829 setOperationAction(ISD::FSQRT, VT, Expand); 830 setOperationAction(ISD::FLOG, VT, Expand); 831 setOperationAction(ISD::FLOG10, VT, Expand); 832 setOperationAction(ISD::FLOG2, VT, Expand); 833 setOperationAction(ISD::FEXP, VT, Expand); 834 setOperationAction(ISD::FEXP2, VT, Expand); 835 setOperationAction(ISD::FSIN, VT, Expand); 836 setOperationAction(ISD::FCOS, VT, Expand); 837 setOperationAction(ISD::FABS, VT, Expand); 838 setOperationAction(ISD::FFLOOR, VT, Expand); 839 setOperationAction(ISD::FCEIL, VT, Expand); 840 setOperationAction(ISD::FTRUNC, VT, Expand); 841 setOperationAction(ISD::FRINT, VT, Expand); 842 setOperationAction(ISD::FNEARBYINT, VT, Expand); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 844 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 845 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 846 setOperationAction(ISD::MULHU, VT, Expand); 847 setOperationAction(ISD::MULHS, VT, Expand); 848 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 849 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 850 setOperationAction(ISD::UDIVREM, VT, Expand); 851 setOperationAction(ISD::SDIVREM, VT, Expand); 852 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 853 setOperationAction(ISD::FPOW, VT, Expand); 854 setOperationAction(ISD::BSWAP, VT, Expand); 855 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 856 setOperationAction(ISD::ROTL, VT, Expand); 857 setOperationAction(ISD::ROTR, VT, Expand); 858 859 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 860 setTruncStoreAction(VT, InnerVT, Expand); 861 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 862 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 863 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 864 } 865 } 866 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 867 if (!Subtarget.hasP8Vector()) { 868 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 870 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 871 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 872 } 873 874 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 875 // with merges, splats, etc. 876 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 877 878 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 879 // are cheap, so handle them before they get expanded to scalar. 880 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 883 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 884 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 885 886 setOperationAction(ISD::AND , MVT::v4i32, Legal); 887 setOperationAction(ISD::OR , MVT::v4i32, Legal); 888 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 889 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 890 setOperationAction(ISD::SELECT, MVT::v4i32, 891 Subtarget.useCRBits() ? Legal : Expand); 892 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 895 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 896 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 897 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 898 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 900 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 901 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 902 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 903 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 904 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 905 906 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 907 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 908 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 909 if (Subtarget.hasAltivec()) 910 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 911 setOperationAction(ISD::ROTL, VT, Legal); 912 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 913 if (Subtarget.hasP8Altivec()) 914 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 915 916 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 918 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 919 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 920 921 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 922 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 923 924 if (Subtarget.hasVSX()) { 925 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 926 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 927 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 928 } 929 930 if (Subtarget.hasP8Altivec()) 931 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 932 else 933 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 934 935 if (Subtarget.isISA3_1()) { 936 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 938 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 939 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 940 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 941 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 942 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 943 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 944 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 945 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 946 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 947 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 948 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 949 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 950 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 951 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 952 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 953 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 954 } 955 956 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 957 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 961 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 965 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 966 967 // Altivec does not contain unordered floating-point compare instructions 968 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 970 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 971 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 972 973 if (Subtarget.hasVSX()) { 974 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 976 if (Subtarget.hasP8Vector()) { 977 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 978 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 979 } 980 if (Subtarget.hasDirectMove() && isPPC64) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 983 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 989 } 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 991 992 // The nearbyint variants are not allowed to raise the inexact exception 993 // so we can only code-gen them with unsafe math. 994 if (TM.Options.UnsafeFPMath) { 995 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 996 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 997 } 998 999 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1004 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1005 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1006 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1007 1008 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1010 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1011 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1012 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1013 1014 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1015 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1016 1017 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1019 1020 // Share the Altivec comparison restrictions. 1021 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1023 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1024 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1025 1026 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1028 1029 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1030 1031 if (Subtarget.hasP8Vector()) 1032 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1033 1034 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1035 1036 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1037 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1038 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1039 1040 if (Subtarget.hasP8Altivec()) { 1041 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1042 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1043 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1044 1045 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1046 // SRL, but not for SRA because of the instructions available: 1047 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1048 // doing 1049 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1050 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1051 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1052 1053 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1054 } 1055 else { 1056 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1057 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1058 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1061 1062 // VSX v2i64 only supports non-arithmetic operations. 1063 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1065 } 1066 1067 if (Subtarget.isISA3_1()) 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1069 else 1070 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1071 1072 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1074 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1075 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1076 1077 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1078 1079 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1081 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1082 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1083 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1084 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1085 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1086 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1087 1088 // Custom handling for partial vectors of integers converted to 1089 // floating point. We already have optimal handling for v2i32 through 1090 // the DAG combine, so those aren't necessary. 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1093 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1094 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1097 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1098 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1101 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1102 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1105 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1106 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1107 1108 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1112 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1113 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1114 1115 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1116 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1117 1118 // Handle constrained floating-point operations of vector. 1119 // The predictor is `hasVSX` because altivec instruction has 1120 // no exception but VSX vector instruction has. 1121 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1134 1135 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1148 1149 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1150 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1151 1152 for (MVT FPT : MVT::fp_valuetypes()) 1153 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1154 1155 // Expand the SELECT to SELECT_CC 1156 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1157 1158 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1159 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1160 1161 // No implementation for these ops for PowerPC. 1162 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1163 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1164 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1165 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1166 setOperationAction(ISD::FREM, MVT::f128, Expand); 1167 } 1168 1169 if (Subtarget.hasP8Altivec()) { 1170 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1171 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1172 } 1173 1174 if (Subtarget.hasP9Vector()) { 1175 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1176 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1177 1178 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1179 // SRL, but not for SRA because of the instructions available: 1180 // VS{RL} and VS{RL}O. 1181 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1182 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1183 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1184 1185 setOperationAction(ISD::FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1188 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1189 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1190 1191 setOperationAction(ISD::FMA, MVT::f128, Legal); 1192 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1196 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1197 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1198 1199 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1200 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1201 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1202 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1203 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1204 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1207 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1208 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1209 1210 // Handle constrained floating-point operations of fp128 1211 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1217 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1218 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1219 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1220 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1224 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1225 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1226 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1227 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1229 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1230 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1231 } else if (Subtarget.hasVSX()) { 1232 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1233 setOperationAction(ISD::STORE, MVT::f128, Promote); 1234 1235 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1236 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1237 1238 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1239 // fp_to_uint and int_to_fp. 1240 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1241 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1242 1243 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1244 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1245 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1246 setOperationAction(ISD::FABS, MVT::f128, Expand); 1247 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1248 setOperationAction(ISD::FMA, MVT::f128, Expand); 1249 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1250 1251 // Expand the fp_extend if the target type is fp128. 1252 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1253 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1254 1255 // Expand the fp_round if the source type is fp128. 1256 for (MVT VT : {MVT::f32, MVT::f64}) { 1257 setOperationAction(ISD::FP_ROUND, VT, Custom); 1258 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1259 } 1260 1261 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1262 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1263 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1264 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1265 1266 // Lower following f128 select_cc pattern: 1267 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1268 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1269 1270 // We need to handle f128 SELECT_CC with integer result type. 1271 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1272 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1273 } 1274 1275 if (Subtarget.hasP9Altivec()) { 1276 if (Subtarget.isISA3_1()) { 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1279 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1281 } else { 1282 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1283 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1284 } 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1291 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1292 } 1293 1294 if (Subtarget.hasP10Vector()) { 1295 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1296 } 1297 } 1298 1299 if (Subtarget.pairedVectorMemops()) { 1300 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1301 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1302 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1303 } 1304 if (Subtarget.hasMMA()) { 1305 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1306 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1307 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1308 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1309 } 1310 1311 if (Subtarget.has64BitSupport()) 1312 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1313 1314 if (Subtarget.isISA3_1()) 1315 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1316 1317 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1318 1319 if (!isPPC64) { 1320 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1321 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1322 } 1323 1324 if (shouldInlineQuadwordAtomics()) { 1325 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1326 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1327 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1328 } 1329 1330 setBooleanContents(ZeroOrOneBooleanContent); 1331 1332 if (Subtarget.hasAltivec()) { 1333 // Altivec instructions set fields to all zeros or all ones. 1334 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1335 } 1336 1337 setLibcallName(RTLIB::MULO_I128, nullptr); 1338 if (!isPPC64) { 1339 // These libcalls are not available in 32-bit. 1340 setLibcallName(RTLIB::SHL_I128, nullptr); 1341 setLibcallName(RTLIB::SRL_I128, nullptr); 1342 setLibcallName(RTLIB::SRA_I128, nullptr); 1343 setLibcallName(RTLIB::MUL_I128, nullptr); 1344 setLibcallName(RTLIB::MULO_I64, nullptr); 1345 } 1346 1347 if (!isPPC64) 1348 setMaxAtomicSizeInBitsSupported(32); 1349 else if (shouldInlineQuadwordAtomics()) 1350 setMaxAtomicSizeInBitsSupported(128); 1351 else 1352 setMaxAtomicSizeInBitsSupported(64); 1353 1354 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1355 1356 // We have target-specific dag combine patterns for the following nodes: 1357 setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, 1358 ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); 1359 if (Subtarget.hasFPCVT()) 1360 setTargetDAGCombine(ISD::UINT_TO_FP); 1361 setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); 1362 if (Subtarget.useCRBits()) 1363 setTargetDAGCombine(ISD::BRCOND); 1364 setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, 1365 ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); 1366 1367 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); 1368 1369 setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); 1370 1371 if (Subtarget.useCRBits()) { 1372 setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); 1373 } 1374 1375 if (Subtarget.hasP9Altivec()) { 1376 setTargetDAGCombine({ISD::ABS, ISD::VSELECT}); 1377 } 1378 1379 setLibcallName(RTLIB::LOG_F128, "logf128"); 1380 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1381 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1382 setLibcallName(RTLIB::EXP_F128, "expf128"); 1383 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1384 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1385 setLibcallName(RTLIB::COS_F128, "cosf128"); 1386 setLibcallName(RTLIB::POW_F128, "powf128"); 1387 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1388 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1389 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1390 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1391 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1392 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1393 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1394 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1395 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1396 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1397 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1398 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1399 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1400 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1401 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1402 1403 // With 32 condition bits, we don't need to sink (and duplicate) compares 1404 // aggressively in CodeGenPrep. 1405 if (Subtarget.useCRBits()) { 1406 setHasMultipleConditionRegisters(); 1407 setJumpIsExpensive(); 1408 } 1409 1410 setMinFunctionAlignment(Align(4)); 1411 1412 switch (Subtarget.getCPUDirective()) { 1413 default: break; 1414 case PPC::DIR_970: 1415 case PPC::DIR_A2: 1416 case PPC::DIR_E500: 1417 case PPC::DIR_E500mc: 1418 case PPC::DIR_E5500: 1419 case PPC::DIR_PWR4: 1420 case PPC::DIR_PWR5: 1421 case PPC::DIR_PWR5X: 1422 case PPC::DIR_PWR6: 1423 case PPC::DIR_PWR6X: 1424 case PPC::DIR_PWR7: 1425 case PPC::DIR_PWR8: 1426 case PPC::DIR_PWR9: 1427 case PPC::DIR_PWR10: 1428 case PPC::DIR_PWR_FUTURE: 1429 setPrefLoopAlignment(Align(16)); 1430 setPrefFunctionAlignment(Align(16)); 1431 break; 1432 } 1433 1434 if (Subtarget.enableMachineScheduler()) 1435 setSchedulingPreference(Sched::Source); 1436 else 1437 setSchedulingPreference(Sched::Hybrid); 1438 1439 computeRegisterProperties(STI.getRegisterInfo()); 1440 1441 // The Freescale cores do better with aggressive inlining of memcpy and 1442 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1443 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1444 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1445 MaxStoresPerMemset = 32; 1446 MaxStoresPerMemsetOptSize = 16; 1447 MaxStoresPerMemcpy = 32; 1448 MaxStoresPerMemcpyOptSize = 8; 1449 MaxStoresPerMemmove = 32; 1450 MaxStoresPerMemmoveOptSize = 8; 1451 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1452 // The A2 also benefits from (very) aggressive inlining of memcpy and 1453 // friends. The overhead of a the function call, even when warm, can be 1454 // over one hundred cycles. 1455 MaxStoresPerMemset = 128; 1456 MaxStoresPerMemcpy = 128; 1457 MaxStoresPerMemmove = 128; 1458 MaxLoadsPerMemcmp = 128; 1459 } else { 1460 MaxLoadsPerMemcmp = 8; 1461 MaxLoadsPerMemcmpOptSize = 4; 1462 } 1463 1464 IsStrictFPEnabled = true; 1465 1466 // Let the subtarget (CPU) decide if a predictable select is more expensive 1467 // than the corresponding branch. This information is used in CGP to decide 1468 // when to convert selects into branches. 1469 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1470 } 1471 1472 // *********************************** NOTE ************************************ 1473 // For selecting load and store instructions, the addressing modes are defined 1474 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1475 // patterns to match the load the store instructions. 1476 // 1477 // The TD definitions for the addressing modes correspond to their respective 1478 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1479 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1480 // address mode flags of a particular node. Afterwards, the computed address 1481 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1482 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1483 // accordingly, based on the preferred addressing mode. 1484 // 1485 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1486 // MemOpFlags contains all the possible flags that can be used to compute the 1487 // optimal addressing mode for load and store instructions. 1488 // AddrMode contains all the possible load and store addressing modes available 1489 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1490 // 1491 // When adding new load and store instructions, it is possible that new address 1492 // flags may need to be added into MemOpFlags, and a new addressing mode will 1493 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1494 // of the minimal and main distinguishing address flags for the new load/store 1495 // instructions) will need to be added into initializeAddrModeMap() below. 1496 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1497 // need to be updated to account for selecting the optimal addressing mode. 1498 // ***************************************************************************** 1499 /// Initialize the map that relates the different addressing modes of the load 1500 /// and store instructions to a set of flags. This ensures the load/store 1501 /// instruction is correctly matched during instruction selection. 1502 void PPCTargetLowering::initializeAddrModeMap() { 1503 AddrModesMap[PPC::AM_DForm] = { 1504 // LWZ, STW 1505 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1506 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1507 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1508 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1509 // LBZ, LHZ, STB, STH 1510 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1511 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1512 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1513 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1514 // LHA 1515 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1516 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1517 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1518 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1519 // LFS, LFD, STFS, STFD 1520 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1521 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1522 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1523 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1524 }; 1525 AddrModesMap[PPC::AM_DSForm] = { 1526 // LWA 1527 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1528 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1529 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1530 // LD, STD 1531 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1532 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1533 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1534 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1535 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1536 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1537 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1538 }; 1539 AddrModesMap[PPC::AM_DQForm] = { 1540 // LXV, STXV 1541 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1542 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1543 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1544 }; 1545 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1546 PPC::MOF_SubtargetP10}; 1547 // TODO: Add mapping for quadword load/store. 1548 } 1549 1550 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1551 /// the desired ByVal argument alignment. 1552 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1553 if (MaxAlign == MaxMaxAlign) 1554 return; 1555 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1556 if (MaxMaxAlign >= 32 && 1557 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1558 MaxAlign = Align(32); 1559 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1560 MaxAlign < 16) 1561 MaxAlign = Align(16); 1562 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1563 Align EltAlign; 1564 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1565 if (EltAlign > MaxAlign) 1566 MaxAlign = EltAlign; 1567 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1568 for (auto *EltTy : STy->elements()) { 1569 Align EltAlign; 1570 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1571 if (EltAlign > MaxAlign) 1572 MaxAlign = EltAlign; 1573 if (MaxAlign == MaxMaxAlign) 1574 break; 1575 } 1576 } 1577 } 1578 1579 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1580 /// function arguments in the caller parameter area. 1581 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1582 const DataLayout &DL) const { 1583 // 16byte and wider vectors are passed on 16byte boundary. 1584 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1585 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1586 if (Subtarget.hasAltivec()) 1587 getMaxByValAlign(Ty, Alignment, Align(16)); 1588 return Alignment.value(); 1589 } 1590 1591 bool PPCTargetLowering::useSoftFloat() const { 1592 return Subtarget.useSoftFloat(); 1593 } 1594 1595 bool PPCTargetLowering::hasSPE() const { 1596 return Subtarget.hasSPE(); 1597 } 1598 1599 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1600 return VT.isScalarInteger(); 1601 } 1602 1603 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1604 switch ((PPCISD::NodeType)Opcode) { 1605 case PPCISD::FIRST_NUMBER: break; 1606 case PPCISD::FSEL: return "PPCISD::FSEL"; 1607 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1608 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1609 case PPCISD::FCFID: return "PPCISD::FCFID"; 1610 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1611 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1612 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1613 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1614 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1615 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1616 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1617 case PPCISD::FP_TO_UINT_IN_VSR: 1618 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1619 case PPCISD::FP_TO_SINT_IN_VSR: 1620 return "PPCISD::FP_TO_SINT_IN_VSR"; 1621 case PPCISD::FRE: return "PPCISD::FRE"; 1622 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1623 case PPCISD::FTSQRT: 1624 return "PPCISD::FTSQRT"; 1625 case PPCISD::FSQRT: 1626 return "PPCISD::FSQRT"; 1627 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1628 case PPCISD::VPERM: return "PPCISD::VPERM"; 1629 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1630 case PPCISD::XXSPLTI_SP_TO_DP: 1631 return "PPCISD::XXSPLTI_SP_TO_DP"; 1632 case PPCISD::XXSPLTI32DX: 1633 return "PPCISD::XXSPLTI32DX"; 1634 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1635 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1636 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1637 case PPCISD::CMPB: return "PPCISD::CMPB"; 1638 case PPCISD::Hi: return "PPCISD::Hi"; 1639 case PPCISD::Lo: return "PPCISD::Lo"; 1640 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1641 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1642 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1643 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1644 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1645 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1646 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1647 case PPCISD::SRL: return "PPCISD::SRL"; 1648 case PPCISD::SRA: return "PPCISD::SRA"; 1649 case PPCISD::SHL: return "PPCISD::SHL"; 1650 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1651 case PPCISD::CALL: return "PPCISD::CALL"; 1652 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1653 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1654 case PPCISD::CALL_RM: 1655 return "PPCISD::CALL_RM"; 1656 case PPCISD::CALL_NOP_RM: 1657 return "PPCISD::CALL_NOP_RM"; 1658 case PPCISD::CALL_NOTOC_RM: 1659 return "PPCISD::CALL_NOTOC_RM"; 1660 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1661 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1662 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1663 case PPCISD::BCTRL_RM: 1664 return "PPCISD::BCTRL_RM"; 1665 case PPCISD::BCTRL_LOAD_TOC_RM: 1666 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1667 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1668 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1669 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1670 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1671 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1672 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1673 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1674 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1675 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1676 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1677 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1678 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1679 case PPCISD::ANDI_rec_1_EQ_BIT: 1680 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1681 case PPCISD::ANDI_rec_1_GT_BIT: 1682 return "PPCISD::ANDI_rec_1_GT_BIT"; 1683 case PPCISD::VCMP: return "PPCISD::VCMP"; 1684 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1685 case PPCISD::LBRX: return "PPCISD::LBRX"; 1686 case PPCISD::STBRX: return "PPCISD::STBRX"; 1687 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1688 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1689 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1690 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1691 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1692 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1693 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1694 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1695 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1696 case PPCISD::ST_VSR_SCAL_INT: 1697 return "PPCISD::ST_VSR_SCAL_INT"; 1698 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1699 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1700 case PPCISD::BDZ: return "PPCISD::BDZ"; 1701 case PPCISD::MFFS: return "PPCISD::MFFS"; 1702 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1703 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1704 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1705 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1706 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1707 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1708 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1709 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1710 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1711 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1712 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1713 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1714 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1715 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1716 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1717 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1718 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1719 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1720 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1721 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1722 case PPCISD::PADDI_DTPREL: 1723 return "PPCISD::PADDI_DTPREL"; 1724 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1725 case PPCISD::SC: return "PPCISD::SC"; 1726 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1727 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1728 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1729 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1730 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1731 case PPCISD::VABSD: return "PPCISD::VABSD"; 1732 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1733 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1734 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1735 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1736 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1737 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1738 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1739 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1740 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1741 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1742 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1743 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1744 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1745 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1746 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1747 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1748 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1749 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1750 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1751 case PPCISD::STRICT_FADDRTZ: 1752 return "PPCISD::STRICT_FADDRTZ"; 1753 case PPCISD::STRICT_FCTIDZ: 1754 return "PPCISD::STRICT_FCTIDZ"; 1755 case PPCISD::STRICT_FCTIWZ: 1756 return "PPCISD::STRICT_FCTIWZ"; 1757 case PPCISD::STRICT_FCTIDUZ: 1758 return "PPCISD::STRICT_FCTIDUZ"; 1759 case PPCISD::STRICT_FCTIWUZ: 1760 return "PPCISD::STRICT_FCTIWUZ"; 1761 case PPCISD::STRICT_FCFID: 1762 return "PPCISD::STRICT_FCFID"; 1763 case PPCISD::STRICT_FCFIDU: 1764 return "PPCISD::STRICT_FCFIDU"; 1765 case PPCISD::STRICT_FCFIDS: 1766 return "PPCISD::STRICT_FCFIDS"; 1767 case PPCISD::STRICT_FCFIDUS: 1768 return "PPCISD::STRICT_FCFIDUS"; 1769 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1770 } 1771 return nullptr; 1772 } 1773 1774 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1775 EVT VT) const { 1776 if (!VT.isVector()) 1777 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1778 1779 return VT.changeVectorElementTypeToInteger(); 1780 } 1781 1782 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1783 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1784 return true; 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // Node matching predicates, for use by the tblgen matching code. 1789 //===----------------------------------------------------------------------===// 1790 1791 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1792 static bool isFloatingPointZero(SDValue Op) { 1793 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1794 return CFP->getValueAPF().isZero(); 1795 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1796 // Maybe this has already been legalized into the constant pool? 1797 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1798 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1799 return CFP->getValueAPF().isZero(); 1800 } 1801 return false; 1802 } 1803 1804 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1805 /// true if Op is undef or if it matches the specified value. 1806 static bool isConstantOrUndef(int Op, int Val) { 1807 return Op < 0 || Op == Val; 1808 } 1809 1810 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1811 /// VPKUHUM instruction. 1812 /// The ShuffleKind distinguishes between big-endian operations with 1813 /// two different inputs (0), either-endian operations with two identical 1814 /// inputs (1), and little-endian operations with two different inputs (2). 1815 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1816 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1817 SelectionDAG &DAG) { 1818 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1819 if (ShuffleKind == 0) { 1820 if (IsLE) 1821 return false; 1822 for (unsigned i = 0; i != 16; ++i) 1823 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1824 return false; 1825 } else if (ShuffleKind == 2) { 1826 if (!IsLE) 1827 return false; 1828 for (unsigned i = 0; i != 16; ++i) 1829 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1830 return false; 1831 } else if (ShuffleKind == 1) { 1832 unsigned j = IsLE ? 0 : 1; 1833 for (unsigned i = 0; i != 8; ++i) 1834 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1835 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1842 /// VPKUWUM instruction. 1843 /// The ShuffleKind distinguishes between big-endian operations with 1844 /// two different inputs (0), either-endian operations with two identical 1845 /// inputs (1), and little-endian operations with two different inputs (2). 1846 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1847 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1848 SelectionDAG &DAG) { 1849 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1850 if (ShuffleKind == 0) { 1851 if (IsLE) 1852 return false; 1853 for (unsigned i = 0; i != 16; i += 2) 1854 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1855 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1856 return false; 1857 } else if (ShuffleKind == 2) { 1858 if (!IsLE) 1859 return false; 1860 for (unsigned i = 0; i != 16; i += 2) 1861 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1862 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1863 return false; 1864 } else if (ShuffleKind == 1) { 1865 unsigned j = IsLE ? 0 : 2; 1866 for (unsigned i = 0; i != 8; i += 2) 1867 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1868 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1869 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1870 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1871 return false; 1872 } 1873 return true; 1874 } 1875 1876 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1877 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1878 /// current subtarget. 1879 /// 1880 /// The ShuffleKind distinguishes between big-endian operations with 1881 /// two different inputs (0), either-endian operations with two identical 1882 /// inputs (1), and little-endian operations with two different inputs (2). 1883 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1884 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1885 SelectionDAG &DAG) { 1886 const PPCSubtarget& Subtarget = 1887 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1888 if (!Subtarget.hasP8Vector()) 1889 return false; 1890 1891 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1892 if (ShuffleKind == 0) { 1893 if (IsLE) 1894 return false; 1895 for (unsigned i = 0; i != 16; i += 4) 1896 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1897 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1898 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1899 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1900 return false; 1901 } else if (ShuffleKind == 2) { 1902 if (!IsLE) 1903 return false; 1904 for (unsigned i = 0; i != 16; i += 4) 1905 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1906 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1907 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1908 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1909 return false; 1910 } else if (ShuffleKind == 1) { 1911 unsigned j = IsLE ? 0 : 4; 1912 for (unsigned i = 0; i != 8; i += 4) 1913 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1914 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1915 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1916 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1917 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1918 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1919 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1920 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1921 return false; 1922 } 1923 return true; 1924 } 1925 1926 /// isVMerge - Common function, used to match vmrg* shuffles. 1927 /// 1928 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1929 unsigned LHSStart, unsigned RHSStart) { 1930 if (N->getValueType(0) != MVT::v16i8) 1931 return false; 1932 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1933 "Unsupported merge size!"); 1934 1935 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1936 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1937 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1938 LHSStart+j+i*UnitSize) || 1939 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1940 RHSStart+j+i*UnitSize)) 1941 return false; 1942 } 1943 return true; 1944 } 1945 1946 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1947 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1948 /// The ShuffleKind distinguishes between big-endian merges with two 1949 /// different inputs (0), either-endian merges with two identical inputs (1), 1950 /// and little-endian merges with two different inputs (2). For the latter, 1951 /// the input operands are swapped (see PPCInstrAltivec.td). 1952 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1953 unsigned ShuffleKind, SelectionDAG &DAG) { 1954 if (DAG.getDataLayout().isLittleEndian()) { 1955 if (ShuffleKind == 1) // unary 1956 return isVMerge(N, UnitSize, 0, 0); 1957 else if (ShuffleKind == 2) // swapped 1958 return isVMerge(N, UnitSize, 0, 16); 1959 else 1960 return false; 1961 } else { 1962 if (ShuffleKind == 1) // unary 1963 return isVMerge(N, UnitSize, 8, 8); 1964 else if (ShuffleKind == 0) // normal 1965 return isVMerge(N, UnitSize, 8, 24); 1966 else 1967 return false; 1968 } 1969 } 1970 1971 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1972 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1973 /// The ShuffleKind distinguishes between big-endian merges with two 1974 /// different inputs (0), either-endian merges with two identical inputs (1), 1975 /// and little-endian merges with two different inputs (2). For the latter, 1976 /// the input operands are swapped (see PPCInstrAltivec.td). 1977 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1978 unsigned ShuffleKind, SelectionDAG &DAG) { 1979 if (DAG.getDataLayout().isLittleEndian()) { 1980 if (ShuffleKind == 1) // unary 1981 return isVMerge(N, UnitSize, 8, 8); 1982 else if (ShuffleKind == 2) // swapped 1983 return isVMerge(N, UnitSize, 8, 24); 1984 else 1985 return false; 1986 } else { 1987 if (ShuffleKind == 1) // unary 1988 return isVMerge(N, UnitSize, 0, 0); 1989 else if (ShuffleKind == 0) // normal 1990 return isVMerge(N, UnitSize, 0, 16); 1991 else 1992 return false; 1993 } 1994 } 1995 1996 /** 1997 * Common function used to match vmrgew and vmrgow shuffles 1998 * 1999 * The indexOffset determines whether to look for even or odd words in 2000 * the shuffle mask. This is based on the of the endianness of the target 2001 * machine. 2002 * - Little Endian: 2003 * - Use offset of 0 to check for odd elements 2004 * - Use offset of 4 to check for even elements 2005 * - Big Endian: 2006 * - Use offset of 0 to check for even elements 2007 * - Use offset of 4 to check for odd elements 2008 * A detailed description of the vector element ordering for little endian and 2009 * big endian can be found at 2010 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2011 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2012 * compiler differences mean to you 2013 * 2014 * The mask to the shuffle vector instruction specifies the indices of the 2015 * elements from the two input vectors to place in the result. The elements are 2016 * numbered in array-access order, starting with the first vector. These vectors 2017 * are always of type v16i8, thus each vector will contain 16 elements of size 2018 * 8. More info on the shuffle vector can be found in the 2019 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2020 * Language Reference. 2021 * 2022 * The RHSStartValue indicates whether the same input vectors are used (unary) 2023 * or two different input vectors are used, based on the following: 2024 * - If the instruction uses the same vector for both inputs, the range of the 2025 * indices will be 0 to 15. In this case, the RHSStart value passed should 2026 * be 0. 2027 * - If the instruction has two different vectors then the range of the 2028 * indices will be 0 to 31. In this case, the RHSStart value passed should 2029 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2030 * to 31 specify elements in the second vector). 2031 * 2032 * \param[in] N The shuffle vector SD Node to analyze 2033 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2034 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2035 * vector to the shuffle_vector instruction 2036 * \return true iff this shuffle vector represents an even or odd word merge 2037 */ 2038 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2039 unsigned RHSStartValue) { 2040 if (N->getValueType(0) != MVT::v16i8) 2041 return false; 2042 2043 for (unsigned i = 0; i < 2; ++i) 2044 for (unsigned j = 0; j < 4; ++j) 2045 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2046 i*RHSStartValue+j+IndexOffset) || 2047 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2048 i*RHSStartValue+j+IndexOffset+8)) 2049 return false; 2050 return true; 2051 } 2052 2053 /** 2054 * Determine if the specified shuffle mask is suitable for the vmrgew or 2055 * vmrgow instructions. 2056 * 2057 * \param[in] N The shuffle vector SD Node to analyze 2058 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2059 * \param[in] ShuffleKind Identify the type of merge: 2060 * - 0 = big-endian merge with two different inputs; 2061 * - 1 = either-endian merge with two identical inputs; 2062 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2063 * little-endian merges). 2064 * \param[in] DAG The current SelectionDAG 2065 * \return true iff this shuffle mask 2066 */ 2067 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2068 unsigned ShuffleKind, SelectionDAG &DAG) { 2069 if (DAG.getDataLayout().isLittleEndian()) { 2070 unsigned indexOffset = CheckEven ? 4 : 0; 2071 if (ShuffleKind == 1) // Unary 2072 return isVMerge(N, indexOffset, 0); 2073 else if (ShuffleKind == 2) // swapped 2074 return isVMerge(N, indexOffset, 16); 2075 else 2076 return false; 2077 } 2078 else { 2079 unsigned indexOffset = CheckEven ? 0 : 4; 2080 if (ShuffleKind == 1) // Unary 2081 return isVMerge(N, indexOffset, 0); 2082 else if (ShuffleKind == 0) // Normal 2083 return isVMerge(N, indexOffset, 16); 2084 else 2085 return false; 2086 } 2087 return false; 2088 } 2089 2090 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2091 /// amount, otherwise return -1. 2092 /// The ShuffleKind distinguishes between big-endian operations with two 2093 /// different inputs (0), either-endian operations with two identical inputs 2094 /// (1), and little-endian operations with two different inputs (2). For the 2095 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2096 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2097 SelectionDAG &DAG) { 2098 if (N->getValueType(0) != MVT::v16i8) 2099 return -1; 2100 2101 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2102 2103 // Find the first non-undef value in the shuffle mask. 2104 unsigned i; 2105 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2106 /*search*/; 2107 2108 if (i == 16) return -1; // all undef. 2109 2110 // Otherwise, check to see if the rest of the elements are consecutively 2111 // numbered from this value. 2112 unsigned ShiftAmt = SVOp->getMaskElt(i); 2113 if (ShiftAmt < i) return -1; 2114 2115 ShiftAmt -= i; 2116 bool isLE = DAG.getDataLayout().isLittleEndian(); 2117 2118 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2119 // Check the rest of the elements to see if they are consecutive. 2120 for (++i; i != 16; ++i) 2121 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2122 return -1; 2123 } else if (ShuffleKind == 1) { 2124 // Check the rest of the elements to see if they are consecutive. 2125 for (++i; i != 16; ++i) 2126 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2127 return -1; 2128 } else 2129 return -1; 2130 2131 if (isLE) 2132 ShiftAmt = 16 - ShiftAmt; 2133 2134 return ShiftAmt; 2135 } 2136 2137 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2138 /// specifies a splat of a single element that is suitable for input to 2139 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2140 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2141 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2142 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2143 2144 // The consecutive indices need to specify an element, not part of two 2145 // different elements. So abandon ship early if this isn't the case. 2146 if (N->getMaskElt(0) % EltSize != 0) 2147 return false; 2148 2149 // This is a splat operation if each element of the permute is the same, and 2150 // if the value doesn't reference the second vector. 2151 unsigned ElementBase = N->getMaskElt(0); 2152 2153 // FIXME: Handle UNDEF elements too! 2154 if (ElementBase >= 16) 2155 return false; 2156 2157 // Check that the indices are consecutive, in the case of a multi-byte element 2158 // splatted with a v16i8 mask. 2159 for (unsigned i = 1; i != EltSize; ++i) 2160 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2161 return false; 2162 2163 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2164 if (N->getMaskElt(i) < 0) continue; 2165 for (unsigned j = 0; j != EltSize; ++j) 2166 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2167 return false; 2168 } 2169 return true; 2170 } 2171 2172 /// Check that the mask is shuffling N byte elements. Within each N byte 2173 /// element of the mask, the indices could be either in increasing or 2174 /// decreasing order as long as they are consecutive. 2175 /// \param[in] N the shuffle vector SD Node to analyze 2176 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2177 /// Word/DoubleWord/QuadWord). 2178 /// \param[in] StepLen the delta indices number among the N byte element, if 2179 /// the mask is in increasing/decreasing order then it is 1/-1. 2180 /// \return true iff the mask is shuffling N byte elements. 2181 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2182 int StepLen) { 2183 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2184 "Unexpected element width."); 2185 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2186 2187 unsigned NumOfElem = 16 / Width; 2188 unsigned MaskVal[16]; // Width is never greater than 16 2189 for (unsigned i = 0; i < NumOfElem; ++i) { 2190 MaskVal[0] = N->getMaskElt(i * Width); 2191 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2192 return false; 2193 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2194 return false; 2195 } 2196 2197 for (unsigned int j = 1; j < Width; ++j) { 2198 MaskVal[j] = N->getMaskElt(i * Width + j); 2199 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2200 return false; 2201 } 2202 } 2203 } 2204 2205 return true; 2206 } 2207 2208 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2209 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2210 if (!isNByteElemShuffleMask(N, 4, 1)) 2211 return false; 2212 2213 // Now we look at mask elements 0,4,8,12 2214 unsigned M0 = N->getMaskElt(0) / 4; 2215 unsigned M1 = N->getMaskElt(4) / 4; 2216 unsigned M2 = N->getMaskElt(8) / 4; 2217 unsigned M3 = N->getMaskElt(12) / 4; 2218 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2219 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2220 2221 // Below, let H and L be arbitrary elements of the shuffle mask 2222 // where H is in the range [4,7] and L is in the range [0,3]. 2223 // H, 1, 2, 3 or L, 5, 6, 7 2224 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2225 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2226 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2227 InsertAtByte = IsLE ? 12 : 0; 2228 Swap = M0 < 4; 2229 return true; 2230 } 2231 // 0, H, 2, 3 or 4, L, 6, 7 2232 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2233 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2234 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2235 InsertAtByte = IsLE ? 8 : 4; 2236 Swap = M1 < 4; 2237 return true; 2238 } 2239 // 0, 1, H, 3 or 4, 5, L, 7 2240 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2241 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2242 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2243 InsertAtByte = IsLE ? 4 : 8; 2244 Swap = M2 < 4; 2245 return true; 2246 } 2247 // 0, 1, 2, H or 4, 5, 6, L 2248 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2249 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2250 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2251 InsertAtByte = IsLE ? 0 : 12; 2252 Swap = M3 < 4; 2253 return true; 2254 } 2255 2256 // If both vector operands for the shuffle are the same vector, the mask will 2257 // contain only elements from the first one and the second one will be undef. 2258 if (N->getOperand(1).isUndef()) { 2259 ShiftElts = 0; 2260 Swap = true; 2261 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2262 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2263 InsertAtByte = IsLE ? 12 : 0; 2264 return true; 2265 } 2266 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2267 InsertAtByte = IsLE ? 8 : 4; 2268 return true; 2269 } 2270 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2271 InsertAtByte = IsLE ? 4 : 8; 2272 return true; 2273 } 2274 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2275 InsertAtByte = IsLE ? 0 : 12; 2276 return true; 2277 } 2278 } 2279 2280 return false; 2281 } 2282 2283 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2284 bool &Swap, bool IsLE) { 2285 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2286 // Ensure each byte index of the word is consecutive. 2287 if (!isNByteElemShuffleMask(N, 4, 1)) 2288 return false; 2289 2290 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2291 unsigned M0 = N->getMaskElt(0) / 4; 2292 unsigned M1 = N->getMaskElt(4) / 4; 2293 unsigned M2 = N->getMaskElt(8) / 4; 2294 unsigned M3 = N->getMaskElt(12) / 4; 2295 2296 // If both vector operands for the shuffle are the same vector, the mask will 2297 // contain only elements from the first one and the second one will be undef. 2298 if (N->getOperand(1).isUndef()) { 2299 assert(M0 < 4 && "Indexing into an undef vector?"); 2300 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2301 return false; 2302 2303 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2304 Swap = false; 2305 return true; 2306 } 2307 2308 // Ensure each word index of the ShuffleVector Mask is consecutive. 2309 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2310 return false; 2311 2312 if (IsLE) { 2313 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2314 // Input vectors don't need to be swapped if the leading element 2315 // of the result is one of the 3 left elements of the second vector 2316 // (or if there is no shift to be done at all). 2317 Swap = false; 2318 ShiftElts = (8 - M0) % 8; 2319 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2320 // Input vectors need to be swapped if the leading element 2321 // of the result is one of the 3 left elements of the first vector 2322 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2323 Swap = true; 2324 ShiftElts = (4 - M0) % 4; 2325 } 2326 2327 return true; 2328 } else { // BE 2329 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2330 // Input vectors don't need to be swapped if the leading element 2331 // of the result is one of the 4 elements of the first vector. 2332 Swap = false; 2333 ShiftElts = M0; 2334 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2335 // Input vectors need to be swapped if the leading element 2336 // of the result is one of the 4 elements of the right vector. 2337 Swap = true; 2338 ShiftElts = M0 - 4; 2339 } 2340 2341 return true; 2342 } 2343 } 2344 2345 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2346 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2347 2348 if (!isNByteElemShuffleMask(N, Width, -1)) 2349 return false; 2350 2351 for (int i = 0; i < 16; i += Width) 2352 if (N->getMaskElt(i) != i + Width - 1) 2353 return false; 2354 2355 return true; 2356 } 2357 2358 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2359 return isXXBRShuffleMaskHelper(N, 2); 2360 } 2361 2362 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2363 return isXXBRShuffleMaskHelper(N, 4); 2364 } 2365 2366 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2367 return isXXBRShuffleMaskHelper(N, 8); 2368 } 2369 2370 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2371 return isXXBRShuffleMaskHelper(N, 16); 2372 } 2373 2374 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2375 /// if the inputs to the instruction should be swapped and set \p DM to the 2376 /// value for the immediate. 2377 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2378 /// AND element 0 of the result comes from the first input (LE) or second input 2379 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2380 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2381 /// mask. 2382 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2383 bool &Swap, bool IsLE) { 2384 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2385 2386 // Ensure each byte index of the double word is consecutive. 2387 if (!isNByteElemShuffleMask(N, 8, 1)) 2388 return false; 2389 2390 unsigned M0 = N->getMaskElt(0) / 8; 2391 unsigned M1 = N->getMaskElt(8) / 8; 2392 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2393 2394 // If both vector operands for the shuffle are the same vector, the mask will 2395 // contain only elements from the first one and the second one will be undef. 2396 if (N->getOperand(1).isUndef()) { 2397 if ((M0 | M1) < 2) { 2398 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2399 Swap = false; 2400 return true; 2401 } else 2402 return false; 2403 } 2404 2405 if (IsLE) { 2406 if (M0 > 1 && M1 < 2) { 2407 Swap = false; 2408 } else if (M0 < 2 && M1 > 1) { 2409 M0 = (M0 + 2) % 4; 2410 M1 = (M1 + 2) % 4; 2411 Swap = true; 2412 } else 2413 return false; 2414 2415 // Note: if control flow comes here that means Swap is already set above 2416 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2417 return true; 2418 } else { // BE 2419 if (M0 < 2 && M1 > 1) { 2420 Swap = false; 2421 } else if (M0 > 1 && M1 < 2) { 2422 M0 = (M0 + 2) % 4; 2423 M1 = (M1 + 2) % 4; 2424 Swap = true; 2425 } else 2426 return false; 2427 2428 // Note: if control flow comes here that means Swap is already set above 2429 DM = (M0 << 1) + (M1 & 1); 2430 return true; 2431 } 2432 } 2433 2434 2435 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2436 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2437 /// elements are counted from the left of the vector register). 2438 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2439 SelectionDAG &DAG) { 2440 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2441 assert(isSplatShuffleMask(SVOp, EltSize)); 2442 if (DAG.getDataLayout().isLittleEndian()) 2443 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2444 else 2445 return SVOp->getMaskElt(0) / EltSize; 2446 } 2447 2448 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2449 /// by using a vspltis[bhw] instruction of the specified element size, return 2450 /// the constant being splatted. The ByteSize field indicates the number of 2451 /// bytes of each element [124] -> [bhw]. 2452 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2453 SDValue OpVal; 2454 2455 // If ByteSize of the splat is bigger than the element size of the 2456 // build_vector, then we have a case where we are checking for a splat where 2457 // multiple elements of the buildvector are folded together into a single 2458 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2459 unsigned EltSize = 16/N->getNumOperands(); 2460 if (EltSize < ByteSize) { 2461 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2462 SDValue UniquedVals[4]; 2463 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2464 2465 // See if all of the elements in the buildvector agree across. 2466 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2467 if (N->getOperand(i).isUndef()) continue; 2468 // If the element isn't a constant, bail fully out. 2469 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2470 2471 if (!UniquedVals[i&(Multiple-1)].getNode()) 2472 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2473 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2474 return SDValue(); // no match. 2475 } 2476 2477 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2478 // either constant or undef values that are identical for each chunk. See 2479 // if these chunks can form into a larger vspltis*. 2480 2481 // Check to see if all of the leading entries are either 0 or -1. If 2482 // neither, then this won't fit into the immediate field. 2483 bool LeadingZero = true; 2484 bool LeadingOnes = true; 2485 for (unsigned i = 0; i != Multiple-1; ++i) { 2486 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2487 2488 LeadingZero &= isNullConstant(UniquedVals[i]); 2489 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2490 } 2491 // Finally, check the least significant entry. 2492 if (LeadingZero) { 2493 if (!UniquedVals[Multiple-1].getNode()) 2494 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2495 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2496 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2497 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2498 } 2499 if (LeadingOnes) { 2500 if (!UniquedVals[Multiple-1].getNode()) 2501 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2502 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2503 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2504 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2505 } 2506 2507 return SDValue(); 2508 } 2509 2510 // Check to see if this buildvec has a single non-undef value in its elements. 2511 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2512 if (N->getOperand(i).isUndef()) continue; 2513 if (!OpVal.getNode()) 2514 OpVal = N->getOperand(i); 2515 else if (OpVal != N->getOperand(i)) 2516 return SDValue(); 2517 } 2518 2519 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2520 2521 unsigned ValSizeInBytes = EltSize; 2522 uint64_t Value = 0; 2523 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2524 Value = CN->getZExtValue(); 2525 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2526 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2527 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2528 } 2529 2530 // If the splat value is larger than the element value, then we can never do 2531 // this splat. The only case that we could fit the replicated bits into our 2532 // immediate field for would be zero, and we prefer to use vxor for it. 2533 if (ValSizeInBytes < ByteSize) return SDValue(); 2534 2535 // If the element value is larger than the splat value, check if it consists 2536 // of a repeated bit pattern of size ByteSize. 2537 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2538 return SDValue(); 2539 2540 // Properly sign extend the value. 2541 int MaskVal = SignExtend32(Value, ByteSize * 8); 2542 2543 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2544 if (MaskVal == 0) return SDValue(); 2545 2546 // Finally, if this value fits in a 5 bit sext field, return it 2547 if (SignExtend32<5>(MaskVal) == MaskVal) 2548 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2549 return SDValue(); 2550 } 2551 2552 //===----------------------------------------------------------------------===// 2553 // Addressing Mode Selection 2554 //===----------------------------------------------------------------------===// 2555 2556 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2557 /// or 64-bit immediate, and if the value can be accurately represented as a 2558 /// sign extension from a 16-bit value. If so, this returns true and the 2559 /// immediate. 2560 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2561 if (!isa<ConstantSDNode>(N)) 2562 return false; 2563 2564 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2565 if (N->getValueType(0) == MVT::i32) 2566 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2567 else 2568 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2569 } 2570 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2571 return isIntS16Immediate(Op.getNode(), Imm); 2572 } 2573 2574 /// Used when computing address flags for selecting loads and stores. 2575 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2576 /// An OR of two provably disjoint values is equivalent to an ADD. 2577 /// Most PPC load/store instructions compute the effective address as a sum, 2578 /// so doing this conversion is useful. 2579 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2580 if (N.getOpcode() != ISD::OR) 2581 return false; 2582 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2583 if (!LHSKnown.Zero.getBoolValue()) 2584 return false; 2585 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2586 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2587 } 2588 2589 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2590 /// be represented as an indexed [r+r] operation. 2591 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2592 SDValue &Index, 2593 SelectionDAG &DAG) const { 2594 for (SDNode *U : N->uses()) { 2595 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2596 if (Memop->getMemoryVT() == MVT::f64) { 2597 Base = N.getOperand(0); 2598 Index = N.getOperand(1); 2599 return true; 2600 } 2601 } 2602 } 2603 return false; 2604 } 2605 2606 /// isIntS34Immediate - This method tests if value of node given can be 2607 /// accurately represented as a sign extension from a 34-bit value. If so, 2608 /// this returns true and the immediate. 2609 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2610 if (!isa<ConstantSDNode>(N)) 2611 return false; 2612 2613 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2614 return isInt<34>(Imm); 2615 } 2616 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2617 return isIntS34Immediate(Op.getNode(), Imm); 2618 } 2619 2620 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2621 /// can be represented as an indexed [r+r] operation. Returns false if it 2622 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2623 /// non-zero and N can be represented by a base register plus a signed 16-bit 2624 /// displacement, make a more precise judgement by checking (displacement % \p 2625 /// EncodingAlignment). 2626 bool PPCTargetLowering::SelectAddressRegReg( 2627 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2628 MaybeAlign EncodingAlignment) const { 2629 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2630 // a [pc+imm]. 2631 if (SelectAddressPCRel(N, Base)) 2632 return false; 2633 2634 int16_t Imm = 0; 2635 if (N.getOpcode() == ISD::ADD) { 2636 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2637 // SPE load/store can only handle 8-bit offsets. 2638 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2639 return true; 2640 if (isIntS16Immediate(N.getOperand(1), Imm) && 2641 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2642 return false; // r+i 2643 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2644 return false; // r+i 2645 2646 Base = N.getOperand(0); 2647 Index = N.getOperand(1); 2648 return true; 2649 } else if (N.getOpcode() == ISD::OR) { 2650 if (isIntS16Immediate(N.getOperand(1), Imm) && 2651 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2652 return false; // r+i can fold it if we can. 2653 2654 // If this is an or of disjoint bitfields, we can codegen this as an add 2655 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2656 // disjoint. 2657 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2658 2659 if (LHSKnown.Zero.getBoolValue()) { 2660 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2661 // If all of the bits are known zero on the LHS or RHS, the add won't 2662 // carry. 2663 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2664 Base = N.getOperand(0); 2665 Index = N.getOperand(1); 2666 return true; 2667 } 2668 } 2669 } 2670 2671 return false; 2672 } 2673 2674 // If we happen to be doing an i64 load or store into a stack slot that has 2675 // less than a 4-byte alignment, then the frame-index elimination may need to 2676 // use an indexed load or store instruction (because the offset may not be a 2677 // multiple of 4). The extra register needed to hold the offset comes from the 2678 // register scavenger, and it is possible that the scavenger will need to use 2679 // an emergency spill slot. As a result, we need to make sure that a spill slot 2680 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2681 // stack slot. 2682 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2683 // FIXME: This does not handle the LWA case. 2684 if (VT != MVT::i64) 2685 return; 2686 2687 // NOTE: We'll exclude negative FIs here, which come from argument 2688 // lowering, because there are no known test cases triggering this problem 2689 // using packed structures (or similar). We can remove this exclusion if 2690 // we find such a test case. The reason why this is so test-case driven is 2691 // because this entire 'fixup' is only to prevent crashes (from the 2692 // register scavenger) on not-really-valid inputs. For example, if we have: 2693 // %a = alloca i1 2694 // %b = bitcast i1* %a to i64* 2695 // store i64* a, i64 b 2696 // then the store should really be marked as 'align 1', but is not. If it 2697 // were marked as 'align 1' then the indexed form would have been 2698 // instruction-selected initially, and the problem this 'fixup' is preventing 2699 // won't happen regardless. 2700 if (FrameIdx < 0) 2701 return; 2702 2703 MachineFunction &MF = DAG.getMachineFunction(); 2704 MachineFrameInfo &MFI = MF.getFrameInfo(); 2705 2706 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2707 return; 2708 2709 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2710 FuncInfo->setHasNonRISpills(); 2711 } 2712 2713 /// Returns true if the address N can be represented by a base register plus 2714 /// a signed 16-bit displacement [r+imm], and if it is not better 2715 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2716 /// displacements that are multiples of that value. 2717 bool PPCTargetLowering::SelectAddressRegImm( 2718 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2719 MaybeAlign EncodingAlignment) const { 2720 // FIXME dl should come from parent load or store, not from address 2721 SDLoc dl(N); 2722 2723 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2724 // a [pc+imm]. 2725 if (SelectAddressPCRel(N, Base)) 2726 return false; 2727 2728 // If this can be more profitably realized as r+r, fail. 2729 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2730 return false; 2731 2732 if (N.getOpcode() == ISD::ADD) { 2733 int16_t imm = 0; 2734 if (isIntS16Immediate(N.getOperand(1), imm) && 2735 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2736 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2737 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2738 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2739 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2740 } else { 2741 Base = N.getOperand(0); 2742 } 2743 return true; // [r+i] 2744 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2745 // Match LOAD (ADD (X, Lo(G))). 2746 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2747 && "Cannot handle constant offsets yet!"); 2748 Disp = N.getOperand(1).getOperand(0); // The global address. 2749 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2750 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2751 Disp.getOpcode() == ISD::TargetConstantPool || 2752 Disp.getOpcode() == ISD::TargetJumpTable); 2753 Base = N.getOperand(0); 2754 return true; // [&g+r] 2755 } 2756 } else if (N.getOpcode() == ISD::OR) { 2757 int16_t imm = 0; 2758 if (isIntS16Immediate(N.getOperand(1), imm) && 2759 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2760 // If this is an or of disjoint bitfields, we can codegen this as an add 2761 // (for better address arithmetic) if the LHS and RHS of the OR are 2762 // provably disjoint. 2763 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2764 2765 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2766 // If all of the bits are known zero on the LHS or RHS, the add won't 2767 // carry. 2768 if (FrameIndexSDNode *FI = 2769 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2770 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2771 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2772 } else { 2773 Base = N.getOperand(0); 2774 } 2775 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2776 return true; 2777 } 2778 } 2779 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2780 // Loading from a constant address. 2781 2782 // If this address fits entirely in a 16-bit sext immediate field, codegen 2783 // this as "d, 0" 2784 int16_t Imm; 2785 if (isIntS16Immediate(CN, Imm) && 2786 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2787 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2788 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2789 CN->getValueType(0)); 2790 return true; 2791 } 2792 2793 // Handle 32-bit sext immediates with LIS + addr mode. 2794 if ((CN->getValueType(0) == MVT::i32 || 2795 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2796 (!EncodingAlignment || 2797 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2798 int Addr = (int)CN->getZExtValue(); 2799 2800 // Otherwise, break this down into an LIS + disp. 2801 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2802 2803 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2804 MVT::i32); 2805 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2806 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2807 return true; 2808 } 2809 } 2810 2811 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2812 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2813 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2814 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2815 } else 2816 Base = N; 2817 return true; // [r+0] 2818 } 2819 2820 /// Similar to the 16-bit case but for instructions that take a 34-bit 2821 /// displacement field (prefixed loads/stores). 2822 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2823 SDValue &Base, 2824 SelectionDAG &DAG) const { 2825 // Only on 64-bit targets. 2826 if (N.getValueType() != MVT::i64) 2827 return false; 2828 2829 SDLoc dl(N); 2830 int64_t Imm = 0; 2831 2832 if (N.getOpcode() == ISD::ADD) { 2833 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2834 return false; 2835 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2836 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2837 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2838 else 2839 Base = N.getOperand(0); 2840 return true; 2841 } 2842 2843 if (N.getOpcode() == ISD::OR) { 2844 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2845 return false; 2846 // If this is an or of disjoint bitfields, we can codegen this as an add 2847 // (for better address arithmetic) if the LHS and RHS of the OR are 2848 // provably disjoint. 2849 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2850 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2851 return false; 2852 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2853 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2854 else 2855 Base = N.getOperand(0); 2856 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2857 return true; 2858 } 2859 2860 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2861 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2862 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2863 return true; 2864 } 2865 2866 return false; 2867 } 2868 2869 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2870 /// represented as an indexed [r+r] operation. 2871 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2872 SDValue &Index, 2873 SelectionDAG &DAG) const { 2874 // Check to see if we can easily represent this as an [r+r] address. This 2875 // will fail if it thinks that the address is more profitably represented as 2876 // reg+imm, e.g. where imm = 0. 2877 if (SelectAddressRegReg(N, Base, Index, DAG)) 2878 return true; 2879 2880 // If the address is the result of an add, we will utilize the fact that the 2881 // address calculation includes an implicit add. However, we can reduce 2882 // register pressure if we do not materialize a constant just for use as the 2883 // index register. We only get rid of the add if it is not an add of a 2884 // value and a 16-bit signed constant and both have a single use. 2885 int16_t imm = 0; 2886 if (N.getOpcode() == ISD::ADD && 2887 (!isIntS16Immediate(N.getOperand(1), imm) || 2888 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2889 Base = N.getOperand(0); 2890 Index = N.getOperand(1); 2891 return true; 2892 } 2893 2894 // Otherwise, do it the hard way, using R0 as the base register. 2895 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2896 N.getValueType()); 2897 Index = N; 2898 return true; 2899 } 2900 2901 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2902 Ty *PCRelCand = dyn_cast<Ty>(N); 2903 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2904 } 2905 2906 /// Returns true if this address is a PC Relative address. 2907 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2908 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2909 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2910 // This is a materialize PC Relative node. Always select this as PC Relative. 2911 Base = N; 2912 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2913 return true; 2914 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2915 isValidPCRelNode<GlobalAddressSDNode>(N) || 2916 isValidPCRelNode<JumpTableSDNode>(N) || 2917 isValidPCRelNode<BlockAddressSDNode>(N)) 2918 return true; 2919 return false; 2920 } 2921 2922 /// Returns true if we should use a direct load into vector instruction 2923 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2924 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2925 2926 // If there are any other uses other than scalar to vector, then we should 2927 // keep it as a scalar load -> direct move pattern to prevent multiple 2928 // loads. 