1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 605 // To handle counter-based loop conditions. 606 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 607 608 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 609 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 612 613 // Comparisons that require checking two conditions. 614 if (Subtarget.hasSPE()) { 615 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 619 } 620 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 621 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 622 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 632 633 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 634 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 635 636 if (Subtarget.has64BitSupport()) { 637 // They also have instructions for converting between i64 and fp. 638 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 639 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 640 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 642 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 643 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 644 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 645 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 646 // This is just the low 32 bits of a (signed) fp->i64 conversion. 647 // We cannot do this with Promote because i64 is not a legal type. 648 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 649 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 650 651 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 652 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 654 } 655 } else { 656 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 657 if (Subtarget.hasSPE()) { 658 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 659 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 660 } else { 661 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 662 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 663 } 664 } 665 666 // With the instructions enabled under FPCVT, we can do everything. 667 if (Subtarget.hasFPCVT()) { 668 if (Subtarget.has64BitSupport()) { 669 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 670 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 671 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 674 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 675 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 676 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 677 } 678 679 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 680 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 683 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 684 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 685 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 686 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 687 } 688 689 if (Subtarget.use64BitRegs()) { 690 // 64-bit PowerPC implementations can support i64 types directly 691 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 692 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 693 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 694 // 64-bit PowerPC wants to expand i128 shifts itself. 695 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 696 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 697 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 698 } else { 699 // 32-bit PowerPC wants to expand i64 shifts itself. 700 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 701 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 702 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 703 } 704 705 // PowerPC has better expansions for funnel shifts than the generic 706 // TargetLowering::expandFunnelShift. 707 if (Subtarget.has64BitSupport()) { 708 setOperationAction(ISD::FSHL, MVT::i64, Custom); 709 setOperationAction(ISD::FSHR, MVT::i64, Custom); 710 } 711 setOperationAction(ISD::FSHL, MVT::i32, Custom); 712 setOperationAction(ISD::FSHR, MVT::i32, Custom); 713 714 if (Subtarget.hasVSX()) { 715 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 716 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 717 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 719 } 720 721 if (Subtarget.hasAltivec()) { 722 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 723 setOperationAction(ISD::SADDSAT, VT, Legal); 724 setOperationAction(ISD::SSUBSAT, VT, Legal); 725 setOperationAction(ISD::UADDSAT, VT, Legal); 726 setOperationAction(ISD::USUBSAT, VT, Legal); 727 } 728 // First set operation action for all vector types to expand. Then we 729 // will selectively turn on ones that can be effectively codegen'd. 730 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 731 // add/sub are legal for all supported vector VT's. 732 setOperationAction(ISD::ADD, VT, Legal); 733 setOperationAction(ISD::SUB, VT, Legal); 734 735 // For v2i64, these are only valid with P8Vector. This is corrected after 736 // the loop. 737 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 738 setOperationAction(ISD::SMAX, VT, Legal); 739 setOperationAction(ISD::SMIN, VT, Legal); 740 setOperationAction(ISD::UMAX, VT, Legal); 741 setOperationAction(ISD::UMIN, VT, Legal); 742 } 743 else { 744 setOperationAction(ISD::SMAX, VT, Expand); 745 setOperationAction(ISD::SMIN, VT, Expand); 746 setOperationAction(ISD::UMAX, VT, Expand); 747 setOperationAction(ISD::UMIN, VT, Expand); 748 } 749 750 if (Subtarget.hasVSX()) { 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 setOperationAction(ISD::FMINNUM, VT, Legal); 753 } 754 755 // Vector instructions introduced in P8 756 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 757 setOperationAction(ISD::CTPOP, VT, Legal); 758 setOperationAction(ISD::CTLZ, VT, Legal); 759 } 760 else { 761 setOperationAction(ISD::CTPOP, VT, Expand); 762 setOperationAction(ISD::CTLZ, VT, Expand); 763 } 764 765 // Vector instructions introduced in P9 766 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 767 setOperationAction(ISD::CTTZ, VT, Legal); 768 else 769 setOperationAction(ISD::CTTZ, VT, Expand); 770 771 // We promote all shuffles to v16i8. 772 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 773 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 774 775 // We promote all non-typed operations to v4i32. 776 setOperationAction(ISD::AND , VT, Promote); 777 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 778 setOperationAction(ISD::OR , VT, Promote); 779 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 780 setOperationAction(ISD::XOR , VT, Promote); 781 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 782 setOperationAction(ISD::LOAD , VT, Promote); 783 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 784 setOperationAction(ISD::SELECT, VT, Promote); 785 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 786 setOperationAction(ISD::VSELECT, VT, Legal); 787 setOperationAction(ISD::SELECT_CC, VT, Promote); 788 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 789 setOperationAction(ISD::STORE, VT, Promote); 790 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 791 792 // No other operations are legal. 793 setOperationAction(ISD::MUL , VT, Expand); 794 setOperationAction(ISD::SDIV, VT, Expand); 795 setOperationAction(ISD::SREM, VT, Expand); 796 setOperationAction(ISD::UDIV, VT, Expand); 797 setOperationAction(ISD::UREM, VT, Expand); 798 setOperationAction(ISD::FDIV, VT, Expand); 799 setOperationAction(ISD::FREM, VT, Expand); 800 setOperationAction(ISD::FNEG, VT, Expand); 801 setOperationAction(ISD::FSQRT, VT, Expand); 802 setOperationAction(ISD::FLOG, VT, Expand); 803 setOperationAction(ISD::FLOG10, VT, Expand); 804 setOperationAction(ISD::FLOG2, VT, Expand); 805 setOperationAction(ISD::FEXP, VT, Expand); 806 setOperationAction(ISD::FEXP2, VT, Expand); 807 setOperationAction(ISD::FSIN, VT, Expand); 808 setOperationAction(ISD::FCOS, VT, Expand); 809 setOperationAction(ISD::FABS, VT, Expand); 810 setOperationAction(ISD::FFLOOR, VT, Expand); 811 setOperationAction(ISD::FCEIL, VT, Expand); 812 setOperationAction(ISD::FTRUNC, VT, Expand); 813 setOperationAction(ISD::FRINT, VT, Expand); 814 setOperationAction(ISD::FNEARBYINT, VT, Expand); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 816 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 817 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 818 setOperationAction(ISD::MULHU, VT, Expand); 819 setOperationAction(ISD::MULHS, VT, Expand); 820 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 821 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 822 setOperationAction(ISD::UDIVREM, VT, Expand); 823 setOperationAction(ISD::SDIVREM, VT, Expand); 824 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 825 setOperationAction(ISD::FPOW, VT, Expand); 826 setOperationAction(ISD::BSWAP, VT, Expand); 827 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 828 setOperationAction(ISD::ROTL, VT, Expand); 829 setOperationAction(ISD::ROTR, VT, Expand); 830 831 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 832 setTruncStoreAction(VT, InnerVT, Expand); 833 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 834 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 836 } 837 } 838 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 839 if (!Subtarget.hasP8Vector()) { 840 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 841 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 842 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 844 } 845 846 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 847 // with merges, splats, etc. 848 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 849 850 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 851 // are cheap, so handle them before they get expanded to scalar. 852 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 853 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 854 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 857 858 setOperationAction(ISD::AND , MVT::v4i32, Legal); 859 setOperationAction(ISD::OR , MVT::v4i32, Legal); 860 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 861 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 862 setOperationAction(ISD::SELECT, MVT::v4i32, 863 Subtarget.useCRBits() ? Legal : Expand); 864 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 865 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 866 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 869 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 870 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 871 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 872 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 873 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 874 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 875 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 877 878 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 879 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 880 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 881 if (Subtarget.hasAltivec()) 882 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 883 setOperationAction(ISD::ROTL, VT, Legal); 884 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 885 if (Subtarget.hasP8Altivec()) 886 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 887 888 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 889 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 890 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 892 893 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 894 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 895 896 if (Subtarget.hasVSX()) { 897 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 898 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 899 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 900 } 901 902 if (Subtarget.hasP8Altivec()) 903 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 904 else 905 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 906 907 if (Subtarget.isISA3_1()) { 908 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 909 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 910 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 912 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 913 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 914 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 915 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 916 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 917 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 918 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 919 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 920 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 921 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 922 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 923 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 924 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 925 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 926 } 927 928 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 929 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 930 931 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 932 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 933 934 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 935 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 938 939 // Altivec does not contain unordered floating-point compare instructions 940 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 941 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 942 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 944 945 if (Subtarget.hasVSX()) { 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 947 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 948 if (Subtarget.hasP8Vector()) { 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 951 } 952 if (Subtarget.hasDirectMove() && isPPC64) { 953 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 954 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 957 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 961 } 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 963 964 // The nearbyint variants are not allowed to raise the inexact exception 965 // so we can only code-gen them with unsafe math. 966 if (TM.Options.UnsafeFPMath) { 967 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 968 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 969 } 970 971 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 972 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 973 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 974 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 975 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 976 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 977 setOperationAction(ISD::FROUND, MVT::f64, Legal); 978 setOperationAction(ISD::FRINT, MVT::f64, Legal); 979 980 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 981 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 982 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 983 setOperationAction(ISD::FROUND, MVT::f32, Legal); 984 setOperationAction(ISD::FRINT, MVT::f32, Legal); 985 986 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 987 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 988 989 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 990 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 991 992 // Share the Altivec comparison restrictions. 993 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 994 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 995 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 997 998 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 999 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1000 1001 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1002 1003 if (Subtarget.hasP8Vector()) 1004 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1005 1006 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1007 1008 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1009 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1010 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1011 1012 if (Subtarget.hasP8Altivec()) { 1013 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1014 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1015 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1016 1017 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1018 // SRL, but not for SRA because of the instructions available: 1019 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1020 // doing 1021 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1022 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1023 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1026 } 1027 else { 1028 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1029 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1030 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1031 1032 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1033 1034 // VSX v2i64 only supports non-arithmetic operations. 1035 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1036 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1037 } 1038 1039 if (Subtarget.isISA3_1()) 1040 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1041 else 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1043 1044 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1045 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1046 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1048 1049 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1050 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1052 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1053 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1055 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1056 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1057 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1058 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1059 1060 // Custom handling for partial vectors of integers converted to 1061 // floating point. We already have optimal handling for v2i32 through 1062 // the DAG combine, so those aren't necessary. 1063 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1064 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1067 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1068 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1071 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1072 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1075 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1076 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1079 1080 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1082 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1086 1087 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1088 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1089 1090 // Handle constrained floating-point operations of vector. 1091 // The predictor is `hasVSX` because altivec instruction has 1092 // no exception but VSX vector instruction has. 1093 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1106 1107 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1120 1121 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 1124 for (MVT FPT : MVT::fp_valuetypes()) 1125 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1126 1127 // Expand the SELECT to SELECT_CC 1128 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1129 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 } 1140 1141 if (Subtarget.hasP8Altivec()) { 1142 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1143 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1144 } 1145 1146 if (Subtarget.hasP9Vector()) { 1147 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1148 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1149 1150 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1151 // SRL, but not for SRA because of the instructions available: 1152 // VS{RL} and VS{RL}O. 1153 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1154 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1155 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1156 1157 setOperationAction(ISD::FADD, MVT::f128, Legal); 1158 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1159 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1160 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1161 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1162 1163 setOperationAction(ISD::FMA, MVT::f128, Legal); 1164 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1165 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1166 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1170 1171 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1172 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1173 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1174 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1175 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1176 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1177 1178 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1179 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1180 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1181 1182 // Handle constrained floating-point operations of fp128 1183 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1185 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1191 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1192 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1193 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1194 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1198 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1199 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1200 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1201 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1203 } else if (Subtarget.hasVSX()) { 1204 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1205 setOperationAction(ISD::STORE, MVT::f128, Promote); 1206 1207 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1208 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1209 1210 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1211 // fp_to_uint and int_to_fp. 1212 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1213 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1214 1215 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1216 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1217 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1218 setOperationAction(ISD::FABS, MVT::f128, Expand); 1219 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1220 setOperationAction(ISD::FMA, MVT::f128, Expand); 1221 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1222 1223 // Expand the fp_extend if the target type is fp128. 1224 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1225 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1226 1227 // Expand the fp_round if the source type is fp128. 1228 for (MVT VT : {MVT::f32, MVT::f64}) { 1229 setOperationAction(ISD::FP_ROUND, VT, Custom); 1230 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1231 } 1232 1233 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1234 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1235 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1236 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1237 1238 // Lower following f128 select_cc pattern: 1239 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1240 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1241 1242 // We need to handle f128 SELECT_CC with integer result type. 1243 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1244 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1245 } 1246 1247 if (Subtarget.hasP9Altivec()) { 1248 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1249 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1250 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1253 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1254 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1255 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1256 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1258 } 1259 1260 if (Subtarget.isISA3_1()) 1261 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1262 } 1263 1264 if (Subtarget.pairedVectorMemops()) { 1265 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1266 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1267 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1268 } 1269 if (Subtarget.hasMMA()) { 1270 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1271 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1272 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1273 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1274 } 1275 1276 if (Subtarget.has64BitSupport()) 1277 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1278 1279 if (Subtarget.isISA3_1()) 1280 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1281 1282 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1283 1284 if (!isPPC64) { 1285 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1286 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1287 } 1288 1289 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1290 setMaxAtomicSizeInBitsSupported(128); 1291 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1292 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1293 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1294 } 1295 1296 setBooleanContents(ZeroOrOneBooleanContent); 1297 1298 if (Subtarget.hasAltivec()) { 1299 // Altivec instructions set fields to all zeros or all ones. 1300 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1301 } 1302 1303 if (!isPPC64) { 1304 // These libcalls are not available in 32-bit. 1305 setLibcallName(RTLIB::SHL_I128, nullptr); 1306 setLibcallName(RTLIB::SRL_I128, nullptr); 1307 setLibcallName(RTLIB::SRA_I128, nullptr); 1308 setLibcallName(RTLIB::MULO_I64, nullptr); 1309 } 1310 1311 if (!isPPC64) 1312 setMaxAtomicSizeInBitsSupported(32); 1313 1314 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1315 1316 // We have target-specific dag combine patterns for the following nodes: 1317 setTargetDAGCombine(ISD::ADD); 1318 setTargetDAGCombine(ISD::SHL); 1319 setTargetDAGCombine(ISD::SRA); 1320 setTargetDAGCombine(ISD::SRL); 1321 setTargetDAGCombine(ISD::MUL); 1322 setTargetDAGCombine(ISD::FMA); 1323 setTargetDAGCombine(ISD::SINT_TO_FP); 1324 setTargetDAGCombine(ISD::BUILD_VECTOR); 1325 if (Subtarget.hasFPCVT()) 1326 setTargetDAGCombine(ISD::UINT_TO_FP); 1327 setTargetDAGCombine(ISD::LOAD); 1328 setTargetDAGCombine(ISD::STORE); 1329 setTargetDAGCombine(ISD::BR_CC); 1330 if (Subtarget.useCRBits()) 1331 setTargetDAGCombine(ISD::BRCOND); 1332 setTargetDAGCombine(ISD::BSWAP); 1333 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1334 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1335 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1336 1337 setTargetDAGCombine(ISD::SIGN_EXTEND); 1338 setTargetDAGCombine(ISD::ZERO_EXTEND); 1339 setTargetDAGCombine(ISD::ANY_EXTEND); 1340 1341 setTargetDAGCombine(ISD::TRUNCATE); 1342 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1343 1344 1345 if (Subtarget.useCRBits()) { 1346 setTargetDAGCombine(ISD::TRUNCATE); 1347 setTargetDAGCombine(ISD::SETCC); 1348 setTargetDAGCombine(ISD::SELECT_CC); 1349 } 1350 1351 if (Subtarget.hasP9Altivec()) { 1352 setTargetDAGCombine(ISD::ABS); 1353 setTargetDAGCombine(ISD::VSELECT); 1354 } 1355 1356 setLibcallName(RTLIB::LOG_F128, "logf128"); 1357 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1358 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1359 setLibcallName(RTLIB::EXP_F128, "expf128"); 1360 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1361 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1362 setLibcallName(RTLIB::COS_F128, "cosf128"); 1363 setLibcallName(RTLIB::POW_F128, "powf128"); 1364 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1365 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1366 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1367 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1368 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1369 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1370 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1371 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1372 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1373 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1374 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1375 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1376 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1377 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1378 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1379 1380 // With 32 condition bits, we don't need to sink (and duplicate) compares 1381 // aggressively in CodeGenPrep. 1382 if (Subtarget.useCRBits()) { 1383 setHasMultipleConditionRegisters(); 1384 setJumpIsExpensive(); 1385 } 1386 1387 setMinFunctionAlignment(Align(4)); 1388 1389 switch (Subtarget.getCPUDirective()) { 1390 default: break; 1391 case PPC::DIR_970: 1392 case PPC::DIR_A2: 1393 case PPC::DIR_E500: 1394 case PPC::DIR_E500mc: 1395 case PPC::DIR_E5500: 1396 case PPC::DIR_PWR4: 1397 case PPC::DIR_PWR5: 1398 case PPC::DIR_PWR5X: 1399 case PPC::DIR_PWR6: 1400 case PPC::DIR_PWR6X: 1401 case PPC::DIR_PWR7: 1402 case PPC::DIR_PWR8: 1403 case PPC::DIR_PWR9: 1404 case PPC::DIR_PWR10: 1405 case PPC::DIR_PWR_FUTURE: 1406 setPrefLoopAlignment(Align(16)); 1407 setPrefFunctionAlignment(Align(16)); 1408 break; 1409 } 1410 1411 if (Subtarget.enableMachineScheduler()) 1412 setSchedulingPreference(Sched::Source); 1413 else 1414 setSchedulingPreference(Sched::Hybrid); 1415 1416 computeRegisterProperties(STI.getRegisterInfo()); 1417 1418 // The Freescale cores do better with aggressive inlining of memcpy and 1419 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1420 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1421 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1422 MaxStoresPerMemset = 32; 1423 MaxStoresPerMemsetOptSize = 16; 1424 MaxStoresPerMemcpy = 32; 1425 MaxStoresPerMemcpyOptSize = 8; 1426 MaxStoresPerMemmove = 32; 1427 MaxStoresPerMemmoveOptSize = 8; 1428 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1429 // The A2 also benefits from (very) aggressive inlining of memcpy and 1430 // friends. The overhead of a the function call, even when warm, can be 1431 // over one hundred cycles. 1432 MaxStoresPerMemset = 128; 1433 MaxStoresPerMemcpy = 128; 1434 MaxStoresPerMemmove = 128; 1435 MaxLoadsPerMemcmp = 128; 1436 } else { 1437 MaxLoadsPerMemcmp = 8; 1438 MaxLoadsPerMemcmpOptSize = 4; 1439 } 1440 1441 IsStrictFPEnabled = true; 1442 1443 // Let the subtarget (CPU) decide if a predictable select is more expensive 1444 // than the corresponding branch. This information is used in CGP to decide 1445 // when to convert selects into branches. 1446 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1447 } 1448 1449 // *********************************** NOTE ************************************ 1450 // For selecting load and store instructions, the addressing modes are defined 1451 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1452 // patterns to match the load the store instructions. 1453 // 1454 // The TD definitions for the addressing modes correspond to their respective 1455 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1456 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1457 // address mode flags of a particular node. Afterwards, the computed address 1458 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1459 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1460 // accordingly, based on the preferred addressing mode. 1461 // 1462 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1463 // MemOpFlags contains all the possible flags that can be used to compute the 1464 // optimal addressing mode for load and store instructions. 1465 // AddrMode contains all the possible load and store addressing modes available 1466 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1467 // 1468 // When adding new load and store instructions, it is possible that new address 1469 // flags may need to be added into MemOpFlags, and a new addressing mode will 1470 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1471 // of the minimal and main distinguishing address flags for the new load/store 1472 // instructions) will need to be added into initializeAddrModeMap() below. 1473 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1474 // need to be updated to account for selecting the optimal addressing mode. 1475 // ***************************************************************************** 1476 /// Initialize the map that relates the different addressing modes of the load 1477 /// and store instructions to a set of flags. This ensures the load/store 1478 /// instruction is correctly matched during instruction selection. 1479 void PPCTargetLowering::initializeAddrModeMap() { 1480 AddrModesMap[PPC::AM_DForm] = { 1481 // LWZ, STW 1482 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1483 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1484 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1485 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1486 // LBZ, LHZ, STB, STH 1487 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1488 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1489 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1490 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1491 // LHA 1492 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1493 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1494 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1495 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1496 // LFS, LFD, STFS, STFD 1497 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1498 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1499 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1500 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1501 }; 1502 AddrModesMap[PPC::AM_DSForm] = { 1503 // LWA 1504 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1505 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1506 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1507 // LD, STD 1508 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1509 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1510 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1511 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1512 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1513 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1514 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1515 }; 1516 AddrModesMap[PPC::AM_DQForm] = { 1517 // LXV, STXV 1518 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1521 }; 1522 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1523 PPC::MOF_SubtargetP10}; 1524 // TODO: Add mapping for quadword load/store. 1525 } 1526 1527 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1528 /// the desired ByVal argument alignment. 1529 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1530 if (MaxAlign == MaxMaxAlign) 1531 return; 1532 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1533 if (MaxMaxAlign >= 32 && 1534 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1535 MaxAlign = Align(32); 1536 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1537 MaxAlign < 16) 1538 MaxAlign = Align(16); 1539 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1540 Align EltAlign; 1541 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1542 if (EltAlign > MaxAlign) 1543 MaxAlign = EltAlign; 1544 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1545 for (auto *EltTy : STy->elements()) { 1546 Align EltAlign; 1547 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1548 if (EltAlign > MaxAlign) 1549 MaxAlign = EltAlign; 1550 if (MaxAlign == MaxMaxAlign) 1551 break; 1552 } 1553 } 1554 } 1555 1556 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1557 /// function arguments in the caller parameter area. 1558 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1559 const DataLayout &DL) const { 1560 // 16byte and wider vectors are passed on 16byte boundary. 