2929 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2930 if (!LD) 2931 return false; 2932 2933 EVT MemVT = LD->getMemoryVT(); 2934 if (!MemVT.isSimple()) 2935 return false; 2936 switch(MemVT.getSimpleVT().SimpleTy) { 2937 case MVT::i64: 2938 break; 2939 case MVT::i32: 2940 if (!ST.hasP8Vector()) 2941 return false; 2942 break; 2943 case MVT::i16: 2944 case MVT::i8: 2945 if (!ST.hasP9Vector()) 2946 return false; 2947 break; 2948 default: 2949 return false; 2950 } 2951 2952 SDValue LoadedVal(N, 0); 2953 if (!LoadedVal.hasOneUse()) 2954 return false; 2955 2956 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2957 UI != UE; ++UI) 2958 if (UI.getUse().get().getResNo() == 0 && 2959 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2960 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2961 return false; 2962 2963 return true; 2964 } 2965 2966 /// getPreIndexedAddressParts - returns true by value, base pointer and 2967 /// offset pointer and addressing mode by reference if the node's address 2968 /// can be legally represented as pre-indexed load / store address. 2969 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2970 SDValue &Offset, 2971 ISD::MemIndexedMode &AM, 2972 SelectionDAG &DAG) const { 2973 if (DisablePPCPreinc) return false; 2974 2975 bool isLoad = true; 2976 SDValue Ptr; 2977 EVT VT; 2978 unsigned Alignment; 2979 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2980 Ptr = LD->getBasePtr(); 2981 VT = LD->getMemoryVT(); 2982 Alignment = LD->getAlignment(); 2983 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2984 Ptr = ST->getBasePtr(); 2985 VT = ST->getMemoryVT(); 2986 Alignment = ST->getAlignment(); 2987 isLoad = false; 2988 } else 2989 return false; 2990 2991 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2992 // instructions because we can fold these into a more efficient instruction 2993 // instead, (such as LXSD). 2994 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2995 return false; 2996 } 2997 2998 // PowerPC doesn't have preinc load/store instructions for vectors 2999 if (VT.isVector()) 3000 return false; 3001 3002 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3003 // Common code will reject creating a pre-inc form if the base pointer 3004 // is a frame index, or if N is a store and the base pointer is either 3005 // the same as or a predecessor of the value being stored. Check for 3006 // those situations here, and try with swapped Base/Offset instead. 3007 bool Swap = false; 3008 3009 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3010 Swap = true; 3011 else if (!isLoad) { 3012 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3013 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3014 Swap = true; 3015 } 3016 3017 if (Swap) 3018 std::swap(Base, Offset); 3019 3020 AM = ISD::PRE_INC; 3021 return true; 3022 } 3023 3024 // LDU/STU can only handle immediates that are a multiple of 4. 3025 if (VT != MVT::i64) { 3026 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3027 return false; 3028 } else { 3029 // LDU/STU need an address with at least 4-byte alignment. 3030 if (Alignment < 4) 3031 return false; 3032 3033 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3034 return false; 3035 } 3036 3037 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3038 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3039 // sext i32 to i64 when addr mode is r+i. 3040 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3041 LD->getExtensionType() == ISD::SEXTLOAD && 3042 isa<ConstantSDNode>(Offset)) 3043 return false; 3044 } 3045 3046 AM = ISD::PRE_INC; 3047 return true; 3048 } 3049 3050 //===----------------------------------------------------------------------===// 3051 // LowerOperation implementation 3052 //===----------------------------------------------------------------------===// 3053 3054 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3055 /// and LoOpFlags to the target MO flags. 3056 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3057 unsigned &HiOpFlags, unsigned &LoOpFlags, 3058 const GlobalValue *GV = nullptr) { 3059 HiOpFlags = PPCII::MO_HA; 3060 LoOpFlags = PPCII::MO_LO; 3061 3062 // Don't use the pic base if not in PIC relocation model. 3063 if (IsPIC) { 3064 HiOpFlags |= PPCII::MO_PIC_FLAG; 3065 LoOpFlags |= PPCII::MO_PIC_FLAG; 3066 } 3067 } 3068 3069 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3070 SelectionDAG &DAG) { 3071 SDLoc DL(HiPart); 3072 EVT PtrVT = HiPart.getValueType(); 3073 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3074 3075 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3076 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3077 3078 // With PIC, the first instruction is actually "GR+hi(&G)". 3079 if (isPIC) 3080 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3081 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3082 3083 // Generate non-pic code that has direct accesses to the constant pool. 3084 // The address of the global is just (hi(&g)+lo(&g)). 3085 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3086 } 3087 3088 static void setUsesTOCBasePtr(MachineFunction &MF) { 3089 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3090 FuncInfo->setUsesTOCBasePtr(); 3091 } 3092 3093 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3094 setUsesTOCBasePtr(DAG.getMachineFunction()); 3095 } 3096 3097 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3098 SDValue GA) const { 3099 const bool Is64Bit = Subtarget.isPPC64(); 3100 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3101 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3102 : Subtarget.isAIXABI() 3103 ? DAG.getRegister(PPC::R2, VT) 3104 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3105 SDValue Ops[] = { GA, Reg }; 3106 return DAG.getMemIntrinsicNode( 3107 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3108 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3109 MachineMemOperand::MOLoad); 3110 } 3111 3112 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3113 SelectionDAG &DAG) const { 3114 EVT PtrVT = Op.getValueType(); 3115 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3116 const Constant *C = CP->getConstVal(); 3117 3118 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3119 // The actual address of the GlobalValue is stored in the TOC. 3120 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3121 if (Subtarget.isUsingPCRelativeCalls()) { 3122 SDLoc DL(CP); 3123 EVT Ty = getPointerTy(DAG.getDataLayout()); 3124 SDValue ConstPool = DAG.getTargetConstantPool( 3125 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3126 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3127 } 3128 setUsesTOCBasePtr(DAG); 3129 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3130 return getTOCEntry(DAG, SDLoc(CP), GA); 3131 } 3132 3133 unsigned MOHiFlag, MOLoFlag; 3134 bool IsPIC = isPositionIndependent(); 3135 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3136 3137 if (IsPIC && Subtarget.isSVR4ABI()) { 3138 SDValue GA = 3139 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3140 return getTOCEntry(DAG, SDLoc(CP), GA); 3141 } 3142 3143 SDValue CPIHi = 3144 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3145 SDValue CPILo = 3146 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3147 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3148 } 3149 3150 // For 64-bit PowerPC, prefer the more compact relative encodings. 3151 // This trades 32 bits per jump table entry for one or two instructions 3152 // on the jump site. 3153 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3154 if (isJumpTableRelative()) 3155 return MachineJumpTableInfo::EK_LabelDifference32; 3156 3157 return TargetLowering::getJumpTableEncoding(); 3158 } 3159 3160 bool PPCTargetLowering::isJumpTableRelative() const { 3161 if (UseAbsoluteJumpTables) 3162 return false; 3163 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3164 return true; 3165 return TargetLowering::isJumpTableRelative(); 3166 } 3167 3168 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3169 SelectionDAG &DAG) const { 3170 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3171 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3172 3173 switch (getTargetMachine().getCodeModel()) { 3174 case CodeModel::Small: 3175 case CodeModel::Medium: 3176 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3177 default: 3178 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3179 getPointerTy(DAG.getDataLayout())); 3180 } 3181 } 3182 3183 const MCExpr * 3184 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3185 unsigned JTI, 3186 MCContext &Ctx) const { 3187 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3188 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3189 3190 switch (getTargetMachine().getCodeModel()) { 3191 case CodeModel::Small: 3192 case CodeModel::Medium: 3193 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3194 default: 3195 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3196 } 3197 } 3198 3199 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3200 EVT PtrVT = Op.getValueType(); 3201 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3202 3203 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3204 if (Subtarget.isUsingPCRelativeCalls()) { 3205 SDLoc DL(JT); 3206 EVT Ty = getPointerTy(DAG.getDataLayout()); 3207 SDValue GA = 3208 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3209 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3210 return MatAddr; 3211 } 3212 3213 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3214 // The actual address of the GlobalValue is stored in the TOC. 3215 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3216 setUsesTOCBasePtr(DAG); 3217 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3218 return getTOCEntry(DAG, SDLoc(JT), GA); 3219 } 3220 3221 unsigned MOHiFlag, MOLoFlag; 3222 bool IsPIC = isPositionIndependent(); 3223 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3224 3225 if (IsPIC && Subtarget.isSVR4ABI()) { 3226 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3227 PPCII::MO_PIC_FLAG); 3228 return getTOCEntry(DAG, SDLoc(GA), GA); 3229 } 3230 3231 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3232 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3233 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3234 } 3235 3236 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3237 SelectionDAG &DAG) const { 3238 EVT PtrVT = Op.getValueType(); 3239 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3240 const BlockAddress *BA = BASDN->getBlockAddress(); 3241 3242 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3243 if (Subtarget.isUsingPCRelativeCalls()) { 3244 SDLoc DL(BASDN); 3245 EVT Ty = getPointerTy(DAG.getDataLayout()); 3246 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3247 PPCII::MO_PCREL_FLAG); 3248 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3249 return MatAddr; 3250 } 3251 3252 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3253 // The actual BlockAddress is stored in the TOC. 3254 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3255 setUsesTOCBasePtr(DAG); 3256 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3257 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3258 } 3259 3260 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3261 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3262 return getTOCEntry( 3263 DAG, SDLoc(BASDN), 3264 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3265 3266 unsigned MOHiFlag, MOLoFlag; 3267 bool IsPIC = isPositionIndependent(); 3268 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3269 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3270 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3271 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3272 } 3273 3274 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3275 SelectionDAG &DAG) const { 3276 if (Subtarget.isAIXABI()) 3277 return LowerGlobalTLSAddressAIX(Op, DAG); 3278 3279 return LowerGlobalTLSAddressLinux(Op, DAG); 3280 } 3281 3282 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3283 SelectionDAG &DAG) const { 3284 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3285 3286 if (DAG.getTarget().useEmulatedTLS()) 3287 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3288 3289 SDLoc dl(GA); 3290 const GlobalValue *GV = GA->getGlobal(); 3291 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3292 3293 // The general-dynamic model is the only access model supported for now, so 3294 // all the GlobalTLSAddress nodes are lowered with this model. 3295 // We need to generate two TOC entries, one for the variable offset, one for 3296 // the region handle. The global address for the TOC entry of the region 3297 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3298 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3299 SDValue VariableOffsetTGA = 3300 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3301 SDValue RegionHandleTGA = 3302 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3303 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3304 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3305 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3306 RegionHandle); 3307 } 3308 3309 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3310 SelectionDAG &DAG) const { 3311 // FIXME: TLS addresses currently use medium model code sequences, 3312 // which is the most useful form. Eventually support for small and 3313 // large models could be added if users need it, at the cost of 3314 // additional complexity. 3315 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3316 if (DAG.getTarget().useEmulatedTLS()) 3317 return LowerToTLSEmulatedModel(GA, DAG); 3318 3319 SDLoc dl(GA); 3320 const GlobalValue *GV = GA->getGlobal(); 3321 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3322 bool is64bit = Subtarget.isPPC64(); 3323 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3324 PICLevel::Level picLevel = M->getPICLevel(); 3325 3326 const TargetMachine &TM = getTargetMachine(); 3327 TLSModel::Model Model = TM.getTLSModel(GV); 3328 3329 if (Model == TLSModel::LocalExec) { 3330 if (Subtarget.isUsingPCRelativeCalls()) { 3331 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3332 SDValue TGA = DAG.getTargetGlobalAddress( 3333 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3334 SDValue MatAddr = 3335 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3336 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3337 } 3338 3339 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3340 PPCII::MO_TPREL_HA); 3341 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3342 PPCII::MO_TPREL_LO); 3343 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3344 : DAG.getRegister(PPC::R2, MVT::i32); 3345 3346 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3347 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3348 } 3349 3350 if (Model == TLSModel::InitialExec) { 3351 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3352 SDValue TGA = DAG.getTargetGlobalAddress( 3353 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3354 SDValue TGATLS = DAG.getTargetGlobalAddress( 3355 GV, dl, PtrVT, 0, 3356 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3357 SDValue TPOffset; 3358 if (IsPCRel) { 3359 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3360 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3361 MachinePointerInfo()); 3362 } else { 3363 SDValue GOTPtr; 3364 if (is64bit) { 3365 setUsesTOCBasePtr(DAG); 3366 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3367 GOTPtr = 3368 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3369 } else { 3370 if (!TM.isPositionIndependent()) 3371 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3372 else if (picLevel == PICLevel::SmallPIC) 3373 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3374 else 3375 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3376 } 3377 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3378 } 3379 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3380 } 3381 3382 if (Model == TLSModel::GeneralDynamic) { 3383 if (Subtarget.isUsingPCRelativeCalls()) { 3384 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3385 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3386 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3387 } 3388 3389 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3390 SDValue GOTPtr; 3391 if (is64bit) { 3392 setUsesTOCBasePtr(DAG); 3393 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3394 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3395 GOTReg, TGA); 3396 } else { 3397 if (picLevel == PICLevel::SmallPIC) 3398 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3399 else 3400 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3401 } 3402 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3403 GOTPtr, TGA, TGA); 3404 } 3405 3406 if (Model == TLSModel::LocalDynamic) { 3407 if (Subtarget.isUsingPCRelativeCalls()) { 3408 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3409 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3410 SDValue MatPCRel = 3411 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3412 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3413 } 3414 3415 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3416 SDValue GOTPtr; 3417 if (is64bit) { 3418 setUsesTOCBasePtr(DAG); 3419 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3420 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3421 GOTReg, TGA); 3422 } else { 3423 if (picLevel == PICLevel::SmallPIC) 3424 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3425 else 3426 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3427 } 3428 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3429 PtrVT, GOTPtr, TGA, TGA); 3430 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3431 PtrVT, TLSAddr, TGA); 3432 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3433 } 3434 3435 llvm_unreachable("Unknown TLS model!"); 3436 } 3437 3438 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3439 SelectionDAG &DAG) const { 3440 EVT PtrVT = Op.getValueType(); 3441 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3442 SDLoc DL(GSDN); 3443 const GlobalValue *GV = GSDN->getGlobal(); 3444 3445 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3446 // The actual address of the GlobalValue is stored in the TOC. 3447 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3448 if (Subtarget.isUsingPCRelativeCalls()) { 3449 EVT Ty = getPointerTy(DAG.getDataLayout()); 3450 if (isAccessedAsGotIndirect(Op)) { 3451 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3452 PPCII::MO_PCREL_FLAG | 3453 PPCII::MO_GOT_FLAG); 3454 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3455 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3456 MachinePointerInfo()); 3457 return Load; 3458 } else { 3459 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3460 PPCII::MO_PCREL_FLAG); 3461 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3462 } 3463 } 3464 setUsesTOCBasePtr(DAG); 3465 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3466 return getTOCEntry(DAG, DL, GA); 3467 } 3468 3469 unsigned MOHiFlag, MOLoFlag; 3470 bool IsPIC = isPositionIndependent(); 3471 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3472 3473 if (IsPIC && Subtarget.isSVR4ABI()) { 3474 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3475 GSDN->getOffset(), 3476 PPCII::MO_PIC_FLAG); 3477 return getTOCEntry(DAG, DL, GA); 3478 } 3479 3480 SDValue GAHi = 3481 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3482 SDValue GALo = 3483 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3484 3485 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3486 } 3487 3488 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3489 bool IsStrict = Op->isStrictFPOpcode(); 3490 ISD::CondCode CC = 3491 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3492 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3493 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3494 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3495 EVT LHSVT = LHS.getValueType(); 3496 SDLoc dl(Op); 3497 3498 // Soften the setcc with libcall if it is fp128. 3499 if (LHSVT == MVT::f128) { 3500 assert(!Subtarget.hasP9Vector() && 3501 "SETCC for f128 is already legal under Power9!"); 3502 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3503 Op->getOpcode() == ISD::STRICT_FSETCCS); 3504 if (RHS.getNode()) 3505 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3506 DAG.getCondCode(CC)); 3507 if (IsStrict) 3508 return DAG.getMergeValues({LHS, Chain}, dl); 3509 return LHS; 3510 } 3511 3512 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3513 3514 if (Op.getValueType() == MVT::v2i64) { 3515 // When the operands themselves are v2i64 values, we need to do something 3516 // special because VSX has no underlying comparison operations for these. 3517 if (LHS.getValueType() == MVT::v2i64) { 3518 // Equality can be handled by casting to the legal type for Altivec 3519 // comparisons, everything else needs to be expanded. 3520 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3521 return SDValue(); 3522 SDValue SetCC32 = DAG.getSetCC( 3523 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3524 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3525 int ShuffV[] = {1, 0, 3, 2}; 3526 SDValue Shuff = 3527 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3528 return DAG.getBitcast(MVT::v2i64, 3529 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3530 dl, MVT::v4i32, Shuff, SetCC32)); 3531 } 3532 3533 // We handle most of these in the usual way. 3534 return Op; 3535 } 3536 3537 // If we're comparing for equality to zero, expose the fact that this is 3538 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3539 // fold the new nodes. 3540 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3541 return V; 3542 3543 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3544 // Leave comparisons against 0 and -1 alone for now, since they're usually 3545 // optimized. FIXME: revisit this when we can custom lower all setcc 3546 // optimizations. 3547 if (C->isAllOnes() || C->isZero()) 3548 return SDValue(); 3549 } 3550 3551 // If we have an integer seteq/setne, turn it into a compare against zero 3552 // by xor'ing the rhs with the lhs, which is faster than setting a 3553 // condition register, reading it back out, and masking the correct bit. The 3554 // normal approach here uses sub to do this instead of xor. Using xor exposes 3555 // the result to other bit-twiddling opportunities. 3556 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3557 EVT VT = Op.getValueType(); 3558 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3559 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3560 } 3561 return SDValue(); 3562 } 3563 3564 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3565 SDNode *Node = Op.getNode(); 3566 EVT VT = Node->getValueType(0); 3567 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3568 SDValue InChain = Node->getOperand(0); 3569 SDValue VAListPtr = Node->getOperand(1); 3570 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3571 SDLoc dl(Node); 3572 3573 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3574 3575 // gpr_index 3576 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3577 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3578 InChain = GprIndex.getValue(1); 3579 3580 if (VT == MVT::i64) { 3581 // Check if GprIndex is even 3582 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3583 DAG.getConstant(1, dl, MVT::i32)); 3584 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3585 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3586 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3587 DAG.getConstant(1, dl, MVT::i32)); 3588 // Align GprIndex to be even if it isn't 3589 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3590 GprIndex); 3591 } 3592 3593 // fpr index is 1 byte after gpr 3594 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3595 DAG.getConstant(1, dl, MVT::i32)); 3596 3597 // fpr 3598 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3599 FprPtr, MachinePointerInfo(SV), MVT::i8); 3600 InChain = FprIndex.getValue(1); 3601 3602 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3603 DAG.getConstant(8, dl, MVT::i32)); 3604 3605 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3606 DAG.getConstant(4, dl, MVT::i32)); 3607 3608 // areas 3609 SDValue OverflowArea = 3610 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3611 InChain = OverflowArea.getValue(1); 3612 3613 SDValue RegSaveArea = 3614 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3615 InChain = RegSaveArea.getValue(1); 3616 3617 // select overflow_area if index > 8 3618 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3619 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3620 3621 // adjustment constant gpr_index * 4/8 3622 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3623 VT.isInteger() ? GprIndex : FprIndex, 3624 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3625 MVT::i32)); 3626 3627 // OurReg = RegSaveArea + RegConstant 3628 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3629 RegConstant); 3630 3631 // Floating types are 32 bytes into RegSaveArea 3632 if (VT.isFloatingPoint()) 3633 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3634 DAG.getConstant(32, dl, MVT::i32)); 3635 3636 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3637 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3638 VT.isInteger() ? GprIndex : FprIndex, 3639 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3640 MVT::i32)); 3641 3642 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3643 VT.isInteger() ? VAListPtr : FprPtr, 3644 MachinePointerInfo(SV), MVT::i8); 3645 3646 // determine if we should load from reg_save_area or overflow_area 3647 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3648 3649 // increase overflow_area by 4/8 if gpr/fpr > 8 3650 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3651 DAG.getConstant(VT.isInteger() ? 4 : 8, 3652 dl, MVT::i32)); 3653 3654 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3655 OverflowAreaPlusN); 3656 3657 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3658 MachinePointerInfo(), MVT::i32); 3659 3660 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3661 } 3662 3663 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3664 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3665 3666 // We have to copy the entire va_list struct: 3667 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3668 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3669 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3670 false, true, false, MachinePointerInfo(), 3671 MachinePointerInfo()); 3672 } 3673 3674 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3675 SelectionDAG &DAG) const { 3676 if (Subtarget.isAIXABI()) 3677 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3678 3679 return Op.getOperand(0); 3680 } 3681 3682 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3683 MachineFunction &MF = DAG.getMachineFunction(); 3684 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3685 3686 assert((Op.getOpcode() == ISD::INLINEASM || 3687 Op.getOpcode() == ISD::INLINEASM_BR) && 3688 "Expecting Inline ASM node."); 3689 3690 // If an LR store is already known to be required then there is not point in 3691 // checking this ASM as well. 3692 if (MFI.isLRStoreRequired()) 3693 return Op; 3694 3695 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3696 // type MVT::Glue. We want to ignore this last operand if that is the case. 3697 unsigned NumOps = Op.getNumOperands(); 3698 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3699 --NumOps; 3700 3701 // Check all operands that may contain the LR. 3702 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3703 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3704 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3705 ++i; // Skip the ID value. 3706 3707 switch (InlineAsm::getKind(Flags)) { 3708 default: 3709 llvm_unreachable("Bad flags!"); 3710 case InlineAsm::Kind_RegUse: 3711 case InlineAsm::Kind_Imm: 3712 case InlineAsm::Kind_Mem: 3713 i += NumVals; 3714 break; 3715 case InlineAsm::Kind_Clobber: 3716 case InlineAsm::Kind_RegDef: 3717 case InlineAsm::Kind_RegDefEarlyClobber: { 3718 for (; NumVals; --NumVals, ++i) { 3719 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3720 if (Reg != PPC::LR && Reg != PPC::LR8) 3721 continue; 3722 MFI.setLRStoreRequired(); 3723 return Op; 3724 } 3725 break; 3726 } 3727 } 3728 } 3729 3730 return Op; 3731 } 3732 3733 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3734 SelectionDAG &DAG) const { 3735 if (Subtarget.isAIXABI()) 3736 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3737 3738 SDValue Chain = Op.getOperand(0); 3739 SDValue Trmp = Op.getOperand(1); // trampoline 3740 SDValue FPtr = Op.getOperand(2); // nested function 3741 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3742 SDLoc dl(Op); 3743 3744 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3745 bool isPPC64 = (PtrVT == MVT::i64); 3746 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3747 3748 TargetLowering::ArgListTy Args; 3749 TargetLowering::ArgListEntry Entry; 3750 3751 Entry.Ty = IntPtrTy; 3752 Entry.Node = Trmp; Args.push_back(Entry); 3753 3754 // TrampSize == (isPPC64 ? 48 : 40); 3755 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3756 isPPC64 ? MVT::i64 : MVT::i32); 3757 Args.push_back(Entry); 3758 3759 Entry.Node = FPtr; Args.push_back(Entry); 3760 Entry.Node = Nest; Args.push_back(Entry); 3761 3762 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3763 TargetLowering::CallLoweringInfo CLI(DAG); 3764 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3765 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3766 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3767 3768 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3769 return CallResult.second; 3770 } 3771 3772 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3773 MachineFunction &MF = DAG.getMachineFunction(); 3774 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3775 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3776 3777 SDLoc dl(Op); 3778 3779 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3780 // vastart just stores the address of the VarArgsFrameIndex slot into the 3781 // memory location argument. 3782 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3783 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3784 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3785 MachinePointerInfo(SV)); 3786 } 3787 3788 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3789 // We suppose the given va_list is already allocated. 3790 // 3791 // typedef struct { 3792 // char gpr; /* index into the array of 8 GPRs 3793 // * stored in the register save area 3794 // * gpr=0 corresponds to r3, 3795 // * gpr=1 to r4, etc. 3796 // */ 3797 // char fpr; /* index into the array of 8 FPRs 3798 // * stored in the register save area 3799 // * fpr=0 corresponds to f1, 3800 // * fpr=1 to f2, etc. 3801 // */ 3802 // char *overflow_arg_area; 3803 // /* location on stack that holds 3804 // * the next overflow argument 3805 // */ 3806 // char *reg_save_area; 3807 // /* where r3:r10 and f1:f8 (if saved) 3808 // * are stored 3809 // */ 3810 // } va_list[1]; 3811 3812 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3813 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3814 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3815 PtrVT); 3816 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3817 PtrVT); 3818 3819 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3820 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3821 3822 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3823 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3824 3825 uint64_t FPROffset = 1; 3826 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3827 3828 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3829 3830 // Store first byte : number of int regs 3831 SDValue firstStore = 3832 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3833 MachinePointerInfo(SV), MVT::i8); 3834 uint64_t nextOffset = FPROffset; 3835 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3836 ConstFPROffset); 3837 3838 // Store second byte : number of float regs 3839 SDValue secondStore = 3840 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3841 MachinePointerInfo(SV, nextOffset), MVT::i8); 3842 nextOffset += StackOffset; 3843 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3844 3845 // Store second word : arguments given on stack 3846 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3847 MachinePointerInfo(SV, nextOffset)); 3848 nextOffset += FrameOffset; 3849 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3850 3851 // Store third word : arguments given in registers 3852 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3853 MachinePointerInfo(SV, nextOffset)); 3854 } 3855 3856 /// FPR - The set of FP registers that should be allocated for arguments 3857 /// on Darwin and AIX. 3858 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3859 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3860 PPC::F11, PPC::F12, PPC::F13}; 3861 3862 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3863 /// the stack. 3864 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3865 unsigned PtrByteSize) { 3866 unsigned ArgSize = ArgVT.getStoreSize(); 3867 if (Flags.isByVal()) 3868 ArgSize = Flags.getByValSize(); 3869 3870 // Round up to multiples of the pointer size, except for array members, 3871 // which are always packed. 3872 if (!Flags.isInConsecutiveRegs()) 3873 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3874 3875 return ArgSize; 3876 } 3877 3878 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3879 /// on the stack. 3880 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3881 ISD::ArgFlagsTy Flags, 3882 unsigned PtrByteSize) { 3883 Align Alignment(PtrByteSize); 3884 3885 // Altivec parameters are padded to a 16 byte boundary. 3886 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3887 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3888 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3889 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3890 Alignment = Align(16); 3891 3892 // ByVal parameters are aligned as requested. 3893 if (Flags.isByVal()) { 3894 auto BVAlign = Flags.getNonZeroByValAlign(); 3895 if (BVAlign > PtrByteSize) { 3896 if (BVAlign.value() % PtrByteSize != 0) 3897 llvm_unreachable( 3898 "ByVal alignment is not a multiple of the pointer size"); 3899 3900 Alignment = BVAlign; 3901 } 3902 } 3903 3904 // Array members are always packed to their original alignment. 3905 if (Flags.isInConsecutiveRegs()) { 3906 // If the array member was split into multiple registers, the first 3907 // needs to be aligned to the size of the full type. (Except for 3908 // ppcf128, which is only aligned as its f64 components.) 3909 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3910 Alignment = Align(OrigVT.getStoreSize()); 3911 else 3912 Alignment = Align(ArgVT.getStoreSize()); 3913 } 3914 3915 return Alignment; 3916 } 3917 3918 /// CalculateStackSlotUsed - Return whether this argument will use its 3919 /// stack slot (instead of being passed in registers). ArgOffset, 3920 /// AvailableFPRs, and AvailableVRs must hold the current argument 3921 /// position, and will be updated to account for this argument. 3922 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3923 unsigned PtrByteSize, unsigned LinkageSize, 3924 unsigned ParamAreaSize, unsigned &ArgOffset, 3925 unsigned &AvailableFPRs, 3926 unsigned &AvailableVRs) { 3927 bool UseMemory = false; 3928 3929 // Respect alignment of argument on the stack. 3930 Align Alignment = 3931 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3932 ArgOffset = alignTo(ArgOffset, Alignment); 3933 // If there's no space left in the argument save area, we must 3934 // use memory (this check also catches zero-sized arguments). 3935 if (ArgOffset >= LinkageSize + ParamAreaSize) 3936 UseMemory = true; 3937 3938 // Allocate argument on the stack. 3939 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3940 if (Flags.isInConsecutiveRegsLast()) 3941 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3942 // If we overran the argument save area, we must use memory 3943 // (this check catches arguments passed partially in memory) 3944 if (ArgOffset > LinkageSize + ParamAreaSize) 3945 UseMemory = true; 3946 3947 // However, if the argument is actually passed in an FPR or a VR, 3948 // we don't use memory after all. 3949 if (!Flags.isByVal()) { 3950 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3951 if (AvailableFPRs > 0) { 3952 --AvailableFPRs; 3953 return false; 3954 } 3955 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3956 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3957 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3958 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3959 if (AvailableVRs > 0) { 3960 --AvailableVRs; 3961 return false; 3962 } 3963 } 3964 3965 return UseMemory; 3966 } 3967 3968 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3969 /// ensure minimum alignment required for target. 3970 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3971 unsigned NumBytes) { 3972 return alignTo(NumBytes, Lowering->getStackAlign()); 3973 } 3974 3975 SDValue PPCTargetLowering::LowerFormalArguments( 3976 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3977 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3978 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3979 if (Subtarget.isAIXABI()) 3980 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3981 InVals); 3982 if (Subtarget.is64BitELFABI()) 3983 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3984 InVals); 3985 assert(Subtarget.is32BitELFABI()); 3986 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3987 InVals); 3988 } 3989 3990 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3991 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3992 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3993 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3994 3995 // 32-bit SVR4 ABI Stack Frame Layout: 3996 // +-----------------------------------+ 3997 // +--> | Back chain | 3998 // | +-----------------------------------+ 3999 // | | Floating-point register save area | 4000 // | +-----------------------------------+ 4001 // | | General register save area | 4002 // | +-----------------------------------+ 4003 // | | CR save word | 4004 // | +-----------------------------------+ 4005 // | | VRSAVE save word | 4006 // | +-----------------------------------+ 4007 // | | Alignment padding | 4008 // | +-----------------------------------+ 4009 // | | Vector register save area | 4010 // | +-----------------------------------+ 4011 // | | Local variable space | 4012 // | +-----------------------------------+ 4013 // | | Parameter list area | 4014 // | +-----------------------------------+ 4015 // | | LR save word | 4016 // | +-----------------------------------+ 4017 // SP--> +--- | Back chain | 4018 // +-----------------------------------+ 4019 // 4020 // Specifications: 4021 // System V Application Binary Interface PowerPC Processor Supplement 4022 // AltiVec Technology Programming Interface Manual 4023 4024 MachineFunction &MF = DAG.getMachineFunction(); 4025 MachineFrameInfo &MFI = MF.getFrameInfo(); 4026 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4027 4028 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4029 // Potential tail calls could cause overwriting of argument stack slots. 4030 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4031 (CallConv == CallingConv::Fast)); 4032 const Align PtrAlign(4); 4033 4034 // Assign locations to all of the incoming arguments. 4035 SmallVector<CCValAssign, 16> ArgLocs; 4036 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4037 *DAG.getContext()); 4038 4039 // Reserve space for the linkage area on the stack. 4040 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4041 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4042 if (useSoftFloat()) 4043 CCInfo.PreAnalyzeFormalArguments(Ins); 4044 4045 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4046 CCInfo.clearWasPPCF128(); 4047 4048 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4049 CCValAssign &VA = ArgLocs[i]; 4050 4051 // Arguments stored in registers. 4052 if (VA.isRegLoc()) { 4053 const TargetRegisterClass *RC; 4054 EVT ValVT = VA.getValVT(); 4055 4056 switch (ValVT.getSimpleVT().SimpleTy) { 4057 default: 4058 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4059 case MVT::i1: 4060 case MVT::i32: 4061 RC = &PPC::GPRCRegClass; 4062 break; 4063 case MVT::f32: 4064 if (Subtarget.hasP8Vector()) 4065 RC = &PPC::VSSRCRegClass; 4066 else if (Subtarget.hasSPE()) 4067 RC = &PPC::GPRCRegClass; 4068 else 4069 RC = &PPC::F4RCRegClass; 4070 break; 4071 case MVT::f64: 4072 if (Subtarget.hasVSX()) 4073 RC = &PPC::VSFRCRegClass; 4074 else if (Subtarget.hasSPE()) 4075 // SPE passes doubles in GPR pairs. 4076 RC = &PPC::GPRCRegClass; 4077 else 4078 RC = &PPC::F8RCRegClass; 4079 break; 4080 case MVT::v16i8: 4081 case MVT::v8i16: 4082 case MVT::v4i32: 4083 RC = &PPC::VRRCRegClass; 4084 break; 4085 case MVT::v4f32: 4086 RC = &PPC::VRRCRegClass; 4087 break; 4088 case MVT::v2f64: 4089 case MVT::v2i64: 4090 RC = &PPC::VRRCRegClass; 4091 break; 4092 } 4093 4094 SDValue ArgValue; 4095 // Transform the arguments stored in physical registers into 4096 // virtual ones. 4097 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4098 assert(i + 1 < e && "No second half of double precision argument"); 4099 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4100 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4101 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4102 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4103 if (!Subtarget.isLittleEndian()) 4104 std::swap (ArgValueLo, ArgValueHi); 4105 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4106 ArgValueHi); 4107 } else { 4108 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4109 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4110 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4111 if (ValVT == MVT::i1) 4112 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4113 } 4114 4115 InVals.push_back(ArgValue); 4116 } else { 4117 // Argument stored in memory. 4118 assert(VA.isMemLoc()); 4119 4120 // Get the extended size of the argument type in stack 4121 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4122 // Get the actual size of the argument type 4123 unsigned ObjSize = VA.getValVT().getStoreSize(); 4124 unsigned ArgOffset = VA.getLocMemOffset(); 4125 // Stack objects in PPC32 are right justified. 4126 ArgOffset += ArgSize - ObjSize; 4127 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4128 4129 // Create load nodes to retrieve arguments from the stack. 4130 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4131 InVals.push_back( 4132 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4133 } 4134 } 4135 4136 // Assign locations to all of the incoming aggregate by value arguments. 4137 // Aggregates passed by value are stored in the local variable space of the 4138 // caller's stack frame, right above the parameter list area. 4139 SmallVector<CCValAssign, 16> ByValArgLocs; 4140 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4141 ByValArgLocs, *DAG.getContext()); 4142 4143 // Reserve stack space for the allocations in CCInfo. 4144 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4145 4146 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4147 4148 // Area that is at least reserved in the caller of this function. 4149 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4150 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4151 4152 // Set the size that is at least reserved in caller of this function. Tail 4153 // call optimized function's reserved stack space needs to be aligned so that 4154 // taking the difference between two stack areas will result in an aligned 4155 // stack. 4156 MinReservedArea = 4157 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4158 FuncInfo->setMinReservedArea(MinReservedArea); 4159 4160 SmallVector<SDValue, 8> MemOps; 4161 4162 // If the function takes variable number of arguments, make a frame index for 4163 // the start of the first vararg value... for expansion of llvm.va_start. 4164 if (isVarArg) { 4165 static const MCPhysReg GPArgRegs[] = { 4166 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4167 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4168 }; 4169 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4170 4171 static const MCPhysReg FPArgRegs[] = { 4172 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4173 PPC::F8 4174 }; 4175 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4176 4177 if (useSoftFloat() || hasSPE()) 4178 NumFPArgRegs = 0; 4179 4180 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4181 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4182 4183 // Make room for NumGPArgRegs and NumFPArgRegs. 4184 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4185 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4186 4187 FuncInfo->setVarArgsStackOffset( 4188 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4189 CCInfo.getNextStackOffset(), true)); 4190 4191 FuncInfo->setVarArgsFrameIndex( 4192 MFI.CreateStackObject(Depth, Align(8), false)); 4193 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4194 4195 // The fixed integer arguments of a variadic function are stored to the 4196 // VarArgsFrameIndex on the stack so that they may be loaded by 4197 // dereferencing the result of va_next. 4198 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4199 // Get an existing live-in vreg, or add a new one. 4200 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4201 if (!VReg) 4202 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4203 4204 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4205 SDValue Store = 4206 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4207 MemOps.push_back(Store); 4208 // Increment the address by four for the next argument to store 4209 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4210 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4211 } 4212 4213 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4214 // is set. 4215 // The double arguments are stored to the VarArgsFrameIndex 4216 // on the stack. 4217 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4218 // Get an existing live-in vreg, or add a new one. 4219 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4220 if (!VReg) 4221 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4222 4223 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4224 SDValue Store = 4225 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4226 MemOps.push_back(Store); 4227 // Increment the address by eight for the next argument to store 4228 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4229 PtrVT); 4230 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4231 } 4232 } 4233 4234 if (!MemOps.empty()) 4235 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4236 4237 return Chain; 4238 } 4239 4240 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4241 // value to MVT::i64 and then truncate to the correct register size. 4242 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4243 EVT ObjectVT, SelectionDAG &DAG, 4244 SDValue ArgVal, 4245 const SDLoc &dl) const { 4246 if (Flags.isSExt()) 4247 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4248 DAG.getValueType(ObjectVT)); 4249 else if (Flags.isZExt()) 4250 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4251 DAG.getValueType(ObjectVT)); 4252 4253 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4254 } 4255 4256 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4257 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4258 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4259 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4260 // TODO: add description of PPC stack frame format, or at least some docs. 4261 // 4262 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4263 bool isLittleEndian = Subtarget.isLittleEndian(); 4264 MachineFunction &MF = DAG.getMachineFunction(); 4265 MachineFrameInfo &MFI = MF.getFrameInfo(); 4266 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4267 4268 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4269 "fastcc not supported on varargs functions"); 4270 4271 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4272 // Potential tail calls could cause overwriting of argument stack slots. 4273 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4274 (CallConv == CallingConv::Fast)); 4275 unsigned PtrByteSize = 8; 4276 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4277 4278 static const MCPhysReg GPR[] = { 4279 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4280 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4281 }; 4282 static const MCPhysReg VR[] = { 4283 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4284 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4285 }; 4286 4287 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4288 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4289 const unsigned Num_VR_Regs = array_lengthof(VR); 4290 4291 // Do a first pass over the arguments to determine whether the ABI 4292 // guarantees that our caller has allocated the parameter save area 4293 // on its stack frame. In the ELFv1 ABI, this is always the case; 4294 // in the ELFv2 ABI, it is true if this is a vararg function or if 4295 // any parameter is located in a stack slot. 4296 4297 bool HasParameterArea = !isELFv2ABI || isVarArg; 4298 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4299 unsigned NumBytes = LinkageSize; 4300 unsigned AvailableFPRs = Num_FPR_Regs; 4301 unsigned AvailableVRs = Num_VR_Regs; 4302 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4303 if (Ins[i].Flags.isNest()) 4304 continue; 4305 4306 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4307 PtrByteSize, LinkageSize, ParamAreaSize, 4308 NumBytes, AvailableFPRs, AvailableVRs)) 4309 HasParameterArea = true; 4310 } 4311 4312 // Add DAG nodes to load the arguments or copy them out of registers. On 4313 // entry to a function on PPC, the arguments start after the linkage area, 4314 // although the first ones are often in registers. 4315 4316 unsigned ArgOffset = LinkageSize; 4317 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4318 SmallVector<SDValue, 8> MemOps; 4319 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4320 unsigned CurArgIdx = 0; 4321 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4322 SDValue ArgVal; 4323 bool needsLoad = false; 4324 EVT ObjectVT = Ins[ArgNo].VT; 4325 EVT OrigVT = Ins[ArgNo].ArgVT; 4326 unsigned ObjSize = ObjectVT.getStoreSize(); 4327 unsigned ArgSize = ObjSize; 4328 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4329 if (Ins[ArgNo].isOrigArg()) { 4330 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4331 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4332 } 4333 // We re-align the argument offset for each argument, except when using the 4334 // fast calling convention, when we need to make sure we do that only when 4335 // we'll actually use a stack slot. 4336 unsigned CurArgOffset; 4337 Align Alignment; 4338 auto ComputeArgOffset = [&]() { 4339 /* Respect alignment of argument on the stack. */ 4340 Alignment = 4341 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4342 ArgOffset = alignTo(ArgOffset, Alignment); 4343 CurArgOffset = ArgOffset; 4344 }; 4345 4346 if (CallConv != CallingConv::Fast) { 4347 ComputeArgOffset(); 4348 4349 /* Compute GPR index associated with argument offset. */ 4350 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4351 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4352 } 4353 4354 // FIXME the codegen can be much improved in some cases. 4355 // We do not have to keep everything in memory. 4356 if (Flags.isByVal()) { 4357 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4358 4359 if (CallConv == CallingConv::Fast) 4360 ComputeArgOffset(); 4361 4362 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4363 ObjSize = Flags.getByValSize(); 4364 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4365 // Empty aggregate parameters do not take up registers. Examples: 4366 // struct { } a; 4367 // union { } b; 4368 // int c[0]; 4369 // etc. However, we have to provide a place-holder in InVals, so 4370 // pretend we have an 8-byte item at the current address for that 4371 // purpose. 4372 if (!ObjSize) { 4373 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4374 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4375 InVals.push_back(FIN); 4376 continue; 4377 } 4378 4379 // Create a stack object covering all stack doublewords occupied 4380 // by the argument. If the argument is (fully or partially) on 4381 // the stack, or if the argument is fully in registers but the 4382 // caller has allocated the parameter save anyway, we can refer 4383 // directly to the caller's stack frame. Otherwise, create a 4384 // local copy in our own frame. 4385 int FI; 4386 if (HasParameterArea || 4387 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4388 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4389 else 4390 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4391 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4392 4393 // Handle aggregates smaller than 8 bytes. 4394 if (ObjSize < PtrByteSize) { 4395 // The value of the object is its address, which differs from the 4396 // address of the enclosing doubleword on big-endian systems. 4397 SDValue Arg = FIN; 4398 if (!isLittleEndian) { 4399 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4400 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4401 } 4402 InVals.push_back(Arg); 4403 4404 if (GPR_idx != Num_GPR_Regs) { 4405 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4406 FuncInfo->addLiveInAttr(VReg, Flags); 4407 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4408 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4409 SDValue Store = 4410 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4411 MachinePointerInfo(&*FuncArg), ObjType); 4412 MemOps.push_back(Store); 4413 } 4414 // Whether we copied from a register or not, advance the offset 4415 // into the parameter save area by a full doubleword. 4416 ArgOffset += PtrByteSize; 4417 continue; 4418 } 4419 4420 // The value of the object is its address, which is the address of 4421 // its first stack doubleword. 4422 InVals.push_back(FIN); 4423 4424 // Store whatever pieces of the object are in registers to memory. 4425 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4426 if (GPR_idx == Num_GPR_Regs) 4427 break; 4428 4429 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4430 FuncInfo->addLiveInAttr(VReg, Flags); 4431 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4432 SDValue Addr = FIN; 4433 if (j) { 4434 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4435 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4436 } 4437 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; 4438 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); 4439 SDValue Store = 4440 DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, 4441 MachinePointerInfo(&*FuncArg, j), ObjType); 4442 MemOps.push_back(Store); 4443 ++GPR_idx; 4444 } 4445 ArgOffset += ArgSize; 4446 continue; 4447 } 4448 4449 switch (ObjectVT.getSimpleVT().SimpleTy) { 4450 default: llvm_unreachable("Unhandled argument type!"); 4451 case MVT::i1: 4452 case MVT::i32: 4453 case MVT::i64: 4454 if (Flags.isNest()) { 4455 // The 'nest' parameter, if any, is passed in R11. 4456 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4457 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4458 4459 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4460 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4461 4462 break; 4463 } 4464 4465 // These can be scalar arguments or elements of an integer array type 4466 // passed directly. Clang may use those instead of "byval" aggregate 4467 // types to avoid forcing arguments to memory unnecessarily. 4468 if (GPR_idx != Num_GPR_Regs) { 4469 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4470 FuncInfo->addLiveInAttr(VReg, Flags); 4471 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4472 4473 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4474 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4475 // value to MVT::i64 and then truncate to the correct register size. 4476 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4477 } else { 4478 if (CallConv == CallingConv::Fast) 4479 ComputeArgOffset(); 4480 4481 needsLoad = true; 4482 ArgSize = PtrByteSize; 4483 } 4484 if (CallConv != CallingConv::Fast || needsLoad) 4485 ArgOffset += 8; 4486 break; 4487 4488 case MVT::f32: 4489 case MVT::f64: 4490 // These can be scalar arguments or elements of a float array type 4491 // passed directly. The latter are used to implement ELFv2 homogenous 4492 // float aggregates. 4493 if (FPR_idx != Num_FPR_Regs) { 4494 unsigned VReg; 4495 4496 if (ObjectVT == MVT::f32) 4497 VReg = MF.addLiveIn(FPR[FPR_idx], 4498 Subtarget.hasP8Vector() 4499 ? &PPC::VSSRCRegClass 4500 : &PPC::F4RCRegClass); 4501 else 4502 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4503 ? &PPC::VSFRCRegClass 4504 : &PPC::F8RCRegClass); 4505 4506 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4507 ++FPR_idx; 4508 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4509 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4510 // once we support fp <-> gpr moves. 4511 4512 // This can only ever happen in the presence of f32 array types, 4513 // since otherwise we never run out of FPRs before running out 4514 // of GPRs. 4515 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4516 FuncInfo->addLiveInAttr(VReg, Flags); 4517 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4518 4519 if (ObjectVT == MVT::f32) { 4520 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4521 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4522 DAG.getConstant(32, dl, MVT::i32)); 4523 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4524 } 4525 4526 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4527 } else { 4528 if (CallConv == CallingConv::Fast) 4529 ComputeArgOffset(); 4530 4531 needsLoad = true; 4532 } 4533 4534 // When passing an array of floats, the array occupies consecutive 4535 // space in the argument area; only round up to the next doubleword 4536 // at the end of the array. Otherwise, each float takes 8 bytes. 4537 if (CallConv != CallingConv::Fast || needsLoad) { 4538 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4539 ArgOffset += ArgSize; 4540 if (Flags.isInConsecutiveRegsLast()) 4541 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4542 } 4543 break; 4544 case MVT::v4f32: 4545 case MVT::v4i32: 4546 case MVT::v8i16: 4547 case MVT::v16i8: 4548 case MVT::v2f64: 4549 case MVT::v2i64: 4550 case MVT::v1i128: 4551 case MVT::f128: 4552 // These can be scalar arguments or elements of a vector array type 4553 // passed directly. The latter are used to implement ELFv2 homogenous 4554 // vector aggregates. 4555 if (VR_idx != Num_VR_Regs) { 4556 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4557 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4558 ++VR_idx; 4559 } else { 4560 if (CallConv == CallingConv::Fast) 4561 ComputeArgOffset(); 4562 needsLoad = true; 4563 } 4564 if (CallConv != CallingConv::Fast || needsLoad) 4565 ArgOffset += 16; 4566 break; 4567 } 4568 4569 // We need to load the argument to a virtual register if we determined 4570 // above that we ran out of physical registers of the appropriate type. 4571 if (needsLoad) { 4572 if (ObjSize < ArgSize && !isLittleEndian) 4573 CurArgOffset += ArgSize - ObjSize; 4574 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4575 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4576 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4577 } 4578 4579 InVals.push_back(ArgVal); 4580 } 4581 4582 // Area that is at least reserved in the caller of this function. 4583 unsigned MinReservedArea; 4584 if (HasParameterArea) 4585 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4586 else 4587 MinReservedArea = LinkageSize; 4588 4589 // Set the size that is at least reserved in caller of this function. Tail 4590 // call optimized functions' reserved stack space needs to be aligned so that 4591 // taking the difference between two stack areas will result in an aligned 4592 // stack. 4593 MinReservedArea = 4594 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4595 FuncInfo->setMinReservedArea(MinReservedArea); 4596 4597 // If the function takes variable number of arguments, make a frame index for 4598 // the start of the first vararg value... for expansion of llvm.va_start. 4599 // On ELFv2ABI spec, it writes: 4600 // C programs that are intended to be *portable* across different compilers 4601 // and architectures must use the header file <stdarg.h> to deal with variable 4602 // argument lists. 4603 if (isVarArg && MFI.hasVAStart()) { 4604 int Depth = ArgOffset; 4605 4606 FuncInfo->setVarArgsFrameIndex( 4607 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4608 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4609 4610 // If this function is vararg, store any remaining integer argument regs 4611 // to their spots on the stack so that they may be loaded by dereferencing 4612 // the result of va_next. 4613 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4614 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4615 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4616 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4617 SDValue Store = 4618 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4619 MemOps.push_back(Store); 4620 // Increment the address by four for the next argument to store 4621 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4622 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4623 } 4624 } 4625 4626 if (!MemOps.empty()) 4627 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4628 4629 return Chain; 4630 } 4631 4632 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4633 /// adjusted to accommodate the arguments for the tailcall. 4634 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4635 unsigned ParamSize) { 4636 4637 if (!isTailCall) return 0; 4638 4639 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4640 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4641 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4642 // Remember only if the new adjustment is bigger. 4643 if (SPDiff < FI->getTailCallSPDelta()) 4644 FI->setTailCallSPDelta(SPDiff); 4645 4646 return SPDiff; 4647 } 4648 4649 static bool isFunctionGlobalAddress(SDValue Callee); 4650 4651 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4652 const TargetMachine &TM) { 4653 // It does not make sense to call callsShareTOCBase() with a caller that 4654 // is PC Relative since PC Relative callers do not have a TOC. 4655 #ifndef NDEBUG 4656 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4657 assert(!STICaller->isUsingPCRelativeCalls() && 4658 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4659 #endif 4660 4661 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4662 // don't have enough information to determine if the caller and callee share 4663 // the same TOC base, so we have to pessimistically assume they don't for 4664 // correctness. 4665 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4666 if (!G) 4667 return false; 4668 4669 const GlobalValue *GV = G->getGlobal(); 4670 4671 // If the callee is preemptable, then the static linker will use a plt-stub 4672 // which saves the toc to the stack, and needs a nop after the call 4673 // instruction to convert to a toc-restore. 4674 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4675 return false; 4676 4677 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4678 // We may need a TOC restore in the situation where the caller requires a 4679 // valid TOC but the callee is PC Relative and does not. 4680 const Function *F = dyn_cast<Function>(GV); 4681 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4682 4683 // If we have an Alias we can try to get the function from there. 4684 if (Alias) { 4685 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4686 F = dyn_cast<Function>(GlobalObj); 4687 } 4688 4689 // If we still have no valid function pointer we do not have enough 4690 // information to determine if the callee uses PC Relative calls so we must 4691 // assume that it does. 4692 if (!F) 4693 return false; 4694 4695 // If the callee uses PC Relative we cannot guarantee that the callee won't 4696 // clobber the TOC of the caller and so we must assume that the two 4697 // functions do not share a TOC base. 4698 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4699 if (STICallee->isUsingPCRelativeCalls()) 4700 return false; 4701 4702 // If the GV is not a strong definition then we need to assume it can be 4703 // replaced by another function at link time. The function that replaces 4704 // it may not share the same TOC as the caller since the callee may be 4705 // replaced by a PC Relative version of the same function. 4706 if (!GV->isStrongDefinitionForLinker()) 4707 return false; 4708 4709 // The medium and large code models are expected to provide a sufficiently 4710 // large TOC to provide all data addressing needs of a module with a 4711 // single TOC. 4712 if (CodeModel::Medium == TM.getCodeModel() || 4713 CodeModel::Large == TM.getCodeModel()) 4714 return true; 4715 4716 // Any explicitly-specified sections and section prefixes must also match. 4717 // Also, if we're using -ffunction-sections, then each function is always in 4718 // a different section (the same is true for COMDAT functions). 4719 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4720 GV->getSection() != Caller->getSection()) 4721 return false; 4722 if (const auto *F = dyn_cast<Function>(GV)) { 4723 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4724 return false; 4725 } 4726 4727 return true; 4728 } 4729 4730 static bool 4731 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4732 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4733 assert(Subtarget.is64BitELFABI()); 4734 4735 const unsigned PtrByteSize = 8; 4736 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4737 4738 static const MCPhysReg GPR[] = { 4739 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4740 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4741 }; 4742 static const MCPhysReg VR[] = { 4743 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4744 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4745 }; 4746 4747 const unsigned NumGPRs = array_lengthof(GPR); 4748 const unsigned NumFPRs = 13; 4749 const unsigned NumVRs = array_lengthof(VR); 4750 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4751 4752 unsigned NumBytes = LinkageSize; 4753 unsigned AvailableFPRs = NumFPRs; 4754 unsigned AvailableVRs = NumVRs; 4755 4756 for (const ISD::OutputArg& Param : Outs) { 4757 if (Param.Flags.isNest()) continue; 4758 4759 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4760 LinkageSize, ParamAreaSize, NumBytes, 4761 AvailableFPRs, AvailableVRs)) 4762 return true; 4763 } 4764 return false; 4765 } 4766 4767 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4768 if (CB.arg_size() != CallerFn->arg_size()) 4769 return false; 4770 4771 auto CalleeArgIter = CB.arg_begin(); 4772 auto CalleeArgEnd = CB.arg_end(); 4773 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4774 4775 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4776 const Value* CalleeArg = *CalleeArgIter; 4777 const Value* CallerArg = &(*CallerArgIter); 4778 if (CalleeArg == CallerArg) 4779 continue; 4780 4781 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4782 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4783 // } 4784 // 1st argument of callee is undef and has the same type as caller. 4785 if (CalleeArg->getType() == CallerArg->getType() && 4786 isa<UndefValue>(CalleeArg)) 4787 continue; 4788 4789 return false; 4790 } 4791 4792 return true; 4793 } 4794 4795 // Returns true if TCO is possible between the callers and callees 4796 // calling conventions. 4797 static bool 4798 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4799 CallingConv::ID CalleeCC) { 4800 // Tail calls are possible with fastcc and ccc. 4801 auto isTailCallableCC = [] (CallingConv::ID CC){ 4802 return CC == CallingConv::C || CC == CallingConv::Fast; 4803 }; 4804 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4805 return false; 4806 4807 // We can safely tail call both fastcc and ccc callees from a c calling 4808 // convention caller. If the caller is fastcc, we may have less stack space 4809 // than a non-fastcc caller with the same signature so disable tail-calls in 4810 // that case. 4811 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4812 } 4813 4814 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4815 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4816 const SmallVectorImpl<ISD::OutputArg> &Outs, 4817 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4818 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4819 4820 if (DisableSCO && !TailCallOpt) return false; 4821 4822 // Variadic argument functions are not supported. 4823 if (isVarArg) return false; 4824 4825 auto &Caller = DAG.getMachineFunction().getFunction(); 4826 // Check that the calling conventions are compatible for tco. 4827 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4828 return false; 4829 4830 // Caller contains any byval parameter is not supported. 4831 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4832 return false; 4833 4834 // Callee contains any byval parameter is not supported, too. 4835 // Note: This is a quick work around, because in some cases, e.g. 4836 // caller's stack size > callee's stack size, we are still able to apply 4837 // sibling call optimization. For example, gcc is able to do SCO for caller1 4838 // in the following example, but not for caller2. 4839 // struct test { 4840 // long int a; 4841 // char ary[56]; 4842 // } gTest; 4843 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4844 // b->a = v.a; 4845 // return 0; 4846 // } 4847 // void caller1(struct test a, struct test c, struct test *b) { 4848 // callee(gTest, b); } 4849 // void caller2(struct test *b) { callee(gTest, b); } 4850 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4851 return false; 4852 4853 // If callee and caller use different calling conventions, we cannot pass 4854 // parameters on stack since offsets for the parameter area may be different. 4855 if (Caller.getCallingConv() != CalleeCC && 4856 needStackSlotPassParameters(Subtarget, Outs)) 4857 return false; 4858 4859 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4860 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4861 // callee potentially have different TOC bases then we cannot tail call since 4862 // we need to restore the TOC pointer after the call. 4863 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4864 // We cannot guarantee this for indirect calls or calls to external functions. 4865 // When PC-Relative addressing is used, the concept of the TOC is no longer 4866 // applicable so this check is not required. 4867 // Check first for indirect calls. 4868 if (!Subtarget.isUsingPCRelativeCalls() && 4869 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4870 return false; 4871 4872 // Check if we share the TOC base. 4873 if (!Subtarget.isUsingPCRelativeCalls() && 4874 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4875 return false; 4876 4877 // TCO allows altering callee ABI, so we don't have to check further. 4878 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4879 return true; 4880 4881 if (DisableSCO) return false; 4882 4883 // If callee use the same argument list that caller is using, then we can 4884 // apply SCO on this case. If it is not, then we need to check if callee needs 4885 // stack for passing arguments. 4886 // PC Relative tail calls may not have a CallBase. 4887 // If there is no CallBase we cannot verify if we have the same argument 4888 // list so assume that we don't have the same argument list. 4889 if (CB && !hasSameArgumentList(&Caller, *CB) && 4890 needStackSlotPassParameters(Subtarget, Outs)) 4891 return false; 4892 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4893 return false; 4894 4895 return true; 4896 } 4897 4898 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4899 /// for tail call optimization. Targets which want to do tail call 4900 /// optimization should implement this function. 4901 bool 4902 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4903 CallingConv::ID CalleeCC, 4904 bool isVarArg, 4905 const SmallVectorImpl<ISD::InputArg> &Ins, 4906 SelectionDAG& DAG) const { 4907 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4908 return false; 4909 4910 // Variable argument functions are not supported. 4911 if (isVarArg) 4912 return false; 4913 4914 MachineFunction &MF = DAG.getMachineFunction(); 4915 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4916 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4917 // Functions containing by val parameters are not supported. 4918 for (unsigned i = 0; i != Ins.size(); i++) { 4919 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4920 if (Flags.isByVal()) return false; 4921 } 4922 4923 // Non-PIC/GOT tail calls are supported. 4924 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4925 return true; 4926 4927 // At the moment we can only do local tail calls (in same module, hidden 4928 // or protected) if we are generating PIC. 4929 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4930 return G->getGlobal()->hasHiddenVisibility() 4931 || G->getGlobal()->hasProtectedVisibility(); 4932 } 4933 4934 return false; 4935 } 4936 4937 /// isCallCompatibleAddress - Return the immediate to use if the specified 4938 /// 32-bit value is representable in the immediate field of a BxA instruction. 4939 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4940 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4941 if (!C) return nullptr; 4942 4943 int Addr = C->getZExtValue(); 4944 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4945 SignExtend32<26>(Addr) != Addr) 4946 return nullptr; // Top 6 bits have to be sext of immediate. 4947 4948 return DAG 4949 .getConstant( 4950 (int)C->getZExtValue() >> 2, SDLoc(Op), 4951 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4952 .getNode(); 4953 } 4954 4955 namespace { 4956 4957 struct TailCallArgumentInfo { 4958 SDValue Arg; 4959 SDValue FrameIdxOp; 4960 int FrameIdx = 0; 4961 4962 TailCallArgumentInfo() = default; 4963 }; 4964 4965 } // end anonymous namespace 4966 4967 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4968 static void StoreTailCallArgumentsToStackSlot( 4969 SelectionDAG &DAG, SDValue Chain, 4970 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4971 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4972 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4973 SDValue Arg = TailCallArgs[i].Arg; 4974 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4975 int FI = TailCallArgs[i].FrameIdx; 4976 // Store relative to framepointer. 4977 MemOpChains.push_back(DAG.getStore( 4978 Chain, dl, Arg, FIN, 4979 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4980 } 4981 } 4982 4983 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4984 /// the appropriate stack slot for the tail call optimized function call. 4985 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4986 SDValue OldRetAddr, SDValue OldFP, 4987 int SPDiff, const SDLoc &dl) { 4988 if (SPDiff) { 4989 // Calculate the new stack slot for the return address. 4990 MachineFunction &MF = DAG.getMachineFunction(); 4991 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4992 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4993 bool isPPC64 = Subtarget.isPPC64(); 4994 int SlotSize = isPPC64 ? 8 : 4; 4995 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4996 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4997 NewRetAddrLoc, true); 4998 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4999 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5000 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5001 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5002 } 5003 return Chain; 5004 } 5005 5006 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5007 /// the position of the argument. 5008 static void 5009 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5010 SDValue Arg, int SPDiff, unsigned ArgOffset, 5011 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5012 int Offset = ArgOffset + SPDiff; 5013 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5014 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5015 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5016 SDValue FIN = DAG.getFrameIndex(FI, VT); 5017 TailCallArgumentInfo Info; 5018 Info.Arg = Arg; 5019 Info.FrameIdxOp = FIN; 5020 Info.FrameIdx = FI; 5021 TailCallArguments.push_back(Info); 5022 } 5023 5024 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5025 /// stack slot. Returns the chain as result and the loaded frame pointers in 5026 /// LROpOut/FPOpout. Used when tail calling. 5027 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5028 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5029 SDValue &FPOpOut, const SDLoc &dl) const { 5030 if (SPDiff) { 5031 // Load the LR and FP stack slot for later adjusting. 5032 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5033 LROpOut = getReturnAddrFrameIndex(DAG); 5034 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5035 Chain = SDValue(LROpOut.getNode(), 1); 5036 } 5037 return Chain; 5038 } 5039 5040 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5041 /// by "Src" to address "Dst" of size "Size". Alignment information is 5042 /// specified by the specific parameter attribute. The copy will be passed as 5043 /// a byval function parameter. 5044 /// Sometimes what we are copying is the end of a larger object, the part that 5045 /// does not fit in registers. 5046 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5047 SDValue Chain, ISD::ArgFlagsTy Flags, 5048 SelectionDAG &DAG, const SDLoc &dl) { 5049 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5050 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5051 Flags.getNonZeroByValAlign(), false, false, false, 5052 MachinePointerInfo(), MachinePointerInfo()); 5053 } 5054 5055 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5056 /// tail calls. 5057 static void LowerMemOpCallTo( 5058 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5059 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5060 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5061 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5062 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5063 if (!isTailCall) { 5064 if (isVector) { 5065 SDValue StackPtr; 5066 if (isPPC64) 5067 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5068 else 5069 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5070 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5071 DAG.getConstant(ArgOffset, dl, PtrVT)); 5072 } 5073 MemOpChains.push_back( 5074 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5075 // Calculate and remember argument location. 5076 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5077 TailCallArguments); 5078 } 5079 5080 static void 5081 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5082 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5083 SDValue FPOp, 5084 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5085 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5086 // might overwrite each other in case of tail call optimization. 5087 SmallVector<SDValue, 8> MemOpChains2; 5088 // Do not flag preceding copytoreg stuff together with the following stuff. 5089 InFlag = SDValue(); 5090 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5091 MemOpChains2, dl); 5092 if (!MemOpChains2.empty()) 5093 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5094 5095 // Store the return address to the appropriate stack slot. 5096 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5097 5098 // Emit callseq_end just before tailcall node. 5099 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5100 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5101 InFlag = Chain.getValue(1); 5102 } 5103 5104 // Is this global address that of a function that can be called by name? (as 5105 // opposed to something that must hold a descriptor for an indirect call). 5106 static bool isFunctionGlobalAddress(SDValue Callee) { 5107 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5108 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5109 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5110 return false; 5111 5112 return G->getGlobal()->getValueType()->isFunctionTy(); 5113 } 5114 5115 return false; 5116 } 5117 5118 SDValue PPCTargetLowering::LowerCallResult( 5119 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5120 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5121 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5122 SmallVector<CCValAssign, 16> RVLocs; 5123 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5124 *DAG.getContext()); 5125 5126 CCRetInfo.AnalyzeCallResult( 5127 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5128 ? RetCC_PPC_Cold 5129 : RetCC_PPC); 5130 5131 // Copy all of the result registers out of their specified physreg. 5132 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5133 CCValAssign &VA = RVLocs[i]; 5134 assert(VA.isRegLoc() && "Can only return in registers!"); 5135 5136 SDValue Val; 5137 5138 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5139 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5140 InFlag); 5141 Chain = Lo.getValue(1); 5142 InFlag = Lo.getValue(2); 5143 VA = RVLocs[++i]; // skip ahead to next loc 5144 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5145 InFlag); 5146 Chain = Hi.getValue(1); 5147 InFlag = Hi.getValue(2); 5148 if (!Subtarget.isLittleEndian()) 5149 std::swap (Lo, Hi); 5150 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5151 } else { 5152 Val = DAG.getCopyFromReg(Chain, dl, 5153 VA.getLocReg(), VA.getLocVT(), InFlag); 5154 Chain = Val.getValue(1); 5155 InFlag = Val.getValue(2); 5156 } 5157 5158 switch (VA.getLocInfo()) { 5159 default: llvm_unreachable("Unknown loc info!"); 5160 case CCValAssign::Full: break; 5161 case CCValAssign::AExt: 5162 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5163 break; 5164 case CCValAssign::ZExt: 5165 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5166 DAG.getValueType(VA.getValVT())); 5167 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5168 break; 5169 case CCValAssign::SExt: 5170 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5171 DAG.getValueType(VA.getValVT())); 5172 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5173 break; 5174 } 5175 5176 InVals.push_back(Val); 5177 } 5178 5179 return Chain; 5180 } 5181 5182 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5183 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5184 // PatchPoint calls are not indirect. 5185 if (isPatchPoint) 5186 return false; 5187 5188 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5189 return false; 5190 5191 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5192 // becuase the immediate function pointer points to a descriptor instead of 5193 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5194 // pointer immediate points to the global entry point, while the BLA would 5195 // need to jump to the local entry point (see rL211174). 5196 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5197 isBLACompatibleAddress(Callee, DAG)) 5198 return false; 5199 5200 return true; 5201 } 5202 5203 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5204 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5205 return Subtarget.isAIXABI() || 5206 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5207 } 5208 5209 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5210 const Function &Caller, const SDValue &Callee, 5211 const PPCSubtarget &Subtarget, 5212 const TargetMachine &TM, 5213 bool IsStrictFPCall = false) { 5214 if (CFlags.IsTailCall) 5215 return PPCISD::TC_RETURN; 5216 5217 unsigned RetOpc = 0; 5218 // This is a call through a function pointer. 5219 if (CFlags.IsIndirect) { 5220 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5221 // indirect calls. The save of the caller's TOC pointer to the stack will be 5222 // inserted into the DAG as part of call lowering. The restore of the TOC 5223 // pointer is modeled by using a pseudo instruction for the call opcode that 5224 // represents the 2 instruction sequence of an indirect branch and link, 5225 // immediately followed by a load of the TOC pointer from the the stack save 5226 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5227 // as it is not saved or used. 5228 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5229 : PPCISD::BCTRL; 5230 } else if (Subtarget.isUsingPCRelativeCalls()) { 5231 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5232 RetOpc = PPCISD::CALL_NOTOC; 5233 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5234 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5235 // immediately following the call instruction if the caller and callee may 5236 // have different TOC bases. At link time if the linker determines the calls 5237 // may not share a TOC base, the call is redirected to a trampoline inserted 5238 // by the linker. The trampoline will (among other things) save the callers 5239 // TOC pointer at an ABI designated offset in the linkage area and the 5240 // linker will rewrite the nop to be a load of the TOC pointer from the 5241 // linkage area into gpr2. 5242 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5243 : PPCISD::CALL_NOP; 5244 else 5245 RetOpc = PPCISD::CALL; 5246 if (IsStrictFPCall) { 5247 switch (RetOpc) { 5248 default: 5249 llvm_unreachable("Unknown call opcode"); 5250 case PPCISD::BCTRL_LOAD_TOC: 5251 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5252 break; 5253 case PPCISD::BCTRL: 5254 RetOpc = PPCISD::BCTRL_RM; 5255 break; 5256 case PPCISD::CALL_NOTOC: 5257 RetOpc = PPCISD::CALL_NOTOC_RM; 5258 break; 5259 case PPCISD::CALL: 5260 RetOpc = PPCISD::CALL_RM; 5261 break; 5262 case PPCISD::CALL_NOP: 5263 RetOpc = PPCISD::CALL_NOP_RM; 5264 break; 5265 } 5266 } 5267 return RetOpc; 5268 } 5269 5270 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5271 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5272 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5273 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5274 return SDValue(Dest, 0); 5275 5276 // Returns true if the callee is local, and false otherwise. 5277 auto isLocalCallee = [&]() { 5278 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5279 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5280 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5281 5282 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5283 !isa_and_nonnull<GlobalIFunc>(GV); 5284 }; 5285 5286 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5287 // a static relocation model causes some versions of GNU LD (2.17.50, at 5288 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5289 // built with secure-PLT. 5290 bool UsePlt = 5291 Subtarget.is32BitELFABI() && !isLocalCallee() && 5292 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5293 5294 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5295 const TargetMachine &TM = Subtarget.getTargetMachine(); 5296 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5297 MCSymbolXCOFF *S = 5298 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5299 5300 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5301 return DAG.getMCSymbol(S, PtrVT); 5302 }; 5303 5304 if (isFunctionGlobalAddress(Callee)) { 5305 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5306 5307 if (Subtarget.isAIXABI()) { 5308 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5309 return getAIXFuncEntryPointSymbolSDNode(GV); 5310 } 5311 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5312 UsePlt ? PPCII::MO_PLT : 0); 5313 } 5314 5315 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5316 const char *SymName = S->getSymbol(); 5317 if (Subtarget.isAIXABI()) { 5318 // If there exists a user-declared function whose name is the same as the 5319 // ExternalSymbol's, then we pick up the user-declared version. 5320 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5321 if (const Function *F = 5322 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5323 return getAIXFuncEntryPointSymbolSDNode(F); 5324 5325 // On AIX, direct function calls reference the symbol for the function's 5326 // entry point, which is named by prepending a "." before the function's 5327 // C-linkage name. A Qualname is returned here because an external 5328 // function entry point is a csect with XTY_ER property. 5329 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5330 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5331 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5332 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5333 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5334 return Sec->getQualNameSymbol(); 5335 }; 5336 5337 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5338 } 5339 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5340 UsePlt ? PPCII::MO_PLT : 0); 5341 } 5342 5343 // No transformation needed. 5344 assert(Callee.getNode() && "What no callee?"); 5345 return Callee; 5346 } 5347 5348 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5349 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5350 "Expected a CALLSEQ_STARTSDNode."); 5351 5352 // The last operand is the chain, except when the node has glue. If the node 5353 // has glue, then the last operand is the glue, and the chain is the second 5354 // last operand. 5355 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5356 if (LastValue.getValueType() != MVT::Glue) 5357 return LastValue; 5358 5359 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5360 } 5361 5362 // Creates the node that moves a functions address into the count register 5363 // to prepare for an indirect call instruction. 5364 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5365 SDValue &Glue, SDValue &Chain, 5366 const SDLoc &dl) { 5367 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5368 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5369 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5370 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5371 // The glue is the second value produced. 5372 Glue = Chain.getValue(1); 5373 } 5374 5375 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5376 SDValue &Glue, SDValue &Chain, 5377 SDValue CallSeqStart, 5378 const CallBase *CB, const SDLoc &dl, 5379 bool hasNest, 5380 const PPCSubtarget &Subtarget) { 5381 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5382 // entry point, but to the function descriptor (the function entry point 5383 // address is part of the function descriptor though). 5384 // The function descriptor is a three doubleword structure with the 5385 // following fields: function entry point, TOC base address and 5386 // environment pointer. 5387 // Thus for a call through a function pointer, the following actions need 5388 // to be performed: 5389 // 1. Save the TOC of the caller in the TOC save area of its stack 5390 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5391 // 2. Load the address of the function entry point from the function 5392 // descriptor. 5393 // 3. Load the TOC of the callee from the function descriptor into r2. 5394 // 4. Load the environment pointer from the function descriptor into 5395 // r11. 5396 // 5. Branch to the function entry point address. 5397 // 6. On return of the callee, the TOC of the caller needs to be 5398 // restored (this is done in FinishCall()). 5399 // 5400 // The loads are scheduled at the beginning of the call sequence, and the 5401 // register copies are flagged together to ensure that no other 5402 // operations can be scheduled in between. E.g. without flagging the 5403 // copies together, a TOC access in the caller could be scheduled between 5404 // the assignment of the callee TOC and the branch to the callee, which leads 5405 // to incorrect code. 5406 5407 // Start by loading the function address from the descriptor. 5408 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5409 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5410 ? (MachineMemOperand::MODereferenceable | 5411 MachineMemOperand::MOInvariant) 5412 : MachineMemOperand::MONone; 5413 5414 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5415 5416 // Registers used in building the DAG. 5417 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5418 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5419 5420 // Offsets of descriptor members. 5421 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5422 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5423 5424 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5425 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5426 5427 // One load for the functions entry point address. 5428 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5429 Alignment, MMOFlags); 5430 5431 // One for loading the TOC anchor for the module that contains the called 5432 // function. 5433 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5434 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5435 SDValue TOCPtr = 5436 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5437 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5438 5439 // One for loading the environment pointer. 5440 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5441 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5442 SDValue LoadEnvPtr = 5443 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5444 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5445 5446 5447 // Then copy the newly loaded TOC anchor to the TOC pointer. 5448 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5449 Chain = TOCVal.getValue(0); 5450 Glue = TOCVal.getValue(1); 5451 5452 // If the function call has an explicit 'nest' parameter, it takes the 5453 // place of the environment pointer. 5454 assert((!hasNest || !Subtarget.isAIXABI()) && 5455 "Nest parameter is not supported on AIX."); 5456 if (!hasNest) { 5457 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5458 Chain = EnvVal.getValue(0); 5459 Glue = EnvVal.getValue(1); 5460 } 5461 5462 // The rest of the indirect call sequence is the same as the non-descriptor 5463 // DAG. 5464 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5465 } 5466 5467 static void 5468 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5469 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5470 SelectionDAG &DAG, 5471 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5472 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5473 const PPCSubtarget &Subtarget) { 5474 const bool IsPPC64 = Subtarget.isPPC64(); 5475 // MVT for a general purpose register. 5476 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5477 5478 // First operand is always the chain. 5479 Ops.push_back(Chain); 5480 5481 // If it's a direct call pass the callee as the second operand. 5482 if (!CFlags.IsIndirect) 5483 Ops.push_back(Callee); 5484 else { 5485 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5486 5487 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5488 // on the stack (this would have been done in `LowerCall_64SVR4` or 5489 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5490 // represents both the indirect branch and a load that restores the TOC 5491 // pointer from the linkage area. The operand for the TOC restore is an add 5492 // of the TOC save offset to the stack pointer. This must be the second 5493 // operand: after the chain input but before any other variadic arguments. 5494 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5495 // saved or used. 5496 if (isTOCSaveRestoreRequired(Subtarget)) { 5497 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5498 5499 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5500 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5501 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5502 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5503 Ops.push_back(AddTOC); 5504 } 5505 5506 // Add the register used for the environment pointer. 5507 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5508 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5509 RegVT)); 5510 5511 5512 // Add CTR register as callee so a bctr can be emitted later. 5513 if (CFlags.IsTailCall) 5514 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5515 } 5516 5517 // If this is a tail call add stack pointer delta. 5518 if (CFlags.IsTailCall) 5519 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5520 5521 // Add argument registers to the end of the list so that they are known live 5522 // into the call. 5523 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5524 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5525 RegsToPass[i].second.getValueType())); 5526 5527 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5528 // no way to mark dependencies as implicit here. 5529 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5530 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5531 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5532 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5533 5534 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5535 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5536 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5537 5538 // Add a register mask operand representing the call-preserved registers. 5539 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5540 const uint32_t *Mask = 5541 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5542 assert(Mask && "Missing call preserved mask for calling convention"); 5543 Ops.push_back(DAG.getRegisterMask(Mask)); 5544 5545 // If the glue is valid, it is the last operand. 5546 if (Glue.getNode()) 5547 Ops.push_back(Glue); 5548 } 5549 5550 SDValue PPCTargetLowering::FinishCall( 5551 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5552 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5553 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5554 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5555 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5556 5557 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5558 Subtarget.isAIXABI()) 5559 setUsesTOCBasePtr(DAG); 5560 5561 unsigned CallOpc = 5562 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5563 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5564 5565 if (!CFlags.IsIndirect) 5566 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5567 else if (Subtarget.usesFunctionDescriptors()) 5568 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5569 dl, CFlags.HasNest, Subtarget); 5570 else 5571 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5572 5573 // Build the operand list for the call instruction. 5574 SmallVector<SDValue, 8> Ops; 5575 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5576 SPDiff, Subtarget); 5577 5578 // Emit tail call. 5579 if (CFlags.IsTailCall) { 5580 // Indirect tail call when using PC Relative calls do not have the same 5581 // constraints. 5582 assert(((Callee.getOpcode() == ISD::Register && 5583 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5584 Callee.getOpcode() == ISD::TargetExternalSymbol || 5585 Callee.getOpcode() == ISD::TargetGlobalAddress || 5586 isa<ConstantSDNode>(Callee) || 5587 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5588 "Expecting a global address, external symbol, absolute value, " 5589 "register or an indirect tail call when PC Relative calls are " 5590 "used."); 5591 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5592 assert(CallOpc == PPCISD::TC_RETURN && 5593 "Unexpected call opcode for a tail call."); 5594 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5595 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5596 } 5597 5598 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5599 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5600 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5601 Glue = Chain.getValue(1); 5602 5603 // When performing tail call optimization the callee pops its arguments off 5604 // the stack. Account for this here so these bytes can be pushed back on in 5605 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5606 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5607 getTargetMachine().Options.GuaranteedTailCallOpt) 5608 ? NumBytes 5609 : 0; 5610 5611 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5612 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5613 Glue, dl); 5614 Glue = Chain.getValue(1); 5615 5616 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5617 DAG, InVals); 5618 } 5619 5620 SDValue 5621 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5622 SmallVectorImpl<SDValue> &InVals) const { 5623 SelectionDAG &DAG = CLI.DAG; 5624 SDLoc &dl = CLI.DL; 5625 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5626 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5627 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5628 SDValue Chain = CLI.Chain; 5629 SDValue Callee = CLI.Callee; 5630 bool &isTailCall = CLI.IsTailCall; 5631 CallingConv::ID CallConv = CLI.CallConv; 5632 bool isVarArg = CLI.IsVarArg; 5633 bool isPatchPoint = CLI.IsPatchPoint; 5634 const CallBase *CB = CLI.CB; 5635 5636 if (isTailCall) { 5637 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5638 isTailCall = false; 5639 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5640 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5641 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5642 else 5643 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5644 Ins, DAG); 5645 if (isTailCall) { 5646 ++NumTailCalls; 5647 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5648 ++NumSiblingCalls; 5649 5650 // PC Relative calls no longer guarantee that the callee is a Global 5651 // Address Node. The callee could be an indirect tail call in which 5652 // case the SDValue for the callee could be a load (to load the address 5653 // of a function pointer) or it may be a register copy (to move the 5654 // address of the callee from a function parameter into a virtual 5655 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5656 assert((Subtarget.isUsingPCRelativeCalls() || 5657 isa<GlobalAddressSDNode>(Callee)) && 5658 "Callee should be an llvm::Function object."); 5659 5660 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5661 << "\nTCO callee: "); 5662 LLVM_DEBUG(Callee.dump()); 5663 } 5664 } 5665 5666 if (!isTailCall && CB && CB->isMustTailCall()) 5667 report_fatal_error("failed to perform tail call elimination on a call " 5668 "site marked musttail"); 5669 5670 // When long calls (i.e. indirect calls) are always used, calls are always 5671 // made via function pointer. If we have a function name, first translate it 5672 // into a pointer. 5673 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5674 !isTailCall) 5675 Callee = LowerGlobalAddress(Callee, DAG); 5676 5677 CallFlags CFlags( 5678 CallConv, isTailCall, isVarArg, isPatchPoint, 5679 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5680 // hasNest 5681 Subtarget.is64BitELFABI() && 5682 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5683 CLI.NoMerge); 5684 5685 if (Subtarget.isAIXABI()) 5686 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5687 InVals, CB); 5688 5689 assert(Subtarget.isSVR4ABI()); 5690 if (Subtarget.isPPC64()) 5691 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5692 InVals, CB); 5693 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5694 InVals, CB); 5695 } 5696 5697 SDValue PPCTargetLowering::LowerCall_32SVR4( 5698 SDValue Chain, SDValue Callee, CallFlags CFlags, 5699 const SmallVectorImpl<ISD::OutputArg> &Outs, 5700 const SmallVectorImpl<SDValue> &OutVals, 5701 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5702 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5703 const CallBase *CB) const { 5704 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5705 // of the 32-bit SVR4 ABI stack frame layout. 5706 5707 const CallingConv::ID CallConv = CFlags.CallConv; 5708 const bool IsVarArg = CFlags.IsVarArg; 5709 const bool IsTailCall = CFlags.IsTailCall; 5710 5711 assert((CallConv == CallingConv::C || 5712 CallConv == CallingConv::Cold || 5713 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5714 5715 const Align PtrAlign(4); 5716 5717 MachineFunction &MF = DAG.getMachineFunction(); 5718 5719 // Mark this function as potentially containing a function that contains a 5720 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5721 // and restoring the callers stack pointer in this functions epilog. This is 5722 // done because by tail calling the called function might overwrite the value 5723 // in this function's (MF) stack pointer stack slot 0(SP). 5724 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5725 CallConv == CallingConv::Fast) 5726 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5727 5728 // Count how many bytes are to be pushed on the stack, including the linkage 5729 // area, parameter list area and the part of the local variable space which 5730 // contains copies of aggregates which are passed by value. 5731 5732 // Assign locations to all of the outgoing arguments. 5733 SmallVector<CCValAssign, 16> ArgLocs; 5734 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5735 5736 // Reserve space for the linkage area on the stack. 5737 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5738 PtrAlign); 5739 if (useSoftFloat()) 5740 CCInfo.PreAnalyzeCallOperands(Outs); 5741 5742 if (IsVarArg) { 5743 // Handle fixed and variable vector arguments differently. 5744 // Fixed vector arguments go into registers as long as registers are 5745 // available. Variable vector arguments always go into memory. 5746 unsigned NumArgs = Outs.size(); 5747 5748 for (unsigned i = 0; i != NumArgs; ++i) { 5749 MVT ArgVT = Outs[i].VT; 5750 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5751 bool Result; 5752 5753 if (Outs[i].IsFixed) { 5754 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5755 CCInfo); 5756 } else { 5757 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5758 ArgFlags, CCInfo); 5759 } 5760 5761 if (Result) { 5762 #ifndef NDEBUG 5763 errs() << "Call operand #" << i << " has unhandled type " 5764 << EVT(ArgVT).getEVTString() << "\n"; 5765 #endif 5766 llvm_unreachable(nullptr); 5767 } 5768 } 5769 } else { 5770 // All arguments are treated the same. 5771 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5772 } 5773 CCInfo.clearWasPPCF128(); 5774 5775 // Assign locations to all of the outgoing aggregate by value arguments. 5776 SmallVector<CCValAssign, 16> ByValArgLocs; 5777 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5778 5779 // Reserve stack space for the allocations in CCInfo. 5780 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5781 5782 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5783 5784 // Size of the linkage area, parameter list area and the part of the local 5785 // space variable where copies of aggregates which are passed by value are 5786 // stored. 5787 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5788 5789 // Calculate by how many bytes the stack has to be adjusted in case of tail 5790 // call optimization. 5791 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5792 5793 // Adjust the stack pointer for the new arguments... 5794 // These operations are automatically eliminated by the prolog/epilog pass 5795 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5796 SDValue CallSeqStart = Chain; 5797 5798 // Load the return address and frame pointer so it can be moved somewhere else 5799 // later. 5800 SDValue LROp, FPOp; 5801 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5802 5803 // Set up a copy of the stack pointer for use loading and storing any 5804 // arguments that may not fit in the registers available for argument 5805 // passing. 5806 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5807 5808 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5809 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5810 SmallVector<SDValue, 8> MemOpChains; 5811 5812 bool seenFloatArg = false; 5813 // Walk the register/memloc assignments, inserting copies/loads. 5814 // i - Tracks the index into the list of registers allocated for the call 5815 // RealArgIdx - Tracks the index into the list of actual function arguments 5816 // j - Tracks the index into the list of byval arguments 5817 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5818 i != e; 5819 ++i, ++RealArgIdx) { 5820 CCValAssign &VA = ArgLocs[i]; 5821 SDValue Arg = OutVals[RealArgIdx]; 5822 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5823 5824 if (Flags.isByVal()) { 5825 // Argument is an aggregate which is passed by value, thus we need to 5826 // create a copy of it in the local variable space of the current stack 5827 // frame (which is the stack frame of the caller) and pass the address of 5828 // this copy to the callee. 5829 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5830 CCValAssign &ByValVA = ByValArgLocs[j++]; 5831 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5832 5833 // Memory reserved in the local variable space of the callers stack frame. 5834 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5835 5836 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5837 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5838 StackPtr, PtrOff); 5839 5840 // Create a copy of the argument in the local area of the current 5841 // stack frame. 5842 SDValue MemcpyCall = 5843 CreateCopyOfByValArgument(Arg, PtrOff, 5844 CallSeqStart.getNode()->getOperand(0), 5845 Flags, DAG, dl); 5846 5847 // This must go outside the CALLSEQ_START..END. 5848 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5849 SDLoc(MemcpyCall)); 5850 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5851 NewCallSeqStart.getNode()); 5852 Chain = CallSeqStart = NewCallSeqStart; 5853 5854 // Pass the address of the aggregate copy on the stack either in a 5855 // physical register or in the parameter list area of the current stack 5856 // frame to the callee. 5857 Arg = PtrOff; 5858 } 5859 5860 // When useCRBits() is true, there can be i1 arguments. 5861 // It is because getRegisterType(MVT::i1) => MVT::i1, 5862 // and for other integer types getRegisterType() => MVT::i32. 5863 // Extend i1 and ensure callee will get i32. 5864 if (Arg.getValueType() == MVT::i1) 5865 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5866 dl, MVT::i32, Arg); 5867 5868 if (VA.isRegLoc()) { 5869 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5870 // Put argument in a physical register. 5871 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5872 bool IsLE = Subtarget.isLittleEndian(); 5873 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5874 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5875 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5876 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5877 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5878 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5879 SVal.getValue(0))); 5880 } else 5881 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5882 } else { 5883 // Put argument in the parameter list area of the current stack frame. 5884 assert(VA.isMemLoc()); 5885 unsigned LocMemOffset = VA.getLocMemOffset(); 5886 5887 if (!IsTailCall) { 5888 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5889 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5890 StackPtr, PtrOff); 5891 5892 MemOpChains.push_back( 5893 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5894 } else { 5895 // Calculate and remember argument location. 5896 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5897 TailCallArguments); 5898 } 5899 } 5900 } 5901 5902 if (!MemOpChains.empty()) 5903 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5904 5905 // Build a sequence of copy-to-reg nodes chained together with token chain 5906 // and flag operands which copy the outgoing args into the appropriate regs. 5907 SDValue InFlag; 5908 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5909 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5910 RegsToPass[i].second, InFlag); 5911 InFlag = Chain.getValue(1); 5912 } 5913 5914 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5915 // registers. 5916 if (IsVarArg) { 5917 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5918 SDValue Ops[] = { Chain, InFlag }; 5919 5920 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5921 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5922 5923 InFlag = Chain.getValue(1); 5924 } 5925 5926 if (IsTailCall) 5927 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5928 TailCallArguments); 5929 5930 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5931 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5932 } 5933 5934 // Copy an argument into memory, being careful to do this outside the 5935 // call sequence for the call to which the argument belongs. 5936 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5937 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5938 SelectionDAG &DAG, const SDLoc &dl) const { 5939 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5940 CallSeqStart.getNode()->getOperand(0), 5941 Flags, DAG, dl); 5942 // The MEMCPY must go outside the CALLSEQ_START..END. 5943 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5944 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5945 SDLoc(MemcpyCall)); 5946 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5947 NewCallSeqStart.getNode()); 5948 return NewCallSeqStart; 5949 } 5950 5951 SDValue PPCTargetLowering::LowerCall_64SVR4( 5952 SDValue Chain, SDValue Callee, CallFlags CFlags, 5953 const SmallVectorImpl<ISD::OutputArg> &Outs, 5954 const SmallVectorImpl<SDValue> &OutVals, 5955 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5956 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5957 const CallBase *CB) const { 5958 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5959 bool isLittleEndian = Subtarget.isLittleEndian(); 5960 unsigned NumOps = Outs.size(); 5961 bool IsSibCall = false; 5962 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5963 5964 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5965 unsigned PtrByteSize = 8; 5966 5967 MachineFunction &MF = DAG.getMachineFunction(); 5968 5969 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5970 IsSibCall = true; 5971 5972 // Mark this function as potentially containing a function that contains a 5973 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5974 // and restoring the callers stack pointer in this functions epilog. This is 5975 // done because by tail calling the called function might overwrite the value 5976 // in this function's (MF) stack pointer stack slot 0(SP). 5977 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5978 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5979 5980 assert(!(IsFastCall && CFlags.IsVarArg) && 5981 "fastcc not supported on varargs functions"); 5982 5983 // Count how many bytes are to be pushed on the stack, including the linkage 5984 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5985 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5986 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5987 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5988 unsigned NumBytes = LinkageSize; 5989 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5990 5991 static const MCPhysReg GPR[] = { 5992 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5993 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5994 }; 5995 static const MCPhysReg VR[] = { 5996 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5997 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5998 }; 5999 6000 const unsigned NumGPRs = array_lengthof(GPR); 6001 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6002 const unsigned NumVRs = array_lengthof(VR); 6003 6004 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6005 // can be passed to the callee in registers. 6006 // For the fast calling convention, there is another check below. 6007 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6008 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6009 if (!HasParameterArea) { 6010 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6011 unsigned AvailableFPRs = NumFPRs; 6012 unsigned AvailableVRs = NumVRs; 6013 unsigned NumBytesTmp = NumBytes; 6014 for (unsigned i = 0; i != NumOps; ++i) { 6015 if (Outs[i].Flags.isNest()) continue; 6016 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6017 PtrByteSize, LinkageSize, ParamAreaSize, 6018 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6019 HasParameterArea = true; 6020 } 6021 } 6022 6023 // When using the fast calling convention, we don't provide backing for 6024 // arguments that will be in registers. 6025 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6026 6027 // Avoid allocating parameter area for fastcc functions if all the arguments 6028 // can be passed in the registers. 6029 if (IsFastCall) 6030 HasParameterArea = false; 6031 6032 // Add up all the space actually used. 6033 for (unsigned i = 0; i != NumOps; ++i) { 6034 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6035 EVT ArgVT = Outs[i].VT; 6036 EVT OrigVT = Outs[i].ArgVT; 6037 6038 if (Flags.isNest()) 6039 continue; 6040 6041 if (IsFastCall) { 6042 if (Flags.isByVal()) { 6043 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6044 if (NumGPRsUsed > NumGPRs) 6045 HasParameterArea = true; 6046 } else { 6047 switch (ArgVT.getSimpleVT().SimpleTy) { 6048 default: llvm_unreachable("Unexpected ValueType for argument!"); 6049 case MVT::i1: 6050 case MVT::i32: 6051 case MVT::i64: 6052 if (++NumGPRsUsed <= NumGPRs) 6053 continue; 6054 break; 6055 case MVT::v4i32: 6056 case MVT::v8i16: 6057 case MVT::v16i8: 6058 case MVT::v2f64: 6059 case MVT::v2i64: 6060 case MVT::v1i128: 6061 case MVT::f128: 6062 if (++NumVRsUsed <= NumVRs) 6063 continue; 6064 break; 6065 case MVT::v4f32: 6066 if (++NumVRsUsed <= NumVRs) 6067 continue; 6068 break; 6069 case MVT::f32: 6070 case MVT::f64: 6071 if (++NumFPRsUsed <= NumFPRs) 6072 continue; 6073 break; 6074 } 6075 HasParameterArea = true; 6076 } 6077 } 6078 6079 /* Respect alignment of argument on the stack. */ 6080 auto Alignement = 6081 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6082 NumBytes = alignTo(NumBytes, Alignement); 6083 6084 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6085 if (Flags.isInConsecutiveRegsLast()) 6086 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6087 } 6088 6089 unsigned NumBytesActuallyUsed = NumBytes; 6090 6091 // In the old ELFv1 ABI, 6092 // the prolog code of the callee may store up to 8 GPR argument registers to 6093 // the stack, allowing va_start to index over them in memory if its varargs. 6094 // Because we cannot tell if this is needed on the caller side, we have to 6095 // conservatively assume that it is needed. As such, make sure we have at 6096 // least enough stack space for the caller to store the 8 GPRs. 6097 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6098 // really requires memory operands, e.g. a vararg function. 6099 if (HasParameterArea) 6100 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6101 else 6102 NumBytes = LinkageSize; 6103 6104 // Tail call needs the stack to be aligned. 6105 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6106 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6107 6108 int SPDiff = 0; 6109 6110 // Calculate by how many bytes the stack has to be adjusted in case of tail 6111 // call optimization. 6112 if (!IsSibCall) 6113 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6114 6115 // To protect arguments on the stack from being clobbered in a tail call, 6116 // force all the loads to happen before doing any other lowering. 6117 if (CFlags.IsTailCall) 6118 Chain = DAG.getStackArgumentTokenFactor(Chain); 6119 6120 // Adjust the stack pointer for the new arguments... 6121 // These operations are automatically eliminated by the prolog/epilog pass 6122 if (!IsSibCall) 6123 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6124 SDValue CallSeqStart = Chain; 6125 6126 // Load the return address and frame pointer so it can be move somewhere else 6127 // later. 6128 SDValue LROp, FPOp; 6129 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6130 6131 // Set up a copy of the stack pointer for use loading and storing any 6132 // arguments that may not fit in the registers available for argument 6133 // passing. 6134 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6135 6136 // Figure out which arguments are going to go in registers, and which in 6137 // memory. Also, if this is a vararg function, floating point operations 6138 // must be stored to our stack, and loaded into integer regs as well, if 6139 // any integer regs are available for argument passing. 6140 unsigned ArgOffset = LinkageSize; 6141 6142 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6143 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6144 6145 SmallVector<SDValue, 8> MemOpChains; 6146 for (unsigned i = 0; i != NumOps; ++i) { 6147 SDValue Arg = OutVals[i]; 6148 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6149 EVT ArgVT = Outs[i].VT; 6150 EVT OrigVT = Outs[i].ArgVT; 6151 6152 // PtrOff will be used to store the current argument to the stack if a 6153 // register cannot be found for it. 6154 SDValue PtrOff; 6155 6156 // We re-align the argument offset for each argument, except when using the 6157 // fast calling convention, when we need to make sure we do that only when 6158 // we'll actually use a stack slot. 6159 auto ComputePtrOff = [&]() { 6160 /* Respect alignment of argument on the stack. */ 6161 auto Alignment = 6162 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6163 ArgOffset = alignTo(ArgOffset, Alignment); 6164 6165 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6166 6167 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6168 }; 6169 6170 if (!IsFastCall) { 6171 ComputePtrOff(); 6172 6173 /* Compute GPR index associated with argument offset. */ 6174 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6175 GPR_idx = std::min(GPR_idx, NumGPRs); 6176 } 6177 6178 // Promote integers to 64-bit values. 6179 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6180 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6181 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6182 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6183 } 6184 6185 // FIXME memcpy is used way more than necessary. Correctness first. 6186 // Note: "by value" is code for passing a structure by value, not 6187 // basic types. 6188 if (Flags.isByVal()) { 6189 // Note: Size includes alignment padding, so 6190 // struct x { short a; char b; } 6191 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6192 // These are the proper values we need for right-justifying the 6193 // aggregate in a parameter register. 6194 unsigned Size = Flags.getByValSize(); 6195 6196 // An empty aggregate parameter takes up no storage and no 6197 // registers. 6198 if (Size == 0) 6199 continue; 6200 6201 if (IsFastCall) 6202 ComputePtrOff(); 6203 6204 // All aggregates smaller than 8 bytes must be passed right-justified. 6205 if (Size==1 || Size==2 || Size==4) { 6206 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6207 if (GPR_idx != NumGPRs) { 6208 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6209 MachinePointerInfo(), VT); 6210 MemOpChains.push_back(Load.getValue(1)); 6211 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6212 6213 ArgOffset += PtrByteSize; 6214 continue; 6215 } 6216 } 6217 6218 if (GPR_idx == NumGPRs && Size < 8) { 6219 SDValue AddPtr = PtrOff; 6220 if (!isLittleEndian) { 6221 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6222 PtrOff.getValueType()); 6223 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6224 } 6225 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6226 CallSeqStart, 6227 Flags, DAG, dl); 6228 ArgOffset += PtrByteSize; 6229 continue; 6230 } 6231 // Copy the object to parameter save area if it can not be entirely passed 6232 // by registers. 6233 // FIXME: we only need to copy the parts which need to be passed in 6234 // parameter save area. For the parts passed by registers, we don't need 6235 // to copy them to the stack although we need to allocate space for them 6236 // in parameter save area. 6237 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6238 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6239 CallSeqStart, 6240 Flags, DAG, dl); 6241 6242 // When a register is available, pass a small aggregate right-justified. 6243 if (Size < 8 && GPR_idx != NumGPRs) { 6244 // The easiest way to get this right-justified in a register 6245 // is to copy the structure into the rightmost portion of a 6246 // local variable slot, then load the whole slot into the 6247 // register. 6248 // FIXME: The memcpy seems to produce pretty awful code for 6249 // small aggregates, particularly for packed ones. 6250 // FIXME: It would be preferable to use the slot in the 6251 // parameter save area instead of a new local variable. 6252 SDValue AddPtr = PtrOff; 6253 if (!isLittleEndian) { 6254 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6255 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6256 } 6257 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6258 CallSeqStart, 6259 Flags, DAG, dl); 6260 6261 // Load the slot into the register. 6262 SDValue Load = 6263 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6264 MemOpChains.push_back(Load.getValue(1)); 6265 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6266 6267 // Done with this argument. 6268 ArgOffset += PtrByteSize; 6269 continue; 6270 } 6271 6272 // For aggregates larger than PtrByteSize, copy the pieces of the 6273 // object that fit into registers from the parameter save area. 6274 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6275 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6276 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6277 if (GPR_idx != NumGPRs) { 6278 unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; 6279 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); 6280 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, 6281 MachinePointerInfo(), ObjType); 6282 6283 MemOpChains.push_back(Load.getValue(1)); 6284 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6285 ArgOffset += PtrByteSize; 6286 } else { 6287 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6288 break; 6289 } 6290 } 6291 continue; 6292 } 6293 6294 switch (Arg.getSimpleValueType().SimpleTy) { 6295 default: llvm_unreachable("Unexpected ValueType for argument!"); 6296 case MVT::i1: 6297 case MVT::i32: 6298 case MVT::i64: 6299 if (Flags.isNest()) { 6300 // The 'nest' parameter, if any, is passed in R11. 6301 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6302 break; 6303 } 6304 6305 // These can be scalar arguments or elements of an integer array type 6306 // passed directly. Clang may use those instead of "byval" aggregate 6307 // types to avoid forcing arguments to memory unnecessarily. 6308 if (GPR_idx != NumGPRs) { 6309 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6310 } else { 6311 if (IsFastCall) 6312 ComputePtrOff(); 6313 6314 assert(HasParameterArea && 6315 "Parameter area must exist to pass an argument in memory."); 6316 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6317 true, CFlags.IsTailCall, false, MemOpChains, 6318 TailCallArguments, dl); 6319 if (IsFastCall) 6320 ArgOffset += PtrByteSize; 6321 } 6322 if (!IsFastCall) 6323 ArgOffset += PtrByteSize; 6324 break; 6325 case MVT::f32: 6326 case MVT::f64: { 6327 // These can be scalar arguments or elements of a float array type 6328 // passed directly. The latter are used to implement ELFv2 homogenous 6329 // float aggregates. 6330 6331 // Named arguments go into FPRs first, and once they overflow, the 6332 // remaining arguments go into GPRs and then the parameter save area. 6333 // Unnamed arguments for vararg functions always go to GPRs and 6334 // then the parameter save area. For now, put all arguments to vararg 6335 // routines always in both locations (FPR *and* GPR or stack slot). 6336 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6337 bool NeededLoad = false; 6338 6339 // First load the argument into the next available FPR. 6340 if (FPR_idx != NumFPRs) 6341 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6342 6343 // Next, load the argument into GPR or stack slot if needed. 6344 if (!NeedGPROrStack) 6345 ; 6346 else if (GPR_idx != NumGPRs && !IsFastCall) { 6347 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6348 // once we support fp <-> gpr moves. 6349 6350 // In the non-vararg case, this can only ever happen in the 6351 // presence of f32 array types, since otherwise we never run 6352 // out of FPRs before running out of GPRs. 6353 SDValue ArgVal; 6354 6355 // Double values are always passed in a single GPR. 6356 if (Arg.getValueType() != MVT::f32) { 6357 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6358 6359 // Non-array float values are extended and passed in a GPR. 6360 } else if (!Flags.isInConsecutiveRegs()) { 6361 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6362 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6363 6364 // If we have an array of floats, we collect every odd element 6365 // together with its predecessor into one GPR. 6366 } else if (ArgOffset % PtrByteSize != 0) { 6367 SDValue Lo, Hi; 6368 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6369 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6370 if (!isLittleEndian) 6371 std::swap(Lo, Hi); 6372 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6373 6374 // The final element, if even, goes into the first half of a GPR. 6375 } else if (Flags.isInConsecutiveRegsLast()) { 6376 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6377 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6378 if (!isLittleEndian) 6379 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6380 DAG.getConstant(32, dl, MVT::i32)); 6381 6382 // Non-final even elements are skipped; they will be handled 6383 // together the with subsequent argument on the next go-around. 6384 } else 6385 ArgVal = SDValue(); 6386 6387 if (ArgVal.getNode()) 6388 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6389 } else { 6390 if (IsFastCall) 6391 ComputePtrOff(); 6392 6393 // Single-precision floating-point values are mapped to the 6394 // second (rightmost) word of the stack doubleword. 6395 if (Arg.getValueType() == MVT::f32 && 6396 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6397 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6398 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6399 } 6400 6401 assert(HasParameterArea && 6402 "Parameter area must exist to pass an argument in memory."); 6403 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6404 true, CFlags.IsTailCall, false, MemOpChains, 6405 TailCallArguments, dl); 6406 6407 NeededLoad = true; 6408 } 6409 // When passing an array of floats, the array occupies consecutive 6410 // space in the argument area; only round up to the next doubleword 6411 // at the end of the array. Otherwise, each float takes 8 bytes. 6412 if (!IsFastCall || NeededLoad) { 6413 ArgOffset += (Arg.getValueType() == MVT::f32 && 6414 Flags.isInConsecutiveRegs()) ? 4 : 8; 6415 if (Flags.isInConsecutiveRegsLast()) 6416 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6417 } 6418 break; 6419 } 6420 case MVT::v4f32: 6421 case MVT::v4i32: 6422 case MVT::v8i16: 6423 case MVT::v16i8: 6424 case MVT::v2f64: 6425 case MVT::v2i64: 6426 case MVT::v1i128: 6427 case MVT::f128: 6428 // These can be scalar arguments or elements of a vector array type 6429 // passed directly. The latter are used to implement ELFv2 homogenous 6430 // vector aggregates. 6431 6432 // For a varargs call, named arguments go into VRs or on the stack as 6433 // usual; unnamed arguments always go to the stack or the corresponding 6434 // GPRs when within range. For now, we always put the value in both 6435 // locations (or even all three). 6436 if (CFlags.IsVarArg) { 6437 assert(HasParameterArea && 6438 "Parameter area must exist if we have a varargs call."); 6439 // We could elide this store in the case where the object fits 6440 // entirely in R registers. Maybe later. 6441 SDValue Store = 6442 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6443 MemOpChains.push_back(Store); 6444 if (VR_idx != NumVRs) { 6445 SDValue Load = 6446 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6447 MemOpChains.push_back(Load.getValue(1)); 6448 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6449 } 6450 ArgOffset += 16; 6451 for (unsigned i=0; i<16; i+=PtrByteSize) { 6452 if (GPR_idx == NumGPRs) 6453 break; 6454 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6455 DAG.getConstant(i, dl, PtrVT)); 6456 SDValue Load = 6457 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6458 MemOpChains.push_back(Load.getValue(1)); 6459 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6460 } 6461 break; 6462 } 6463 6464 // Non-varargs Altivec params go into VRs or on the stack. 6465 if (VR_idx != NumVRs) { 6466 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6467 } else { 6468 if (IsFastCall) 6469 ComputePtrOff(); 6470 6471 assert(HasParameterArea && 6472 "Parameter area must exist to pass an argument in memory."); 6473 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6474 true, CFlags.IsTailCall, true, MemOpChains, 6475 TailCallArguments, dl); 6476 if (IsFastCall) 6477 ArgOffset += 16; 6478 } 6479 6480 if (!IsFastCall) 6481 ArgOffset += 16; 6482 break; 6483 } 6484 } 6485 6486 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6487 "mismatch in size of parameter area"); 6488 (void)NumBytesActuallyUsed; 6489 6490 if (!MemOpChains.empty()) 6491 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6492 6493 // Check if this is an indirect call (MTCTR/BCTRL). 6494 // See prepareDescriptorIndirectCall and buildCallOperands for more 6495 // information about calls through function pointers in the 64-bit SVR4 ABI. 6496 if (CFlags.IsIndirect) { 6497 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6498 // caller in the TOC save area. 6499 if (isTOCSaveRestoreRequired(Subtarget)) { 6500 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6501 // Load r2 into a virtual register and store it to the TOC save area. 6502 setUsesTOCBasePtr(DAG); 6503 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6504 // TOC save area offset. 6505 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6506 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6507 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6508 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6509 MachinePointerInfo::getStack( 6510 DAG.getMachineFunction(), TOCSaveOffset)); 6511 } 6512 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6513 // This does not mean the MTCTR instruction must use R12; it's easier 6514 // to model this as an extra parameter, so do that. 6515 if (isELFv2ABI && !CFlags.IsPatchPoint) 6516 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6517 } 6518 6519 // Build a sequence of copy-to-reg nodes chained together with token chain 6520 // and flag operands which copy the outgoing args into the appropriate regs. 6521 SDValue InFlag; 6522 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6523 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6524 RegsToPass[i].second, InFlag); 6525 InFlag = Chain.getValue(1); 6526 } 6527 6528 if (CFlags.IsTailCall && !IsSibCall) 6529 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6530 TailCallArguments); 6531 6532 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6533 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6534 } 6535 6536 // Returns true when the shadow of a general purpose argument register 6537 // in the parameter save area is aligned to at least 'RequiredAlign'. 6538 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6539 assert(RequiredAlign.value() <= 16 && 6540 "Required alignment greater than stack alignment."); 6541 switch (Reg) { 6542 default: 6543 report_fatal_error("called on invalid register."); 6544 case PPC::R5: 6545 case PPC::R9: 6546 case PPC::X3: 6547 case PPC::X5: 6548 case PPC::X7: 6549 case PPC::X9: 6550 // These registers are 16 byte aligned which is the most strict aligment 6551 // we can support. 6552 return true; 6553 case PPC::R3: 6554 case PPC::R7: 6555 case PPC::X4: 6556 case PPC::X6: 6557 case PPC::X8: 6558 case PPC::X10: 6559 // The shadow of these registers in the PSA is 8 byte aligned. 6560 return RequiredAlign <= 8; 6561 case PPC::R4: 6562 case PPC::R6: 6563 case PPC::R8: 6564 case PPC::R10: 6565 return RequiredAlign <= 4; 6566 } 6567 } 6568 6569 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6570 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6571 CCState &S) { 6572 AIXCCState &State = static_cast<AIXCCState &>(S); 6573 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6574 State.getMachineFunction().getSubtarget()); 6575 const bool IsPPC64 = Subtarget.isPPC64(); 6576 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6577 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6578 6579 if (ValVT == MVT::f128) 6580 report_fatal_error("f128 is unimplemented on AIX."); 6581 6582 if (ArgFlags.isNest()) 6583 report_fatal_error("Nest arguments are unimplemented."); 6584 6585 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6586 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6587 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6588 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6589 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6590 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6591 6592 static const MCPhysReg VR[] = {// Vector registers. 6593 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6594 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6595 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6596 6597 if (ArgFlags.isByVal()) { 6598 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6599 report_fatal_error("Pass-by-value arguments with alignment greater than " 6600 "register width are not supported."); 6601 6602 const unsigned ByValSize = ArgFlags.getByValSize(); 6603 6604 // An empty aggregate parameter takes up no storage and no registers, 6605 // but needs a MemLoc for a stack slot for the formal arguments side. 6606 if (ByValSize == 0) { 6607 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6608 State.getNextStackOffset(), RegVT, 6609 LocInfo)); 6610 return false; 6611 } 6612 6613 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6614 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6615 for (const unsigned E = Offset + StackSize; Offset < E; 6616 Offset += PtrAlign.value()) { 6617 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6618 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6619 else { 6620 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6621 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6622 LocInfo)); 6623 break; 6624 } 6625 } 6626 return false; 6627 } 6628 6629 // Arguments always reserve parameter save area. 6630 switch (ValVT.SimpleTy) { 6631 default: 6632 report_fatal_error("Unhandled value type for argument."); 6633 case MVT::i64: 6634 // i64 arguments should have been split to i32 for PPC32. 6635 assert(IsPPC64 && "PPC32 should have split i64 values."); 6636 LLVM_FALLTHROUGH; 6637 case MVT::i1: 6638 case MVT::i32: { 6639 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6640 // AIX integer arguments are always passed in register width. 6641 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6642 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6643 : CCValAssign::LocInfo::ZExt; 6644 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6645 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6646 else 6647 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6648 6649 return false; 6650 } 6651 case MVT::f32: 6652 case MVT::f64: { 6653 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6654 const unsigned StoreSize = LocVT.getStoreSize(); 6655 // Floats are always 4-byte aligned in the PSA on AIX. 6656 // This includes f64 in 64-bit mode for ABI compatibility. 6657 const unsigned Offset = 6658 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6659 unsigned FReg = State.AllocateReg(FPR); 6660 if (FReg) 6661 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6662 6663 // Reserve and initialize GPRs or initialize the PSA as required. 6664 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6665 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6666 assert(FReg && "An FPR should be available when a GPR is reserved."); 6667 if (State.isVarArg()) { 6668 // Successfully reserved GPRs are only initialized for vararg calls. 6669 // Custom handling is required for: 6670 // f64 in PPC32 needs to be split into 2 GPRs. 6671 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6672 State.addLoc( 6673 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6674 } 6675 } else { 6676 // If there are insufficient GPRs, the PSA needs to be initialized. 6677 // Initialization occurs even if an FPR was initialized for 6678 // compatibility with the AIX XL compiler. The full memory for the 6679 // argument will be initialized even if a prior word is saved in GPR. 6680 // A custom memLoc is used when the argument also passes in FPR so 6681 // that the callee handling can skip over it easily. 6682 State.addLoc( 6683 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6684 LocInfo) 6685 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6686 break; 6687 } 6688 } 6689 6690 return false; 6691 } 6692 case MVT::v4f32: 6693 case MVT::v4i32: 6694 case MVT::v8i16: 6695 case MVT::v16i8: 6696 case MVT::v2i64: 6697 case MVT::v2f64: 6698 case MVT::v1i128: { 6699 const unsigned VecSize = 16; 6700 const Align VecAlign(VecSize); 6701 6702 if (!State.isVarArg()) { 6703 // If there are vector registers remaining we don't consume any stack 6704 // space. 6705 if (unsigned VReg = State.AllocateReg(VR)) { 6706 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6707 return false; 6708 } 6709 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6710 // might be allocated in the portion of the PSA that is shadowed by the 6711 // GPRs. 6712 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6713 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6714 return false; 6715 } 6716 6717 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6718 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6719 6720 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6721 // Burn any underaligned registers and their shadowed stack space until 6722 // we reach the required alignment. 6723 while (NextRegIndex != GPRs.size() && 6724 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6725 // Shadow allocate register and its stack shadow. 6726 unsigned Reg = State.AllocateReg(GPRs); 6727 State.AllocateStack(PtrSize, PtrAlign); 6728 assert(Reg && "Allocating register unexpectedly failed."); 6729 (void)Reg; 6730 NextRegIndex = State.getFirstUnallocated(GPRs); 6731 } 6732 6733 // Vectors that are passed as fixed arguments are handled differently. 6734 // They are passed in VRs if any are available (unlike arguments passed 6735 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6736 // functions) 6737 if (State.isFixed(ValNo)) { 6738 if (unsigned VReg = State.AllocateReg(VR)) { 6739 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6740 // Shadow allocate GPRs and stack space even though we pass in a VR. 6741 for (unsigned I = 0; I != VecSize; I += PtrSize) 6742 State.AllocateReg(GPRs); 6743 State.AllocateStack(VecSize, VecAlign); 6744 return false; 6745 } 6746 // No vector registers remain so pass on the stack. 6747 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6748 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6749 return false; 6750 } 6751 6752 // If all GPRS are consumed then we pass the argument fully on the stack. 6753 if (NextRegIndex == GPRs.size()) { 6754 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6755 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6756 return false; 6757 } 6758 6759 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6760 // half of the argument, and then need to pass the remaining half on the 6761 // stack. 6762 if (GPRs[NextRegIndex] == PPC::R9) { 6763 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6764 State.addLoc( 6765 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6766 6767 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6768 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6769 assert(FirstReg && SecondReg && 6770 "Allocating R9 or R10 unexpectedly failed."); 6771 State.addLoc( 6772 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6773 State.addLoc( 6774 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6775 return false; 6776 } 6777 6778 // We have enough GPRs to fully pass the vector argument, and we have 6779 // already consumed any underaligned registers. Start with the custom 6780 // MemLoc and then the custom RegLocs. 6781 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6782 State.addLoc( 6783 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6784 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6785 const unsigned Reg = State.AllocateReg(GPRs); 6786 assert(Reg && "Failed to allocated register for vararg vector argument"); 6787 State.addLoc( 6788 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6789 } 6790 return false; 6791 } 6792 } 6793 return true; 6794 } 6795 6796 // So far, this function is only used by LowerFormalArguments_AIX() 6797 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6798 bool IsPPC64, 6799 bool HasP8Vector, 6800 bool HasVSX) { 6801 assert((IsPPC64 || SVT != MVT::i64) && 6802 "i64 should have been split for 32-bit codegen."); 6803 6804 switch (SVT) { 6805 default: 6806 report_fatal_error("Unexpected value type for formal argument"); 6807 case MVT::i1: 6808 case MVT::i32: 6809 case MVT::i64: 6810 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6811 case MVT::f32: 6812 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6813 case MVT::f64: 6814 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6815 case MVT::v4f32: 6816 case MVT::v4i32: 6817 case MVT::v8i16: 6818 case MVT::v16i8: 6819 case MVT::v2i64: 6820 case MVT::v2f64: 6821 case MVT::v1i128: 6822 return &PPC::VRRCRegClass; 6823 } 6824 } 6825 6826 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6827 SelectionDAG &DAG, SDValue ArgValue, 6828 MVT LocVT, const SDLoc &dl) { 6829 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6830 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6831 6832 if (Flags.isSExt()) 6833 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6834 DAG.getValueType(ValVT)); 6835 else if (Flags.isZExt()) 6836 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6837 DAG.getValueType(ValVT)); 6838 6839 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6840 } 6841 6842 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6843 const unsigned LASize = FL->getLinkageSize(); 6844 6845 if (PPC::GPRCRegClass.contains(Reg)) { 6846 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6847 "Reg must be a valid argument register!"); 6848 return LASize + 4 * (Reg - PPC::R3); 6849 } 6850 6851 if (PPC::G8RCRegClass.contains(Reg)) { 6852 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6853 "Reg must be a valid argument register!"); 6854 return LASize + 8 * (Reg - PPC::X3); 6855 } 6856 6857 llvm_unreachable("Only general purpose registers expected."); 6858 } 6859 6860 // AIX ABI Stack Frame Layout: 6861 // 6862 // Low Memory +--------------------------------------------+ 6863 // SP +---> | Back chain | ---+ 6864 // | +--------------------------------------------+ | 6865 // | | Saved Condition Register | | 6866 // | +--------------------------------------------+ | 6867 // | | Saved Linkage Register | | 6868 // | +--------------------------------------------+ | Linkage Area 6869 // | | Reserved for compilers | | 6870 // | +--------------------------------------------+ | 6871 // | | Reserved for binders | | 6872 // | +--------------------------------------------+ | 6873 // | | Saved TOC pointer | ---+ 6874 // | +--------------------------------------------+ 6875 // | | Parameter save area | 6876 // | +--------------------------------------------+ 6877 // | | Alloca space | 6878 // | +--------------------------------------------+ 6879 // | | Local variable space | 6880 // | +--------------------------------------------+ 6881 // | | Float/int conversion temporary | 6882 // | +--------------------------------------------+ 6883 // | | Save area for AltiVec registers | 6884 // | +--------------------------------------------+ 6885 // | | AltiVec alignment padding | 6886 // | +--------------------------------------------+ 6887 // | | Save area for VRSAVE register | 6888 // | +--------------------------------------------+ 6889 // | | Save area for General Purpose registers | 6890 // | +--------------------------------------------+ 6891 // | | Save area for Floating Point registers | 6892 // | +--------------------------------------------+ 6893 // +---- | Back chain | 6894 // High Memory +--------------------------------------------+ 6895 // 6896 // Specifications: 6897 // AIX 7.2 Assembler Language Reference 6898 // Subroutine linkage convention 6899 6900 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6901 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6902 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6903 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6904 6905 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6906 CallConv == CallingConv::Fast) && 6907 "Unexpected calling convention!"); 6908 6909 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6910 report_fatal_error("Tail call support is unimplemented on AIX."); 6911 6912 if (useSoftFloat()) 6913 report_fatal_error("Soft float support is unimplemented on AIX."); 6914 6915 const PPCSubtarget &Subtarget = 6916 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6917 6918 const bool IsPPC64 = Subtarget.isPPC64(); 6919 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6920 6921 // Assign locations to all of the incoming arguments. 6922 SmallVector<CCValAssign, 16> ArgLocs; 6923 MachineFunction &MF = DAG.getMachineFunction(); 6924 MachineFrameInfo &MFI = MF.getFrameInfo(); 6925 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6926 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6927 6928 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6929 // Reserve space for the linkage area on the stack. 6930 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6931 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6932 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6933 6934 SmallVector<SDValue, 8> MemOps; 6935 6936 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6937 CCValAssign &VA = ArgLocs[I++]; 6938 MVT LocVT = VA.getLocVT(); 6939 MVT ValVT = VA.getValVT(); 6940 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6941 // For compatibility with the AIX XL compiler, the float args in the 6942 // parameter save area are initialized even if the argument is available 6943 // in register. The caller is required to initialize both the register 6944 // and memory, however, the callee can choose to expect it in either. 6945 // The memloc is dismissed here because the argument is retrieved from 6946 // the register. 6947 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6948 continue; 6949 6950 auto HandleMemLoc = [&]() { 6951 const unsigned LocSize = LocVT.getStoreSize(); 6952 const unsigned ValSize = ValVT.getStoreSize(); 6953 assert((ValSize <= LocSize) && 6954 "Object size is larger than size of MemLoc"); 6955 int CurArgOffset = VA.getLocMemOffset(); 6956 // Objects are right-justified because AIX is big-endian. 6957 if (LocSize > ValSize) 6958 CurArgOffset += LocSize - ValSize; 6959 // Potential tail calls could cause overwriting of argument stack slots. 6960 const bool IsImmutable = 6961 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6962 (CallConv == CallingConv::Fast)); 6963 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6964 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6965 SDValue ArgValue = 6966 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6967 InVals.push_back(ArgValue); 6968 }; 6969 6970 // Vector arguments to VaArg functions are passed both on the stack, and 6971 // in any available GPRs. Load the value from the stack and add the GPRs 6972 // as live ins. 6973 if (VA.isMemLoc() && VA.needsCustom()) { 6974 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6975 assert(isVarArg && "Only use custom memloc for vararg."); 6976 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6977 // matching custom RegLocs. 6978 const unsigned OriginalValNo = VA.getValNo(); 6979 (void)OriginalValNo; 6980 6981 auto HandleCustomVecRegLoc = [&]() { 6982 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6983 "Missing custom RegLoc."); 6984 VA = ArgLocs[I++]; 6985 assert(VA.getValVT().isVector() && 6986 "Unexpected Val type for custom RegLoc."); 6987 assert(VA.getValNo() == OriginalValNo && 6988 "ValNo mismatch between custom MemLoc and RegLoc."); 6989 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6990 MF.addLiveIn(VA.getLocReg(), 6991 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6992 Subtarget.hasVSX())); 6993 }; 6994 6995 HandleMemLoc(); 6996 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6997 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6998 // R10. 6999 HandleCustomVecRegLoc(); 7000 HandleCustomVecRegLoc(); 7001 7002 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7003 // we passed the vector in R5, R6, R7 and R8. 7004 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7005 assert(!IsPPC64 && 7006 "Only 2 custom RegLocs expected for 64-bit codegen."); 7007 HandleCustomVecRegLoc(); 7008 HandleCustomVecRegLoc(); 7009 } 7010 7011 continue; 7012 } 7013 7014 if (VA.isRegLoc()) { 7015 if (VA.getValVT().isScalarInteger()) 7016 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7017 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7018 switch (VA.getValVT().SimpleTy) { 7019 default: 7020 report_fatal_error("Unhandled value type for argument."); 7021 case MVT::f32: 7022 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7023 break; 7024 case MVT::f64: 7025 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7026 break; 7027 } 7028 } else if (VA.getValVT().isVector()) { 7029 switch (VA.getValVT().SimpleTy) { 7030 default: 7031 report_fatal_error("Unhandled value type for argument."); 7032 case MVT::v16i8: 7033 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7034 break; 7035 case MVT::v8i16: 7036 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7037 break; 7038 case MVT::v4i32: 7039 case MVT::v2i64: 7040 case MVT::v1i128: 7041 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7042 break; 7043 case MVT::v4f32: 7044 case MVT::v2f64: 7045 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7046 break; 7047 } 7048 } 7049 } 7050 7051 if (Flags.isByVal() && VA.isMemLoc()) { 7052 const unsigned Size = 7053 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7054 PtrByteSize); 7055 const int FI = MF.getFrameInfo().CreateFixedObject( 7056 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7057 /* IsAliased */ true); 7058 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7059 InVals.push_back(FIN); 7060 7061 continue; 7062 } 7063 7064 if (Flags.isByVal()) { 7065 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7066 7067 const MCPhysReg ArgReg = VA.getLocReg(); 7068 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7069 7070 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7071 report_fatal_error("Over aligned byvals not supported yet."); 7072 7073 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7074 const int FI = MF.getFrameInfo().CreateFixedObject( 7075 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7076 /* IsAliased */ true); 7077 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7078 InVals.push_back(FIN); 7079 7080 // Add live ins for all the RegLocs for the same ByVal. 7081 const TargetRegisterClass *RegClass = 7082 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7083 7084 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7085 unsigned Offset) { 7086 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7087 // Since the callers side has left justified the aggregate in the 7088 // register, we can simply store the entire register into the stack 7089 // slot. 7090 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7091 // The store to the fixedstack object is needed becuase accessing a 7092 // field of the ByVal will use a gep and load. Ideally we will optimize 7093 // to extracting the value from the register directly, and elide the 7094 // stores when the arguments address is not taken, but that will need to 7095 // be future work. 7096 SDValue Store = DAG.getStore( 7097 CopyFrom.getValue(1), dl, CopyFrom, 7098 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7099 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7100 7101 MemOps.push_back(Store); 7102 }; 7103 7104 unsigned Offset = 0; 7105 HandleRegLoc(VA.getLocReg(), Offset); 7106 Offset += PtrByteSize; 7107 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7108 Offset += PtrByteSize) { 7109 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7110 "RegLocs should be for ByVal argument."); 7111 7112 const CCValAssign RL = ArgLocs[I++]; 7113 HandleRegLoc(RL.getLocReg(), Offset); 7114 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7115 } 7116 7117 if (Offset != StackSize) { 7118 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7119 "Expected MemLoc for remaining bytes."); 7120 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7121 // Consume the MemLoc.The InVal has already been emitted, so nothing 7122 // more needs to be done. 7123 ++I; 7124 } 7125 7126 continue; 7127 } 7128 7129 if (VA.isRegLoc() && !VA.needsCustom()) { 7130 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7131 Register VReg = 7132 MF.addLiveIn(VA.getLocReg(), 7133 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7134 Subtarget.hasVSX())); 7135 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7136 if (ValVT.isScalarInteger() && 7137 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7138 ArgValue = 7139 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7140 } 7141 InVals.push_back(ArgValue); 7142 continue; 7143 } 7144 if (VA.isMemLoc()) { 7145 HandleMemLoc(); 7146 continue; 7147 } 7148 } 7149 7150 // On AIX a minimum of 8 words is saved to the parameter save area. 7151 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7152 // Area that is at least reserved in the caller of this function. 7153 unsigned CallerReservedArea = 7154 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7155 7156 // Set the size that is at least reserved in caller of this function. Tail 7157 // call optimized function's reserved stack space needs to be aligned so 7158 // that taking the difference between two stack areas will result in an 7159 // aligned stack. 7160 CallerReservedArea = 7161 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7162 FuncInfo->setMinReservedArea(CallerReservedArea); 7163 7164 if (isVarArg) { 7165 FuncInfo->setVarArgsFrameIndex( 7166 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7167 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7168 7169 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7170 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7171 7172 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7173 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7174 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7175 7176 // The fixed integer arguments of a variadic function are stored to the 7177 // VarArgsFrameIndex on the stack so that they may be loaded by 7178 // dereferencing the result of va_next. 7179 for (unsigned GPRIndex = 7180 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7181 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7182 7183 const Register VReg = 7184 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7185 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7186 7187 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7188 SDValue Store = 7189 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7190 MemOps.push_back(Store); 7191 // Increment the address for the next argument to store. 7192 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7193 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7194 } 7195 } 7196 7197 if (!MemOps.empty()) 7198 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7199 7200 return Chain; 7201 } 7202 7203 SDValue PPCTargetLowering::LowerCall_AIX( 7204 SDValue Chain, SDValue Callee, CallFlags CFlags, 7205 const SmallVectorImpl<ISD::OutputArg> &Outs, 7206 const SmallVectorImpl<SDValue> &OutVals, 7207 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7208 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7209 const CallBase *CB) const { 7210 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7211 // AIX ABI stack frame layout. 7212 7213 assert((CFlags.CallConv == CallingConv::C || 7214 CFlags.CallConv == CallingConv::Cold || 7215 CFlags.CallConv == CallingConv::Fast) && 7216 "Unexpected calling convention!"); 7217 7218 if (CFlags.IsPatchPoint) 7219 report_fatal_error("This call type is unimplemented on AIX."); 7220 7221 const PPCSubtarget& Subtarget = 7222 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7223 7224 MachineFunction &MF = DAG.getMachineFunction(); 7225 SmallVector<CCValAssign, 16> ArgLocs; 7226 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7227 *DAG.getContext()); 7228 7229 // Reserve space for the linkage save area (LSA) on the stack. 7230 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7231 // [SP][CR][LR][2 x reserved][TOC]. 7232 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7233 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7234 const bool IsPPC64 = Subtarget.isPPC64(); 7235 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7236 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7237 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7238 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7239 7240 // The prolog code of the callee may store up to 8 GPR argument registers to 7241 // the stack, allowing va_start to index over them in memory if the callee 7242 // is variadic. 7243 // Because we cannot tell if this is needed on the caller side, we have to 7244 // conservatively assume that it is needed. As such, make sure we have at 7245 // least enough stack space for the caller to store the 8 GPRs. 7246 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7247 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7248 CCInfo.getNextStackOffset()); 7249 7250 // Adjust the stack pointer for the new arguments... 7251 // These operations are automatically eliminated by the prolog/epilog pass. 7252 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7253 SDValue CallSeqStart = Chain; 7254 7255 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7256 SmallVector<SDValue, 8> MemOpChains; 7257 7258 // Set up a copy of the stack pointer for loading and storing any 7259 // arguments that may not fit in the registers available for argument 7260 // passing. 