1561 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1562 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1563 if (Subtarget.hasAltivec()) 1564 getMaxByValAlign(Ty, Alignment, Align(16)); 1565 return Alignment.value(); 1566 } 1567 1568 bool PPCTargetLowering::useSoftFloat() const { 1569 return Subtarget.useSoftFloat(); 1570 } 1571 1572 bool PPCTargetLowering::hasSPE() const { 1573 return Subtarget.hasSPE(); 1574 } 1575 1576 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1577 return VT.isScalarInteger(); 1578 } 1579 1580 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1581 switch ((PPCISD::NodeType)Opcode) { 1582 case PPCISD::FIRST_NUMBER: break; 1583 case PPCISD::FSEL: return "PPCISD::FSEL"; 1584 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1585 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1586 case PPCISD::FCFID: return "PPCISD::FCFID"; 1587 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1588 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1589 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1590 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1591 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1592 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1593 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1594 case PPCISD::FP_TO_UINT_IN_VSR: 1595 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1596 case PPCISD::FP_TO_SINT_IN_VSR: 1597 return "PPCISD::FP_TO_SINT_IN_VSR"; 1598 case PPCISD::FRE: return "PPCISD::FRE"; 1599 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1600 case PPCISD::FTSQRT: 1601 return "PPCISD::FTSQRT"; 1602 case PPCISD::FSQRT: 1603 return "PPCISD::FSQRT"; 1604 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1605 case PPCISD::VPERM: return "PPCISD::VPERM"; 1606 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1607 case PPCISD::XXSPLTI_SP_TO_DP: 1608 return "PPCISD::XXSPLTI_SP_TO_DP"; 1609 case PPCISD::XXSPLTI32DX: 1610 return "PPCISD::XXSPLTI32DX"; 1611 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1612 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1613 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1614 case PPCISD::CMPB: return "PPCISD::CMPB"; 1615 case PPCISD::Hi: return "PPCISD::Hi"; 1616 case PPCISD::Lo: return "PPCISD::Lo"; 1617 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1618 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1619 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1620 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1621 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1622 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1623 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1624 case PPCISD::SRL: return "PPCISD::SRL"; 1625 case PPCISD::SRA: return "PPCISD::SRA"; 1626 case PPCISD::SHL: return "PPCISD::SHL"; 1627 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1628 case PPCISD::CALL: return "PPCISD::CALL"; 1629 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1630 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1631 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1632 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1633 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1634 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1635 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1636 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1637 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1638 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1639 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1640 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1641 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1642 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1643 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1644 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1645 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1646 case PPCISD::ANDI_rec_1_EQ_BIT: 1647 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1648 case PPCISD::ANDI_rec_1_GT_BIT: 1649 return "PPCISD::ANDI_rec_1_GT_BIT"; 1650 case PPCISD::VCMP: return "PPCISD::VCMP"; 1651 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1652 case PPCISD::LBRX: return "PPCISD::LBRX"; 1653 case PPCISD::STBRX: return "PPCISD::STBRX"; 1654 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1655 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1656 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1657 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1658 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1659 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1660 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1661 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1662 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1663 case PPCISD::ST_VSR_SCAL_INT: 1664 return "PPCISD::ST_VSR_SCAL_INT"; 1665 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1666 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1667 case PPCISD::BDZ: return "PPCISD::BDZ"; 1668 case PPCISD::MFFS: return "PPCISD::MFFS"; 1669 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1670 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1671 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1672 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1673 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1674 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1675 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1676 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1677 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1678 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1679 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1680 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1681 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1682 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1683 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1684 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1685 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1686 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1687 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1688 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1689 case PPCISD::PADDI_DTPREL: 1690 return "PPCISD::PADDI_DTPREL"; 1691 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1692 case PPCISD::SC: return "PPCISD::SC"; 1693 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1694 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1695 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1696 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1697 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1698 case PPCISD::VABSD: return "PPCISD::VABSD"; 1699 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1700 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1701 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1702 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1703 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1704 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1705 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1706 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1707 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1708 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1709 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1710 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1711 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1712 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1713 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1714 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1715 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1716 case PPCISD::STRICT_FADDRTZ: 1717 return "PPCISD::STRICT_FADDRTZ"; 1718 case PPCISD::STRICT_FCTIDZ: 1719 return "PPCISD::STRICT_FCTIDZ"; 1720 case PPCISD::STRICT_FCTIWZ: 1721 return "PPCISD::STRICT_FCTIWZ"; 1722 case PPCISD::STRICT_FCTIDUZ: 1723 return "PPCISD::STRICT_FCTIDUZ"; 1724 case PPCISD::STRICT_FCTIWUZ: 1725 return "PPCISD::STRICT_FCTIWUZ"; 1726 case PPCISD::STRICT_FCFID: 1727 return "PPCISD::STRICT_FCFID"; 1728 case PPCISD::STRICT_FCFIDU: 1729 return "PPCISD::STRICT_FCFIDU"; 1730 case PPCISD::STRICT_FCFIDS: 1731 return "PPCISD::STRICT_FCFIDS"; 1732 case PPCISD::STRICT_FCFIDUS: 1733 return "PPCISD::STRICT_FCFIDUS"; 1734 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1735 } 1736 return nullptr; 1737 } 1738 1739 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1740 EVT VT) const { 1741 if (!VT.isVector()) 1742 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1743 1744 return VT.changeVectorElementTypeToInteger(); 1745 } 1746 1747 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1748 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1749 return true; 1750 } 1751 1752 //===----------------------------------------------------------------------===// 1753 // Node matching predicates, for use by the tblgen matching code. 1754 //===----------------------------------------------------------------------===// 1755 1756 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1757 static bool isFloatingPointZero(SDValue Op) { 1758 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1759 return CFP->getValueAPF().isZero(); 1760 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1761 // Maybe this has already been legalized into the constant pool? 1762 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1763 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1764 return CFP->getValueAPF().isZero(); 1765 } 1766 return false; 1767 } 1768 1769 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1770 /// true if Op is undef or if it matches the specified value. 1771 static bool isConstantOrUndef(int Op, int Val) { 1772 return Op < 0 || Op == Val; 1773 } 1774 1775 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1776 /// VPKUHUM instruction. 1777 /// The ShuffleKind distinguishes between big-endian operations with 1778 /// two different inputs (0), either-endian operations with two identical 1779 /// inputs (1), and little-endian operations with two different inputs (2). 1780 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1781 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1782 SelectionDAG &DAG) { 1783 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1784 if (ShuffleKind == 0) { 1785 if (IsLE) 1786 return false; 1787 for (unsigned i = 0; i != 16; ++i) 1788 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1789 return false; 1790 } else if (ShuffleKind == 2) { 1791 if (!IsLE) 1792 return false; 1793 for (unsigned i = 0; i != 16; ++i) 1794 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1795 return false; 1796 } else if (ShuffleKind == 1) { 1797 unsigned j = IsLE ? 0 : 1; 1798 for (unsigned i = 0; i != 8; ++i) 1799 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1800 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1801 return false; 1802 } 1803 return true; 1804 } 1805 1806 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1807 /// VPKUWUM instruction. 1808 /// The ShuffleKind distinguishes between big-endian operations with 1809 /// two different inputs (0), either-endian operations with two identical 1810 /// inputs (1), and little-endian operations with two different inputs (2). 1811 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1812 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1813 SelectionDAG &DAG) { 1814 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1815 if (ShuffleKind == 0) { 1816 if (IsLE) 1817 return false; 1818 for (unsigned i = 0; i != 16; i += 2) 1819 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1820 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1821 return false; 1822 } else if (ShuffleKind == 2) { 1823 if (!IsLE) 1824 return false; 1825 for (unsigned i = 0; i != 16; i += 2) 1826 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1827 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1828 return false; 1829 } else if (ShuffleKind == 1) { 1830 unsigned j = IsLE ? 0 : 2; 1831 for (unsigned i = 0; i != 8; i += 2) 1832 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1833 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1834 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1835 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1842 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1843 /// current subtarget. 1844 /// 1845 /// The ShuffleKind distinguishes between big-endian operations with 1846 /// two different inputs (0), either-endian operations with two identical 1847 /// inputs (1), and little-endian operations with two different inputs (2). 1848 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1849 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1850 SelectionDAG &DAG) { 1851 const PPCSubtarget& Subtarget = 1852 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1853 if (!Subtarget.hasP8Vector()) 1854 return false; 1855 1856 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1857 if (ShuffleKind == 0) { 1858 if (IsLE) 1859 return false; 1860 for (unsigned i = 0; i != 16; i += 4) 1861 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1862 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1863 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1864 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1865 return false; 1866 } else if (ShuffleKind == 2) { 1867 if (!IsLE) 1868 return false; 1869 for (unsigned i = 0; i != 16; i += 4) 1870 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1871 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1872 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1873 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1874 return false; 1875 } else if (ShuffleKind == 1) { 1876 unsigned j = IsLE ? 0 : 4; 1877 for (unsigned i = 0; i != 8; i += 4) 1878 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1879 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1880 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1881 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1882 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1883 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1884 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1885 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1886 return false; 1887 } 1888 return true; 1889 } 1890 1891 /// isVMerge - Common function, used to match vmrg* shuffles. 1892 /// 1893 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1894 unsigned LHSStart, unsigned RHSStart) { 1895 if (N->getValueType(0) != MVT::v16i8) 1896 return false; 1897 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1898 "Unsupported merge size!"); 1899 1900 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1901 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1902 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1903 LHSStart+j+i*UnitSize) || 1904 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1905 RHSStart+j+i*UnitSize)) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1912 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1913 /// The ShuffleKind distinguishes between big-endian merges with two 1914 /// different inputs (0), either-endian merges with two identical inputs (1), 1915 /// and little-endian merges with two different inputs (2). For the latter, 1916 /// the input operands are swapped (see PPCInstrAltivec.td). 1917 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1918 unsigned ShuffleKind, SelectionDAG &DAG) { 1919 if (DAG.getDataLayout().isLittleEndian()) { 1920 if (ShuffleKind == 1) // unary 1921 return isVMerge(N, UnitSize, 0, 0); 1922 else if (ShuffleKind == 2) // swapped 1923 return isVMerge(N, UnitSize, 0, 16); 1924 else 1925 return false; 1926 } else { 1927 if (ShuffleKind == 1) // unary 1928 return isVMerge(N, UnitSize, 8, 8); 1929 else if (ShuffleKind == 0) // normal 1930 return isVMerge(N, UnitSize, 8, 24); 1931 else 1932 return false; 1933 } 1934 } 1935 1936 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1937 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1938 /// The ShuffleKind distinguishes between big-endian merges with two 1939 /// different inputs (0), either-endian merges with two identical inputs (1), 1940 /// and little-endian merges with two different inputs (2). For the latter, 1941 /// the input operands are swapped (see PPCInstrAltivec.td). 1942 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1943 unsigned ShuffleKind, SelectionDAG &DAG) { 1944 if (DAG.getDataLayout().isLittleEndian()) { 1945 if (ShuffleKind == 1) // unary 1946 return isVMerge(N, UnitSize, 8, 8); 1947 else if (ShuffleKind == 2) // swapped 1948 return isVMerge(N, UnitSize, 8, 24); 1949 else 1950 return false; 1951 } else { 1952 if (ShuffleKind == 1) // unary 1953 return isVMerge(N, UnitSize, 0, 0); 1954 else if (ShuffleKind == 0) // normal 1955 return isVMerge(N, UnitSize, 0, 16); 1956 else 1957 return false; 1958 } 1959 } 1960 1961 /** 1962 * Common function used to match vmrgew and vmrgow shuffles 1963 * 1964 * The indexOffset determines whether to look for even or odd words in 1965 * the shuffle mask. This is based on the of the endianness of the target 1966 * machine. 1967 * - Little Endian: 1968 * - Use offset of 0 to check for odd elements 1969 * - Use offset of 4 to check for even elements 1970 * - Big Endian: 1971 * - Use offset of 0 to check for even elements 1972 * - Use offset of 4 to check for odd elements 1973 * A detailed description of the vector element ordering for little endian and 1974 * big endian can be found at 1975 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1976 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1977 * compiler differences mean to you 1978 * 1979 * The mask to the shuffle vector instruction specifies the indices of the 1980 * elements from the two input vectors to place in the result. The elements are 1981 * numbered in array-access order, starting with the first vector. These vectors 1982 * are always of type v16i8, thus each vector will contain 16 elements of size 1983 * 8. More info on the shuffle vector can be found in the 1984 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1985 * Language Reference. 1986 * 1987 * The RHSStartValue indicates whether the same input vectors are used (unary) 1988 * or two different input vectors are used, based on the following: 1989 * - If the instruction uses the same vector for both inputs, the range of the 1990 * indices will be 0 to 15. In this case, the RHSStart value passed should 1991 * be 0. 1992 * - If the instruction has two different vectors then the range of the 1993 * indices will be 0 to 31. In this case, the RHSStart value passed should 1994 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1995 * to 31 specify elements in the second vector). 1996 * 1997 * \param[in] N The shuffle vector SD Node to analyze 1998 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1999 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2000 * vector to the shuffle_vector instruction 2001 * \return true iff this shuffle vector represents an even or odd word merge 2002 */ 2003 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2004 unsigned RHSStartValue) { 2005 if (N->getValueType(0) != MVT::v16i8) 2006 return false; 2007 2008 for (unsigned i = 0; i < 2; ++i) 2009 for (unsigned j = 0; j < 4; ++j) 2010 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2011 i*RHSStartValue+j+IndexOffset) || 2012 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2013 i*RHSStartValue+j+IndexOffset+8)) 2014 return false; 2015 return true; 2016 } 2017 2018 /** 2019 * Determine if the specified shuffle mask is suitable for the vmrgew or 2020 * vmrgow instructions. 2021 * 2022 * \param[in] N The shuffle vector SD Node to analyze 2023 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2024 * \param[in] ShuffleKind Identify the type of merge: 2025 * - 0 = big-endian merge with two different inputs; 2026 * - 1 = either-endian merge with two identical inputs; 2027 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2028 * little-endian merges). 2029 * \param[in] DAG The current SelectionDAG 2030 * \return true iff this shuffle mask 2031 */ 2032 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2033 unsigned ShuffleKind, SelectionDAG &DAG) { 2034 if (DAG.getDataLayout().isLittleEndian()) { 2035 unsigned indexOffset = CheckEven ? 4 : 0; 2036 if (ShuffleKind == 1) // Unary 2037 return isVMerge(N, indexOffset, 0); 2038 else if (ShuffleKind == 2) // swapped 2039 return isVMerge(N, indexOffset, 16); 2040 else 2041 return false; 2042 } 2043 else { 2044 unsigned indexOffset = CheckEven ? 0 : 4; 2045 if (ShuffleKind == 1) // Unary 2046 return isVMerge(N, indexOffset, 0); 2047 else if (ShuffleKind == 0) // Normal 2048 return isVMerge(N, indexOffset, 16); 2049 else 2050 return false; 2051 } 2052 return false; 2053 } 2054 2055 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2056 /// amount, otherwise return -1. 2057 /// The ShuffleKind distinguishes between big-endian operations with two 2058 /// different inputs (0), either-endian operations with two identical inputs 2059 /// (1), and little-endian operations with two different inputs (2). For the 2060 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2061 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2062 SelectionDAG &DAG) { 2063 if (N->getValueType(0) != MVT::v16i8) 2064 return -1; 2065 2066 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2067 2068 // Find the first non-undef value in the shuffle mask. 2069 unsigned i; 2070 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2071 /*search*/; 2072 2073 if (i == 16) return -1; // all undef. 2074 2075 // Otherwise, check to see if the rest of the elements are consecutively 2076 // numbered from this value. 2077 unsigned ShiftAmt = SVOp->getMaskElt(i); 2078 if (ShiftAmt < i) return -1; 2079 2080 ShiftAmt -= i; 2081 bool isLE = DAG.getDataLayout().isLittleEndian(); 2082 2083 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2084 // Check the rest of the elements to see if they are consecutive. 2085 for (++i; i != 16; ++i) 2086 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2087 return -1; 2088 } else if (ShuffleKind == 1) { 2089 // Check the rest of the elements to see if they are consecutive. 2090 for (++i; i != 16; ++i) 2091 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2092 return -1; 2093 } else 2094 return -1; 2095 2096 if (isLE) 2097 ShiftAmt = 16 - ShiftAmt; 2098 2099 return ShiftAmt; 2100 } 2101 2102 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2103 /// specifies a splat of a single element that is suitable for input to 2104 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2105 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2106 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2107 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2108 2109 // The consecutive indices need to specify an element, not part of two 2110 // different elements. So abandon ship early if this isn't the case. 2111 if (N->getMaskElt(0) % EltSize != 0) 2112 return false; 2113 2114 // This is a splat operation if each element of the permute is the same, and 2115 // if the value doesn't reference the second vector. 2116 unsigned ElementBase = N->getMaskElt(0); 2117 2118 // FIXME: Handle UNDEF elements too! 2119 if (ElementBase >= 16) 2120 return false; 2121 2122 // Check that the indices are consecutive, in the case of a multi-byte element 2123 // splatted with a v16i8 mask. 2124 for (unsigned i = 1; i != EltSize; ++i) 2125 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2126 return false; 2127 2128 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2129 if (N->getMaskElt(i) < 0) continue; 2130 for (unsigned j = 0; j != EltSize; ++j) 2131 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2132 return false; 2133 } 2134 return true; 2135 } 2136 2137 /// Check that the mask is shuffling N byte elements. Within each N byte 2138 /// element of the mask, the indices could be either in increasing or 2139 /// decreasing order as long as they are consecutive. 2140 /// \param[in] N the shuffle vector SD Node to analyze 2141 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2142 /// Word/DoubleWord/QuadWord). 2143 /// \param[in] StepLen the delta indices number among the N byte element, if 2144 /// the mask is in increasing/decreasing order then it is 1/-1. 2145 /// \return true iff the mask is shuffling N byte elements. 2146 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2147 int StepLen) { 2148 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2149 "Unexpected element width."); 2150 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2151 2152 unsigned NumOfElem = 16 / Width; 2153 unsigned MaskVal[16]; // Width is never greater than 16 2154 for (unsigned i = 0; i < NumOfElem; ++i) { 2155 MaskVal[0] = N->getMaskElt(i * Width); 2156 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2157 return false; 2158 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2159 return false; 2160 } 2161 2162 for (unsigned int j = 1; j < Width; ++j) { 2163 MaskVal[j] = N->getMaskElt(i * Width + j); 2164 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2165 return false; 2166 } 2167 } 2168 } 2169 2170 return true; 2171 } 2172 2173 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2174 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2175 if (!isNByteElemShuffleMask(N, 4, 1)) 2176 return false; 2177 2178 // Now we look at mask elements 0,4,8,12 2179 unsigned M0 = N->getMaskElt(0) / 4; 2180 unsigned M1 = N->getMaskElt(4) / 4; 2181 unsigned M2 = N->getMaskElt(8) / 4; 2182 unsigned M3 = N->getMaskElt(12) / 4; 2183 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2184 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2185 2186 // Below, let H and L be arbitrary elements of the shuffle mask 2187 // where H is in the range [4,7] and L is in the range [0,3]. 2188 // H, 1, 2, 3 or L, 5, 6, 7 2189 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2190 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2191 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2192 InsertAtByte = IsLE ? 12 : 0; 2193 Swap = M0 < 4; 2194 return true; 2195 } 2196 // 0, H, 2, 3 or 4, L, 6, 7 2197 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2198 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2199 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2200 InsertAtByte = IsLE ? 8 : 4; 2201 Swap = M1 < 4; 2202 return true; 2203 } 2204 // 0, 1, H, 3 or 4, 5, L, 7 2205 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2206 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2207 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2208 InsertAtByte = IsLE ? 4 : 8; 2209 Swap = M2 < 4; 2210 return true; 2211 } 2212 // 0, 1, 2, H or 4, 5, 6, L 2213 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2214 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2215 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2216 InsertAtByte = IsLE ? 0 : 12; 2217 Swap = M3 < 4; 2218 return true; 2219 } 2220 2221 // If both vector operands for the shuffle are the same vector, the mask will 2222 // contain only elements from the first one and the second one will be undef. 2223 if (N->getOperand(1).isUndef()) { 2224 ShiftElts = 0; 2225 Swap = true; 2226 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2227 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2228 InsertAtByte = IsLE ? 12 : 0; 2229 return true; 2230 } 2231 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2232 InsertAtByte = IsLE ? 8 : 4; 2233 return true; 2234 } 2235 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2236 InsertAtByte = IsLE ? 4 : 8; 2237 return true; 2238 } 2239 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2240 InsertAtByte = IsLE ? 0 : 12; 2241 return true; 2242 } 2243 } 2244 2245 return false; 2246 } 2247 2248 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2249 bool &Swap, bool IsLE) { 2250 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2251 // Ensure each byte index of the word is consecutive. 2252 if (!isNByteElemShuffleMask(N, 4, 1)) 2253 return false; 2254 2255 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2256 unsigned M0 = N->getMaskElt(0) / 4; 2257 unsigned M1 = N->getMaskElt(4) / 4; 2258 unsigned M2 = N->getMaskElt(8) / 4; 2259 unsigned M3 = N->getMaskElt(12) / 4; 2260 2261 // If both vector operands for the shuffle are the same vector, the mask will 2262 // contain only elements from the first one and the second one will be undef. 2263 if (N->getOperand(1).isUndef()) { 2264 assert(M0 < 4 && "Indexing into an undef vector?"); 2265 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2266 return false; 2267 2268 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2269 Swap = false; 2270 return true; 2271 } 2272 2273 // Ensure each word index of the ShuffleVector Mask is consecutive. 2274 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2275 return false; 2276 2277 if (IsLE) { 2278 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2279 // Input vectors don't need to be swapped if the leading element 2280 // of the result is one of the 3 left elements of the second vector 2281 // (or if there is no shift to be done at all). 2282 Swap = false; 2283 ShiftElts = (8 - M0) % 8; 2284 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2285 // Input vectors need to be swapped if the leading element 2286 // of the result is one of the 3 left elements of the first vector 2287 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2288 Swap = true; 2289 ShiftElts = (4 - M0) % 4; 2290 } 2291 2292 return true; 2293 } else { // BE 2294 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2295 // Input vectors don't need to be swapped if the leading element 2296 // of the result is one of the 4 elements of the first vector. 2297 Swap = false; 2298 ShiftElts = M0; 2299 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2300 // Input vectors need to be swapped if the leading element 2301 // of the result is one of the 4 elements of the right vector. 2302 Swap = true; 2303 ShiftElts = M0 - 4; 2304 } 2305 2306 return true; 2307 } 2308 } 2309 2310 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2311 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2312 2313 if (!isNByteElemShuffleMask(N, Width, -1)) 2314 return false; 2315 2316 for (int i = 0; i < 16; i += Width) 2317 if (N->getMaskElt(i) != i + Width - 1) 2318 return false; 2319 2320 return true; 2321 } 2322 2323 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2324 return isXXBRShuffleMaskHelper(N, 2); 2325 } 2326 2327 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2328 return isXXBRShuffleMaskHelper(N, 4); 2329 } 2330 2331 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2332 return isXXBRShuffleMaskHelper(N, 8); 2333 } 2334 2335 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2336 return isXXBRShuffleMaskHelper(N, 16); 2337 } 2338 2339 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2340 /// if the inputs to the instruction should be swapped and set \p DM to the 2341 /// value for the immediate. 2342 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2343 /// AND element 0 of the result comes from the first input (LE) or second input 2344 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2345 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2346 /// mask. 2347 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2348 bool &Swap, bool IsLE) { 2349 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2350 2351 // Ensure each byte index of the double word is consecutive. 2352 if (!isNByteElemShuffleMask(N, 8, 1)) 2353 return false; 2354 2355 unsigned M0 = N->getMaskElt(0) / 8; 2356 unsigned M1 = N->getMaskElt(8) / 8; 2357 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2358 2359 // If both vector operands for the shuffle are the same vector, the mask will 2360 // contain only elements from the first one and the second one will be undef. 2361 if (N->getOperand(1).isUndef()) { 2362 if ((M0 | M1) < 2) { 2363 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2364 Swap = false; 2365 return true; 2366 } else 2367 return false; 2368 } 2369 2370 if (IsLE) { 2371 if (M0 > 1 && M1 < 2) { 2372 Swap = false; 2373 } else if (M0 < 2 && M1 > 1) { 2374 M0 = (M0 + 2) % 4; 2375 M1 = (M1 + 2) % 4; 2376 Swap = true; 2377 } else 2378 return false; 2379 2380 // Note: if control flow comes here that means Swap is already set above 2381 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2382 return true; 2383 } else { // BE 2384 if (M0 < 2 && M1 > 1) { 2385 Swap = false; 2386 } else if (M0 > 1 && M1 < 2) { 2387 M0 = (M0 + 2) % 4; 2388 M1 = (M1 + 2) % 4; 2389 Swap = true; 2390 } else 2391 return false; 2392 2393 // Note: if control flow comes here that means Swap is already set above 2394 DM = (M0 << 1) + (M1 & 1); 2395 return true; 2396 } 2397 } 2398 2399 2400 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2401 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2402 /// elements are counted from the left of the vector register). 2403 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2404 SelectionDAG &DAG) { 2405 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2406 assert(isSplatShuffleMask(SVOp, EltSize)); 2407 if (DAG.getDataLayout().isLittleEndian()) 2408 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2409 else 2410 return SVOp->getMaskElt(0) / EltSize; 2411 } 2412 2413 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2414 /// by using a vspltis[bhw] instruction of the specified element size, return 2415 /// the constant being splatted. The ByteSize field indicates the number of 2416 /// bytes of each element [124] -> [bhw]. 2417 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2418 SDValue OpVal(nullptr, 0); 2419 2420 // If ByteSize of the splat is bigger than the element size of the 2421 // build_vector, then we have a case where we are checking for a splat where 2422 // multiple elements of the buildvector are folded together into a single 2423 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2424 unsigned EltSize = 16/N->getNumOperands(); 2425 if (EltSize < ByteSize) { 2426 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2427 SDValue UniquedVals[4]; 2428 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2429 2430 // See if all of the elements in the buildvector agree across. 2431 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2432 if (N->getOperand(i).isUndef()) continue; 2433 // If the element isn't a constant, bail fully out. 2434 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2435 2436 if (!UniquedVals[i&(Multiple-1)].getNode()) 2437 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2438 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2439 return SDValue(); // no match. 2440 } 2441 2442 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2443 // either constant or undef values that are identical for each chunk. See 2444 // if these chunks can form into a larger vspltis*. 2445 2446 // Check to see if all of the leading entries are either 0 or -1. If 2447 // neither, then this won't fit into the immediate field. 2448 bool LeadingZero = true; 2449 bool LeadingOnes = true; 2450 for (unsigned i = 0; i != Multiple-1; ++i) { 2451 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2452 2453 LeadingZero &= isNullConstant(UniquedVals[i]); 2454 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2455 } 2456 // Finally, check the least significant entry. 2457 if (LeadingZero) { 2458 if (!UniquedVals[Multiple-1].getNode()) 2459 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2460 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2461 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2462 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2463 } 2464 if (LeadingOnes) { 2465 if (!UniquedVals[Multiple-1].getNode()) 2466 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2467 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2468 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2469 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2470 } 2471 2472 return SDValue(); 2473 } 2474 2475 // Check to see if this buildvec has a single non-undef value in its elements. 2476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2477 if (N->getOperand(i).isUndef()) continue; 2478 if (!OpVal.getNode()) 2479 OpVal = N->getOperand(i); 2480 else if (OpVal != N->getOperand(i)) 2481 return SDValue(); 2482 } 2483 2484 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2485 2486 unsigned ValSizeInBytes = EltSize; 2487 uint64_t Value = 0; 2488 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2489 Value = CN->getZExtValue(); 2490 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2491 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2492 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2493 } 2494 2495 // If the splat value is larger than the element value, then we can never do 2496 // this splat. The only case that we could fit the replicated bits into our 2497 // immediate field for would be zero, and we prefer to use vxor for it. 2498 if (ValSizeInBytes < ByteSize) return SDValue(); 2499 2500 // If the element value is larger than the splat value, check if it consists 2501 // of a repeated bit pattern of size ByteSize. 2502 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2503 return SDValue(); 2504 2505 // Properly sign extend the value. 2506 int MaskVal = SignExtend32(Value, ByteSize * 8); 2507 2508 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2509 if (MaskVal == 0) return SDValue(); 2510 2511 // Finally, if this value fits in a 5 bit sext field, return it 2512 if (SignExtend32<5>(MaskVal) == MaskVal) 2513 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2514 return SDValue(); 2515 } 2516 2517 //===----------------------------------------------------------------------===// 2518 // Addressing Mode Selection 2519 //===----------------------------------------------------------------------===// 2520 2521 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2522 /// or 64-bit immediate, and if the value can be accurately represented as a 2523 /// sign extension from a 16-bit value. If so, this returns true and the 2524 /// immediate. 2525 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2526 if (!isa<ConstantSDNode>(N)) 2527 return false; 2528 2529 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2530 if (N->getValueType(0) == MVT::i32) 2531 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2532 else 2533 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2534 } 2535 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2536 return isIntS16Immediate(Op.getNode(), Imm); 2537 } 2538 2539 /// Used when computing address flags for selecting loads and stores. 2540 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2541 /// An OR of two provably disjoint values is equivalent to an ADD. 2542 /// Most PPC load/store instructions compute the effective address as a sum, 2543 /// so doing this conversion is useful. 2544 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2545 if (N.getOpcode() != ISD::OR) 2546 return false; 2547 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2548 if (!LHSKnown.Zero.getBoolValue()) 2549 return false; 2550 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2551 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2552 } 2553 2554 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2555 /// be represented as an indexed [r+r] operation. 2556 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2557 SDValue &Index, 2558 SelectionDAG &DAG) const { 2559 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2560 UI != E; ++UI) { 2561 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2562 if (Memop->getMemoryVT() == MVT::f64) { 2563 Base = N.getOperand(0); 2564 Index = N.getOperand(1); 2565 return true; 2566 } 2567 } 2568 } 2569 return false; 2570 } 2571 2572 /// isIntS34Immediate - This method tests if value of node given can be 2573 /// accurately represented as a sign extension from a 34-bit value. If so, 2574 /// this returns true and the immediate. 2575 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2576 if (!isa<ConstantSDNode>(N)) 2577 return false; 2578 2579 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2580 return isInt<34>(Imm); 2581 } 2582 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2583 return isIntS34Immediate(Op.getNode(), Imm); 2584 } 2585 2586 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2587 /// can be represented as an indexed [r+r] operation. Returns false if it 2588 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2589 /// non-zero and N can be represented by a base register plus a signed 16-bit 2590 /// displacement, make a more precise judgement by checking (displacement % \p 2591 /// EncodingAlignment). 2592 bool PPCTargetLowering::SelectAddressRegReg( 2593 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2594 MaybeAlign EncodingAlignment) const { 2595 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2596 // a [pc+imm]. 2597 if (SelectAddressPCRel(N, Base)) 2598 return false; 2599 2600 int16_t Imm = 0; 2601 if (N.getOpcode() == ISD::ADD) { 2602 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2603 // SPE load/store can only handle 8-bit offsets. 2604 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2605 return true; 2606 if (isIntS16Immediate(N.getOperand(1), Imm) && 2607 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2608 return false; // r+i 2609 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2610 return false; // r+i 2611 2612 Base = N.getOperand(0); 2613 Index = N.getOperand(1); 2614 return true; 2615 } else if (N.getOpcode() == ISD::OR) { 2616 if (isIntS16Immediate(N.getOperand(1), Imm) && 2617 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2618 return false; // r+i can fold it if we can. 2619 2620 // If this is an or of disjoint bitfields, we can codegen this as an add 2621 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2622 // disjoint. 2623 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2624 2625 if (LHSKnown.Zero.getBoolValue()) { 2626 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2627 // If all of the bits are known zero on the LHS or RHS, the add won't 2628 // carry. 2629 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2630 Base = N.getOperand(0); 2631 Index = N.getOperand(1); 2632 return true; 2633 } 2634 } 2635 } 2636 2637 return false; 2638 } 2639 2640 // If we happen to be doing an i64 load or store into a stack slot that has 2641 // less than a 4-byte alignment, then the frame-index elimination may need to 2642 // use an indexed load or store instruction (because the offset may not be a 2643 // multiple of 4). The extra register needed to hold the offset comes from the 2644 // register scavenger, and it is possible that the scavenger will need to use 2645 // an emergency spill slot. As a result, we need to make sure that a spill slot 2646 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2647 // stack slot. 2648 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2649 // FIXME: This does not handle the LWA case. 2650 if (VT != MVT::i64) 2651 return; 2652 2653 // NOTE: We'll exclude negative FIs here, which come from argument 2654 // lowering, because there are no known test cases triggering this problem 2655 // using packed structures (or similar). We can remove this exclusion if 2656 // we find such a test case. The reason why this is so test-case driven is 2657 // because this entire 'fixup' is only to prevent crashes (from the 2658 // register scavenger) on not-really-valid inputs. For example, if we have: 2659 // %a = alloca i1 2660 // %b = bitcast i1* %a to i64* 2661 // store i64* a, i64 b 2662 // then the store should really be marked as 'align 1', but is not. If it 2663 // were marked as 'align 1' then the indexed form would have been 2664 // instruction-selected initially, and the problem this 'fixup' is preventing 2665 // won't happen regardless. 2666 if (FrameIdx < 0) 2667 return; 2668 2669 MachineFunction &MF = DAG.getMachineFunction(); 2670 MachineFrameInfo &MFI = MF.getFrameInfo(); 2671 2672 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2673 return; 2674 2675 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2676 FuncInfo->setHasNonRISpills(); 2677 } 2678 2679 /// Returns true if the address N can be represented by a base register plus 2680 /// a signed 16-bit displacement [r+imm], and if it is not better 2681 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2682 /// displacements that are multiples of that value. 2683 bool PPCTargetLowering::SelectAddressRegImm( 2684 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2685 MaybeAlign EncodingAlignment) const { 2686 // FIXME dl should come from parent load or store, not from address 2687 SDLoc dl(N); 2688 2689 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2690 // a [pc+imm]. 2691 if (SelectAddressPCRel(N, Base)) 2692 return false; 2693 2694 // If this can be more profitably realized as r+r, fail. 2695 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2696 return false; 2697 2698 if (N.getOpcode() == ISD::ADD) { 2699 int16_t imm = 0; 2700 if (isIntS16Immediate(N.getOperand(1), imm) && 2701 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2702 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2703 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2704 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2705 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2706 } else { 2707 Base = N.getOperand(0); 2708 } 2709 return true; // [r+i] 2710 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2711 // Match LOAD (ADD (X, Lo(G))). 2712 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2713 && "Cannot handle constant offsets yet!"); 2714 Disp = N.getOperand(1).getOperand(0); // The global address. 2715 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2716 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2717 Disp.getOpcode() == ISD::TargetConstantPool || 2718 Disp.getOpcode() == ISD::TargetJumpTable); 2719 Base = N.getOperand(0); 2720 return true; // [&g+r] 2721 } 2722 } else if (N.getOpcode() == ISD::OR) { 2723 int16_t imm = 0; 2724 if (isIntS16Immediate(N.getOperand(1), imm) && 2725 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2726 // If this is an or of disjoint bitfields, we can codegen this as an add 2727 // (for better address arithmetic) if the LHS and RHS of the OR are 2728 // provably disjoint. 2729 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2730 2731 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2732 // If all of the bits are known zero on the LHS or RHS, the add won't 2733 // carry. 2734 if (FrameIndexSDNode *FI = 2735 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2736 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2737 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2738 } else { 2739 Base = N.getOperand(0); 2740 } 2741 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2742 return true; 2743 } 2744 } 2745 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2746 // Loading from a constant address. 2747 2748 // If this address fits entirely in a 16-bit sext immediate field, codegen 2749 // this as "d, 0" 2750 int16_t Imm; 2751 if (isIntS16Immediate(CN, Imm) && 2752 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2753 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2754 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2755 CN->getValueType(0)); 2756 return true; 2757 } 2758 2759 // Handle 32-bit sext immediates with LIS + addr mode. 2760 if ((CN->getValueType(0) == MVT::i32 || 2761 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2762 (!EncodingAlignment || 2763 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2764 int Addr = (int)CN->getZExtValue(); 2765 2766 // Otherwise, break this down into an LIS + disp. 2767 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2768 2769 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2770 MVT::i32); 2771 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2772 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2773 return true; 2774 } 2775 } 2776 2777 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2778 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2779 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2780 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2781 } else 2782 Base = N; 2783 return true; // [r+0] 2784 } 2785 2786 /// Similar to the 16-bit case but for instructions that take a 34-bit 2787 /// displacement field (prefixed loads/stores). 2788 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2789 SDValue &Base, 2790 SelectionDAG &DAG) const { 2791 // Only on 64-bit targets. 2792 if (N.getValueType() != MVT::i64) 2793 return false; 2794 2795 SDLoc dl(N); 2796 int64_t Imm = 0; 2797 2798 if (N.getOpcode() == ISD::ADD) { 2799 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2800 return false; 2801 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2802 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2803 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2804 else 2805 Base = N.getOperand(0); 2806 return true; 2807 } 2808 2809 if (N.getOpcode() == ISD::OR) { 2810 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2811 return false; 2812 // If this is an or of disjoint bitfields, we can codegen this as an add 2813 // (for better address arithmetic) if the LHS and RHS of the OR are 2814 // provably disjoint. 2815 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2816 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2817 return false; 2818 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2819 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2820 else 2821 Base = N.getOperand(0); 2822 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2823 return true; 2824 } 2825 2826 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2827 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2828 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2829 return true; 2830 } 2831 2832 return false; 2833 } 2834 2835 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2836 /// represented as an indexed [r+r] operation. 2837 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2838 SDValue &Index, 2839 SelectionDAG &DAG) const { 2840 // Check to see if we can easily represent this as an [r+r] address. This 2841 // will fail if it thinks that the address is more profitably represented as 2842 // reg+imm, e.g. where imm = 0. 2843 if (SelectAddressRegReg(N, Base, Index, DAG)) 2844 return true; 2845 2846 // If the address is the result of an add, we will utilize the fact that the 2847 // address calculation includes an implicit add. However, we can reduce 2848 // register pressure if we do not materialize a constant just for use as the 2849 // index register. We only get rid of the add if it is not an add of a 2850 // value and a 16-bit signed constant and both have a single use. 2851 int16_t imm = 0; 2852 if (N.getOpcode() == ISD::ADD && 2853 (!isIntS16Immediate(N.getOperand(1), imm) || 2854 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2855 Base = N.getOperand(0); 2856 Index = N.getOperand(1); 2857 return true; 2858 } 2859 2860 // Otherwise, do it the hard way, using R0 as the base register. 2861 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2862 N.getValueType()); 2863 Index = N; 2864 return true; 2865 } 2866 2867 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2868 Ty *PCRelCand = dyn_cast<Ty>(N); 2869 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2870 } 2871 2872 /// Returns true if this address is a PC Relative address. 2873 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2874 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2875 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2876 // This is a materialize PC Relative node. Always select this as PC Relative. 2877 Base = N; 2878 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2879 return true; 2880 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2881 isValidPCRelNode<GlobalAddressSDNode>(N) || 2882 isValidPCRelNode<JumpTableSDNode>(N) || 2883 isValidPCRelNode<BlockAddressSDNode>(N)) 2884 return true; 2885 return false; 2886 } 2887 2888 /// Returns true if we should use a direct load into vector instruction 2889 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2890 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2891 2892 // If there are any other uses other than scalar to vector, then we should 2893 // keep it as a scalar load -> direct move pattern to prevent multiple 2894 // loads. 2895 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2896 if (!LD) 2897 return false; 2898 2899 EVT MemVT = LD->getMemoryVT(); 2900 if (!MemVT.isSimple()) 2901 return false; 2902 switch(MemVT.getSimpleVT().SimpleTy) { 2903 case MVT::i64: 2904 break; 2905 case MVT::i32: 2906 if (!ST.hasP8Vector()) 2907 return false; 2908 break; 2909 case MVT::i16: 2910 case MVT::i8: 2911 if (!ST.hasP9Vector()) 2912 return false; 2913 break; 2914 default: 2915 return false; 2916 } 2917 2918 SDValue LoadedVal(N, 0); 2919 if (!LoadedVal.hasOneUse()) 2920 return false; 2921 2922 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2923 UI != UE; ++UI) 2924 if (UI.getUse().get().getResNo() == 0 && 2925 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2926 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2927 return false; 2928 2929 return true; 2930 } 2931 2932 /// getPreIndexedAddressParts - returns true by value, base pointer and 2933 /// offset pointer and addressing mode by reference if the node's address 2934 /// can be legally represented as pre-indexed load / store address. 2935 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2936 SDValue &Offset, 2937 ISD::MemIndexedMode &AM, 2938 SelectionDAG &DAG) const { 2939 if (DisablePPCPreinc) return false; 2940 2941 bool isLoad = true; 2942 SDValue Ptr; 2943 EVT VT; 2944 unsigned Alignment; 2945 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2946 Ptr = LD->getBasePtr(); 2947 VT = LD->getMemoryVT(); 2948 Alignment = LD->getAlignment(); 2949 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2950 Ptr = ST->getBasePtr(); 2951 VT = ST->getMemoryVT(); 2952 Alignment = ST->getAlignment(); 2953 isLoad = false; 2954 } else 2955 return false; 2956 2957 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2958 // instructions because we can fold these into a more efficient instruction 2959 // instead, (such as LXSD). 2960 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2961 return false; 2962 } 2963 2964 // PowerPC doesn't have preinc load/store instructions for vectors 2965 if (VT.isVector()) 2966 return false; 2967 2968 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2969 // Common code will reject creating a pre-inc form if the base pointer 2970 // is a frame index, or if N is a store and the base pointer is either 2971 // the same as or a predecessor of the value being stored. Check for 2972 // those situations here, and try with swapped Base/Offset instead. 2973 bool Swap = false; 2974 2975 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2976 Swap = true; 2977 else if (!isLoad) { 2978 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2979 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2980 Swap = true; 2981 } 2982 2983 if (Swap) 2984 std::swap(Base, Offset); 2985 2986 AM = ISD::PRE_INC; 2987 return true; 2988 } 2989 2990 // LDU/STU can only handle immediates that are a multiple of 4. 2991 if (VT != MVT::i64) { 2992 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2993 return false; 2994 } else { 2995 // LDU/STU need an address with at least 4-byte alignment. 2996 if (Alignment < 4) 2997 return false; 2998 2999 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3000 return false; 3001 } 3002 3003 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3004 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3005 // sext i32 to i64 when addr mode is r+i. 3006 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3007 LD->getExtensionType() == ISD::SEXTLOAD && 3008 isa<ConstantSDNode>(Offset)) 3009 return false; 3010 } 3011 3012 AM = ISD::PRE_INC; 3013 return true; 3014 } 3015 3016 //===----------------------------------------------------------------------===// 3017 // LowerOperation implementation 3018 //===----------------------------------------------------------------------===// 3019 3020 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3021 /// and LoOpFlags to the target MO flags. 3022 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3023 unsigned &HiOpFlags, unsigned &LoOpFlags, 3024 const GlobalValue *GV = nullptr) { 3025 HiOpFlags = PPCII::MO_HA; 3026 LoOpFlags = PPCII::MO_LO; 3027 3028 // Don't use the pic base if not in PIC relocation model. 3029 if (IsPIC) { 3030 HiOpFlags |= PPCII::MO_PIC_FLAG; 3031 LoOpFlags |= PPCII::MO_PIC_FLAG; 3032 } 3033 } 3034 3035 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3036 SelectionDAG &DAG) { 3037 SDLoc DL(HiPart); 3038 EVT PtrVT = HiPart.getValueType(); 3039 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3040 3041 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3042 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3043 3044 // With PIC, the first instruction is actually "GR+hi(&G)". 3045 if (isPIC) 3046 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3047 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3048 3049 // Generate non-pic code that has direct accesses to the constant pool. 3050 // The address of the global is just (hi(&g)+lo(&g)). 3051 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3052 } 3053 3054 static void setUsesTOCBasePtr(MachineFunction &MF) { 3055 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3056 FuncInfo->setUsesTOCBasePtr(); 3057 } 3058 3059 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3060 setUsesTOCBasePtr(DAG.getMachineFunction()); 3061 } 3062 3063 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3064 SDValue GA) const { 3065 const bool Is64Bit = Subtarget.isPPC64(); 3066 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3067 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3068 : Subtarget.isAIXABI() 3069 ? DAG.getRegister(PPC::R2, VT) 3070 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3071 SDValue Ops[] = { GA, Reg }; 3072 return DAG.getMemIntrinsicNode( 3073 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3074 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3075 MachineMemOperand::MOLoad); 3076 } 3077 3078 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3079 SelectionDAG &DAG) const { 3080 EVT PtrVT = Op.getValueType(); 3081 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3082 const Constant *C = CP->getConstVal(); 3083 3084 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3085 // The actual address of the GlobalValue is stored in the TOC. 3086 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3087 if (Subtarget.isUsingPCRelativeCalls()) { 3088 SDLoc DL(CP); 3089 EVT Ty = getPointerTy(DAG.getDataLayout()); 3090 SDValue ConstPool = DAG.getTargetConstantPool( 3091 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3092 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3093 } 3094 setUsesTOCBasePtr(DAG); 3095 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3096 return getTOCEntry(DAG, SDLoc(CP), GA); 3097 } 3098 3099 unsigned MOHiFlag, MOLoFlag; 3100 bool IsPIC = isPositionIndependent(); 3101 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3102 3103 if (IsPIC && Subtarget.isSVR4ABI()) { 3104 SDValue GA = 3105 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3106 return getTOCEntry(DAG, SDLoc(CP), GA); 3107 } 3108 3109 SDValue CPIHi = 3110 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3111 SDValue CPILo = 3112 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3113 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3114 } 3115 3116 // For 64-bit PowerPC, prefer the more compact relative encodings. 3117 // This trades 32 bits per jump table entry for one or two instructions 3118 // on the jump site. 3119 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3120 if (isJumpTableRelative()) 3121 return MachineJumpTableInfo::EK_LabelDifference32; 3122 3123 return TargetLowering::getJumpTableEncoding(); 3124 } 3125 3126 bool PPCTargetLowering::isJumpTableRelative() const { 3127 if (UseAbsoluteJumpTables) 3128 return false; 3129 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3130 return true; 3131 return TargetLowering::isJumpTableRelative(); 3132 } 3133 3134 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3135 SelectionDAG &DAG) const { 3136 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3137 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3138 3139 switch (getTargetMachine().getCodeModel()) { 3140 case CodeModel::Small: 3141 case CodeModel::Medium: 3142 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3143 default: 3144 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3145 getPointerTy(DAG.getDataLayout())); 3146 } 3147 } 3148 3149 const MCExpr * 3150 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3151 unsigned JTI, 3152 MCContext &Ctx) const { 3153 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3154 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3155 3156 switch (getTargetMachine().getCodeModel()) { 3157 case CodeModel::Small: 3158 case CodeModel::Medium: 3159 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3160 default: 3161 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3162 } 3163 } 3164 3165 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3166 EVT PtrVT = Op.getValueType(); 3167 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3168 3169 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3170 if (Subtarget.isUsingPCRelativeCalls()) { 3171 SDLoc DL(JT); 3172 EVT Ty = getPointerTy(DAG.getDataLayout()); 3173 SDValue GA = 3174 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3175 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3176 return MatAddr; 3177 } 3178 3179 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3180 // The actual address of the GlobalValue is stored in the TOC. 3181 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3182 setUsesTOCBasePtr(DAG); 3183 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3184 return getTOCEntry(DAG, SDLoc(JT), GA); 3185 } 3186 3187 unsigned MOHiFlag, MOLoFlag; 3188 bool IsPIC = isPositionIndependent(); 3189 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3190 3191 if (IsPIC && Subtarget.isSVR4ABI()) { 3192 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3193 PPCII::MO_PIC_FLAG); 3194 return getTOCEntry(DAG, SDLoc(GA), GA); 3195 } 3196 3197 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3198 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3199 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3200 } 3201 3202 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3203 SelectionDAG &DAG) const { 3204 EVT PtrVT = Op.getValueType(); 3205 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3206 const BlockAddress *BA = BASDN->getBlockAddress(); 3207 3208 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3209 if (Subtarget.isUsingPCRelativeCalls()) { 3210 SDLoc DL(BASDN); 3211 EVT Ty = getPointerTy(DAG.getDataLayout()); 3212 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3213 PPCII::MO_PCREL_FLAG); 3214 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3215 return MatAddr; 3216 } 3217 3218 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3219 // The actual BlockAddress is stored in the TOC. 3220 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3221 setUsesTOCBasePtr(DAG); 3222 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3223 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3224 } 3225 3226 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3227 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3228 return getTOCEntry( 3229 DAG, SDLoc(BASDN), 3230 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3231 3232 unsigned MOHiFlag, MOLoFlag; 3233 bool IsPIC = isPositionIndependent(); 3234 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3235 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3236 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3237 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3238 } 3239 3240 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3241 SelectionDAG &DAG) const { 3242 if (Subtarget.isAIXABI()) 3243 return LowerGlobalTLSAddressAIX(Op, DAG); 3244 3245 return LowerGlobalTLSAddressLinux(Op, DAG); 3246 } 3247 3248 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3251 3252 if (DAG.getTarget().useEmulatedTLS()) 3253 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3254 3255 SDLoc dl(GA); 3256 const GlobalValue *GV = GA->getGlobal(); 3257 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3258 3259 // The general-dynamic model is the only access model supported for now, so 3260 // all the GlobalTLSAddress nodes are lowered with this model. 3261 // We need to generate two TOC entries, one for the variable offset, one for 3262 // the region handle. The global address for the TOC entry of the region 3263 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3264 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3265 SDValue VariableOffsetTGA = 3266 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3267 SDValue RegionHandleTGA = 3268 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3269 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3270 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3271 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3272 RegionHandle); 3273 } 3274 3275 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3276 SelectionDAG &DAG) const { 3277 // FIXME: TLS addresses currently use medium model code sequences, 3278 // which is the most useful form. Eventually support for small and 3279 // large models could be added if users need it, at the cost of 3280 // additional complexity. 3281 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3282 if (DAG.getTarget().useEmulatedTLS()) 3283 return LowerToTLSEmulatedModel(GA, DAG); 3284 3285 SDLoc dl(GA); 3286 const GlobalValue *GV = GA->getGlobal(); 3287 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3288 bool is64bit = Subtarget.isPPC64(); 3289 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3290 PICLevel::Level picLevel = M->getPICLevel(); 3291 3292 const TargetMachine &TM = getTargetMachine(); 3293 TLSModel::Model Model = TM.getTLSModel(GV); 3294 3295 if (Model == TLSModel::LocalExec) { 3296 if (Subtarget.isUsingPCRelativeCalls()) { 3297 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3298 SDValue TGA = DAG.getTargetGlobalAddress( 3299 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3300 SDValue MatAddr = 3301 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3302 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3303 } 3304 3305 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3306 PPCII::MO_TPREL_HA); 3307 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3308 PPCII::MO_TPREL_LO); 3309 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3310 : DAG.getRegister(PPC::R2, MVT::i32); 3311 3312 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3313 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3314 } 3315 3316 if (Model == TLSModel::InitialExec) { 3317 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3318 SDValue TGA = DAG.getTargetGlobalAddress( 3319 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3320 SDValue TGATLS = DAG.getTargetGlobalAddress( 3321 GV, dl, PtrVT, 0, 3322 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3323 SDValue TPOffset; 3324 if (IsPCRel) { 3325 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3326 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3327 MachinePointerInfo()); 3328 } else { 3329 SDValue GOTPtr; 3330 if (is64bit) { 3331 setUsesTOCBasePtr(DAG); 3332 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3333 GOTPtr = 3334 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3335 } else { 3336 if (!TM.isPositionIndependent()) 3337 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3338 else if (picLevel == PICLevel::SmallPIC) 3339 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3340 else 3341 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3342 } 3343 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3344 } 3345 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3346 } 3347 3348 if (Model == TLSModel::GeneralDynamic) { 3349 if (Subtarget.isUsingPCRelativeCalls()) { 3350 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3351 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3352 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3353 } 3354 3355 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3356 SDValue GOTPtr; 3357 if (is64bit) { 3358 setUsesTOCBasePtr(DAG); 3359 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3360 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3361 GOTReg, TGA); 3362 } else { 3363 if (picLevel == PICLevel::SmallPIC) 3364 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3365 else 3366 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3367 } 3368 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3369 GOTPtr, TGA, TGA); 3370 } 3371 3372 if (Model == TLSModel::LocalDynamic) { 3373 if (Subtarget.isUsingPCRelativeCalls()) { 3374 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3375 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3376 SDValue MatPCRel = 3377 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3378 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3379 } 3380 3381 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3382 SDValue GOTPtr; 3383 if (is64bit) { 3384 setUsesTOCBasePtr(DAG); 3385 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3386 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3387 GOTReg, TGA); 3388 } else { 3389 if (picLevel == PICLevel::SmallPIC) 3390 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3391 else 3392 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3393 } 3394 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3395 PtrVT, GOTPtr, TGA, TGA); 3396 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3397 PtrVT, TLSAddr, TGA); 3398 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3399 } 3400 3401 llvm_unreachable("Unknown TLS model!"); 3402 } 3403 3404 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3405 SelectionDAG &DAG) const { 3406 EVT PtrVT = Op.getValueType(); 3407 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3408 SDLoc DL(GSDN); 3409 const GlobalValue *GV = GSDN->getGlobal(); 3410 3411 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3412 // The actual address of the GlobalValue is stored in the TOC. 3413 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3414 if (Subtarget.isUsingPCRelativeCalls()) { 3415 EVT Ty = getPointerTy(DAG.getDataLayout()); 3416 if (isAccessedAsGotIndirect(Op)) { 3417 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3418 PPCII::MO_PCREL_FLAG | 3419 PPCII::MO_GOT_FLAG); 3420 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3421 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3422 MachinePointerInfo()); 3423 return Load; 3424 } else { 3425 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3426 PPCII::MO_PCREL_FLAG); 3427 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3428 } 3429 } 3430 setUsesTOCBasePtr(DAG); 3431 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3432 return getTOCEntry(DAG, DL, GA); 3433 } 3434 3435 unsigned MOHiFlag, MOLoFlag; 3436 bool IsPIC = isPositionIndependent(); 3437 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3438 3439 if (IsPIC && Subtarget.isSVR4ABI()) { 3440 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3441 GSDN->getOffset(), 3442 PPCII::MO_PIC_FLAG); 3443 return getTOCEntry(DAG, DL, GA); 3444 } 3445 3446 SDValue GAHi = 3447 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3448 SDValue GALo = 3449 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3450 3451 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3452 } 3453 3454 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3455 bool IsStrict = Op->isStrictFPOpcode(); 3456 ISD::CondCode CC = 3457 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3458 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3459 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3460 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3461 EVT LHSVT = LHS.getValueType(); 3462 SDLoc dl(Op); 3463 3464 // Soften the setcc with libcall if it is fp128. 3465 if (LHSVT == MVT::f128) { 3466 assert(!Subtarget.hasP9Vector() && 3467 "SETCC for f128 is already legal under Power9!"); 3468 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3469 Op->getOpcode() == ISD::STRICT_FSETCCS); 3470 if (RHS.getNode()) 3471 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3472 DAG.getCondCode(CC)); 3473 if (IsStrict) 3474 return DAG.getMergeValues({LHS, Chain}, dl); 3475 return LHS; 3476 } 3477 3478 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3479 3480 if (Op.getValueType() == MVT::v2i64) { 3481 // When the operands themselves are v2i64 values, we need to do something 3482 // special because VSX has no underlying comparison operations for these. 3483 if (LHS.getValueType() == MVT::v2i64) { 3484 // Equality can be handled by casting to the legal type for Altivec 3485 // comparisons, everything else needs to be expanded. 3486 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3487 return DAG.getNode( 3488 ISD::BITCAST, dl, MVT::v2i64, 3489 DAG.getSetCC(dl, MVT::v4i32, 3490 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3491 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3492 } 3493 3494 return SDValue(); 3495 } 3496 3497 // We handle most of these in the usual way. 3498 return Op; 3499 } 3500 3501 // If we're comparing for equality to zero, expose the fact that this is 3502 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3503 // fold the new nodes. 3504 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3505 return V; 3506 3507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3508 // Leave comparisons against 0 and -1 alone for now, since they're usually 3509 // optimized. FIXME: revisit this when we can custom lower all setcc 3510 // optimizations. 3511 if (C->isAllOnes() || C->isZero()) 3512 return SDValue(); 3513 } 3514 3515 // If we have an integer seteq/setne, turn it into a compare against zero 3516 // by xor'ing the rhs with the lhs, which is faster than setting a 3517 // condition register, reading it back out, and masking the correct bit. The 3518 // normal approach here uses sub to do this instead of xor. Using xor exposes 3519 // the result to other bit-twiddling opportunities. 3520 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3521 EVT VT = Op.getValueType(); 3522 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3523 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3524 } 3525 return SDValue(); 3526 } 3527 3528 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3529 SDNode *Node = Op.getNode(); 3530 EVT VT = Node->getValueType(0); 3531 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3532 SDValue InChain = Node->getOperand(0); 3533 SDValue VAListPtr = Node->getOperand(1); 3534 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3535 SDLoc dl(Node); 3536 3537 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3538 3539 // gpr_index 3540 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3541 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3542 InChain = GprIndex.getValue(1); 3543 3544 if (VT == MVT::i64) { 3545 // Check if GprIndex is even 3546 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3547 DAG.getConstant(1, dl, MVT::i32)); 3548 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3549 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3550 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3551 DAG.getConstant(1, dl, MVT::i32)); 3552 // Align GprIndex to be even if it isn't 3553 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3554 GprIndex); 3555 } 3556 3557 // fpr index is 1 byte after gpr 3558 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3559 DAG.getConstant(1, dl, MVT::i32)); 3560 3561 // fpr 3562 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3563 FprPtr, MachinePointerInfo(SV), MVT::i8); 3564 InChain = FprIndex.getValue(1); 3565 3566 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3567 DAG.getConstant(8, dl, MVT::i32)); 3568 3569 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3570 DAG.getConstant(4, dl, MVT::i32)); 3571 3572 // areas 3573 SDValue OverflowArea = 3574 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3575 InChain = OverflowArea.getValue(1); 3576 3577 SDValue RegSaveArea = 3578 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3579 InChain = RegSaveArea.getValue(1); 3580 3581 // select overflow_area if index > 8 3582 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3583 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3584 3585 // adjustment constant gpr_index * 4/8 3586 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3587 VT.isInteger() ? GprIndex : FprIndex, 3588 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3589 MVT::i32)); 3590 3591 // OurReg = RegSaveArea + RegConstant 3592 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3593 RegConstant); 3594 3595 // Floating types are 32 bytes into RegSaveArea 3596 if (VT.isFloatingPoint()) 3597 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3598 DAG.getConstant(32, dl, MVT::i32)); 3599 3600 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3601 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3602 VT.isInteger() ? GprIndex : FprIndex, 3603 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3604 MVT::i32)); 3605 3606 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3607 VT.isInteger() ? VAListPtr : FprPtr, 3608 MachinePointerInfo(SV), MVT::i8); 3609 3610 // determine if we should load from reg_save_area or overflow_area 3611 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3612 3613 // increase overflow_area by 4/8 if gpr/fpr > 8 3614 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3615 DAG.getConstant(VT.isInteger() ? 4 : 8, 3616 dl, MVT::i32)); 3617 3618 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3619 OverflowAreaPlusN); 3620 3621 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3622 MachinePointerInfo(), MVT::i32); 3623 3624 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3625 } 3626 3627 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3628 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3629 3630 // We have to copy the entire va_list struct: 3631 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3632 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3633 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3634 false, true, false, MachinePointerInfo(), 3635 MachinePointerInfo()); 3636 } 3637 3638 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3639 SelectionDAG &DAG) const { 3640 if (Subtarget.isAIXABI()) 3641 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3642 3643 return Op.getOperand(0); 3644 } 3645 3646 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3647 MachineFunction &MF = DAG.getMachineFunction(); 3648 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3649 3650 assert((Op.getOpcode() == ISD::INLINEASM || 3651 Op.getOpcode() == ISD::INLINEASM_BR) && 3652 "Expecting Inline ASM node."); 3653 3654 // If an LR store is already known to be required then there is not point in 3655 // checking this ASM as well. 3656 if (MFI.isLRStoreRequired()) 3657 return Op; 3658 3659 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3660 // type MVT::Glue. We want to ignore this last operand if that is the case. 3661 unsigned NumOps = Op.getNumOperands(); 3662 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3663 --NumOps; 3664 3665 // Check all operands that may contain the LR. 3666 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3667 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3668 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3669 ++i; // Skip the ID value. 3670 3671 switch (InlineAsm::getKind(Flags)) { 3672 default: 3673 llvm_unreachable("Bad flags!"); 3674 case InlineAsm::Kind_RegUse: 3675 case InlineAsm::Kind_Imm: 3676 case InlineAsm::Kind_Mem: 3677 i += NumVals; 3678 break; 3679 case InlineAsm::Kind_Clobber: 3680 case InlineAsm::Kind_RegDef: 3681 case InlineAsm::Kind_RegDefEarlyClobber: { 3682 for (; NumVals; --NumVals, ++i) { 3683 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3684 if (Reg != PPC::LR && Reg != PPC::LR8) 3685 continue; 3686 MFI.setLRStoreRequired(); 3687 return Op; 3688 } 3689 break; 3690 } 3691 } 3692 } 3693 3694 return Op; 3695 } 3696 3697 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3698 SelectionDAG &DAG) const { 3699 if (Subtarget.isAIXABI()) 3700 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3701 3702 SDValue Chain = Op.getOperand(0); 3703 SDValue Trmp = Op.getOperand(1); // trampoline 3704 SDValue FPtr = Op.getOperand(2); // nested function 3705 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3706 SDLoc dl(Op); 3707 3708 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3709 bool isPPC64 = (PtrVT == MVT::i64); 3710 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3711 3712 TargetLowering::ArgListTy Args; 3713 TargetLowering::ArgListEntry Entry; 3714 3715 Entry.Ty = IntPtrTy; 3716 Entry.Node = Trmp; Args.push_back(Entry); 3717 3718 // TrampSize == (isPPC64 ? 48 : 40); 3719 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3720 isPPC64 ? MVT::i64 : MVT::i32); 3721 Args.push_back(Entry); 3722 3723 Entry.Node = FPtr; Args.push_back(Entry); 3724 Entry.Node = Nest; Args.push_back(Entry); 3725 3726 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3727 TargetLowering::CallLoweringInfo CLI(DAG); 3728 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3729 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3730 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3731 3732 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3733 return CallResult.second; 3734 } 3735 3736 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3737 MachineFunction &MF = DAG.getMachineFunction(); 3738 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3739 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3740 3741 SDLoc dl(Op); 3742 3743 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3744 // vastart just stores the address of the VarArgsFrameIndex slot into the 3745 // memory location argument. 3746 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3747 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3748 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3749 MachinePointerInfo(SV)); 3750 } 3751 3752 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3753 // We suppose the given va_list is already allocated. 