7261 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7262 : DAG.getRegister(PPC::R1, MVT::i32); 7263 7264 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7265 const unsigned ValNo = ArgLocs[I].getValNo(); 7266 SDValue Arg = OutVals[ValNo]; 7267 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7268 7269 if (Flags.isByVal()) { 7270 const unsigned ByValSize = Flags.getByValSize(); 7271 7272 // Nothing to do for zero-sized ByVals on the caller side. 7273 if (!ByValSize) { 7274 ++I; 7275 continue; 7276 } 7277 7278 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7279 return DAG.getExtLoad( 7280 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7281 (LoadOffset != 0) 7282 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7283 : Arg, 7284 MachinePointerInfo(), VT); 7285 }; 7286 7287 unsigned LoadOffset = 0; 7288 7289 // Initialize registers, which are fully occupied by the by-val argument. 7290 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7291 SDValue Load = GetLoad(PtrVT, LoadOffset); 7292 MemOpChains.push_back(Load.getValue(1)); 7293 LoadOffset += PtrByteSize; 7294 const CCValAssign &ByValVA = ArgLocs[I++]; 7295 assert(ByValVA.getValNo() == ValNo && 7296 "Unexpected location for pass-by-value argument."); 7297 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7298 } 7299 7300 if (LoadOffset == ByValSize) 7301 continue; 7302 7303 // There must be one more loc to handle the remainder. 7304 assert(ArgLocs[I].getValNo() == ValNo && 7305 "Expected additional location for by-value argument."); 7306 7307 if (ArgLocs[I].isMemLoc()) { 7308 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7309 const CCValAssign &ByValVA = ArgLocs[I++]; 7310 ISD::ArgFlagsTy MemcpyFlags = Flags; 7311 // Only memcpy the bytes that don't pass in register. 7312 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7313 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7314 (LoadOffset != 0) 7315 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7316 : Arg, 7317 DAG.getObjectPtrOffset(dl, StackPtr, 7318 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7319 CallSeqStart, MemcpyFlags, DAG, dl); 7320 continue; 7321 } 7322 7323 // Initialize the final register residue. 7324 // Any residue that occupies the final by-val arg register must be 7325 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7326 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7327 // 2 and 1 byte loads. 7328 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7329 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7330 "Unexpected register residue for by-value argument."); 7331 SDValue ResidueVal; 7332 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7333 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7334 const MVT VT = 7335 N == 1 ? MVT::i8 7336 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7337 SDValue Load = GetLoad(VT, LoadOffset); 7338 MemOpChains.push_back(Load.getValue(1)); 7339 LoadOffset += N; 7340 Bytes += N; 7341 7342 // By-val arguments are passed left-justfied in register. 7343 // Every load here needs to be shifted, otherwise a full register load 7344 // should have been used. 7345 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7346 "Unexpected load emitted during handling of pass-by-value " 7347 "argument."); 7348 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7349 EVT ShiftAmountTy = 7350 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7351 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7352 SDValue ShiftedLoad = 7353 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7354 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7355 ShiftedLoad) 7356 : ShiftedLoad; 7357 } 7358 7359 const CCValAssign &ByValVA = ArgLocs[I++]; 7360 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7361 continue; 7362 } 7363 7364 CCValAssign &VA = ArgLocs[I++]; 7365 const MVT LocVT = VA.getLocVT(); 7366 const MVT ValVT = VA.getValVT(); 7367 7368 switch (VA.getLocInfo()) { 7369 default: 7370 report_fatal_error("Unexpected argument extension type."); 7371 case CCValAssign::Full: 7372 break; 7373 case CCValAssign::ZExt: 7374 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7375 break; 7376 case CCValAssign::SExt: 7377 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7378 break; 7379 } 7380 7381 if (VA.isRegLoc() && !VA.needsCustom()) { 7382 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7383 continue; 7384 } 7385 7386 // Vector arguments passed to VarArg functions need custom handling when 7387 // they are passed (at least partially) in GPRs. 7388 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7389 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7390 // Store value to its stack slot. 7391 SDValue PtrOff = 7392 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7393 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7394 SDValue Store = 7395 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7396 MemOpChains.push_back(Store); 7397 const unsigned OriginalValNo = VA.getValNo(); 7398 // Then load the GPRs from the stack 7399 unsigned LoadOffset = 0; 7400 auto HandleCustomVecRegLoc = [&]() { 7401 assert(I != E && "Unexpected end of CCvalAssigns."); 7402 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7403 "Expected custom RegLoc."); 7404 CCValAssign RegVA = ArgLocs[I++]; 7405 assert(RegVA.getValNo() == OriginalValNo && 7406 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7407 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7408 DAG.getConstant(LoadOffset, dl, PtrVT)); 7409 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7410 MemOpChains.push_back(Load.getValue(1)); 7411 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7412 LoadOffset += PtrByteSize; 7413 }; 7414 7415 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7416 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7417 // R10. 7418 HandleCustomVecRegLoc(); 7419 HandleCustomVecRegLoc(); 7420 7421 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7422 ArgLocs[I].getValNo() == OriginalValNo) { 7423 assert(!IsPPC64 && 7424 "Only 2 custom RegLocs expected for 64-bit codegen."); 7425 HandleCustomVecRegLoc(); 7426 HandleCustomVecRegLoc(); 7427 } 7428 7429 continue; 7430 } 7431 7432 if (VA.isMemLoc()) { 7433 SDValue PtrOff = 7434 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7435 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7436 MemOpChains.push_back( 7437 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7438 7439 continue; 7440 } 7441 7442 if (!ValVT.isFloatingPoint()) 7443 report_fatal_error( 7444 "Unexpected register handling for calling convention."); 7445 7446 // Custom handling is used for GPR initializations for vararg float 7447 // arguments. 7448 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7449 LocVT.isInteger() && 7450 "Custom register handling only expected for VarArg."); 7451 7452 SDValue ArgAsInt = 7453 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7454 7455 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7456 // f32 in 32-bit GPR 7457 // f64 in 64-bit GPR 7458 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7459 else if (Arg.getValueType().getFixedSizeInBits() < 7460 LocVT.getFixedSizeInBits()) 7461 // f32 in 64-bit GPR. 7462 RegsToPass.push_back(std::make_pair( 7463 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7464 else { 7465 // f64 in two 32-bit GPRs 7466 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7467 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7468 "Unexpected custom register for argument!"); 7469 CCValAssign &GPR1 = VA; 7470 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7471 DAG.getConstant(32, dl, MVT::i8)); 7472 RegsToPass.push_back(std::make_pair( 7473 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7474 7475 if (I != E) { 7476 // If only 1 GPR was available, there will only be one custom GPR and 7477 // the argument will also pass in memory. 7478 CCValAssign &PeekArg = ArgLocs[I]; 7479 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7480 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7481 CCValAssign &GPR2 = ArgLocs[I++]; 7482 RegsToPass.push_back(std::make_pair( 7483 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7484 } 7485 } 7486 } 7487 } 7488 7489 if (!MemOpChains.empty()) 7490 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7491 7492 // For indirect calls, we need to save the TOC base to the stack for 7493 // restoration after the call. 7494 if (CFlags.IsIndirect) { 7495 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7496 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7497 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7498 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7499 const unsigned TOCSaveOffset = 7500 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7501 7502 setUsesTOCBasePtr(DAG); 7503 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7504 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7505 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7506 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7507 Chain = DAG.getStore( 7508 Val.getValue(1), dl, Val, AddPtr, 7509 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7510 } 7511 7512 // Build a sequence of copy-to-reg nodes chained together with token chain 7513 // and flag operands which copy the outgoing args into the appropriate regs. 7514 SDValue InFlag; 7515 for (auto Reg : RegsToPass) { 7516 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7517 InFlag = Chain.getValue(1); 7518 } 7519 7520 const int SPDiff = 0; 7521 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7522 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7523 } 7524 7525 bool 7526 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7527 MachineFunction &MF, bool isVarArg, 7528 const SmallVectorImpl<ISD::OutputArg> &Outs, 7529 LLVMContext &Context) const { 7530 SmallVector<CCValAssign, 16> RVLocs; 7531 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7532 return CCInfo.CheckReturn( 7533 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7534 ? RetCC_PPC_Cold 7535 : RetCC_PPC); 7536 } 7537 7538 SDValue 7539 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7540 bool isVarArg, 7541 const SmallVectorImpl<ISD::OutputArg> &Outs, 7542 const SmallVectorImpl<SDValue> &OutVals, 7543 const SDLoc &dl, SelectionDAG &DAG) const { 7544 SmallVector<CCValAssign, 16> RVLocs; 7545 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7546 *DAG.getContext()); 7547 CCInfo.AnalyzeReturn(Outs, 7548 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7549 ? RetCC_PPC_Cold 7550 : RetCC_PPC); 7551 7552 SDValue Flag; 7553 SmallVector<SDValue, 4> RetOps(1, Chain); 7554 7555 // Copy the result values into the output registers. 7556 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7557 CCValAssign &VA = RVLocs[i]; 7558 assert(VA.isRegLoc() && "Can only return in registers!"); 7559 7560 SDValue Arg = OutVals[RealResIdx]; 7561 7562 switch (VA.getLocInfo()) { 7563 default: llvm_unreachable("Unknown loc info!"); 7564 case CCValAssign::Full: break; 7565 case CCValAssign::AExt: 7566 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7567 break; 7568 case CCValAssign::ZExt: 7569 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7570 break; 7571 case CCValAssign::SExt: 7572 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7573 break; 7574 } 7575 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7576 bool isLittleEndian = Subtarget.isLittleEndian(); 7577 // Legalize ret f64 -> ret 2 x i32. 7578 SDValue SVal = 7579 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7580 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7581 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7582 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7583 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7584 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7585 Flag = Chain.getValue(1); 7586 VA = RVLocs[++i]; // skip ahead to next loc 7587 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7588 } else 7589 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7590 Flag = Chain.getValue(1); 7591 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7592 } 7593 7594 RetOps[0] = Chain; // Update chain. 7595 7596 // Add the flag if we have it. 7597 if (Flag.getNode()) 7598 RetOps.push_back(Flag); 7599 7600 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7601 } 7602 7603 SDValue 7604 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7605 SelectionDAG &DAG) const { 7606 SDLoc dl(Op); 7607 7608 // Get the correct type for integers. 7609 EVT IntVT = Op.getValueType(); 7610 7611 // Get the inputs. 7612 SDValue Chain = Op.getOperand(0); 7613 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7614 // Build a DYNAREAOFFSET node. 7615 SDValue Ops[2] = {Chain, FPSIdx}; 7616 SDVTList VTs = DAG.getVTList(IntVT); 7617 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7618 } 7619 7620 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7621 SelectionDAG &DAG) const { 7622 // When we pop the dynamic allocation we need to restore the SP link. 7623 SDLoc dl(Op); 7624 7625 // Get the correct type for pointers. 7626 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7627 7628 // Construct the stack pointer operand. 7629 bool isPPC64 = Subtarget.isPPC64(); 7630 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7631 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7632 7633 // Get the operands for the STACKRESTORE. 7634 SDValue Chain = Op.getOperand(0); 7635 SDValue SaveSP = Op.getOperand(1); 7636 7637 // Load the old link SP. 7638 SDValue LoadLinkSP = 7639 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7640 7641 // Restore the stack pointer. 7642 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7643 7644 // Store the old link SP. 7645 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7646 } 7647 7648 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7649 MachineFunction &MF = DAG.getMachineFunction(); 7650 bool isPPC64 = Subtarget.isPPC64(); 7651 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7652 7653 // Get current frame pointer save index. The users of this index will be 7654 // primarily DYNALLOC instructions. 7655 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7656 int RASI = FI->getReturnAddrSaveIndex(); 7657 7658 // If the frame pointer save index hasn't been defined yet. 7659 if (!RASI) { 7660 // Find out what the fix offset of the frame pointer save area. 7661 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7662 // Allocate the frame index for frame pointer save area. 7663 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7664 // Save the result. 7665 FI->setReturnAddrSaveIndex(RASI); 7666 } 7667 return DAG.getFrameIndex(RASI, PtrVT); 7668 } 7669 7670 SDValue 7671 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7672 MachineFunction &MF = DAG.getMachineFunction(); 7673 bool isPPC64 = Subtarget.isPPC64(); 7674 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7675 7676 // Get current frame pointer save index. The users of this index will be 7677 // primarily DYNALLOC instructions. 7678 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7679 int FPSI = FI->getFramePointerSaveIndex(); 7680 7681 // If the frame pointer save index hasn't been defined yet. 7682 if (!FPSI) { 7683 // Find out what the fix offset of the frame pointer save area. 7684 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7685 // Allocate the frame index for frame pointer save area. 7686 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7687 // Save the result. 7688 FI->setFramePointerSaveIndex(FPSI); 7689 } 7690 return DAG.getFrameIndex(FPSI, PtrVT); 7691 } 7692 7693 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7694 SelectionDAG &DAG) const { 7695 MachineFunction &MF = DAG.getMachineFunction(); 7696 // Get the inputs. 7697 SDValue Chain = Op.getOperand(0); 7698 SDValue Size = Op.getOperand(1); 7699 SDLoc dl(Op); 7700 7701 // Get the correct type for pointers. 7702 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7703 // Negate the size. 7704 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7705 DAG.getConstant(0, dl, PtrVT), Size); 7706 // Construct a node for the frame pointer save index. 7707 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7708 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7709 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7710 if (hasInlineStackProbe(MF)) 7711 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7712 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7713 } 7714 7715 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7716 SelectionDAG &DAG) const { 7717 MachineFunction &MF = DAG.getMachineFunction(); 7718 7719 bool isPPC64 = Subtarget.isPPC64(); 7720 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7721 7722 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7723 return DAG.getFrameIndex(FI, PtrVT); 7724 } 7725 7726 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7727 SelectionDAG &DAG) const { 7728 SDLoc DL(Op); 7729 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7730 DAG.getVTList(MVT::i32, MVT::Other), 7731 Op.getOperand(0), Op.getOperand(1)); 7732 } 7733 7734 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7735 SelectionDAG &DAG) const { 7736 SDLoc DL(Op); 7737 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7738 Op.getOperand(0), Op.getOperand(1)); 7739 } 7740 7741 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7742 if (Op.getValueType().isVector()) 7743 return LowerVectorLoad(Op, DAG); 7744 7745 assert(Op.getValueType() == MVT::i1 && 7746 "Custom lowering only for i1 loads"); 7747 7748 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7749 7750 SDLoc dl(Op); 7751 LoadSDNode *LD = cast<LoadSDNode>(Op); 7752 7753 SDValue Chain = LD->getChain(); 7754 SDValue BasePtr = LD->getBasePtr(); 7755 MachineMemOperand *MMO = LD->getMemOperand(); 7756 7757 SDValue NewLD = 7758 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7759 BasePtr, MVT::i8, MMO); 7760 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7761 7762 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7763 return DAG.getMergeValues(Ops, dl); 7764 } 7765 7766 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7767 if (Op.getOperand(1).getValueType().isVector()) 7768 return LowerVectorStore(Op, DAG); 7769 7770 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7771 "Custom lowering only for i1 stores"); 7772 7773 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7774 7775 SDLoc dl(Op); 7776 StoreSDNode *ST = cast<StoreSDNode>(Op); 7777 7778 SDValue Chain = ST->getChain(); 7779 SDValue BasePtr = ST->getBasePtr(); 7780 SDValue Value = ST->getValue(); 7781 MachineMemOperand *MMO = ST->getMemOperand(); 7782 7783 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7784 Value); 7785 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7786 } 7787 7788 // FIXME: Remove this once the ANDI glue bug is fixed: 7789 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7790 assert(Op.getValueType() == MVT::i1 && 7791 "Custom lowering only for i1 results"); 7792 7793 SDLoc DL(Op); 7794 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7795 } 7796 7797 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7798 SelectionDAG &DAG) const { 7799 7800 // Implements a vector truncate that fits in a vector register as a shuffle. 7801 // We want to legalize vector truncates down to where the source fits in 7802 // a vector register (and target is therefore smaller than vector register 7803 // size). At that point legalization will try to custom lower the sub-legal 7804 // result and get here - where we can contain the truncate as a single target 7805 // operation. 7806 7807 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7808 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7809 // 7810 // We will implement it for big-endian ordering as this (where x denotes 7811 // undefined): 7812 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7813 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7814 // 7815 // The same operation in little-endian ordering will be: 7816 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7817 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7818 7819 EVT TrgVT = Op.getValueType(); 7820 assert(TrgVT.isVector() && "Vector type expected."); 7821 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7822 EVT EltVT = TrgVT.getVectorElementType(); 7823 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7824 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7825 !isPowerOf2_32(EltVT.getSizeInBits())) 7826 return SDValue(); 7827 7828 SDValue N1 = Op.getOperand(0); 7829 EVT SrcVT = N1.getValueType(); 7830 unsigned SrcSize = SrcVT.getSizeInBits(); 7831 if (SrcSize > 256 || 7832 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7833 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7834 return SDValue(); 7835 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7836 return SDValue(); 7837 7838 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7839 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7840 7841 SDLoc DL(Op); 7842 SDValue Op1, Op2; 7843 if (SrcSize == 256) { 7844 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7845 EVT SplitVT = 7846 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7847 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7848 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7849 DAG.getConstant(0, DL, VecIdxTy)); 7850 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7851 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7852 } 7853 else { 7854 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7855 Op2 = DAG.getUNDEF(WideVT); 7856 } 7857 7858 // First list the elements we want to keep. 7859 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7860 SmallVector<int, 16> ShuffV; 7861 if (Subtarget.isLittleEndian()) 7862 for (unsigned i = 0; i < TrgNumElts; ++i) 7863 ShuffV.push_back(i * SizeMult); 7864 else 7865 for (unsigned i = 1; i <= TrgNumElts; ++i) 7866 ShuffV.push_back(i * SizeMult - 1); 7867 7868 // Populate the remaining elements with undefs. 7869 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7870 // ShuffV.push_back(i + WideNumElts); 7871 ShuffV.push_back(WideNumElts + 1); 7872 7873 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7874 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7875 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7876 } 7877 7878 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7879 /// possible. 7880 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7881 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7882 EVT ResVT = Op.getValueType(); 7883 EVT CmpVT = Op.getOperand(0).getValueType(); 7884 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7885 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7886 SDLoc dl(Op); 7887 7888 // Without power9-vector, we don't have native instruction for f128 comparison. 7889 // Following transformation to libcall is needed for setcc: 7890 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7891 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7892 SDValue Z = DAG.getSetCC( 7893 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7894 LHS, RHS, CC); 7895 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7896 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7897 } 7898 7899 // Not FP, or using SPE? Not a fsel. 7900 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7901 Subtarget.hasSPE()) 7902 return Op; 7903 7904 SDNodeFlags Flags = Op.getNode()->getFlags(); 7905 7906 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7907 // presence of infinities. 7908 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7909 switch (CC) { 7910 default: 7911 break; 7912 case ISD::SETOGT: 7913 case ISD::SETGT: 7914 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7915 case ISD::SETOLT: 7916 case ISD::SETLT: 7917 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7918 } 7919 } 7920 7921 // We might be able to do better than this under some circumstances, but in 7922 // general, fsel-based lowering of select is a finite-math-only optimization. 7923 // For more information, see section F.3 of the 2.06 ISA specification. 7924 // With ISA 3.0 7925 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7926 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7927 return Op; 7928 7929 // If the RHS of the comparison is a 0.0, we don't need to do the 7930 // subtraction at all. 7931 SDValue Sel1; 7932 if (isFloatingPointZero(RHS)) 7933 switch (CC) { 7934 default: break; // SETUO etc aren't handled by fsel. 7935 case ISD::SETNE: 7936 std::swap(TV, FV); 7937 LLVM_FALLTHROUGH; 7938 case ISD::SETEQ: 7939 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7940 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7941 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7942 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7943 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7944 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7945 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7946 case ISD::SETULT: 7947 case ISD::SETLT: 7948 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7949 LLVM_FALLTHROUGH; 7950 case ISD::SETOGE: 7951 case ISD::SETGE: 7952 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7953 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7954 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7955 case ISD::SETUGT: 7956 case ISD::SETGT: 7957 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7958 LLVM_FALLTHROUGH; 7959 case ISD::SETOLE: 7960 case ISD::SETLE: 7961 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7962 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7963 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7964 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7965 } 7966 7967 SDValue Cmp; 7968 switch (CC) { 7969 default: break; // SETUO etc aren't handled by fsel. 7970 case ISD::SETNE: 7971 std::swap(TV, FV); 7972 LLVM_FALLTHROUGH; 7973 case ISD::SETEQ: 7974 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7975 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7976 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7977 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7978 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7979 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7980 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7981 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7982 case ISD::SETULT: 7983 case ISD::SETLT: 7984 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7985 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7986 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7987 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7988 case ISD::SETOGE: 7989 case ISD::SETGE: 7990 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7991 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7992 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7993 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7994 case ISD::SETUGT: 7995 case ISD::SETGT: 7996 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7997 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7998 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7999 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8000 case ISD::SETOLE: 8001 case ISD::SETLE: 8002 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8003 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8004 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8005 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8006 } 8007 return Op; 8008 } 8009 8010 static unsigned getPPCStrictOpcode(unsigned Opc) { 8011 switch (Opc) { 8012 default: 8013 llvm_unreachable("No strict version of this opcode!"); 8014 case PPCISD::FCTIDZ: 8015 return PPCISD::STRICT_FCTIDZ; 8016 case PPCISD::FCTIWZ: 8017 return PPCISD::STRICT_FCTIWZ; 8018 case PPCISD::FCTIDUZ: 8019 return PPCISD::STRICT_FCTIDUZ; 8020 case PPCISD::FCTIWUZ: 8021 return PPCISD::STRICT_FCTIWUZ; 8022 case PPCISD::FCFID: 8023 return PPCISD::STRICT_FCFID; 8024 case PPCISD::FCFIDU: 8025 return PPCISD::STRICT_FCFIDU; 8026 case PPCISD::FCFIDS: 8027 return PPCISD::STRICT_FCFIDS; 8028 case PPCISD::FCFIDUS: 8029 return PPCISD::STRICT_FCFIDUS; 8030 } 8031 } 8032 8033 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8034 const PPCSubtarget &Subtarget) { 8035 SDLoc dl(Op); 8036 bool IsStrict = Op->isStrictFPOpcode(); 8037 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8038 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8039 8040 // TODO: Any other flags to propagate? 8041 SDNodeFlags Flags; 8042 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8043 8044 // For strict nodes, source is the second operand. 8045 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8046 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8047 assert(Src.getValueType().isFloatingPoint()); 8048 if (Src.getValueType() == MVT::f32) { 8049 if (IsStrict) { 8050 Src = 8051 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8052 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8053 Chain = Src.getValue(1); 8054 } else 8055 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8056 } 8057 SDValue Conv; 8058 unsigned Opc = ISD::DELETED_NODE; 8059 switch (Op.getSimpleValueType().SimpleTy) { 8060 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8061 case MVT::i32: 8062 Opc = IsSigned ? PPCISD::FCTIWZ 8063 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8064 break; 8065 case MVT::i64: 8066 assert((IsSigned || Subtarget.hasFPCVT()) && 8067 "i64 FP_TO_UINT is supported only with FPCVT"); 8068 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8069 } 8070 if (IsStrict) { 8071 Opc = getPPCStrictOpcode(Opc); 8072 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8073 {Chain, Src}, Flags); 8074 } else { 8075 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8076 } 8077 return Conv; 8078 } 8079 8080 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8081 SelectionDAG &DAG, 8082 const SDLoc &dl) const { 8083 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8084 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8085 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8086 bool IsStrict = Op->isStrictFPOpcode(); 8087 8088 // Convert the FP value to an int value through memory. 8089 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8090 (IsSigned || Subtarget.hasFPCVT()); 8091 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8092 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8093 MachinePointerInfo MPI = 8094 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8095 8096 // Emit a store to the stack slot. 8097 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8098 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8099 if (i32Stack) { 8100 MachineFunction &MF = DAG.getMachineFunction(); 8101 Alignment = Align(4); 8102 MachineMemOperand *MMO = 8103 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8104 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8105 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8106 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8107 } else 8108 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8109 8110 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8111 // add in a bias on big endian. 8112 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8113 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8114 DAG.getConstant(4, dl, FIPtr.getValueType())); 8115 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8116 } 8117 8118 RLI.Chain = Chain; 8119 RLI.Ptr = FIPtr; 8120 RLI.MPI = MPI; 8121 RLI.Alignment = Alignment; 8122 } 8123 8124 /// Custom lowers floating point to integer conversions to use 8125 /// the direct move instructions available in ISA 2.07 to avoid the 8126 /// need for load/store combinations. 8127 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8128 SelectionDAG &DAG, 8129 const SDLoc &dl) const { 8130 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8131 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8132 if (Op->isStrictFPOpcode()) 8133 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8134 else 8135 return Mov; 8136 } 8137 8138 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8139 const SDLoc &dl) const { 8140 bool IsStrict = Op->isStrictFPOpcode(); 8141 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8142 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8143 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8144 EVT SrcVT = Src.getValueType(); 8145 EVT DstVT = Op.getValueType(); 8146 8147 // FP to INT conversions are legal for f128. 8148 if (SrcVT == MVT::f128) 8149 return Subtarget.hasP9Vector() ? Op : SDValue(); 8150 8151 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8152 // PPC (the libcall is not available). 8153 if (SrcVT == MVT::ppcf128) { 8154 if (DstVT == MVT::i32) { 8155 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8156 // set other fast-math flags to FP operations in both strict and 8157 // non-strict cases. (FP_TO_SINT, FSUB) 8158 SDNodeFlags Flags; 8159 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8160 8161 if (IsSigned) { 8162 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8163 DAG.getIntPtrConstant(0, dl)); 8164 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8165 DAG.getIntPtrConstant(1, dl)); 8166 8167 // Add the two halves of the long double in round-to-zero mode, and use 8168 // a smaller FP_TO_SINT. 8169 if (IsStrict) { 8170 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8171 DAG.getVTList(MVT::f64, MVT::Other), 8172 {Op.getOperand(0), Lo, Hi}, Flags); 8173 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8174 DAG.getVTList(MVT::i32, MVT::Other), 8175 {Res.getValue(1), Res}, Flags); 8176 } else { 8177 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8178 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8179 } 8180 } else { 8181 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8182 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8183 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8184 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8185 if (IsStrict) { 8186 // Sel = Src < 0x80000000 8187 // FltOfs = select Sel, 0.0, 0x80000000 8188 // IntOfs = select Sel, 0, 0x80000000 8189 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8190 SDValue Chain = Op.getOperand(0); 8191 EVT SetCCVT = 8192 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8193 EVT DstSetCCVT = 8194 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8195 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8196 Chain, true); 8197 Chain = Sel.getValue(1); 8198 8199 SDValue FltOfs = DAG.getSelect( 8200 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8201 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8202 8203 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8204 DAG.getVTList(SrcVT, MVT::Other), 8205 {Chain, Src, FltOfs}, Flags); 8206 Chain = Val.getValue(1); 8207 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8208 DAG.getVTList(DstVT, MVT::Other), 8209 {Chain, Val}, Flags); 8210 Chain = SInt.getValue(1); 8211 SDValue IntOfs = DAG.getSelect( 8212 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8213 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8214 return DAG.getMergeValues({Result, Chain}, dl); 8215 } else { 8216 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8217 // FIXME: generated code sucks. 8218 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8219 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8220 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8221 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8222 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8223 } 8224 } 8225 } 8226 8227 return SDValue(); 8228 } 8229 8230 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8231 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8232 8233 ReuseLoadInfo RLI; 8234 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8235 8236 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8237 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8238 } 8239 8240 // We're trying to insert a regular store, S, and then a load, L. If the 8241 // incoming value, O, is a load, we might just be able to have our load use the 8242 // address used by O. However, we don't know if anything else will store to 8243 // that address before we can load from it. To prevent this situation, we need 8244 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8245 // the same chain operand as O, we create a token factor from the chain results 8246 // of O and L, and we replace all uses of O's chain result with that token 8247 // factor (see spliceIntoChain below for this last part). 8248 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8249 ReuseLoadInfo &RLI, 8250 SelectionDAG &DAG, 8251 ISD::LoadExtType ET) const { 8252 // Conservatively skip reusing for constrained FP nodes. 8253 if (Op->isStrictFPOpcode()) 8254 return false; 8255 8256 SDLoc dl(Op); 8257 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8258 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8259 if (ET == ISD::NON_EXTLOAD && 8260 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8261 isOperationLegalOrCustom(Op.getOpcode(), 8262 Op.getOperand(0).getValueType())) { 8263 8264 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8265 return true; 8266 } 8267 8268 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8269 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8270 LD->isNonTemporal()) 8271 return false; 8272 if (LD->getMemoryVT() != MemVT) 8273 return false; 8274 8275 // If the result of the load is an illegal type, then we can't build a 8276 // valid chain for reuse since the legalised loads and token factor node that 8277 // ties the legalised loads together uses a different output chain then the 8278 // illegal load. 8279 if (!isTypeLegal(LD->getValueType(0))) 8280 return false; 8281 8282 RLI.Ptr = LD->getBasePtr(); 8283 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8284 assert(LD->getAddressingMode() == ISD::PRE_INC && 8285 "Non-pre-inc AM on PPC?"); 8286 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8287 LD->getOffset()); 8288 } 8289 8290 RLI.Chain = LD->getChain(); 8291 RLI.MPI = LD->getPointerInfo(); 8292 RLI.IsDereferenceable = LD->isDereferenceable(); 8293 RLI.IsInvariant = LD->isInvariant(); 8294 RLI.Alignment = LD->getAlign(); 8295 RLI.AAInfo = LD->getAAInfo(); 8296 RLI.Ranges = LD->getRanges(); 8297 8298 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8299 return true; 8300 } 8301 8302 // Given the head of the old chain, ResChain, insert a token factor containing 8303 // it and NewResChain, and make users of ResChain now be users of that token 8304 // factor. 8305 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8306 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8307 SDValue NewResChain, 8308 SelectionDAG &DAG) const { 8309 if (!ResChain) 8310 return; 8311 8312 SDLoc dl(NewResChain); 8313 8314 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8315 NewResChain, DAG.getUNDEF(MVT::Other)); 8316 assert(TF.getNode() != NewResChain.getNode() && 8317 "A new TF really is required here"); 8318 8319 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8320 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8321 } 8322 8323 /// Analyze profitability of direct move 8324 /// prefer float load to int load plus direct move 8325 /// when there is no integer use of int load 8326 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8327 SDNode *Origin = Op.getOperand(0).getNode(); 8328 if (Origin->getOpcode() != ISD::LOAD) 8329 return true; 8330 8331 // If there is no LXSIBZX/LXSIHZX, like Power8, 8332 // prefer direct move if the memory size is 1 or 2 bytes. 8333 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8334 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8335 return true; 8336 8337 for (SDNode::use_iterator UI = Origin->use_begin(), 8338 UE = Origin->use_end(); 8339 UI != UE; ++UI) { 8340 8341 // Only look at the users of the loaded value. 8342 if (UI.getUse().get().getResNo() != 0) 8343 continue; 8344 8345 if (UI->getOpcode() != ISD::SINT_TO_FP && 8346 UI->getOpcode() != ISD::UINT_TO_FP && 8347 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8348 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8349 return true; 8350 } 8351 8352 return false; 8353 } 8354 8355 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8356 const PPCSubtarget &Subtarget, 8357 SDValue Chain = SDValue()) { 8358 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8359 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8360 SDLoc dl(Op); 8361 8362 // TODO: Any other flags to propagate? 8363 SDNodeFlags Flags; 8364 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8365 8366 // If we have FCFIDS, then use it when converting to single-precision. 8367 // Otherwise, convert to double-precision and then round. 8368 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8369 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8370 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8371 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8372 if (Op->isStrictFPOpcode()) { 8373 if (!Chain) 8374 Chain = Op.getOperand(0); 8375 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8376 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8377 } else 8378 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8379 } 8380 8381 /// Custom lowers integer to floating point conversions to use 8382 /// the direct move instructions available in ISA 2.07 to avoid the 8383 /// need for load/store combinations. 8384 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8385 SelectionDAG &DAG, 8386 const SDLoc &dl) const { 8387 assert((Op.getValueType() == MVT::f32 || 8388 Op.getValueType() == MVT::f64) && 8389 "Invalid floating point type as target of conversion"); 8390 assert(Subtarget.hasFPCVT() && 8391 "Int to FP conversions with direct moves require FPCVT"); 8392 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8393 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8394 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8395 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8396 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8397 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8398 return convertIntToFP(Op, Mov, DAG, Subtarget); 8399 } 8400 8401 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8402 8403 EVT VecVT = Vec.getValueType(); 8404 assert(VecVT.isVector() && "Expected a vector type."); 8405 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8406 8407 EVT EltVT = VecVT.getVectorElementType(); 8408 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8409 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8410 8411 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8412 SmallVector<SDValue, 16> Ops(NumConcat); 8413 Ops[0] = Vec; 8414 SDValue UndefVec = DAG.getUNDEF(VecVT); 8415 for (unsigned i = 1; i < NumConcat; ++i) 8416 Ops[i] = UndefVec; 8417 8418 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8419 } 8420 8421 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8422 const SDLoc &dl) const { 8423 bool IsStrict = Op->isStrictFPOpcode(); 8424 unsigned Opc = Op.getOpcode(); 8425 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8426 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8427 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8428 "Unexpected conversion type"); 8429 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8430 "Supports conversions to v2f64/v4f32 only."); 8431 8432 // TODO: Any other flags to propagate? 8433 SDNodeFlags Flags; 8434 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8435 8436 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8437 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8438 8439 SDValue Wide = widenVec(DAG, Src, dl); 8440 EVT WideVT = Wide.getValueType(); 8441 unsigned WideNumElts = WideVT.getVectorNumElements(); 8442 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8443 8444 SmallVector<int, 16> ShuffV; 8445 for (unsigned i = 0; i < WideNumElts; ++i) 8446 ShuffV.push_back(i + WideNumElts); 8447 8448 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8449 int SaveElts = FourEltRes ? 4 : 2; 8450 if (Subtarget.isLittleEndian()) 8451 for (int i = 0; i < SaveElts; i++) 8452 ShuffV[i * Stride] = i; 8453 else 8454 for (int i = 1; i <= SaveElts; i++) 8455 ShuffV[i * Stride - 1] = i - 1; 8456 8457 SDValue ShuffleSrc2 = 8458 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8459 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8460 8461 SDValue Extend; 8462 if (SignedConv) { 8463 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8464 EVT ExtVT = Src.getValueType(); 8465 if (Subtarget.hasP9Altivec()) 8466 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8467 IntermediateVT.getVectorNumElements()); 8468 8469 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8470 DAG.getValueType(ExtVT)); 8471 } else 8472 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8473 8474 if (IsStrict) 8475 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8476 {Op.getOperand(0), Extend}, Flags); 8477 8478 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8479 } 8480 8481 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8482 SelectionDAG &DAG) const { 8483 SDLoc dl(Op); 8484 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8485 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8486 bool IsStrict = Op->isStrictFPOpcode(); 8487 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8488 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8489 8490 // TODO: Any other flags to propagate? 8491 SDNodeFlags Flags; 8492 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8493 8494 EVT InVT = Src.getValueType(); 8495 EVT OutVT = Op.getValueType(); 8496 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8497 isOperationCustom(Op.getOpcode(), InVT)) 8498 return LowerINT_TO_FPVector(Op, DAG, dl); 8499 8500 // Conversions to f128 are legal. 8501 if (Op.getValueType() == MVT::f128) 8502 return Subtarget.hasP9Vector() ? Op : SDValue(); 8503 8504 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8505 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8506 return SDValue(); 8507 8508 if (Src.getValueType() == MVT::i1) { 8509 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8510 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8511 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8512 if (IsStrict) 8513 return DAG.getMergeValues({Sel, Chain}, dl); 8514 else 8515 return Sel; 8516 } 8517 8518 // If we have direct moves, we can do all the conversion, skip the store/load 8519 // however, without FPCVT we can't do most conversions. 8520 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8521 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8522 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8523 8524 assert((IsSigned || Subtarget.hasFPCVT()) && 8525 "UINT_TO_FP is supported only with FPCVT"); 8526 8527 if (Src.getValueType() == MVT::i64) { 8528 SDValue SINT = Src; 8529 // When converting to single-precision, we actually need to convert 8530 // to double-precision first and then round to single-precision. 8531 // To avoid double-rounding effects during that operation, we have 8532 // to prepare the input operand. Bits that might be truncated when 8533 // converting to double-precision are replaced by a bit that won't 8534 // be lost at this stage, but is below the single-precision rounding 8535 // position. 8536 // 8537 // However, if -enable-unsafe-fp-math is in effect, accept double 8538 // rounding to avoid the extra overhead. 8539 if (Op.getValueType() == MVT::f32 && 8540 !Subtarget.hasFPCVT() && 8541 !DAG.getTarget().Options.UnsafeFPMath) { 8542 8543 // Twiddle input to make sure the low 11 bits are zero. (If this 8544 // is the case, we are guaranteed the value will fit into the 53 bit 8545 // mantissa of an IEEE double-precision value without rounding.) 8546 // If any of those low 11 bits were not zero originally, make sure 8547 // bit 12 (value 2048) is set instead, so that the final rounding 8548 // to single-precision gets the correct result. 8549 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8550 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8551 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8552 Round, DAG.getConstant(2047, dl, MVT::i64)); 8553 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8554 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8555 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8556 8557 // However, we cannot use that value unconditionally: if the magnitude 8558 // of the input value is small, the bit-twiddling we did above might 8559 // end up visibly changing the output. Fortunately, in that case, we 8560 // don't need to twiddle bits since the original input will convert 8561 // exactly to double-precision floating-point already. Therefore, 8562 // construct a conditional to use the original value if the top 11 8563 // bits are all sign-bit copies, and use the rounded value computed 8564 // above otherwise. 8565 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8566 SINT, DAG.getConstant(53, dl, MVT::i32)); 8567 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8568 Cond, DAG.getConstant(1, dl, MVT::i64)); 8569 Cond = DAG.getSetCC( 8570 dl, 8571 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8572 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8573 8574 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8575 } 8576 8577 ReuseLoadInfo RLI; 8578 SDValue Bits; 8579 8580 MachineFunction &MF = DAG.getMachineFunction(); 8581 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8582 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8583 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8584 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8585 } else if (Subtarget.hasLFIWAX() && 8586 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8587 MachineMemOperand *MMO = 8588 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8589 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8590 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8591 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8592 DAG.getVTList(MVT::f64, MVT::Other), 8593 Ops, MVT::i32, MMO); 8594 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8595 } else if (Subtarget.hasFPCVT() && 8596 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8597 MachineMemOperand *MMO = 8598 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8599 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8600 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8601 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8602 DAG.getVTList(MVT::f64, MVT::Other), 8603 Ops, MVT::i32, MMO); 8604 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8605 } else if (((Subtarget.hasLFIWAX() && 8606 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8607 (Subtarget.hasFPCVT() && 8608 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8609 SINT.getOperand(0).getValueType() == MVT::i32) { 8610 MachineFrameInfo &MFI = MF.getFrameInfo(); 8611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8612 8613 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8614 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8615 8616 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8617 MachinePointerInfo::getFixedStack( 8618 DAG.getMachineFunction(), FrameIdx)); 8619 Chain = Store; 8620 8621 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8622 "Expected an i32 store"); 8623 8624 RLI.Ptr = FIdx; 8625 RLI.Chain = Chain; 8626 RLI.MPI = 8627 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8628 RLI.Alignment = Align(4); 8629 8630 MachineMemOperand *MMO = 8631 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8632 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8633 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8634 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8635 PPCISD::LFIWZX : PPCISD::LFIWAX, 8636 dl, DAG.getVTList(MVT::f64, MVT::Other), 8637 Ops, MVT::i32, MMO); 8638 Chain = Bits.getValue(1); 8639 } else 8640 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8641 8642 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8643 if (IsStrict) 8644 Chain = FP.getValue(1); 8645 8646 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8647 if (IsStrict) 8648 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8649 DAG.getVTList(MVT::f32, MVT::Other), 8650 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8651 else 8652 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8653 DAG.getIntPtrConstant(0, dl)); 8654 } 8655 return FP; 8656 } 8657 8658 assert(Src.getValueType() == MVT::i32 && 8659 "Unhandled INT_TO_FP type in custom expander!"); 8660 // Since we only generate this in 64-bit mode, we can take advantage of 8661 // 64-bit registers. In particular, sign extend the input value into the 8662 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8663 // then lfd it and fcfid it. 8664 MachineFunction &MF = DAG.getMachineFunction(); 8665 MachineFrameInfo &MFI = MF.getFrameInfo(); 8666 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8667 8668 SDValue Ld; 8669 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8670 ReuseLoadInfo RLI; 8671 bool ReusingLoad; 8672 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8673 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8674 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8675 8676 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8677 MachinePointerInfo::getFixedStack( 8678 DAG.getMachineFunction(), FrameIdx)); 8679 Chain = Store; 8680 8681 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8682 "Expected an i32 store"); 8683 8684 RLI.Ptr = FIdx; 8685 RLI.Chain = Chain; 8686 RLI.MPI = 8687 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8688 RLI.Alignment = Align(4); 8689 } 8690 8691 MachineMemOperand *MMO = 8692 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8693 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8694 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8695 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8696 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8697 MVT::i32, MMO); 8698 Chain = Ld.getValue(1); 8699 if (ReusingLoad) 8700 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8701 } else { 8702 assert(Subtarget.isPPC64() && 8703 "i32->FP without LFIWAX supported only on PPC64"); 8704 8705 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8706 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8707 8708 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8709 8710 // STD the extended value into the stack slot. 8711 SDValue Store = DAG.getStore( 8712 Chain, dl, Ext64, FIdx, 8713 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8714 Chain = Store; 8715 8716 // Load the value as a double. 8717 Ld = DAG.getLoad( 8718 MVT::f64, dl, Chain, FIdx, 8719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8720 Chain = Ld.getValue(1); 8721 } 8722 8723 // FCFID it and return it. 8724 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8725 if (IsStrict) 8726 Chain = FP.getValue(1); 8727 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8728 if (IsStrict) 8729 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8730 DAG.getVTList(MVT::f32, MVT::Other), 8731 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8732 else 8733 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8734 DAG.getIntPtrConstant(0, dl)); 8735 } 8736 return FP; 8737 } 8738 8739 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8740 SelectionDAG &DAG) const { 8741 SDLoc dl(Op); 8742 /* 8743 The rounding mode is in bits 30:31 of FPSR, and has the following 8744 settings: 8745 00 Round to nearest 8746 01 Round to 0 8747 10 Round to +inf 8748 11 Round to -inf 8749 8750 FLT_ROUNDS, on the other hand, expects the following: 8751 -1 Undefined 8752 0 Round to 0 8753 1 Round to nearest 8754 2 Round to +inf 8755 3 Round to -inf 8756 8757 To perform the conversion, we do: 8758 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8759 */ 8760 8761 MachineFunction &MF = DAG.getMachineFunction(); 8762 EVT VT = Op.getValueType(); 8763 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8764 8765 // Save FP Control Word to register 8766 SDValue Chain = Op.getOperand(0); 8767 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8768 Chain = MFFS.getValue(1); 8769 8770 SDValue CWD; 8771 if (isTypeLegal(MVT::i64)) { 8772 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8773 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8774 } else { 8775 // Save FP register to stack slot 8776 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8777 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8778 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8779 8780 // Load FP Control Word from low 32 bits of stack slot. 8781 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8782 "Stack slot adjustment is valid only on big endian subtargets!"); 8783 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8784 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8785 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8786 Chain = CWD.getValue(1); 8787 } 8788 8789 // Transform as necessary 8790 SDValue CWD1 = 8791 DAG.getNode(ISD::AND, dl, MVT::i32, 8792 CWD, DAG.getConstant(3, dl, MVT::i32)); 8793 SDValue CWD2 = 8794 DAG.getNode(ISD::SRL, dl, MVT::i32, 8795 DAG.getNode(ISD::AND, dl, MVT::i32, 8796 DAG.getNode(ISD::XOR, dl, MVT::i32, 8797 CWD, DAG.getConstant(3, dl, MVT::i32)), 8798 DAG.getConstant(3, dl, MVT::i32)), 8799 DAG.getConstant(1, dl, MVT::i32)); 8800 8801 SDValue RetVal = 8802 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8803 8804 RetVal = 8805 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8806 dl, VT, RetVal); 8807 8808 return DAG.getMergeValues({RetVal, Chain}, dl); 8809 } 8810 8811 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8812 EVT VT = Op.getValueType(); 8813 unsigned BitWidth = VT.getSizeInBits(); 8814 SDLoc dl(Op); 8815 assert(Op.getNumOperands() == 3 && 8816 VT == Op.getOperand(1).getValueType() && 8817 "Unexpected SHL!"); 8818 8819 // Expand into a bunch of logical ops. Note that these ops 8820 // depend on the PPC behavior for oversized shift amounts. 8821 SDValue Lo = Op.getOperand(0); 8822 SDValue Hi = Op.getOperand(1); 8823 SDValue Amt = Op.getOperand(2); 8824 EVT AmtVT = Amt.getValueType(); 8825 8826 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8827 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8828 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8829 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8830 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8831 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8832 DAG.getConstant(-BitWidth, dl, AmtVT)); 8833 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8834 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8835 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8836 SDValue OutOps[] = { OutLo, OutHi }; 8837 return DAG.getMergeValues(OutOps, dl); 8838 } 8839 8840 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8841 EVT VT = Op.getValueType(); 8842 SDLoc dl(Op); 8843 unsigned BitWidth = VT.getSizeInBits(); 8844 assert(Op.getNumOperands() == 3 && 8845 VT == Op.getOperand(1).getValueType() && 8846 "Unexpected SRL!"); 8847 8848 // Expand into a bunch of logical ops. Note that these ops 8849 // depend on the PPC behavior for oversized shift amounts. 8850 SDValue Lo = Op.getOperand(0); 8851 SDValue Hi = Op.getOperand(1); 8852 SDValue Amt = Op.getOperand(2); 8853 EVT AmtVT = Amt.getValueType(); 8854 8855 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8856 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8857 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8858 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8859 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8860 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8861 DAG.getConstant(-BitWidth, dl, AmtVT)); 8862 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8863 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8864 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8865 SDValue OutOps[] = { OutLo, OutHi }; 8866 return DAG.getMergeValues(OutOps, dl); 8867 } 8868 8869 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8870 SDLoc dl(Op); 8871 EVT VT = Op.getValueType(); 8872 unsigned BitWidth = VT.getSizeInBits(); 8873 assert(Op.getNumOperands() == 3 && 8874 VT == Op.getOperand(1).getValueType() && 8875 "Unexpected SRA!"); 8876 8877 // Expand into a bunch of logical ops, followed by a select_cc. 8878 SDValue Lo = Op.getOperand(0); 8879 SDValue Hi = Op.getOperand(1); 8880 SDValue Amt = Op.getOperand(2); 8881 EVT AmtVT = Amt.getValueType(); 8882 8883 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8884 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8885 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8886 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8887 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8888 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8889 DAG.getConstant(-BitWidth, dl, AmtVT)); 8890 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8891 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8892 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8893 Tmp4, Tmp6, ISD::SETLE); 8894 SDValue OutOps[] = { OutLo, OutHi }; 8895 return DAG.getMergeValues(OutOps, dl); 8896 } 8897 8898 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8899 SelectionDAG &DAG) const { 8900 SDLoc dl(Op); 8901 EVT VT = Op.getValueType(); 8902 unsigned BitWidth = VT.getSizeInBits(); 8903 8904 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8905 SDValue X = Op.getOperand(0); 8906 SDValue Y = Op.getOperand(1); 8907 SDValue Z = Op.getOperand(2); 8908 EVT AmtVT = Z.getValueType(); 8909 8910 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8911 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8912 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8913 // on PowerPC shift by BW being well defined. 8914 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8915 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8916 SDValue SubZ = 8917 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8918 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8919 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8920 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8921 } 8922 8923 //===----------------------------------------------------------------------===// 8924 // Vector related lowering. 8925 // 8926 8927 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8928 /// element size of SplatSize. Cast the result to VT. 8929 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8930 SelectionDAG &DAG, const SDLoc &dl) { 8931 static const MVT VTys[] = { // canonical VT to use for each size. 8932 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8933 }; 8934 8935 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8936 8937 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8938 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8939 SplatSize = 1; 8940 Val = 0xFF; 8941 } 8942 8943 EVT CanonicalVT = VTys[SplatSize-1]; 8944 8945 // Build a canonical splat for this value. 8946 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8947 } 8948 8949 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8950 /// specified intrinsic ID. 8951 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8952 const SDLoc &dl, EVT DestVT = MVT::Other) { 8953 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8954 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8955 DAG.getConstant(IID, dl, MVT::i32), Op); 8956 } 8957 8958 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8959 /// specified intrinsic ID. 8960 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8961 SelectionDAG &DAG, const SDLoc &dl, 8962 EVT DestVT = MVT::Other) { 8963 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8964 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8965 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8966 } 8967 8968 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8969 /// specified intrinsic ID. 8970 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8971 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8972 EVT DestVT = MVT::Other) { 8973 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8974 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8975 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8976 } 8977 8978 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8979 /// amount. The result has the specified value type. 8980 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8981 SelectionDAG &DAG, const SDLoc &dl) { 8982 // Force LHS/RHS to be the right type. 8983 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8984 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8985 8986 int Ops[16]; 8987 for (unsigned i = 0; i != 16; ++i) 8988 Ops[i] = i + Amt; 8989 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8990 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8991 } 8992 8993 /// Do we have an efficient pattern in a .td file for this node? 8994 /// 8995 /// \param V - pointer to the BuildVectorSDNode being matched 8996 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8997 /// 8998 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8999 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9000 /// the opposite is true (expansion is beneficial) are: 9001 /// - The node builds a vector out of integers that are not 32 or 64-bits 9002 /// - The node builds a vector out of constants 9003 /// - The node is a "load-and-splat" 9004 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9005 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9006 bool HasDirectMove, 9007 bool HasP8Vector) { 9008 EVT VecVT = V->getValueType(0); 9009 bool RightType = VecVT == MVT::v2f64 || 9010 (HasP8Vector && VecVT == MVT::v4f32) || 9011 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9012 if (!RightType) 9013 return false; 9014 9015 bool IsSplat = true; 9016 bool IsLoad = false; 9017 SDValue Op0 = V->getOperand(0); 9018 9019 // This function is called in a block that confirms the node is not a constant 9020 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9021 // different constants. 9022 if (V->isConstant()) 9023 return false; 9024 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9025 if (V->getOperand(i).isUndef()) 9026 return false; 9027 // We want to expand nodes that represent load-and-splat even if the 9028 // loaded value is a floating point truncation or conversion to int. 9029 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9030 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9031 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9032 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9033 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9034 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9035 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9036 IsLoad = true; 9037 // If the operands are different or the input is not a load and has more 9038 // uses than just this BV node, then it isn't a splat. 9039 if (V->getOperand(i) != Op0 || 9040 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9041 IsSplat = false; 9042 } 9043 return !(IsSplat && IsLoad); 9044 } 9045 9046 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9047 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9048 9049 SDLoc dl(Op); 9050 SDValue Op0 = Op->getOperand(0); 9051 9052 if ((Op.getValueType() != MVT::f128) || 9053 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9054 (Op0.getOperand(0).getValueType() != MVT::i64) || 9055 (Op0.getOperand(1).getValueType() != MVT::i64)) 9056 return SDValue(); 9057 9058 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9059 Op0.getOperand(1)); 9060 } 9061 9062 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9063 const SDValue *InputLoad = &Op; 9064 if (InputLoad->getOpcode() == ISD::BITCAST) 9065 InputLoad = &InputLoad->getOperand(0); 9066 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9067 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9068 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9069 InputLoad = &InputLoad->getOperand(0); 9070 } 9071 if (InputLoad->getOpcode() != ISD::LOAD) 9072 return nullptr; 9073 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9074 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9075 } 9076 9077 // Convert the argument APFloat to a single precision APFloat if there is no 9078 // loss in information during the conversion to single precision APFloat and the 9079 // resulting number is not a denormal number. Return true if successful. 9080 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9081 APFloat APFloatToConvert = ArgAPFloat; 9082 bool LosesInfo = true; 9083 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9084 &LosesInfo); 9085 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9086 if (Success) 9087 ArgAPFloat = APFloatToConvert; 9088 return Success; 9089 } 9090 9091 // Bitcast the argument APInt to a double and convert it to a single precision 9092 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9093 // argument if there is no loss in information during the conversion from 9094 // double to single precision APFloat and the resulting number is not a denormal 9095 // number. Return true if successful. 9096 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9097 double DpValue = ArgAPInt.bitsToDouble(); 9098 APFloat APFloatDp(DpValue); 9099 bool Success = convertToNonDenormSingle(APFloatDp); 9100 if (Success) 9101 ArgAPInt = APFloatDp.bitcastToAPInt(); 9102 return Success; 9103 } 9104 9105 // Nondestructive check for convertTonNonDenormSingle. 9106 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9107 // Only convert if it loses info, since XXSPLTIDP should 9108 // handle the other case. 9109 APFloat APFloatToConvert = ArgAPFloat; 9110 bool LosesInfo = true; 9111 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9112 &LosesInfo); 9113 9114 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9115 } 9116 9117 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9118 unsigned &Opcode) { 9119 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9120 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9121 return false; 9122 9123 EVT Ty = Op->getValueType(0); 9124 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9125 // as we cannot handle extending loads for these types. 9126 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9127 ISD::isNON_EXTLoad(InputNode)) 9128 return true; 9129 9130 EVT MemVT = InputNode->getMemoryVT(); 9131 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9132 // memory VT is the same vector element VT type. 9133 // The loads feeding into the v8i16 and v16i8 types will be extending because 9134 // scalar i8/i16 are not legal types. 9135 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9136 (MemVT == Ty.getVectorElementType())) 9137 return true; 9138 9139 if (Ty == MVT::v2i64) { 9140 // Check the extend type, when the input type is i32, and the output vector 9141 // type is v2i64. 9142 if (MemVT == MVT::i32) { 9143 if (ISD::isZEXTLoad(InputNode)) 9144 Opcode = PPCISD::ZEXT_LD_SPLAT; 9145 if (ISD::isSEXTLoad(InputNode)) 9146 Opcode = PPCISD::SEXT_LD_SPLAT; 9147 } 9148 return true; 9149 } 9150 return false; 9151 } 9152 9153 // If this is a case we can't handle, return null and let the default 9154 // expansion code take care of it. If we CAN select this case, and if it 9155 // selects to a single instruction, return Op. Otherwise, if we can codegen 9156 // this case more efficiently than a constant pool load, lower it to the 9157 // sequence of ops that should be used. 9158 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9159 SelectionDAG &DAG) const { 9160 SDLoc dl(Op); 9161 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9162 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9163 9164 // Check if this is a splat of a constant value. 9165 APInt APSplatBits, APSplatUndef; 9166 unsigned SplatBitSize; 9167 bool HasAnyUndefs; 9168 bool BVNIsConstantSplat = 9169 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9170 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9171 9172 // If it is a splat of a double, check if we can shrink it to a 32 bit 9173 // non-denormal float which when converted back to double gives us the same 9174 // double. This is to exploit the XXSPLTIDP instruction. 9175 // If we lose precision, we use XXSPLTI32DX. 9176 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9177 Subtarget.hasPrefixInstrs()) { 9178 // Check the type first to short-circuit so we don't modify APSplatBits if 9179 // this block isn't executed. 9180 if ((Op->getValueType(0) == MVT::v2f64) && 9181 convertToNonDenormSingle(APSplatBits)) { 9182 SDValue SplatNode = DAG.getNode( 9183 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9184 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9185 return DAG.getBitcast(Op.getValueType(), SplatNode); 9186 } else { 9187 // We may lose precision, so we have to use XXSPLTI32DX. 9188 9189 uint32_t Hi = 9190 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9191 uint32_t Lo = 9192 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9193 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9194 9195 if (!Hi || !Lo) 9196 // If either load is 0, then we should generate XXLXOR to set to 0. 9197 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9198 9199 if (Hi) 9200 SplatNode = DAG.getNode( 9201 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9202 DAG.getTargetConstant(0, dl, MVT::i32), 9203 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9204 9205 if (Lo) 9206 SplatNode = 9207 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9208 DAG.getTargetConstant(1, dl, MVT::i32), 9209 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9210 9211 return DAG.getBitcast(Op.getValueType(), SplatNode); 9212 } 9213 } 9214 9215 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9216 unsigned NewOpcode = PPCISD::LD_SPLAT; 9217 9218 // Handle load-and-splat patterns as we have instructions that will do this 9219 // in one go. 9220 if (DAG.isSplatValue(Op, true) && 9221 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9222 const SDValue *InputLoad = &Op.getOperand(0); 9223 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9224 9225 // If the input load is an extending load, it will be an i32 -> i64 9226 // extending load and isValidSplatLoad() will update NewOpcode. 9227 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9228 unsigned ElementSize = 9229 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9230 9231 assert(((ElementSize == 2 * MemorySize) 9232 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9233 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9234 : (NewOpcode == PPCISD::LD_SPLAT)) && 9235 "Unmatched element size and opcode!\n"); 9236 9237 // Checking for a single use of this load, we have to check for vector 9238 // width (128 bits) / ElementSize uses (since each operand of the 9239 // BUILD_VECTOR is a separate use of the value. 9240 unsigned NumUsesOfInputLD = 128 / ElementSize; 9241 for (SDValue BVInOp : Op->ops()) 9242 if (BVInOp.isUndef()) 9243 NumUsesOfInputLD--; 9244 9245 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9246 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9247 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9248 // 15", but funciton IsValidSplatLoad() now will only return true when 9249 // the data at index 0 is not nullptr. So we will not get into trouble for 9250 // these cases. 9251 // 9252 // case 1 - lfiwzx/lfiwax 9253 // 1.1: load result is i32 and is sign/zero extend to i64; 9254 // 1.2: build a v2i64 vector type with above loaded value; 9255 // 1.3: the vector has only one value at index 0, others are all undef; 9256 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9257 if (NumUsesOfInputLD == 1 && 9258 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9259 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9260 Subtarget.hasLFIWAX())) 9261 return SDValue(); 9262 9263 // case 2 - lxvr[hb]x 9264 // 2.1: load result is at most i16; 9265 // 2.2: build a vector with above loaded value; 9266 // 2.3: the vector has only one value at index 0, others are all undef; 9267 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9268 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9269 Subtarget.isISA3_1() && ElementSize <= 16) 9270 return SDValue(); 9271 9272 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9273 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9274 Subtarget.hasVSX()) { 9275 SDValue Ops[] = { 9276 LD->getChain(), // Chain 9277 LD->getBasePtr(), // Ptr 9278 DAG.getValueType(Op.getValueType()) // VT 9279 }; 9280 SDValue LdSplt = DAG.getMemIntrinsicNode( 9281 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9282 LD->getMemoryVT(), LD->getMemOperand()); 9283 // Replace all uses of the output chain of the original load with the 9284 // output chain of the new load. 9285 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9286 LdSplt.getValue(1)); 9287 return LdSplt; 9288 } 9289 } 9290 9291 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9292 // 32-bits can be lowered to VSX instructions under certain conditions. 9293 // Without VSX, there is no pattern more efficient than expanding the node. 9294 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9295 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9296 Subtarget.hasP8Vector())) 9297 return Op; 9298 return SDValue(); 9299 } 9300 9301 uint64_t SplatBits = APSplatBits.getZExtValue(); 9302 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9303 unsigned SplatSize = SplatBitSize / 8; 9304 9305 // First, handle single instruction cases. 9306 9307 // All zeros? 9308 if (SplatBits == 0) { 9309 // Canonicalize all zero vectors to be v4i32. 9310 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9311 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9312 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9313 } 9314 return Op; 9315 } 9316 9317 // We have XXSPLTIW for constant splats four bytes wide. 9318 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9319 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9320 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9321 // turned into a 4-byte splat of 0xABABABAB. 9322 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9323 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9324 Op.getValueType(), DAG, dl); 9325 9326 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9327 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9328 dl); 9329 9330 // We have XXSPLTIB for constant splats one byte wide. 9331 if (Subtarget.hasP9Vector() && SplatSize == 1) 9332 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9333 dl); 9334 9335 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9336 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9337 (32-SplatBitSize)); 9338 if (SextVal >= -16 && SextVal <= 15) 9339 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9340 dl); 9341 9342 // Two instruction sequences. 9343 9344 // If this value is in the range [-32,30] and is even, use: 9345 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9346 // If this value is in the range [17,31] and is odd, use: 9347 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9348 // If this value is in the range [-31,-17] and is odd, use: 9349 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9350 // Note the last two are three-instruction sequences. 9351 if (SextVal >= -32 && SextVal <= 31) { 9352 // To avoid having these optimizations undone by constant folding, 9353 // we convert to a pseudo that will be expanded later into one of 9354 // the above forms. 9355 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9356 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9357 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9358 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9359 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9360 if (VT == Op.getValueType()) 9361 return RetVal; 9362 else 9363 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9364 } 9365 9366 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9367 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9368 // for fneg/fabs. 9369 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9370 // Make -1 and vspltisw -1: 9371 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9372 9373 // Make the VSLW intrinsic, computing 0x8000_0000. 9374 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9375 OnesV, DAG, dl); 9376 9377 // xor by OnesV to invert it. 9378 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9379 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9380 } 9381 9382 // Check to see if this is a wide variety of vsplti*, binop self cases. 9383 static const signed char SplatCsts[] = { 9384 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9385 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9386 }; 9387 9388 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9389 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9390 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9391 int i = SplatCsts[idx]; 9392 9393 // Figure out what shift amount will be used by altivec if shifted by i in 9394 // this splat size. 9395 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9396 9397 // vsplti + shl self. 9398 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9399 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9400 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9401 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9402 Intrinsic::ppc_altivec_vslw 9403 }; 9404 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9405 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9406 } 9407 9408 // vsplti + srl self. 9409 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9410 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9411 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9412 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9413 Intrinsic::ppc_altivec_vsrw 9414 }; 9415 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9416 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9417 } 9418 9419 // vsplti + rol self. 9420 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9421 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9422 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9423 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9424 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9425 Intrinsic::ppc_altivec_vrlw 9426 }; 9427 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9428 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9429 } 9430 9431 // t = vsplti c, result = vsldoi t, t, 1 9432 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9433 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9434 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9435 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9436 } 9437 // t = vsplti c, result = vsldoi t, t, 2 9438 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9439 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9440 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9441 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9442 } 9443 // t = vsplti c, result = vsldoi t, t, 3 9444 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9445 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9446 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9447 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9448 } 9449 } 9450 9451 return SDValue(); 9452 } 9453 9454 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9455 /// the specified operations to build the shuffle. 9456 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9457 SDValue RHS, SelectionDAG &DAG, 9458 const SDLoc &dl) { 9459 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9460 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9461 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9462 9463 enum { 9464 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9465 OP_VMRGHW, 9466 OP_VMRGLW, 9467 OP_VSPLTISW0, 9468 OP_VSPLTISW1, 9469 OP_VSPLTISW2, 9470 OP_VSPLTISW3, 9471 OP_VSLDOI4, 9472 OP_VSLDOI8, 9473 OP_VSLDOI12 9474 }; 9475 9476 if (OpNum == OP_COPY) { 9477 if (LHSID == (1*9+2)*9+3) return LHS; 9478 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9479 return RHS; 9480 } 9481 9482 SDValue OpLHS, OpRHS; 9483 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9484 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9485 9486 int ShufIdxs[16]; 9487 switch (OpNum) { 9488 default: llvm_unreachable("Unknown i32 permute!"); 9489 case OP_VMRGHW: 9490 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9491 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9492 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9493 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9494 break; 9495 case OP_VMRGLW: 9496 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9497 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9498 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9499 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9500 break; 9501 case OP_VSPLTISW0: 9502 for (unsigned i = 0; i != 16; ++i) 9503 ShufIdxs[i] = (i&3)+0; 9504 break; 9505 case OP_VSPLTISW1: 9506 for (unsigned i = 0; i != 16; ++i) 9507 ShufIdxs[i] = (i&3)+4; 9508 break; 9509 case OP_VSPLTISW2: 9510 for (unsigned i = 0; i != 16; ++i) 9511 ShufIdxs[i] = (i&3)+8; 9512 break; 9513 case OP_VSPLTISW3: 9514 for (unsigned i = 0; i != 16; ++i) 9515 ShufIdxs[i] = (i&3)+12; 9516 break; 9517 case OP_VSLDOI4: 9518 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9519 case OP_VSLDOI8: 9520 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9521 case OP_VSLDOI12: 9522 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9523 } 9524 EVT VT = OpLHS.getValueType(); 9525 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9526 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9527 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9528 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9529 } 9530 9531 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9532 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9533 /// SDValue. 9534 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9535 SelectionDAG &DAG) const { 9536 const unsigned BytesInVector = 16; 9537 bool IsLE = Subtarget.isLittleEndian(); 9538 SDLoc dl(N); 9539 SDValue V1 = N->getOperand(0); 9540 SDValue V2 = N->getOperand(1); 9541 unsigned ShiftElts = 0, InsertAtByte = 0; 9542 bool Swap = false; 9543 9544 // Shifts required to get the byte we want at element 7. 9545 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9546 0, 15, 14, 13, 12, 11, 10, 9}; 9547 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9548 1, 2, 3, 4, 5, 6, 7, 8}; 9549 9550 ArrayRef<int> Mask = N->getMask(); 9551 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9552 9553 // For each mask element, find out if we're just inserting something 9554 // from V2 into V1 or vice versa. 9555 // Possible permutations inserting an element from V2 into V1: 9556 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9557 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9558 // ... 9559 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9560 // Inserting from V1 into V2 will be similar, except mask range will be 9561 // [16,31]. 9562 9563 bool FoundCandidate = false; 9564 // If both vector operands for the shuffle are the same vector, the mask 9565 // will contain only elements from the first one and the second one will be 9566 // undef. 9567 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9568 // Go through the mask of half-words to find an element that's being moved 9569 // from one vector to the other. 9570 for (unsigned i = 0; i < BytesInVector; ++i) { 9571 unsigned CurrentElement = Mask[i]; 9572 // If 2nd operand is undefined, we should only look for element 7 in the 9573 // Mask. 9574 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9575 continue; 9576 9577 bool OtherElementsInOrder = true; 9578 // Examine the other elements in the Mask to see if they're in original 9579 // order. 9580 for (unsigned j = 0; j < BytesInVector; ++j) { 9581 if (j == i) 9582 continue; 9583 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9584 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9585 // in which we always assume we're always picking from the 1st operand. 9586 int MaskOffset = 9587 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9588 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9589 OtherElementsInOrder = false; 9590 break; 9591 } 9592 } 9593 // If other elements are in original order, we record the number of shifts 9594 // we need to get the element we want into element 7. Also record which byte 9595 // in the vector we should insert into. 9596 if (OtherElementsInOrder) { 9597 // If 2nd operand is undefined, we assume no shifts and no swapping. 9598 if (V2.isUndef()) { 9599 ShiftElts = 0; 9600 Swap = false; 9601 } else { 9602 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9603 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9604 : BigEndianShifts[CurrentElement & 0xF]; 9605 Swap = CurrentElement < BytesInVector; 9606 } 9607 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9608 FoundCandidate = true; 9609 break; 9610 } 9611 } 9612 9613 if (!FoundCandidate) 9614 return SDValue(); 9615 9616 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9617 // optionally with VECSHL if shift is required. 9618 if (Swap) 9619 std::swap(V1, V2); 9620 if (V2.isUndef()) 9621 V2 = V1; 9622 if (ShiftElts) { 9623 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9624 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9625 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9626 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9627 } 9628 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9629 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9630 } 9631 9632 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9633 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9634 /// SDValue. 9635 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9636 SelectionDAG &DAG) const { 9637 const unsigned NumHalfWords = 8; 9638 const unsigned BytesInVector = NumHalfWords * 2; 9639 // Check that the shuffle is on half-words. 9640 if (!isNByteElemShuffleMask(N, 2, 1)) 9641 return SDValue(); 9642 9643 bool IsLE = Subtarget.isLittleEndian(); 9644 SDLoc dl(N); 9645 SDValue V1 = N->getOperand(0); 9646 SDValue V2 = N->getOperand(1); 9647 unsigned ShiftElts = 0, InsertAtByte = 0; 9648 bool Swap = false; 9649 9650 // Shifts required to get the half-word we want at element 3. 9651 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9652 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9653 9654 uint32_t Mask = 0; 9655 uint32_t OriginalOrderLow = 0x1234567; 9656 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9657 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9658 // 32-bit space, only need 4-bit nibbles per element. 9659 for (unsigned i = 0; i < NumHalfWords; ++i) { 9660 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9661 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9662 } 9663 9664 // For each mask element, find out if we're just inserting something 9665 // from V2 into V1 or vice versa. Possible permutations inserting an element 9666 // from V2 into V1: 9667 // X, 1, 2, 3, 4, 5, 6, 7 9668 // 0, X, 2, 3, 4, 5, 6, 7 9669 // 0, 1, X, 3, 4, 5, 6, 7 9670 // 0, 1, 2, X, 4, 5, 6, 7 9671 // 0, 1, 2, 3, X, 5, 6, 7 9672 // 0, 1, 2, 3, 4, X, 6, 7 9673 // 0, 1, 2, 3, 4, 5, X, 7 9674 // 0, 1, 2, 3, 4, 5, 6, X 9675 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9676 9677 bool FoundCandidate = false; 9678 // Go through the mask of half-words to find an element that's being moved 9679 // from one vector to the other. 9680 for (unsigned i = 0; i < NumHalfWords; ++i) { 9681 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9682 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9683 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9684 uint32_t TargetOrder = 0x0; 9685 9686 // If both vector operands for the shuffle are the same vector, the mask 9687 // will contain only elements from the first one and the second one will be 9688 // undef. 9689 if (V2.isUndef()) { 9690 ShiftElts = 0; 9691 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9692 TargetOrder = OriginalOrderLow; 9693 Swap = false; 9694 // Skip if not the correct element or mask of other elements don't equal 9695 // to our expected order. 9696 if (MaskOneElt == VINSERTHSrcElem && 9697 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9698 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9699 FoundCandidate = true; 9700 break; 9701 } 9702 } else { // If both operands are defined. 9703 // Target order is [8,15] if the current mask is between [0,7]. 9704 TargetOrder = 9705 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9706 // Skip if mask of other elements don't equal our expected order. 9707 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9708 // We only need the last 3 bits for the number of shifts. 9709 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9710 : BigEndianShifts[MaskOneElt & 0x7]; 9711 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9712 Swap = MaskOneElt < NumHalfWords; 9713 FoundCandidate = true; 9714 break; 9715 } 9716 } 9717 } 9718 9719 if (!FoundCandidate) 9720 return SDValue(); 9721 9722 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9723 // optionally with VECSHL if shift is required. 9724 if (Swap) 9725 std::swap(V1, V2); 9726 if (V2.isUndef()) 9727 V2 = V1; 9728 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9729 if (ShiftElts) { 9730 // Double ShiftElts because we're left shifting on v16i8 type. 9731 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9732 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9733 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9734 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9735 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9736 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9737 } 9738 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9739 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9740 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9741 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9742 } 9743 9744 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9745 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9746 /// return the default SDValue. 9747 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9748 SelectionDAG &DAG) const { 9749 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9750 // to v16i8. Peek through the bitcasts to get the actual operands. 9751 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9752 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9753 9754 auto ShuffleMask = SVN->getMask(); 9755 SDValue VecShuffle(SVN, 0); 9756 SDLoc DL(SVN); 9757 9758 // Check that we have a four byte shuffle. 9759 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9760 return SDValue(); 9761 9762 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9763 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9764 std::swap(LHS, RHS); 9765 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9766 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9767 } 9768 9769 // Ensure that the RHS is a vector of constants. 9770 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9771 if (!BVN) 9772 return SDValue(); 9773 9774 // Check if RHS is a splat of 4-bytes (or smaller). 9775 APInt APSplatValue, APSplatUndef; 9776 unsigned SplatBitSize; 9777 bool HasAnyUndefs; 9778 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9779 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9780 SplatBitSize > 32) 9781 return SDValue(); 9782 9783 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9784 // The instruction splats a constant C into two words of the source vector 9785 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9786 // Thus we check that the shuffle mask is the equivalent of 9787 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9788 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9789 // within each word are consecutive, so we only need to check the first byte. 9790 SDValue Index; 9791 bool IsLE = Subtarget.isLittleEndian(); 9792 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9793 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9794 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9795 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9796 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9797 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9798 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9799 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9800 else 9801 return SDValue(); 9802 9803 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9804 // for XXSPLTI32DX. 9805 unsigned SplatVal = APSplatValue.getZExtValue(); 9806 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9807 SplatVal |= (SplatVal << SplatBitSize); 9808 9809 SDValue SplatNode = DAG.getNode( 9810 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9811 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9812 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9813 } 9814 9815 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9816 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9817 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9818 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9819 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9820 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9821 assert(Op.getValueType() == MVT::v1i128 && 9822 "Only set v1i128 as custom, other type shouldn't reach here!"); 9823 SDLoc dl(Op); 9824 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9825 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9826 unsigned SHLAmt = N1.getConstantOperandVal(0); 9827 if (SHLAmt % 8 == 0) { 9828 std::array<int, 16> Mask; 9829 std::iota(Mask.begin(), Mask.end(), 0); 9830 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9831 if (SDValue Shuffle = 9832 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9833 DAG.getUNDEF(MVT::v16i8), Mask)) 9834 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9835 } 9836 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9837 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9838 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9839 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9840 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9841 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9842 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9843 } 9844 9845 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9846 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9847 /// return the code it can be lowered into. Worst case, it can always be 9848 /// lowered into a vperm. 9849 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9850 SelectionDAG &DAG) const { 9851 SDLoc dl(Op); 9852 SDValue V1 = Op.getOperand(0); 9853 SDValue V2 = Op.getOperand(1); 9854 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9855 9856 // Any nodes that were combined in the target-independent combiner prior 9857 // to vector legalization will not be sent to the target combine. Try to 9858 // combine it here. 9859 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9860 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9861 return NewShuffle; 9862 Op = NewShuffle; 9863 SVOp = cast<ShuffleVectorSDNode>(Op); 9864 V1 = Op.getOperand(0); 9865 V2 = Op.getOperand(1); 9866 } 9867 EVT VT = Op.getValueType(); 9868 bool isLittleEndian = Subtarget.isLittleEndian(); 9869 9870 unsigned ShiftElts, InsertAtByte; 9871 bool Swap = false; 9872 9873 // If this is a load-and-splat, we can do that with a single instruction 9874 // in some cases. However if the load has multiple uses, we don't want to 9875 // combine it because that will just produce multiple loads. 9876 bool IsPermutedLoad = false; 9877 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9878 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9879 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9880 InputLoad->hasOneUse()) { 9881 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9882 int SplatIdx = 9883 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9884 9885 // The splat index for permuted loads will be in the left half of the vector 9886 // which is strictly wider than the loaded value by 8 bytes. So we need to 9887 // adjust the splat index to point to the correct address in memory. 9888 if (IsPermutedLoad) { 9889 assert((isLittleEndian || IsFourByte) && 9890 "Unexpected size for permuted load on big endian target"); 9891 SplatIdx += IsFourByte ? 2 : 1; 9892 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9893 "Splat of a value outside of the loaded memory"); 9894 } 9895 9896 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9897 // For 4-byte load-and-splat, we need Power9. 9898 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9899 uint64_t Offset = 0; 9900 if (IsFourByte) 9901 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9902 else 9903 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9904 9905 // If the width of the load is the same as the width of the splat, 9906 // loading with an offset would load the wrong memory. 9907 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9908 Offset = 0; 9909 9910 SDValue BasePtr = LD->getBasePtr(); 9911 if (Offset != 0) 9912 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9913 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9914 SDValue Ops[] = { 9915 LD->getChain(), // Chain 9916 BasePtr, // BasePtr 9917 DAG.getValueType(Op.getValueType()) // VT 9918 }; 9919 SDVTList VTL = 9920 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9921 SDValue LdSplt = 9922 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9923 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9924 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9925 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9926 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9927 return LdSplt; 9928 } 9929 } 9930 if (Subtarget.hasP9Vector() && 9931 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9932 isLittleEndian)) { 9933 if (Swap) 9934 std::swap(V1, V2); 9935 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9936 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9937 if (ShiftElts) { 9938 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9939 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9940 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9941 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9942 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9943 } 9944 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9945 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9946 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9947 } 9948 9949 if (Subtarget.hasPrefixInstrs()) { 9950 SDValue SplatInsertNode; 9951 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9952 return SplatInsertNode; 9953 } 9954 9955 if (Subtarget.hasP9Altivec()) { 9956 SDValue NewISDNode; 9957 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9958 return NewISDNode; 9959 9960 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9961 return NewISDNode; 9962 } 9963 9964 if (Subtarget.hasVSX() && 9965 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9966 if (Swap) 9967 std::swap(V1, V2); 9968 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9969 SDValue Conv2 = 9970 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9971 9972 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9973 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9974 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9975 } 9976 9977 if (Subtarget.hasVSX() && 9978 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9979 if (Swap) 9980 std::swap(V1, V2); 9981 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9982 SDValue Conv2 = 9983 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9984 9985 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9986 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9987 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9988 } 9989 9990 if (Subtarget.hasP9Vector()) { 9991 if (PPC::isXXBRHShuffleMask(SVOp)) { 9992 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9993 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9994 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9995 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9996 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9997 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9998 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9999 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 10000 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 10001 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 10002 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10003 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10004 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10005 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10006 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10007 } 10008 } 10009 10010 if (Subtarget.hasVSX()) { 10011 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10012 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10013 10014 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10015 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10016 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10017 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10018 } 10019 10020 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10021 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10022 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10023 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10024 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10025 } 10026 } 10027 10028 // Cases that are handled by instructions that take permute immediates 10029 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10030 // selected by the instruction selector. 10031 if (V2.isUndef()) { 10032 if (PPC::isSplatShuffleMask(SVOp, 1) || 10033 PPC::isSplatShuffleMask(SVOp, 2) || 10034 PPC::isSplatShuffleMask(SVOp, 4) || 10035 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10036 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10037 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10038 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10039 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10040 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10041 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10042 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10043 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10044 (Subtarget.hasP8Altivec() && ( 10045 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10046 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10047 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10048 return Op; 10049 } 10050 } 10051 10052 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10053 // and produce a fixed permutation. If any of these match, do not lower to 10054 // VPERM. 10055 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10056 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10057 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10058 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10059 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10060 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10061 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10062 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10063 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10064 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10065 (Subtarget.hasP8Altivec() && ( 10066 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10067 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10068 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10069 return Op; 10070 10071 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10072 // perfect shuffle table to emit an optimal matching sequence. 10073 ArrayRef<int> PermMask = SVOp->getMask(); 10074 10075 if (!DisablePerfectShuffle && !isLittleEndian) { 10076 unsigned PFIndexes[4]; 10077 bool isFourElementShuffle = true; 10078 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10079 ++i) { // Element number 10080 unsigned EltNo = 8; // Start out undef. 10081 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10082 if (PermMask[i * 4 + j] < 0) 10083 continue; // Undef, ignore it. 10084 10085 unsigned ByteSource = PermMask[i * 4 + j]; 10086 if ((ByteSource & 3) != j) { 10087 isFourElementShuffle = false; 10088 break; 10089 } 10090 10091 if (EltNo == 8) { 10092 EltNo = ByteSource / 4; 10093 } else if (EltNo != ByteSource / 4) { 10094 isFourElementShuffle = false; 10095 break; 10096 } 10097 } 10098 PFIndexes[i] = EltNo; 10099 } 10100 10101 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10102 // perfect shuffle vector to determine if it is cost effective to do this as 10103 // discrete instructions, or whether we should use a vperm. 10104 // For now, we skip this for little endian until such time as we have a 10105 // little-endian perfect shuffle table. 10106 if (isFourElementShuffle) { 10107 // Compute the index in the perfect shuffle table. 10108 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10109 PFIndexes[2] * 9 + PFIndexes[3]; 10110 10111 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10112 unsigned Cost = (PFEntry >> 30); 10113 10114 // Determining when to avoid vperm is tricky. Many things affect the cost 10115 // of vperm, particularly how many times the perm mask needs to be 10116 // computed. For example, if the perm mask can be hoisted out of a loop or 10117 // is already used (perhaps because there are multiple permutes with the 10118 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10119 // permute mask out of the loop requires an extra register. 10120 // 10121 // As a compromise, we only emit discrete instructions if the shuffle can 10122 // be generated in 3 or fewer operations. When we have loop information 10123 // available, if this block is within a loop, we should avoid using vperm 10124 // for 3-operation perms and use a constant pool load instead. 10125 if (Cost < 3) 10126 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10127 } 10128 } 10129 10130 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10131 // vector that will get spilled to the constant pool. 10132 if (V2.isUndef()) V2 = V1; 10133 10134 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10135 // that it is in input element units, not in bytes. Convert now. 10136 10137 // For little endian, the order of the input vectors is reversed, and 10138 // the permutation mask is complemented with respect to 31. This is 10139 // necessary to produce proper semantics with the big-endian-biased vperm 10140 // instruction. 10141 EVT EltVT = V1.getValueType().getVectorElementType(); 10142 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10143 10144 SmallVector<SDValue, 16> ResultMask; 10145 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10146 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10147 10148 for (unsigned j = 0; j != BytesPerElement; ++j) 10149 if (isLittleEndian) 10150 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10151 dl, MVT::i32)); 10152 else 10153 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10154 MVT::i32)); 10155 } 10156 10157 ShufflesHandledWithVPERM++; 10158 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10159 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10160 LLVM_DEBUG(SVOp->dump()); 10161 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10162 LLVM_DEBUG(VPermMask.dump()); 10163 10164 if (isLittleEndian) 10165 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10166 V2, V1, VPermMask); 10167 else 10168 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10169 V1, V2, VPermMask); 10170 } 10171 10172 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10173 /// vector comparison. If it is, return true and fill in Opc/isDot with 10174 /// information about the intrinsic. 10175 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10176 bool &isDot, const PPCSubtarget &Subtarget) { 10177 unsigned IntrinsicID = 10178 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10179 CompareOpc = -1; 10180 isDot = false; 10181 switch (IntrinsicID) { 10182 default: 10183 return false; 10184 // Comparison predicates. 10185 case Intrinsic::ppc_altivec_vcmpbfp_p: 10186 CompareOpc = 966; 10187 isDot = true; 10188 break; 10189 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10190 CompareOpc = 198; 10191 isDot = true; 10192 break; 10193 case Intrinsic::ppc_altivec_vcmpequb_p: 10194 CompareOpc = 6; 10195 isDot = true; 10196 break; 10197 case Intrinsic::ppc_altivec_vcmpequh_p: 10198 CompareOpc = 70; 10199 isDot = true; 10200 break; 10201 case Intrinsic::ppc_altivec_vcmpequw_p: 10202 CompareOpc = 134; 10203 isDot = true; 10204 break; 10205 case Intrinsic::ppc_altivec_vcmpequd_p: 10206 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10207 CompareOpc = 199; 10208 isDot = true; 10209 } else 10210 return false; 10211 break; 10212 case Intrinsic::ppc_altivec_vcmpneb_p: 10213 case Intrinsic::ppc_altivec_vcmpneh_p: 10214 case Intrinsic::ppc_altivec_vcmpnew_p: 10215 case Intrinsic::ppc_altivec_vcmpnezb_p: 10216 case Intrinsic::ppc_altivec_vcmpnezh_p: 10217 case Intrinsic::ppc_altivec_vcmpnezw_p: 10218 if (Subtarget.hasP9Altivec()) { 10219 switch (IntrinsicID) { 10220 default: 10221 llvm_unreachable("Unknown comparison intrinsic."); 10222 case Intrinsic::ppc_altivec_vcmpneb_p: 10223 CompareOpc = 7; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpneh_p: 10226 CompareOpc = 71; 10227 break; 10228 case Intrinsic::ppc_altivec_vcmpnew_p: 10229 CompareOpc = 135; 10230 break; 10231 case Intrinsic::ppc_altivec_vcmpnezb_p: 10232 CompareOpc = 263; 10233 break; 10234 case Intrinsic::ppc_altivec_vcmpnezh_p: 10235 CompareOpc = 327; 10236 break; 10237 case Intrinsic::ppc_altivec_vcmpnezw_p: 10238 CompareOpc = 391; 10239 break; 10240 } 10241 isDot = true; 10242 } else 10243 return false; 10244 break; 10245 case Intrinsic::ppc_altivec_vcmpgefp_p: 10246 CompareOpc = 454; 10247 isDot = true; 10248 break; 10249 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10250 CompareOpc = 710; 10251 isDot = true; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10254 CompareOpc = 774; 10255 isDot = true; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10258 CompareOpc = 838; 10259 isDot = true; 10260 break; 10261 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10262 CompareOpc = 902; 10263 isDot = true; 10264 break; 10265 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10266 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10267 CompareOpc = 967; 10268 isDot = true; 10269 } else 10270 return false; 10271 break; 10272 case Intrinsic::ppc_altivec_vcmpgtub_p: 10273 CompareOpc = 518; 10274 isDot = true; 10275 break; 10276 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10277 CompareOpc = 582; 10278 isDot = true; 10279 break; 10280 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10281 CompareOpc = 646; 10282 isDot = true; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpgtud_p: 10285 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10286 CompareOpc = 711; 10287 isDot = true; 10288 } else 10289 return false; 10290 break; 10291 10292 case Intrinsic::ppc_altivec_vcmpequq: 10293 case Intrinsic::ppc_altivec_vcmpgtsq: 10294 case Intrinsic::ppc_altivec_vcmpgtuq: 10295 if (!Subtarget.isISA3_1()) 10296 return false; 10297 switch (IntrinsicID) { 10298 default: 10299 llvm_unreachable("Unknown comparison intrinsic."); 10300 case Intrinsic::ppc_altivec_vcmpequq: 10301 CompareOpc = 455; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgtsq: 10304 CompareOpc = 903; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpgtuq: 10307 CompareOpc = 647; 10308 break; 10309 } 10310 break; 10311 10312 // VSX predicate comparisons use the same infrastructure 10313 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10314 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10315 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10316 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10317 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10318 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10319 if (Subtarget.hasVSX()) { 10320 switch (IntrinsicID) { 10321 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10322 CompareOpc = 99; 10323 break; 10324 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10325 CompareOpc = 115; 10326 break; 10327 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10328 CompareOpc = 107; 10329 break; 10330 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10331 CompareOpc = 67; 10332 break; 10333 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10334 CompareOpc = 83; 10335 break; 10336 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10337 CompareOpc = 75; 10338 break; 10339 } 10340 isDot = true; 10341 } else 10342 return false; 10343 break; 10344 10345 // Normal Comparisons. 10346 case Intrinsic::ppc_altivec_vcmpbfp: 10347 CompareOpc = 966; 10348 break; 10349 case Intrinsic::ppc_altivec_vcmpeqfp: 10350 CompareOpc = 198; 10351 break; 10352 case Intrinsic::ppc_altivec_vcmpequb: 10353 CompareOpc = 6; 10354 break; 10355 case Intrinsic::ppc_altivec_vcmpequh: 10356 CompareOpc = 70; 10357 break; 10358 case Intrinsic::ppc_altivec_vcmpequw: 10359 CompareOpc = 134; 10360 break; 10361 case Intrinsic::ppc_altivec_vcmpequd: 10362 if (Subtarget.hasP8Altivec()) 10363 CompareOpc = 199; 10364 else 10365 return false; 10366 break; 10367 case Intrinsic::ppc_altivec_vcmpneb: 10368 case Intrinsic::ppc_altivec_vcmpneh: 10369 case Intrinsic::ppc_altivec_vcmpnew: 10370 case Intrinsic::ppc_altivec_vcmpnezb: 10371 case Intrinsic::ppc_altivec_vcmpnezh: 10372 case Intrinsic::ppc_altivec_vcmpnezw: 10373 if (Subtarget.hasP9Altivec()) 10374 switch (IntrinsicID) { 10375 default: 10376 llvm_unreachable("Unknown comparison intrinsic."); 10377 case Intrinsic::ppc_altivec_vcmpneb: 10378 CompareOpc = 7; 10379 break; 10380 case Intrinsic::ppc_altivec_vcmpneh: 10381 CompareOpc = 71; 10382 break; 10383 case Intrinsic::ppc_altivec_vcmpnew: 10384 CompareOpc = 135; 10385 break; 10386 case Intrinsic::ppc_altivec_vcmpnezb: 10387 CompareOpc = 263; 10388 break; 10389 case Intrinsic::ppc_altivec_vcmpnezh: 10390 CompareOpc = 327; 10391 break; 10392 case Intrinsic::ppc_altivec_vcmpnezw: 10393 CompareOpc = 391; 10394 break; 10395 } 10396 else 10397 return false; 10398 break; 10399 case Intrinsic::ppc_altivec_vcmpgefp: 10400 CompareOpc = 454; 10401 break; 10402 case Intrinsic::ppc_altivec_vcmpgtfp: 10403 CompareOpc = 710; 10404 break; 10405 case Intrinsic::ppc_altivec_vcmpgtsb: 10406 CompareOpc = 774; 10407 break; 10408 case Intrinsic::ppc_altivec_vcmpgtsh: 10409 CompareOpc = 838; 10410 break; 10411 case Intrinsic::ppc_altivec_vcmpgtsw: 10412 CompareOpc = 902; 10413 break; 10414 case Intrinsic::ppc_altivec_vcmpgtsd: 10415 if (Subtarget.hasP8Altivec()) 10416 CompareOpc = 967; 10417 else 10418 return false; 10419 break; 10420 case Intrinsic::ppc_altivec_vcmpgtub: 10421 CompareOpc = 518; 10422 break; 10423 case Intrinsic::ppc_altivec_vcmpgtuh: 10424 CompareOpc = 582; 10425 break; 10426 case Intrinsic::ppc_altivec_vcmpgtuw: 10427 CompareOpc = 646; 10428 break; 10429 case Intrinsic::ppc_altivec_vcmpgtud: 10430 if (Subtarget.hasP8Altivec()) 10431 CompareOpc = 711; 10432 else 10433 return false; 10434 break; 10435 case Intrinsic::ppc_altivec_vcmpequq_p: 10436 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10437 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10438 if (!Subtarget.isISA3_1()) 10439 return false; 10440 switch (IntrinsicID) { 10441 default: 10442 llvm_unreachable("Unknown comparison intrinsic."); 10443 case Intrinsic::ppc_altivec_vcmpequq_p: 10444 CompareOpc = 455; 10445 break; 10446 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10447 CompareOpc = 903; 10448 break; 10449 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10450 CompareOpc = 647; 10451 break; 10452 } 10453 isDot = true; 10454 break; 10455 } 10456 return true; 10457 } 10458 10459 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10460 /// lower, do it, otherwise return null. 10461 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10462 SelectionDAG &DAG) const { 10463 unsigned IntrinsicID = 10464 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10465 10466 SDLoc dl(Op); 10467 10468 switch (IntrinsicID) { 10469 case Intrinsic::thread_pointer: 10470 // Reads the thread pointer register, used for __builtin_thread_pointer. 10471 if (Subtarget.isPPC64()) 10472 return DAG.getRegister(PPC::X13, MVT::i64); 10473 return DAG.getRegister(PPC::R2, MVT::i32); 10474 10475 case Intrinsic::ppc_mma_disassemble_acc: 10476 case Intrinsic::ppc_vsx_disassemble_pair: { 10477 int NumVecs = 2; 10478 SDValue WideVec = Op.getOperand(1); 10479 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10480 NumVecs = 4; 10481 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10482 } 10483 SmallVector<SDValue, 4> RetOps; 10484 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10485 SDValue Extract = DAG.getNode( 10486 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10487 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10488 : VecNo, 10489 dl, getPointerTy(DAG.getDataLayout()))); 10490 RetOps.push_back(Extract); 10491 } 10492 return DAG.getMergeValues(RetOps, dl); 10493 } 10494 10495 case Intrinsic::ppc_unpack_longdouble: { 10496 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10497 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10498 "Argument of long double unpack must be 0 or 1!"); 10499 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10500 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10501 Idx->getValueType(0))); 10502 } 10503 10504 case Intrinsic::ppc_compare_exp_lt: 10505 case Intrinsic::ppc_compare_exp_gt: 10506 case Intrinsic::ppc_compare_exp_eq: 10507 case Intrinsic::ppc_compare_exp_uo: { 10508 unsigned Pred; 10509 switch (IntrinsicID) { 10510 case Intrinsic::ppc_compare_exp_lt: 10511 Pred = PPC::PRED_LT; 10512 break; 10513 case Intrinsic::ppc_compare_exp_gt: 10514 Pred = PPC::PRED_GT; 10515 break; 10516 case Intrinsic::ppc_compare_exp_eq: 10517 Pred = PPC::PRED_EQ; 10518 break; 10519 case Intrinsic::ppc_compare_exp_uo: 10520 Pred = PPC::PRED_UN; 10521 break; 10522 } 10523 return SDValue( 10524 DAG.getMachineNode( 10525 PPC::SELECT_CC_I4, dl, MVT::i32, 10526 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10527 Op.getOperand(1), Op.getOperand(2)), 10528 0), 10529 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10530 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10531 0); 10532 } 10533 case Intrinsic::ppc_test_data_class_d: 10534 case Intrinsic::ppc_test_data_class_f: { 10535 unsigned CmprOpc = PPC::XSTSTDCDP; 10536 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10537 CmprOpc = PPC::XSTSTDCSP; 10538 return SDValue( 10539 DAG.getMachineNode( 10540 PPC::SELECT_CC_I4, dl, MVT::i32, 10541 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10542 Op.getOperand(1)), 10543 0), 10544 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10545 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10546 0); 10547 } 10548 case Intrinsic::ppc_fnmsub: { 10549 EVT VT = Op.getOperand(1).getValueType(); 10550 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10551 return DAG.getNode( 10552 ISD::FNEG, dl, VT, 10553 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10554 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10555 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10556 Op.getOperand(2), Op.getOperand(3)); 10557 } 10558 case Intrinsic::ppc_convert_f128_to_ppcf128: 10559 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10560 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10561 ? RTLIB::CONVERT_PPCF128_F128 10562 : RTLIB::CONVERT_F128_PPCF128; 10563 MakeLibCallOptions CallOptions; 10564 std::pair<SDValue, SDValue> Result = 10565 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10566 dl, SDValue()); 10567 return Result.first; 10568 } 10569 case Intrinsic::ppc_maxfe: 10570 case Intrinsic::ppc_maxfl: 10571 case Intrinsic::ppc_maxfs: 10572 case Intrinsic::ppc_minfe: 10573 case Intrinsic::ppc_minfl: 10574 case Intrinsic::ppc_minfs: { 10575 EVT VT = Op.getValueType(); 10576 assert( 10577 all_of(Op->ops().drop_front(4), 10578 [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && 10579 "ppc_[max|min]f[e|l|s] must have uniform type arguments"); 10580 ISD::CondCode CC = ISD::SETGT; 10581 if (IntrinsicID == Intrinsic::ppc_minfe || 10582 IntrinsicID == Intrinsic::ppc_minfl || 10583 IntrinsicID == Intrinsic::ppc_minfs) 10584 CC = ISD::SETLT; 10585 unsigned I = Op.getNumOperands() - 2, Cnt = I; 10586 SDValue Res = Op.getOperand(I); 10587 for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { 10588 Res = 10589 DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); 10590 } 10591 return Res; 10592 } 10593 } 10594 10595 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10596 // opcode number of the comparison. 10597 int CompareOpc; 10598 bool isDot; 10599 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10600 return SDValue(); // Don't custom lower most intrinsics. 10601 10602 // If this is a non-dot comparison, make the VCMP node and we are done. 10603 if (!isDot) { 10604 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10605 Op.getOperand(1), Op.getOperand(2), 10606 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10607 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10608 } 10609 10610 // Create the PPCISD altivec 'dot' comparison node. 10611 SDValue Ops[] = { 10612 Op.getOperand(2), // LHS 10613 Op.getOperand(3), // RHS 10614 DAG.getConstant(CompareOpc, dl, MVT::i32) 10615 }; 10616 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10617 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10618 10619 // Now that we have the comparison, emit a copy from the CR to a GPR. 10620 // This is flagged to the above dot comparison. 10621 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10622 DAG.getRegister(PPC::CR6, MVT::i32), 10623 CompNode.getValue(1)); 10624 10625 // Unpack the result based on how the target uses it. 10626 unsigned BitNo; // Bit # of CR6. 10627 bool InvertBit; // Invert result? 10628 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10629 default: // Can't happen, don't crash on invalid number though. 10630 case 0: // Return the value of the EQ bit of CR6. 10631 BitNo = 0; InvertBit = false; 10632 break; 10633 case 1: // Return the inverted value of the EQ bit of CR6. 10634 BitNo = 0; InvertBit = true; 10635 break; 10636 case 2: // Return the value of the LT bit of CR6. 10637 BitNo = 2; InvertBit = false; 10638 break; 10639 case 3: // Return the inverted value of the LT bit of CR6. 10640 BitNo = 2; InvertBit = true; 10641 break; 10642 } 10643 10644 // Shift the bit into the low position. 10645 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10646 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10647 // Isolate the bit. 10648 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10649 DAG.getConstant(1, dl, MVT::i32)); 10650 10651 // If we are supposed to, toggle the bit. 10652 if (InvertBit) 10653 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10654 DAG.getConstant(1, dl, MVT::i32)); 10655 return Flags; 10656 } 10657 10658 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10659 SelectionDAG &DAG) const { 10660 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10661 // the beginning of the argument list. 10662 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10663 SDLoc DL(Op); 10664 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10665 case Intrinsic::ppc_cfence: { 10666 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10667 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10668 SDValue Val = Op.getOperand(ArgStart + 1); 10669 EVT Ty = Val.getValueType(); 10670 if (Ty == MVT::i128) { 10671 // FIXME: Testing one of two paired registers is sufficient to guarantee 10672 // ordering? 10673 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10674 } 10675 return SDValue( 10676 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10677 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10678 Op.getOperand(0)), 10679 0); 10680 } 10681 default: 10682 break; 10683 } 10684 return SDValue(); 10685 } 10686 10687 // Lower scalar BSWAP64 to xxbrd. 10688 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10689 SDLoc dl(Op); 10690 if (!Subtarget.isPPC64()) 10691 return Op; 10692 // MTVSRDD 10693 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10694 Op.getOperand(0)); 10695 // XXBRD 10696 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10697 // MFVSRD 10698 int VectorIndex = 0; 10699 if (Subtarget.isLittleEndian()) 10700 VectorIndex = 1; 10701 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10702 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10703 return Op; 10704 } 10705 10706 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10707 // compared to a value that is atomically loaded (atomic loads zero-extend). 10708 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10709 SelectionDAG &DAG) const { 10710 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10711 "Expecting an atomic compare-and-swap here."); 10712 SDLoc dl(Op); 10713 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10714 EVT MemVT = AtomicNode->getMemoryVT(); 10715 if (MemVT.getSizeInBits() >= 32) 10716 return Op; 10717 10718 SDValue CmpOp = Op.getOperand(2); 10719 // If this is already correctly zero-extended, leave it alone. 10720 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10721 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10722 return Op; 10723 10724 // Clear the high bits of the compare operand. 10725 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10726 SDValue NewCmpOp = 10727 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10728 DAG.getConstant(MaskVal, dl, MVT::i32)); 10729 10730 // Replace the existing compare operand with the properly zero-extended one. 10731 SmallVector<SDValue, 4> Ops; 10732 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10733 Ops.push_back(AtomicNode->getOperand(i)); 10734 Ops[2] = NewCmpOp; 10735 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10736 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10737 auto NodeTy = 10738 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10739 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10740 } 10741 10742 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10743 SelectionDAG &DAG) const { 10744 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10745 EVT MemVT = N->getMemoryVT(); 10746 assert(MemVT.getSimpleVT() == MVT::i128 && 10747 "Expect quadword atomic operations"); 10748 SDLoc dl(N); 10749 unsigned Opc = N->getOpcode(); 10750 switch (Opc) { 10751 case ISD::ATOMIC_LOAD: { 10752 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10753 // lowered to ppc instructions by pattern matching instruction selector. 10754 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10755 SmallVector<SDValue, 4> Ops{ 10756 N->getOperand(0), 10757 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10758 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10759 Ops.push_back(N->getOperand(I)); 10760 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10761 Ops, MemVT, N->getMemOperand()); 10762 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10763 SDValue ValHi = 10764 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10765 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10766 DAG.getConstant(64, dl, MVT::i32)); 10767 SDValue Val = 10768 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10769 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10770 {Val, LoadedVal.getValue(2)}); 10771 } 10772 case ISD::ATOMIC_STORE: { 10773 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10774 // lowered to ppc instructions by pattern matching instruction selector. 10775 SDVTList Tys = DAG.getVTList(MVT::Other); 10776 SmallVector<SDValue, 4> Ops{ 10777 N->getOperand(0), 10778 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10779 SDValue Val = N->getOperand(2); 10780 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10781 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10782 DAG.getConstant(64, dl, MVT::i32)); 10783 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10784 Ops.push_back(ValLo); 10785 Ops.push_back(ValHi); 10786 Ops.push_back(N->getOperand(1)); 10787 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10788 N->getMemOperand()); 10789 } 10790 default: 10791 llvm_unreachable("Unexpected atomic opcode"); 10792 } 10793 } 10794 10795 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10796 SelectionDAG &DAG) const { 10797 SDLoc dl(Op); 10798 // Create a stack slot that is 16-byte aligned. 10799 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10800 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10801 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10802 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10803 10804 // Store the input value into Value#0 of the stack slot. 10805 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10806 MachinePointerInfo()); 10807 // Load it out. 10808 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10809 } 10810 10811 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10812 SelectionDAG &DAG) const { 10813 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10814 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10815 10816 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10817 10818 EVT VT = Op.getValueType(); 10819 SDLoc dl(Op); 10820 SDValue V1 = Op.getOperand(0); 10821 SDValue V2 = Op.getOperand(1); 10822 10823 if (VT == MVT::v2f64 && C) 10824 return Op; 10825 10826 if (Subtarget.hasP9Vector()) { 10827 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10828 // because on P10, it allows this specific insert_vector_elt load pattern to 10829 // utilize the refactored load and store infrastructure in order to exploit 10830 // prefixed loads. 10831 // On targets with inexpensive direct moves (Power9 and up), a 10832 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10833 // load since a single precision load will involve conversion to double 10834 // precision on the load followed by another conversion to single precision. 10835 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10836 (isa<LoadSDNode>(V2))) { 10837 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10838 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10839 SDValue InsVecElt = 10840 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10841 BitcastLoad, Op.getOperand(2)); 10842 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10843 } 10844 } 10845 10846 if (Subtarget.isISA3_1()) { 10847 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10848 return SDValue(); 10849 // On P10, we have legal lowering for constant and variable indices for 10850 // all vectors. 10851 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10852 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10853 return Op; 10854 } 10855 10856 // Before P10, we have legal lowering for constant indices but not for 10857 // variable ones. 10858 if (!C) 10859 return SDValue(); 10860 10861 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10862 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10863 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10864 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10865 unsigned InsertAtElement = C->getZExtValue(); 10866 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10867 if (Subtarget.isLittleEndian()) { 10868 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10869 } 10870 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10871 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10872 } 10873 return Op; 10874 } 10875 10876 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10877 SelectionDAG &DAG) const { 10878 SDLoc dl(Op); 10879 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10880 SDValue LoadChain = LN->getChain(); 10881 SDValue BasePtr = LN->getBasePtr(); 10882 EVT VT = Op.getValueType(); 10883 10884 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10885 return Op; 10886 10887 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10888 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10889 // 2 or 4 vsx registers. 10890 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10891 "Type unsupported without MMA"); 10892 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10893 "Type unsupported without paired vector support"); 10894 Align Alignment = LN->getAlign(); 10895 SmallVector<SDValue, 4> Loads; 10896 SmallVector<SDValue, 4> LoadChains; 10897 unsigned NumVecs = VT.getSizeInBits() / 128; 10898 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10899 SDValue Load = 10900 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10901 LN->getPointerInfo().getWithOffset(Idx * 16), 10902 commonAlignment(Alignment, Idx * 16), 10903 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10904 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10905 DAG.getConstant(16, dl, BasePtr.getValueType())); 10906 Loads.push_back(Load); 10907 LoadChains.push_back(Load.getValue(1)); 10908 } 10909 if (Subtarget.isLittleEndian()) { 10910 std::reverse(Loads.begin(), Loads.end()); 10911 std::reverse(LoadChains.begin(), LoadChains.end()); 10912 } 10913 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10914 SDValue Value = 10915 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10916 dl, VT, Loads); 10917 SDValue RetOps[] = {Value, TF}; 10918 return DAG.getMergeValues(RetOps, dl); 10919 } 10920 10921 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10922 SelectionDAG &DAG) const { 10923 SDLoc dl(Op); 10924 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10925 SDValue StoreChain = SN->getChain(); 10926 SDValue BasePtr = SN->getBasePtr(); 10927 SDValue Value = SN->getValue(); 10928 EVT StoreVT = Value.getValueType(); 10929 10930 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10931 return Op; 10932 10933 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10934 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10935 // underlying registers individually. 10936 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10937 "Type unsupported without MMA"); 10938 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10939 "Type unsupported without paired vector support"); 10940 Align Alignment = SN->getAlign(); 10941 SmallVector<SDValue, 4> Stores; 10942 unsigned NumVecs = 2; 10943 if (StoreVT == MVT::v512i1) { 10944 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10945 NumVecs = 4; 10946 } 10947 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10948 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10949 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10950 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10951 SDValue Store = 10952 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10953 SN->getPointerInfo().getWithOffset(Idx * 16), 10954 commonAlignment(Alignment, Idx * 16), 10955 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10956 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10957 DAG.getConstant(16, dl, BasePtr.getValueType())); 10958 Stores.push_back(Store); 10959 } 10960 SDValue TF = DAG.getTokenFactor(dl, Stores); 10961 return TF; 10962 } 10963 10964 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10965 SDLoc dl(Op); 10966 if (Op.getValueType() == MVT::v4i32) { 10967 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10968 10969 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10970 // +16 as shift amt. 10971 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10972 SDValue RHSSwap = // = vrlw RHS, 16 10973 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10974 10975 // Shrinkify inputs to v8i16. 10976 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10977 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10978 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10979 10980 // Low parts multiplied together, generating 32-bit results (we ignore the 10981 // top parts). 10982 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10983 LHS, RHS, DAG, dl, MVT::v4i32); 10984 10985 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10986 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10987 // Shift the high parts up 16 bits. 10988 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10989 Neg16, DAG, dl); 10990 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10991 } else if (Op.getValueType() == MVT::v16i8) { 10992 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10993 bool isLittleEndian = Subtarget.isLittleEndian(); 10994 10995 // Multiply the even 8-bit parts, producing 16-bit sums. 10996 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10997 LHS, RHS, DAG, dl, MVT::v8i16); 10998 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10999 11000 // Multiply the odd 8-bit parts, producing 16-bit sums. 11001 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 11002 LHS, RHS, DAG, dl, MVT::v8i16); 11003 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11004 11005 // Merge the results together. Because vmuleub and vmuloub are 11006 // instructions with a big-endian bias, we must reverse the 11007 // element numbering and reverse the meaning of "odd" and "even" 11008 // when generating little endian code. 11009 int Ops[16]; 11010 for (unsigned i = 0; i != 8; ++i) { 11011 if (isLittleEndian) { 11012 Ops[i*2 ] = 2*i; 11013 Ops[i*2+1] = 2*i+16; 11014 } else { 11015 Ops[i*2 ] = 2*i+1; 11016 Ops[i*2+1] = 2*i+1+16; 11017 } 11018 } 11019 if (isLittleEndian) 11020 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11021 else 11022 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11023 } else { 11024 llvm_unreachable("Unknown mul to lower!"); 11025 } 11026 } 11027 11028 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11029 bool IsStrict = Op->isStrictFPOpcode(); 11030 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11031 !Subtarget.hasP9Vector()) 11032 return SDValue(); 11033 11034 return Op; 11035 } 11036 11037 // Custom lowering for fpext vf32 to v2f64 11038 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11039 11040 assert(Op.getOpcode() == ISD::FP_EXTEND && 11041 "Should only be called for ISD::FP_EXTEND"); 11042 11043 // FIXME: handle extends from half precision float vectors on P9. 11044 // We only want to custom lower an extend from v2f32 to v2f64. 11045 if (Op.getValueType() != MVT::v2f64 || 11046 Op.getOperand(0).getValueType() != MVT::v2f32) 11047 return SDValue(); 11048 11049 SDLoc dl(Op); 11050 SDValue Op0 = Op.getOperand(0); 11051 11052 switch (Op0.getOpcode()) { 11053 default: 11054 return SDValue(); 11055 case ISD::EXTRACT_SUBVECTOR: { 11056 assert(Op0.getNumOperands() == 2 && 11057 isa<ConstantSDNode>(Op0->getOperand(1)) && 11058 "Node should have 2 operands with second one being a constant!"); 11059 11060 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11061 return SDValue(); 11062 11063 // Custom lower is only done for high or low doubleword. 11064 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11065 if (Idx % 2 != 0) 11066 return SDValue(); 11067 11068 // Since input is v4f32, at this point Idx is either 0 or 2. 11069 // Shift to get the doubleword position we want. 11070 int DWord = Idx >> 1; 11071 11072 // High and low word positions are different on little endian. 11073 if (Subtarget.isLittleEndian()) 11074 DWord ^= 0x1; 11075 11076 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11077 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11078 } 11079 case ISD::FADD: 11080 case ISD::FMUL: 11081 case ISD::FSUB: { 11082 SDValue NewLoad[2]; 11083 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11084 // Ensure both input are loads. 11085 SDValue LdOp = Op0.getOperand(i); 11086 if (LdOp.getOpcode() != ISD::LOAD) 11087 return SDValue(); 11088 // Generate new load node. 11089 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11090 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11091 NewLoad[i] = DAG.getMemIntrinsicNode( 11092 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11093 LD->getMemoryVT(), LD->getMemOperand()); 11094 } 11095 SDValue NewOp = 11096 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11097 NewLoad[1], Op0.getNode()->getFlags()); 11098 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11099 DAG.getConstant(0, dl, MVT::i32)); 11100 } 11101 case ISD::LOAD: { 11102 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11103 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11104 SDValue NewLd = DAG.getMemIntrinsicNode( 11105 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11106 LD->getMemoryVT(), LD->getMemOperand()); 11107 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11108 DAG.getConstant(0, dl, MVT::i32)); 11109 } 11110 } 11111 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11112 } 11113 11114 /// LowerOperation - Provide custom lowering hooks for some operations. 11115 /// 11116 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11117 switch (Op.getOpcode()) { 11118 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11119 case ISD::FPOW: return lowerPow(Op, DAG); 11120 case ISD::FSIN: return lowerSin(Op, DAG); 11121 case ISD::FCOS: return lowerCos(Op, DAG); 11122 case ISD::FLOG: return lowerLog(Op, DAG); 11123 case ISD::FLOG10: return lowerLog10(Op, DAG); 11124 case ISD::FEXP: return lowerExp(Op, DAG); 11125 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11126 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11127 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11128 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11129 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11130 case ISD::STRICT_FSETCC: 11131 case ISD::STRICT_FSETCCS: 11132 case ISD::SETCC: return LowerSETCC(Op, DAG); 11133 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11134 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11135 11136 case ISD::INLINEASM: 11137 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11138 // Variable argument lowering. 11139 case ISD::VASTART: return LowerVASTART(Op, DAG); 11140 case ISD::VAARG: return LowerVAARG(Op, DAG); 11141 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11142 11143 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11144 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11145 case ISD::GET_DYNAMIC_AREA_OFFSET: 11146 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11147 11148 // Exception handling lowering. 11149 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11150 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11151 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11152 11153 case ISD::LOAD: return LowerLOAD(Op, DAG); 11154 case ISD::STORE: return LowerSTORE(Op, DAG); 11155 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11156 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11157 case ISD::STRICT_FP_TO_UINT: 11158 case ISD::STRICT_FP_TO_SINT: 11159 case ISD::FP_TO_UINT: 11160 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11161 case ISD::STRICT_UINT_TO_FP: 11162 case ISD::STRICT_SINT_TO_FP: 11163 case ISD::UINT_TO_FP: 11164 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11165 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11166 11167 // Lower 64-bit shifts. 11168 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11169 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11170 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11171 11172 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11173 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11174 11175 // Vector-related lowering. 11176 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11177 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11178 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11179 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11180 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11181 case ISD::MUL: return LowerMUL(Op, DAG); 11182 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11183 case ISD::STRICT_FP_ROUND: 11184 case ISD::FP_ROUND: 11185 return LowerFP_ROUND(Op, DAG); 11186 case ISD::ROTL: return LowerROTL(Op, DAG); 11187 11188 // For counter-based loop handling. 11189 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11190 11191 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11192 11193 // Frame & Return address. 11194 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11195 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11196 11197 case ISD::INTRINSIC_VOID: 11198 return LowerINTRINSIC_VOID(Op, DAG); 11199 case ISD::BSWAP: 11200 return LowerBSWAP(Op, DAG); 11201 case ISD::ATOMIC_CMP_SWAP: 11202 return LowerATOMIC_CMP_SWAP(Op, DAG); 11203 case ISD::ATOMIC_STORE: 11204 return LowerATOMIC_LOAD_STORE(Op, DAG); 11205 } 11206 } 11207 11208 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11209 SmallVectorImpl<SDValue>&Results, 11210 SelectionDAG &DAG) const { 11211 SDLoc dl(N); 11212 switch (N->getOpcode()) { 11213 default: 11214 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11215 case ISD::ATOMIC_LOAD: { 11216 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11217 Results.push_back(Res); 11218 Results.push_back(Res.getValue(1)); 11219 break; 11220 } 11221 case ISD::READCYCLECOUNTER: { 11222 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11223 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11224 11225 Results.push_back( 11226 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11227 Results.push_back(RTB.getValue(2)); 11228 break; 11229 } 11230 case ISD::INTRINSIC_W_CHAIN: { 11231 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11232 Intrinsic::loop_decrement) 11233 break; 11234 11235 assert(N->getValueType(0) == MVT::i1 && 11236 "Unexpected result type for CTR decrement intrinsic"); 11237 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11238 N->getValueType(0)); 11239 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11240 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11241 N->getOperand(1)); 11242 11243 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11244 Results.push_back(NewInt.getValue(1)); 11245 break; 11246 } 11247 case ISD::INTRINSIC_WO_CHAIN: { 11248 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11249 case Intrinsic::ppc_pack_longdouble: 11250 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11251 N->getOperand(2), N->getOperand(1))); 11252 break; 11253 case Intrinsic::ppc_maxfe: 11254 case Intrinsic::ppc_minfe: 11255 case Intrinsic::ppc_fnmsub: 11256 case Intrinsic::ppc_convert_f128_to_ppcf128: 11257 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11258 break; 11259 } 11260 break; 11261 } 11262 case ISD::VAARG: { 11263 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11264 return; 11265 11266 EVT VT = N->getValueType(0); 11267 11268 if (VT == MVT::i64) { 11269 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11270 11271 Results.push_back(NewNode); 11272 Results.push_back(NewNode.getValue(1)); 11273 } 11274 return; 11275 } 11276 case ISD::STRICT_FP_TO_SINT: 11277 case ISD::STRICT_FP_TO_UINT: 11278 case ISD::FP_TO_SINT: 11279 case ISD::FP_TO_UINT: { 11280 // LowerFP_TO_INT() can only handle f32 and f64. 11281 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11282 MVT::ppcf128) 11283 return; 11284 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11285 Results.push_back(LoweredValue); 11286 if (N->isStrictFPOpcode()) 11287 Results.push_back(LoweredValue.getValue(1)); 11288 return; 11289 } 11290 case ISD::TRUNCATE: { 11291 if (!N->getValueType(0).isVector()) 11292 return; 11293 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11294 if (Lowered) 11295 Results.push_back(Lowered); 11296 return; 11297 } 11298 case ISD::FSHL: 11299 case ISD::FSHR: 11300 // Don't handle funnel shifts here. 11301 return; 11302 case ISD::BITCAST: 11303 // Don't handle bitcast here. 11304 return; 11305 case ISD::FP_EXTEND: 11306 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11307 if (Lowered) 11308 Results.push_back(Lowered); 11309 return; 11310 } 11311 } 11312 11313 //===----------------------------------------------------------------------===// 11314 // Other Lowering Code 11315 //===----------------------------------------------------------------------===// 11316 11317 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11318 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11319 Function *Func = Intrinsic::getDeclaration(M, Id); 11320 return Builder.CreateCall(Func, {}); 11321 } 11322 11323 // The mappings for emitLeading/TrailingFence is taken from 11324 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11325 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11326 Instruction *Inst, 11327 AtomicOrdering Ord) const { 11328 if (Ord == AtomicOrdering::SequentiallyConsistent) 11329 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11330 if (isReleaseOrStronger(Ord)) 11331 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11332 return nullptr; 11333 } 11334 11335 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11336 Instruction *Inst, 11337 AtomicOrdering Ord) const { 11338 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11339 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11340 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11341 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11342 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11343 return Builder.CreateCall( 11344 Intrinsic::getDeclaration( 11345 Builder.GetInsertBlock()->getParent()->getParent(), 11346 Intrinsic::ppc_cfence, {Inst->getType()}), 11347 {Inst}); 11348 // FIXME: Can use isync for rmw operation. 11349 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11350 } 11351 return nullptr; 11352 } 11353 11354 MachineBasicBlock * 11355 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11356 unsigned AtomicSize, 11357 unsigned BinOpcode, 11358 unsigned CmpOpcode, 11359 unsigned CmpPred) const { 11360 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11361 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11362 11363 auto LoadMnemonic = PPC::LDARX; 11364 auto StoreMnemonic = PPC::STDCX; 11365 switch (AtomicSize) { 11366 default: 11367 llvm_unreachable("Unexpected size of atomic entity"); 11368 case 1: 11369 LoadMnemonic = PPC::LBARX; 11370 StoreMnemonic = PPC::STBCX; 11371 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11372 break; 11373 case 2: 11374 LoadMnemonic = PPC::LHARX; 11375 StoreMnemonic = PPC::STHCX; 11376 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11377 break; 11378 case 4: 11379 LoadMnemonic = PPC::LWARX; 11380 StoreMnemonic = PPC::STWCX; 11381 break; 11382 case 8: 11383 LoadMnemonic = PPC::LDARX; 11384 StoreMnemonic = PPC::STDCX; 11385 break; 11386 } 11387 11388 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11389 MachineFunction *F = BB->getParent(); 11390 MachineFunction::iterator It = ++BB->getIterator(); 11391 11392 Register dest = MI.getOperand(0).getReg(); 11393 Register ptrA = MI.getOperand(1).getReg(); 11394 Register ptrB = MI.getOperand(2).getReg(); 11395 Register incr = MI.getOperand(3).getReg(); 11396 DebugLoc dl = MI.getDebugLoc(); 11397 11398 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11399 MachineBasicBlock *loop2MBB = 11400 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11401 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11402 F->insert(It, loopMBB); 11403 if (CmpOpcode) 11404 F->insert(It, loop2MBB); 11405 F->insert(It, exitMBB); 11406 exitMBB->splice(exitMBB->begin(), BB, 11407 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11408 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11409 11410 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11411 Register TmpReg = (!BinOpcode) ? incr : 11412 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11413 : &PPC::GPRCRegClass); 11414 11415 // thisMBB: 11416 // ... 11417 // fallthrough --> loopMBB 11418 BB->addSuccessor(loopMBB); 11419 11420 // loopMBB: 11421 // l[wd]arx dest, ptr 11422 // add r0, dest, incr 11423 // st[wd]cx. r0, ptr 11424 // bne- loopMBB 11425 // fallthrough --> exitMBB 11426 11427 // For max/min... 11428 // loopMBB: 11429 // l[wd]arx dest, ptr 11430 // cmpl?[wd] incr, dest 11431 // bgt exitMBB 11432 // loop2MBB: 11433 // st[wd]cx. dest, ptr 11434 // bne- loopMBB 11435 // fallthrough --> exitMBB 11436 11437 BB = loopMBB; 11438 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11439 .addReg(ptrA).addReg(ptrB); 11440 if (BinOpcode) 11441 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11442 if (CmpOpcode) { 11443 // Signed comparisons of byte or halfword values must be sign-extended. 11444 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11445 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11446 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11447 ExtReg).addReg(dest); 11448 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11449 .addReg(incr).addReg(ExtReg); 11450 } else 11451 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11452 .addReg(incr).addReg(dest); 11453 11454 BuildMI(BB, dl, TII->get(PPC::BCC)) 11455 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11456 BB->addSuccessor(loop2MBB); 11457 BB->addSuccessor(exitMBB); 11458 BB = loop2MBB; 11459 } 11460 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11461 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11462 BuildMI(BB, dl, TII->get(PPC::BCC)) 11463 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11464 BB->addSuccessor(loopMBB); 11465 BB->addSuccessor(exitMBB); 11466 11467 // exitMBB: 11468 // ... 11469 BB = exitMBB; 11470 return BB; 11471 } 11472 11473 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11474 switch(MI.getOpcode()) { 11475 default: 11476 return false; 11477 case PPC::COPY: 11478 return TII->isSignExtended(MI); 11479 case PPC::LHA: 11480 case PPC::LHA8: 11481 case PPC::LHAU: 11482 case PPC::LHAU8: 11483 case PPC::LHAUX: 11484 case PPC::LHAUX8: 11485 case PPC::LHAX: 11486 case PPC::LHAX8: 11487 case PPC::LWA: 11488 case PPC::LWAUX: 11489 case PPC::LWAX: 11490 case PPC::LWAX_32: 11491 case PPC::LWA_32: 11492 case PPC::PLHA: 11493 case PPC::PLHA8: 11494 case PPC::PLHA8pc: 11495 case PPC::PLHApc: 11496 case PPC::PLWA: 11497 case PPC::PLWA8: 11498 case PPC::PLWA8pc: 11499 case PPC::PLWApc: 11500 case PPC::EXTSB: 11501 case PPC::EXTSB8: 11502 case PPC::EXTSB8_32_64: 11503 case PPC::EXTSB8_rec: 11504 case PPC::EXTSB_rec: 11505 case PPC::EXTSH: 11506 case PPC::EXTSH8: 11507 case PPC::EXTSH8_32_64: 11508 case PPC::EXTSH8_rec: 11509 case PPC::EXTSH_rec: 11510 case PPC::EXTSW: 11511 case PPC::EXTSWSLI: 11512 case PPC::EXTSWSLI_32_64: 11513 case PPC::EXTSWSLI_32_64_rec: 11514 case PPC::EXTSWSLI_rec: 11515 case PPC::EXTSW_32: 11516 case PPC::EXTSW_32_64: 11517 case PPC::EXTSW_32_64_rec: 11518 case PPC::EXTSW_rec: 11519 case PPC::SRAW: 11520 case PPC::SRAWI: 11521 case PPC::SRAWI_rec: 11522 case PPC::SRAW_rec: 11523 return true; 11524 } 11525 return false; 11526 } 11527 11528 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11529 MachineInstr &MI, MachineBasicBlock *BB, 11530 bool is8bit, // operation 11531 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11532 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11533 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11534 11535 // If this is a signed comparison and the value being compared is not known 11536 // to be sign extended, sign extend it here. 11537 DebugLoc dl = MI.getDebugLoc(); 11538 MachineFunction *F = BB->getParent(); 11539 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11540 Register incr = MI.getOperand(3).getReg(); 11541 bool IsSignExtended = Register::isVirtualRegister(incr) && 11542 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11543 11544 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11545 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11546 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11547 .addReg(MI.getOperand(3).getReg()); 11548 MI.getOperand(3).setReg(ValueReg); 11549 } 11550 // If we support part-word atomic mnemonics, just use them 11551 if (Subtarget.hasPartwordAtomics()) 11552 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11553 CmpPred); 11554 11555 // In 64 bit mode we have to use 64 bits for addresses, even though the 11556 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11557 // registers without caring whether they're 32 or 64, but here we're 11558 // doing actual arithmetic on the addresses. 11559 bool is64bit = Subtarget.isPPC64(); 11560 bool isLittleEndian = Subtarget.isLittleEndian(); 11561 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11562 11563 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11564 MachineFunction::iterator It = ++BB->getIterator(); 11565 11566 Register dest = MI.getOperand(0).getReg(); 11567 Register ptrA = MI.getOperand(1).getReg(); 11568 Register ptrB = MI.getOperand(2).getReg(); 11569 11570 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11571 MachineBasicBlock *loop2MBB = 11572 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11573 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11574 F->insert(It, loopMBB); 11575 if (CmpOpcode) 11576 F->insert(It, loop2MBB); 11577 F->insert(It, exitMBB); 11578 exitMBB->splice(exitMBB->begin(), BB, 11579 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11580 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11581 11582 const TargetRegisterClass *RC = 11583 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11584 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11585 11586 Register PtrReg = RegInfo.createVirtualRegister(RC); 11587 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11588 Register ShiftReg = 11589 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11590 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11591 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11592 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11593 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11594 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11595 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11596 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11597 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11598 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11599 Register Ptr1Reg; 11600 Register TmpReg = 11601 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11602 11603 // thisMBB: 11604 // ... 11605 // fallthrough --> loopMBB 11606 BB->addSuccessor(loopMBB); 11607 11608 // The 4-byte load must be aligned, while a char or short may be 11609 // anywhere in the word. Hence all this nasty bookkeeping code. 11610 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11611 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11612 // xori shift, shift1, 24 [16] 11613 // rlwinm ptr, ptr1, 0, 0, 29 11614 // slw incr2, incr, shift 11615 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11616 // slw mask, mask2, shift 11617 // loopMBB: 11618 // lwarx tmpDest, ptr 11619 // add tmp, tmpDest, incr2 11620 // andc tmp2, tmpDest, mask 11621 // and tmp3, tmp, mask 11622 // or tmp4, tmp3, tmp2 11623 // stwcx. tmp4, ptr 11624 // bne- loopMBB 11625 // fallthrough --> exitMBB 11626 // srw SrwDest, tmpDest, shift 11627 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11628 if (ptrA != ZeroReg) { 11629 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11630 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11631 .addReg(ptrA) 11632 .addReg(ptrB); 11633 } else { 11634 Ptr1Reg = ptrB; 11635 } 11636 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11637 // mode. 11638 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11639 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11640 .addImm(3) 11641 .addImm(27) 11642 .addImm(is8bit ? 