3754 // 3755 // typedef struct { 3756 // char gpr; /* index into the array of 8 GPRs 3757 // * stored in the register save area 3758 // * gpr=0 corresponds to r3, 3759 // * gpr=1 to r4, etc. 3760 // */ 3761 // char fpr; /* index into the array of 8 FPRs 3762 // * stored in the register save area 3763 // * fpr=0 corresponds to f1, 3764 // * fpr=1 to f2, etc. 3765 // */ 3766 // char *overflow_arg_area; 3767 // /* location on stack that holds 3768 // * the next overflow argument 3769 // */ 3770 // char *reg_save_area; 3771 // /* where r3:r10 and f1:f8 (if saved) 3772 // * are stored 3773 // */ 3774 // } va_list[1]; 3775 3776 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3777 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3778 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3779 PtrVT); 3780 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3781 PtrVT); 3782 3783 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3784 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3785 3786 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3787 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3788 3789 uint64_t FPROffset = 1; 3790 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3791 3792 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3793 3794 // Store first byte : number of int regs 3795 SDValue firstStore = 3796 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3797 MachinePointerInfo(SV), MVT::i8); 3798 uint64_t nextOffset = FPROffset; 3799 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3800 ConstFPROffset); 3801 3802 // Store second byte : number of float regs 3803 SDValue secondStore = 3804 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3805 MachinePointerInfo(SV, nextOffset), MVT::i8); 3806 nextOffset += StackOffset; 3807 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3808 3809 // Store second word : arguments given on stack 3810 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3811 MachinePointerInfo(SV, nextOffset)); 3812 nextOffset += FrameOffset; 3813 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3814 3815 // Store third word : arguments given in registers 3816 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3817 MachinePointerInfo(SV, nextOffset)); 3818 } 3819 3820 /// FPR - The set of FP registers that should be allocated for arguments 3821 /// on Darwin and AIX. 3822 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3823 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3824 PPC::F11, PPC::F12, PPC::F13}; 3825 3826 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3827 /// the stack. 3828 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3829 unsigned PtrByteSize) { 3830 unsigned ArgSize = ArgVT.getStoreSize(); 3831 if (Flags.isByVal()) 3832 ArgSize = Flags.getByValSize(); 3833 3834 // Round up to multiples of the pointer size, except for array members, 3835 // which are always packed. 3836 if (!Flags.isInConsecutiveRegs()) 3837 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3838 3839 return ArgSize; 3840 } 3841 3842 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3843 /// on the stack. 3844 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3845 ISD::ArgFlagsTy Flags, 3846 unsigned PtrByteSize) { 3847 Align Alignment(PtrByteSize); 3848 3849 // Altivec parameters are padded to a 16 byte boundary. 3850 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3851 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3852 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3853 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3854 Alignment = Align(16); 3855 3856 // ByVal parameters are aligned as requested. 3857 if (Flags.isByVal()) { 3858 auto BVAlign = Flags.getNonZeroByValAlign(); 3859 if (BVAlign > PtrByteSize) { 3860 if (BVAlign.value() % PtrByteSize != 0) 3861 llvm_unreachable( 3862 "ByVal alignment is not a multiple of the pointer size"); 3863 3864 Alignment = BVAlign; 3865 } 3866 } 3867 3868 // Array members are always packed to their original alignment. 3869 if (Flags.isInConsecutiveRegs()) { 3870 // If the array member was split into multiple registers, the first 3871 // needs to be aligned to the size of the full type. (Except for 3872 // ppcf128, which is only aligned as its f64 components.) 3873 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3874 Alignment = Align(OrigVT.getStoreSize()); 3875 else 3876 Alignment = Align(ArgVT.getStoreSize()); 3877 } 3878 3879 return Alignment; 3880 } 3881 3882 /// CalculateStackSlotUsed - Return whether this argument will use its 3883 /// stack slot (instead of being passed in registers). ArgOffset, 3884 /// AvailableFPRs, and AvailableVRs must hold the current argument 3885 /// position, and will be updated to account for this argument. 3886 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3887 unsigned PtrByteSize, unsigned LinkageSize, 3888 unsigned ParamAreaSize, unsigned &ArgOffset, 3889 unsigned &AvailableFPRs, 3890 unsigned &AvailableVRs) { 3891 bool UseMemory = false; 3892 3893 // Respect alignment of argument on the stack. 3894 Align Alignment = 3895 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3896 ArgOffset = alignTo(ArgOffset, Alignment); 3897 // If there's no space left in the argument save area, we must 3898 // use memory (this check also catches zero-sized arguments). 3899 if (ArgOffset >= LinkageSize + ParamAreaSize) 3900 UseMemory = true; 3901 3902 // Allocate argument on the stack. 3903 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3904 if (Flags.isInConsecutiveRegsLast()) 3905 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3906 // If we overran the argument save area, we must use memory 3907 // (this check catches arguments passed partially in memory) 3908 if (ArgOffset > LinkageSize + ParamAreaSize) 3909 UseMemory = true; 3910 3911 // However, if the argument is actually passed in an FPR or a VR, 3912 // we don't use memory after all. 3913 if (!Flags.isByVal()) { 3914 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3915 if (AvailableFPRs > 0) { 3916 --AvailableFPRs; 3917 return false; 3918 } 3919 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3920 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3921 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3922 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3923 if (AvailableVRs > 0) { 3924 --AvailableVRs; 3925 return false; 3926 } 3927 } 3928 3929 return UseMemory; 3930 } 3931 3932 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3933 /// ensure minimum alignment required for target. 3934 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3935 unsigned NumBytes) { 3936 return alignTo(NumBytes, Lowering->getStackAlign()); 3937 } 3938 3939 SDValue PPCTargetLowering::LowerFormalArguments( 3940 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3941 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3942 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3943 if (Subtarget.isAIXABI()) 3944 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3945 InVals); 3946 if (Subtarget.is64BitELFABI()) 3947 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3948 InVals); 3949 assert(Subtarget.is32BitELFABI()); 3950 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3951 InVals); 3952 } 3953 3954 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3955 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3956 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3957 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3958 3959 // 32-bit SVR4 ABI Stack Frame Layout: 3960 // +-----------------------------------+ 3961 // +--> | Back chain | 3962 // | +-----------------------------------+ 3963 // | | Floating-point register save area | 3964 // | +-----------------------------------+ 3965 // | | General register save area | 3966 // | +-----------------------------------+ 3967 // | | CR save word | 3968 // | +-----------------------------------+ 3969 // | | VRSAVE save word | 3970 // | +-----------------------------------+ 3971 // | | Alignment padding | 3972 // | +-----------------------------------+ 3973 // | | Vector register save area | 3974 // | +-----------------------------------+ 3975 // | | Local variable space | 3976 // | +-----------------------------------+ 3977 // | | Parameter list area | 3978 // | +-----------------------------------+ 3979 // | | LR save word | 3980 // | +-----------------------------------+ 3981 // SP--> +--- | Back chain | 3982 // +-----------------------------------+ 3983 // 3984 // Specifications: 3985 // System V Application Binary Interface PowerPC Processor Supplement 3986 // AltiVec Technology Programming Interface Manual 3987 3988 MachineFunction &MF = DAG.getMachineFunction(); 3989 MachineFrameInfo &MFI = MF.getFrameInfo(); 3990 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3991 3992 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3993 // Potential tail calls could cause overwriting of argument stack slots. 3994 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3995 (CallConv == CallingConv::Fast)); 3996 const Align PtrAlign(4); 3997 3998 // Assign locations to all of the incoming arguments. 3999 SmallVector<CCValAssign, 16> ArgLocs; 4000 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4001 *DAG.getContext()); 4002 4003 // Reserve space for the linkage area on the stack. 4004 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4005 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4006 if (useSoftFloat()) 4007 CCInfo.PreAnalyzeFormalArguments(Ins); 4008 4009 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4010 CCInfo.clearWasPPCF128(); 4011 4012 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4013 CCValAssign &VA = ArgLocs[i]; 4014 4015 // Arguments stored in registers. 4016 if (VA.isRegLoc()) { 4017 const TargetRegisterClass *RC; 4018 EVT ValVT = VA.getValVT(); 4019 4020 switch (ValVT.getSimpleVT().SimpleTy) { 4021 default: 4022 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4023 case MVT::i1: 4024 case MVT::i32: 4025 RC = &PPC::GPRCRegClass; 4026 break; 4027 case MVT::f32: 4028 if (Subtarget.hasP8Vector()) 4029 RC = &PPC::VSSRCRegClass; 4030 else if (Subtarget.hasSPE()) 4031 RC = &PPC::GPRCRegClass; 4032 else 4033 RC = &PPC::F4RCRegClass; 4034 break; 4035 case MVT::f64: 4036 if (Subtarget.hasVSX()) 4037 RC = &PPC::VSFRCRegClass; 4038 else if (Subtarget.hasSPE()) 4039 // SPE passes doubles in GPR pairs. 4040 RC = &PPC::GPRCRegClass; 4041 else 4042 RC = &PPC::F8RCRegClass; 4043 break; 4044 case MVT::v16i8: 4045 case MVT::v8i16: 4046 case MVT::v4i32: 4047 RC = &PPC::VRRCRegClass; 4048 break; 4049 case MVT::v4f32: 4050 RC = &PPC::VRRCRegClass; 4051 break; 4052 case MVT::v2f64: 4053 case MVT::v2i64: 4054 RC = &PPC::VRRCRegClass; 4055 break; 4056 } 4057 4058 SDValue ArgValue; 4059 // Transform the arguments stored in physical registers into 4060 // virtual ones. 4061 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4062 assert(i + 1 < e && "No second half of double precision argument"); 4063 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4064 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4065 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4066 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4067 if (!Subtarget.isLittleEndian()) 4068 std::swap (ArgValueLo, ArgValueHi); 4069 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4070 ArgValueHi); 4071 } else { 4072 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4073 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4074 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4075 if (ValVT == MVT::i1) 4076 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4077 } 4078 4079 InVals.push_back(ArgValue); 4080 } else { 4081 // Argument stored in memory. 4082 assert(VA.isMemLoc()); 4083 4084 // Get the extended size of the argument type in stack 4085 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4086 // Get the actual size of the argument type 4087 unsigned ObjSize = VA.getValVT().getStoreSize(); 4088 unsigned ArgOffset = VA.getLocMemOffset(); 4089 // Stack objects in PPC32 are right justified. 4090 ArgOffset += ArgSize - ObjSize; 4091 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4092 4093 // Create load nodes to retrieve arguments from the stack. 4094 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4095 InVals.push_back( 4096 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4097 } 4098 } 4099 4100 // Assign locations to all of the incoming aggregate by value arguments. 4101 // Aggregates passed by value are stored in the local variable space of the 4102 // caller's stack frame, right above the parameter list area. 4103 SmallVector<CCValAssign, 16> ByValArgLocs; 4104 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4105 ByValArgLocs, *DAG.getContext()); 4106 4107 // Reserve stack space for the allocations in CCInfo. 4108 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4109 4110 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4111 4112 // Area that is at least reserved in the caller of this function. 4113 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4114 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4115 4116 // Set the size that is at least reserved in caller of this function. Tail 4117 // call optimized function's reserved stack space needs to be aligned so that 4118 // taking the difference between two stack areas will result in an aligned 4119 // stack. 4120 MinReservedArea = 4121 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4122 FuncInfo->setMinReservedArea(MinReservedArea); 4123 4124 SmallVector<SDValue, 8> MemOps; 4125 4126 // If the function takes variable number of arguments, make a frame index for 4127 // the start of the first vararg value... for expansion of llvm.va_start. 4128 if (isVarArg) { 4129 static const MCPhysReg GPArgRegs[] = { 4130 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4131 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4132 }; 4133 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4134 4135 static const MCPhysReg FPArgRegs[] = { 4136 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4137 PPC::F8 4138 }; 4139 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4140 4141 if (useSoftFloat() || hasSPE()) 4142 NumFPArgRegs = 0; 4143 4144 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4145 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4146 4147 // Make room for NumGPArgRegs and NumFPArgRegs. 4148 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4149 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4150 4151 FuncInfo->setVarArgsStackOffset( 4152 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4153 CCInfo.getNextStackOffset(), true)); 4154 4155 FuncInfo->setVarArgsFrameIndex( 4156 MFI.CreateStackObject(Depth, Align(8), false)); 4157 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4158 4159 // The fixed integer arguments of a variadic function are stored to the 4160 // VarArgsFrameIndex on the stack so that they may be loaded by 4161 // dereferencing the result of va_next. 4162 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4163 // Get an existing live-in vreg, or add a new one. 4164 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4165 if (!VReg) 4166 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4167 4168 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4169 SDValue Store = 4170 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4171 MemOps.push_back(Store); 4172 // Increment the address by four for the next argument to store 4173 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4174 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4175 } 4176 4177 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4178 // is set. 4179 // The double arguments are stored to the VarArgsFrameIndex 4180 // on the stack. 4181 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4182 // Get an existing live-in vreg, or add a new one. 4183 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4184 if (!VReg) 4185 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4186 4187 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4188 SDValue Store = 4189 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4190 MemOps.push_back(Store); 4191 // Increment the address by eight for the next argument to store 4192 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4193 PtrVT); 4194 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4195 } 4196 } 4197 4198 if (!MemOps.empty()) 4199 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4200 4201 return Chain; 4202 } 4203 4204 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4205 // value to MVT::i64 and then truncate to the correct register size. 4206 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4207 EVT ObjectVT, SelectionDAG &DAG, 4208 SDValue ArgVal, 4209 const SDLoc &dl) const { 4210 if (Flags.isSExt()) 4211 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4212 DAG.getValueType(ObjectVT)); 4213 else if (Flags.isZExt()) 4214 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4215 DAG.getValueType(ObjectVT)); 4216 4217 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4218 } 4219 4220 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4221 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4222 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4223 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4224 // TODO: add description of PPC stack frame format, or at least some docs. 4225 // 4226 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4227 bool isLittleEndian = Subtarget.isLittleEndian(); 4228 MachineFunction &MF = DAG.getMachineFunction(); 4229 MachineFrameInfo &MFI = MF.getFrameInfo(); 4230 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4231 4232 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4233 "fastcc not supported on varargs functions"); 4234 4235 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4236 // Potential tail calls could cause overwriting of argument stack slots. 4237 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4238 (CallConv == CallingConv::Fast)); 4239 unsigned PtrByteSize = 8; 4240 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4241 4242 static const MCPhysReg GPR[] = { 4243 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4244 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4245 }; 4246 static const MCPhysReg VR[] = { 4247 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4248 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4249 }; 4250 4251 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4252 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4253 const unsigned Num_VR_Regs = array_lengthof(VR); 4254 4255 // Do a first pass over the arguments to determine whether the ABI 4256 // guarantees that our caller has allocated the parameter save area 4257 // on its stack frame. In the ELFv1 ABI, this is always the case; 4258 // in the ELFv2 ABI, it is true if this is a vararg function or if 4259 // any parameter is located in a stack slot. 4260 4261 bool HasParameterArea = !isELFv2ABI || isVarArg; 4262 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4263 unsigned NumBytes = LinkageSize; 4264 unsigned AvailableFPRs = Num_FPR_Regs; 4265 unsigned AvailableVRs = Num_VR_Regs; 4266 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4267 if (Ins[i].Flags.isNest()) 4268 continue; 4269 4270 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4271 PtrByteSize, LinkageSize, ParamAreaSize, 4272 NumBytes, AvailableFPRs, AvailableVRs)) 4273 HasParameterArea = true; 4274 } 4275 4276 // Add DAG nodes to load the arguments or copy them out of registers. On 4277 // entry to a function on PPC, the arguments start after the linkage area, 4278 // although the first ones are often in registers. 4279 4280 unsigned ArgOffset = LinkageSize; 4281 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4282 SmallVector<SDValue, 8> MemOps; 4283 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4284 unsigned CurArgIdx = 0; 4285 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4286 SDValue ArgVal; 4287 bool needsLoad = false; 4288 EVT ObjectVT = Ins[ArgNo].VT; 4289 EVT OrigVT = Ins[ArgNo].ArgVT; 4290 unsigned ObjSize = ObjectVT.getStoreSize(); 4291 unsigned ArgSize = ObjSize; 4292 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4293 if (Ins[ArgNo].isOrigArg()) { 4294 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4295 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4296 } 4297 // We re-align the argument offset for each argument, except when using the 4298 // fast calling convention, when we need to make sure we do that only when 4299 // we'll actually use a stack slot. 4300 unsigned CurArgOffset; 4301 Align Alignment; 4302 auto ComputeArgOffset = [&]() { 4303 /* Respect alignment of argument on the stack. */ 4304 Alignment = 4305 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4306 ArgOffset = alignTo(ArgOffset, Alignment); 4307 CurArgOffset = ArgOffset; 4308 }; 4309 4310 if (CallConv != CallingConv::Fast) { 4311 ComputeArgOffset(); 4312 4313 /* Compute GPR index associated with argument offset. */ 4314 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4315 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4316 } 4317 4318 // FIXME the codegen can be much improved in some cases. 4319 // We do not have to keep everything in memory. 4320 if (Flags.isByVal()) { 4321 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4322 4323 if (CallConv == CallingConv::Fast) 4324 ComputeArgOffset(); 4325 4326 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4327 ObjSize = Flags.getByValSize(); 4328 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4329 // Empty aggregate parameters do not take up registers. Examples: 4330 // struct { } a; 4331 // union { } b; 4332 // int c[0]; 4333 // etc. However, we have to provide a place-holder in InVals, so 4334 // pretend we have an 8-byte item at the current address for that 4335 // purpose. 4336 if (!ObjSize) { 4337 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4338 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4339 InVals.push_back(FIN); 4340 continue; 4341 } 4342 4343 // Create a stack object covering all stack doublewords occupied 4344 // by the argument. If the argument is (fully or partially) on 4345 // the stack, or if the argument is fully in registers but the 4346 // caller has allocated the parameter save anyway, we can refer 4347 // directly to the caller's stack frame. Otherwise, create a 4348 // local copy in our own frame. 4349 int FI; 4350 if (HasParameterArea || 4351 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4352 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4353 else 4354 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4355 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4356 4357 // Handle aggregates smaller than 8 bytes. 4358 if (ObjSize < PtrByteSize) { 4359 // The value of the object is its address, which differs from the 4360 // address of the enclosing doubleword on big-endian systems. 4361 SDValue Arg = FIN; 4362 if (!isLittleEndian) { 4363 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4364 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4365 } 4366 InVals.push_back(Arg); 4367 4368 if (GPR_idx != Num_GPR_Regs) { 4369 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4370 FuncInfo->addLiveInAttr(VReg, Flags); 4371 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4372 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4373 SDValue Store = 4374 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4375 MachinePointerInfo(&*FuncArg), ObjType); 4376 MemOps.push_back(Store); 4377 } 4378 // Whether we copied from a register or not, advance the offset 4379 // into the parameter save area by a full doubleword. 4380 ArgOffset += PtrByteSize; 4381 continue; 4382 } 4383 4384 // The value of the object is its address, which is the address of 4385 // its first stack doubleword. 4386 InVals.push_back(FIN); 4387 4388 // Store whatever pieces of the object are in registers to memory. 4389 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4390 if (GPR_idx == Num_GPR_Regs) 4391 break; 4392 4393 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4394 FuncInfo->addLiveInAttr(VReg, Flags); 4395 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4396 SDValue Addr = FIN; 4397 if (j) { 4398 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4399 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4400 } 4401 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4402 MachinePointerInfo(&*FuncArg, j)); 4403 MemOps.push_back(Store); 4404 ++GPR_idx; 4405 } 4406 ArgOffset += ArgSize; 4407 continue; 4408 } 4409 4410 switch (ObjectVT.getSimpleVT().SimpleTy) { 4411 default: llvm_unreachable("Unhandled argument type!"); 4412 case MVT::i1: 4413 case MVT::i32: 4414 case MVT::i64: 4415 if (Flags.isNest()) { 4416 // The 'nest' parameter, if any, is passed in R11. 4417 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4418 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4419 4420 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4421 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4422 4423 break; 4424 } 4425 4426 // These can be scalar arguments or elements of an integer array type 4427 // passed directly. Clang may use those instead of "byval" aggregate 4428 // types to avoid forcing arguments to memory unnecessarily. 4429 if (GPR_idx != Num_GPR_Regs) { 4430 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4431 FuncInfo->addLiveInAttr(VReg, Flags); 4432 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4433 4434 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4435 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4436 // value to MVT::i64 and then truncate to the correct register size. 4437 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4438 } else { 4439 if (CallConv == CallingConv::Fast) 4440 ComputeArgOffset(); 4441 4442 needsLoad = true; 4443 ArgSize = PtrByteSize; 4444 } 4445 if (CallConv != CallingConv::Fast || needsLoad) 4446 ArgOffset += 8; 4447 break; 4448 4449 case MVT::f32: 4450 case MVT::f64: 4451 // These can be scalar arguments or elements of a float array type 4452 // passed directly. The latter are used to implement ELFv2 homogenous 4453 // float aggregates. 4454 if (FPR_idx != Num_FPR_Regs) { 4455 unsigned VReg; 4456 4457 if (ObjectVT == MVT::f32) 4458 VReg = MF.addLiveIn(FPR[FPR_idx], 4459 Subtarget.hasP8Vector() 4460 ? &PPC::VSSRCRegClass 4461 : &PPC::F4RCRegClass); 4462 else 4463 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4464 ? &PPC::VSFRCRegClass 4465 : &PPC::F8RCRegClass); 4466 4467 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4468 ++FPR_idx; 4469 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4470 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4471 // once we support fp <-> gpr moves. 4472 4473 // This can only ever happen in the presence of f32 array types, 4474 // since otherwise we never run out of FPRs before running out 4475 // of GPRs. 4476 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4477 FuncInfo->addLiveInAttr(VReg, Flags); 4478 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4479 4480 if (ObjectVT == MVT::f32) { 4481 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4482 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4483 DAG.getConstant(32, dl, MVT::i32)); 4484 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4485 } 4486 4487 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4488 } else { 4489 if (CallConv == CallingConv::Fast) 4490 ComputeArgOffset(); 4491 4492 needsLoad = true; 4493 } 4494 4495 // When passing an array of floats, the array occupies consecutive 4496 // space in the argument area; only round up to the next doubleword 4497 // at the end of the array. Otherwise, each float takes 8 bytes. 4498 if (CallConv != CallingConv::Fast || needsLoad) { 4499 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4500 ArgOffset += ArgSize; 4501 if (Flags.isInConsecutiveRegsLast()) 4502 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4503 } 4504 break; 4505 case MVT::v4f32: 4506 case MVT::v4i32: 4507 case MVT::v8i16: 4508 case MVT::v16i8: 4509 case MVT::v2f64: 4510 case MVT::v2i64: 4511 case MVT::v1i128: 4512 case MVT::f128: 4513 // These can be scalar arguments or elements of a vector array type 4514 // passed directly. The latter are used to implement ELFv2 homogenous 4515 // vector aggregates. 4516 if (VR_idx != Num_VR_Regs) { 4517 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4518 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4519 ++VR_idx; 4520 } else { 4521 if (CallConv == CallingConv::Fast) 4522 ComputeArgOffset(); 4523 needsLoad = true; 4524 } 4525 if (CallConv != CallingConv::Fast || needsLoad) 4526 ArgOffset += 16; 4527 break; 4528 } 4529 4530 // We need to load the argument to a virtual register if we determined 4531 // above that we ran out of physical registers of the appropriate type. 4532 if (needsLoad) { 4533 if (ObjSize < ArgSize && !isLittleEndian) 4534 CurArgOffset += ArgSize - ObjSize; 4535 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4536 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4537 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4538 } 4539 4540 InVals.push_back(ArgVal); 4541 } 4542 4543 // Area that is at least reserved in the caller of this function. 4544 unsigned MinReservedArea; 4545 if (HasParameterArea) 4546 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4547 else 4548 MinReservedArea = LinkageSize; 4549 4550 // Set the size that is at least reserved in caller of this function. Tail 4551 // call optimized functions' reserved stack space needs to be aligned so that 4552 // taking the difference between two stack areas will result in an aligned 4553 // stack. 4554 MinReservedArea = 4555 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4556 FuncInfo->setMinReservedArea(MinReservedArea); 4557 4558 // If the function takes variable number of arguments, make a frame index for 4559 // the start of the first vararg value... for expansion of llvm.va_start. 4560 // On ELFv2ABI spec, it writes: 4561 // C programs that are intended to be *portable* across different compilers 4562 // and architectures must use the header file <stdarg.h> to deal with variable 4563 // argument lists. 4564 if (isVarArg && MFI.hasVAStart()) { 4565 int Depth = ArgOffset; 4566 4567 FuncInfo->setVarArgsFrameIndex( 4568 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4569 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4570 4571 // If this function is vararg, store any remaining integer argument regs 4572 // to their spots on the stack so that they may be loaded by dereferencing 4573 // the result of va_next. 4574 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4575 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4576 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4577 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4578 SDValue Store = 4579 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4580 MemOps.push_back(Store); 4581 // Increment the address by four for the next argument to store 4582 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4583 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4584 } 4585 } 4586 4587 if (!MemOps.empty()) 4588 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4589 4590 return Chain; 4591 } 4592 4593 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4594 /// adjusted to accommodate the arguments for the tailcall. 4595 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4596 unsigned ParamSize) { 4597 4598 if (!isTailCall) return 0; 4599 4600 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4601 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4602 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4603 // Remember only if the new adjustment is bigger. 4604 if (SPDiff < FI->getTailCallSPDelta()) 4605 FI->setTailCallSPDelta(SPDiff); 4606 4607 return SPDiff; 4608 } 4609 4610 static bool isFunctionGlobalAddress(SDValue Callee); 4611 4612 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4613 const TargetMachine &TM) { 4614 // It does not make sense to call callsShareTOCBase() with a caller that 4615 // is PC Relative since PC Relative callers do not have a TOC. 4616 #ifndef NDEBUG 4617 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4618 assert(!STICaller->isUsingPCRelativeCalls() && 4619 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4620 #endif 4621 4622 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4623 // don't have enough information to determine if the caller and callee share 4624 // the same TOC base, so we have to pessimistically assume they don't for 4625 // correctness. 4626 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4627 if (!G) 4628 return false; 4629 4630 const GlobalValue *GV = G->getGlobal(); 4631 4632 // If the callee is preemptable, then the static linker will use a plt-stub 4633 // which saves the toc to the stack, and needs a nop after the call 4634 // instruction to convert to a toc-restore. 4635 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4636 return false; 4637 4638 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4639 // We may need a TOC restore in the situation where the caller requires a 4640 // valid TOC but the callee is PC Relative and does not. 4641 const Function *F = dyn_cast<Function>(GV); 4642 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4643 4644 // If we have an Alias we can try to get the function from there. 4645 if (Alias) { 4646 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4647 F = dyn_cast<Function>(GlobalObj); 4648 } 4649 4650 // If we still have no valid function pointer we do not have enough 4651 // information to determine if the callee uses PC Relative calls so we must 4652 // assume that it does. 4653 if (!F) 4654 return false; 4655 4656 // If the callee uses PC Relative we cannot guarantee that the callee won't 4657 // clobber the TOC of the caller and so we must assume that the two 4658 // functions do not share a TOC base. 4659 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4660 if (STICallee->isUsingPCRelativeCalls()) 4661 return false; 4662 4663 // If the GV is not a strong definition then we need to assume it can be 4664 // replaced by another function at link time. The function that replaces 4665 // it may not share the same TOC as the caller since the callee may be 4666 // replaced by a PC Relative version of the same function. 4667 if (!GV->isStrongDefinitionForLinker()) 4668 return false; 4669 4670 // The medium and large code models are expected to provide a sufficiently 4671 // large TOC to provide all data addressing needs of a module with a 4672 // single TOC. 4673 if (CodeModel::Medium == TM.getCodeModel() || 4674 CodeModel::Large == TM.getCodeModel()) 4675 return true; 4676 4677 // Any explicitly-specified sections and section prefixes must also match. 4678 // Also, if we're using -ffunction-sections, then each function is always in 4679 // a different section (the same is true for COMDAT functions). 4680 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4681 GV->getSection() != Caller->getSection()) 4682 return false; 4683 if (const auto *F = dyn_cast<Function>(GV)) { 4684 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4685 return false; 4686 } 4687 4688 return true; 4689 } 4690 4691 static bool 4692 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4693 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4694 assert(Subtarget.is64BitELFABI()); 4695 4696 const unsigned PtrByteSize = 8; 4697 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4698 4699 static const MCPhysReg GPR[] = { 4700 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4701 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4702 }; 4703 static const MCPhysReg VR[] = { 4704 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4705 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4706 }; 4707 4708 const unsigned NumGPRs = array_lengthof(GPR); 4709 const unsigned NumFPRs = 13; 4710 const unsigned NumVRs = array_lengthof(VR); 4711 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4712 4713 unsigned NumBytes = LinkageSize; 4714 unsigned AvailableFPRs = NumFPRs; 4715 unsigned AvailableVRs = NumVRs; 4716 4717 for (const ISD::OutputArg& Param : Outs) { 4718 if (Param.Flags.isNest()) continue; 4719 4720 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4721 LinkageSize, ParamAreaSize, NumBytes, 4722 AvailableFPRs, AvailableVRs)) 4723 return true; 4724 } 4725 return false; 4726 } 4727 4728 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4729 if (CB.arg_size() != CallerFn->arg_size()) 4730 return false; 4731 4732 auto CalleeArgIter = CB.arg_begin(); 4733 auto CalleeArgEnd = CB.arg_end(); 4734 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4735 4736 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4737 const Value* CalleeArg = *CalleeArgIter; 4738 const Value* CallerArg = &(*CallerArgIter); 4739 if (CalleeArg == CallerArg) 4740 continue; 4741 4742 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4743 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4744 // } 4745 // 1st argument of callee is undef and has the same type as caller. 4746 if (CalleeArg->getType() == CallerArg->getType() && 4747 isa<UndefValue>(CalleeArg)) 4748 continue; 4749 4750 return false; 4751 } 4752 4753 return true; 4754 } 4755 4756 // Returns true if TCO is possible between the callers and callees 4757 // calling conventions. 4758 static bool 4759 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4760 CallingConv::ID CalleeCC) { 4761 // Tail calls are possible with fastcc and ccc. 4762 auto isTailCallableCC = [] (CallingConv::ID CC){ 4763 return CC == CallingConv::C || CC == CallingConv::Fast; 4764 }; 4765 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4766 return false; 4767 4768 // We can safely tail call both fastcc and ccc callees from a c calling 4769 // convention caller. If the caller is fastcc, we may have less stack space 4770 // than a non-fastcc caller with the same signature so disable tail-calls in 4771 // that case. 4772 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4773 } 4774 4775 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4776 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4777 const SmallVectorImpl<ISD::OutputArg> &Outs, 4778 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4779 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4780 4781 if (DisableSCO && !TailCallOpt) return false; 4782 4783 // Variadic argument functions are not supported. 4784 if (isVarArg) return false; 4785 4786 auto &Caller = DAG.getMachineFunction().getFunction(); 4787 // Check that the calling conventions are compatible for tco. 4788 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4789 return false; 4790 4791 // Caller contains any byval parameter is not supported. 4792 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4793 return false; 4794 4795 // Callee contains any byval parameter is not supported, too. 4796 // Note: This is a quick work around, because in some cases, e.g. 4797 // caller's stack size > callee's stack size, we are still able to apply 4798 // sibling call optimization. For example, gcc is able to do SCO for caller1 4799 // in the following example, but not for caller2. 4800 // struct test { 4801 // long int a; 4802 // char ary[56]; 4803 // } gTest; 4804 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4805 // b->a = v.a; 4806 // return 0; 4807 // } 4808 // void caller1(struct test a, struct test c, struct test *b) { 4809 // callee(gTest, b); } 4810 // void caller2(struct test *b) { callee(gTest, b); } 4811 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4812 return false; 4813 4814 // If callee and caller use different calling conventions, we cannot pass 4815 // parameters on stack since offsets for the parameter area may be different. 4816 if (Caller.getCallingConv() != CalleeCC && 4817 needStackSlotPassParameters(Subtarget, Outs)) 4818 return false; 4819 4820 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4821 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4822 // callee potentially have different TOC bases then we cannot tail call since 4823 // we need to restore the TOC pointer after the call. 4824 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4825 // We cannot guarantee this for indirect calls or calls to external functions. 4826 // When PC-Relative addressing is used, the concept of the TOC is no longer 4827 // applicable so this check is not required. 4828 // Check first for indirect calls. 4829 if (!Subtarget.isUsingPCRelativeCalls() && 4830 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4831 return false; 4832 4833 // Check if we share the TOC base. 4834 if (!Subtarget.isUsingPCRelativeCalls() && 4835 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4836 return false; 4837 4838 // TCO allows altering callee ABI, so we don't have to check further. 