28 : 27); 11643 if (!isLittleEndian) 11644 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11645 .addReg(Shift1Reg) 11646 .addImm(is8bit ? 24 : 16); 11647 if (is64bit) 11648 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11649 .addReg(Ptr1Reg) 11650 .addImm(0) 11651 .addImm(61); 11652 else 11653 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11654 .addReg(Ptr1Reg) 11655 .addImm(0) 11656 .addImm(0) 11657 .addImm(29); 11658 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11659 if (is8bit) 11660 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11661 else { 11662 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11663 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11664 .addReg(Mask3Reg) 11665 .addImm(65535); 11666 } 11667 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11668 .addReg(Mask2Reg) 11669 .addReg(ShiftReg); 11670 11671 BB = loopMBB; 11672 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11673 .addReg(ZeroReg) 11674 .addReg(PtrReg); 11675 if (BinOpcode) 11676 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11677 .addReg(Incr2Reg) 11678 .addReg(TmpDestReg); 11679 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11680 .addReg(TmpDestReg) 11681 .addReg(MaskReg); 11682 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11683 if (CmpOpcode) { 11684 // For unsigned comparisons, we can directly compare the shifted values. 11685 // For signed comparisons we shift and sign extend. 11686 Register SReg = RegInfo.createVirtualRegister(GPRC); 11687 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11688 .addReg(TmpDestReg) 11689 .addReg(MaskReg); 11690 unsigned ValueReg = SReg; 11691 unsigned CmpReg = Incr2Reg; 11692 if (CmpOpcode == PPC::CMPW) { 11693 ValueReg = RegInfo.createVirtualRegister(GPRC); 11694 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11695 .addReg(SReg) 11696 .addReg(ShiftReg); 11697 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11698 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11699 .addReg(ValueReg); 11700 ValueReg = ValueSReg; 11701 CmpReg = incr; 11702 } 11703 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11704 .addReg(CmpReg) 11705 .addReg(ValueReg); 11706 BuildMI(BB, dl, TII->get(PPC::BCC)) 11707 .addImm(CmpPred) 11708 .addReg(PPC::CR0) 11709 .addMBB(exitMBB); 11710 BB->addSuccessor(loop2MBB); 11711 BB->addSuccessor(exitMBB); 11712 BB = loop2MBB; 11713 } 11714 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11715 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11716 .addReg(Tmp4Reg) 11717 .addReg(ZeroReg) 11718 .addReg(PtrReg); 11719 BuildMI(BB, dl, TII->get(PPC::BCC)) 11720 .addImm(PPC::PRED_NE) 11721 .addReg(PPC::CR0) 11722 .addMBB(loopMBB); 11723 BB->addSuccessor(loopMBB); 11724 BB->addSuccessor(exitMBB); 11725 11726 // exitMBB: 11727 // ... 11728 BB = exitMBB; 11729 // Since the shift amount is not a constant, we need to clear 11730 // the upper bits with a separate RLWINM. 11731 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11732 .addReg(SrwDestReg) 11733 .addImm(0) 11734 .addImm(is8bit ? 24 : 16) 11735 .addImm(31); 11736 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11737 .addReg(TmpDestReg) 11738 .addReg(ShiftReg); 11739 return BB; 11740 } 11741 11742 llvm::MachineBasicBlock * 11743 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11744 MachineBasicBlock *MBB) const { 11745 DebugLoc DL = MI.getDebugLoc(); 11746 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11747 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11748 11749 MachineFunction *MF = MBB->getParent(); 11750 MachineRegisterInfo &MRI = MF->getRegInfo(); 11751 11752 const BasicBlock *BB = MBB->getBasicBlock(); 11753 MachineFunction::iterator I = ++MBB->getIterator(); 11754 11755 Register DstReg = MI.getOperand(0).getReg(); 11756 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11757 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11758 Register mainDstReg = MRI.createVirtualRegister(RC); 11759 Register restoreDstReg = MRI.createVirtualRegister(RC); 11760 11761 MVT PVT = getPointerTy(MF->getDataLayout()); 11762 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11763 "Invalid Pointer Size!"); 11764 // For v = setjmp(buf), we generate 11765 // 11766 // thisMBB: 11767 // SjLjSetup mainMBB 11768 // bl mainMBB 11769 // v_restore = 1 11770 // b sinkMBB 11771 // 11772 // mainMBB: 11773 // buf[LabelOffset] = LR 11774 // v_main = 0 11775 // 11776 // sinkMBB: 11777 // v = phi(main, restore) 11778 // 11779 11780 MachineBasicBlock *thisMBB = MBB; 11781 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11782 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11783 MF->insert(I, mainMBB); 11784 MF->insert(I, sinkMBB); 11785 11786 MachineInstrBuilder MIB; 11787 11788 // Transfer the remainder of BB and its successor edges to sinkMBB. 11789 sinkMBB->splice(sinkMBB->begin(), MBB, 11790 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11791 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11792 11793 // Note that the structure of the jmp_buf used here is not compatible 11794 // with that used by libc, and is not designed to be. Specifically, it 11795 // stores only those 'reserved' registers that LLVM does not otherwise 11796 // understand how to spill. Also, by convention, by the time this 11797 // intrinsic is called, Clang has already stored the frame address in the 11798 // first slot of the buffer and stack address in the third. Following the 11799 // X86 target code, we'll store the jump address in the second slot. We also 11800 // need to save the TOC pointer (R2) to handle jumps between shared 11801 // libraries, and that will be stored in the fourth slot. The thread 11802 // identifier (R13) is not affected. 11803 11804 // thisMBB: 11805 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11806 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11807 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11808 11809 // Prepare IP either in reg. 11810 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11811 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11812 Register BufReg = MI.getOperand(1).getReg(); 11813 11814 if (Subtarget.is64BitELFABI()) { 11815 setUsesTOCBasePtr(*MBB->getParent()); 11816 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11817 .addReg(PPC::X2) 11818 .addImm(TOCOffset) 11819 .addReg(BufReg) 11820 .cloneMemRefs(MI); 11821 } 11822 11823 // Naked functions never have a base pointer, and so we use r1. For all 11824 // other functions, this decision must be delayed until during PEI. 11825 unsigned BaseReg; 11826 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11827 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11828 else 11829 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11830 11831 MIB = BuildMI(*thisMBB, MI, DL, 11832 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11833 .addReg(BaseReg) 11834 .addImm(BPOffset) 11835 .addReg(BufReg) 11836 .cloneMemRefs(MI); 11837 11838 // Setup 11839 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11840 MIB.addRegMask(TRI->getNoPreservedMask()); 11841 11842 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11843 11844 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11845 .addMBB(mainMBB); 11846 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11847 11848 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11849 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11850 11851 // mainMBB: 11852 // mainDstReg = 0 11853 MIB = 11854 BuildMI(mainMBB, DL, 11855 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11856 11857 // Store IP 11858 if (Subtarget.isPPC64()) { 11859 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11860 .addReg(LabelReg) 11861 .addImm(LabelOffset) 11862 .addReg(BufReg); 11863 } else { 11864 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11865 .addReg(LabelReg) 11866 .addImm(LabelOffset) 11867 .addReg(BufReg); 11868 } 11869 MIB.cloneMemRefs(MI); 11870 11871 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11872 mainMBB->addSuccessor(sinkMBB); 11873 11874 // sinkMBB: 11875 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11876 TII->get(PPC::PHI), DstReg) 11877 .addReg(mainDstReg).addMBB(mainMBB) 11878 .addReg(restoreDstReg).addMBB(thisMBB); 11879 11880 MI.eraseFromParent(); 11881 return sinkMBB; 11882 } 11883 11884 MachineBasicBlock * 11885 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11886 MachineBasicBlock *MBB) const { 11887 DebugLoc DL = MI.getDebugLoc(); 11888 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11889 11890 MachineFunction *MF = MBB->getParent(); 11891 MachineRegisterInfo &MRI = MF->getRegInfo(); 11892 11893 MVT PVT = getPointerTy(MF->getDataLayout()); 11894 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11895 "Invalid Pointer Size!"); 11896 11897 const TargetRegisterClass *RC = 11898 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11899 Register Tmp = MRI.createVirtualRegister(RC); 11900 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11901 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11902 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11903 unsigned BP = 11904 (PVT == MVT::i64) 11905 ? PPC::X30 11906 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11907 : PPC::R30); 11908 11909 MachineInstrBuilder MIB; 11910 11911 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11912 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11913 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11914 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11915 11916 Register BufReg = MI.getOperand(0).getReg(); 11917 11918 // Reload FP (the jumped-to function may not have had a 11919 // frame pointer, and if so, then its r31 will be restored 11920 // as necessary). 11921 if (PVT == MVT::i64) { 11922 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11923 .addImm(0) 11924 .addReg(BufReg); 11925 } else { 11926 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11927 .addImm(0) 11928 .addReg(BufReg); 11929 } 11930 MIB.cloneMemRefs(MI); 11931 11932 // Reload IP 11933 if (PVT == MVT::i64) { 11934 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11935 .addImm(LabelOffset) 11936 .addReg(BufReg); 11937 } else { 11938 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11939 .addImm(LabelOffset) 11940 .addReg(BufReg); 11941 } 11942 MIB.cloneMemRefs(MI); 11943 11944 // Reload SP 11945 if (PVT == MVT::i64) { 11946 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11947 .addImm(SPOffset) 11948 .addReg(BufReg); 11949 } else { 11950 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11951 .addImm(SPOffset) 11952 .addReg(BufReg); 11953 } 11954 MIB.cloneMemRefs(MI); 11955 11956 // Reload BP 11957 if (PVT == MVT::i64) { 11958 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11959 .addImm(BPOffset) 11960 .addReg(BufReg); 11961 } else { 11962 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11963 .addImm(BPOffset) 11964 .addReg(BufReg); 11965 } 11966 MIB.cloneMemRefs(MI); 11967 11968 // Reload TOC 11969 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11970 setUsesTOCBasePtr(*MBB->getParent()); 11971 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11972 .addImm(TOCOffset) 11973 .addReg(BufReg) 11974 .cloneMemRefs(MI); 11975 } 11976 11977 // Jump 11978 BuildMI(*MBB, MI, DL, 11979 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11980 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11981 11982 MI.eraseFromParent(); 11983 return MBB; 11984 } 11985 11986 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11987 // If the function specifically requests inline stack probes, emit them. 11988 if (MF.getFunction().hasFnAttribute("probe-stack")) 11989 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11990 "inline-asm"; 11991 return false; 11992 } 11993 11994 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11995 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11996 unsigned StackAlign = TFI->getStackAlignment(); 11997 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11998 "Unexpected stack alignment"); 11999 // The default stack probe size is 4096 if the function has no 12000 // stack-probe-size attribute. 12001 unsigned StackProbeSize = 4096; 12002 const Function &Fn = MF.getFunction(); 12003 if (Fn.hasFnAttribute("stack-probe-size")) 12004 Fn.getFnAttribute("stack-probe-size") 12005 .getValueAsString() 12006 .getAsInteger(0, StackProbeSize); 12007 // Round down to the stack alignment. 12008 StackProbeSize &= ~(StackAlign - 1); 12009 return StackProbeSize ? StackProbeSize : StackAlign; 12010 } 12011 12012 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 12013 // into three phases. In the first phase, it uses pseudo instruction 12014 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 12015 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 12016 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 12017 // MaxCallFrameSize so that it can calculate correct data area pointer. 12018 MachineBasicBlock * 12019 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12020 MachineBasicBlock *MBB) const { 12021 const bool isPPC64 = Subtarget.isPPC64(); 12022 MachineFunction *MF = MBB->getParent(); 12023 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12024 DebugLoc DL = MI.getDebugLoc(); 12025 const unsigned ProbeSize = getStackProbeSize(*MF); 12026 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12027 MachineRegisterInfo &MRI = MF->getRegInfo(); 12028 // The CFG of probing stack looks as 12029 // +-----+ 12030 // | MBB | 12031 // +--+--+ 12032 // | 12033 // +----v----+ 12034 // +--->+ TestMBB +---+ 12035 // | +----+----+ | 12036 // | | | 12037 // | +-----v----+ | 12038 // +---+ BlockMBB | | 12039 // +----------+ | 12040 // | 12041 // +---------+ | 12042 // | TailMBB +<--+ 12043 // +---------+ 12044 // In MBB, calculate previous frame pointer and final stack pointer. 12045 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12046 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12047 // TailMBB is spliced via \p MI. 12048 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12049 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12050 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12051 12052 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12053 MF->insert(MBBIter, TestMBB); 12054 MF->insert(MBBIter, BlockMBB); 12055 MF->insert(MBBIter, TailMBB); 12056 12057 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12058 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12059 12060 Register DstReg = MI.getOperand(0).getReg(); 12061 Register NegSizeReg = MI.getOperand(1).getReg(); 12062 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12063 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12064 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12065 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12066 12067 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12068 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12069 // NegSize. 12070 unsigned ProbeOpc; 12071 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12072 ProbeOpc = 12073 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12074 else 12075 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12076 // and NegSizeReg will be allocated in the same phyreg to avoid 12077 // redundant copy when NegSizeReg has only one use which is current MI and 12078 // will be replaced by PREPARE_PROBED_ALLOCA then. 12079 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12080 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12081 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12082 .addDef(ActualNegSizeReg) 12083 .addReg(NegSizeReg) 12084 .add(MI.getOperand(2)) 12085 .add(MI.getOperand(3)); 12086 12087 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12088 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12089 FinalStackPtr) 12090 .addReg(SPReg) 12091 .addReg(ActualNegSizeReg); 12092 12093 // Materialize a scratch register for update. 12094 int64_t NegProbeSize = -(int64_t)ProbeSize; 12095 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12096 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12097 if (!isInt<16>(NegProbeSize)) { 12098 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12099 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12100 .addImm(NegProbeSize >> 16); 12101 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12102 ScratchReg) 12103 .addReg(TempReg) 12104 .addImm(NegProbeSize & 0xFFFF); 12105 } else 12106 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12107 .addImm(NegProbeSize); 12108 12109 { 12110 // Probing leading residual part. 12111 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12112 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12113 .addReg(ActualNegSizeReg) 12114 .addReg(ScratchReg); 12115 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12116 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12117 .addReg(Div) 12118 .addReg(ScratchReg); 12119 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12120 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12121 .addReg(Mul) 12122 .addReg(ActualNegSizeReg); 12123 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12124 .addReg(FramePointer) 12125 .addReg(SPReg) 12126 .addReg(NegMod); 12127 } 12128 12129 { 12130 // Remaining part should be multiple of ProbeSize. 12131 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12132 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12133 .addReg(SPReg) 12134 .addReg(FinalStackPtr); 12135 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12136 .addImm(PPC::PRED_EQ) 12137 .addReg(CmpResult) 12138 .addMBB(TailMBB); 12139 TestMBB->addSuccessor(BlockMBB); 12140 TestMBB->addSuccessor(TailMBB); 12141 } 12142 12143 { 12144 // Touch the block. 12145 // |P...|P...|P... 12146 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12147 .addReg(FramePointer) 12148 .addReg(SPReg) 12149 .addReg(ScratchReg); 12150 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12151 BlockMBB->addSuccessor(TestMBB); 12152 } 12153 12154 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12155 // DYNAREAOFFSET pseudo instruction to get the future result. 12156 Register MaxCallFrameSizeReg = 12157 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12158 BuildMI(TailMBB, DL, 12159 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12160 MaxCallFrameSizeReg) 12161 .add(MI.getOperand(2)) 12162 .add(MI.getOperand(3)); 12163 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12164 .addReg(SPReg) 12165 .addReg(MaxCallFrameSizeReg); 12166 12167 // Splice instructions after MI to TailMBB. 12168 TailMBB->splice(TailMBB->end(), MBB, 12169 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12170 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12171 MBB->addSuccessor(TestMBB); 12172 12173 // Delete the pseudo instruction. 12174 MI.eraseFromParent(); 12175 12176 ++NumDynamicAllocaProbed; 12177 return TailMBB; 12178 } 12179 12180 MachineBasicBlock * 12181 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12182 MachineBasicBlock *BB) const { 12183 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12184 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12185 if (Subtarget.is64BitELFABI() && 12186 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12187 !Subtarget.isUsingPCRelativeCalls()) { 12188 // Call lowering should have added an r2 operand to indicate a dependence 12189 // on the TOC base pointer value. It can't however, because there is no 12190 // way to mark the dependence as implicit there, and so the stackmap code 12191 // will confuse it with a regular operand. Instead, add the dependence 12192 // here. 12193 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12194 } 12195 12196 return emitPatchPoint(MI, BB); 12197 } 12198 12199 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12200 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12201 return emitEHSjLjSetJmp(MI, BB); 12202 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12203 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12204 return emitEHSjLjLongJmp(MI, BB); 12205 } 12206 12207 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12208 12209 // To "insert" these instructions we actually have to insert their 12210 // control-flow patterns. 12211 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12212 MachineFunction::iterator It = ++BB->getIterator(); 12213 12214 MachineFunction *F = BB->getParent(); 12215 MachineRegisterInfo &MRI = F->getRegInfo(); 12216 12217 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12218 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12219 MI.getOpcode() == PPC::SELECT_I8) { 12220 SmallVector<MachineOperand, 2> Cond; 12221 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12222 MI.getOpcode() == PPC::SELECT_CC_I8) 12223 Cond.push_back(MI.getOperand(4)); 12224 else 12225 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12226 Cond.push_back(MI.getOperand(1)); 12227 12228 DebugLoc dl = MI.getDebugLoc(); 12229 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12230 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12231 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12232 MI.getOpcode() == PPC::SELECT_CC_F8 || 12233 MI.getOpcode() == PPC::SELECT_CC_F16 || 12234 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12235 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12236 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12237 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12238 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12239 MI.getOpcode() == PPC::SELECT_CC_SPE || 12240 MI.getOpcode() == PPC::SELECT_F4 || 12241 MI.getOpcode() == PPC::SELECT_F8 || 12242 MI.getOpcode() == PPC::SELECT_F16 || 12243 MI.getOpcode() == PPC::SELECT_SPE || 12244 MI.getOpcode() == PPC::SELECT_SPE4 || 12245 MI.getOpcode() == PPC::SELECT_VRRC || 12246 MI.getOpcode() == PPC::SELECT_VSFRC || 12247 MI.getOpcode() == PPC::SELECT_VSSRC || 12248 MI.getOpcode() == PPC::SELECT_VSRC) { 12249 // The incoming instruction knows the destination vreg to set, the 12250 // condition code register to branch on, the true/false values to 12251 // select between, and a branch opcode to use. 12252 12253 // thisMBB: 12254 // ... 12255 // TrueVal = ... 12256 // cmpTY ccX, r1, r2 12257 // bCC copy1MBB 12258 // fallthrough --> copy0MBB 12259 MachineBasicBlock *thisMBB = BB; 12260 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12261 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12262 DebugLoc dl = MI.getDebugLoc(); 12263 F->insert(It, copy0MBB); 12264 F->insert(It, sinkMBB); 12265 12266 // Transfer the remainder of BB and its successor edges to sinkMBB. 12267 sinkMBB->splice(sinkMBB->begin(), BB, 12268 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12269 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12270 12271 // Next, add the true and fallthrough blocks as its successors. 12272 BB->addSuccessor(copy0MBB); 12273 BB->addSuccessor(sinkMBB); 12274 12275 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12276 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12277 MI.getOpcode() == PPC::SELECT_F16 || 12278 MI.getOpcode() == PPC::SELECT_SPE4 || 12279 MI.getOpcode() == PPC::SELECT_SPE || 12280 MI.getOpcode() == PPC::SELECT_VRRC || 12281 MI.getOpcode() == PPC::SELECT_VSFRC || 12282 MI.getOpcode() == PPC::SELECT_VSSRC || 12283 MI.getOpcode() == PPC::SELECT_VSRC) { 12284 BuildMI(BB, dl, TII->get(PPC::BC)) 12285 .addReg(MI.getOperand(1).getReg()) 12286 .addMBB(sinkMBB); 12287 } else { 12288 unsigned SelectPred = MI.getOperand(4).getImm(); 12289 BuildMI(BB, dl, TII->get(PPC::BCC)) 12290 .addImm(SelectPred) 12291 .addReg(MI.getOperand(1).getReg()) 12292 .addMBB(sinkMBB); 12293 } 12294 12295 // copy0MBB: 12296 // %FalseValue = ... 12297 // # fallthrough to sinkMBB 12298 BB = copy0MBB; 12299 12300 // Update machine-CFG edges 12301 BB->addSuccessor(sinkMBB); 12302 12303 // sinkMBB: 12304 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12305 // ... 12306 BB = sinkMBB; 12307 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12308 .addReg(MI.getOperand(3).getReg()) 12309 .addMBB(copy0MBB) 12310 .addReg(MI.getOperand(2).getReg()) 12311 .addMBB(thisMBB); 12312 } else if (MI.getOpcode() == PPC::ReadTB) { 12313 // To read the 64-bit time-base register on a 32-bit target, we read the 12314 // two halves. Should the counter have wrapped while it was being read, we 12315 // need to try again. 12316 // ... 12317 // readLoop: 12318 // mfspr Rx,TBU # load from TBU 12319 // mfspr Ry,TB # load from TB 12320 // mfspr Rz,TBU # load from TBU 12321 // cmpw crX,Rx,Rz # check if 'old'='new' 12322 // bne readLoop # branch if they're not equal 12323 // ... 12324 12325 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12326 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12327 DebugLoc dl = MI.getDebugLoc(); 12328 F->insert(It, readMBB); 12329 F->insert(It, sinkMBB); 12330 12331 // Transfer the remainder of BB and its successor edges to sinkMBB. 12332 sinkMBB->splice(sinkMBB->begin(), BB, 12333 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12334 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12335 12336 BB->addSuccessor(readMBB); 12337 BB = readMBB; 12338 12339 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12340 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12341 Register LoReg = MI.getOperand(0).getReg(); 12342 Register HiReg = MI.getOperand(1).getReg(); 12343 12344 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12345 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12346 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12347 12348 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12349 12350 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12351 .addReg(HiReg) 12352 .addReg(ReadAgainReg); 12353 BuildMI(BB, dl, TII->get(PPC::BCC)) 12354 .addImm(PPC::PRED_NE) 12355 .addReg(CmpReg) 12356 .addMBB(readMBB); 12357 12358 BB->addSuccessor(readMBB); 12359 BB->addSuccessor(sinkMBB); 12360 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12361 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12362 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12363 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12364 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12365 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12366 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12367 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12368 12369 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12370 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12371 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12372 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12373 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12374 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12375 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12376 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12377 12378 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12379 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12380 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12381 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12382 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12383 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12384 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12385 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12386 12387 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12388 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12389 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12390 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12391 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12392 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12393 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12394 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12395 12396 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12397 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12398 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12399 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12400 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12401 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12402 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12403 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12404 12405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12406 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12407 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12408 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12409 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12410 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12411 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12412 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12413 12414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12415 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12416 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12417 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12418 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12419 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12420 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12421 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12422 12423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12424 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12426 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12428 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12429 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12430 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12431 12432 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12433 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12434 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12435 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12436 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12437 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12438 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12439 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12440 12441 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12442 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12443 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12444 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12445 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12446 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12447 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12448 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12449 12450 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12451 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12452 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12453 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12454 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12455 BB = EmitAtomicBinary(MI, BB, 4, 0); 12456 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12457 BB = EmitAtomicBinary(MI, BB, 8, 0); 12458 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12459 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12460 (Subtarget.hasPartwordAtomics() && 12461 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12462 (Subtarget.hasPartwordAtomics() && 12463 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12464 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12465 12466 auto LoadMnemonic = PPC::LDARX; 12467 auto StoreMnemonic = PPC::STDCX; 12468 switch (MI.getOpcode()) { 12469 default: 12470 llvm_unreachable("Compare and swap of unknown size"); 12471 case PPC::ATOMIC_CMP_SWAP_I8: 12472 LoadMnemonic = PPC::LBARX; 12473 StoreMnemonic = PPC::STBCX; 12474 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12475 break; 12476 case PPC::ATOMIC_CMP_SWAP_I16: 12477 LoadMnemonic = PPC::LHARX; 12478 StoreMnemonic = PPC::STHCX; 12479 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12480 break; 12481 case PPC::ATOMIC_CMP_SWAP_I32: 12482 LoadMnemonic = PPC::LWARX; 12483 StoreMnemonic = PPC::STWCX; 12484 break; 12485 case PPC::ATOMIC_CMP_SWAP_I64: 12486 LoadMnemonic = PPC::LDARX; 12487 StoreMnemonic = PPC::STDCX; 12488 break; 12489 } 12490 Register dest = MI.getOperand(0).getReg(); 12491 Register ptrA = MI.getOperand(1).getReg(); 12492 Register ptrB = MI.getOperand(2).getReg(); 12493 Register oldval = MI.getOperand(3).getReg(); 12494 Register newval = MI.getOperand(4).getReg(); 12495 DebugLoc dl = MI.getDebugLoc(); 12496 12497 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12498 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12499 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12500 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12501 F->insert(It, loop1MBB); 12502 F->insert(It, loop2MBB); 12503 F->insert(It, midMBB); 12504 F->insert(It, exitMBB); 12505 exitMBB->splice(exitMBB->begin(), BB, 12506 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12507 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12508 12509 // thisMBB: 12510 // ... 12511 // fallthrough --> loopMBB 12512 BB->addSuccessor(loop1MBB); 12513 12514 // loop1MBB: 12515 // l[bhwd]arx dest, ptr 12516 // cmp[wd] dest, oldval 12517 // bne- midMBB 12518 // loop2MBB: 12519 // st[bhwd]cx. newval, ptr 12520 // bne- loopMBB 12521 // b exitBB 12522 // midMBB: 12523 // st[bhwd]cx. dest, ptr 12524 // exitBB: 12525 BB = loop1MBB; 12526 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12527 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12528 .addReg(oldval) 12529 .addReg(dest); 12530 BuildMI(BB, dl, TII->get(PPC::BCC)) 12531 .addImm(PPC::PRED_NE) 12532 .addReg(PPC::CR0) 12533 .addMBB(midMBB); 12534 BB->addSuccessor(loop2MBB); 12535 BB->addSuccessor(midMBB); 12536 12537 BB = loop2MBB; 12538 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12539 .addReg(newval) 12540 .addReg(ptrA) 12541 .addReg(ptrB); 12542 BuildMI(BB, dl, TII->get(PPC::BCC)) 12543 .addImm(PPC::PRED_NE) 12544 .addReg(PPC::CR0) 12545 .addMBB(loop1MBB); 12546 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12547 BB->addSuccessor(loop1MBB); 12548 BB->addSuccessor(exitMBB); 12549 12550 BB = midMBB; 12551 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12552 .addReg(dest) 12553 .addReg(ptrA) 12554 .addReg(ptrB); 12555 BB->addSuccessor(exitMBB); 12556 12557 // exitMBB: 12558 // ... 12559 BB = exitMBB; 12560 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12561 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12562 // We must use 64-bit registers for addresses when targeting 64-bit, 12563 // since we're actually doing arithmetic on them. Other registers 12564 // can be 32-bit. 12565 bool is64bit = Subtarget.isPPC64(); 12566 bool isLittleEndian = Subtarget.isLittleEndian(); 12567 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12568 12569 Register dest = MI.getOperand(0).getReg(); 12570 Register ptrA = MI.getOperand(1).getReg(); 12571 Register ptrB = MI.getOperand(2).getReg(); 12572 Register oldval = MI.getOperand(3).getReg(); 12573 Register newval = MI.getOperand(4).getReg(); 12574 DebugLoc dl = MI.getDebugLoc(); 12575 12576 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12577 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12578 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12579 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12580 F->insert(It, loop1MBB); 12581 F->insert(It, loop2MBB); 12582 F->insert(It, midMBB); 12583 F->insert(It, exitMBB); 12584 exitMBB->splice(exitMBB->begin(), BB, 12585 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12586 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12587 12588 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12589 const TargetRegisterClass *RC = 12590 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12591 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12592 12593 Register PtrReg = RegInfo.createVirtualRegister(RC); 12594 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12595 Register ShiftReg = 12596 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12597 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12598 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12599 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12600 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12601 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12602 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12603 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12604 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12605 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12606 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12607 Register Ptr1Reg; 12608 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12609 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12610 // thisMBB: 12611 // ... 12612 // fallthrough --> loopMBB 12613 BB->addSuccessor(loop1MBB); 12614 12615 // The 4-byte load must be aligned, while a char or short may be 12616 // anywhere in the word. Hence all this nasty bookkeeping code. 12617 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12618 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12619 // xori shift, shift1, 24 [16] 12620 // rlwinm ptr, ptr1, 0, 0, 29 12621 // slw newval2, newval, shift 12622 // slw oldval2, oldval,shift 12623 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12624 // slw mask, mask2, shift 12625 // and newval3, newval2, mask 12626 // and oldval3, oldval2, mask 12627 // loop1MBB: 12628 // lwarx tmpDest, ptr 12629 // and tmp, tmpDest, mask 12630 // cmpw tmp, oldval3 12631 // bne- midMBB 12632 // loop2MBB: 12633 // andc tmp2, tmpDest, mask 12634 // or tmp4, tmp2, newval3 12635 // stwcx. tmp4, ptr 12636 // bne- loop1MBB 12637 // b exitBB 12638 // midMBB: 12639 // stwcx. tmpDest, ptr 12640 // exitBB: 12641 // srw dest, tmpDest, shift 12642 if (ptrA != ZeroReg) { 12643 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12644 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12645 .addReg(ptrA) 12646 .addReg(ptrB); 12647 } else { 12648 Ptr1Reg = ptrB; 12649 } 12650 12651 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12652 // mode. 12653 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12654 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12655 .addImm(3) 12656 .addImm(27) 12657 .addImm(is8bit ? 28 : 27); 12658 if (!isLittleEndian) 12659 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12660 .addReg(Shift1Reg) 12661 .addImm(is8bit ? 24 : 16); 12662 if (is64bit) 12663 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12664 .addReg(Ptr1Reg) 12665 .addImm(0) 12666 .addImm(61); 12667 else 12668 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12669 .addReg(Ptr1Reg) 12670 .addImm(0) 12671 .addImm(0) 12672 .addImm(29); 12673 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12674 .addReg(newval) 12675 .addReg(ShiftReg); 12676 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12677 .addReg(oldval) 12678 .addReg(ShiftReg); 12679 if (is8bit) 12680 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12681 else { 12682 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12683 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12684 .addReg(Mask3Reg) 12685 .addImm(65535); 12686 } 12687 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12688 .addReg(Mask2Reg) 12689 .addReg(ShiftReg); 12690 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12691 .addReg(NewVal2Reg) 12692 .addReg(MaskReg); 12693 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12694 .addReg(OldVal2Reg) 12695 .addReg(MaskReg); 12696 12697 BB = loop1MBB; 12698 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12699 .addReg(ZeroReg) 12700 .addReg(PtrReg); 12701 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12702 .addReg(TmpDestReg) 12703 .addReg(MaskReg); 12704 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12705 .addReg(TmpReg) 12706 .addReg(OldVal3Reg); 12707 BuildMI(BB, dl, TII->get(PPC::BCC)) 12708 .addImm(PPC::PRED_NE) 12709 .addReg(PPC::CR0) 12710 .addMBB(midMBB); 12711 BB->addSuccessor(loop2MBB); 12712 BB->addSuccessor(midMBB); 12713 12714 BB = loop2MBB; 12715 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12716 .addReg(TmpDestReg) 12717 .addReg(MaskReg); 12718 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12719 .addReg(Tmp2Reg) 12720 .addReg(NewVal3Reg); 12721 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12722 .addReg(Tmp4Reg) 12723 .addReg(ZeroReg) 12724 .addReg(PtrReg); 12725 BuildMI(BB, dl, TII->get(PPC::BCC)) 12726 .addImm(PPC::PRED_NE) 12727 .addReg(PPC::CR0) 12728 .addMBB(loop1MBB); 12729 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12730 BB->addSuccessor(loop1MBB); 12731 BB->addSuccessor(exitMBB); 12732 12733 BB = midMBB; 12734 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12735 .addReg(TmpDestReg) 12736 .addReg(ZeroReg) 12737 .addReg(PtrReg); 12738 BB->addSuccessor(exitMBB); 12739 12740 // exitMBB: 12741 // ... 12742 BB = exitMBB; 12743 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12744 .addReg(TmpReg) 12745 .addReg(ShiftReg); 12746 } else if (MI.getOpcode() == PPC::FADDrtz) { 12747 // This pseudo performs an FADD with rounding mode temporarily forced 12748 // to round-to-zero. We emit this via custom inserter since the FPSCR 12749 // is not modeled at the SelectionDAG level. 12750 Register Dest = MI.getOperand(0).getReg(); 12751 Register Src1 = MI.getOperand(1).getReg(); 12752 Register Src2 = MI.getOperand(2).getReg(); 12753 DebugLoc dl = MI.getDebugLoc(); 12754 12755 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12756 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12757 12758 // Save FPSCR value. 12759 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12760 12761 // Set rounding mode to round-to-zero. 12762 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12763 .addImm(31) 12764 .addReg(PPC::RM, RegState::ImplicitDefine); 12765 12766 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12767 .addImm(30) 12768 .addReg(PPC::RM, RegState::ImplicitDefine); 12769 12770 // Perform addition. 12771 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12772 .addReg(Src1) 12773 .addReg(Src2); 12774 if (MI.getFlag(MachineInstr::NoFPExcept)) 12775 MIB.setMIFlag(MachineInstr::NoFPExcept); 12776 12777 // Restore FPSCR value. 12778 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12779 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12780 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12781 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12782 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12783 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12784 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12785 ? PPC::ANDI8_rec 12786 : PPC::ANDI_rec; 12787 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12788 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12789 12790 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12791 Register Dest = RegInfo.createVirtualRegister( 12792 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12793 12794 DebugLoc Dl = MI.getDebugLoc(); 12795 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12796 .addReg(MI.getOperand(1).getReg()) 12797 .addImm(1); 12798 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12799 MI.getOperand(0).getReg()) 12800 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12801 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12802 DebugLoc Dl = MI.getDebugLoc(); 12803 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12804 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12805 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12806 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12807 MI.getOperand(0).getReg()) 12808 .addReg(CRReg); 12809 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12810 DebugLoc Dl = MI.getDebugLoc(); 12811 unsigned Imm = MI.getOperand(1).getImm(); 12812 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12813 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12814 MI.getOperand(0).getReg()) 12815 .addReg(PPC::CR0EQ); 12816 } else if (MI.getOpcode() == PPC::SETRNDi) { 12817 DebugLoc dl = MI.getDebugLoc(); 12818 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12819 12820 // Save FPSCR value. 12821 if (MRI.use_empty(OldFPSCRReg)) 12822 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12823 else 12824 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12825 12826 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12827 // the following settings: 12828 // 00 Round to nearest 12829 // 01 Round to 0 12830 // 10 Round to +inf 12831 // 11 Round to -inf 12832 12833 // When the operand is immediate, using the two least significant bits of 12834 // the immediate to set the bits 62:63 of FPSCR. 12835 unsigned Mode = MI.getOperand(1).getImm(); 12836 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12837 .addImm(31) 12838 .addReg(PPC::RM, RegState::ImplicitDefine); 12839 12840 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12841 .addImm(30) 12842 .addReg(PPC::RM, RegState::ImplicitDefine); 12843 } else if (MI.getOpcode() == PPC::SETRND) { 12844 DebugLoc dl = MI.getDebugLoc(); 12845 12846 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12847 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12848 // If the target doesn't have DirectMove, we should use stack to do the 12849 // conversion, because the target doesn't have the instructions like mtvsrd 12850 // or mfvsrd to do this conversion directly. 12851 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12852 if (Subtarget.hasDirectMove()) { 12853 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12854 .addReg(SrcReg); 12855 } else { 12856 // Use stack to do the register copy. 12857 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12858 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12859 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12860 if (RC == &PPC::F8RCRegClass) { 12861 // Copy register from F8RCRegClass to G8RCRegclass. 12862 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12863 "Unsupported RegClass."); 12864 12865 StoreOp = PPC::STFD; 12866 LoadOp = PPC::LD; 12867 } else { 12868 // Copy register from G8RCRegClass to F8RCRegclass. 12869 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12870 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12871 "Unsupported RegClass."); 12872 } 12873 12874 MachineFrameInfo &MFI = F->getFrameInfo(); 12875 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12876 12877 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12878 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12879 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12880 MFI.getObjectAlign(FrameIdx)); 12881 12882 // Store the SrcReg into the stack. 12883 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12884 .addReg(SrcReg) 12885 .addImm(0) 12886 .addFrameIndex(FrameIdx) 12887 .addMemOperand(MMOStore); 12888 12889 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12890 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12891 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12892 MFI.getObjectAlign(FrameIdx)); 12893 12894 // Load from the stack where SrcReg is stored, and save to DestReg, 12895 // so we have done the RegClass conversion from RegClass::SrcReg to 12896 // RegClass::DestReg. 12897 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12898 .addImm(0) 12899 .addFrameIndex(FrameIdx) 12900 .addMemOperand(MMOLoad); 12901 } 12902 }; 12903 12904 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12905 12906 // Save FPSCR value. 12907 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12908 12909 // When the operand is gprc register, use two least significant bits of the 12910 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12911 // 12912 // copy OldFPSCRTmpReg, OldFPSCRReg 12913 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12914 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12915 // copy NewFPSCRReg, NewFPSCRTmpReg 12916 // mtfsf 255, NewFPSCRReg 12917 MachineOperand SrcOp = MI.getOperand(1); 12918 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12919 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12920 12921 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12922 12923 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12924 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12925 12926 // The first operand of INSERT_SUBREG should be a register which has 12927 // subregisters, we only care about its RegClass, so we should use an 12928 // IMPLICIT_DEF register. 12929 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12930 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12931 .addReg(ImDefReg) 12932 .add(SrcOp) 12933 .addImm(1); 12934 12935 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12936 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12937 .addReg(OldFPSCRTmpReg) 12938 .addReg(ExtSrcReg) 12939 .addImm(0) 12940 .addImm(62); 12941 12942 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12943 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12944 12945 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12946 // bits of FPSCR. 12947 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12948 .addImm(255) 12949 .addReg(NewFPSCRReg) 12950 .addImm(0) 12951 .addImm(0); 12952 } else if (MI.getOpcode() == PPC::SETFLM) { 12953 DebugLoc Dl = MI.getDebugLoc(); 12954 12955 // Result of setflm is previous FPSCR content, so we need to save it first. 12956 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12957 if (MRI.use_empty(OldFPSCRReg)) 12958 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12959 else 12960 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12961 12962 // Put bits in 32:63 to FPSCR. 12963 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12964 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12965 .addImm(255) 12966 .addReg(NewFPSCRReg) 12967 .addImm(0) 12968 .addImm(0); 12969 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12970 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12971 return emitProbedAlloca(MI, BB); 12972 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12973 DebugLoc DL = MI.getDebugLoc(); 12974 Register Src = MI.getOperand(2).getReg(); 12975 Register Lo = MI.getOperand(0).getReg(); 12976 Register Hi = MI.getOperand(1).getReg(); 12977 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12978 .addDef(Lo) 12979 .addUse(Src, 0, PPC::sub_gp8_x1); 12980 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12981 .addDef(Hi) 12982 .addUse(Src, 0, PPC::sub_gp8_x0); 12983 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12984 MI.getOpcode() == PPC::STQX_PSEUDO) { 12985 DebugLoc DL = MI.getDebugLoc(); 12986 // Ptr is used as the ptr_rc_no_r0 part 12987 // of LQ/STQ's memory operand and adding result of RA and RB, 12988 // so it has to be g8rc_and_g8rc_nox0. 12989 Register Ptr = 12990 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12991 Register Val = MI.getOperand(0).getReg(); 12992 Register RA = MI.getOperand(1).getReg(); 12993 Register RB = MI.getOperand(2).getReg(); 12994 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12995 BuildMI(*BB, MI, DL, 12996 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12997 : TII->get(PPC::STQ)) 12998 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12999 .addImm(0) 13000 .addReg(Ptr); 13001 } else { 13002 llvm_unreachable("Unexpected instr type to insert"); 13003 } 13004 13005 MI.eraseFromParent(); // The pseudo instruction is gone now. 13006 return BB; 13007 } 13008 13009 //===----------------------------------------------------------------------===// 13010 // Target Optimization Hooks 13011 //===----------------------------------------------------------------------===// 13012 13013 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 13014 // For the estimates, convergence is quadratic, so we essentially double the 13015 // number of digits correct after every iteration. For both FRE and FRSQRTE, 13016 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 13017 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13018 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13019 if (VT.getScalarType() == MVT::f64) 13020 RefinementSteps++; 13021 return RefinementSteps; 13022 } 13023 13024 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13025 const DenormalMode &Mode) const { 13026 // We only have VSX Vector Test for software Square Root. 13027 EVT VT = Op.getValueType(); 13028 if (!isTypeLegal(MVT::i1) || 13029 (VT != MVT::f64 && 13030 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13031 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13032 13033 SDLoc DL(Op); 13034 // The output register of FTSQRT is CR field. 13035 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13036 // ftsqrt BF,FRB 13037 // Let e_b be the unbiased exponent of the double-precision 13038 // floating-point operand in register FRB. 13039 // fe_flag is set to 1 if either of the following conditions occurs. 13040 // - The double-precision floating-point operand in register FRB is a zero, 13041 // a NaN, or an infinity, or a negative value. 13042 // - e_b is less than or equal to -970. 13043 // Otherwise fe_flag is set to 0. 13044 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13045 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13046 // exponent is less than -970) 13047 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13048 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13049 FTSQRT, SRIdxVal), 13050 0); 13051 } 13052 13053 SDValue 13054 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13055 SelectionDAG &DAG) const { 13056 // We only have VSX Vector Square Root. 13057 EVT VT = Op.getValueType(); 13058 if (VT != MVT::f64 && 13059 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13060 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13061 13062 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13063 } 13064 13065 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13066 int Enabled, int &RefinementSteps, 13067 bool &UseOneConstNR, 13068 bool Reciprocal) const { 13069 EVT VT = Operand.getValueType(); 13070 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13071 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13072 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13073 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13074 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13075 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13076 13077 // The Newton-Raphson computation with a single constant does not provide 13078 // enough accuracy on some CPUs. 13079 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13080 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13081 } 13082 return SDValue(); 13083 } 13084 13085 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13086 int Enabled, 13087 int &RefinementSteps) const { 13088 EVT VT = Operand.getValueType(); 13089 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13090 (VT == MVT::f64 && Subtarget.hasFRE()) || 13091 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13092 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13093 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13094 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13095 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13096 } 13097 return SDValue(); 13098 } 13099 13100 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13101 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13102 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13103 // enabled for division), this functionality is redundant with the default 13104 // combiner logic (once the division -> reciprocal/multiply transformation 13105 // has taken place). As a result, this matters more for older cores than for 13106 // newer ones. 13107 13108 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13109 // reciprocal if there are two or more FDIVs (for embedded cores with only 13110 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13111 switch (Subtarget.getCPUDirective()) { 13112 default: 13113 return 3; 13114 case PPC::DIR_440: 13115 case PPC::DIR_A2: 13116 case PPC::DIR_E500: 13117 case PPC::DIR_E500mc: 13118 case PPC::DIR_E5500: 13119 return 2; 13120 } 13121 } 13122 13123 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13124 // collapsed, and so we need to look through chains of them. 13125 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13126 int64_t& Offset, SelectionDAG &DAG) { 13127 if (DAG.isBaseWithConstantOffset(Loc)) { 13128 Base = Loc.getOperand(0); 13129 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13130 13131 // The base might itself be a base plus an offset, and if so, accumulate 13132 // that as well. 13133 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13134 } 13135 } 13136 13137 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13138 unsigned Bytes, int Dist, 13139 SelectionDAG &DAG) { 13140 if (VT.getSizeInBits() / 8 != Bytes) 13141 return false; 13142 13143 SDValue BaseLoc = Base->getBasePtr(); 13144 if (Loc.getOpcode() == ISD::FrameIndex) { 13145 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13146 return false; 13147 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13148 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13149 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13150 int FS = MFI.getObjectSize(FI); 13151 int BFS = MFI.getObjectSize(BFI); 13152 if (FS != BFS || FS != (int)Bytes) return false; 13153 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13154 } 13155 13156 SDValue Base1 = Loc, Base2 = BaseLoc; 13157 int64_t Offset1 = 0, Offset2 = 0; 13158 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13159 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13160 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13161 return true; 13162 13163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13164 const GlobalValue *GV1 = nullptr; 13165 const GlobalValue *GV2 = nullptr; 13166 Offset1 = 0; 13167 Offset2 = 0; 13168 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13169 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13170 if (isGA1 && isGA2 && GV1 == GV2) 13171 return Offset1 == (Offset2 + Dist*Bytes); 13172 return false; 13173 } 13174 13175 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13176 // not enforce equality of the chain operands. 13177 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13178 unsigned Bytes, int Dist, 13179 SelectionDAG &DAG) { 13180 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13181 EVT VT = LS->getMemoryVT(); 13182 SDValue Loc = LS->getBasePtr(); 13183 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13184 } 13185 13186 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13187 EVT VT; 13188 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13189 default: return false; 13190 case Intrinsic::ppc_altivec_lvx: 13191 case Intrinsic::ppc_altivec_lvxl: 13192 case Intrinsic::ppc_vsx_lxvw4x: 13193 case Intrinsic::ppc_vsx_lxvw4x_be: 13194 VT = MVT::v4i32; 13195 break; 13196 case Intrinsic::ppc_vsx_lxvd2x: 13197 case Intrinsic::ppc_vsx_lxvd2x_be: 13198 VT = MVT::v2f64; 13199 break; 13200 case Intrinsic::ppc_altivec_lvebx: 13201 VT = MVT::i8; 13202 break; 13203 case Intrinsic::ppc_altivec_lvehx: 13204 VT = MVT::i16; 13205 break; 13206 case Intrinsic::ppc_altivec_lvewx: 13207 VT = MVT::i32; 13208 break; 13209 } 13210 13211 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13212 } 13213 13214 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13215 EVT VT; 13216 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13217 default: return false; 13218 case Intrinsic::ppc_altivec_stvx: 13219 case Intrinsic::ppc_altivec_stvxl: 13220 case Intrinsic::ppc_vsx_stxvw4x: 13221 VT = MVT::v4i32; 13222 break; 13223 case Intrinsic::ppc_vsx_stxvd2x: 13224 VT = MVT::v2f64; 13225 break; 13226 case Intrinsic::ppc_vsx_stxvw4x_be: 13227 VT = MVT::v4i32; 13228 break; 13229 case Intrinsic::ppc_vsx_stxvd2x_be: 13230 VT = MVT::v2f64; 13231 break; 13232 case Intrinsic::ppc_altivec_stvebx: 13233 VT = MVT::i8; 13234 break; 13235 case Intrinsic::ppc_altivec_stvehx: 13236 VT = MVT::i16; 13237 break; 13238 case Intrinsic::ppc_altivec_stvewx: 13239 VT = MVT::i32; 13240 break; 13241 } 13242 13243 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13244 } 13245 13246 return false; 13247 } 13248 13249 // Return true is there is a nearyby consecutive load to the one provided 13250 // (regardless of alignment). We search up and down the chain, looking though 13251 // token factors and other loads (but nothing else). As a result, a true result 13252 // indicates that it is safe to create a new consecutive load adjacent to the 13253 // load provided. 13254 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13255 SDValue Chain = LD->getChain(); 13256 EVT VT = LD->getMemoryVT(); 13257 13258 SmallSet<SDNode *, 16> LoadRoots; 13259 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13260 SmallSet<SDNode *, 16> Visited; 13261 13262 // First, search up the chain, branching to follow all token-factor operands. 13263 // If we find a consecutive load, then we're done, otherwise, record all 13264 // nodes just above the top-level loads and token factors. 13265 while (!Queue.empty()) { 13266 SDNode *ChainNext = Queue.pop_back_val(); 13267 if (!Visited.insert(ChainNext).second) 13268 continue; 13269 13270 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13271 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13272 return true; 13273 13274 if (!Visited.count(ChainLD->getChain().getNode())) 13275 Queue.push_back(ChainLD->getChain().getNode()); 13276 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13277 for (const SDUse &O : ChainNext->ops()) 13278 if (!Visited.count(O.getNode())) 13279 Queue.push_back(O.getNode()); 13280 } else 13281 LoadRoots.insert(ChainNext); 13282 } 13283 13284 // Second, search down the chain, starting from the top-level nodes recorded 13285 // in the first phase. These top-level nodes are the nodes just above all 13286 // loads and token factors. Starting with their uses, recursively look though 13287 // all loads (just the chain uses) and token factors to find a consecutive 13288 // load. 13289 Visited.clear(); 13290 Queue.clear(); 13291 13292 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13293 IE = LoadRoots.end(); I != IE; ++I) { 13294 Queue.push_back(*I); 13295 13296 while (!Queue.empty()) { 13297 SDNode *LoadRoot = Queue.pop_back_val(); 13298 if (!Visited.insert(LoadRoot).second) 13299 continue; 13300 13301 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13302 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13303 return true; 13304 13305 for (SDNode *U : LoadRoot->uses()) 13306 if (((isa<MemSDNode>(U) && 13307 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13308 U->getOpcode() == ISD::TokenFactor) && 13309 !Visited.count(U)) 13310 Queue.push_back(U); 13311 } 13312 } 13313 13314 return false; 13315 } 13316 13317 /// This function is called when we have proved that a SETCC node can be replaced 13318 /// by subtraction (and other supporting instructions) so that the result of 13319 /// comparison is kept in a GPR instead of CR. This function is purely for 13320 /// codegen purposes and has some flags to guide the codegen process. 13321 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13322 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13323 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13324 13325 // Zero extend the operands to the largest legal integer. Originally, they 13326 // must be of a strictly smaller size. 13327 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13328 DAG.getConstant(Size, DL, MVT::i32)); 13329 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13330 DAG.getConstant(Size, DL, MVT::i32)); 13331 13332 // Swap if needed. Depends on the condition code. 13333 if (Swap) 13334 std::swap(Op0, Op1); 13335 13336 // Subtract extended integers. 13337 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13338 13339 // Move the sign bit to the least significant position and zero out the rest. 13340 // Now the least significant bit carries the result of original comparison. 13341 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13342 DAG.getConstant(Size - 1, DL, MVT::i32)); 13343 auto Final = Shifted; 13344 13345 // Complement the result if needed. Based on the condition code. 13346 if (Complement) 13347 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13348 DAG.getConstant(1, DL, MVT::i64)); 13349 13350 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13351 } 13352 13353 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13354 DAGCombinerInfo &DCI) const { 13355 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13356 13357 SelectionDAG &DAG = DCI.DAG; 13358 SDLoc DL(N); 13359 13360 // Size of integers being compared has a critical role in the following 13361 // analysis, so we prefer to do this when all types are legal. 13362 if (!DCI.isAfterLegalizeDAG()) 13363 return SDValue(); 13364 13365 // If all users of SETCC extend its value to a legal integer type 13366 // then we replace SETCC with a subtraction 13367 for (const SDNode *U : N->uses()) 13368 if (U->getOpcode() != ISD::ZERO_EXTEND) 13369 return SDValue(); 13370 13371 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13372 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13373 13374 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13375 13376 if (OpSize < Size) { 13377 switch (CC) { 13378 default: break; 13379 case ISD::SETULT: 13380 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13381 case ISD::SETULE: 13382 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13383 case ISD::SETUGT: 13384 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13385 case ISD::SETUGE: 13386 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13387 } 13388 } 13389 13390 return SDValue(); 13391 } 13392 13393 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13394 DAGCombinerInfo &DCI) const { 13395 SelectionDAG &DAG = DCI.DAG; 13396 SDLoc dl(N); 13397 13398 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13399 // If we're tracking CR bits, we need to be careful that we don't have: 13400 // trunc(binary-ops(zext(x), zext(y))) 13401 // or 13402 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13403 // such that we're unnecessarily moving things into GPRs when it would be 13404 // better to keep them in CR bits. 13405 13406 // Note that trunc here can be an actual i1 trunc, or can be the effective 13407 // truncation that comes from a setcc or select_cc. 13408 if (N->getOpcode() == ISD::TRUNCATE && 13409 N->getValueType(0) != MVT::i1) 13410 return SDValue(); 13411 13412 if (N->getOperand(0).getValueType() != MVT::i32 && 13413 N->getOperand(0).getValueType() != MVT::i64) 13414 return SDValue(); 13415 13416 if (N->getOpcode() == ISD::SETCC || 13417 N->getOpcode() == ISD::SELECT_CC) { 13418 // If we're looking at a comparison, then we need to make sure that the 13419 // high bits (all except for the first) don't matter the result. 13420 ISD::CondCode CC = 13421 cast<CondCodeSDNode>(N->getOperand( 13422 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13423 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13424 13425 if (ISD::isSignedIntSetCC(CC)) { 13426 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13427 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13428 return SDValue(); 13429 } else if (ISD::isUnsignedIntSetCC(CC)) { 13430 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13431 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13432 !DAG.MaskedValueIsZero(N->getOperand(1), 13433 APInt::getHighBitsSet(OpBits, OpBits-1))) 13434 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13435 : SDValue()); 13436 } else { 13437 // This is neither a signed nor an unsigned comparison, just make sure 13438 // that the high bits are equal. 13439 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13440 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13441 13442 // We don't really care about what is known about the first bit (if 13443 // anything), so pretend that it is known zero for both to ensure they can 13444 // be compared as constants. 13445 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13446 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13447 13448 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13449 Op1Known.getConstant() != Op2Known.getConstant()) 13450 return SDValue(); 13451 } 13452 } 13453 13454 // We now know that the higher-order bits are irrelevant, we just need to 13455 // make sure that all of the intermediate operations are bit operations, and 13456 // all inputs are extensions. 13457 if (N->getOperand(0).getOpcode() != ISD::AND && 13458 N->getOperand(0).getOpcode() != ISD::OR && 13459 N->getOperand(0).getOpcode() != ISD::XOR && 13460 N->getOperand(0).getOpcode() != ISD::SELECT && 13461 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13462 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13463 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13464 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13465 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13466 return SDValue(); 13467 13468 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13469 N->getOperand(1).getOpcode() != ISD::AND && 13470 N->getOperand(1).getOpcode() != ISD::OR && 13471 N->getOperand(1).getOpcode() != ISD::XOR && 13472 N->getOperand(1).getOpcode() != ISD::SELECT && 13473 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13474 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13475 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13476 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13477 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13478 return SDValue(); 13479 13480 SmallVector<SDValue, 4> Inputs; 13481 SmallVector<SDValue, 8> BinOps, PromOps; 13482 SmallPtrSet<SDNode *, 16> Visited; 13483 13484 for (unsigned i = 0; i < 2; ++i) { 13485 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13486 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13487 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13488 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13489 isa<ConstantSDNode>(N->getOperand(i))) 13490 Inputs.push_back(N->getOperand(i)); 13491 else 13492 BinOps.push_back(N->getOperand(i)); 13493 13494 if (N->getOpcode() == ISD::TRUNCATE) 13495 break; 13496 } 13497 13498 // Visit all inputs, collect all binary operations (and, or, xor and 13499 // select) that are all fed by extensions. 13500 while (!BinOps.empty()) { 13501 SDValue BinOp = BinOps.pop_back_val(); 13502 13503 if (!Visited.insert(BinOp.getNode()).second) 13504 continue; 13505 13506 PromOps.push_back(BinOp); 13507 13508 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13509 // The condition of the select is not promoted. 13510 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13511 continue; 13512 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13513 continue; 13514 13515 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13516 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13517 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13518 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13519 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13520 Inputs.push_back(BinOp.getOperand(i)); 13521 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13522 BinOp.getOperand(i).getOpcode() == ISD::OR || 13523 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13524 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13525 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13526 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13527 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13528 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13529 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13530 BinOps.push_back(BinOp.getOperand(i)); 13531 } else { 13532 // We have an input that is not an extension or another binary 13533 // operation; we'll abort this transformation. 13534 return SDValue(); 13535 } 13536 } 13537 } 13538 13539 // Make sure that this is a self-contained cluster of operations (which 13540 // is not quite the same thing as saying that everything has only one 13541 // use). 13542 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13543 if (isa<ConstantSDNode>(Inputs[i])) 13544 continue; 13545 13546 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13547 if (User != N && !Visited.count(User)) 13548 return SDValue(); 13549 13550 // Make sure that we're not going to promote the non-output-value 13551 // operand(s) or SELECT or SELECT_CC. 13552 // FIXME: Although we could sometimes handle this, and it does occur in 13553 // practice that one of the condition inputs to the select is also one of 13554 // the outputs, we currently can't deal with this. 13555 if (User->getOpcode() == ISD::SELECT) { 13556 if (User->getOperand(0) == Inputs[i]) 13557 return SDValue(); 13558 } else if (User->getOpcode() == ISD::SELECT_CC) { 13559 if (User->getOperand(0) == Inputs[i] || 13560 User->getOperand(1) == Inputs[i]) 13561 return SDValue(); 13562 } 13563 } 13564 } 13565 13566 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13567 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13568 if (User != N && !Visited.count(User)) 13569 return SDValue(); 13570 13571 // Make sure that we're not going to promote the non-output-value 13572 // operand(s) or SELECT or SELECT_CC. 13573 // FIXME: Although we could sometimes handle this, and it does occur in 13574 // practice that one of the condition inputs to the select is also one of 13575 // the outputs, we currently can't deal with this. 13576 if (User->getOpcode() == ISD::SELECT) { 13577 if (User->getOperand(0) == PromOps[i]) 13578 return SDValue(); 13579 } else if (User->getOpcode() == ISD::SELECT_CC) { 13580 if (User->getOperand(0) == PromOps[i] || 13581 User->getOperand(1) == PromOps[i]) 13582 return SDValue(); 13583 } 13584 } 13585 } 13586 13587 // Replace all inputs with the extension operand. 13588 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13589 // Constants may have users outside the cluster of to-be-promoted nodes, 13590 // and so we need to replace those as we do the promotions. 13591 if (isa<ConstantSDNode>(Inputs[i])) 13592 continue; 13593 else 13594 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13595 } 13596 13597 std::list<HandleSDNode> PromOpHandles; 13598 for (auto &PromOp : PromOps) 13599 PromOpHandles.emplace_back(PromOp); 13600 13601 // Replace all operations (these are all the same, but have a different 13602 // (i1) return type). DAG.getNode will validate that the types of 13603 // a binary operator match, so go through the list in reverse so that 13604 // we've likely promoted both operands first. Any intermediate truncations or 13605 // extensions disappear. 13606 while (!PromOpHandles.empty()) { 13607 SDValue PromOp = PromOpHandles.back().getValue(); 13608 PromOpHandles.pop_back(); 13609 13610 if (PromOp.getOpcode() == ISD::TRUNCATE || 13611 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13612 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13613 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13614 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13615 PromOp.getOperand(0).getValueType() != MVT::i1) { 13616 // The operand is not yet ready (see comment below). 13617 PromOpHandles.emplace_front(PromOp); 13618 continue; 13619 } 13620 13621 SDValue RepValue = PromOp.getOperand(0); 13622 if (isa<ConstantSDNode>(RepValue)) 13623 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13624 13625 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13626 continue; 13627 } 13628 13629 unsigned C; 13630 switch (PromOp.getOpcode()) { 13631 default: C = 0; break; 13632 case ISD::SELECT: C = 1; break; 13633 case ISD::SELECT_CC: C = 2; break; 13634 } 13635 13636 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13637 PromOp.getOperand(C).getValueType() != MVT::i1) || 13638 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13639 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13640 // The to-be-promoted operands of this node have not yet been 13641 // promoted (this should be rare because we're going through the 13642 // list backward, but if one of the operands has several users in 13643 // this cluster of to-be-promoted nodes, it is possible). 13644 PromOpHandles.emplace_front(PromOp); 13645 continue; 13646 } 13647 13648 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13649 PromOp.getNode()->op_end()); 13650 13651 // If there are any constant inputs, make sure they're replaced now. 13652 for (unsigned i = 0; i < 2; ++i) 13653 if (isa<ConstantSDNode>(Ops[C+i])) 13654 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13655 13656 DAG.ReplaceAllUsesOfValueWith(PromOp, 13657 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13658 } 13659 13660 // Now we're left with the initial truncation itself. 13661 if (N->getOpcode() == ISD::TRUNCATE) 13662 return N->getOperand(0); 13663 13664 // Otherwise, this is a comparison. The operands to be compared have just 13665 // changed type (to i1), but everything else is the same. 13666 return SDValue(N, 0); 13667 } 13668 13669 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13670 DAGCombinerInfo &DCI) const { 13671 SelectionDAG &DAG = DCI.DAG; 13672 SDLoc dl(N); 13673 13674 // If we're tracking CR bits, we need to be careful that we don't have: 13675 // zext(binary-ops(trunc(x), trunc(y))) 13676 // or 13677 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13678 // such that we're unnecessarily moving things into CR bits that can more 13679 // efficiently stay in GPRs. Note that if we're not certain that the high 13680 // bits are set as required by the final extension, we still may need to do 13681 // some masking to get the proper behavior. 13682 13683 // This same functionality is important on PPC64 when dealing with 13684 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13685 // the return values of functions. Because it is so similar, it is handled 13686 // here as well. 13687 13688 if (N->getValueType(0) != MVT::i32 && 13689 N->getValueType(0) != MVT::i64) 13690 return SDValue(); 13691 13692 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13693 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13694 return SDValue(); 13695 13696 if (N->getOperand(0).getOpcode() != ISD::AND && 13697 N->getOperand(0).getOpcode() != ISD::OR && 13698 N->getOperand(0).getOpcode() != ISD::XOR && 13699 N->getOperand(0).getOpcode() != ISD::SELECT && 13700 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13701 return SDValue(); 13702 13703 SmallVector<SDValue, 4> Inputs; 13704 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13705 SmallPtrSet<SDNode *, 16> Visited; 13706 13707 // Visit all inputs, collect all binary operations (and, or, xor and 13708 // select) that are all fed by truncations. 13709 while (!BinOps.empty()) { 13710 SDValue BinOp = BinOps.pop_back_val(); 13711 13712 if (!Visited.insert(BinOp.getNode()).second) 13713 continue; 13714 13715 PromOps.push_back(BinOp); 13716 13717 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13718 // The condition of the select is not promoted. 13719 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13720 continue; 13721 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13722 continue; 13723 13724 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13725 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13726 Inputs.push_back(BinOp.getOperand(i)); 13727 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13728 BinOp.getOperand(i).getOpcode() == ISD::OR || 13729 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13730 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13731 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13732 BinOps.push_back(BinOp.getOperand(i)); 13733 } else { 13734 // We have an input that is not a truncation or another binary 13735 // operation; we'll abort this transformation. 13736 return SDValue(); 13737 } 13738 } 13739 } 13740 13741 // The operands of a select that must be truncated when the select is 13742 // promoted because the operand is actually part of the to-be-promoted set. 13743 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13744 13745 // Make sure that this is a self-contained cluster of operations (which 13746 // is not quite the same thing as saying that everything has only one 13747 // use). 13748 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13749 if (isa<ConstantSDNode>(Inputs[i])) 13750 continue; 13751 13752 for (SDNode *User : Inputs[i].getNode()->uses()) { 13753 if (User != N && !Visited.count(User)) 13754 return SDValue(); 13755 13756 // If we're going to promote the non-output-value operand(s) or SELECT or 13757 // SELECT_CC, record them for truncation. 13758 if (User->getOpcode() == ISD::SELECT) { 13759 if (User->getOperand(0) == Inputs[i]) 13760 SelectTruncOp[0].insert(std::make_pair(User, 13761 User->getOperand(0).getValueType())); 13762 } else if (User->getOpcode() == ISD::SELECT_CC) { 13763 if (User->getOperand(0) == Inputs[i]) 13764 SelectTruncOp[0].insert(std::make_pair(User, 13765 User->getOperand(0).getValueType())); 13766 if (User->getOperand(1) == Inputs[i]) 13767 SelectTruncOp[1].insert(std::make_pair(User, 13768 User->getOperand(1).getValueType())); 13769 } 13770 } 13771 } 13772 13773 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13774 for (SDNode *User : PromOps[i].getNode()->uses()) { 13775 if (User != N && !Visited.count(User)) 13776 return SDValue(); 13777 13778 // If we're going to promote the non-output-value operand(s) or SELECT or 13779 // SELECT_CC, record them for truncation. 