4839 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4840 return true; 4841 4842 if (DisableSCO) return false; 4843 4844 // If callee use the same argument list that caller is using, then we can 4845 // apply SCO on this case. If it is not, then we need to check if callee needs 4846 // stack for passing arguments. 4847 // PC Relative tail calls may not have a CallBase. 4848 // If there is no CallBase we cannot verify if we have the same argument 4849 // list so assume that we don't have the same argument list. 4850 if (CB && !hasSameArgumentList(&Caller, *CB) && 4851 needStackSlotPassParameters(Subtarget, Outs)) 4852 return false; 4853 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4854 return false; 4855 4856 return true; 4857 } 4858 4859 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4860 /// for tail call optimization. Targets which want to do tail call 4861 /// optimization should implement this function. 4862 bool 4863 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4864 CallingConv::ID CalleeCC, 4865 bool isVarArg, 4866 const SmallVectorImpl<ISD::InputArg> &Ins, 4867 SelectionDAG& DAG) const { 4868 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4869 return false; 4870 4871 // Variable argument functions are not supported. 4872 if (isVarArg) 4873 return false; 4874 4875 MachineFunction &MF = DAG.getMachineFunction(); 4876 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4877 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4878 // Functions containing by val parameters are not supported. 4879 for (unsigned i = 0; i != Ins.size(); i++) { 4880 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4881 if (Flags.isByVal()) return false; 4882 } 4883 4884 // Non-PIC/GOT tail calls are supported. 4885 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4886 return true; 4887 4888 // At the moment we can only do local tail calls (in same module, hidden 4889 // or protected) if we are generating PIC. 4890 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4891 return G->getGlobal()->hasHiddenVisibility() 4892 || G->getGlobal()->hasProtectedVisibility(); 4893 } 4894 4895 return false; 4896 } 4897 4898 /// isCallCompatibleAddress - Return the immediate to use if the specified 4899 /// 32-bit value is representable in the immediate field of a BxA instruction. 4900 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4901 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4902 if (!C) return nullptr; 4903 4904 int Addr = C->getZExtValue(); 4905 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4906 SignExtend32<26>(Addr) != Addr) 4907 return nullptr; // Top 6 bits have to be sext of immediate. 4908 4909 return DAG 4910 .getConstant( 4911 (int)C->getZExtValue() >> 2, SDLoc(Op), 4912 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4913 .getNode(); 4914 } 4915 4916 namespace { 4917 4918 struct TailCallArgumentInfo { 4919 SDValue Arg; 4920 SDValue FrameIdxOp; 4921 int FrameIdx = 0; 4922 4923 TailCallArgumentInfo() = default; 4924 }; 4925 4926 } // end anonymous namespace 4927 4928 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4929 static void StoreTailCallArgumentsToStackSlot( 4930 SelectionDAG &DAG, SDValue Chain, 4931 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4932 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4933 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4934 SDValue Arg = TailCallArgs[i].Arg; 4935 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4936 int FI = TailCallArgs[i].FrameIdx; 4937 // Store relative to framepointer. 4938 MemOpChains.push_back(DAG.getStore( 4939 Chain, dl, Arg, FIN, 4940 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4941 } 4942 } 4943 4944 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4945 /// the appropriate stack slot for the tail call optimized function call. 4946 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4947 SDValue OldRetAddr, SDValue OldFP, 4948 int SPDiff, const SDLoc &dl) { 4949 if (SPDiff) { 4950 // Calculate the new stack slot for the return address. 4951 MachineFunction &MF = DAG.getMachineFunction(); 4952 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4953 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4954 bool isPPC64 = Subtarget.isPPC64(); 4955 int SlotSize = isPPC64 ? 8 : 4; 4956 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4957 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4958 NewRetAddrLoc, true); 4959 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4960 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4961 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4962 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4963 } 4964 return Chain; 4965 } 4966 4967 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4968 /// the position of the argument. 4969 static void 4970 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4971 SDValue Arg, int SPDiff, unsigned ArgOffset, 4972 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4973 int Offset = ArgOffset + SPDiff; 4974 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4975 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4976 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4977 SDValue FIN = DAG.getFrameIndex(FI, VT); 4978 TailCallArgumentInfo Info; 4979 Info.Arg = Arg; 4980 Info.FrameIdxOp = FIN; 4981 Info.FrameIdx = FI; 4982 TailCallArguments.push_back(Info); 4983 } 4984 4985 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4986 /// stack slot. Returns the chain as result and the loaded frame pointers in 4987 /// LROpOut/FPOpout. Used when tail calling. 4988 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4989 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4990 SDValue &FPOpOut, const SDLoc &dl) const { 4991 if (SPDiff) { 4992 // Load the LR and FP stack slot for later adjusting. 4993 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4994 LROpOut = getReturnAddrFrameIndex(DAG); 4995 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4996 Chain = SDValue(LROpOut.getNode(), 1); 4997 } 4998 return Chain; 4999 } 5000 5001 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5002 /// by "Src" to address "Dst" of size "Size". Alignment information is 5003 /// specified by the specific parameter attribute. The copy will be passed as 5004 /// a byval function parameter. 5005 /// Sometimes what we are copying is the end of a larger object, the part that 5006 /// does not fit in registers. 5007 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5008 SDValue Chain, ISD::ArgFlagsTy Flags, 5009 SelectionDAG &DAG, const SDLoc &dl) { 5010 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5011 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5012 Flags.getNonZeroByValAlign(), false, false, false, 5013 MachinePointerInfo(), MachinePointerInfo()); 5014 } 5015 5016 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5017 /// tail calls. 5018 static void LowerMemOpCallTo( 5019 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5020 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5021 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5022 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5023 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5024 if (!isTailCall) { 5025 if (isVector) { 5026 SDValue StackPtr; 5027 if (isPPC64) 5028 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5029 else 5030 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5031 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5032 DAG.getConstant(ArgOffset, dl, PtrVT)); 5033 } 5034 MemOpChains.push_back( 5035 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5036 // Calculate and remember argument location. 5037 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5038 TailCallArguments); 5039 } 5040 5041 static void 5042 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5043 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5044 SDValue FPOp, 5045 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5046 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5047 // might overwrite each other in case of tail call optimization. 5048 SmallVector<SDValue, 8> MemOpChains2; 5049 // Do not flag preceding copytoreg stuff together with the following stuff. 5050 InFlag = SDValue(); 5051 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5052 MemOpChains2, dl); 5053 if (!MemOpChains2.empty()) 5054 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5055 5056 // Store the return address to the appropriate stack slot. 5057 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5058 5059 // Emit callseq_end just before tailcall node. 5060 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5061 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5062 InFlag = Chain.getValue(1); 5063 } 5064 5065 // Is this global address that of a function that can be called by name? (as 5066 // opposed to something that must hold a descriptor for an indirect call). 5067 static bool isFunctionGlobalAddress(SDValue Callee) { 5068 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5069 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5070 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5071 return false; 5072 5073 return G->getGlobal()->getValueType()->isFunctionTy(); 5074 } 5075 5076 return false; 5077 } 5078 5079 SDValue PPCTargetLowering::LowerCallResult( 5080 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5081 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5082 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5083 SmallVector<CCValAssign, 16> RVLocs; 5084 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5085 *DAG.getContext()); 5086 5087 CCRetInfo.AnalyzeCallResult( 5088 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5089 ? RetCC_PPC_Cold 5090 : RetCC_PPC); 5091 5092 // Copy all of the result registers out of their specified physreg. 5093 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5094 CCValAssign &VA = RVLocs[i]; 5095 assert(VA.isRegLoc() && "Can only return in registers!"); 5096 5097 SDValue Val; 5098 5099 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5100 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5101 InFlag); 5102 Chain = Lo.getValue(1); 5103 InFlag = Lo.getValue(2); 5104 VA = RVLocs[++i]; // skip ahead to next loc 5105 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5106 InFlag); 5107 Chain = Hi.getValue(1); 5108 InFlag = Hi.getValue(2); 5109 if (!Subtarget.isLittleEndian()) 5110 std::swap (Lo, Hi); 5111 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5112 } else { 5113 Val = DAG.getCopyFromReg(Chain, dl, 5114 VA.getLocReg(), VA.getLocVT(), InFlag); 5115 Chain = Val.getValue(1); 5116 InFlag = Val.getValue(2); 5117 } 5118 5119 switch (VA.getLocInfo()) { 5120 default: llvm_unreachable("Unknown loc info!"); 5121 case CCValAssign::Full: break; 5122 case CCValAssign::AExt: 5123 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5124 break; 5125 case CCValAssign::ZExt: 5126 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5127 DAG.getValueType(VA.getValVT())); 5128 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5129 break; 5130 case CCValAssign::SExt: 5131 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5132 DAG.getValueType(VA.getValVT())); 5133 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5134 break; 5135 } 5136 5137 InVals.push_back(Val); 5138 } 5139 5140 return Chain; 5141 } 5142 5143 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5144 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5145 // PatchPoint calls are not indirect. 5146 if (isPatchPoint) 5147 return false; 5148 5149 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5150 return false; 5151 5152 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5153 // becuase the immediate function pointer points to a descriptor instead of 5154 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5155 // pointer immediate points to the global entry point, while the BLA would 5156 // need to jump to the local entry point (see rL211174). 5157 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5158 isBLACompatibleAddress(Callee, DAG)) 5159 return false; 5160 5161 return true; 5162 } 5163 5164 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5165 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5166 return Subtarget.isAIXABI() || 5167 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5168 } 5169 5170 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5171 const Function &Caller, 5172 const SDValue &Callee, 5173 const PPCSubtarget &Subtarget, 5174 const TargetMachine &TM) { 5175 if (CFlags.IsTailCall) 5176 return PPCISD::TC_RETURN; 5177 5178 // This is a call through a function pointer. 5179 if (CFlags.IsIndirect) { 5180 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5181 // indirect calls. The save of the caller's TOC pointer to the stack will be 5182 // inserted into the DAG as part of call lowering. The restore of the TOC 5183 // pointer is modeled by using a pseudo instruction for the call opcode that 5184 // represents the 2 instruction sequence of an indirect branch and link, 5185 // immediately followed by a load of the TOC pointer from the the stack save 5186 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5187 // as it is not saved or used. 5188 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5189 : PPCISD::BCTRL; 5190 } 5191 5192 if (Subtarget.isUsingPCRelativeCalls()) { 5193 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5194 return PPCISD::CALL_NOTOC; 5195 } 5196 5197 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5198 // immediately following the call instruction if the caller and callee may 5199 // have different TOC bases. At link time if the linker determines the calls 5200 // may not share a TOC base, the call is redirected to a trampoline inserted 5201 // by the linker. The trampoline will (among other things) save the callers 5202 // TOC pointer at an ABI designated offset in the linkage area and the linker 5203 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5204 // into gpr2. 5205 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5206 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5207 : PPCISD::CALL_NOP; 5208 5209 return PPCISD::CALL; 5210 } 5211 5212 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5213 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5214 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5215 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5216 return SDValue(Dest, 0); 5217 5218 // Returns true if the callee is local, and false otherwise. 5219 auto isLocalCallee = [&]() { 5220 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5221 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5222 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5223 5224 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5225 !dyn_cast_or_null<GlobalIFunc>(GV); 5226 }; 5227 5228 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5229 // a static relocation model causes some versions of GNU LD (2.17.50, at 5230 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5231 // built with secure-PLT. 5232 bool UsePlt = 5233 Subtarget.is32BitELFABI() && !isLocalCallee() && 5234 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5235 5236 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5237 const TargetMachine &TM = Subtarget.getTargetMachine(); 5238 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5239 MCSymbolXCOFF *S = 5240 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5241 5242 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5243 return DAG.getMCSymbol(S, PtrVT); 5244 }; 5245 5246 if (isFunctionGlobalAddress(Callee)) { 5247 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5248 5249 if (Subtarget.isAIXABI()) { 5250 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5251 return getAIXFuncEntryPointSymbolSDNode(GV); 5252 } 5253 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5254 UsePlt ? PPCII::MO_PLT : 0); 5255 } 5256 5257 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5258 const char *SymName = S->getSymbol(); 5259 if (Subtarget.isAIXABI()) { 5260 // If there exists a user-declared function whose name is the same as the 5261 // ExternalSymbol's, then we pick up the user-declared version. 5262 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5263 if (const Function *F = 5264 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5265 return getAIXFuncEntryPointSymbolSDNode(F); 5266 5267 // On AIX, direct function calls reference the symbol for the function's 5268 // entry point, which is named by prepending a "." before the function's 5269 // C-linkage name. A Qualname is returned here because an external 5270 // function entry point is a csect with XTY_ER property. 5271 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5272 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5273 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5274 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5275 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5276 return Sec->getQualNameSymbol(); 5277 }; 5278 5279 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5280 } 5281 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5282 UsePlt ? PPCII::MO_PLT : 0); 5283 } 5284 5285 // No transformation needed. 5286 assert(Callee.getNode() && "What no callee?"); 5287 return Callee; 5288 } 5289 5290 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5291 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5292 "Expected a CALLSEQ_STARTSDNode."); 5293 5294 // The last operand is the chain, except when the node has glue. If the node 5295 // has glue, then the last operand is the glue, and the chain is the second 5296 // last operand. 5297 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5298 if (LastValue.getValueType() != MVT::Glue) 5299 return LastValue; 5300 5301 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5302 } 5303 5304 // Creates the node that moves a functions address into the count register 5305 // to prepare for an indirect call instruction. 5306 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5307 SDValue &Glue, SDValue &Chain, 5308 const SDLoc &dl) { 5309 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5310 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5311 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5312 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5313 // The glue is the second value produced. 5314 Glue = Chain.getValue(1); 5315 } 5316 5317 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5318 SDValue &Glue, SDValue &Chain, 5319 SDValue CallSeqStart, 5320 const CallBase *CB, const SDLoc &dl, 5321 bool hasNest, 5322 const PPCSubtarget &Subtarget) { 5323 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5324 // entry point, but to the function descriptor (the function entry point 5325 // address is part of the function descriptor though). 5326 // The function descriptor is a three doubleword structure with the 5327 // following fields: function entry point, TOC base address and 5328 // environment pointer. 5329 // Thus for a call through a function pointer, the following actions need 5330 // to be performed: 5331 // 1. Save the TOC of the caller in the TOC save area of its stack 5332 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5333 // 2. Load the address of the function entry point from the function 5334 // descriptor. 5335 // 3. Load the TOC of the callee from the function descriptor into r2. 5336 // 4. Load the environment pointer from the function descriptor into 5337 // r11. 5338 // 5. Branch to the function entry point address. 5339 // 6. On return of the callee, the TOC of the caller needs to be 5340 // restored (this is done in FinishCall()). 5341 // 5342 // The loads are scheduled at the beginning of the call sequence, and the 5343 // register copies are flagged together to ensure that no other 5344 // operations can be scheduled in between. E.g. without flagging the 5345 // copies together, a TOC access in the caller could be scheduled between 5346 // the assignment of the callee TOC and the branch to the callee, which leads 5347 // to incorrect code. 5348 5349 // Start by loading the function address from the descriptor. 5350 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5351 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5352 ? (MachineMemOperand::MODereferenceable | 5353 MachineMemOperand::MOInvariant) 5354 : MachineMemOperand::MONone; 5355 5356 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5357 5358 // Registers used in building the DAG. 5359 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5360 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5361 5362 // Offsets of descriptor members. 5363 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5364 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5365 5366 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5367 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5368 5369 // One load for the functions entry point address. 5370 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5371 Alignment, MMOFlags); 5372 5373 // One for loading the TOC anchor for the module that contains the called 5374 // function. 5375 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5376 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5377 SDValue TOCPtr = 5378 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5379 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5380 5381 // One for loading the environment pointer. 5382 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5383 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5384 SDValue LoadEnvPtr = 5385 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5386 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5387 5388 5389 // Then copy the newly loaded TOC anchor to the TOC pointer. 5390 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5391 Chain = TOCVal.getValue(0); 5392 Glue = TOCVal.getValue(1); 5393 5394 // If the function call has an explicit 'nest' parameter, it takes the 5395 // place of the environment pointer. 5396 assert((!hasNest || !Subtarget.isAIXABI()) && 5397 "Nest parameter is not supported on AIX."); 5398 if (!hasNest) { 5399 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5400 Chain = EnvVal.getValue(0); 5401 Glue = EnvVal.getValue(1); 5402 } 5403 5404 // The rest of the indirect call sequence is the same as the non-descriptor 5405 // DAG. 5406 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5407 } 5408 5409 static void 5410 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5411 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5412 SelectionDAG &DAG, 5413 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5414 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5415 const PPCSubtarget &Subtarget) { 5416 const bool IsPPC64 = Subtarget.isPPC64(); 5417 // MVT for a general purpose register. 5418 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5419 5420 // First operand is always the chain. 5421 Ops.push_back(Chain); 5422 5423 // If it's a direct call pass the callee as the second operand. 5424 if (!CFlags.IsIndirect) 5425 Ops.push_back(Callee); 5426 else { 5427 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5428 5429 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5430 // on the stack (this would have been done in `LowerCall_64SVR4` or 5431 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5432 // represents both the indirect branch and a load that restores the TOC 5433 // pointer from the linkage area. The operand for the TOC restore is an add 5434 // of the TOC save offset to the stack pointer. This must be the second 5435 // operand: after the chain input but before any other variadic arguments. 5436 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5437 // saved or used. 5438 if (isTOCSaveRestoreRequired(Subtarget)) { 5439 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5440 5441 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5442 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5443 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5444 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5445 Ops.push_back(AddTOC); 5446 } 5447 5448 // Add the register used for the environment pointer. 5449 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5450 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5451 RegVT)); 5452 5453 5454 // Add CTR register as callee so a bctr can be emitted later. 5455 if (CFlags.IsTailCall) 5456 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5457 } 5458 5459 // If this is a tail call add stack pointer delta. 5460 if (CFlags.IsTailCall) 5461 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5462 5463 // Add argument registers to the end of the list so that they are known live 5464 // into the call. 5465 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5466 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5467 RegsToPass[i].second.getValueType())); 5468 5469 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5470 // no way to mark dependencies as implicit here. 5471 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5472 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5473 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5474 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5475 5476 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5477 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5478 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5479 5480 // Add a register mask operand representing the call-preserved registers. 5481 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5482 const uint32_t *Mask = 5483 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5484 assert(Mask && "Missing call preserved mask for calling convention"); 5485 Ops.push_back(DAG.getRegisterMask(Mask)); 5486 5487 // If the glue is valid, it is the last operand. 5488 if (Glue.getNode()) 5489 Ops.push_back(Glue); 5490 } 5491 5492 SDValue PPCTargetLowering::FinishCall( 5493 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5494 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5495 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5496 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5497 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5498 5499 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5500 Subtarget.isAIXABI()) 5501 setUsesTOCBasePtr(DAG); 5502 5503 unsigned CallOpc = 5504 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5505 Subtarget, DAG.getTarget()); 5506 5507 if (!CFlags.IsIndirect) 5508 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5509 else if (Subtarget.usesFunctionDescriptors()) 5510 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5511 dl, CFlags.HasNest, Subtarget); 5512 else 5513 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5514 5515 // Build the operand list for the call instruction. 5516 SmallVector<SDValue, 8> Ops; 5517 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5518 SPDiff, Subtarget); 5519 5520 // Emit tail call. 5521 if (CFlags.IsTailCall) { 5522 // Indirect tail call when using PC Relative calls do not have the same 5523 // constraints. 5524 assert(((Callee.getOpcode() == ISD::Register && 5525 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5526 Callee.getOpcode() == ISD::TargetExternalSymbol || 5527 Callee.getOpcode() == ISD::TargetGlobalAddress || 5528 isa<ConstantSDNode>(Callee) || 5529 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5530 "Expecting a global address, external symbol, absolute value, " 5531 "register or an indirect tail call when PC Relative calls are " 5532 "used."); 5533 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5534 assert(CallOpc == PPCISD::TC_RETURN && 5535 "Unexpected call opcode for a tail call."); 5536 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5537 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5538 } 5539 5540 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5541 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5542 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5543 Glue = Chain.getValue(1); 5544 5545 // When performing tail call optimization the callee pops its arguments off 5546 // the stack. Account for this here so these bytes can be pushed back on in 5547 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5548 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5549 getTargetMachine().Options.GuaranteedTailCallOpt) 5550 ? NumBytes 5551 : 0; 5552 5553 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5554 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5555 Glue, dl); 5556 Glue = Chain.getValue(1); 5557 5558 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5559 DAG, InVals); 5560 } 5561 5562 SDValue 5563 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5564 SmallVectorImpl<SDValue> &InVals) const { 5565 SelectionDAG &DAG = CLI.DAG; 5566 SDLoc &dl = CLI.DL; 5567 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5568 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5569 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5570 SDValue Chain = CLI.Chain; 5571 SDValue Callee = CLI.Callee; 5572 bool &isTailCall = CLI.IsTailCall; 5573 CallingConv::ID CallConv = CLI.CallConv; 5574 bool isVarArg = CLI.IsVarArg; 5575 bool isPatchPoint = CLI.IsPatchPoint; 5576 const CallBase *CB = CLI.CB; 5577 5578 if (isTailCall) { 5579 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5580 isTailCall = false; 5581 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5582 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5583 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5584 else 5585 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5586 Ins, DAG); 5587 if (isTailCall) { 5588 ++NumTailCalls; 5589 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5590 ++NumSiblingCalls; 5591 5592 // PC Relative calls no longer guarantee that the callee is a Global 5593 // Address Node. The callee could be an indirect tail call in which 5594 // case the SDValue for the callee could be a load (to load the address 5595 // of a function pointer) or it may be a register copy (to move the 5596 // address of the callee from a function parameter into a virtual 5597 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5598 assert((Subtarget.isUsingPCRelativeCalls() || 5599 isa<GlobalAddressSDNode>(Callee)) && 5600 "Callee should be an llvm::Function object."); 5601 5602 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5603 << "\nTCO callee: "); 5604 LLVM_DEBUG(Callee.dump()); 5605 } 5606 } 5607 5608 if (!isTailCall && CB && CB->isMustTailCall()) 5609 report_fatal_error("failed to perform tail call elimination on a call " 5610 "site marked musttail"); 5611 5612 // When long calls (i.e. indirect calls) are always used, calls are always 5613 // made via function pointer. If we have a function name, first translate it 5614 // into a pointer. 5615 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5616 !isTailCall) 5617 Callee = LowerGlobalAddress(Callee, DAG); 5618 5619 CallFlags CFlags( 5620 CallConv, isTailCall, isVarArg, isPatchPoint, 5621 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5622 // hasNest 5623 Subtarget.is64BitELFABI() && 5624 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5625 CLI.NoMerge); 5626 5627 if (Subtarget.isAIXABI()) 5628 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5629 InVals, CB); 5630 5631 assert(Subtarget.isSVR4ABI()); 5632 if (Subtarget.isPPC64()) 5633 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5634 InVals, CB); 5635 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5636 InVals, CB); 5637 } 5638 5639 SDValue PPCTargetLowering::LowerCall_32SVR4( 5640 SDValue Chain, SDValue Callee, CallFlags CFlags, 5641 const SmallVectorImpl<ISD::OutputArg> &Outs, 5642 const SmallVectorImpl<SDValue> &OutVals, 5643 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5644 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5645 const CallBase *CB) const { 5646 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5647 // of the 32-bit SVR4 ABI stack frame layout. 5648 5649 const CallingConv::ID CallConv = CFlags.CallConv; 5650 const bool IsVarArg = CFlags.IsVarArg; 5651 const bool IsTailCall = CFlags.IsTailCall; 5652 5653 assert((CallConv == CallingConv::C || 5654 CallConv == CallingConv::Cold || 5655 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5656 5657 const Align PtrAlign(4); 5658 5659 MachineFunction &MF = DAG.getMachineFunction(); 5660 5661 // Mark this function as potentially containing a function that contains a 5662 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5663 // and restoring the callers stack pointer in this functions epilog. This is 5664 // done because by tail calling the called function might overwrite the value 5665 // in this function's (MF) stack pointer stack slot 0(SP). 5666 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5667 CallConv == CallingConv::Fast) 5668 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5669 5670 // Count how many bytes are to be pushed on the stack, including the linkage 5671 // area, parameter list area and the part of the local variable space which 5672 // contains copies of aggregates which are passed by value. 5673 5674 // Assign locations to all of the outgoing arguments. 5675 SmallVector<CCValAssign, 16> ArgLocs; 5676 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5677 5678 // Reserve space for the linkage area on the stack. 5679 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5680 PtrAlign); 5681 if (useSoftFloat()) 5682 CCInfo.PreAnalyzeCallOperands(Outs); 5683 5684 if (IsVarArg) { 5685 // Handle fixed and variable vector arguments differently. 5686 // Fixed vector arguments go into registers as long as registers are 5687 // available. Variable vector arguments always go into memory. 5688 unsigned NumArgs = Outs.size(); 5689 5690 for (unsigned i = 0; i != NumArgs; ++i) { 5691 MVT ArgVT = Outs[i].VT; 5692 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5693 bool Result; 5694 5695 if (Outs[i].IsFixed) { 5696 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5697 CCInfo); 5698 } else { 5699 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5700 ArgFlags, CCInfo); 5701 } 5702 5703 if (Result) { 5704 #ifndef NDEBUG 5705 errs() << "Call operand #" << i << " has unhandled type " 5706 << EVT(ArgVT).getEVTString() << "\n"; 5707 #endif 5708 llvm_unreachable(nullptr); 5709 } 5710 } 5711 } else { 5712 // All arguments are treated the same. 5713 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5714 } 5715 CCInfo.clearWasPPCF128(); 5716 5717 // Assign locations to all of the outgoing aggregate by value arguments. 5718 SmallVector<CCValAssign, 16> ByValArgLocs; 5719 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5720 5721 // Reserve stack space for the allocations in CCInfo. 5722 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5723 5724 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5725 5726 // Size of the linkage area, parameter list area and the part of the local 5727 // space variable where copies of aggregates which are passed by value are 5728 // stored. 5729 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5730 5731 // Calculate by how many bytes the stack has to be adjusted in case of tail 5732 // call optimization. 5733 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5734 5735 // Adjust the stack pointer for the new arguments... 5736 // These operations are automatically eliminated by the prolog/epilog pass 5737 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5738 SDValue CallSeqStart = Chain; 5739 5740 // Load the return address and frame pointer so it can be moved somewhere else 5741 // later. 5742 SDValue LROp, FPOp; 5743 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5744 5745 // Set up a copy of the stack pointer for use loading and storing any 5746 // arguments that may not fit in the registers available for argument 5747 // passing. 5748 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5749 5750 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5751 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5752 SmallVector<SDValue, 8> MemOpChains; 5753 5754 bool seenFloatArg = false; 5755 // Walk the register/memloc assignments, inserting copies/loads. 5756 // i - Tracks the index into the list of registers allocated for the call 5757 // RealArgIdx - Tracks the index into the list of actual function arguments 5758 // j - Tracks the index into the list of byval arguments 5759 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5760 i != e; 5761 ++i, ++RealArgIdx) { 5762 CCValAssign &VA = ArgLocs[i]; 5763 SDValue Arg = OutVals[RealArgIdx]; 5764 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5765 5766 if (Flags.isByVal()) { 5767 // Argument is an aggregate which is passed by value, thus we need to 5768 // create a copy of it in the local variable space of the current stack 5769 // frame (which is the stack frame of the caller) and pass the address of 5770 // this copy to the callee. 5771 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5772 CCValAssign &ByValVA = ByValArgLocs[j++]; 5773 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5774 5775 // Memory reserved in the local variable space of the callers stack frame. 5776 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5777 5778 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5779 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5780 StackPtr, PtrOff); 5781 5782 // Create a copy of the argument in the local area of the current 5783 // stack frame. 5784 SDValue MemcpyCall = 5785 CreateCopyOfByValArgument(Arg, PtrOff, 5786 CallSeqStart.getNode()->getOperand(0), 5787 Flags, DAG, dl); 5788 5789 // This must go outside the CALLSEQ_START..END. 5790 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5791 SDLoc(MemcpyCall)); 5792 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5793 NewCallSeqStart.getNode()); 5794 Chain = CallSeqStart = NewCallSeqStart; 5795 5796 // Pass the address of the aggregate copy on the stack either in a 5797 // physical register or in the parameter list area of the current stack 5798 // frame to the callee. 5799 Arg = PtrOff; 5800 } 5801 5802 // When useCRBits() is true, there can be i1 arguments. 5803 // It is because getRegisterType(MVT::i1) => MVT::i1, 5804 // and for other integer types getRegisterType() => MVT::i32. 5805 // Extend i1 and ensure callee will get i32. 5806 if (Arg.getValueType() == MVT::i1) 5807 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5808 dl, MVT::i32, Arg); 5809 5810 if (VA.isRegLoc()) { 5811 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5812 // Put argument in a physical register. 5813 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5814 bool IsLE = Subtarget.isLittleEndian(); 5815 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5816 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5817 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5818 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5819 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5820 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5821 SVal.getValue(0))); 5822 } else 5823 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5824 } else { 5825 // Put argument in the parameter list area of the current stack frame. 5826 assert(VA.isMemLoc()); 5827 unsigned LocMemOffset = VA.getLocMemOffset(); 5828 5829 if (!IsTailCall) { 5830 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5831 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5832 StackPtr, PtrOff); 5833 5834 MemOpChains.push_back( 5835 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5836 } else { 5837 // Calculate and remember argument location. 