13780 if (User->getOpcode() == ISD::SELECT) { 13781 if (User->getOperand(0) == PromOps[i]) 13782 SelectTruncOp[0].insert(std::make_pair(User, 13783 User->getOperand(0).getValueType())); 13784 } else if (User->getOpcode() == ISD::SELECT_CC) { 13785 if (User->getOperand(0) == PromOps[i]) 13786 SelectTruncOp[0].insert(std::make_pair(User, 13787 User->getOperand(0).getValueType())); 13788 if (User->getOperand(1) == PromOps[i]) 13789 SelectTruncOp[1].insert(std::make_pair(User, 13790 User->getOperand(1).getValueType())); 13791 } 13792 } 13793 } 13794 13795 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13796 bool ReallyNeedsExt = false; 13797 if (N->getOpcode() != ISD::ANY_EXTEND) { 13798 // If all of the inputs are not already sign/zero extended, then 13799 // we'll still need to do that at the end. 13800 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13801 if (isa<ConstantSDNode>(Inputs[i])) 13802 continue; 13803 13804 unsigned OpBits = 13805 Inputs[i].getOperand(0).getValueSizeInBits(); 13806 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13807 13808 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13809 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13810 APInt::getHighBitsSet(OpBits, 13811 OpBits-PromBits))) || 13812 (N->getOpcode() == ISD::SIGN_EXTEND && 13813 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13814 (OpBits-(PromBits-1)))) { 13815 ReallyNeedsExt = true; 13816 break; 13817 } 13818 } 13819 } 13820 13821 // Replace all inputs, either with the truncation operand, or a 13822 // truncation or extension to the final output type. 13823 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13824 // Constant inputs need to be replaced with the to-be-promoted nodes that 13825 // use them because they might have users outside of the cluster of 13826 // promoted nodes. 13827 if (isa<ConstantSDNode>(Inputs[i])) 13828 continue; 13829 13830 SDValue InSrc = Inputs[i].getOperand(0); 13831 if (Inputs[i].getValueType() == N->getValueType(0)) 13832 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13833 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13834 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13835 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13836 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13837 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13838 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13839 else 13840 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13841 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13842 } 13843 13844 std::list<HandleSDNode> PromOpHandles; 13845 for (auto &PromOp : PromOps) 13846 PromOpHandles.emplace_back(PromOp); 13847 13848 // Replace all operations (these are all the same, but have a different 13849 // (promoted) return type). DAG.getNode will validate that the types of 13850 // a binary operator match, so go through the list in reverse so that 13851 // we've likely promoted both operands first. 13852 while (!PromOpHandles.empty()) { 13853 SDValue PromOp = PromOpHandles.back().getValue(); 13854 PromOpHandles.pop_back(); 13855 13856 unsigned C; 13857 switch (PromOp.getOpcode()) { 13858 default: C = 0; break; 13859 case ISD::SELECT: C = 1; break; 13860 case ISD::SELECT_CC: C = 2; break; 13861 } 13862 13863 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13864 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13865 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13866 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13867 // The to-be-promoted operands of this node have not yet been 13868 // promoted (this should be rare because we're going through the 13869 // list backward, but if one of the operands has several users in 13870 // this cluster of to-be-promoted nodes, it is possible). 13871 PromOpHandles.emplace_front(PromOp); 13872 continue; 13873 } 13874 13875 // For SELECT and SELECT_CC nodes, we do a similar check for any 13876 // to-be-promoted comparison inputs. 13877 if (PromOp.getOpcode() == ISD::SELECT || 13878 PromOp.getOpcode() == ISD::SELECT_CC) { 13879 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13880 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13881 (SelectTruncOp[1].count(PromOp.getNode()) && 13882 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13883 PromOpHandles.emplace_front(PromOp); 13884 continue; 13885 } 13886 } 13887 13888 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13889 PromOp.getNode()->op_end()); 13890 13891 // If this node has constant inputs, then they'll need to be promoted here. 13892 for (unsigned i = 0; i < 2; ++i) { 13893 if (!isa<ConstantSDNode>(Ops[C+i])) 13894 continue; 13895 if (Ops[C+i].getValueType() == N->getValueType(0)) 13896 continue; 13897 13898 if (N->getOpcode() == ISD::SIGN_EXTEND) 13899 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13900 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13901 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13902 else 13903 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13904 } 13905 13906 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13907 // truncate them again to the original value type. 13908 if (PromOp.getOpcode() == ISD::SELECT || 13909 PromOp.getOpcode() == ISD::SELECT_CC) { 13910 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13911 if (SI0 != SelectTruncOp[0].end()) 13912 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13913 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13914 if (SI1 != SelectTruncOp[1].end()) 13915 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13916 } 13917 13918 DAG.ReplaceAllUsesOfValueWith(PromOp, 13919 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13920 } 13921 13922 // Now we're left with the initial extension itself. 13923 if (!ReallyNeedsExt) 13924 return N->getOperand(0); 13925 13926 // To zero extend, just mask off everything except for the first bit (in the 13927 // i1 case). 13928 if (N->getOpcode() == ISD::ZERO_EXTEND) 13929 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13930 DAG.getConstant(APInt::getLowBitsSet( 13931 N->getValueSizeInBits(0), PromBits), 13932 dl, N->getValueType(0))); 13933 13934 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13935 "Invalid extension type"); 13936 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13937 SDValue ShiftCst = 13938 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13939 return DAG.getNode( 13940 ISD::SRA, dl, N->getValueType(0), 13941 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13942 ShiftCst); 13943 } 13944 13945 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13946 DAGCombinerInfo &DCI) const { 13947 assert(N->getOpcode() == ISD::SETCC && 13948 "Should be called with a SETCC node"); 13949 13950 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13951 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13952 SDValue LHS = N->getOperand(0); 13953 SDValue RHS = N->getOperand(1); 13954 13955 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13956 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13957 LHS.hasOneUse()) 13958 std::swap(LHS, RHS); 13959 13960 // x == 0-y --> x+y == 0 13961 // x != 0-y --> x+y != 0 13962 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13963 RHS.hasOneUse()) { 13964 SDLoc DL(N); 13965 SelectionDAG &DAG = DCI.DAG; 13966 EVT VT = N->getValueType(0); 13967 EVT OpVT = LHS.getValueType(); 13968 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13969 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13970 } 13971 } 13972 13973 return DAGCombineTruncBoolExt(N, DCI); 13974 } 13975 13976 // Is this an extending load from an f32 to an f64? 13977 static bool isFPExtLoad(SDValue Op) { 13978 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13979 return LD->getExtensionType() == ISD::EXTLOAD && 13980 Op.getValueType() == MVT::f64; 13981 return false; 13982 } 13983 13984 /// Reduces the number of fp-to-int conversion when building a vector. 13985 /// 13986 /// If this vector is built out of floating to integer conversions, 13987 /// transform it to a vector built out of floating point values followed by a 13988 /// single floating to integer conversion of the vector. 13989 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13990 /// becomes (fptosi (build_vector ($A, $B, ...))) 13991 SDValue PPCTargetLowering:: 13992 combineElementTruncationToVectorTruncation(SDNode *N, 13993 DAGCombinerInfo &DCI) const { 13994 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13995 "Should be called with a BUILD_VECTOR node"); 13996 13997 SelectionDAG &DAG = DCI.DAG; 13998 SDLoc dl(N); 13999 14000 SDValue FirstInput = N->getOperand(0); 14001 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 14002 "The input operand must be an fp-to-int conversion."); 14003 14004 // This combine happens after legalization so the fp_to_[su]i nodes are 14005 // already converted to PPCSISD nodes. 14006 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 14007 if (FirstConversion == PPCISD::FCTIDZ || 14008 FirstConversion == PPCISD::FCTIDUZ || 14009 FirstConversion == PPCISD::FCTIWZ || 14010 FirstConversion == PPCISD::FCTIWUZ) { 14011 bool IsSplat = true; 14012 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 14013 FirstConversion == PPCISD::FCTIWUZ; 14014 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 14015 SmallVector<SDValue, 4> Ops; 14016 EVT TargetVT = N->getValueType(0); 14017 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14018 SDValue NextOp = N->getOperand(i); 14019 if (NextOp.getOpcode() != PPCISD::MFVSR) 14020 return SDValue(); 14021 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14022 if (NextConversion != FirstConversion) 14023 return SDValue(); 14024 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14025 // This is not valid if the input was originally double precision. It is 14026 // also not profitable to do unless this is an extending load in which 14027 // case doing this combine will allow us to combine consecutive loads. 14028 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14029 return SDValue(); 14030 if (N->getOperand(i) != FirstInput) 14031 IsSplat = false; 14032 } 14033 14034 // If this is a splat, we leave it as-is since there will be only a single 14035 // fp-to-int conversion followed by a splat of the integer. This is better 14036 // for 32-bit and smaller ints and neutral for 64-bit ints. 14037 if (IsSplat) 14038 return SDValue(); 14039 14040 // Now that we know we have the right type of node, get its operands 14041 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14042 SDValue In = N->getOperand(i).getOperand(0); 14043 if (Is32Bit) { 14044 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14045 // here, we know that all inputs are extending loads so this is safe). 14046 if (In.isUndef()) 14047 Ops.push_back(DAG.getUNDEF(SrcVT)); 14048 else { 14049 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14050 MVT::f32, In.getOperand(0), 14051 DAG.getIntPtrConstant(1, dl)); 14052 Ops.push_back(Trunc); 14053 } 14054 } else 14055 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14056 } 14057 14058 unsigned Opcode; 14059 if (FirstConversion == PPCISD::FCTIDZ || 14060 FirstConversion == PPCISD::FCTIWZ) 14061 Opcode = ISD::FP_TO_SINT; 14062 else 14063 Opcode = ISD::FP_TO_UINT; 14064 14065 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14066 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14067 return DAG.getNode(Opcode, dl, TargetVT, BV); 14068 } 14069 return SDValue(); 14070 } 14071 14072 /// Reduce the number of loads when building a vector. 14073 /// 14074 /// Building a vector out of multiple loads can be converted to a load 14075 /// of the vector type if the loads are consecutive. If the loads are 14076 /// consecutive but in descending order, a shuffle is added at the end 14077 /// to reorder the vector. 14078 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14079 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14080 "Should be called with a BUILD_VECTOR node"); 14081 14082 SDLoc dl(N); 14083 14084 // Return early for non byte-sized type, as they can't be consecutive. 14085 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14086 return SDValue(); 14087 14088 bool InputsAreConsecutiveLoads = true; 14089 bool InputsAreReverseConsecutive = true; 14090 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14091 SDValue FirstInput = N->getOperand(0); 14092 bool IsRoundOfExtLoad = false; 14093 14094 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14095 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14096 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14097 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14098 } 14099 // Not a build vector of (possibly fp_rounded) loads. 14100 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14101 N->getNumOperands() == 1) 14102 return SDValue(); 14103 14104 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14105 // If any inputs are fp_round(extload), they all must be. 14106 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14107 return SDValue(); 14108 14109 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14110 N->getOperand(i); 14111 if (NextInput.getOpcode() != ISD::LOAD) 14112 return SDValue(); 14113 14114 SDValue PreviousInput = 14115 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14116 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14117 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14118 14119 // If any inputs are fp_round(extload), they all must be. 14120 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14121 return SDValue(); 14122 14123 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14124 InputsAreConsecutiveLoads = false; 14125 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14126 InputsAreReverseConsecutive = false; 14127 14128 // Exit early if the loads are neither consecutive nor reverse consecutive. 14129 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14130 return SDValue(); 14131 } 14132 14133 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14134 "The loads cannot be both consecutive and reverse consecutive."); 14135 14136 SDValue FirstLoadOp = 14137 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14138 SDValue LastLoadOp = 14139 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14140 N->getOperand(N->getNumOperands()-1); 14141 14142 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14143 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14144 if (InputsAreConsecutiveLoads) { 14145 assert(LD1 && "Input needs to be a LoadSDNode."); 14146 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14147 LD1->getBasePtr(), LD1->getPointerInfo(), 14148 LD1->getAlignment()); 14149 } 14150 if (InputsAreReverseConsecutive) { 14151 assert(LDL && "Input needs to be a LoadSDNode."); 14152 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14153 LDL->getBasePtr(), LDL->getPointerInfo(), 14154 LDL->getAlignment()); 14155 SmallVector<int, 16> Ops; 14156 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14157 Ops.push_back(i); 14158 14159 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14160 DAG.getUNDEF(N->getValueType(0)), Ops); 14161 } 14162 return SDValue(); 14163 } 14164 14165 // This function adds the required vector_shuffle needed to get 14166 // the elements of the vector extract in the correct position 14167 // as specified by the CorrectElems encoding. 14168 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14169 SDValue Input, uint64_t Elems, 14170 uint64_t CorrectElems) { 14171 SDLoc dl(N); 14172 14173 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14174 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14175 14176 // Knowing the element indices being extracted from the original 14177 // vector and the order in which they're being inserted, just put 14178 // them at element indices required for the instruction. 14179 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14180 if (DAG.getDataLayout().isLittleEndian()) 14181 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14182 else 14183 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14184 CorrectElems = CorrectElems >> 8; 14185 Elems = Elems >> 8; 14186 } 14187 14188 SDValue Shuffle = 14189 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14190 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14191 14192 EVT VT = N->getValueType(0); 14193 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14194 14195 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14196 Input.getValueType().getVectorElementType(), 14197 VT.getVectorNumElements()); 14198 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14199 DAG.getValueType(ExtVT)); 14200 } 14201 14202 // Look for build vector patterns where input operands come from sign 14203 // extended vector_extract elements of specific indices. If the correct indices 14204 // aren't used, add a vector shuffle to fix up the indices and create 14205 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14206 // during instruction selection. 14207 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14208 // This array encodes the indices that the vector sign extend instructions 14209 // extract from when extending from one type to another for both BE and LE. 14210 // The right nibble of each byte corresponds to the LE incides. 14211 // and the left nibble of each byte corresponds to the BE incides. 14212 // For example: 0x3074B8FC byte->word 14213 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14214 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14215 // For example: 0x000070F8 byte->double word 14216 // For LE: the allowed indices are: 0x0,0x8 14217 // For BE: the allowed indices are: 0x7,0xF 14218 uint64_t TargetElems[] = { 14219 0x3074B8FC, // b->w 14220 0x000070F8, // b->d 14221 0x10325476, // h->w 14222 0x00003074, // h->d 14223 0x00001032, // w->d 14224 }; 14225 14226 uint64_t Elems = 0; 14227 int Index; 14228 SDValue Input; 14229 14230 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14231 if (!Op) 14232 return false; 14233 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14234 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14235 return false; 14236 14237 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14238 // of the right width. 14239 SDValue Extract = Op.getOperand(0); 14240 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14241 Extract = Extract.getOperand(0); 14242 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14243 return false; 14244 14245 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14246 if (!ExtOp) 14247 return false; 14248 14249 Index = ExtOp->getZExtValue(); 14250 if (Input && Input != Extract.getOperand(0)) 14251 return false; 14252 14253 if (!Input) 14254 Input = Extract.getOperand(0); 14255 14256 Elems = Elems << 8; 14257 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14258 Elems |= Index; 14259 14260 return true; 14261 }; 14262 14263 // If the build vector operands aren't sign extended vector extracts, 14264 // of the same input vector, then return. 14265 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14266 if (!isSExtOfVecExtract(N->getOperand(i))) { 14267 return SDValue(); 14268 } 14269 } 14270 14271 // If the vector extract indicies are not correct, add the appropriate 14272 // vector_shuffle. 14273 int TgtElemArrayIdx; 14274 int InputSize = Input.getValueType().getScalarSizeInBits(); 14275 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14276 if (InputSize + OutputSize == 40) 14277 TgtElemArrayIdx = 0; 14278 else if (InputSize + OutputSize == 72) 14279 TgtElemArrayIdx = 1; 14280 else if (InputSize + OutputSize == 48) 14281 TgtElemArrayIdx = 2; 14282 else if (InputSize + OutputSize == 80) 14283 TgtElemArrayIdx = 3; 14284 else if (InputSize + OutputSize == 96) 14285 TgtElemArrayIdx = 4; 14286 else 14287 return SDValue(); 14288 14289 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14290 CorrectElems = DAG.getDataLayout().isLittleEndian() 14291 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14292 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14293 if (Elems != CorrectElems) { 14294 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14295 } 14296 14297 // Regular lowering will catch cases where a shuffle is not needed. 14298 return SDValue(); 14299 } 14300 14301 // Look for the pattern of a load from a narrow width to i128, feeding 14302 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14303 // (LXVRZX). This node represents a zero extending load that will be matched 14304 // to the Load VSX Vector Rightmost instructions. 14305 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14306 SDLoc DL(N); 14307 14308 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14309 if (N->getValueType(0) != MVT::v1i128) 14310 return SDValue(); 14311 14312 SDValue Operand = N->getOperand(0); 14313 // Proceed with the transformation if the operand to the BUILD_VECTOR 14314 // is a load instruction. 14315 if (Operand.getOpcode() != ISD::LOAD) 14316 return SDValue(); 14317 14318 auto *LD = cast<LoadSDNode>(Operand); 14319 EVT MemoryType = LD->getMemoryVT(); 14320 14321 // This transformation is only valid if the we are loading either a byte, 14322 // halfword, word, or doubleword. 14323 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14324 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14325 14326 // Ensure that the load from the narrow width is being zero extended to i128. 14327 if (!ValidLDType || 14328 (LD->getExtensionType() != ISD::ZEXTLOAD && 14329 LD->getExtensionType() != ISD::EXTLOAD)) 14330 return SDValue(); 14331 14332 SDValue LoadOps[] = { 14333 LD->getChain(), LD->getBasePtr(), 14334 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14335 14336 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14337 DAG.getVTList(MVT::v1i128, MVT::Other), 14338 LoadOps, MemoryType, LD->getMemOperand()); 14339 } 14340 14341 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14342 DAGCombinerInfo &DCI) const { 14343 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14344 "Should be called with a BUILD_VECTOR node"); 14345 14346 SelectionDAG &DAG = DCI.DAG; 14347 SDLoc dl(N); 14348 14349 if (!Subtarget.hasVSX()) 14350 return SDValue(); 14351 14352 // The target independent DAG combiner will leave a build_vector of 14353 // float-to-int conversions intact. We can generate MUCH better code for 14354 // a float-to-int conversion of a vector of floats. 14355 SDValue FirstInput = N->getOperand(0); 14356 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14357 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14358 if (Reduced) 14359 return Reduced; 14360 } 14361 14362 // If we're building a vector out of consecutive loads, just load that 14363 // vector type. 14364 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14365 if (Reduced) 14366 return Reduced; 14367 14368 // If we're building a vector out of extended elements from another vector 14369 // we have P9 vector integer extend instructions. The code assumes legal 14370 // input types (i.e. it can't handle things like v4i16) so do not run before 14371 // legalization. 14372 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14373 Reduced = combineBVOfVecSExt(N, DAG); 14374 if (Reduced) 14375 return Reduced; 14376 } 14377 14378 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14379 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14380 // is a load from <valid narrow width> to i128. 14381 if (Subtarget.isISA3_1()) { 14382 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14383 if (BVOfZLoad) 14384 return BVOfZLoad; 14385 } 14386 14387 if (N->getValueType(0) != MVT::v2f64) 14388 return SDValue(); 14389 14390 // Looking for: 14391 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14392 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14393 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14394 return SDValue(); 14395 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14396 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14397 return SDValue(); 14398 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14399 return SDValue(); 14400 14401 SDValue Ext1 = FirstInput.getOperand(0); 14402 SDValue Ext2 = N->getOperand(1).getOperand(0); 14403 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14404 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14405 return SDValue(); 14406 14407 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14408 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14409 if (!Ext1Op || !Ext2Op) 14410 return SDValue(); 14411 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14412 Ext1.getOperand(0) != Ext2.getOperand(0)) 14413 return SDValue(); 14414 14415 int FirstElem = Ext1Op->getZExtValue(); 14416 int SecondElem = Ext2Op->getZExtValue(); 14417 int SubvecIdx; 14418 if (FirstElem == 0 && SecondElem == 1) 14419 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14420 else if (FirstElem == 2 && SecondElem == 3) 14421 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14422 else 14423 return SDValue(); 14424 14425 SDValue SrcVec = Ext1.getOperand(0); 14426 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14427 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14428 return DAG.getNode(NodeType, dl, MVT::v2f64, 14429 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14430 } 14431 14432 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14433 DAGCombinerInfo &DCI) const { 14434 assert((N->getOpcode() == ISD::SINT_TO_FP || 14435 N->getOpcode() == ISD::UINT_TO_FP) && 14436 "Need an int -> FP conversion node here"); 14437 14438 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14439 return SDValue(); 14440 14441 SelectionDAG &DAG = DCI.DAG; 14442 SDLoc dl(N); 14443 SDValue Op(N, 0); 14444 14445 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14446 // from the hardware. 14447 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14448 return SDValue(); 14449 if (!Op.getOperand(0).getValueType().isSimple()) 14450 return SDValue(); 14451 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14452 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14453 return SDValue(); 14454 14455 SDValue FirstOperand(Op.getOperand(0)); 14456 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14457 (FirstOperand.getValueType() == MVT::i8 || 14458 FirstOperand.getValueType() == MVT::i16); 14459 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14460 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14461 bool DstDouble = Op.getValueType() == MVT::f64; 14462 unsigned ConvOp = Signed ? 14463 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14464 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14465 SDValue WidthConst = 14466 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14467 dl, false); 14468 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14469 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14470 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14471 DAG.getVTList(MVT::f64, MVT::Other), 14472 Ops, MVT::i8, LDN->getMemOperand()); 14473 14474 // For signed conversion, we need to sign-extend the value in the VSR 14475 if (Signed) { 14476 SDValue ExtOps[] = { Ld, WidthConst }; 14477 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14478 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14479 } else 14480 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14481 } 14482 14483 14484 // For i32 intermediate values, unfortunately, the conversion functions 14485 // leave the upper 32 bits of the value are undefined. Within the set of 14486 // scalar instructions, we have no method for zero- or sign-extending the 14487 // value. Thus, we cannot handle i32 intermediate values here. 14488 if (Op.getOperand(0).getValueType() == MVT::i32) 14489 return SDValue(); 14490 14491 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14492 "UINT_TO_FP is supported only with FPCVT"); 14493 14494 // If we have FCFIDS, then use it when converting to single-precision. 14495 // Otherwise, convert to double-precision and then round. 14496 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14497 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14498 : PPCISD::FCFIDS) 14499 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14500 : PPCISD::FCFID); 14501 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14502 ? MVT::f32 14503 : MVT::f64; 14504 14505 // If we're converting from a float, to an int, and back to a float again, 14506 // then we don't need the store/load pair at all. 14507 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14508 Subtarget.hasFPCVT()) || 14509 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14510 SDValue Src = Op.getOperand(0).getOperand(0); 14511 if (Src.getValueType() == MVT::f32) { 14512 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14513 DCI.AddToWorklist(Src.getNode()); 14514 } else if (Src.getValueType() != MVT::f64) { 14515 // Make sure that we don't pick up a ppc_fp128 source value. 14516 return SDValue(); 14517 } 14518 14519 unsigned FCTOp = 14520 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14521 PPCISD::FCTIDUZ; 14522 14523 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14524 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14525 14526 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14527 FP = DAG.getNode(ISD::FP_ROUND, dl, 14528 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14529 DCI.AddToWorklist(FP.getNode()); 14530 } 14531 14532 return FP; 14533 } 14534 14535 return SDValue(); 14536 } 14537 14538 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14539 // builtins) into loads with swaps. 14540 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14541 DAGCombinerInfo &DCI) const { 14542 SelectionDAG &DAG = DCI.DAG; 14543 SDLoc dl(N); 14544 SDValue Chain; 14545 SDValue Base; 14546 MachineMemOperand *MMO; 14547 14548 switch (N->getOpcode()) { 14549 default: 14550 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14551 case ISD::LOAD: { 14552 LoadSDNode *LD = cast<LoadSDNode>(N); 14553 Chain = LD->getChain(); 14554 Base = LD->getBasePtr(); 14555 MMO = LD->getMemOperand(); 14556 // If the MMO suggests this isn't a load of a full vector, leave 14557 // things alone. For a built-in, we have to make the change for 14558 // correctness, so if there is a size problem that will be a bug. 14559 if (MMO->getSize() < 16) 14560 return SDValue(); 14561 break; 14562 } 14563 case ISD::INTRINSIC_W_CHAIN: { 14564 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14565 Chain = Intrin->getChain(); 14566 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14567 // us what we want. Get operand 2 instead. 14568 Base = Intrin->getOperand(2); 14569 MMO = Intrin->getMemOperand(); 14570 break; 14571 } 14572 } 14573 14574 MVT VecTy = N->getValueType(0).getSimpleVT(); 14575 14576 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14577 // aligned and the type is a vector with elements up to 4 bytes 14578 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14579 VecTy.getScalarSizeInBits() <= 32) { 14580 return SDValue(); 14581 } 14582 14583 SDValue LoadOps[] = { Chain, Base }; 14584 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14585 DAG.getVTList(MVT::v2f64, MVT::Other), 14586 LoadOps, MVT::v2f64, MMO); 14587 14588 DCI.AddToWorklist(Load.getNode()); 14589 Chain = Load.getValue(1); 14590 SDValue Swap = DAG.getNode( 14591 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14592 DCI.AddToWorklist(Swap.getNode()); 14593 14594 // Add a bitcast if the resulting load type doesn't match v2f64. 14595 if (VecTy != MVT::v2f64) { 14596 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14597 DCI.AddToWorklist(N.getNode()); 14598 // Package {bitcast value, swap's chain} to match Load's shape. 14599 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14600 N, Swap.getValue(1)); 14601 } 14602 14603 return Swap; 14604 } 14605 14606 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14607 // builtins) into stores with swaps. 14608 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14609 DAGCombinerInfo &DCI) const { 14610 SelectionDAG &DAG = DCI.DAG; 14611 SDLoc dl(N); 14612 SDValue Chain; 14613 SDValue Base; 14614 unsigned SrcOpnd; 14615 MachineMemOperand *MMO; 14616 14617 switch (N->getOpcode()) { 14618 default: 14619 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14620 case ISD::STORE: { 14621 StoreSDNode *ST = cast<StoreSDNode>(N); 14622 Chain = ST->getChain(); 14623 Base = ST->getBasePtr(); 14624 MMO = ST->getMemOperand(); 14625 SrcOpnd = 1; 14626 // If the MMO suggests this isn't a store of a full vector, leave 14627 // things alone. For a built-in, we have to make the change for 14628 // correctness, so if there is a size problem that will be a bug. 14629 if (MMO->getSize() < 16) 14630 return SDValue(); 14631 break; 14632 } 14633 case ISD::INTRINSIC_VOID: { 14634 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14635 Chain = Intrin->getChain(); 14636 // Intrin->getBasePtr() oddly does not get what we want. 14637 Base = Intrin->getOperand(3); 14638 MMO = Intrin->getMemOperand(); 14639 SrcOpnd = 2; 14640 break; 14641 } 14642 } 14643 14644 SDValue Src = N->getOperand(SrcOpnd); 14645 MVT VecTy = Src.getValueType().getSimpleVT(); 14646 14647 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14648 // aligned and the type is a vector with elements up to 4 bytes 14649 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14650 VecTy.getScalarSizeInBits() <= 32) { 14651 return SDValue(); 14652 } 14653 14654 // All stores are done as v2f64 and possible bit cast. 14655 if (VecTy != MVT::v2f64) { 14656 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14657 DCI.AddToWorklist(Src.getNode()); 14658 } 14659 14660 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14661 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14662 DCI.AddToWorklist(Swap.getNode()); 14663 Chain = Swap.getValue(1); 14664 SDValue StoreOps[] = { Chain, Swap, Base }; 14665 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14666 DAG.getVTList(MVT::Other), 14667 StoreOps, VecTy, MMO); 14668 DCI.AddToWorklist(Store.getNode()); 14669 return Store; 14670 } 14671 14672 // Handle DAG combine for STORE (FP_TO_INT F). 14673 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14674 DAGCombinerInfo &DCI) const { 14675 14676 SelectionDAG &DAG = DCI.DAG; 14677 SDLoc dl(N); 14678 unsigned Opcode = N->getOperand(1).getOpcode(); 14679 14680 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14681 && "Not a FP_TO_INT Instruction!"); 14682 14683 SDValue Val = N->getOperand(1).getOperand(0); 14684 EVT Op1VT = N->getOperand(1).getValueType(); 14685 EVT ResVT = Val.getValueType(); 14686 14687 if (!isTypeLegal(ResVT)) 14688 return SDValue(); 14689 14690 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14691 bool ValidTypeForStoreFltAsInt = 14692 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14693 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14694 14695 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14696 return SDValue(); 14697 14698 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14699 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14700 return SDValue(); 14701 14702 // Extend f32 values to f64 14703 if (ResVT.getScalarSizeInBits() == 32) { 14704 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14705 DCI.AddToWorklist(Val.getNode()); 14706 } 14707 14708 // Set signed or unsigned conversion opcode. 14709 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14710 PPCISD::FP_TO_SINT_IN_VSR : 14711 PPCISD::FP_TO_UINT_IN_VSR; 14712 14713 Val = DAG.getNode(ConvOpcode, 14714 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14715 DCI.AddToWorklist(Val.getNode()); 14716 14717 // Set number of bytes being converted. 14718 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14719 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14720 DAG.getIntPtrConstant(ByteSize, dl, false), 14721 DAG.getValueType(Op1VT) }; 14722 14723 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14724 DAG.getVTList(MVT::Other), Ops, 14725 cast<StoreSDNode>(N)->getMemoryVT(), 14726 cast<StoreSDNode>(N)->getMemOperand()); 14727 14728 DCI.AddToWorklist(Val.getNode()); 14729 return Val; 14730 } 14731 14732 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14733 // Check that the source of the element keeps flipping 14734 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14735 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14736 for (int i = 1, e = Mask.size(); i < e; i++) { 14737 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14738 return false; 14739 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14740 return false; 14741 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14742 } 14743 return true; 14744 } 14745 14746 static bool isSplatBV(SDValue Op) { 14747 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14748 return false; 14749 SDValue FirstOp; 14750 14751 // Find first non-undef input. 14752 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14753 FirstOp = Op.getOperand(i); 14754 if (!FirstOp.isUndef()) 14755 break; 14756 } 14757 14758 // All inputs are undef or the same as the first non-undef input. 14759 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14760 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14761 return false; 14762 return true; 14763 } 14764 14765 static SDValue isScalarToVec(SDValue Op) { 14766 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14767 return Op; 14768 if (Op.getOpcode() != ISD::BITCAST) 14769 return SDValue(); 14770 Op = Op.getOperand(0); 14771 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14772 return Op; 14773 return SDValue(); 14774 } 14775 14776 // Fix up the shuffle mask to account for the fact that the result of 14777 // scalar_to_vector is not in lane zero. This just takes all values in 14778 // the ranges specified by the min/max indices and adds the number of 14779 // elements required to ensure each element comes from the respective 14780 // position in the valid lane. 14781 // On little endian, that's just the corresponding element in the other 14782 // half of the vector. On big endian, it is in the same half but right 14783 // justified rather than left justified in that half. 14784 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14785 int LHSMaxIdx, int RHSMinIdx, 14786 int RHSMaxIdx, int HalfVec, 14787 unsigned ValidLaneWidth, 14788 const PPCSubtarget &Subtarget) { 14789 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14790 int Idx = ShuffV[i]; 14791 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14792 ShuffV[i] += 14793 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14794 } 14795 } 14796 14797 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14798 // the original is: 14799 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14800 // In such a case, just change the shuffle mask to extract the element 14801 // from the permuted index. 14802 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14803 const PPCSubtarget &Subtarget) { 14804 SDLoc dl(OrigSToV); 14805 EVT VT = OrigSToV.getValueType(); 14806 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14807 "Expecting a SCALAR_TO_VECTOR here"); 14808 SDValue Input = OrigSToV.getOperand(0); 14809 14810 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14811 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14812 SDValue OrigVector = Input.getOperand(0); 14813 14814 // Can't handle non-const element indices or different vector types 14815 // for the input to the extract and the output of the scalar_to_vector. 14816 if (Idx && VT == OrigVector.getValueType()) { 14817 unsigned NumElts = VT.getVectorNumElements(); 14818 assert( 14819 NumElts > 1 && 14820 "Cannot produce a permuted scalar_to_vector for one element vector"); 14821 SmallVector<int, 16> NewMask(NumElts, -1); 14822 unsigned ResultInElt = NumElts / 2; 14823 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14824 NewMask[ResultInElt] = Idx->getZExtValue(); 14825 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14826 } 14827 } 14828 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14829 OrigSToV.getOperand(0)); 14830 } 14831 14832 // On little endian subtargets, combine shuffles such as: 14833 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14834 // into: 14835 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14836 // because the latter can be matched to a single instruction merge. 14837 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14838 // to put the value into element zero. Adjust the shuffle mask so that the 14839 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14840 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14841 // nodes with elements smaller than doubleword because all the ways 14842 // of getting scalar data into a vector register put the value in the 14843 // rightmost element of the left half of the vector. 14844 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14845 SelectionDAG &DAG) const { 14846 SDValue LHS = SVN->getOperand(0); 14847 SDValue RHS = SVN->getOperand(1); 14848 auto Mask = SVN->getMask(); 14849 int NumElts = LHS.getValueType().getVectorNumElements(); 14850 SDValue Res(SVN, 0); 14851 SDLoc dl(SVN); 14852 bool IsLittleEndian = Subtarget.isLittleEndian(); 14853 14854 // On big endian targets this is only useful for subtargets with direct moves. 14855 // On little endian targets it would be useful for all subtargets with VSX. 14856 // However adding special handling for LE subtargets without direct moves 14857 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14858 // which includes direct moves. 14859 if (!Subtarget.hasDirectMove()) 14860 return Res; 14861 14862 // If this is not a shuffle of a shuffle and the first element comes from 14863 // the second vector, canonicalize to the commuted form. This will make it 14864 // more likely to match one of the single instruction patterns. 14865 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14866 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14867 std::swap(LHS, RHS); 14868 Res = DAG.getCommutedVectorShuffle(*SVN); 14869 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14870 } 14871 14872 // Adjust the shuffle mask if either input vector comes from a 14873 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14874 // form (to prevent the need for a swap). 14875 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14876 SDValue SToVLHS = isScalarToVec(LHS); 14877 SDValue SToVRHS = isScalarToVec(RHS); 14878 if (SToVLHS || SToVRHS) { 14879 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14880 : SToVRHS.getValueType().getVectorNumElements(); 14881 int NumEltsOut = ShuffV.size(); 14882 // The width of the "valid lane" (i.e. the lane that contains the value that 14883 // is vectorized) needs to be expressed in terms of the number of elements 14884 // of the shuffle. It is thereby the ratio of the values before and after 14885 // any bitcast. 14886 unsigned ValidLaneWidth = 14887 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14888 LHS.getValueType().getScalarSizeInBits() 14889 : SToVRHS.getValueType().getScalarSizeInBits() / 14890 RHS.getValueType().getScalarSizeInBits(); 14891 14892 // Initially assume that neither input is permuted. These will be adjusted 14893 // accordingly if either input is. 14894 int LHSMaxIdx = -1; 14895 int RHSMinIdx = -1; 14896 int RHSMaxIdx = -1; 14897 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14898 14899 // Get the permuted scalar to vector nodes for the source(s) that come from 14900 // ISD::SCALAR_TO_VECTOR. 14901 // On big endian systems, this only makes sense for element sizes smaller 14902 // than 64 bits since for 64-bit elements, all instructions already put 14903 // the value into element zero. Since scalar size of LHS and RHS may differ 14904 // after isScalarToVec, this should be checked using their own sizes. 14905 if (SToVLHS) { 14906 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14907 return Res; 14908 // Set up the values for the shuffle vector fixup. 14909 LHSMaxIdx = NumEltsOut / NumEltsIn; 14910 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14911 if (SToVLHS.getValueType() != LHS.getValueType()) 14912 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14913 LHS = SToVLHS; 14914 } 14915 if (SToVRHS) { 14916 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14917 return Res; 14918 RHSMinIdx = NumEltsOut; 14919 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14920 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14921 if (SToVRHS.getValueType() != RHS.getValueType()) 14922 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14923 RHS = SToVRHS; 14924 } 14925 14926 // Fix up the shuffle mask to reflect where the desired element actually is. 14927 // The minimum and maximum indices that correspond to element zero for both 14928 // the LHS and RHS are computed and will control which shuffle mask entries 14929 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14930 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14931 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14932 HalfVec, ValidLaneWidth, Subtarget); 14933 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14934 14935 // We may have simplified away the shuffle. We won't be able to do anything 14936 // further with it here. 14937 if (!isa<ShuffleVectorSDNode>(Res)) 14938 return Res; 14939 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14940 } 14941 14942 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14943 // The common case after we commuted the shuffle is that the RHS is a splat 14944 // and we have elements coming in from the splat at indices that are not 14945 // conducive to using a merge. 14946 // Example: 14947 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14948 if (!isSplatBV(TheSplat)) 14949 return Res; 14950 14951 // We are looking for a mask such that all even elements are from 14952 // one vector and all odd elements from the other. 14953 if (!isAlternatingShuffMask(Mask, NumElts)) 14954 return Res; 14955 14956 // Adjust the mask so we are pulling in the same index from the splat 14957 // as the index from the interesting vector in consecutive elements. 14958 if (IsLittleEndian) { 14959 // Example (even elements from first vector): 14960 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14961 if (Mask[0] < NumElts) 14962 for (int i = 1, e = Mask.size(); i < e; i += 2) 14963 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14964 // Example (odd elements from first vector): 14965 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14966 else 14967 for (int i = 0, e = Mask.size(); i < e; i += 2) 14968 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14969 } else { 14970 // Example (even elements from first vector): 14971 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14972 if (Mask[0] < NumElts) 14973 for (int i = 0, e = Mask.size(); i < e; i += 2) 14974 ShuffV[i] = ShuffV[i + 1] - NumElts; 14975 // Example (odd elements from first vector): 14976 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14977 else 14978 for (int i = 1, e = Mask.size(); i < e; i += 2) 14979 ShuffV[i] = ShuffV[i - 1] - NumElts; 14980 } 14981 14982 // If the RHS has undefs, we need to remove them since we may have created 14983 // a shuffle that adds those instead of the splat value. 14984 SDValue SplatVal = 14985 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14986 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14987 14988 if (IsLittleEndian) 14989 RHS = TheSplat; 14990 else 14991 LHS = TheSplat; 14992 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14993 } 14994 14995 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14996 LSBaseSDNode *LSBase, 14997 DAGCombinerInfo &DCI) const { 14998 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14999 "Not a reverse memop pattern!"); 15000 15001 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 15002 auto Mask = SVN->getMask(); 15003 int i = 0; 15004 auto I = Mask.rbegin(); 15005 auto E = Mask.rend(); 15006 15007 for (; I != E; ++I) { 15008 if (*I != i) 15009 return false; 15010 i++; 15011 } 15012 return true; 15013 }; 15014 15015 SelectionDAG &DAG = DCI.DAG; 15016 EVT VT = SVN->getValueType(0); 15017 15018 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15019 return SDValue(); 15020 15021 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15022 // See comment in PPCVSXSwapRemoval.cpp. 15023 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15024 if (!Subtarget.hasP9Vector()) 15025 return SDValue(); 15026 15027 if(!IsElementReverse(SVN)) 15028 return SDValue(); 15029 15030 if (LSBase->getOpcode() == ISD::LOAD) { 15031 // If the load return value 0 has more than one user except the 15032 // shufflevector instruction, it is not profitable to replace the 15033 // shufflevector with a reverse load. 15034 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15035 UI != UE; ++UI) 15036 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15037 return SDValue(); 15038 15039 SDLoc dl(LSBase); 15040 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15041 return DAG.getMemIntrinsicNode( 15042 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15043 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15044 } 15045 15046 if (LSBase->getOpcode() == ISD::STORE) { 15047 // If there are other uses of the shuffle, the swap cannot be avoided. 15048 // Forcing the use of an X-Form (since swapped stores only have 15049 // X-Forms) without removing the swap is unprofitable. 15050 if (!SVN->hasOneUse()) 15051 return SDValue(); 15052 15053 SDLoc dl(LSBase); 15054 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15055 LSBase->getBasePtr()}; 15056 return DAG.getMemIntrinsicNode( 15057 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15058 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15059 } 15060 15061 llvm_unreachable("Expected a load or store node here"); 15062 } 15063 15064 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15065 DAGCombinerInfo &DCI) const { 15066 SelectionDAG &DAG = DCI.DAG; 15067 SDLoc dl(N); 15068 switch (N->getOpcode()) { 15069 default: break; 15070 case ISD::ADD: 15071 return combineADD(N, DCI); 15072 case ISD::SHL: 15073 return combineSHL(N, DCI); 15074 case ISD::SRA: 15075 return combineSRA(N, DCI); 15076 case ISD::SRL: 15077 return combineSRL(N, DCI); 15078 case ISD::MUL: 15079 return combineMUL(N, DCI); 15080 case ISD::FMA: 15081 case PPCISD::FNMSUB: 15082 return combineFMALike(N, DCI); 15083 case PPCISD::SHL: 15084 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15085 return N->getOperand(0); 15086 break; 15087 case PPCISD::SRL: 15088 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15089 return N->getOperand(0); 15090 break; 15091 case PPCISD::SRA: 15092 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15093 if (C->isZero() || // 0 >>s V -> 0. 15094 C->isAllOnes()) // -1 >>s V -> -1. 15095 return N->getOperand(0); 15096 } 15097 break; 15098 case ISD::SIGN_EXTEND: 15099 case ISD::ZERO_EXTEND: 15100 case ISD::ANY_EXTEND: 15101 return DAGCombineExtBoolTrunc(N, DCI); 15102 case ISD::TRUNCATE: 15103 return combineTRUNCATE(N, DCI); 15104 case ISD::SETCC: 15105 if (SDValue CSCC = combineSetCC(N, DCI)) 15106 return CSCC; 15107 LLVM_FALLTHROUGH; 15108 case ISD::SELECT_CC: 15109 return DAGCombineTruncBoolExt(N, DCI); 15110 case ISD::SINT_TO_FP: 15111 case ISD::UINT_TO_FP: 15112 return combineFPToIntToFP(N, DCI); 15113 case ISD::VECTOR_SHUFFLE: 15114 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15115 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15116 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15117 } 15118 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15119 case ISD::STORE: { 15120 15121 EVT Op1VT = N->getOperand(1).getValueType(); 15122 unsigned Opcode = N->getOperand(1).getOpcode(); 15123 15124 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15125 SDValue Val= combineStoreFPToInt(N, DCI); 15126 if (Val) 15127 return Val; 15128 } 15129 15130 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15131 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15132 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15133 if (Val) 15134 return Val; 15135 } 15136 15137 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15138 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15139 N->getOperand(1).getNode()->hasOneUse() && 15140 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15141 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15142 15143 // STBRX can only handle simple types and it makes no sense to store less 15144 // two bytes in byte-reversed order. 15145 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15146 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15147 break; 15148 15149 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15150 // Do an any-extend to 32-bits if this is a half-word input. 15151 if (BSwapOp.getValueType() == MVT::i16) 15152 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15153 15154 // If the type of BSWAP operand is wider than stored memory width 15155 // it need to be shifted to the right side before STBRX. 15156 if (Op1VT.bitsGT(mVT)) { 15157 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15158 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15159 DAG.getConstant(Shift, dl, MVT::i32)); 15160 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15161 if (Op1VT == MVT::i64) 15162 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15163 } 15164 15165 SDValue Ops[] = { 15166 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15167 }; 15168 return 15169 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15170 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15171 cast<StoreSDNode>(N)->getMemOperand()); 15172 } 15173 15174 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15175 // So it can increase the chance of CSE constant construction. 15176 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15177 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15178 // Need to sign-extended to 64-bits to handle negative values. 15179 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15180 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15181 MemVT.getSizeInBits()); 15182 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15183 15184 // DAG.getTruncStore() can't be used here because it doesn't accept 15185 // the general (base + offset) addressing mode. 15186 // So we use UpdateNodeOperands and setTruncatingStore instead. 15187 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15188 N->getOperand(3)); 15189 cast<StoreSDNode>(N)->setTruncatingStore(true); 15190 return SDValue(N, 0); 15191 } 15192 15193 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15194 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15195 if (Op1VT.isSimple()) { 15196 MVT StoreVT = Op1VT.getSimpleVT(); 15197 if (Subtarget.needsSwapsForVSXMemOps() && 15198 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15199 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15200 return expandVSXStoreForLE(N, DCI); 15201 } 15202 break; 15203 } 15204 case ISD::LOAD: { 15205 LoadSDNode *LD = cast<LoadSDNode>(N); 15206 EVT VT = LD->getValueType(0); 15207 15208 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15209 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15210 if (VT.isSimple()) { 15211 MVT LoadVT = VT.getSimpleVT(); 15212 if (Subtarget.needsSwapsForVSXMemOps() && 15213 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15214 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15215 return expandVSXLoadForLE(N, DCI); 15216 } 15217 15218 // We sometimes end up with a 64-bit integer load, from which we extract 15219 // two single-precision floating-point numbers. This happens with 15220 // std::complex<float>, and other similar structures, because of the way we 15221 // canonicalize structure copies. However, if we lack direct moves, 15222 // then the final bitcasts from the extracted integer values to the 15223 // floating-point numbers turn into store/load pairs. Even with direct moves, 15224 // just loading the two floating-point numbers is likely better. 15225 auto ReplaceTwoFloatLoad = [&]() { 15226 if (VT != MVT::i64) 15227 return false; 15228 15229 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15230 LD->isVolatile()) 15231 return false; 15232 15233 // We're looking for a sequence like this: 15234 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15235 // t16: i64 = srl t13, Constant:i32<32> 15236 // t17: i32 = truncate t16 15237 // t18: f32 = bitcast t17 15238 // t19: i32 = truncate t13 15239 // t20: f32 = bitcast t19 15240 15241 if (!LD->hasNUsesOfValue(2, 0)) 15242 return false; 15243 15244 auto UI = LD->use_begin(); 15245 while (UI.getUse().getResNo() != 0) ++UI; 15246 SDNode *Trunc = *UI++; 15247 while (UI.getUse().getResNo() != 0) ++UI; 15248 SDNode *RightShift = *UI; 15249 if (Trunc->getOpcode() != ISD::TRUNCATE) 15250 std::swap(Trunc, RightShift); 15251 15252 if (Trunc->getOpcode() != ISD::TRUNCATE || 15253 Trunc->getValueType(0) != MVT::i32 || 15254 !Trunc->hasOneUse()) 15255 return false; 15256 if (RightShift->getOpcode() != ISD::SRL || 15257 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15258 RightShift->getConstantOperandVal(1) != 32 || 15259 !RightShift->hasOneUse()) 15260 return false; 15261 15262 SDNode *Trunc2 = *RightShift->use_begin(); 15263 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15264 Trunc2->getValueType(0) != MVT::i32 || 15265 !Trunc2->hasOneUse()) 15266 return false; 15267 15268 SDNode *Bitcast = *Trunc->use_begin(); 15269 SDNode *Bitcast2 = *Trunc2->use_begin(); 15270 15271 if (Bitcast->getOpcode() != ISD::BITCAST || 15272 Bitcast->getValueType(0) != MVT::f32) 15273 return false; 15274 if (Bitcast2->getOpcode() != ISD::BITCAST || 15275 Bitcast2->getValueType(0) != MVT::f32) 15276 return false; 15277 15278 if (Subtarget.isLittleEndian()) 15279 std::swap(Bitcast, Bitcast2); 15280 15281 // Bitcast has the second float (in memory-layout order) and Bitcast2 15282 // has the first one. 15283 15284 SDValue BasePtr = LD->getBasePtr(); 15285 if (LD->isIndexed()) { 15286 assert(LD->getAddressingMode() == ISD::PRE_INC && 15287 "Non-pre-inc AM on PPC?"); 15288 BasePtr = 15289 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15290 LD->getOffset()); 15291 } 15292 15293 auto MMOFlags = 15294 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15295 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15296 LD->getPointerInfo(), LD->getAlignment(), 15297 MMOFlags, LD->getAAInfo()); 15298 SDValue AddPtr = 15299 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15300 BasePtr, DAG.getIntPtrConstant(4, dl)); 15301 SDValue FloatLoad2 = DAG.getLoad( 15302 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15303 LD->getPointerInfo().getWithOffset(4), 15304 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15305 15306 if (LD->isIndexed()) { 15307 // Note that DAGCombine should re-form any pre-increment load(s) from 15308 // what is produced here if that makes sense. 15309 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15310 } 15311 15312 DCI.CombineTo(Bitcast2, FloatLoad); 15313 DCI.CombineTo(Bitcast, FloatLoad2); 15314 15315 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15316 SDValue(FloatLoad2.getNode(), 1)); 15317 return true; 15318 }; 15319 15320 if (ReplaceTwoFloatLoad()) 15321 return SDValue(N, 0); 15322 15323 EVT MemVT = LD->getMemoryVT(); 15324 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15325 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15326 if (LD->isUnindexed() && VT.isVector() && 15327 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15328 // P8 and later hardware should just use LOAD. 15329 !Subtarget.hasP8Vector() && 15330 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15331 VT == MVT::v4f32))) && 15332 LD->getAlign() < ABIAlignment) { 15333 // This is a type-legal unaligned Altivec load. 15334 SDValue Chain = LD->getChain(); 15335 SDValue Ptr = LD->getBasePtr(); 15336 bool isLittleEndian = Subtarget.isLittleEndian(); 15337 15338 // This implements the loading of unaligned vectors as described in 15339 // the venerable Apple Velocity Engine overview. Specifically: 15340 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15341 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15342 // 15343 // The general idea is to expand a sequence of one or more unaligned 15344 // loads into an alignment-based permutation-control instruction (lvsl 15345 // or lvsr), a series of regular vector loads (which always truncate 15346 // their input address to an aligned address), and a series of 15347 // permutations. The results of these permutations are the requested 15348 // loaded values. The trick is that the last "extra" load is not taken 15349 // from the address you might suspect (sizeof(vector) bytes after the 15350 // last requested load), but rather sizeof(vector) - 1 bytes after the 15351 // last requested vector. The point of this is to avoid a page fault if 15352 // the base address happened to be aligned. This works because if the 15353 // base address is aligned, then adding less than a full vector length 15354 // will cause the last vector in the sequence to be (re)loaded. 15355 // Otherwise, the next vector will be fetched as you might suspect was 15356 // necessary. 15357 15358 // We might be able to reuse the permutation generation from 15359 // a different base address offset from this one by an aligned amount. 15360 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15361 // optimization later. 15362 Intrinsic::ID Intr, IntrLD, IntrPerm; 15363 MVT PermCntlTy, PermTy, LDTy; 15364 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15365 : Intrinsic::ppc_altivec_lvsl; 15366 IntrLD = Intrinsic::ppc_altivec_lvx; 15367 IntrPerm = Intrinsic::ppc_altivec_vperm; 15368 PermCntlTy = MVT::v16i8; 15369 PermTy = MVT::v4i32; 15370 LDTy = MVT::v4i32; 15371 15372 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15373 15374 // Create the new MMO for the new base load. It is like the original MMO, 15375 // but represents an area in memory almost twice the vector size centered 15376 // on the original address. If the address is unaligned, we might start 15377 // reading up to (sizeof(vector)-1) bytes below the address of the 15378 // original unaligned load. 15379 MachineFunction &MF = DAG.getMachineFunction(); 15380 MachineMemOperand *BaseMMO = 15381 MF.getMachineMemOperand(LD->getMemOperand(), 15382 -(long)MemVT.getStoreSize()+1, 15383 2*MemVT.getStoreSize()-1); 15384 15385 // Create the new base load. 15386 SDValue LDXIntID = 15387 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15388 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15389 SDValue BaseLoad = 15390 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15391 DAG.getVTList(PermTy, MVT::Other), 15392 BaseLoadOps, LDTy, BaseMMO); 15393 15394 // Note that the value of IncOffset (which is provided to the next 15395 // load's pointer info offset value, and thus used to calculate the 15396 // alignment), and the value of IncValue (which is actually used to 15397 // increment the pointer value) are different! This is because we 15398 // require the next load to appear to be aligned, even though it 15399 // is actually offset from the base pointer by a lesser amount. 15400 int IncOffset = VT.getSizeInBits() / 8; 15401 int IncValue = IncOffset; 15402 15403 // Walk (both up and down) the chain looking for another load at the real 15404 // (aligned) offset (the alignment of the other load does not matter in 15405 // this case). If found, then do not use the offset reduction trick, as 15406 // that will prevent the loads from being later combined (as they would 15407 // otherwise be duplicates). 15408 if (!findConsecutiveLoad(LD, DAG)) 15409 --IncValue; 15410 15411 SDValue Increment = 15412 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15413 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15414 15415 MachineMemOperand *ExtraMMO = 15416 MF.getMachineMemOperand(LD->getMemOperand(), 15417 1, 2*MemVT.getStoreSize()-1); 15418 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15419 SDValue ExtraLoad = 15420 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15421 DAG.getVTList(PermTy, MVT::Other), 15422 ExtraLoadOps, LDTy, ExtraMMO); 15423 15424 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15425 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15426 15427 // Because vperm has a big-endian bias, we must reverse the order 15428 // of the input vectors and complement the permute control vector 15429 // when generating little endian code. We have already handled the 15430 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15431 // and ExtraLoad here. 15432 SDValue Perm; 15433 if (isLittleEndian) 15434 Perm = BuildIntrinsicOp(IntrPerm, 15435 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15436 else 15437 Perm = BuildIntrinsicOp(IntrPerm, 15438 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15439 15440 if (VT != PermTy) 15441 Perm = Subtarget.hasAltivec() 15442 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15443 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15444 DAG.getTargetConstant(1, dl, MVT::i64)); 15445 // second argument is 1 because this rounding 15446 // is always exact. 15447 15448 // The output of the permutation is our loaded result, the TokenFactor is 15449 // our new chain. 15450 DCI.CombineTo(N, Perm, TF); 15451 return SDValue(N, 0); 15452 } 15453 } 15454 break; 15455 case ISD::INTRINSIC_WO_CHAIN: { 15456 bool isLittleEndian = Subtarget.isLittleEndian(); 15457 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15458 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15459 : Intrinsic::ppc_altivec_lvsl); 15460 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15461 SDValue Add = N->getOperand(1); 15462 15463 int Bits = 4 /* 16 byte alignment */; 15464 15465 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15466 APInt::getAllOnes(Bits /* alignment */) 15467 .zext(Add.getScalarValueSizeInBits()))) { 15468 SDNode *BasePtr = Add->getOperand(0).getNode(); 15469 for (SDNode *U : BasePtr->uses()) { 15470 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15471 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15472 // We've found another LVSL/LVSR, and this address is an aligned 15473 // multiple of that one. The results will be the same, so use the 15474 // one we've just found instead. 15475 15476 return SDValue(U, 0); 15477 } 15478 } 15479 } 15480 15481 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15482 SDNode *BasePtr = Add->getOperand(0).getNode(); 15483 for (SDNode *U : BasePtr->uses()) { 15484 if (U->getOpcode() == ISD::ADD && 15485 isa<ConstantSDNode>(U->getOperand(1)) && 15486 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15487 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15488 (1ULL << Bits) == 15489 0) { 15490 SDNode *OtherAdd = U; 15491 for (SDNode *V : OtherAdd->uses()) { 15492 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15493 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15494 IID) { 15495 return SDValue(V, 0); 15496 } 15497 } 15498 } 15499 } 15500 } 15501 } 15502 15503 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15504 // Expose the vabsduw/h/b opportunity for down stream 15505 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15506 (IID == Intrinsic::ppc_altivec_vmaxsw || 15507 IID == Intrinsic::ppc_altivec_vmaxsh || 15508 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15509 SDValue V1 = N->getOperand(1); 15510 SDValue V2 = N->getOperand(2); 15511 if ((V1.getSimpleValueType() == MVT::v4i32 || 15512 V1.getSimpleValueType() == MVT::v8i16 || 15513 V1.getSimpleValueType() == MVT::v16i8) && 15514 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15515 // (0-a, a) 15516 if (V1.getOpcode() == ISD::SUB && 15517 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15518 V1.getOperand(1) == V2) { 15519 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15520 } 15521 // (a, 0-a) 15522 if (V2.getOpcode() == ISD::SUB && 15523 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15524 V2.getOperand(1) == V1) { 15525 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15526 } 15527 // (x-y, y-x) 15528 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15529 V1.getOperand(0) == V2.getOperand(1) && 15530 V1.getOperand(1) == V2.getOperand(0)) { 15531 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15532 } 15533 } 15534 } 15535 } 15536 15537 break; 15538 case ISD::INTRINSIC_W_CHAIN: 15539 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15540 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15541 if (Subtarget.needsSwapsForVSXMemOps()) { 15542 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15543 default: 15544 break; 15545 case Intrinsic::ppc_vsx_lxvw4x: 15546 case Intrinsic::ppc_vsx_lxvd2x: 15547 return expandVSXLoadForLE(N, DCI); 15548 } 15549 } 15550 break; 15551 case ISD::INTRINSIC_VOID: 15552 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15553 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15554 if (Subtarget.needsSwapsForVSXMemOps()) { 15555 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15556 default: 15557 break; 15558 case Intrinsic::ppc_vsx_stxvw4x: 15559 case Intrinsic::ppc_vsx_stxvd2x: 15560 return expandVSXStoreForLE(N, DCI); 15561 } 15562 } 15563 break; 15564 case ISD::BSWAP: { 15565 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15566 // For subtargets without LDBRX, we can still do better than the default 15567 // expansion even for 64-bit BSWAP (LOAD). 15568 bool Is64BitBswapOn64BitTgt = 15569 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15570 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15571 N->getOperand(0).hasOneUse(); 15572 if (IsSingleUseNormalLd && 15573 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15574 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15575 SDValue Load = N->getOperand(0); 15576 LoadSDNode *LD = cast<LoadSDNode>(Load); 15577 // Create the byte-swapping load. 15578 SDValue Ops[] = { 15579 LD->getChain(), // Chain 15580 LD->getBasePtr(), // Ptr 15581 DAG.getValueType(N->getValueType(0)) // VT 15582 }; 15583 SDValue BSLoad = 15584 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15585 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15586 MVT::i64 : MVT::i32, MVT::Other), 15587 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15588 15589 // If this is an i16 load, insert the truncate. 15590 SDValue ResVal = BSLoad; 15591 if (N->getValueType(0) == MVT::i16) 15592 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15593 15594 // First, combine the bswap away. This makes the value produced by the 15595 // load dead. 15596 DCI.CombineTo(N, ResVal); 15597 15598 // Next, combine the load away, we give it a bogus result value but a real 15599 // chain result. The result value is dead because the bswap is dead. 15600 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15601 15602 // Return N so it doesn't get rechecked! 15603 return SDValue(N, 0); 15604 } 15605 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15606 // before legalization so that the BUILD_PAIR is handled correctly. 15607 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15608 !IsSingleUseNormalLd) 15609 return SDValue(); 15610 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15611 15612 // Can't split volatile or atomic loads. 15613 if (!LD->isSimple()) 15614 return SDValue(); 15615 SDValue BasePtr = LD->getBasePtr(); 15616 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15617 LD->getPointerInfo(), LD->getAlignment()); 15618 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15619 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15620 DAG.getIntPtrConstant(4, dl)); 15621 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15622 LD->getMemOperand(), 4, 4); 15623 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15624 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15625 SDValue Res; 15626 if (Subtarget.isLittleEndian()) 15627 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15628 else 15629 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15630 SDValue TF = 15631 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15632 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15633 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15634 return Res; 15635 } 15636 case PPCISD::VCMP: 15637 // If a VCMP_rec node already exists with exactly the same operands as this 15638 // node, use its result instead of this node (VCMP_rec computes both a CR6 15639 // and a normal output). 15640 // 15641 if (!N->getOperand(0).hasOneUse() && 15642 !N->getOperand(1).hasOneUse() && 15643 !N->getOperand(2).hasOneUse()) { 15644 15645 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15646 SDNode *VCMPrecNode = nullptr; 15647 15648 SDNode *LHSN = N->getOperand(0).getNode(); 15649 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15650 UI != E; ++UI) 15651 if (UI->getOpcode() == PPCISD::VCMP_rec && 15652 UI->getOperand(1) == N->getOperand(1) && 15653 UI->getOperand(2) == N->getOperand(2) && 15654 UI->getOperand(0) == N->getOperand(0)) { 15655 VCMPrecNode = *UI; 15656 break; 15657 } 15658 15659 // If there is no VCMP_rec node, or if the flag value has a single use, 15660 // don't transform this. 15661 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15662 break; 15663 15664 // Look at the (necessarily single) use of the flag value. If it has a 15665 // chain, this transformation is more complex. Note that multiple things 15666 // could use the value result, which we should ignore. 15667 SDNode *FlagUser = nullptr; 15668 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15669 FlagUser == nullptr; ++UI) { 15670 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15671 SDNode *User = *UI; 15672 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15673 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15674 FlagUser = User; 15675 break; 15676 } 15677 } 15678 } 15679 15680 // If the user is a MFOCRF instruction, we know this is safe. 15681 // Otherwise we give up for right now. 15682 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15683 return SDValue(VCMPrecNode, 0); 15684 } 15685 break; 15686 case ISD::BRCOND: { 15687 SDValue Cond = N->getOperand(1); 15688 SDValue Target = N->getOperand(2); 15689 15690 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15691 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15692 Intrinsic::loop_decrement) { 15693 15694 // We now need to make the intrinsic dead (it cannot be instruction 15695 // selected). 15696 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15697 assert(Cond.getNode()->hasOneUse() && 15698 "Counter decrement has more than one use"); 15699 15700 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15701 N->getOperand(0), Target); 15702 } 15703 } 15704 break; 15705 case ISD::BR_CC: { 15706 // If this is a branch on an altivec predicate comparison, lower this so 15707 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15708 // lowering is done pre-legalize, because the legalizer lowers the predicate 15709 // compare down to code that is difficult to reassemble. 15710 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15711 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15712 15713 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15714 // value. If so, pass-through the AND to get to the intrinsic. 15715 if (LHS.getOpcode() == ISD::AND && 15716 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15717 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15718 Intrinsic::loop_decrement && 15719 isa<ConstantSDNode>(LHS.getOperand(1)) && 15720 !isNullConstant(LHS.getOperand(1))) 15721 LHS = LHS.getOperand(0); 15722 15723 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15724 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15725 Intrinsic::loop_decrement && 15726 isa<ConstantSDNode>(RHS)) { 15727 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15728 "Counter decrement comparison is not EQ or NE"); 15729 15730 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15731 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15732 (CC == ISD::SETNE && !Val); 15733 15734 // We now need to make the intrinsic dead (it cannot be instruction 15735 // selected). 15736 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15737 assert(LHS.getNode()->hasOneUse() && 15738 "Counter decrement has more than one use"); 15739 15740 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15741 N->getOperand(0), N->getOperand(4)); 15742 } 15743 15744 int CompareOpc; 15745 bool isDot; 15746 15747 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15748 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15749 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15750 assert(isDot && "Can't compare against a vector result!"); 15751 15752 // If this is a comparison against something other than 0/1, then we know 15753 // that the condition is never/always true. 15754 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15755 if (Val != 0 && Val != 1) { 15756 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15757 return N->getOperand(0); 15758 // Always !=, turn it into an unconditional branch. 15759 return DAG.getNode(ISD::BR, dl, MVT::Other, 15760 N->getOperand(0), N->getOperand(4)); 15761 } 15762 15763 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15764 15765 // Create the PPCISD altivec 'dot' comparison node. 15766 SDValue Ops[] = { 15767 LHS.getOperand(2), // LHS of compare 15768 LHS.getOperand(3), // RHS of compare 15769 DAG.getConstant(CompareOpc, dl, MVT::i32) 15770 }; 15771 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15772 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15773 15774 // Unpack the result based on how the target uses it. 15775 PPC::Predicate CompOpc; 15776 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15777 default: // Can't happen, don't crash on invalid number though. 15778 case 0: // Branch on the value of the EQ bit of CR6. 15779 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15780 break; 15781 case 1: // Branch on the inverted value of the EQ bit of CR6. 15782 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15783 break; 15784 case 2: // Branch on the value of the LT bit of CR6. 15785 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15786 break; 15787 case 3: // Branch on the inverted value of the LT bit of CR6. 15788 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15789 break; 15790 } 15791 15792 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15793 DAG.getConstant(CompOpc, dl, MVT::i32), 15794 DAG.getRegister(PPC::CR6, MVT::i32), 15795 N->getOperand(4), CompNode.getValue(1)); 15796 } 15797 break; 15798 } 15799 case ISD::BUILD_VECTOR: 15800 return DAGCombineBuildVector(N, DCI); 15801 case ISD::ABS: 15802 return combineABS(N, DCI); 15803 case ISD::VSELECT: 15804 return combineVSelect(N, DCI); 15805 } 15806 15807 return SDValue(); 15808 } 15809 15810 SDValue 15811 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15812 SelectionDAG &DAG, 15813 SmallVectorImpl<SDNode *> &Created) const { 15814 // fold (sdiv X, pow2) 15815 EVT VT = N->getValueType(0); 15816 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15817 return SDValue(); 15818 if ((VT != MVT::i32 && VT != MVT::i64) || 15819 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15820 return SDValue(); 15821 15822 SDLoc DL(N); 15823 SDValue N0 = N->getOperand(0); 15824 15825 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15826 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15827 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15828 15829 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15830 Created.push_back(Op.getNode()); 15831 15832 if (IsNegPow2) { 15833 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15834 Created.push_back(Op.getNode()); 15835 } 15836 15837 return Op; 15838 } 15839 15840 //===----------------------------------------------------------------------===// 15841 // Inline Assembly Support 15842 //===----------------------------------------------------------------------===// 15843 15844 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15845 KnownBits &Known, 15846 const APInt &DemandedElts, 15847 const SelectionDAG &DAG, 15848 unsigned Depth) const { 15849 Known.resetAll(); 15850 switch (Op.getOpcode()) { 15851 default: break; 15852 case PPCISD::LBRX: { 15853 // lhbrx is known to have the top bits cleared out. 15854 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15855 Known.Zero = 0xFFFF0000; 15856 break; 15857 } 15858 case ISD::INTRINSIC_WO_CHAIN: { 15859 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15860 default: break; 15861 case Intrinsic::ppc_altivec_vcmpbfp_p: 15862 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15863 case Intrinsic::ppc_altivec_vcmpequb_p: 15864 case Intrinsic::ppc_altivec_vcmpequh_p: 15865 case Intrinsic::ppc_altivec_vcmpequw_p: 15866 case Intrinsic::ppc_altivec_vcmpequd_p: 15867 case Intrinsic::ppc_altivec_vcmpequq_p: 15868 case Intrinsic::ppc_altivec_vcmpgefp_p: 15869 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15870 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15871 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15872 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15873 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15874 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15875 case Intrinsic::ppc_altivec_vcmpgtub_p: 15876 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15877 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15878 case Intrinsic::ppc_altivec_vcmpgtud_p: 15879 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15880 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15881 break; 15882 } 15883 break; 15884 } 15885 case ISD::INTRINSIC_W_CHAIN: { 15886 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15887 default: 15888 break; 15889 case Intrinsic::ppc_load2r: 15890 // Top bits are cleared for load2r (which is the same as lhbrx). 15891 Known.Zero = 0xFFFF0000; 15892 break; 15893 } 15894 break; 15895 } 15896 } 15897 } 15898 15899 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15900 switch (Subtarget.getCPUDirective()) { 15901 default: break; 15902 case PPC::DIR_970: 15903 case PPC::DIR_PWR4: 15904 case PPC::DIR_PWR5: 15905 case PPC::DIR_PWR5X: 15906 case PPC::DIR_PWR6: 15907 case PPC::DIR_PWR6X: 15908 case PPC::DIR_PWR7: 15909 case PPC::DIR_PWR8: 15910 case PPC::DIR_PWR9: 15911 case PPC::DIR_PWR10: 15912 case PPC::DIR_PWR_FUTURE: { 15913 if (!ML) 15914 break; 15915 15916 if (!DisableInnermostLoopAlign32) { 15917 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15918 // so that we can decrease cache misses and branch-prediction misses. 