5838 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5839 TailCallArguments); 5840 } 5841 } 5842 } 5843 5844 if (!MemOpChains.empty()) 5845 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5846 5847 // Build a sequence of copy-to-reg nodes chained together with token chain 5848 // and flag operands which copy the outgoing args into the appropriate regs. 5849 SDValue InFlag; 5850 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5851 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5852 RegsToPass[i].second, InFlag); 5853 InFlag = Chain.getValue(1); 5854 } 5855 5856 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5857 // registers. 5858 if (IsVarArg) { 5859 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5860 SDValue Ops[] = { Chain, InFlag }; 5861 5862 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5863 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5864 5865 InFlag = Chain.getValue(1); 5866 } 5867 5868 if (IsTailCall) 5869 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5870 TailCallArguments); 5871 5872 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5873 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5874 } 5875 5876 // Copy an argument into memory, being careful to do this outside the 5877 // call sequence for the call to which the argument belongs. 5878 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5879 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5880 SelectionDAG &DAG, const SDLoc &dl) const { 5881 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5882 CallSeqStart.getNode()->getOperand(0), 5883 Flags, DAG, dl); 5884 // The MEMCPY must go outside the CALLSEQ_START..END. 5885 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5886 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5887 SDLoc(MemcpyCall)); 5888 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5889 NewCallSeqStart.getNode()); 5890 return NewCallSeqStart; 5891 } 5892 5893 SDValue PPCTargetLowering::LowerCall_64SVR4( 5894 SDValue Chain, SDValue Callee, CallFlags CFlags, 5895 const SmallVectorImpl<ISD::OutputArg> &Outs, 5896 const SmallVectorImpl<SDValue> &OutVals, 5897 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5898 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5899 const CallBase *CB) const { 5900 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5901 bool isLittleEndian = Subtarget.isLittleEndian(); 5902 unsigned NumOps = Outs.size(); 5903 bool IsSibCall = false; 5904 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5905 5906 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5907 unsigned PtrByteSize = 8; 5908 5909 MachineFunction &MF = DAG.getMachineFunction(); 5910 5911 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5912 IsSibCall = true; 5913 5914 // Mark this function as potentially containing a function that contains a 5915 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5916 // and restoring the callers stack pointer in this functions epilog. This is 5917 // done because by tail calling the called function might overwrite the value 5918 // in this function's (MF) stack pointer stack slot 0(SP). 5919 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5920 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5921 5922 assert(!(IsFastCall && CFlags.IsVarArg) && 5923 "fastcc not supported on varargs functions"); 5924 5925 // Count how many bytes are to be pushed on the stack, including the linkage 5926 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5927 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5928 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5929 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5930 unsigned NumBytes = LinkageSize; 5931 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5932 5933 static const MCPhysReg GPR[] = { 5934 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5935 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5936 }; 5937 static const MCPhysReg VR[] = { 5938 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5939 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5940 }; 5941 5942 const unsigned NumGPRs = array_lengthof(GPR); 5943 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5944 const unsigned NumVRs = array_lengthof(VR); 5945 5946 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5947 // can be passed to the callee in registers. 5948 // For the fast calling convention, there is another check below. 5949 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5950 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5951 if (!HasParameterArea) { 5952 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5953 unsigned AvailableFPRs = NumFPRs; 5954 unsigned AvailableVRs = NumVRs; 5955 unsigned NumBytesTmp = NumBytes; 5956 for (unsigned i = 0; i != NumOps; ++i) { 5957 if (Outs[i].Flags.isNest()) continue; 5958 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5959 PtrByteSize, LinkageSize, ParamAreaSize, 5960 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5961 HasParameterArea = true; 5962 } 5963 } 5964 5965 // When using the fast calling convention, we don't provide backing for 5966 // arguments that will be in registers. 5967 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5968 5969 // Avoid allocating parameter area for fastcc functions if all the arguments 5970 // can be passed in the registers. 5971 if (IsFastCall) 5972 HasParameterArea = false; 5973 5974 // Add up all the space actually used. 5975 for (unsigned i = 0; i != NumOps; ++i) { 5976 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5977 EVT ArgVT = Outs[i].VT; 5978 EVT OrigVT = Outs[i].ArgVT; 5979 5980 if (Flags.isNest()) 5981 continue; 5982 5983 if (IsFastCall) { 5984 if (Flags.isByVal()) { 5985 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5986 if (NumGPRsUsed > NumGPRs) 5987 HasParameterArea = true; 5988 } else { 5989 switch (ArgVT.getSimpleVT().SimpleTy) { 5990 default: llvm_unreachable("Unexpected ValueType for argument!"); 5991 case MVT::i1: 5992 case MVT::i32: 5993 case MVT::i64: 5994 if (++NumGPRsUsed <= NumGPRs) 5995 continue; 5996 break; 5997 case MVT::v4i32: 5998 case MVT::v8i16: 5999 case MVT::v16i8: 6000 case MVT::v2f64: 6001 case MVT::v2i64: 6002 case MVT::v1i128: 6003 case MVT::f128: 6004 if (++NumVRsUsed <= NumVRs) 6005 continue; 6006 break; 6007 case MVT::v4f32: 6008 if (++NumVRsUsed <= NumVRs) 6009 continue; 6010 break; 6011 case MVT::f32: 6012 case MVT::f64: 6013 if (++NumFPRsUsed <= NumFPRs) 6014 continue; 6015 break; 6016 } 6017 HasParameterArea = true; 6018 } 6019 } 6020 6021 /* Respect alignment of argument on the stack. */ 6022 auto Alignement = 6023 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6024 NumBytes = alignTo(NumBytes, Alignement); 6025 6026 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6027 if (Flags.isInConsecutiveRegsLast()) 6028 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6029 } 6030 6031 unsigned NumBytesActuallyUsed = NumBytes; 6032 6033 // In the old ELFv1 ABI, 6034 // the prolog code of the callee may store up to 8 GPR argument registers to 6035 // the stack, allowing va_start to index over them in memory if its varargs. 6036 // Because we cannot tell if this is needed on the caller side, we have to 6037 // conservatively assume that it is needed. As such, make sure we have at 6038 // least enough stack space for the caller to store the 8 GPRs. 6039 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6040 // really requires memory operands, e.g. a vararg function. 6041 if (HasParameterArea) 6042 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6043 else 6044 NumBytes = LinkageSize; 6045 6046 // Tail call needs the stack to be aligned. 6047 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6048 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6049 6050 int SPDiff = 0; 6051 6052 // Calculate by how many bytes the stack has to be adjusted in case of tail 6053 // call optimization. 6054 if (!IsSibCall) 6055 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6056 6057 // To protect arguments on the stack from being clobbered in a tail call, 6058 // force all the loads to happen before doing any other lowering. 6059 if (CFlags.IsTailCall) 6060 Chain = DAG.getStackArgumentTokenFactor(Chain); 6061 6062 // Adjust the stack pointer for the new arguments... 6063 // These operations are automatically eliminated by the prolog/epilog pass 6064 if (!IsSibCall) 6065 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6066 SDValue CallSeqStart = Chain; 6067 6068 // Load the return address and frame pointer so it can be move somewhere else 6069 // later. 6070 SDValue LROp, FPOp; 6071 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6072 6073 // Set up a copy of the stack pointer for use loading and storing any 6074 // arguments that may not fit in the registers available for argument 6075 // passing. 6076 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6077 6078 // Figure out which arguments are going to go in registers, and which in 6079 // memory. Also, if this is a vararg function, floating point operations 6080 // must be stored to our stack, and loaded into integer regs as well, if 6081 // any integer regs are available for argument passing. 6082 unsigned ArgOffset = LinkageSize; 6083 6084 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6085 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6086 6087 SmallVector<SDValue, 8> MemOpChains; 6088 for (unsigned i = 0; i != NumOps; ++i) { 6089 SDValue Arg = OutVals[i]; 6090 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6091 EVT ArgVT = Outs[i].VT; 6092 EVT OrigVT = Outs[i].ArgVT; 6093 6094 // PtrOff will be used to store the current argument to the stack if a 6095 // register cannot be found for it. 6096 SDValue PtrOff; 6097 6098 // We re-align the argument offset for each argument, except when using the 6099 // fast calling convention, when we need to make sure we do that only when 6100 // we'll actually use a stack slot. 6101 auto ComputePtrOff = [&]() { 6102 /* Respect alignment of argument on the stack. */ 6103 auto Alignment = 6104 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6105 ArgOffset = alignTo(ArgOffset, Alignment); 6106 6107 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6108 6109 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6110 }; 6111 6112 if (!IsFastCall) { 6113 ComputePtrOff(); 6114 6115 /* Compute GPR index associated with argument offset. */ 6116 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6117 GPR_idx = std::min(GPR_idx, NumGPRs); 6118 } 6119 6120 // Promote integers to 64-bit values. 6121 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6122 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6123 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6124 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6125 } 6126 6127 // FIXME memcpy is used way more than necessary. Correctness first. 6128 // Note: "by value" is code for passing a structure by value, not 6129 // basic types. 6130 if (Flags.isByVal()) { 6131 // Note: Size includes alignment padding, so 6132 // struct x { short a; char b; } 6133 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6134 // These are the proper values we need for right-justifying the 6135 // aggregate in a parameter register. 6136 unsigned Size = Flags.getByValSize(); 6137 6138 // An empty aggregate parameter takes up no storage and no 6139 // registers. 6140 if (Size == 0) 6141 continue; 6142 6143 if (IsFastCall) 6144 ComputePtrOff(); 6145 6146 // All aggregates smaller than 8 bytes must be passed right-justified. 6147 if (Size==1 || Size==2 || Size==4) { 6148 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6149 if (GPR_idx != NumGPRs) { 6150 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6151 MachinePointerInfo(), VT); 6152 MemOpChains.push_back(Load.getValue(1)); 6153 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6154 6155 ArgOffset += PtrByteSize; 6156 continue; 6157 } 6158 } 6159 6160 if (GPR_idx == NumGPRs && Size < 8) { 6161 SDValue AddPtr = PtrOff; 6162 if (!isLittleEndian) { 6163 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6164 PtrOff.getValueType()); 6165 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6166 } 6167 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6168 CallSeqStart, 6169 Flags, DAG, dl); 6170 ArgOffset += PtrByteSize; 6171 continue; 6172 } 6173 // Copy entire object into memory. There are cases where gcc-generated 6174 // code assumes it is there, even if it could be put entirely into 6175 // registers. (This is not what the doc says.) 6176 6177 // FIXME: The above statement is likely due to a misunderstanding of the 6178 // documents. All arguments must be copied into the parameter area BY 6179 // THE CALLEE in the event that the callee takes the address of any 6180 // formal argument. That has not yet been implemented. However, it is 6181 // reasonable to use the stack area as a staging area for the register 6182 // load. 6183 6184 // Skip this for small aggregates, as we will use the same slot for a 6185 // right-justified copy, below. 6186 if (Size >= 8) 6187 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6188 CallSeqStart, 6189 Flags, DAG, dl); 6190 6191 // When a register is available, pass a small aggregate right-justified. 6192 if (Size < 8 && GPR_idx != NumGPRs) { 6193 // The easiest way to get this right-justified in a register 6194 // is to copy the structure into the rightmost portion of a 6195 // local variable slot, then load the whole slot into the 6196 // register. 6197 // FIXME: The memcpy seems to produce pretty awful code for 6198 // small aggregates, particularly for packed ones. 6199 // FIXME: It would be preferable to use the slot in the 6200 // parameter save area instead of a new local variable. 6201 SDValue AddPtr = PtrOff; 6202 if (!isLittleEndian) { 6203 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6204 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6205 } 6206 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6207 CallSeqStart, 6208 Flags, DAG, dl); 6209 6210 // Load the slot into the register. 6211 SDValue Load = 6212 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6213 MemOpChains.push_back(Load.getValue(1)); 6214 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6215 6216 // Done with this argument. 6217 ArgOffset += PtrByteSize; 6218 continue; 6219 } 6220 6221 // For aggregates larger than PtrByteSize, copy the pieces of the 6222 // object that fit into registers from the parameter save area. 6223 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6224 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6225 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6226 if (GPR_idx != NumGPRs) { 6227 SDValue Load = 6228 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6229 MemOpChains.push_back(Load.getValue(1)); 6230 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6231 ArgOffset += PtrByteSize; 6232 } else { 6233 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6234 break; 6235 } 6236 } 6237 continue; 6238 } 6239 6240 switch (Arg.getSimpleValueType().SimpleTy) { 6241 default: llvm_unreachable("Unexpected ValueType for argument!"); 6242 case MVT::i1: 6243 case MVT::i32: 6244 case MVT::i64: 6245 if (Flags.isNest()) { 6246 // The 'nest' parameter, if any, is passed in R11. 6247 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6248 break; 6249 } 6250 6251 // These can be scalar arguments or elements of an integer array type 6252 // passed directly. Clang may use those instead of "byval" aggregate 6253 // types to avoid forcing arguments to memory unnecessarily. 6254 if (GPR_idx != NumGPRs) { 6255 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6256 } else { 6257 if (IsFastCall) 6258 ComputePtrOff(); 6259 6260 assert(HasParameterArea && 6261 "Parameter area must exist to pass an argument in memory."); 6262 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6263 true, CFlags.IsTailCall, false, MemOpChains, 6264 TailCallArguments, dl); 6265 if (IsFastCall) 6266 ArgOffset += PtrByteSize; 6267 } 6268 if (!IsFastCall) 6269 ArgOffset += PtrByteSize; 6270 break; 6271 case MVT::f32: 6272 case MVT::f64: { 6273 // These can be scalar arguments or elements of a float array type 6274 // passed directly. The latter are used to implement ELFv2 homogenous 6275 // float aggregates. 6276 6277 // Named arguments go into FPRs first, and once they overflow, the 6278 // remaining arguments go into GPRs and then the parameter save area. 6279 // Unnamed arguments for vararg functions always go to GPRs and 6280 // then the parameter save area. For now, put all arguments to vararg 6281 // routines always in both locations (FPR *and* GPR or stack slot). 6282 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6283 bool NeededLoad = false; 6284 6285 // First load the argument into the next available FPR. 6286 if (FPR_idx != NumFPRs) 6287 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6288 6289 // Next, load the argument into GPR or stack slot if needed. 6290 if (!NeedGPROrStack) 6291 ; 6292 else if (GPR_idx != NumGPRs && !IsFastCall) { 6293 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6294 // once we support fp <-> gpr moves. 6295 6296 // In the non-vararg case, this can only ever happen in the 6297 // presence of f32 array types, since otherwise we never run 6298 // out of FPRs before running out of GPRs. 6299 SDValue ArgVal; 6300 6301 // Double values are always passed in a single GPR. 6302 if (Arg.getValueType() != MVT::f32) { 6303 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6304 6305 // Non-array float values are extended and passed in a GPR. 6306 } else if (!Flags.isInConsecutiveRegs()) { 6307 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6308 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6309 6310 // If we have an array of floats, we collect every odd element 6311 // together with its predecessor into one GPR. 6312 } else if (ArgOffset % PtrByteSize != 0) { 6313 SDValue Lo, Hi; 6314 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6315 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6316 if (!isLittleEndian) 6317 std::swap(Lo, Hi); 6318 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6319 6320 // The final element, if even, goes into the first half of a GPR. 6321 } else if (Flags.isInConsecutiveRegsLast()) { 6322 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6323 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6324 if (!isLittleEndian) 6325 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6326 DAG.getConstant(32, dl, MVT::i32)); 6327 6328 // Non-final even elements are skipped; they will be handled 6329 // together the with subsequent argument on the next go-around. 6330 } else 6331 ArgVal = SDValue(); 6332 6333 if (ArgVal.getNode()) 6334 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6335 } else { 6336 if (IsFastCall) 6337 ComputePtrOff(); 6338 6339 // Single-precision floating-point values are mapped to the 6340 // second (rightmost) word of the stack doubleword. 6341 if (Arg.getValueType() == MVT::f32 && 6342 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6343 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6344 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6345 } 6346 6347 assert(HasParameterArea && 6348 "Parameter area must exist to pass an argument in memory."); 6349 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6350 true, CFlags.IsTailCall, false, MemOpChains, 6351 TailCallArguments, dl); 6352 6353 NeededLoad = true; 6354 } 6355 // When passing an array of floats, the array occupies consecutive 6356 // space in the argument area; only round up to the next doubleword 6357 // at the end of the array. Otherwise, each float takes 8 bytes. 6358 if (!IsFastCall || NeededLoad) { 6359 ArgOffset += (Arg.getValueType() == MVT::f32 && 6360 Flags.isInConsecutiveRegs()) ? 4 : 8; 6361 if (Flags.isInConsecutiveRegsLast()) 6362 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6363 } 6364 break; 6365 } 6366 case MVT::v4f32: 6367 case MVT::v4i32: 6368 case MVT::v8i16: 6369 case MVT::v16i8: 6370 case MVT::v2f64: 6371 case MVT::v2i64: 6372 case MVT::v1i128: 6373 case MVT::f128: 6374 // These can be scalar arguments or elements of a vector array type 6375 // passed directly. The latter are used to implement ELFv2 homogenous 6376 // vector aggregates. 6377 6378 // For a varargs call, named arguments go into VRs or on the stack as 6379 // usual; unnamed arguments always go to the stack or the corresponding 6380 // GPRs when within range. For now, we always put the value in both 6381 // locations (or even all three). 6382 if (CFlags.IsVarArg) { 6383 assert(HasParameterArea && 6384 "Parameter area must exist if we have a varargs call."); 6385 // We could elide this store in the case where the object fits 6386 // entirely in R registers. Maybe later. 6387 SDValue Store = 6388 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6389 MemOpChains.push_back(Store); 6390 if (VR_idx != NumVRs) { 6391 SDValue Load = 6392 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6393 MemOpChains.push_back(Load.getValue(1)); 6394 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6395 } 6396 ArgOffset += 16; 6397 for (unsigned i=0; i<16; i+=PtrByteSize) { 6398 if (GPR_idx == NumGPRs) 6399 break; 6400 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6401 DAG.getConstant(i, dl, PtrVT)); 6402 SDValue Load = 6403 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6404 MemOpChains.push_back(Load.getValue(1)); 6405 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6406 } 6407 break; 6408 } 6409 6410 // Non-varargs Altivec params go into VRs or on the stack. 6411 if (VR_idx != NumVRs) { 6412 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6413 } else { 6414 if (IsFastCall) 6415 ComputePtrOff(); 6416 6417 assert(HasParameterArea && 6418 "Parameter area must exist to pass an argument in memory."); 6419 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6420 true, CFlags.IsTailCall, true, MemOpChains, 6421 TailCallArguments, dl); 6422 if (IsFastCall) 6423 ArgOffset += 16; 6424 } 6425 6426 if (!IsFastCall) 6427 ArgOffset += 16; 6428 break; 6429 } 6430 } 6431 6432 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6433 "mismatch in size of parameter area"); 6434 (void)NumBytesActuallyUsed; 6435 6436 if (!MemOpChains.empty()) 6437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6438 6439 // Check if this is an indirect call (MTCTR/BCTRL). 6440 // See prepareDescriptorIndirectCall and buildCallOperands for more 6441 // information about calls through function pointers in the 64-bit SVR4 ABI. 6442 if (CFlags.IsIndirect) { 6443 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6444 // caller in the TOC save area. 6445 if (isTOCSaveRestoreRequired(Subtarget)) { 6446 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6447 // Load r2 into a virtual register and store it to the TOC save area. 6448 setUsesTOCBasePtr(DAG); 6449 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6450 // TOC save area offset. 6451 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6452 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6453 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6454 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6455 MachinePointerInfo::getStack( 6456 DAG.getMachineFunction(), TOCSaveOffset)); 6457 } 6458 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6459 // This does not mean the MTCTR instruction must use R12; it's easier 6460 // to model this as an extra parameter, so do that. 6461 if (isELFv2ABI && !CFlags.IsPatchPoint) 6462 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6463 } 6464 6465 // Build a sequence of copy-to-reg nodes chained together with token chain 6466 // and flag operands which copy the outgoing args into the appropriate regs. 6467 SDValue InFlag; 6468 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6469 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6470 RegsToPass[i].second, InFlag); 6471 InFlag = Chain.getValue(1); 6472 } 6473 6474 if (CFlags.IsTailCall && !IsSibCall) 6475 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6476 TailCallArguments); 6477 6478 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6479 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6480 } 6481 6482 // Returns true when the shadow of a general purpose argument register 6483 // in the parameter save area is aligned to at least 'RequiredAlign'. 6484 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6485 assert(RequiredAlign.value() <= 16 && 6486 "Required alignment greater than stack alignment."); 6487 switch (Reg) { 6488 default: 6489 report_fatal_error("called on invalid register."); 6490 case PPC::R5: 6491 case PPC::R9: 6492 case PPC::X3: 6493 case PPC::X5: 6494 case PPC::X7: 6495 case PPC::X9: 6496 // These registers are 16 byte aligned which is the most strict aligment 6497 // we can support. 6498 return true; 6499 case PPC::R3: 6500 case PPC::R7: 6501 case PPC::X4: 6502 case PPC::X6: 6503 case PPC::X8: 6504 case PPC::X10: 6505 // The shadow of these registers in the PSA is 8 byte aligned. 6506 return RequiredAlign <= 8; 6507 case PPC::R4: 6508 case PPC::R6: 6509 case PPC::R8: 6510 case PPC::R10: 6511 return RequiredAlign <= 4; 6512 } 6513 } 6514 6515 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6516 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6517 CCState &S) { 6518 AIXCCState &State = static_cast<AIXCCState &>(S); 6519 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6520 State.getMachineFunction().getSubtarget()); 6521 const bool IsPPC64 = Subtarget.isPPC64(); 6522 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6523 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6524 6525 if (ValVT == MVT::f128) 6526 report_fatal_error("f128 is unimplemented on AIX."); 6527 6528 if (ArgFlags.isNest()) 6529 report_fatal_error("Nest arguments are unimplemented."); 6530 6531 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6532 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6533 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6534 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6535 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6536 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6537 6538 static const MCPhysReg VR[] = {// Vector registers. 6539 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6540 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6541 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6542 6543 if (ArgFlags.isByVal()) { 6544 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6545 report_fatal_error("Pass-by-value arguments with alignment greater than " 6546 "register width are not supported."); 6547 6548 const unsigned ByValSize = ArgFlags.getByValSize(); 6549 6550 // An empty aggregate parameter takes up no storage and no registers, 6551 // but needs a MemLoc for a stack slot for the formal arguments side. 6552 if (ByValSize == 0) { 6553 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6554 State.getNextStackOffset(), RegVT, 6555 LocInfo)); 6556 return false; 6557 } 6558 6559 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6560 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6561 for (const unsigned E = Offset + StackSize; Offset < E; 6562 Offset += PtrAlign.value()) { 6563 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6564 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6565 else { 6566 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6567 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6568 LocInfo)); 6569 break; 6570 } 6571 } 6572 return false; 6573 } 6574 6575 // Arguments always reserve parameter save area. 6576 switch (ValVT.SimpleTy) { 6577 default: 6578 report_fatal_error("Unhandled value type for argument."); 6579 case MVT::i64: 6580 // i64 arguments should have been split to i32 for PPC32. 6581 assert(IsPPC64 && "PPC32 should have split i64 values."); 6582 LLVM_FALLTHROUGH; 6583 case MVT::i1: 6584 case MVT::i32: { 6585 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6586 // AIX integer arguments are always passed in register width. 6587 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6588 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6589 : CCValAssign::LocInfo::ZExt; 6590 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6591 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6592 else 6593 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6594 6595 return false; 6596 } 6597 case MVT::f32: 6598 case MVT::f64: { 6599 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6600 const unsigned StoreSize = LocVT.getStoreSize(); 6601 // Floats are always 4-byte aligned in the PSA on AIX. 6602 // This includes f64 in 64-bit mode for ABI compatibility. 6603 const unsigned Offset = 6604 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6605 unsigned FReg = State.AllocateReg(FPR); 6606 if (FReg) 6607 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6608 6609 // Reserve and initialize GPRs or initialize the PSA as required. 6610 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6611 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6612 assert(FReg && "An FPR should be available when a GPR is reserved."); 6613 if (State.isVarArg()) { 6614 // Successfully reserved GPRs are only initialized for vararg calls. 6615 // Custom handling is required for: 6616 // f64 in PPC32 needs to be split into 2 GPRs. 6617 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6618 State.addLoc( 6619 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6620 } 6621 } else { 6622 // If there are insufficient GPRs, the PSA needs to be initialized. 6623 // Initialization occurs even if an FPR was initialized for 6624 // compatibility with the AIX XL compiler. The full memory for the 6625 // argument will be initialized even if a prior word is saved in GPR. 6626 // A custom memLoc is used when the argument also passes in FPR so 6627 // that the callee handling can skip over it easily. 6628 State.addLoc( 6629 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6630 LocInfo) 6631 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6632 break; 6633 } 6634 } 6635 6636 return false; 6637 } 6638 case MVT::v4f32: 6639 case MVT::v4i32: 6640 case MVT::v8i16: 6641 case MVT::v16i8: 6642 case MVT::v2i64: 6643 case MVT::v2f64: 6644 case MVT::v1i128: { 6645 const unsigned VecSize = 16; 6646 const Align VecAlign(VecSize); 6647 6648 if (!State.isVarArg()) { 6649 // If there are vector registers remaining we don't consume any stack 6650 // space. 6651 if (unsigned VReg = State.AllocateReg(VR)) { 6652 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6653 return false; 6654 } 6655 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6656 // might be allocated in the portion of the PSA that is shadowed by the 6657 // GPRs. 6658 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6659 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6660 return false; 6661 } 6662 6663 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6664 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6665 6666 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6667 // Burn any underaligned registers and their shadowed stack space until 6668 // we reach the required alignment. 6669 while (NextRegIndex != GPRs.size() && 6670 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6671 // Shadow allocate register and its stack shadow. 6672 unsigned Reg = State.AllocateReg(GPRs); 6673 State.AllocateStack(PtrSize, PtrAlign); 6674 assert(Reg && "Allocating register unexpectedly failed."); 6675 (void)Reg; 6676 NextRegIndex = State.getFirstUnallocated(GPRs); 6677 } 6678 6679 // Vectors that are passed as fixed arguments are handled differently. 6680 // They are passed in VRs if any are available (unlike arguments passed 6681 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6682 // functions) 6683 if (State.isFixed(ValNo)) { 6684 if (unsigned VReg = State.AllocateReg(VR)) { 6685 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6686 // Shadow allocate GPRs and stack space even though we pass in a VR. 6687 for (unsigned I = 0; I != VecSize; I += PtrSize) 6688 State.AllocateReg(GPRs); 6689 State.AllocateStack(VecSize, VecAlign); 6690 return false; 6691 } 6692 // No vector registers remain so pass on the stack. 6693 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6694 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6695 return false; 6696 } 6697 6698 // If all GPRS are consumed then we pass the argument fully on the stack. 6699 if (NextRegIndex == GPRs.size()) { 6700 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6701 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6702 return false; 6703 } 6704 6705 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6706 // half of the argument, and then need to pass the remaining half on the 6707 // stack. 6708 if (GPRs[NextRegIndex] == PPC::R9) { 6709 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6710 State.addLoc( 6711 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6712 6713 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6714 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6715 assert(FirstReg && SecondReg && 6716 "Allocating R9 or R10 unexpectedly failed."); 6717 State.addLoc( 6718 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6719 State.addLoc( 6720 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6721 return false; 6722 } 6723 6724 // We have enough GPRs to fully pass the vector argument, and we have 6725 // already consumed any underaligned registers. Start with the custom 6726 // MemLoc and then the custom RegLocs. 6727 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6728 State.addLoc( 6729 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6730 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6731 const unsigned Reg = State.AllocateReg(GPRs); 6732 assert(Reg && "Failed to allocated register for vararg vector argument"); 6733 State.addLoc( 6734 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6735 } 6736 return false; 6737 } 6738 } 6739 return true; 6740 } 6741 6742 // So far, this function is only used by LowerFormalArguments_AIX() 6743 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6744 bool IsPPC64, 6745 bool HasP8Vector, 6746 bool HasVSX) { 6747 assert((IsPPC64 || SVT != MVT::i64) && 6748 "i64 should have been split for 32-bit codegen."); 6749 6750 switch (SVT) { 6751 default: 6752 report_fatal_error("Unexpected value type for formal argument"); 6753 case MVT::i1: 6754 case MVT::i32: 6755 case MVT::i64: 6756 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6757 case MVT::f32: 6758 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6759 case MVT::f64: 6760 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6761 case MVT::v4f32: 6762 case MVT::v4i32: 6763 case MVT::v8i16: 6764 case MVT::v16i8: 6765 case MVT::v2i64: 6766 case MVT::v2f64: 6767 case MVT::v1i128: 6768 return &PPC::VRRCRegClass; 6769 } 6770 } 6771 6772 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6773 SelectionDAG &DAG, SDValue ArgValue, 6774 MVT LocVT, const SDLoc &dl) { 6775 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6776 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6777 6778 if (Flags.isSExt()) 6779 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6780 DAG.getValueType(ValVT)); 6781 else if (Flags.isZExt()) 6782 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6783 DAG.getValueType(ValVT)); 6784 6785 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6786 } 6787 6788 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6789 const unsigned LASize = FL->getLinkageSize(); 6790 6791 if (PPC::GPRCRegClass.contains(Reg)) { 6792 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6793 "Reg must be a valid argument register!"); 6794 return LASize + 4 * (Reg - PPC::R3); 6795 } 6796 6797 if (PPC::G8RCRegClass.contains(Reg)) { 6798 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6799 "Reg must be a valid argument register!"); 6800 return LASize + 8 * (Reg - PPC::X3); 6801 } 6802 6803 llvm_unreachable("Only general purpose registers expected."); 6804 } 6805 6806 // AIX ABI Stack Frame Layout: 6807 // 6808 // Low Memory +--------------------------------------------+ 6809 // SP +---> | Back chain | ---+ 6810 // | +--------------------------------------------+ | 6811 // | | Saved Condition Register | | 6812 // | +--------------------------------------------+ | 6813 // | | Saved Linkage Register | | 6814 // | +--------------------------------------------+ | Linkage Area 6815 // | | Reserved for compilers | | 6816 // | +--------------------------------------------+ | 6817 // | | Reserved for binders | | 6818 // | +--------------------------------------------+ | 6819 // | | Saved TOC pointer | ---+ 6820 // | +--------------------------------------------+ 6821 // | | Parameter save area | 6822 // | +--------------------------------------------+ 6823 // | | Alloca space | 6824 // | +--------------------------------------------+ 6825 // | | Local variable space | 6826 // | +--------------------------------------------+ 6827 // | | Float/int conversion temporary | 6828 // | +--------------------------------------------+ 6829 // | | Save area for AltiVec registers | 6830 // | +--------------------------------------------+ 6831 // | | AltiVec alignment padding | 6832 // | +--------------------------------------------+ 6833 // | | Save area for VRSAVE register | 6834 // | +--------------------------------------------+ 6835 // | | Save area for General Purpose registers | 6836 // | +--------------------------------------------+ 6837 // | | Save area for Floating Point registers | 6838 // | +--------------------------------------------+ 6839 // +---- | Back chain | 6840 // High Memory +--------------------------------------------+ 6841 // 6842 // Specifications: 6843 // AIX 7.2 Assembler Language Reference 6844 // Subroutine linkage convention 6845 6846 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6847 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6848 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6849 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6850 6851 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6852 CallConv == CallingConv::Fast) && 6853 "Unexpected calling convention!"); 6854 6855 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6856 report_fatal_error("Tail call support is unimplemented on AIX."); 6857 6858 if (useSoftFloat()) 6859 report_fatal_error("Soft float support is unimplemented on AIX."); 6860 6861 const PPCSubtarget &Subtarget = 6862 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6863 6864 const bool IsPPC64 = Subtarget.isPPC64(); 6865 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6866 6867 // Assign locations to all of the incoming arguments. 6868 SmallVector<CCValAssign, 16> ArgLocs; 6869 MachineFunction &MF = DAG.getMachineFunction(); 6870 MachineFrameInfo &MFI = MF.getFrameInfo(); 6871 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6872 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6873 6874 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6875 // Reserve space for the linkage area on the stack. 6876 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6877 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6878 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6879 6880 SmallVector<SDValue, 8> MemOps; 6881 6882 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6883 CCValAssign &VA = ArgLocs[I++]; 6884 MVT LocVT = VA.getLocVT(); 6885 MVT ValVT = VA.getValVT(); 6886 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6887 // For compatibility with the AIX XL compiler, the float args in the 6888 // parameter save area are initialized even if the argument is available 6889 // in register. The caller is required to initialize both the register 6890 // and memory, however, the callee can choose to expect it in either. 6891 // The memloc is dismissed here because the argument is retrieved from 6892 // the register. 6893 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6894 continue; 6895 6896 auto HandleMemLoc = [&]() { 6897 const unsigned LocSize = LocVT.getStoreSize(); 6898 const unsigned ValSize = ValVT.getStoreSize(); 6899 assert((ValSize <= LocSize) && 6900 "Object size is larger than size of MemLoc"); 6901 int CurArgOffset = VA.getLocMemOffset(); 6902 // Objects are right-justified because AIX is big-endian. 