15919 // Actual alignment of the loop will depend on the hotness check and other 15920 // logic in alignBlocks. 15921 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15922 return Align(32); 15923 } 15924 15925 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15926 15927 // For small loops (between 5 and 8 instructions), align to a 32-byte 15928 // boundary so that the entire loop fits in one instruction-cache line. 15929 uint64_t LoopSize = 0; 15930 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15931 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15932 LoopSize += TII->getInstSizeInBytes(*J); 15933 if (LoopSize > 32) 15934 break; 15935 } 15936 15937 if (LoopSize > 16 && LoopSize <= 32) 15938 return Align(32); 15939 15940 break; 15941 } 15942 } 15943 15944 return TargetLowering::getPrefLoopAlignment(ML); 15945 } 15946 15947 /// getConstraintType - Given a constraint, return the type of 15948 /// constraint it is for this target. 15949 PPCTargetLowering::ConstraintType 15950 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15951 if (Constraint.size() == 1) { 15952 switch (Constraint[0]) { 15953 default: break; 15954 case 'b': 15955 case 'r': 15956 case 'f': 15957 case 'd': 15958 case 'v': 15959 case 'y': 15960 return C_RegisterClass; 15961 case 'Z': 15962 // FIXME: While Z does indicate a memory constraint, it specifically 15963 // indicates an r+r address (used in conjunction with the 'y' modifier 15964 // in the replacement string). Currently, we're forcing the base 15965 // register to be r0 in the asm printer (which is interpreted as zero) 15966 // and forming the complete address in the second register. This is 15967 // suboptimal. 15968 return C_Memory; 15969 } 15970 } else if (Constraint == "wc") { // individual CR bits. 15971 return C_RegisterClass; 15972 } else if (Constraint == "wa" || Constraint == "wd" || 15973 Constraint == "wf" || Constraint == "ws" || 15974 Constraint == "wi" || Constraint == "ww") { 15975 return C_RegisterClass; // VSX registers. 15976 } 15977 return TargetLowering::getConstraintType(Constraint); 15978 } 15979 15980 /// Examine constraint type and operand type and determine a weight value. 15981 /// This object must already have been set up with the operand type 15982 /// and the current alternative constraint selected. 15983 TargetLowering::ConstraintWeight 15984 PPCTargetLowering::getSingleConstraintMatchWeight( 15985 AsmOperandInfo &info, const char *constraint) const { 15986 ConstraintWeight weight = CW_Invalid; 15987 Value *CallOperandVal = info.CallOperandVal; 15988 // If we don't have a value, we can't do a match, 15989 // but allow it at the lowest weight. 15990 if (!CallOperandVal) 15991 return CW_Default; 15992 Type *type = CallOperandVal->getType(); 15993 15994 // Look at the constraint type. 15995 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15996 return CW_Register; // an individual CR bit. 15997 else if ((StringRef(constraint) == "wa" || 15998 StringRef(constraint) == "wd" || 15999 StringRef(constraint) == "wf") && 16000 type->isVectorTy()) 16001 return CW_Register; 16002 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 16003 return CW_Register; // just hold 64-bit integers data. 16004 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 16005 return CW_Register; 16006 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 16007 return CW_Register; 16008 16009 switch (*constraint) { 16010 default: 16011 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 16012 break; 16013 case 'b': 16014 if (type->isIntegerTy()) 16015 weight = CW_Register; 16016 break; 16017 case 'f': 16018 if (type->isFloatTy()) 16019 weight = CW_Register; 16020 break; 16021 case 'd': 16022 if (type->isDoubleTy()) 16023 weight = CW_Register; 16024 break; 16025 case 'v': 16026 if (type->isVectorTy()) 16027 weight = CW_Register; 16028 break; 16029 case 'y': 16030 weight = CW_Register; 16031 break; 16032 case 'Z': 16033 weight = CW_Memory; 16034 break; 16035 } 16036 return weight; 16037 } 16038 16039 std::pair<unsigned, const TargetRegisterClass *> 16040 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16041 StringRef Constraint, 16042 MVT VT) const { 16043 if (Constraint.size() == 1) { 16044 // GCC RS6000 Constraint Letters 16045 switch (Constraint[0]) { 16046 case 'b': // R1-R31 16047 if (VT == MVT::i64 && Subtarget.isPPC64()) 16048 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16049 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16050 case 'r': // R0-R31 16051 if (VT == MVT::i64 && Subtarget.isPPC64()) 16052 return std::make_pair(0U, &PPC::G8RCRegClass); 16053 return std::make_pair(0U, &PPC::GPRCRegClass); 16054 // 'd' and 'f' constraints are both defined to be "the floating point 16055 // registers", where one is for 32-bit and the other for 64-bit. We don't 16056 // really care overly much here so just give them all the same reg classes. 16057 case 'd': 16058 case 'f': 16059 if (Subtarget.hasSPE()) { 16060 if (VT == MVT::f32 || VT == MVT::i32) 16061 return std::make_pair(0U, &PPC::GPRCRegClass); 16062 if (VT == MVT::f64 || VT == MVT::i64) 16063 return std::make_pair(0U, &PPC::SPERCRegClass); 16064 } else { 16065 if (VT == MVT::f32 || VT == MVT::i32) 16066 return std::make_pair(0U, &PPC::F4RCRegClass); 16067 if (VT == MVT::f64 || VT == MVT::i64) 16068 return std::make_pair(0U, &PPC::F8RCRegClass); 16069 } 16070 break; 16071 case 'v': 16072 if (Subtarget.hasAltivec() && VT.isVector()) 16073 return std::make_pair(0U, &PPC::VRRCRegClass); 16074 else if (Subtarget.hasVSX()) 16075 // Scalars in Altivec registers only make sense with VSX. 16076 return std::make_pair(0U, &PPC::VFRCRegClass); 16077 break; 16078 case 'y': // crrc 16079 return std::make_pair(0U, &PPC::CRRCRegClass); 16080 } 16081 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16082 // An individual CR bit. 16083 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16084 } else if ((Constraint == "wa" || Constraint == "wd" || 16085 Constraint == "wf" || Constraint == "wi") && 16086 Subtarget.hasVSX()) { 16087 // A VSX register for either a scalar (FP) or vector. There is no 16088 // support for single precision scalars on subtargets prior to Power8. 16089 if (VT.isVector()) 16090 return std::make_pair(0U, &PPC::VSRCRegClass); 16091 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16092 return std::make_pair(0U, &PPC::VSSRCRegClass); 16093 return std::make_pair(0U, &PPC::VSFRCRegClass); 16094 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16095 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16096 return std::make_pair(0U, &PPC::VSSRCRegClass); 16097 else 16098 return std::make_pair(0U, &PPC::VSFRCRegClass); 16099 } else if (Constraint == "lr") { 16100 if (VT == MVT::i64) 16101 return std::make_pair(0U, &PPC::LR8RCRegClass); 16102 else 16103 return std::make_pair(0U, &PPC::LRRCRegClass); 16104 } 16105 16106 // Handle special cases of physical registers that are not properly handled 16107 // by the base class. 16108 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16109 // If we name a VSX register, we can't defer to the base class because it 16110 // will not recognize the correct register (their names will be VSL{0-31} 16111 // and V{0-31} so they won't match). So we match them here. 16112 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16113 int VSNum = atoi(Constraint.data() + 3); 16114 assert(VSNum >= 0 && VSNum <= 63 && 16115 "Attempted to access a vsr out of range"); 16116 if (VSNum < 32) 16117 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16118 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16119 } 16120 16121 // For float registers, we can't defer to the base class as it will match 16122 // the SPILLTOVSRRC class. 16123 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16124 int RegNum = atoi(Constraint.data() + 2); 16125 if (RegNum > 31 || RegNum < 0) 16126 report_fatal_error("Invalid floating point register number"); 16127 if (VT == MVT::f32 || VT == MVT::i32) 16128 return Subtarget.hasSPE() 16129 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16130 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16131 if (VT == MVT::f64 || VT == MVT::i64) 16132 return Subtarget.hasSPE() 16133 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16134 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16135 } 16136 } 16137 16138 std::pair<unsigned, const TargetRegisterClass *> R = 16139 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16140 16141 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16142 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16143 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16144 // register. 16145 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16146 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16147 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16148 PPC::GPRCRegClass.contains(R.first)) 16149 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16150 PPC::sub_32, &PPC::G8RCRegClass), 16151 &PPC::G8RCRegClass); 16152 16153 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16154 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16155 R.first = PPC::CR0; 16156 R.second = &PPC::CRRCRegClass; 16157 } 16158 // FIXME: This warning should ideally be emitted in the front end. 16159 const auto &TM = getTargetMachine(); 16160 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16161 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16162 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16163 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16164 errs() << "warning: vector registers 20 to 32 are reserved in the " 16165 "default AIX AltiVec ABI and cannot be used\n"; 16166 } 16167 16168 return R; 16169 } 16170 16171 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16172 /// vector. If it is invalid, don't add anything to Ops. 16173 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16174 std::string &Constraint, 16175 std::vector<SDValue>&Ops, 16176 SelectionDAG &DAG) const { 16177 SDValue Result; 16178 16179 // Only support length 1 constraints. 16180 if (Constraint.length() > 1) return; 16181 16182 char Letter = Constraint[0]; 16183 switch (Letter) { 16184 default: break; 16185 case 'I': 16186 case 'J': 16187 case 'K': 16188 case 'L': 16189 case 'M': 16190 case 'N': 16191 case 'O': 16192 case 'P': { 16193 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16194 if (!CST) return; // Must be an immediate to match. 16195 SDLoc dl(Op); 16196 int64_t Value = CST->getSExtValue(); 16197 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16198 // numbers are printed as such. 16199 switch (Letter) { 16200 default: llvm_unreachable("Unknown constraint letter!"); 16201 case 'I': // "I" is a signed 16-bit constant. 16202 if (isInt<16>(Value)) 16203 Result = DAG.getTargetConstant(Value, dl, TCVT); 16204 break; 16205 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16206 if (isShiftedUInt<16, 16>(Value)) 16207 Result = DAG.getTargetConstant(Value, dl, TCVT); 16208 break; 16209 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16210 if (isShiftedInt<16, 16>(Value)) 16211 Result = DAG.getTargetConstant(Value, dl, TCVT); 16212 break; 16213 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16214 if (isUInt<16>(Value)) 16215 Result = DAG.getTargetConstant(Value, dl, TCVT); 16216 break; 16217 case 'M': // "M" is a constant that is greater than 31. 16218 if (Value > 31) 16219 Result = DAG.getTargetConstant(Value, dl, TCVT); 16220 break; 16221 case 'N': // "N" is a positive constant that is an exact power of two. 16222 if (Value > 0 && isPowerOf2_64(Value)) 16223 Result = DAG.getTargetConstant(Value, dl, TCVT); 16224 break; 16225 case 'O': // "O" is the constant zero. 16226 if (Value == 0) 16227 Result = DAG.getTargetConstant(Value, dl, TCVT); 16228 break; 16229 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16230 if (isInt<16>(-Value)) 16231 Result = DAG.getTargetConstant(Value, dl, TCVT); 16232 break; 16233 } 16234 break; 16235 } 16236 } 16237 16238 if (Result.getNode()) { 16239 Ops.push_back(Result); 16240 return; 16241 } 16242 16243 // Handle standard constraint letters. 16244 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16245 } 16246 16247 // isLegalAddressingMode - Return true if the addressing mode represented 16248 // by AM is legal for this target, for a load/store of the specified type. 16249 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16250 const AddrMode &AM, Type *Ty, 16251 unsigned AS, 16252 Instruction *I) const { 16253 // Vector type r+i form is supported since power9 as DQ form. We don't check 16254 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16255 // imm form is preferred and the offset can be adjusted to use imm form later 16256 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16257 // max offset to check legal addressing mode, we should be a little aggressive 16258 // to contain other offsets for that LSRUse. 16259 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16260 return false; 16261 16262 // PPC allows a sign-extended 16-bit immediate field. 16263 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16264 return false; 16265 16266 // No global is ever allowed as a base. 16267 if (AM.BaseGV) 16268 return false; 16269 16270 // PPC only support r+r, 16271 switch (AM.Scale) { 16272 case 0: // "r+i" or just "i", depending on HasBaseReg. 16273 break; 16274 case 1: 16275 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16276 return false; 16277 // Otherwise we have r+r or r+i. 16278 break; 16279 case 2: 16280 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16281 return false; 16282 // Allow 2*r as r+r. 16283 break; 16284 default: 16285 // No other scales are supported. 16286 return false; 16287 } 16288 16289 return true; 16290 } 16291 16292 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16293 SelectionDAG &DAG) const { 16294 MachineFunction &MF = DAG.getMachineFunction(); 16295 MachineFrameInfo &MFI = MF.getFrameInfo(); 16296 MFI.setReturnAddressIsTaken(true); 16297 16298 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16299 return SDValue(); 16300 16301 SDLoc dl(Op); 16302 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16303 16304 // Make sure the function does not optimize away the store of the RA to 16305 // the stack. 16306 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16307 FuncInfo->setLRStoreRequired(); 16308 bool isPPC64 = Subtarget.isPPC64(); 16309 auto PtrVT = getPointerTy(MF.getDataLayout()); 16310 16311 if (Depth > 0) { 16312 // The link register (return address) is saved in the caller's frame 16313 // not the callee's stack frame. So we must get the caller's frame 16314 // address and load the return address at the LR offset from there. 16315 SDValue FrameAddr = 16316 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16317 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16318 SDValue Offset = 16319 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16320 isPPC64 ? MVT::i64 : MVT::i32); 16321 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16322 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16323 MachinePointerInfo()); 16324 } 16325 16326 // Just load the return address off the stack. 16327 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16328 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16329 MachinePointerInfo()); 16330 } 16331 16332 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16333 SelectionDAG &DAG) const { 16334 SDLoc dl(Op); 16335 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16336 16337 MachineFunction &MF = DAG.getMachineFunction(); 16338 MachineFrameInfo &MFI = MF.getFrameInfo(); 16339 MFI.setFrameAddressIsTaken(true); 16340 16341 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16342 bool isPPC64 = PtrVT == MVT::i64; 16343 16344 // Naked functions never have a frame pointer, and so we use r1. For all 16345 // other functions, this decision must be delayed until during PEI. 16346 unsigned FrameReg; 16347 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16348 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16349 else 16350 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16351 16352 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16353 PtrVT); 16354 while (Depth--) 16355 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16356 FrameAddr, MachinePointerInfo()); 16357 return FrameAddr; 16358 } 16359 16360 // FIXME? Maybe this could be a TableGen attribute on some registers and 16361 // this table could be generated automatically from RegInfo. 16362 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16363 const MachineFunction &MF) const { 16364 bool isPPC64 = Subtarget.isPPC64(); 16365 16366 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16367 if (!is64Bit && VT != LLT::scalar(32)) 16368 report_fatal_error("Invalid register global variable type"); 16369 16370 Register Reg = StringSwitch<Register>(RegName) 16371 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16372 .Case("r2", isPPC64 ? Register() : PPC::R2) 16373 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16374 .Default(Register()); 16375 16376 if (Reg) 16377 return Reg; 16378 report_fatal_error("Invalid register name global variable"); 16379 } 16380 16381 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16382 // 32-bit SVR4 ABI access everything as got-indirect. 16383 if (Subtarget.is32BitELFABI()) 16384 return true; 16385 16386 // AIX accesses everything indirectly through the TOC, which is similar to 16387 // the GOT. 16388 if (Subtarget.isAIXABI()) 16389 return true; 16390 16391 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16392 // If it is small or large code model, module locals are accessed 16393 // indirectly by loading their address from .toc/.got. 16394 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16395 return true; 16396 16397 // JumpTable and BlockAddress are accessed as got-indirect. 16398 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16399 return true; 16400 16401 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16402 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16403 16404 return false; 16405 } 16406 16407 bool 16408 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16409 // The PowerPC target isn't yet aware of offsets. 16410 return false; 16411 } 16412 16413 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16414 const CallInst &I, 16415 MachineFunction &MF, 16416 unsigned Intrinsic) const { 16417 switch (Intrinsic) { 16418 case Intrinsic::ppc_atomicrmw_xchg_i128: 16419 case Intrinsic::ppc_atomicrmw_add_i128: 16420 case Intrinsic::ppc_atomicrmw_sub_i128: 16421 case Intrinsic::ppc_atomicrmw_nand_i128: 16422 case Intrinsic::ppc_atomicrmw_and_i128: 16423 case Intrinsic::ppc_atomicrmw_or_i128: 16424 case Intrinsic::ppc_atomicrmw_xor_i128: 16425 case Intrinsic::ppc_cmpxchg_i128: 16426 Info.opc = ISD::INTRINSIC_W_CHAIN; 16427 Info.memVT = MVT::i128; 16428 Info.ptrVal = I.getArgOperand(0); 16429 Info.offset = 0; 16430 Info.align = Align(16); 16431 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16432 MachineMemOperand::MOVolatile; 16433 return true; 16434 case Intrinsic::ppc_atomic_load_i128: 16435 Info.opc = ISD::INTRINSIC_W_CHAIN; 16436 Info.memVT = MVT::i128; 16437 Info.ptrVal = I.getArgOperand(0); 16438 Info.offset = 0; 16439 Info.align = Align(16); 16440 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16441 return true; 16442 case Intrinsic::ppc_atomic_store_i128: 16443 Info.opc = ISD::INTRINSIC_VOID; 16444 Info.memVT = MVT::i128; 16445 Info.ptrVal = I.getArgOperand(2); 16446 Info.offset = 0; 16447 Info.align = Align(16); 16448 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16449 return true; 16450 case Intrinsic::ppc_altivec_lvx: 16451 case Intrinsic::ppc_altivec_lvxl: 16452 case Intrinsic::ppc_altivec_lvebx: 16453 case Intrinsic::ppc_altivec_lvehx: 16454 case Intrinsic::ppc_altivec_lvewx: 16455 case Intrinsic::ppc_vsx_lxvd2x: 16456 case Intrinsic::ppc_vsx_lxvw4x: 16457 case Intrinsic::ppc_vsx_lxvd2x_be: 16458 case Intrinsic::ppc_vsx_lxvw4x_be: 16459 case Intrinsic::ppc_vsx_lxvl: 16460 case Intrinsic::ppc_vsx_lxvll: { 16461 EVT VT; 16462 switch (Intrinsic) { 16463 case Intrinsic::ppc_altivec_lvebx: 16464 VT = MVT::i8; 16465 break; 16466 case Intrinsic::ppc_altivec_lvehx: 16467 VT = MVT::i16; 16468 break; 16469 case Intrinsic::ppc_altivec_lvewx: 16470 VT = MVT::i32; 16471 break; 16472 case Intrinsic::ppc_vsx_lxvd2x: 16473 case Intrinsic::ppc_vsx_lxvd2x_be: 16474 VT = MVT::v2f64; 16475 break; 16476 default: 16477 VT = MVT::v4i32; 16478 break; 16479 } 16480 16481 Info.opc = ISD::INTRINSIC_W_CHAIN; 16482 Info.memVT = VT; 16483 Info.ptrVal = I.getArgOperand(0); 16484 Info.offset = -VT.getStoreSize()+1; 16485 Info.size = 2*VT.getStoreSize()-1; 16486 Info.align = Align(1); 16487 Info.flags = MachineMemOperand::MOLoad; 16488 return true; 16489 } 16490 case Intrinsic::ppc_altivec_stvx: 16491 case Intrinsic::ppc_altivec_stvxl: 16492 case Intrinsic::ppc_altivec_stvebx: 16493 case Intrinsic::ppc_altivec_stvehx: 16494 case Intrinsic::ppc_altivec_stvewx: 16495 case Intrinsic::ppc_vsx_stxvd2x: 16496 case Intrinsic::ppc_vsx_stxvw4x: 16497 case Intrinsic::ppc_vsx_stxvd2x_be: 16498 case Intrinsic::ppc_vsx_stxvw4x_be: 16499 case Intrinsic::ppc_vsx_stxvl: 16500 case Intrinsic::ppc_vsx_stxvll: { 16501 EVT VT; 16502 switch (Intrinsic) { 16503 case Intrinsic::ppc_altivec_stvebx: 16504 VT = MVT::i8; 16505 break; 16506 case Intrinsic::ppc_altivec_stvehx: 16507 VT = MVT::i16; 16508 break; 16509 case Intrinsic::ppc_altivec_stvewx: 16510 VT = MVT::i32; 16511 break; 16512 case Intrinsic::ppc_vsx_stxvd2x: 16513 case Intrinsic::ppc_vsx_stxvd2x_be: 16514 VT = MVT::v2f64; 16515 break; 16516 default: 16517 VT = MVT::v4i32; 16518 break; 16519 } 16520 16521 Info.opc = ISD::INTRINSIC_VOID; 16522 Info.memVT = VT; 16523 Info.ptrVal = I.getArgOperand(1); 16524 Info.offset = -VT.getStoreSize()+1; 16525 Info.size = 2*VT.getStoreSize()-1; 16526 Info.align = Align(1); 16527 Info.flags = MachineMemOperand::MOStore; 16528 return true; 16529 } 16530 default: 16531 break; 16532 } 16533 16534 return false; 16535 } 16536 16537 /// It returns EVT::Other if the type should be determined using generic 16538 /// target-independent logic. 16539 EVT PPCTargetLowering::getOptimalMemOpType( 16540 const MemOp &Op, const AttributeList &FuncAttributes) const { 16541 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16542 // We should use Altivec/VSX loads and stores when available. For unaligned 16543 // addresses, unaligned VSX loads are only fast starting with the P8. 16544 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16545 (Op.isAligned(Align(16)) || 16546 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16547 return MVT::v4i32; 16548 } 16549 16550 if (Subtarget.isPPC64()) { 16551 return MVT::i64; 16552 } 16553 16554 return MVT::i32; 16555 } 16556 16557 /// Returns true if it is beneficial to convert a load of a constant 16558 /// to just the constant itself. 16559 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16560 Type *Ty) const { 16561 assert(Ty->isIntegerTy()); 16562 16563 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16564 return !(BitSize == 0 || BitSize > 64); 16565 } 16566 16567 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16568 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16569 return false; 16570 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16571 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16572 return NumBits1 == 64 && NumBits2 == 32; 16573 } 16574 16575 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16576 if (!VT1.isInteger() || !VT2.isInteger()) 16577 return false; 16578 unsigned NumBits1 = VT1.getSizeInBits(); 16579 unsigned NumBits2 = VT2.getSizeInBits(); 16580 return NumBits1 == 64 && NumBits2 == 32; 16581 } 16582 16583 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16584 // Generally speaking, zexts are not free, but they are free when they can be 16585 // folded with other operations. 16586 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16587 EVT MemVT = LD->getMemoryVT(); 16588 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16589 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16590 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16591 LD->getExtensionType() == ISD::ZEXTLOAD)) 16592 return true; 16593 } 16594 16595 // FIXME: Add other cases... 16596 // - 32-bit shifts with a zext to i64 16597 // - zext after ctlz, bswap, etc. 16598 // - zext after and by a constant mask 16599 16600 return TargetLowering::isZExtFree(Val, VT2); 16601 } 16602 16603 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16604 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16605 "invalid fpext types"); 16606 // Extending to float128 is not free. 16607 if (DestVT == MVT::f128) 16608 return false; 16609 return true; 16610 } 16611 16612 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16613 return isInt<16>(Imm) || isUInt<16>(Imm); 16614 } 16615 16616 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16617 return isInt<16>(Imm) || isUInt<16>(Imm); 16618 } 16619 16620 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16621 MachineMemOperand::Flags, 16622 bool *Fast) const { 16623 if (DisablePPCUnaligned) 16624 return false; 16625 16626 // PowerPC supports unaligned memory access for simple non-vector types. 16627 // Although accessing unaligned addresses is not as efficient as accessing 16628 // aligned addresses, it is generally more efficient than manual expansion, 16629 // and generally only traps for software emulation when crossing page 16630 // boundaries. 16631 16632 if (!VT.isSimple()) 16633 return false; 16634 16635 if (VT.isFloatingPoint() && !VT.isVector() && 16636 !Subtarget.allowsUnalignedFPAccess()) 16637 return false; 16638 16639 if (VT.getSimpleVT().isVector()) { 16640 if (Subtarget.hasVSX()) { 16641 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16642 VT != MVT::v4f32 && VT != MVT::v4i32) 16643 return false; 16644 } else { 16645 return false; 16646 } 16647 } 16648 16649 if (VT == MVT::ppcf128) 16650 return false; 16651 16652 if (Fast) 16653 *Fast = true; 16654 16655 return true; 16656 } 16657 16658 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16659 SDValue C) const { 16660 // Check integral scalar types. 16661 if (!VT.isScalarInteger()) 16662 return false; 16663 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16664 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16665 return false; 16666 // This transformation will generate >= 2 operations. But the following 16667 // cases will generate <= 2 instructions during ISEL. So exclude them. 16668 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16669 // HW instruction, ie. MULLI 16670 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16671 // instruction is needed than case 1, ie. MULLI and RLDICR 16672 int64_t Imm = ConstNode->getSExtValue(); 16673 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16674 Imm >>= Shift; 16675 if (isInt<16>(Imm)) 16676 return false; 16677 uint64_t UImm = static_cast<uint64_t>(Imm); 16678 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16679 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16680 return true; 16681 } 16682 return false; 16683 } 16684 16685 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16686 EVT VT) const { 16687 return isFMAFasterThanFMulAndFAdd( 16688 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16689 } 16690 16691 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16692 Type *Ty) const { 16693 switch (Ty->getScalarType()->getTypeID()) { 16694 case Type::FloatTyID: 16695 case Type::DoubleTyID: 16696 return true; 16697 case Type::FP128TyID: 16698 return Subtarget.hasP9Vector(); 16699 default: 16700 return false; 16701 } 16702 } 16703 16704 // FIXME: add more patterns which are not profitable to hoist. 16705 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16706 if (!I->hasOneUse()) 16707 return true; 16708 16709 Instruction *User = I->user_back(); 16710 assert(User && "A single use instruction with no uses."); 16711 16712 switch (I->getOpcode()) { 16713 case Instruction::FMul: { 16714 // Don't break FMA, PowerPC prefers FMA. 16715 if (User->getOpcode() != Instruction::FSub && 16716 User->getOpcode() != Instruction::FAdd) 16717 return true; 16718 16719 const TargetOptions &Options = getTargetMachine().Options; 16720 const Function *F = I->getFunction(); 16721 const DataLayout &DL = F->getParent()->getDataLayout(); 16722 Type *Ty = User->getOperand(0)->getType(); 16723 16724 return !( 16725 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16726 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16727 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16728 } 16729 case Instruction::Load: { 16730 // Don't break "store (load float*)" pattern, this pattern will be combined 16731 // to "store (load int32)" in later InstCombine pass. See function 16732 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16733 // cycles than loading a 32 bit integer. 16734 LoadInst *LI = cast<LoadInst>(I); 16735 // For the loads that combineLoadToOperationType does nothing, like 16736 // ordered load, it should be profitable to hoist them. 16737 // For swifterror load, it can only be used for pointer to pointer type, so 16738 // later type check should get rid of this case. 16739 if (!LI->isUnordered()) 16740 return true; 16741 16742 if (User->getOpcode() != Instruction::Store) 16743 return true; 16744 16745 if (I->getType()->getTypeID() != Type::FloatTyID) 16746 return true; 16747 16748 return false; 16749 } 16750 default: 16751 return true; 16752 } 16753 return true; 16754 } 16755 16756 const MCPhysReg * 16757 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16758 // LR is a callee-save register, but we must treat it as clobbered by any call 16759 // site. Hence we include LR in the scratch registers, which are in turn added 16760 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16761 // to CTR, which is used by any indirect call. 16762 static const MCPhysReg ScratchRegs[] = { 16763 PPC::X12, PPC::LR8, PPC::CTR8, 0 16764 }; 16765 16766 return ScratchRegs; 16767 } 16768 16769 Register PPCTargetLowering::getExceptionPointerRegister( 16770 const Constant *PersonalityFn) const { 16771 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16772 } 16773 16774 Register PPCTargetLowering::getExceptionSelectorRegister( 16775 const Constant *PersonalityFn) const { 16776 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16777 } 16778 16779 bool 16780 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16781 EVT VT , unsigned DefinedValues) const { 16782 if (VT == MVT::v2i64) 16783 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16784 16785 if (Subtarget.hasVSX()) 16786 return true; 16787 16788 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16789 } 16790 16791 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16792 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16793 return TargetLowering::getSchedulingPreference(N); 16794 16795 return Sched::ILP; 16796 } 16797 16798 // Create a fast isel object. 16799 FastISel * 16800 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16801 const TargetLibraryInfo *LibInfo) const { 16802 return PPC::createFastISel(FuncInfo, LibInfo); 16803 } 16804 16805 // 'Inverted' means the FMA opcode after negating one multiplicand. 16806 // For example, (fma -a b c) = (fnmsub a b c) 16807 static unsigned invertFMAOpcode(unsigned Opc) { 16808 switch (Opc) { 16809 default: 16810 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16811 case ISD::FMA: 16812 return PPCISD::FNMSUB; 16813 case PPCISD::FNMSUB: 16814 return ISD::FMA; 16815 } 16816 } 16817 16818 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16819 bool LegalOps, bool OptForSize, 16820 NegatibleCost &Cost, 16821 unsigned Depth) const { 16822 if (Depth > SelectionDAG::MaxRecursionDepth) 16823 return SDValue(); 16824 16825 unsigned Opc = Op.getOpcode(); 16826 EVT VT = Op.getValueType(); 16827 SDNodeFlags Flags = Op.getNode()->getFlags(); 16828 16829 switch (Opc) { 16830 case PPCISD::FNMSUB: 16831 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16832 break; 16833 16834 const TargetOptions &Options = getTargetMachine().Options; 16835 SDValue N0 = Op.getOperand(0); 16836 SDValue N1 = Op.getOperand(1); 16837 SDValue N2 = Op.getOperand(2); 16838 SDLoc Loc(Op); 16839 16840 NegatibleCost N2Cost = NegatibleCost::Expensive; 16841 SDValue NegN2 = 16842 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16843 16844 if (!NegN2) 16845 return SDValue(); 16846 16847 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16848 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16849 // These transformations may change sign of zeroes. For example, 16850 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16851 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16852 // Try and choose the cheaper one to negate. 16853 NegatibleCost N0Cost = NegatibleCost::Expensive; 16854 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16855 N0Cost, Depth + 1); 16856 16857 NegatibleCost N1Cost = NegatibleCost::Expensive; 16858 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16859 N1Cost, Depth + 1); 16860 16861 if (NegN0 && N0Cost <= N1Cost) { 16862 Cost = std::min(N0Cost, N2Cost); 16863 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16864 } else if (NegN1) { 16865 Cost = std::min(N1Cost, N2Cost); 16866 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16867 } 16868 } 16869 16870 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16871 if (isOperationLegal(ISD::FMA, VT)) { 16872 Cost = N2Cost; 16873 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16874 } 16875 16876 break; 16877 } 16878 16879 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16880 Cost, Depth); 16881 } 16882 16883 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16884 bool PPCTargetLowering::useLoadStackGuardNode() const { 16885 if (!Subtarget.isTargetLinux()) 16886 return TargetLowering::useLoadStackGuardNode(); 16887 return true; 16888 } 16889 16890 // Override to disable global variable loading on Linux and insert AIX canary 16891 // word declaration. 16892 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16893 if (Subtarget.isAIXABI()) { 16894 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16895 Type::getInt8PtrTy(M.getContext())); 16896 return; 16897 } 16898 if (!Subtarget.isTargetLinux()) 16899 return TargetLowering::insertSSPDeclarations(M); 16900 } 16901 16902 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16903 if (Subtarget.isAIXABI()) 16904 return M.getGlobalVariable(AIXSSPCanaryWordName); 16905 return TargetLowering::getSDagStackGuard(M); 16906 } 16907 16908 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16909 bool ForCodeSize) const { 16910 if (!VT.isSimple() || !Subtarget.hasVSX()) 16911 return false; 16912 16913 switch(VT.getSimpleVT().SimpleTy) { 16914 default: 16915 // For FP types that are currently not supported by PPC backend, return 16916 // false. Examples: f16, f80. 16917 return false; 16918 case MVT::f32: 16919 case MVT::f64: 16920 if (Subtarget.hasPrefixInstrs()) { 16921 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16922 return true; 16923 } 16924 LLVM_FALLTHROUGH; 16925 case MVT::ppcf128: 16926 return Imm.isPosZero(); 16927 } 16928 } 16929 16930 // For vector shift operation op, fold 16931 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16932 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16933 SelectionDAG &DAG) { 16934 SDValue N0 = N->getOperand(0); 16935 SDValue N1 = N->getOperand(1); 16936 EVT VT = N0.getValueType(); 16937 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16938 unsigned Opcode = N->getOpcode(); 16939 unsigned TargetOpcode; 16940 16941 switch (Opcode) { 16942 default: 16943 llvm_unreachable("Unexpected shift operation"); 16944 case ISD::SHL: 16945 TargetOpcode = PPCISD::SHL; 16946 break; 16947 case ISD::SRL: 16948 TargetOpcode = PPCISD::SRL; 16949 break; 16950 case ISD::SRA: 16951 TargetOpcode = PPCISD::SRA; 16952 break; 16953 } 16954 16955 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16956 N1->getOpcode() == ISD::AND) 16957 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16958 if (Mask->getZExtValue() == OpSizeInBits - 1) 16959 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16960 16961 return SDValue(); 16962 } 16963 16964 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16965 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16966 return Value; 16967 16968 SDValue N0 = N->getOperand(0); 16969 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16970 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16971 N0.getOpcode() != ISD::SIGN_EXTEND || 16972 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16973 N->getValueType(0) != MVT::i64) 16974 return SDValue(); 16975 16976 // We can't save an operation here if the value is already extended, and 16977 // the existing shift is easier to combine. 16978 SDValue ExtsSrc = N0.getOperand(0); 16979 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16980 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16981 return SDValue(); 16982 16983 SDLoc DL(N0); 16984 SDValue ShiftBy = SDValue(CN1, 0); 16985 // We want the shift amount to be i32 on the extswli, but the shift could 16986 // have an i64. 16987 if (ShiftBy.getValueType() == MVT::i64) 16988 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16989 16990 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16991 ShiftBy); 16992 } 16993 16994 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16995 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16996 return Value; 16997 16998 return SDValue(); 16999 } 17000 17001 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 17002 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17003 return Value; 17004 17005 return SDValue(); 17006 } 17007 17008 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 17009 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 17010 // When C is zero, the equation (addi Z, -C) can be simplified to Z 17011 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 17012 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 17013 const PPCSubtarget &Subtarget) { 17014 if (!Subtarget.isPPC64()) 17015 return SDValue(); 17016 17017 SDValue LHS = N->getOperand(0); 17018 SDValue RHS = N->getOperand(1); 17019 17020 auto isZextOfCompareWithConstant = [](SDValue Op) { 17021 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17022 Op.getValueType() != MVT::i64) 17023 return false; 17024 17025 SDValue Cmp = Op.getOperand(0); 17026 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17027 Cmp.getOperand(0).getValueType() != MVT::i64) 17028 return false; 17029 17030 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17031 int64_t NegConstant = 0 - Constant->getSExtValue(); 17032 // Due to the limitations of the addi instruction, 17033 // -C is required to be [-32768, 32767]. 17034 return isInt<16>(NegConstant); 17035 } 17036 17037 return false; 17038 }; 17039 17040 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17041 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17042 17043 // If there is a pattern, canonicalize a zext operand to the RHS. 17044 if (LHSHasPattern && !RHSHasPattern) 17045 std::swap(LHS, RHS); 17046 else if (!LHSHasPattern && !RHSHasPattern) 17047 return SDValue(); 17048 17049 SDLoc DL(N); 17050 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17051 SDValue Cmp = RHS.getOperand(0); 17052 SDValue Z = Cmp.getOperand(0); 17053 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17054 int64_t NegConstant = 0 - Constant->getSExtValue(); 17055 17056 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17057 default: break; 17058 case ISD::SETNE: { 17059 // when C == 0 17060 // --> addze X, (addic Z, -1).carry 17061 // / 17062 // add X, (zext(setne Z, C))-- 17063 // \ when -32768 <= -C <= 32767 && C != 0 17064 // --> addze X, (addic (addi Z, -C), -1).carry 17065 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17066 DAG.getConstant(NegConstant, DL, MVT::i64)); 17067 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17068 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17069 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17070 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17071 SDValue(Addc.getNode(), 1)); 17072 } 17073 case ISD::SETEQ: { 17074 // when C == 0 17075 // --> addze X, (subfic Z, 0).carry 17076 // / 17077 // add X, (zext(sete Z, C))-- 17078 // \ when -32768 <= -C <= 32767 && C != 0 17079 // --> addze X, (subfic (addi Z, -C), 0).carry 17080 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17081 DAG.getConstant(NegConstant, DL, MVT::i64)); 17082 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17083 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17084 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17085 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17086 SDValue(Subc.getNode(), 1)); 17087 } 17088 } 17089 17090 return SDValue(); 17091 } 17092 17093 // Transform 17094 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17095 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17096 // In this case both C1 and C2 must be known constants. 17097 // C1+C2 must fit into a 34 bit signed integer. 17098 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17099 const PPCSubtarget &Subtarget) { 17100 if (!Subtarget.isUsingPCRelativeCalls()) 17101 return SDValue(); 17102 17103 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17104 // If we find that node try to cast the Global Address and the Constant. 17105 SDValue LHS = N->getOperand(0); 17106 SDValue RHS = N->getOperand(1); 17107 17108 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17109 std::swap(LHS, RHS); 17110 17111 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17112 return SDValue(); 17113 17114 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17115 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17116 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17117 17118 // Check that both casts succeeded. 17119 if (!GSDN || !ConstNode) 17120 return SDValue(); 17121 17122 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17123 SDLoc DL(GSDN); 17124 17125 // The signed int offset needs to fit in 34 bits. 17126 if (!isInt<34>(NewOffset)) 17127 return SDValue(); 17128 17129 // The new global address is a copy of the old global address except 17130 // that it has the updated Offset. 17131 SDValue GA = 17132 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17133 NewOffset, GSDN->getTargetFlags()); 17134 SDValue MatPCRel = 17135 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17136 return MatPCRel; 17137 } 17138 17139 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17140 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17141 return Value; 17142 17143 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17144 return Value; 17145 17146 return SDValue(); 17147 } 17148 17149 // Detect TRUNCATE operations on bitcasts of float128 values. 17150 // What we are looking for here is the situtation where we extract a subset 17151 // of bits from a 128 bit float. 17152 // This can be of two forms: 17153 // 1) BITCAST of f128 feeding TRUNCATE 17154 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17155 // The reason this is required is because we do not have a legal i128 type 17156 // and so we want to prevent having to store the f128 and then reload part 17157 // of it. 17158 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17159 DAGCombinerInfo &DCI) const { 17160 // If we are using CRBits then try that first. 17161 if (Subtarget.useCRBits()) { 17162 // Check if CRBits did anything and return that if it did. 17163 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17164 return CRTruncValue; 17165 } 17166 17167 SDLoc dl(N); 17168 SDValue Op0 = N->getOperand(0); 17169 17170 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17171 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17172 EVT VT = N->getValueType(0); 17173 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17174 return SDValue(); 17175 SDValue Sub = Op0.getOperand(0); 17176 if (Sub.getOpcode() == ISD::SUB) { 17177 SDValue SubOp0 = Sub.getOperand(0); 17178 SDValue SubOp1 = Sub.getOperand(1); 17179 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17180 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17181 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17182 SubOp1.getOperand(0), 17183 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17184 } 17185 } 17186 } 17187 17188 // Looking for a truncate of i128 to i64. 17189 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17190 return SDValue(); 17191 17192 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17193 17194 // SRL feeding TRUNCATE. 17195 if (Op0.getOpcode() == ISD::SRL) { 17196 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17197 // The right shift has to be by 64 bits. 17198 if (!ConstNode || ConstNode->getZExtValue() != 64) 17199 return SDValue(); 17200 17201 // Switch the element number to extract. 17202 EltToExtract = EltToExtract ? 0 : 1; 17203 // Update Op0 past the SRL. 17204 Op0 = Op0.getOperand(0); 17205 } 17206 17207 // BITCAST feeding a TRUNCATE possibly via SRL. 17208 if (Op0.getOpcode() == ISD::BITCAST && 17209 Op0.getValueType() == MVT::i128 && 17210 Op0.getOperand(0).getValueType() == MVT::f128) { 17211 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17212 return DCI.DAG.getNode( 17213 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17214 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17215 } 17216 return SDValue(); 17217 } 17218 17219 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17220 SelectionDAG &DAG = DCI.DAG; 17221 17222 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17223 if (!ConstOpOrElement) 17224 return SDValue(); 17225 17226 // An imul is usually smaller than the alternative sequence for legal type. 17227 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17228 isOperationLegal(ISD::MUL, N->getValueType(0))) 17229 return SDValue(); 17230 17231 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17232 switch (this->Subtarget.getCPUDirective()) { 17233 default: 17234 // TODO: enhance the condition for subtarget before pwr8 17235 return false; 17236 case PPC::DIR_PWR8: 17237 // type mul add shl 17238 // scalar 4 1 1 17239 // vector 7 2 2 17240 return true; 17241 case PPC::DIR_PWR9: 17242 case PPC::DIR_PWR10: 17243 case PPC::DIR_PWR_FUTURE: 17244 // type mul add shl 17245 // scalar 5 2 2 17246 // vector 7 2 2 17247 17248 // The cycle RATIO of related operations are showed as a table above. 17249 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17250 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17251 // are 4, it is always profitable; but for 3 instrs patterns 17252 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17253 // So we should only do it for vector type. 17254 return IsAddOne && IsNeg ? VT.isVector() : true; 17255 } 17256 }; 17257 17258 EVT VT = N->getValueType(0); 17259 SDLoc DL(N); 17260 17261 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17262 bool IsNeg = MulAmt.isNegative(); 17263 APInt MulAmtAbs = MulAmt.abs(); 17264 17265 if ((MulAmtAbs - 1).isPowerOf2()) { 17266 // (mul x, 2^N + 1) => (add (shl x, N), x) 17267 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17268 17269 if (!IsProfitable(IsNeg, true, VT)) 17270 return SDValue(); 17271 17272 SDValue Op0 = N->getOperand(0); 17273 SDValue Op1 = 17274 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17275 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17276 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17277 17278 if (!IsNeg) 17279 return Res; 17280 17281 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17282 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17283 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17284 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17285 17286 if (!IsProfitable(IsNeg, false, VT)) 17287 return SDValue(); 17288 17289 SDValue Op0 = N->getOperand(0); 17290 SDValue Op1 = 17291 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17292 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17293 17294 if (!IsNeg) 17295 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17296 else 17297 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17298 17299 } else { 17300 return SDValue(); 17301 } 17302 } 17303 17304 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17305 // in combiner since we need to check SD flags and other subtarget features. 17306 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17307 DAGCombinerInfo &DCI) const { 17308 SDValue N0 = N->getOperand(0); 17309 SDValue N1 = N->getOperand(1); 17310 SDValue N2 = N->getOperand(2); 17311 SDNodeFlags Flags = N->getFlags(); 17312 EVT VT = N->getValueType(0); 17313 SelectionDAG &DAG = DCI.DAG; 17314 const TargetOptions &Options = getTargetMachine().Options; 17315 unsigned Opc = N->getOpcode(); 17316 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17317 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17318 SDLoc Loc(N); 17319 17320 if (!isOperationLegal(ISD::FMA, VT)) 17321 return SDValue(); 17322 17323 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17324 // since (fnmsub a b c)=-0 while c-ab=+0. 17325 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17326 return SDValue(); 17327 17328 // (fma (fneg a) b c) => (fnmsub a b c) 17329 // (fnmsub (fneg a) b c) => (fma a b c) 17330 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17331 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17332 17333 // (fma a (fneg b) c) => (fnmsub a b c) 17334 // (fnmsub a (fneg b) c) => (fma a b c) 17335 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17336 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17337 17338 return SDValue(); 17339 } 17340 17341 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17342 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17343 if (!Subtarget.is64BitELFABI()) 17344 return false; 17345 17346 // If not a tail call then no need to proceed. 17347 if (!CI->isTailCall()) 17348 return false; 17349 17350 // If sibling calls have been disabled and tail-calls aren't guaranteed 17351 // there is no reason to duplicate. 17352 auto &TM = getTargetMachine(); 17353 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17354 return false; 17355 17356 // Can't tail call a function called indirectly, or if it has variadic args. 17357 const Function *Callee = CI->getCalledFunction(); 17358 if (!Callee || Callee->isVarArg()) 17359 return false; 17360 17361 // Make sure the callee and caller calling conventions are eligible for tco. 17362 const Function *Caller = CI->getParent()->getParent(); 17363 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17364 CI->getCallingConv())) 17365 return false; 17366 17367 // If the function is local then we have a good chance at tail-calling it 17368 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17369 } 17370 17371 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17372 if (!Subtarget.hasVSX()) 17373 return false; 17374 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17375 return true; 17376 return VT == MVT::f32 || VT == MVT::f64 || 17377 VT == MVT::v4f32 || VT == MVT::v2f64; 17378 } 17379 17380 bool PPCTargetLowering:: 17381 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17382 const Value *Mask = AndI.getOperand(1); 17383 // If the mask is suitable for andi. or andis. we should sink the and. 17384 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17385 // Can't handle constants wider than 64-bits. 17386 if (CI->getBitWidth() > 64) 17387 return false; 17388 int64_t ConstVal = CI->getZExtValue(); 17389 return isUInt<16>(ConstVal) || 17390 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17391 } 17392 17393 // For non-constant masks, we can always use the record-form and. 17394 return true; 17395 } 17396 17397 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17398 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17399 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17400 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17401 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17402 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17403 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17404 assert(Subtarget.hasP9Altivec() && 17405 "Only combine this when P9 altivec supported!"); 17406 EVT VT = N->getValueType(0); 17407 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17408 return SDValue(); 17409 17410 SelectionDAG &DAG = DCI.DAG; 17411 SDLoc dl(N); 17412 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17413 // Even for signed integers, if it's known to be positive (as signed 17414 // integer) due to zero-extended inputs. 17415 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17416 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17417 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17418 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17419 (SubOpcd1 == ISD::ZERO_EXTEND || 17420 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17421 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17422 N->getOperand(0)->getOperand(0), 17423 N->getOperand(0)->getOperand(1), 17424 DAG.getTargetConstant(0, dl, MVT::i32)); 17425 } 17426 17427 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17428 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17429 N->getOperand(0).hasOneUse()) { 17430 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17431 N->getOperand(0)->getOperand(0), 17432 N->getOperand(0)->getOperand(1), 17433 DAG.getTargetConstant(1, dl, MVT::i32)); 17434 } 17435 } 17436 17437 return SDValue(); 17438 } 17439 17440 // For type v4i32/v8ii16/v16i8, transform 17441 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17442 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17443 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17444 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17445 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17446 DAGCombinerInfo &DCI) const { 17447 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17448 assert(Subtarget.hasP9Altivec() && 17449 "Only combine this when P9 altivec supported!"); 17450 17451 SelectionDAG &DAG = DCI.DAG; 17452 SDLoc dl(N); 17453 SDValue Cond = N->getOperand(0); 17454 SDValue TrueOpnd = N->getOperand(1); 17455 SDValue FalseOpnd = N->getOperand(2); 17456 EVT VT = N->getOperand(1).getValueType(); 17457 17458 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17459 FalseOpnd.getOpcode() != ISD::SUB) 17460 return SDValue(); 17461 17462 // ABSD only available for type v4i32/v8i16/v16i8 17463 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17464 return SDValue(); 17465 17466 // At least to save one more dependent computation 17467 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17468 return SDValue(); 17469 17470 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17471 17472 // Can only handle unsigned comparison here 17473 switch (CC) { 17474 default: 17475 return SDValue(); 17476 case ISD::SETUGT: 17477 case ISD::SETUGE: 17478 break; 17479 case ISD::SETULT: 17480 case ISD::SETULE: 17481 std::swap(TrueOpnd, FalseOpnd); 17482 break; 17483 } 17484 17485 SDValue CmpOpnd1 = Cond.getOperand(0); 17486 SDValue CmpOpnd2 = Cond.getOperand(1); 17487 17488 // SETCC CmpOpnd1 CmpOpnd2 cond 17489 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17490 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17491 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17492 TrueOpnd.getOperand(1) == CmpOpnd2 && 17493 FalseOpnd.getOperand(0) == CmpOpnd2 && 17494 FalseOpnd.getOperand(1) == CmpOpnd1) { 17495 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17496 CmpOpnd1, CmpOpnd2, 17497 DAG.getTargetConstant(0, dl, MVT::i32)); 17498 } 17499 17500 return SDValue(); 17501 } 17502 17503 /// getAddrModeForFlags - Based on the set of address flags, select the most 17504 /// optimal instruction format to match by. 17505 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17506 // This is not a node we should be handling here. 17507 if (Flags == PPC::MOF_None) 17508 return PPC::AM_None; 17509 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17510 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17511 if ((Flags & FlagSet) == FlagSet) 17512 return PPC::AM_DForm; 17513 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17514 if ((Flags & FlagSet) == FlagSet) 17515 return PPC::AM_DSForm; 17516 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17517 if ((Flags & FlagSet) == FlagSet) 17518 return PPC::AM_DQForm; 17519 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17520 if ((Flags & FlagSet) == FlagSet) 17521 return PPC::AM_PrefixDForm; 17522 // If no other forms are selected, return an X-Form as it is the most 17523 // general addressing mode. 17524 return PPC::AM_XForm; 17525 } 17526 17527 /// Set alignment flags based on whether or not the Frame Index is aligned. 17528 /// Utilized when computing flags for address computation when selecting 17529 /// load and store instructions. 17530 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17531 SelectionDAG &DAG) { 17532 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17533 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17534 if (!FI) 17535 return; 17536 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17537 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17538 // If this is (add $FI, $S16Imm), the alignment flags are already set 17539 // based on the immediate. We just need to clear the alignment flags 17540 // if the FI alignment is weaker. 17541 if ((FrameIndexAlign % 4) != 0) 17542 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17543 if ((FrameIndexAlign % 16) != 0) 17544 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17545 // If the address is a plain FrameIndex, set alignment flags based on 17546 // FI alignment. 17547 if (!IsAdd) { 17548 if ((FrameIndexAlign % 4) == 0) 17549 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17550 if ((FrameIndexAlign % 16) == 0) 17551 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17552 } 17553 } 17554 17555 /// Given a node, compute flags that are used for address computation when 17556 /// selecting load and store instructions. The flags computed are stored in 17557 /// FlagSet. This function takes into account whether the node is a constant, 17558 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17559 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17560 SelectionDAG &DAG) { 17561 // Set the alignment flags for the node depending on if the node is 17562 // 4-byte or 16-byte aligned. 17563 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17564 if ((Imm & 0x3) == 0) 17565 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17566 if ((Imm & 0xf) == 0) 17567 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17568 }; 17569 17570 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17571 // All 32-bit constants can be computed as LIS + Disp. 17572 const APInt &ConstImm = CN->getAPIntValue(); 17573 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17574 FlagSet |= PPC::MOF_AddrIsSImm32; 17575 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17576 setAlignFlagsForFI(N, FlagSet, DAG); 17577 } 17578 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17579 FlagSet |= PPC::MOF_RPlusSImm34; 17580 else // Let constant materialization handle large constants. 17581 FlagSet |= PPC::MOF_NotAddNorCst; 17582 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17583 // This address can be represented as an addition of: 17584 // - Register + Imm16 (possibly a multiple of 4/16) 17585 // - Register + Imm34 17586 // - Register + PPCISD::Lo 17587 // - Register + Register 17588 // In any case, we won't have to match this as Base + Zero. 17589 SDValue RHS = N.getOperand(1); 17590 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17591 const APInt &ConstImm = CN->getAPIntValue(); 17592 if (ConstImm.isSignedIntN(16)) { 17593 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17594 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17595 setAlignFlagsForFI(N, FlagSet, DAG); 17596 } 17597 if (ConstImm.isSignedIntN(34)) 17598 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17599 else 17600 FlagSet |= PPC::MOF_RPlusR; // Register. 17601 } else if (RHS.getOpcode() == PPCISD::Lo && 17602 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17603 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17604 else 17605 FlagSet |= PPC::MOF_RPlusR; 17606 } else { // The address computation is not a constant or an addition. 17607 setAlignFlagsForFI(N, FlagSet, DAG); 17608 FlagSet |= PPC::MOF_NotAddNorCst; 17609 } 17610 } 17611 17612 static bool isPCRelNode(SDValue N) { 17613 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17614 isValidPCRelNode<ConstantPoolSDNode>(N) || 17615 isValidPCRelNode<GlobalAddressSDNode>(N) || 17616 isValidPCRelNode<JumpTableSDNode>(N) || 17617 isValidPCRelNode<BlockAddressSDNode>(N)); 17618 } 17619 17620 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17621 /// the address flags of the load/store instruction that is to be matched. 17622 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17623 SelectionDAG &DAG) const { 17624 unsigned FlagSet = PPC::MOF_None; 17625 17626 // Compute subtarget flags. 17627 if (!Subtarget.hasP9Vector()) 17628 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17629 else { 17630 FlagSet |= PPC::MOF_SubtargetP9; 17631 if (Subtarget.hasPrefixInstrs()) 17632 FlagSet |= PPC::MOF_SubtargetP10; 17633 } 17634 if (Subtarget.hasSPE()) 17635 FlagSet |= PPC::MOF_SubtargetSPE; 17636 17637 // Check if we have a PCRel node and return early. 17638 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17639 return FlagSet; 17640 17641 // If the node is the paired load/store intrinsics, compute flags for 17642 // address computation and return early. 17643 unsigned ParentOp = Parent->getOpcode(); 17644 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17645 (ParentOp == ISD::INTRINSIC_VOID))) { 17646 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17647 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17648 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17649 ? Parent->getOperand(2) 17650 : Parent->getOperand(3); 17651 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17652 FlagSet |= PPC::MOF_Vector; 17653 return FlagSet; 17654 } 17655 } 17656 17657 // Mark this as something we don't want to handle here if it is atomic 17658 // or pre-increment instruction. 17659 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17660 if (LSB->isIndexed()) 17661 return PPC::MOF_None; 17662 17663 // Compute in-memory type flags. This is based on if there are scalars, 17664 // floats or vectors. 17665 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17666 assert(MN && "Parent should be a MemSDNode!"); 17667 EVT MemVT = MN->getMemoryVT(); 17668 unsigned Size = MemVT.getSizeInBits(); 17669 if (MemVT.isScalarInteger()) { 17670 assert(Size <= 128 && 17671 "Not expecting scalar integers larger than 16 bytes!"); 17672 if (Size < 32) 17673 FlagSet |= PPC::MOF_SubWordInt; 17674 else if (Size == 32) 17675 FlagSet |= PPC::MOF_WordInt; 17676 else 17677 FlagSet |= PPC::MOF_DoubleWordInt; 17678 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17679 if (Size == 128) 17680 FlagSet |= PPC::MOF_Vector; 17681 else if (Size == 256) { 17682 assert(Subtarget.pairedVectorMemops() && 17683 "256-bit vectors are only available when paired vector memops is " 17684 "enabled!"); 17685 FlagSet |= PPC::MOF_Vector; 17686 } else 17687 llvm_unreachable("Not expecting illegal vectors!"); 17688 } else { // Floating point type: can be scalar, f128 or vector types. 17689 if (Size == 32 || Size == 64) 17690 FlagSet |= PPC::MOF_ScalarFloat; 17691 else if (MemVT == MVT::f128 || MemVT.isVector()) 17692 FlagSet |= PPC::MOF_Vector; 17693 else 17694 llvm_unreachable("Not expecting illegal scalar floats!"); 17695 } 17696 17697 // Compute flags for address computation. 17698 computeFlagsForAddressComputation(N, FlagSet, DAG); 17699 17700 // Compute type extension flags. 17701 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17702 switch (LN->getExtensionType()) { 17703 case ISD::SEXTLOAD: 17704 FlagSet |= PPC::MOF_SExt; 17705 break; 17706 case ISD::EXTLOAD: 17707 case ISD::ZEXTLOAD: 17708 FlagSet |= PPC::MOF_ZExt; 17709 break; 17710 case ISD::NON_EXTLOAD: 17711 FlagSet |= PPC::MOF_NoExt; 17712 break; 17713 } 17714 } else 17715 FlagSet |= PPC::MOF_NoExt; 17716 17717 // For integers, no extension is the same as zero extension. 17718 // We set the extension mode to zero extension so we don't have 17719 // to add separate entries in AddrModesMap for loads and stores. 17720 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17721 FlagSet |= PPC::MOF_ZExt; 17722 FlagSet &= ~PPC::MOF_NoExt; 17723 } 17724 17725 // If we don't have prefixed instructions, 34-bit constants should be 17726 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17727 bool IsNonP1034BitConst = 17728 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17729 FlagSet) == PPC::MOF_RPlusSImm34; 17730 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17731 IsNonP1034BitConst) 17732 FlagSet |= PPC::MOF_NotAddNorCst; 17733 17734 return FlagSet; 17735 } 17736 17737 /// SelectForceXFormMode - Given the specified address, force it to be 17738 /// represented as an indexed [r+r] operation (an XForm instruction). 17739 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17740 SDValue &Base, 17741 SelectionDAG &DAG) const { 17742 17743 PPC::AddrMode Mode = PPC::AM_XForm; 17744 int16_t ForceXFormImm = 0; 17745 if (provablyDisjointOr(DAG, N) && 17746 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17747 Disp = N.getOperand(0); 17748 Base = N.getOperand(1); 17749 return Mode; 17750 } 17751 17752 // If the address is the result of an add, we will utilize the fact that the 17753 // address calculation includes an implicit add. However, we can reduce 17754 // register pressure if we do not materialize a constant just for use as the 17755 // index register. We only get rid of the add if it is not an add of a 17756 // value and a 16-bit signed constant and both have a single use. 17757 if (N.getOpcode() == ISD::ADD && 17758 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17759 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17760 Disp = N.getOperand(0); 17761 Base = N.getOperand(1); 17762 return Mode; 17763 } 17764 17765 // Otherwise, use R0 as the base register. 17766 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17767 N.getValueType()); 17768 Base = N; 17769 17770 return Mode; 17771 } 17772 17773 bool PPCTargetLowering::splitValueIntoRegisterParts( 17774 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17775 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17776 EVT ValVT = Val.getValueType(); 17777 // If we are splitting a scalar integer into f64 parts (i.e. so they 17778 // can be placed into VFRC registers), we need to zero extend and 17779 // bitcast the values. This will ensure the value is placed into a 17780 // VSR using direct moves or stack operations as needed. 17781 if (PartVT == MVT::f64 && 17782 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17783 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17784 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17785 Parts[0] = Val; 17786 return true; 17787 } 17788 return false; 17789 } 17790 17791 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17792 SelectionDAG &DAG) const { 17793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17794 TargetLowering::CallLoweringInfo CLI(DAG); 17795 EVT RetVT = Op.getValueType(); 17796 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 17797 SDValue Callee = 17798 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17799 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17800 TargetLowering::ArgListTy Args; 17801 TargetLowering::ArgListEntry Entry; 17802 for (const SDValue &N : Op->op_values()) { 17803 EVT ArgVT = N.getValueType(); 17804 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17805 Entry.Node = N; 17806 Entry.Ty = ArgTy; 17807 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17808 Entry.IsZExt = !Entry.IsSExt; 17809 Args.push_back(Entry); 17810 } 17811 17812 SDValue InChain = DAG.getEntryNode(); 17813 SDValue TCChain = InChain; 17814 const Function &F = DAG.getMachineFunction().getFunction(); 17815 bool isTailCall = 17816 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 17817 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 17818 if (isTailCall) 17819 InChain = TCChain; 17820 CLI.setDebugLoc(SDLoc(Op)) 17821 .setChain(InChain) 17822 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 17823 .setTailCall(isTailCall) 17824 .setSExtResult(SignExtend) 17825 .setZExtResult(!SignExtend) 17826 .setIsPostTypeLegalization(true); 17827 return TLI.LowerCallTo(CLI).first; 17828 } 17829 17830 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17831 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17832 SelectionDAG &DAG) const { 17833 if (Op.getValueType() == MVT::f32) 17834 return lowerToLibCall(LibCallFloatName, Op, DAG); 17835 17836 if (Op.getValueType() == MVT::f64) 17837 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17838 17839 return SDValue(); 17840 } 17841 17842 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17843 SDNodeFlags Flags = Op.getNode()->getFlags(); 17844 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17845 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17846 } 17847 17848 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17849 return Op.getNode()->getFlags().hasApproximateFuncs(); 17850 } 17851 17852 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17853 const char *LibCallFloatName, 17854 const char *LibCallDoubleNameFinite, 17855 const char *LibCallFloatNameFinite, 17856 SDValue Op, 17857 SelectionDAG &DAG) const { 17858 if (!isLowringToMASSSafe(Op)) 17859 return SDValue(); 17860 17861 if (!isLowringToMASSFiniteSafe(Op)) 17862 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17863 DAG); 17864 17865 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17866 LibCallDoubleNameFinite, Op, DAG); 17867 } 17868 17869 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17870 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17871 "__xl_powf_finite", Op, DAG); 17872 } 17873 17874 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17875 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17876 "__xl_sinf_finite", Op, DAG); 17877 } 17878 17879 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17880 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17881 "__xl_cosf_finite", Op, DAG); 17882 } 17883 17884 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17885 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17886 "__xl_logf_finite", Op, DAG); 17887 } 17888 17889 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17890 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17891 "__xl_log10f_finite", Op, DAG); 17892 } 17893 17894 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17895 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17896 "__xl_expf_finite", Op, DAG); 17897 } 17898 17899 // If we happen to match to an aligned D-Form, check if the Frame Index is 17900 // adequately aligned. If it is not, reset the mode to match to X-Form. 17901 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17902 PPC::AddrMode &Mode) { 17903 if (!isa<FrameIndexSDNode>(N)) 17904 return; 17905 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17906 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17907 Mode = PPC::AM_XForm; 17908 } 17909 17910 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17911 /// compute the address flags of the node, get the optimal address mode based 17912 /// on the flags, and set the Base and Disp based on the address mode. 17913 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17914 SDValue N, SDValue &Disp, 17915 SDValue &Base, 17916 SelectionDAG &DAG, 17917 MaybeAlign Align) const { 17918 SDLoc DL(Parent); 17919 17920 // Compute the address flags. 17921 unsigned Flags = computeMOFlags(Parent, N, DAG); 17922 17923 // Get the optimal address mode based on the Flags. 17924 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17925 17926 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17927 // Select an X-Form load if it is not. 17928 setXFormForUnalignedFI(N, Flags, Mode); 17929 17930 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17931 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17932 assert(Subtarget.isUsingPCRelativeCalls() && 17933 "Must be using PC-Relative calls when a valid PC-Relative node is " 17934 "present!"); 17935 Mode = PPC::AM_PCRel; 17936 } 17937 17938 // Set Base and Disp accordingly depending on the address mode. 17939 switch (Mode) { 17940 case PPC::AM_DForm: 17941 case PPC::AM_DSForm: 17942 case PPC::AM_DQForm: { 17943 // This is a register plus a 16-bit immediate. The base will be the 17944 // register and the displacement will be the immediate unless it 17945 // isn't sufficiently aligned. 17946 if (Flags & PPC::MOF_RPlusSImm16) { 17947 SDValue Op0 = N.getOperand(0); 17948 SDValue Op1 = N.getOperand(1); 17949 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17950 if (!Align || isAligned(*Align, Imm)) { 17951 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17952 Base = Op0; 17953 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17954 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17955 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17956 } 17957 break; 17958 } 17959 } 17960 // This is a register plus the @lo relocation. The base is the register 17961 // and the displacement is the global address. 17962 else if (Flags & PPC::MOF_RPlusLo) { 17963 Disp = N.getOperand(1).getOperand(0); // The global address. 17964 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17965 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17966 Disp.getOpcode() == ISD::TargetConstantPool || 17967 Disp.getOpcode() == ISD::TargetJumpTable); 17968 Base = N.getOperand(0); 17969 break; 17970 } 17971 // This is a constant address at most 32 bits. The base will be 17972 // zero or load-immediate-shifted and the displacement will be 17973 // the low 16 bits of the address. 17974 else if (Flags & PPC::MOF_AddrIsSImm32) { 17975 auto *CN = cast<ConstantSDNode>(N); 17976 EVT CNType = CN->getValueType(0); 17977 uint64_t CNImm = CN->getZExtValue(); 17978 // If this address fits entirely in a 16-bit sext immediate field, codegen 17979 // this as "d, 0". 17980 int16_t Imm; 17981 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17982 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17983 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17984 CNType); 17985 break; 17986 } 17987 // Handle 32-bit sext immediate with LIS + Addr mode. 17988 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17989 (!Align || isAligned(*Align, CNImm))) { 17990 int32_t Addr = (int32_t)CNImm; 17991 // Otherwise, break this down into LIS + Disp. 17992 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17993 Base = 17994 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17995 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17996 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17997 break; 17998 } 17999 } 18000 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 18001 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 18002 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 18003 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18004 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18005 } else 18006 Base = N; 18007 break; 18008 } 18009 case PPC::AM_PrefixDForm: { 18010 int64_t Imm34 = 0; 18011 unsigned Opcode = N.getOpcode(); 18012 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 18013 (isIntS34Immediate(N.getOperand(1), Imm34))) { 18014 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 18015 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18016 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 18017 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18018 else 18019 Base = N.getOperand(0); 18020 } else if (isIntS34Immediate(N, Imm34)) { 18021 // The address is a 34-bit signed immediate. 18022 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18023 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18024 } 18025 break; 18026 } 18027 case PPC::AM_PCRel: { 18028 // When selecting PC-Relative instructions, "Base" is not utilized as 18029 // we select the address as [PC+imm]. 18030 Disp = N; 18031 break; 18032 } 18033 case PPC::AM_None: 18034 break; 18035 default: { // By default, X-Form is always available to be selected. 18036 // When a frame index is not aligned, we also match by XForm. 18037 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18038 Base = FI ? N : N.getOperand(1); 18039 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18040 N.getValueType()) 18041 : N.getOperand(0); 18042 break; 18043 } 18044 } 18045 return Mode; 18046 } 18047 18048 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18049 bool Return, 18050 bool IsVarArg) const { 18051 switch (CC) { 18052 case CallingConv::Cold: 18053 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18054 default: 18055 return CC_PPC64_ELF_FIS; 18056 } 18057 } 18058 18059 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { 18060 // TODO: 16-byte atomic type support for AIX is in progress; we should be able 18061 // to inline 16-byte atomic ops on AIX too in the future. 18062 return Subtarget.isPPC64() && 18063 (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) && 18064 Subtarget.hasQuadwordAtomics(); 18065 } 18066 18067 TargetLowering::AtomicExpansionKind 18068 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18069 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18070 if (shouldInlineQuadwordAtomics() && Size == 128) 18071 return AtomicExpansionKind::MaskedIntrinsic; 18072 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18073 } 18074 18075 TargetLowering::AtomicExpansionKind 18076 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18077 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18078 if (shouldInlineQuadwordAtomics() && Size == 128) 18079 return AtomicExpansionKind::MaskedIntrinsic; 18080 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18081 } 18082 18083 static Intrinsic::ID 18084 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18085 switch (BinOp) { 18086 default: 18087 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18088 case AtomicRMWInst::Xchg: 18089 return Intrinsic::ppc_atomicrmw_xchg_i128; 18090 case AtomicRMWInst::Add: 18091 return Intrinsic::ppc_atomicrmw_add_i128; 18092 case AtomicRMWInst::Sub: 18093 return Intrinsic::ppc_atomicrmw_sub_i128; 18094 case AtomicRMWInst::And: 18095 return Intrinsic::ppc_atomicrmw_and_i128; 18096 case AtomicRMWInst::Or: 18097 return Intrinsic::ppc_atomicrmw_or_i128; 18098 case AtomicRMWInst::Xor: 18099 return Intrinsic::ppc_atomicrmw_xor_i128; 18100 case AtomicRMWInst::Nand: 18101 return Intrinsic::ppc_atomicrmw_nand_i128; 18102 } 18103 } 18104 18105 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18106 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18107 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18108 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18109 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18110 Type *ValTy = Incr->getType(); 18111 assert(ValTy->getPrimitiveSizeInBits() == 128); 18112 Function *RMW = Intrinsic::getDeclaration( 18113 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18114 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18115 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18116 Value *IncrHi = 18117 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18118 Value *Addr = 18119 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18120 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18121 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18122 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18123 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18124 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18125 return Builder.CreateOr( 18126 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18127 } 18128 18129 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18130 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18131 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18132 assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); 18133 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18134 Type *ValTy = CmpVal->getType(); 18135 assert(ValTy->getPrimitiveSizeInBits() == 128); 18136 Function *IntCmpXchg = 18137 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18138 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18139 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18140 Value *CmpHi = 18141 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18142 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18143 Value *NewHi = 18144 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18145 Value *Addr = 18146 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18147 emitLeadingFence(Builder, CI, Ord); 18148 Value *LoHi = 18149 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18150 emitTrailingFence(Builder, CI, Ord); 18151 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18152 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18153 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18154 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18155 return Builder.CreateOr( 18156 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18157 } 18158