6903 if (LocSize > ValSize) 6904 CurArgOffset += LocSize - ValSize; 6905 // Potential tail calls could cause overwriting of argument stack slots. 6906 const bool IsImmutable = 6907 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6908 (CallConv == CallingConv::Fast)); 6909 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6910 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6911 SDValue ArgValue = 6912 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6913 InVals.push_back(ArgValue); 6914 }; 6915 6916 // Vector arguments to VaArg functions are passed both on the stack, and 6917 // in any available GPRs. Load the value from the stack and add the GPRs 6918 // as live ins. 6919 if (VA.isMemLoc() && VA.needsCustom()) { 6920 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6921 assert(isVarArg && "Only use custom memloc for vararg."); 6922 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6923 // matching custom RegLocs. 6924 const unsigned OriginalValNo = VA.getValNo(); 6925 (void)OriginalValNo; 6926 6927 auto HandleCustomVecRegLoc = [&]() { 6928 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6929 "Missing custom RegLoc."); 6930 VA = ArgLocs[I++]; 6931 assert(VA.getValVT().isVector() && 6932 "Unexpected Val type for custom RegLoc."); 6933 assert(VA.getValNo() == OriginalValNo && 6934 "ValNo mismatch between custom MemLoc and RegLoc."); 6935 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6936 MF.addLiveIn(VA.getLocReg(), 6937 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6938 Subtarget.hasVSX())); 6939 }; 6940 6941 HandleMemLoc(); 6942 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6943 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6944 // R10. 6945 HandleCustomVecRegLoc(); 6946 HandleCustomVecRegLoc(); 6947 6948 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6949 // we passed the vector in R5, R6, R7 and R8. 6950 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6951 assert(!IsPPC64 && 6952 "Only 2 custom RegLocs expected for 64-bit codegen."); 6953 HandleCustomVecRegLoc(); 6954 HandleCustomVecRegLoc(); 6955 } 6956 6957 continue; 6958 } 6959 6960 if (VA.isRegLoc()) { 6961 if (VA.getValVT().isScalarInteger()) 6962 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6963 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6964 switch (VA.getValVT().SimpleTy) { 6965 default: 6966 report_fatal_error("Unhandled value type for argument."); 6967 case MVT::f32: 6968 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6969 break; 6970 case MVT::f64: 6971 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 6972 break; 6973 } 6974 } else if (VA.getValVT().isVector()) { 6975 switch (VA.getValVT().SimpleTy) { 6976 default: 6977 report_fatal_error("Unhandled value type for argument."); 6978 case MVT::v16i8: 6979 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 6980 break; 6981 case MVT::v8i16: 6982 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 6983 break; 6984 case MVT::v4i32: 6985 case MVT::v2i64: 6986 case MVT::v1i128: 6987 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 6988 break; 6989 case MVT::v4f32: 6990 case MVT::v2f64: 6991 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 6992 break; 6993 } 6994 } 6995 } 6996 6997 if (Flags.isByVal() && VA.isMemLoc()) { 6998 const unsigned Size = 6999 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7000 PtrByteSize); 7001 const int FI = MF.getFrameInfo().CreateFixedObject( 7002 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7003 /* IsAliased */ true); 7004 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7005 InVals.push_back(FIN); 7006 7007 continue; 7008 } 7009 7010 if (Flags.isByVal()) { 7011 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7012 7013 const MCPhysReg ArgReg = VA.getLocReg(); 7014 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7015 7016 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7017 report_fatal_error("Over aligned byvals not supported yet."); 7018 7019 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7020 const int FI = MF.getFrameInfo().CreateFixedObject( 7021 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7022 /* IsAliased */ true); 7023 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7024 InVals.push_back(FIN); 7025 7026 // Add live ins for all the RegLocs for the same ByVal. 7027 const TargetRegisterClass *RegClass = 7028 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7029 7030 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7031 unsigned Offset) { 7032 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7033 // Since the callers side has left justified the aggregate in the 7034 // register, we can simply store the entire register into the stack 7035 // slot. 7036 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7037 // The store to the fixedstack object is needed becuase accessing a 7038 // field of the ByVal will use a gep and load. Ideally we will optimize 7039 // to extracting the value from the register directly, and elide the 7040 // stores when the arguments address is not taken, but that will need to 7041 // be future work. 7042 SDValue Store = DAG.getStore( 7043 CopyFrom.getValue(1), dl, CopyFrom, 7044 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7045 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7046 7047 MemOps.push_back(Store); 7048 }; 7049 7050 unsigned Offset = 0; 7051 HandleRegLoc(VA.getLocReg(), Offset); 7052 Offset += PtrByteSize; 7053 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7054 Offset += PtrByteSize) { 7055 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7056 "RegLocs should be for ByVal argument."); 7057 7058 const CCValAssign RL = ArgLocs[I++]; 7059 HandleRegLoc(RL.getLocReg(), Offset); 7060 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7061 } 7062 7063 if (Offset != StackSize) { 7064 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7065 "Expected MemLoc for remaining bytes."); 7066 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7067 // Consume the MemLoc.The InVal has already been emitted, so nothing 7068 // more needs to be done. 7069 ++I; 7070 } 7071 7072 continue; 7073 } 7074 7075 if (VA.isRegLoc() && !VA.needsCustom()) { 7076 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7077 Register VReg = 7078 MF.addLiveIn(VA.getLocReg(), 7079 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7080 Subtarget.hasVSX())); 7081 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7082 if (ValVT.isScalarInteger() && 7083 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7084 ArgValue = 7085 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7086 } 7087 InVals.push_back(ArgValue); 7088 continue; 7089 } 7090 if (VA.isMemLoc()) { 7091 HandleMemLoc(); 7092 continue; 7093 } 7094 } 7095 7096 // On AIX a minimum of 8 words is saved to the parameter save area. 7097 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7098 // Area that is at least reserved in the caller of this function. 7099 unsigned CallerReservedArea = 7100 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7101 7102 // Set the size that is at least reserved in caller of this function. Tail 7103 // call optimized function's reserved stack space needs to be aligned so 7104 // that taking the difference between two stack areas will result in an 7105 // aligned stack. 7106 CallerReservedArea = 7107 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7108 FuncInfo->setMinReservedArea(CallerReservedArea); 7109 7110 if (isVarArg) { 7111 FuncInfo->setVarArgsFrameIndex( 7112 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7113 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7114 7115 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7116 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7117 7118 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7119 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7120 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7121 7122 // The fixed integer arguments of a variadic function are stored to the 7123 // VarArgsFrameIndex on the stack so that they may be loaded by 7124 // dereferencing the result of va_next. 7125 for (unsigned GPRIndex = 7126 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7127 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7128 7129 const unsigned VReg = 7130 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7131 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7132 7133 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7134 SDValue Store = 7135 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7136 MemOps.push_back(Store); 7137 // Increment the address for the next argument to store. 7138 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7139 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7140 } 7141 } 7142 7143 if (!MemOps.empty()) 7144 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7145 7146 return Chain; 7147 } 7148 7149 SDValue PPCTargetLowering::LowerCall_AIX( 7150 SDValue Chain, SDValue Callee, CallFlags CFlags, 7151 const SmallVectorImpl<ISD::OutputArg> &Outs, 7152 const SmallVectorImpl<SDValue> &OutVals, 7153 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7154 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7155 const CallBase *CB) const { 7156 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7157 // AIX ABI stack frame layout. 7158 7159 assert((CFlags.CallConv == CallingConv::C || 7160 CFlags.CallConv == CallingConv::Cold || 7161 CFlags.CallConv == CallingConv::Fast) && 7162 "Unexpected calling convention!"); 7163 7164 if (CFlags.IsPatchPoint) 7165 report_fatal_error("This call type is unimplemented on AIX."); 7166 7167 const PPCSubtarget& Subtarget = 7168 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7169 7170 MachineFunction &MF = DAG.getMachineFunction(); 7171 SmallVector<CCValAssign, 16> ArgLocs; 7172 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7173 *DAG.getContext()); 7174 7175 // Reserve space for the linkage save area (LSA) on the stack. 7176 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7177 // [SP][CR][LR][2 x reserved][TOC]. 7178 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7179 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7180 const bool IsPPC64 = Subtarget.isPPC64(); 7181 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7182 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7183 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7184 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7185 7186 // The prolog code of the callee may store up to 8 GPR argument registers to 7187 // the stack, allowing va_start to index over them in memory if the callee 7188 // is variadic. 7189 // Because we cannot tell if this is needed on the caller side, we have to 7190 // conservatively assume that it is needed. As such, make sure we have at 7191 // least enough stack space for the caller to store the 8 GPRs. 7192 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7193 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7194 CCInfo.getNextStackOffset()); 7195 7196 // Adjust the stack pointer for the new arguments... 7197 // These operations are automatically eliminated by the prolog/epilog pass. 7198 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7199 SDValue CallSeqStart = Chain; 7200 7201 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7202 SmallVector<SDValue, 8> MemOpChains; 7203 7204 // Set up a copy of the stack pointer for loading and storing any 7205 // arguments that may not fit in the registers available for argument 7206 // passing. 7207 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7208 : DAG.getRegister(PPC::R1, MVT::i32); 7209 7210 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7211 const unsigned ValNo = ArgLocs[I].getValNo(); 7212 SDValue Arg = OutVals[ValNo]; 7213 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7214 7215 if (Flags.isByVal()) { 7216 const unsigned ByValSize = Flags.getByValSize(); 7217 7218 // Nothing to do for zero-sized ByVals on the caller side. 7219 if (!ByValSize) { 7220 ++I; 7221 continue; 7222 } 7223 7224 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7225 return DAG.getExtLoad( 7226 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7227 (LoadOffset != 0) 7228 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7229 : Arg, 7230 MachinePointerInfo(), VT); 7231 }; 7232 7233 unsigned LoadOffset = 0; 7234 7235 // Initialize registers, which are fully occupied by the by-val argument. 7236 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7237 SDValue Load = GetLoad(PtrVT, LoadOffset); 7238 MemOpChains.push_back(Load.getValue(1)); 7239 LoadOffset += PtrByteSize; 7240 const CCValAssign &ByValVA = ArgLocs[I++]; 7241 assert(ByValVA.getValNo() == ValNo && 7242 "Unexpected location for pass-by-value argument."); 7243 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7244 } 7245 7246 if (LoadOffset == ByValSize) 7247 continue; 7248 7249 // There must be one more loc to handle the remainder. 7250 assert(ArgLocs[I].getValNo() == ValNo && 7251 "Expected additional location for by-value argument."); 7252 7253 if (ArgLocs[I].isMemLoc()) { 7254 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7255 const CCValAssign &ByValVA = ArgLocs[I++]; 7256 ISD::ArgFlagsTy MemcpyFlags = Flags; 7257 // Only memcpy the bytes that don't pass in register. 7258 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7259 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7260 (LoadOffset != 0) 7261 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7262 : Arg, 7263 DAG.getObjectPtrOffset(dl, StackPtr, 7264 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7265 CallSeqStart, MemcpyFlags, DAG, dl); 7266 continue; 7267 } 7268 7269 // Initialize the final register residue. 7270 // Any residue that occupies the final by-val arg register must be 7271 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7272 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7273 // 2 and 1 byte loads. 7274 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7275 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7276 "Unexpected register residue for by-value argument."); 7277 SDValue ResidueVal; 7278 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7279 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7280 const MVT VT = 7281 N == 1 ? MVT::i8 7282 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7283 SDValue Load = GetLoad(VT, LoadOffset); 7284 MemOpChains.push_back(Load.getValue(1)); 7285 LoadOffset += N; 7286 Bytes += N; 7287 7288 // By-val arguments are passed left-justfied in register. 7289 // Every load here needs to be shifted, otherwise a full register load 7290 // should have been used. 7291 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7292 "Unexpected load emitted during handling of pass-by-value " 7293 "argument."); 7294 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7295 EVT ShiftAmountTy = 7296 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7297 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7298 SDValue ShiftedLoad = 7299 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7300 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7301 ShiftedLoad) 7302 : ShiftedLoad; 7303 } 7304 7305 const CCValAssign &ByValVA = ArgLocs[I++]; 7306 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7307 continue; 7308 } 7309 7310 CCValAssign &VA = ArgLocs[I++]; 7311 const MVT LocVT = VA.getLocVT(); 7312 const MVT ValVT = VA.getValVT(); 7313 7314 switch (VA.getLocInfo()) { 7315 default: 7316 report_fatal_error("Unexpected argument extension type."); 7317 case CCValAssign::Full: 7318 break; 7319 case CCValAssign::ZExt: 7320 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7321 break; 7322 case CCValAssign::SExt: 7323 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7324 break; 7325 } 7326 7327 if (VA.isRegLoc() && !VA.needsCustom()) { 7328 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7329 continue; 7330 } 7331 7332 // Vector arguments passed to VarArg functions need custom handling when 7333 // they are passed (at least partially) in GPRs. 7334 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7335 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7336 // Store value to its stack slot. 7337 SDValue PtrOff = 7338 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7339 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7340 SDValue Store = 7341 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7342 MemOpChains.push_back(Store); 7343 const unsigned OriginalValNo = VA.getValNo(); 7344 // Then load the GPRs from the stack 7345 unsigned LoadOffset = 0; 7346 auto HandleCustomVecRegLoc = [&]() { 7347 assert(I != E && "Unexpected end of CCvalAssigns."); 7348 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7349 "Expected custom RegLoc."); 7350 CCValAssign RegVA = ArgLocs[I++]; 7351 assert(RegVA.getValNo() == OriginalValNo && 7352 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7353 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7354 DAG.getConstant(LoadOffset, dl, PtrVT)); 7355 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7356 MemOpChains.push_back(Load.getValue(1)); 7357 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7358 LoadOffset += PtrByteSize; 7359 }; 7360 7361 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7362 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7363 // R10. 7364 HandleCustomVecRegLoc(); 7365 HandleCustomVecRegLoc(); 7366 7367 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7368 ArgLocs[I].getValNo() == OriginalValNo) { 7369 assert(!IsPPC64 && 7370 "Only 2 custom RegLocs expected for 64-bit codegen."); 7371 HandleCustomVecRegLoc(); 7372 HandleCustomVecRegLoc(); 7373 } 7374 7375 continue; 7376 } 7377 7378 if (VA.isMemLoc()) { 7379 SDValue PtrOff = 7380 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7381 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7382 MemOpChains.push_back( 7383 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7384 7385 continue; 7386 } 7387 7388 if (!ValVT.isFloatingPoint()) 7389 report_fatal_error( 7390 "Unexpected register handling for calling convention."); 7391 7392 // Custom handling is used for GPR initializations for vararg float 7393 // arguments. 7394 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7395 LocVT.isInteger() && 7396 "Custom register handling only expected for VarArg."); 7397 7398 SDValue ArgAsInt = 7399 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7400 7401 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7402 // f32 in 32-bit GPR 7403 // f64 in 64-bit GPR 7404 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7405 else if (Arg.getValueType().getFixedSizeInBits() < 7406 LocVT.getFixedSizeInBits()) 7407 // f32 in 64-bit GPR. 7408 RegsToPass.push_back(std::make_pair( 7409 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7410 else { 7411 // f64 in two 32-bit GPRs 7412 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7413 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7414 "Unexpected custom register for argument!"); 7415 CCValAssign &GPR1 = VA; 7416 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7417 DAG.getConstant(32, dl, MVT::i8)); 7418 RegsToPass.push_back(std::make_pair( 7419 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7420 7421 if (I != E) { 7422 // If only 1 GPR was available, there will only be one custom GPR and 7423 // the argument will also pass in memory. 7424 CCValAssign &PeekArg = ArgLocs[I]; 7425 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7426 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7427 CCValAssign &GPR2 = ArgLocs[I++]; 7428 RegsToPass.push_back(std::make_pair( 7429 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7430 } 7431 } 7432 } 7433 } 7434 7435 if (!MemOpChains.empty()) 7436 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7437 7438 // For indirect calls, we need to save the TOC base to the stack for 7439 // restoration after the call. 7440 if (CFlags.IsIndirect) { 7441 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7442 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7443 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7444 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7445 const unsigned TOCSaveOffset = 7446 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7447 7448 setUsesTOCBasePtr(DAG); 7449 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7450 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7451 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7452 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7453 Chain = DAG.getStore( 7454 Val.getValue(1), dl, Val, AddPtr, 7455 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7456 } 7457 7458 // Build a sequence of copy-to-reg nodes chained together with token chain 7459 // and flag operands which copy the outgoing args into the appropriate regs. 7460 SDValue InFlag; 7461 for (auto Reg : RegsToPass) { 7462 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7463 InFlag = Chain.getValue(1); 7464 } 7465 7466 const int SPDiff = 0; 7467 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7468 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7469 } 7470 7471 bool 7472 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7473 MachineFunction &MF, bool isVarArg, 7474 const SmallVectorImpl<ISD::OutputArg> &Outs, 7475 LLVMContext &Context) const { 7476 SmallVector<CCValAssign, 16> RVLocs; 7477 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7478 return CCInfo.CheckReturn( 7479 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7480 ? RetCC_PPC_Cold 7481 : RetCC_PPC); 7482 } 7483 7484 SDValue 7485 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7486 bool isVarArg, 7487 const SmallVectorImpl<ISD::OutputArg> &Outs, 7488 const SmallVectorImpl<SDValue> &OutVals, 7489 const SDLoc &dl, SelectionDAG &DAG) const { 7490 SmallVector<CCValAssign, 16> RVLocs; 7491 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7492 *DAG.getContext()); 7493 CCInfo.AnalyzeReturn(Outs, 7494 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7495 ? RetCC_PPC_Cold 7496 : RetCC_PPC); 7497 7498 SDValue Flag; 7499 SmallVector<SDValue, 4> RetOps(1, Chain); 7500 7501 // Copy the result values into the output registers. 7502 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7503 CCValAssign &VA = RVLocs[i]; 7504 assert(VA.isRegLoc() && "Can only return in registers!"); 7505 7506 SDValue Arg = OutVals[RealResIdx]; 7507 7508 switch (VA.getLocInfo()) { 7509 default: llvm_unreachable("Unknown loc info!"); 7510 case CCValAssign::Full: break; 7511 case CCValAssign::AExt: 7512 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7513 break; 7514 case CCValAssign::ZExt: 7515 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7516 break; 7517 case CCValAssign::SExt: 7518 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7519 break; 7520 } 7521 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7522 bool isLittleEndian = Subtarget.isLittleEndian(); 7523 // Legalize ret f64 -> ret 2 x i32. 7524 SDValue SVal = 7525 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7526 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7527 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7528 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7529 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7530 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7531 Flag = Chain.getValue(1); 7532 VA = RVLocs[++i]; // skip ahead to next loc 7533 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7534 } else 7535 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7536 Flag = Chain.getValue(1); 7537 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7538 } 7539 7540 RetOps[0] = Chain; // Update chain. 7541 7542 // Add the flag if we have it. 7543 if (Flag.getNode()) 7544 RetOps.push_back(Flag); 7545 7546 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7547 } 7548 7549 SDValue 7550 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7551 SelectionDAG &DAG) const { 7552 SDLoc dl(Op); 7553 7554 // Get the correct type for integers. 7555 EVT IntVT = Op.getValueType(); 7556 7557 // Get the inputs. 7558 SDValue Chain = Op.getOperand(0); 7559 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7560 // Build a DYNAREAOFFSET node. 7561 SDValue Ops[2] = {Chain, FPSIdx}; 7562 SDVTList VTs = DAG.getVTList(IntVT); 7563 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7564 } 7565 7566 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7567 SelectionDAG &DAG) const { 7568 // When we pop the dynamic allocation we need to restore the SP link. 7569 SDLoc dl(Op); 7570 7571 // Get the correct type for pointers. 7572 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7573 7574 // Construct the stack pointer operand. 7575 bool isPPC64 = Subtarget.isPPC64(); 7576 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7577 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7578 7579 // Get the operands for the STACKRESTORE. 7580 SDValue Chain = Op.getOperand(0); 7581 SDValue SaveSP = Op.getOperand(1); 7582 7583 // Load the old link SP. 7584 SDValue LoadLinkSP = 7585 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7586 7587 // Restore the stack pointer. 7588 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7589 7590 // Store the old link SP. 7591 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7592 } 7593 7594 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7595 MachineFunction &MF = DAG.getMachineFunction(); 7596 bool isPPC64 = Subtarget.isPPC64(); 7597 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7598 7599 // Get current frame pointer save index. The users of this index will be 7600 // primarily DYNALLOC instructions. 7601 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7602 int RASI = FI->getReturnAddrSaveIndex(); 7603 7604 // If the frame pointer save index hasn't been defined yet. 7605 if (!RASI) { 7606 // Find out what the fix offset of the frame pointer save area. 7607 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7608 // Allocate the frame index for frame pointer save area. 7609 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7610 // Save the result. 7611 FI->setReturnAddrSaveIndex(RASI); 7612 } 7613 return DAG.getFrameIndex(RASI, PtrVT); 7614 } 7615 7616 SDValue 7617 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7618 MachineFunction &MF = DAG.getMachineFunction(); 7619 bool isPPC64 = Subtarget.isPPC64(); 7620 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7621 7622 // Get current frame pointer save index. The users of this index will be 7623 // primarily DYNALLOC instructions. 7624 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7625 int FPSI = FI->getFramePointerSaveIndex(); 7626 7627 // If the frame pointer save index hasn't been defined yet. 7628 if (!FPSI) { 7629 // Find out what the fix offset of the frame pointer save area. 7630 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7631 // Allocate the frame index for frame pointer save area. 7632 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7633 // Save the result. 7634 FI->setFramePointerSaveIndex(FPSI); 7635 } 7636 return DAG.getFrameIndex(FPSI, PtrVT); 7637 } 7638 7639 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7640 SelectionDAG &DAG) const { 7641 MachineFunction &MF = DAG.getMachineFunction(); 7642 // Get the inputs. 7643 SDValue Chain = Op.getOperand(0); 7644 SDValue Size = Op.getOperand(1); 7645 SDLoc dl(Op); 7646 7647 // Get the correct type for pointers. 7648 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7649 // Negate the size. 7650 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7651 DAG.getConstant(0, dl, PtrVT), Size); 7652 // Construct a node for the frame pointer save index. 7653 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7654 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7655 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7656 if (hasInlineStackProbe(MF)) 7657 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7658 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7659 } 7660 7661 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7662 SelectionDAG &DAG) const { 7663 MachineFunction &MF = DAG.getMachineFunction(); 7664 7665 bool isPPC64 = Subtarget.isPPC64(); 7666 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7667 7668 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7669 return DAG.getFrameIndex(FI, PtrVT); 7670 } 7671 7672 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7673 SelectionDAG &DAG) const { 7674 SDLoc DL(Op); 7675 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7676 DAG.getVTList(MVT::i32, MVT::Other), 7677 Op.getOperand(0), Op.getOperand(1)); 7678 } 7679 7680 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7681 SelectionDAG &DAG) const { 7682 SDLoc DL(Op); 7683 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7684 Op.getOperand(0), Op.getOperand(1)); 7685 } 7686 7687 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7688 if (Op.getValueType().isVector()) 7689 return LowerVectorLoad(Op, DAG); 7690 7691 assert(Op.getValueType() == MVT::i1 && 7692 "Custom lowering only for i1 loads"); 7693 7694 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7695 7696 SDLoc dl(Op); 7697 LoadSDNode *LD = cast<LoadSDNode>(Op); 7698 7699 SDValue Chain = LD->getChain(); 7700 SDValue BasePtr = LD->getBasePtr(); 7701 MachineMemOperand *MMO = LD->getMemOperand(); 7702 7703 SDValue NewLD = 7704 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7705 BasePtr, MVT::i8, MMO); 7706 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7707 7708 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7709 return DAG.getMergeValues(Ops, dl); 7710 } 7711 7712 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7713 if (Op.getOperand(1).getValueType().isVector()) 7714 return LowerVectorStore(Op, DAG); 7715 7716 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7717 "Custom lowering only for i1 stores"); 7718 7719 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7720 7721 SDLoc dl(Op); 7722 StoreSDNode *ST = cast<StoreSDNode>(Op); 7723 7724 SDValue Chain = ST->getChain(); 7725 SDValue BasePtr = ST->getBasePtr(); 7726 SDValue Value = ST->getValue(); 7727 MachineMemOperand *MMO = ST->getMemOperand(); 7728 7729 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7730 Value); 7731 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7732 } 7733 7734 // FIXME: Remove this once the ANDI glue bug is fixed: 7735 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7736 assert(Op.getValueType() == MVT::i1 && 7737 "Custom lowering only for i1 results"); 7738 7739 SDLoc DL(Op); 7740 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7741 } 7742 7743 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7744 SelectionDAG &DAG) const { 7745 7746 // Implements a vector truncate that fits in a vector register as a shuffle. 7747 // We want to legalize vector truncates down to where the source fits in 7748 // a vector register (and target is therefore smaller than vector register 7749 // size). At that point legalization will try to custom lower the sub-legal 7750 // result and get here - where we can contain the truncate as a single target 7751 // operation. 7752 7753 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7754 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7755 // 7756 // We will implement it for big-endian ordering as this (where x denotes 7757 // undefined): 7758 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7759 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7760 // 7761 // The same operation in little-endian ordering will be: 7762 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7763 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7764 7765 EVT TrgVT = Op.getValueType(); 7766 assert(TrgVT.isVector() && "Vector type expected."); 7767 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7768 EVT EltVT = TrgVT.getVectorElementType(); 7769 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7770 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7771 !isPowerOf2_32(EltVT.getSizeInBits())) 7772 return SDValue(); 7773 7774 SDValue N1 = Op.getOperand(0); 7775 EVT SrcVT = N1.getValueType(); 7776 unsigned SrcSize = SrcVT.getSizeInBits(); 7777 if (SrcSize > 256 || 7778 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7779 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7780 return SDValue(); 7781 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7782 return SDValue(); 7783 7784 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7785 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7786 7787 SDLoc DL(Op); 7788 SDValue Op1, Op2; 7789 if (SrcSize == 256) { 7790 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7791 EVT SplitVT = 7792 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7793 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7794 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7795 DAG.getConstant(0, DL, VecIdxTy)); 7796 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7797 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7798 } 7799 else { 7800 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7801 Op2 = DAG.getUNDEF(WideVT); 7802 } 7803 7804 // First list the elements we want to keep. 7805 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7806 SmallVector<int, 16> ShuffV; 7807 if (Subtarget.isLittleEndian()) 7808 for (unsigned i = 0; i < TrgNumElts; ++i) 7809 ShuffV.push_back(i * SizeMult); 7810 else 7811 for (unsigned i = 1; i <= TrgNumElts; ++i) 7812 ShuffV.push_back(i * SizeMult - 1); 7813 7814 // Populate the remaining elements with undefs. 7815 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7816 // ShuffV.push_back(i + WideNumElts); 7817 ShuffV.push_back(WideNumElts + 1); 7818 7819 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7820 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7821 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7822 } 7823 7824 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7825 /// possible. 7826 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7827 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7828 EVT ResVT = Op.getValueType(); 7829 EVT CmpVT = Op.getOperand(0).getValueType(); 7830 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7831 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7832 SDLoc dl(Op); 7833 7834 // Without power9-vector, we don't have native instruction for f128 comparison. 7835 // Following transformation to libcall is needed for setcc: 7836 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7837 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7838 SDValue Z = DAG.getSetCC( 7839 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7840 LHS, RHS, CC); 7841 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7842 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7843 } 7844 7845 // Not FP, or using SPE? Not a fsel. 7846 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7847 Subtarget.hasSPE()) 7848 return Op; 7849 7850 SDNodeFlags Flags = Op.getNode()->getFlags(); 7851 7852 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7853 // presence of infinities. 7854 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7855 switch (CC) { 7856 default: 7857 break; 7858 case ISD::SETOGT: 7859 case ISD::SETGT: 7860 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7861 case ISD::SETOLT: 7862 case ISD::SETLT: 7863 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7864 } 7865 } 7866 7867 // We might be able to do better than this under some circumstances, but in 7868 // general, fsel-based lowering of select is a finite-math-only optimization. 7869 // For more information, see section F.3 of the 2.06 ISA specification. 7870 // With ISA 3.0 7871 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7872 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7873 return Op; 7874 7875 // If the RHS of the comparison is a 0.0, we don't need to do the 7876 // subtraction at all. 7877 SDValue Sel1; 7878 if (isFloatingPointZero(RHS)) 7879 switch (CC) { 7880 default: break; // SETUO etc aren't handled by fsel. 7881 case ISD::SETNE: 7882 std::swap(TV, FV); 7883 LLVM_FALLTHROUGH; 7884 case ISD::SETEQ: 7885 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7886 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7887 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7888 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7889 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7890 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7891 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7892 case ISD::SETULT: 7893 case ISD::SETLT: 7894 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7895 LLVM_FALLTHROUGH; 7896 case ISD::SETOGE: 7897 case ISD::SETGE: 7898 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7899 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7900 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7901 case ISD::SETUGT: 7902 case ISD::SETGT: 7903 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7904 LLVM_FALLTHROUGH; 7905 case ISD::SETOLE: 7906 case ISD::SETLE: 7907 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7908 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7909 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7910 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7911 } 7912 7913 SDValue Cmp; 7914 switch (CC) { 7915 default: break; // SETUO etc aren't handled by fsel. 7916 case ISD::SETNE: 7917 std::swap(TV, FV); 7918 LLVM_FALLTHROUGH; 7919 case ISD::SETEQ: 7920 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7921 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7922 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7923 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7924 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7925 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7926 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7927 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7928 case ISD::SETULT: 7929 case ISD::SETLT: 7930 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7931 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7932 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7933 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7934 case ISD::SETOGE: 7935 case ISD::SETGE: 7936 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7937 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7938 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7939 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7940 case ISD::SETUGT: 7941 case ISD::SETGT: 7942 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7943 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7944 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7945 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7946 case ISD::SETOLE: 7947 case ISD::SETLE: 7948 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7949 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7950 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7951 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7952 } 7953 return Op; 7954 } 7955 7956 static unsigned getPPCStrictOpcode(unsigned Opc) { 7957 switch (Opc) { 7958 default: 7959 llvm_unreachable("No strict version of this opcode!"); 7960 case PPCISD::FCTIDZ: 7961 return PPCISD::STRICT_FCTIDZ; 7962 case PPCISD::FCTIWZ: 7963 return PPCISD::STRICT_FCTIWZ; 7964 case PPCISD::FCTIDUZ: 7965 return PPCISD::STRICT_FCTIDUZ; 7966 case PPCISD::FCTIWUZ: 7967 return PPCISD::STRICT_FCTIWUZ; 7968 case PPCISD::FCFID: 7969 return PPCISD::STRICT_FCFID; 7970 case PPCISD::FCFIDU: 7971 return PPCISD::STRICT_FCFIDU; 7972 case PPCISD::FCFIDS: 7973 return PPCISD::STRICT_FCFIDS; 7974 case PPCISD::FCFIDUS: 7975 return PPCISD::STRICT_FCFIDUS; 7976 } 7977 } 7978 7979 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7980 const PPCSubtarget &Subtarget) { 7981 SDLoc dl(Op); 7982 bool IsStrict = Op->isStrictFPOpcode(); 7983 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7984 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7985 7986 // TODO: Any other flags to propagate? 7987 SDNodeFlags Flags; 7988 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7989 7990 // For strict nodes, source is the second operand. 7991 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7992 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7993 assert(Src.getValueType().isFloatingPoint()); 7994 if (Src.getValueType() == MVT::f32) { 7995 if (IsStrict) { 7996 Src = 7997 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7998 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7999 Chain = Src.getValue(1); 8000 } else 8001 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8002 } 8003 SDValue Conv; 8004 unsigned Opc = ISD::DELETED_NODE; 8005 switch (Op.getSimpleValueType().SimpleTy) { 8006 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8007 case MVT::i32: 8008 Opc = IsSigned ? PPCISD::FCTIWZ 8009 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8010 break; 8011 case MVT::i64: 8012 assert((IsSigned || Subtarget.hasFPCVT()) && 8013 "i64 FP_TO_UINT is supported only with FPCVT"); 8014 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8015 } 8016 if (IsStrict) { 8017 Opc = getPPCStrictOpcode(Opc); 8018 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8019 {Chain, Src}, Flags); 8020 } else { 8021 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8022 } 8023 return Conv; 8024 } 8025 8026 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8027 SelectionDAG &DAG, 8028 const SDLoc &dl) const { 8029 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8030 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8031 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8032 bool IsStrict = Op->isStrictFPOpcode(); 8033 8034 // Convert the FP value to an int value through memory. 8035 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8036 (IsSigned || Subtarget.hasFPCVT()); 8037 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8038 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8039 MachinePointerInfo MPI = 8040 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8041 8042 // Emit a store to the stack slot. 8043 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8044 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8045 if (i32Stack) { 8046 MachineFunction &MF = DAG.getMachineFunction(); 8047 Alignment = Align(4); 8048 MachineMemOperand *MMO = 8049 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8050 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8051 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8052 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8053 } else 8054 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8055 8056 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8057 // add in a bias on big endian. 8058 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8059 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8060 DAG.getConstant(4, dl, FIPtr.getValueType())); 8061 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8062 } 8063 8064 RLI.Chain = Chain; 8065 RLI.Ptr = FIPtr; 8066 RLI.MPI = MPI; 8067 RLI.Alignment = Alignment; 8068 } 8069 8070 /// Custom lowers floating point to integer conversions to use 8071 /// the direct move instructions available in ISA 2.07 to avoid the 8072 /// need for load/store combinations. 8073 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8074 SelectionDAG &DAG, 8075 const SDLoc &dl) const { 8076 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8077 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8078 if (Op->isStrictFPOpcode()) 8079 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8080 else 8081 return Mov; 8082 } 8083 8084 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8085 const SDLoc &dl) const { 8086 bool IsStrict = Op->isStrictFPOpcode(); 8087 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8088 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8089 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8090 EVT SrcVT = Src.getValueType(); 8091 EVT DstVT = Op.getValueType(); 8092 8093 // FP to INT conversions are legal for f128. 8094 if (SrcVT == MVT::f128) 8095 return Subtarget.hasP9Vector() ? Op : SDValue(); 8096 8097 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8098 // PPC (the libcall is not available). 8099 if (SrcVT == MVT::ppcf128) { 8100 if (DstVT == MVT::i32) { 8101 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8102 // set other fast-math flags to FP operations in both strict and 8103 // non-strict cases. (FP_TO_SINT, FSUB) 8104 SDNodeFlags Flags; 8105 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8106 8107 if (IsSigned) { 8108 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8109 DAG.getIntPtrConstant(0, dl)); 8110 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8111 DAG.getIntPtrConstant(1, dl)); 8112 8113 // Add the two halves of the long double in round-to-zero mode, and use 8114 // a smaller FP_TO_SINT. 8115 if (IsStrict) { 8116 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8117 DAG.getVTList(MVT::f64, MVT::Other), 8118 {Op.getOperand(0), Lo, Hi}, Flags); 8119 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8120 DAG.getVTList(MVT::i32, MVT::Other), 8121 {Res.getValue(1), Res}, Flags); 8122 } else { 8123 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8124 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8125 } 8126 } else { 8127 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8128 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8129 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8130 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8131 if (IsStrict) { 8132 // Sel = Src < 0x80000000 8133 // FltOfs = select Sel, 0.0, 0x80000000 8134 // IntOfs = select Sel, 0, 0x80000000 8135 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8136 SDValue Chain = Op.getOperand(0); 8137 EVT SetCCVT = 8138 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8139 EVT DstSetCCVT = 8140 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8141 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8142 Chain, true); 8143 Chain = Sel.getValue(1); 8144 8145 SDValue FltOfs = DAG.getSelect( 8146 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8147 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8148 8149 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8150 DAG.getVTList(SrcVT, MVT::Other), 8151 {Chain, Src, FltOfs}, Flags); 8152 Chain = Val.getValue(1); 8153 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8154 DAG.getVTList(DstVT, MVT::Other), 8155 {Chain, Val}, Flags); 8156 Chain = SInt.getValue(1); 8157 SDValue IntOfs = DAG.getSelect( 8158 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8159 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8160 return DAG.getMergeValues({Result, Chain}, dl); 8161 } else { 8162 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8163 // FIXME: generated code sucks. 8164 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8165 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8166 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8167 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8168 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8169 } 8170 } 8171 } 8172 8173 return SDValue(); 8174 } 8175 8176 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8177 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8178 8179 ReuseLoadInfo RLI; 8180 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8181 8182 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8183 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8184 } 8185 8186 // We're trying to insert a regular store, S, and then a load, L. If the 8187 // incoming value, O, is a load, we might just be able to have our load use the 8188 // address used by O. However, we don't know if anything else will store to 8189 // that address before we can load from it. To prevent this situation, we need 8190 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8191 // the same chain operand as O, we create a token factor from the chain results 8192 // of O and L, and we replace all uses of O's chain result with that token 8193 // factor (see spliceIntoChain below for this last part). 8194 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8195 ReuseLoadInfo &RLI, 8196 SelectionDAG &DAG, 8197 ISD::LoadExtType ET) const { 8198 // Conservatively skip reusing for constrained FP nodes. 8199 if (Op->isStrictFPOpcode()) 8200 return false; 8201 8202 SDLoc dl(Op); 8203 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8204 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8205 if (ET == ISD::NON_EXTLOAD && 8206 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8207 isOperationLegalOrCustom(Op.getOpcode(), 8208 Op.getOperand(0).getValueType())) { 8209 8210 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8211 return true; 8212 } 8213 8214 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8215 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8216 LD->isNonTemporal()) 8217 return false; 8218 if (LD->getMemoryVT() != MemVT) 8219 return false; 8220 8221 // If the result of the load is an illegal type, then we can't build a 8222 // valid chain for reuse since the legalised loads and token factor node that 8223 // ties the legalised loads together uses a different output chain then the 8224 // illegal load. 8225 if (!isTypeLegal(LD->getValueType(0))) 8226 return false; 8227 8228 RLI.Ptr = LD->getBasePtr(); 8229 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8230 assert(LD->getAddressingMode() == ISD::PRE_INC && 8231 "Non-pre-inc AM on PPC?"); 8232 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8233 LD->getOffset()); 8234 } 8235 8236 RLI.Chain = LD->getChain(); 8237 RLI.MPI = LD->getPointerInfo(); 8238 RLI.IsDereferenceable = LD->isDereferenceable(); 8239 RLI.IsInvariant = LD->isInvariant(); 8240 RLI.Alignment = LD->getAlign(); 8241 RLI.AAInfo = LD->getAAInfo(); 8242 RLI.Ranges = LD->getRanges(); 8243 8244 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8245 return true; 8246 } 8247 8248 // Given the head of the old chain, ResChain, insert a token factor containing 8249 // it and NewResChain, and make users of ResChain now be users of that token 8250 // factor. 8251 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8252 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8253 SDValue NewResChain, 8254 SelectionDAG &DAG) const { 8255 if (!ResChain) 8256 return; 8257 8258 SDLoc dl(NewResChain); 8259 8260 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8261 NewResChain, DAG.getUNDEF(MVT::Other)); 8262 assert(TF.getNode() != NewResChain.getNode() && 8263 "A new TF really is required here"); 8264 8265 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8266 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8267 } 8268 8269 /// Analyze profitability of direct move 8270 /// prefer float load to int load plus direct move 8271 /// when there is no integer use of int load 8272 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8273 SDNode *Origin = Op.getOperand(0).getNode(); 8274 if (Origin->getOpcode() != ISD::LOAD) 8275 return true; 8276 8277 // If there is no LXSIBZX/LXSIHZX, like Power8, 8278 // prefer direct move if the memory size is 1 or 2 bytes. 8279 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8280 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8281 return true; 8282 8283 for (SDNode::use_iterator UI = Origin->use_begin(), 8284 UE = Origin->use_end(); 8285 UI != UE; ++UI) { 8286 8287 // Only look at the users of the loaded value. 8288 if (UI.getUse().get().getResNo() != 0) 8289 continue; 8290 8291 if (UI->getOpcode() != ISD::SINT_TO_FP && 8292 UI->getOpcode() != ISD::UINT_TO_FP && 8293 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8294 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8295 return true; 8296 } 8297 8298 return false; 8299 } 8300 8301 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8302 const PPCSubtarget &Subtarget, 8303 SDValue Chain = SDValue()) { 8304 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8305 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8306 SDLoc dl(Op); 8307 8308 // TODO: Any other flags to propagate? 8309 SDNodeFlags Flags; 8310 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8311 8312 // If we have FCFIDS, then use it when converting to single-precision. 8313 // Otherwise, convert to double-precision and then round. 8314 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8315 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8316 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8317 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8318 if (Op->isStrictFPOpcode()) { 8319 if (!Chain) 8320 Chain = Op.getOperand(0); 8321 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8322 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8323 } else 8324 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8325 } 8326 8327 /// Custom lowers integer to floating point conversions to use 8328 /// the direct move instructions available in ISA 2.07 to avoid the 8329 /// need for load/store combinations. 8330 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8331 SelectionDAG &DAG, 8332 const SDLoc &dl) const { 8333 assert((Op.getValueType() == MVT::f32 || 8334 Op.getValueType() == MVT::f64) && 8335 "Invalid floating point type as target of conversion"); 8336 assert(Subtarget.hasFPCVT() && 8337 "Int to FP conversions with direct moves require FPCVT"); 8338 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8339 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8340 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8341 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8342 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8343 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8344 return convertIntToFP(Op, Mov, DAG, Subtarget); 8345 } 8346 8347 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8348 8349 EVT VecVT = Vec.getValueType(); 8350 assert(VecVT.isVector() && "Expected a vector type."); 8351 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8352 8353 EVT EltVT = VecVT.getVectorElementType(); 8354 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8355 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8356 8357 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8358 SmallVector<SDValue, 16> Ops(NumConcat); 8359 Ops[0] = Vec; 8360 SDValue UndefVec = DAG.getUNDEF(VecVT); 8361 for (unsigned i = 1; i < NumConcat; ++i) 8362 Ops[i] = UndefVec; 8363 8364 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8365 } 8366 8367 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8368 const SDLoc &dl) const { 8369 bool IsStrict = Op->isStrictFPOpcode(); 8370 unsigned Opc = Op.getOpcode(); 8371 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8372 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8373 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8374 "Unexpected conversion type"); 8375 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8376 "Supports conversions to v2f64/v4f32 only."); 8377 8378 // TODO: Any other flags to propagate? 8379 SDNodeFlags Flags; 8380 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8381 8382 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8383 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8384 8385 SDValue Wide = widenVec(DAG, Src, dl); 8386 EVT WideVT = Wide.getValueType(); 8387 unsigned WideNumElts = WideVT.getVectorNumElements(); 8388 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8389 8390 SmallVector<int, 16> ShuffV; 8391 for (unsigned i = 0; i < WideNumElts; ++i) 8392 ShuffV.push_back(i + WideNumElts); 8393 8394 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8395 int SaveElts = FourEltRes ? 4 : 2; 8396 if (Subtarget.isLittleEndian()) 8397 for (int i = 0; i < SaveElts; i++) 8398 ShuffV[i * Stride] = i; 8399 else 8400 for (int i = 1; i <= SaveElts; i++) 8401 ShuffV[i * Stride - 1] = i - 1; 8402 8403 SDValue ShuffleSrc2 = 8404 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8405 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8406 8407 SDValue Extend; 8408 if (SignedConv) { 8409 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8410 EVT ExtVT = Src.getValueType(); 8411 if (Subtarget.hasP9Altivec()) 8412 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8413 IntermediateVT.getVectorNumElements()); 8414 8415 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8416 DAG.getValueType(ExtVT)); 8417 } else 8418 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8419 8420 if (IsStrict) 8421 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8422 {Op.getOperand(0), Extend}, Flags); 8423 8424 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8425 } 8426 8427 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8428 SelectionDAG &DAG) const { 8429 SDLoc dl(Op); 8430 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8431 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8432 bool IsStrict = Op->isStrictFPOpcode(); 8433 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8434 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8435 8436 // TODO: Any other flags to propagate? 8437 SDNodeFlags Flags; 8438 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8439 8440 EVT InVT = Src.getValueType(); 8441 EVT OutVT = Op.getValueType(); 8442 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8443 isOperationCustom(Op.getOpcode(), InVT)) 8444 return LowerINT_TO_FPVector(Op, DAG, dl); 8445 8446 // Conversions to f128 are legal. 8447 if (Op.getValueType() == MVT::f128) 8448 return Subtarget.hasP9Vector() ? Op : SDValue(); 8449 8450 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8451 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8452 return SDValue(); 8453 8454 if (Src.getValueType() == MVT::i1) { 8455 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8456 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8457 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8458 if (IsStrict) 8459 return DAG.getMergeValues({Sel, Chain}, dl); 8460 else 8461 return Sel; 8462 } 8463 8464 // If we have direct moves, we can do all the conversion, skip the store/load 8465 // however, without FPCVT we can't do most conversions. 8466 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8467 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8468 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8469 8470 assert((IsSigned || Subtarget.hasFPCVT()) && 8471 "UINT_TO_FP is supported only with FPCVT"); 8472 8473 if (Src.getValueType() == MVT::i64) { 8474 SDValue SINT = Src; 8475 // When converting to single-precision, we actually need to convert 8476 // to double-precision first and then round to single-precision. 8477 // To avoid double-rounding effects during that operation, we have 8478 // to prepare the input operand. Bits that might be truncated when 8479 // converting to double-precision are replaced by a bit that won't 8480 // be lost at this stage, but is below the single-precision rounding 8481 // position. 8482 // 8483 // However, if -enable-unsafe-fp-math is in effect, accept double 8484 // rounding to avoid the extra overhead. 8485 if (Op.getValueType() == MVT::f32 && 8486 !Subtarget.hasFPCVT() && 8487 !DAG.getTarget().Options.UnsafeFPMath) { 8488 8489 // Twiddle input to make sure the low 11 bits are zero. (If this 8490 // is the case, we are guaranteed the value will fit into the 53 bit 8491 // mantissa of an IEEE double-precision value without rounding.) 8492 // If any of those low 11 bits were not zero originally, make sure 8493 // bit 12 (value 2048) is set instead, so that the final rounding 8494 // to single-precision gets the correct result. 8495 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8496 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8497 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8498 Round, DAG.getConstant(2047, dl, MVT::i64)); 8499 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8500 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8501 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8502 8503 // However, we cannot use that value unconditionally: if the magnitude 8504 // of the input value is small, the bit-twiddling we did above might 8505 // end up visibly changing the output. Fortunately, in that case, we 8506 // don't need to twiddle bits since the original input will convert 8507 // exactly to double-precision floating-point already. Therefore, 8508 // construct a conditional to use the original value if the top 11 8509 // bits are all sign-bit copies, and use the rounded value computed 8510 // above otherwise. 8511 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8512 SINT, DAG.getConstant(53, dl, MVT::i32)); 8513 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8514 Cond, DAG.getConstant(1, dl, MVT::i64)); 8515 Cond = DAG.getSetCC( 8516 dl, 8517 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8518 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8519 8520 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8521 } 8522 8523 ReuseLoadInfo RLI; 8524 SDValue Bits; 8525 8526 MachineFunction &MF = DAG.getMachineFunction(); 8527 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8528 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8529 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8530 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8531 } else if (Subtarget.hasLFIWAX() && 8532 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8533 MachineMemOperand *MMO = 8534 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8535 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8536 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8537 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8538 DAG.getVTList(MVT::f64, MVT::Other), 8539 Ops, MVT::i32, MMO); 8540 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8541 } else if (Subtarget.hasFPCVT() && 8542 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8543 MachineMemOperand *MMO = 8544 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8545 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8546 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8547 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8548 DAG.getVTList(MVT::f64, MVT::Other), 8549 Ops, MVT::i32, MMO); 8550 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8551 } else if (((Subtarget.hasLFIWAX() && 8552 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8553 (Subtarget.hasFPCVT() && 8554 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8555 SINT.getOperand(0).getValueType() == MVT::i32) { 8556 MachineFrameInfo &MFI = MF.getFrameInfo(); 8557 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8558 8559 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8560 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8561 8562 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8563 MachinePointerInfo::getFixedStack( 8564 DAG.getMachineFunction(), FrameIdx)); 8565 Chain = Store; 8566 8567 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8568 "Expected an i32 store"); 8569 8570 RLI.Ptr = FIdx; 8571 RLI.Chain = Chain; 8572 RLI.MPI = 8573 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8574 RLI.Alignment = Align(4); 8575 8576 MachineMemOperand *MMO = 8577 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8578 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8579 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8580 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8581 PPCISD::LFIWZX : PPCISD::LFIWAX, 8582 dl, DAG.getVTList(MVT::f64, MVT::Other), 8583 Ops, MVT::i32, MMO); 8584 Chain = Bits.getValue(1); 8585 } else 8586 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8587 8588 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8589 if (IsStrict) 8590 Chain = FP.getValue(1); 8591 8592 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8593 if (IsStrict) 8594 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8595 DAG.getVTList(MVT::f32, MVT::Other), 8596 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8597 else 8598 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8599 DAG.getIntPtrConstant(0, dl)); 8600 } 8601 return FP; 8602 } 8603 8604 assert(Src.getValueType() == MVT::i32 && 8605 "Unhandled INT_TO_FP type in custom expander!"); 8606 // Since we only generate this in 64-bit mode, we can take advantage of 8607 // 64-bit registers. In particular, sign extend the input value into the 8608 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8609 // then lfd it and fcfid it. 8610 MachineFunction &MF = DAG.getMachineFunction(); 8611 MachineFrameInfo &MFI = MF.getFrameInfo(); 8612 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8613 8614 SDValue Ld; 8615 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8616 ReuseLoadInfo RLI; 8617 bool ReusingLoad; 8618 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8619 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8620 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8621 8622 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8623 MachinePointerInfo::getFixedStack( 8624 DAG.getMachineFunction(), FrameIdx)); 8625 Chain = Store; 8626 8627 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8628 "Expected an i32 store"); 8629 8630 RLI.Ptr = FIdx; 8631 RLI.Chain = Chain; 8632 RLI.MPI = 8633 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8634 RLI.Alignment = Align(4); 8635 } 8636 8637 MachineMemOperand *MMO = 8638 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8639 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8640 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8641 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8642 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8643 MVT::i32, MMO); 8644 Chain = Ld.getValue(1); 8645 if (ReusingLoad) 8646 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8647 } else { 8648 assert(Subtarget.isPPC64() && 8649 "i32->FP without LFIWAX supported only on PPC64"); 8650 8651 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8652 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8653 8654 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8655 8656 // STD the extended value into the stack slot. 8657 SDValue Store = DAG.getStore( 8658 Chain, dl, Ext64, FIdx, 8659 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8660 Chain = Store; 8661 8662 // Load the value as a double. 8663 Ld = DAG.getLoad( 8664 MVT::f64, dl, Chain, FIdx, 8665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8666 Chain = Ld.getValue(1); 8667 } 8668 8669 // FCFID it and return it. 8670 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8671 if (IsStrict) 8672 Chain = FP.getValue(1); 8673 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8674 if (IsStrict) 8675 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8676 DAG.getVTList(MVT::f32, MVT::Other), 8677 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8678 else 8679 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8680 DAG.getIntPtrConstant(0, dl)); 8681 } 8682 return FP; 8683 } 8684 8685 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8686 SelectionDAG &DAG) const { 8687 SDLoc dl(Op); 8688 /* 8689 The rounding mode is in bits 30:31 of FPSR, and has the following 8690 settings: 8691 00 Round to nearest 8692 01 Round to 0 8693 10 Round to +inf 8694 11 Round to -inf 8695 8696 FLT_ROUNDS, on the other hand, expects the following: 8697 -1 Undefined 8698 0 Round to 0 8699 1 Round to nearest 8700 2 Round to +inf 8701 3 Round to -inf 8702 8703 To perform the conversion, we do: 8704 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8705 */ 8706 8707 MachineFunction &MF = DAG.getMachineFunction(); 8708 EVT VT = Op.getValueType(); 8709 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8710 8711 // Save FP Control Word to register 8712 SDValue Chain = Op.getOperand(0); 8713 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8714 Chain = MFFS.getValue(1); 8715 8716 SDValue CWD; 8717 if (isTypeLegal(MVT::i64)) { 8718 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8719 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8720 } else { 8721 // Save FP register to stack slot 8722 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8723 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8724 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8725 8726 // Load FP Control Word from low 32 bits of stack slot. 8727 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8728 "Stack slot adjustment is valid only on big endian subtargets!"); 8729 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8730 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8731 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8732 Chain = CWD.getValue(1); 8733 } 8734 8735 // Transform as necessary 8736 SDValue CWD1 = 8737 DAG.getNode(ISD::AND, dl, MVT::i32, 8738 CWD, DAG.getConstant(3, dl, MVT::i32)); 8739 SDValue CWD2 = 8740 DAG.getNode(ISD::SRL, dl, MVT::i32, 8741 DAG.getNode(ISD::AND, dl, MVT::i32, 8742 DAG.getNode(ISD::XOR, dl, MVT::i32, 8743 CWD, DAG.getConstant(3, dl, MVT::i32)), 8744 DAG.getConstant(3, dl, MVT::i32)), 8745 DAG.getConstant(1, dl, MVT::i32)); 8746 8747 SDValue RetVal = 8748 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8749 8750 RetVal = 8751 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8752 dl, VT, RetVal); 8753 8754 return DAG.getMergeValues({RetVal, Chain}, dl); 8755 } 8756 8757 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8758 EVT VT = Op.getValueType(); 8759 unsigned BitWidth = VT.getSizeInBits(); 8760 SDLoc dl(Op); 8761 assert(Op.getNumOperands() == 3 && 8762 VT == Op.getOperand(1).getValueType() && 8763 "Unexpected SHL!"); 8764 8765 // Expand into a bunch of logical ops. Note that these ops 8766 // depend on the PPC behavior for oversized shift amounts. 8767 SDValue Lo = Op.getOperand(0); 8768 SDValue Hi = Op.getOperand(1); 8769 SDValue Amt = Op.getOperand(2); 8770 EVT AmtVT = Amt.getValueType(); 8771 8772 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8773 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8774 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8775 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8776 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8777 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8778 DAG.getConstant(-BitWidth, dl, AmtVT)); 8779 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8780 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8781 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8782 SDValue OutOps[] = { OutLo, OutHi }; 8783 return DAG.getMergeValues(OutOps, dl); 8784 } 8785 8786 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8787 EVT VT = Op.getValueType(); 8788 SDLoc dl(Op); 8789 unsigned BitWidth = VT.getSizeInBits(); 8790 assert(Op.getNumOperands() == 3 && 8791 VT == Op.getOperand(1).getValueType() && 8792 "Unexpected SRL!"); 8793 8794 // Expand into a bunch of logical ops. Note that these ops 8795 // depend on the PPC behavior for oversized shift amounts. 8796 SDValue Lo = Op.getOperand(0); 8797 SDValue Hi = Op.getOperand(1); 8798 SDValue Amt = Op.getOperand(2); 8799 EVT AmtVT = Amt.getValueType(); 8800 8801 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8802 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8803 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8804 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8805 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8806 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8807 DAG.getConstant(-BitWidth, dl, AmtVT)); 8808 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8809 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8810 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8811 SDValue OutOps[] = { OutLo, OutHi }; 8812 return DAG.getMergeValues(OutOps, dl); 8813 } 8814 8815 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8816 SDLoc dl(Op); 8817 EVT VT = Op.getValueType(); 8818 unsigned BitWidth = VT.getSizeInBits(); 8819 assert(Op.getNumOperands() == 3 && 8820 VT == Op.getOperand(1).getValueType() && 8821 "Unexpected SRA!"); 8822 8823 // Expand into a bunch of logical ops, followed by a select_cc. 8824 SDValue Lo = Op.getOperand(0); 8825 SDValue Hi = Op.getOperand(1); 8826 SDValue Amt = Op.getOperand(2); 8827 EVT AmtVT = Amt.getValueType(); 8828 8829 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8830 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8831 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8832 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8833 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8834 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8835 DAG.getConstant(-BitWidth, dl, AmtVT)); 8836 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8837 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8838 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8839 Tmp4, Tmp6, ISD::SETLE); 8840 SDValue OutOps[] = { OutLo, OutHi }; 8841 return DAG.getMergeValues(OutOps, dl); 8842 } 8843 8844 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8845 SelectionDAG &DAG) const { 8846 SDLoc dl(Op); 8847 EVT VT = Op.getValueType(); 8848 unsigned BitWidth = VT.getSizeInBits(); 8849 8850 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8851 SDValue X = Op.getOperand(0); 8852 SDValue Y = Op.getOperand(1); 8853 SDValue Z = Op.getOperand(2); 8854 EVT AmtVT = Z.getValueType(); 8855 8856 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8857 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8858 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8859 // on PowerPC shift by BW being well defined. 8860 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8861 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8862 SDValue SubZ = 8863 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8864 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8865 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8866 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8867 } 8868 8869 //===----------------------------------------------------------------------===// 8870 // Vector related lowering. 8871 // 8872 8873 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8874 /// element size of SplatSize. Cast the result to VT. 8875 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8876 SelectionDAG &DAG, const SDLoc &dl) { 8877 static const MVT VTys[] = { // canonical VT to use for each size. 8878 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8879 }; 8880 8881 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8882 8883 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8884 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8885 SplatSize = 1; 8886 Val = 0xFF; 8887 } 8888 8889 EVT CanonicalVT = VTys[SplatSize-1]; 8890 8891 // Build a canonical splat for this value. 8892 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8893 } 8894 8895 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8896 /// specified intrinsic ID. 8897 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8898 const SDLoc &dl, EVT DestVT = MVT::Other) { 8899 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8900 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8901 DAG.getConstant(IID, dl, MVT::i32), Op); 8902 } 8903 8904 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8905 /// specified intrinsic ID. 8906 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8907 SelectionDAG &DAG, const SDLoc &dl, 8908 EVT DestVT = MVT::Other) { 8909 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8910 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8911 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8912 } 8913 8914 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8915 /// specified intrinsic ID. 8916 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8917 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8918 EVT DestVT = MVT::Other) { 8919 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8920 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8921 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8922 } 8923 8924 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8925 /// amount. The result has the specified value type. 8926 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8927 SelectionDAG &DAG, const SDLoc &dl) { 8928 // Force LHS/RHS to be the right type. 8929 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8930 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8931 8932 int Ops[16]; 8933 for (unsigned i = 0; i != 16; ++i) 8934 Ops[i] = i + Amt; 8935 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8936 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8937 } 8938 8939 /// Do we have an efficient pattern in a .td file for this node? 8940 /// 8941 /// \param V - pointer to the BuildVectorSDNode being matched 8942 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8943 /// 8944 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8945 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8946 /// the opposite is true (expansion is beneficial) are: 8947 /// - The node builds a vector out of integers that are not 32 or 64-bits 8948 /// - The node builds a vector out of constants 8949 /// - The node is a "load-and-splat" 8950 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8951 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8952 bool HasDirectMove, 8953 bool HasP8Vector) { 8954 EVT VecVT = V->getValueType(0); 8955 bool RightType = VecVT == MVT::v2f64 || 8956 (HasP8Vector && VecVT == MVT::v4f32) || 8957 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8958 if (!RightType) 8959 return false; 8960 8961 bool IsSplat = true; 8962 bool IsLoad = false; 8963 SDValue Op0 = V->getOperand(0); 8964 8965 // This function is called in a block that confirms the node is not a constant 8966 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8967 // different constants. 8968 if (V->isConstant()) 8969 return false; 8970 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8971 if (V->getOperand(i).isUndef()) 8972 return false; 8973 // We want to expand nodes that represent load-and-splat even if the 8974 // loaded value is a floating point truncation or conversion to int. 8975 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8976 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8977 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8978 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8979 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8980 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8981 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8982 IsLoad = true; 8983 // If the operands are different or the input is not a load and has more 8984 // uses than just this BV node, then it isn't a splat. 8985 if (V->getOperand(i) != Op0 || 8986 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8987 IsSplat = false; 8988 } 8989 return !(IsSplat && IsLoad); 8990 } 8991 8992 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8993 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8994 8995 SDLoc dl(Op); 8996 SDValue Op0 = Op->getOperand(0); 8997 8998 if ((Op.getValueType() != MVT::f128) || 8999 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9000 (Op0.getOperand(0).getValueType() != MVT::i64) || 9001 (Op0.getOperand(1).getValueType() != MVT::i64)) 9002 return SDValue(); 9003 9004 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9005 Op0.getOperand(1)); 9006 } 9007 9008 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9009 const SDValue *InputLoad = &Op; 9010 if (InputLoad->getOpcode() == ISD::BITCAST) 9011 InputLoad = &InputLoad->getOperand(0); 9012 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9013 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9014 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9015 InputLoad = &InputLoad->getOperand(0); 9016 } 9017 if (InputLoad->getOpcode() != ISD::LOAD) 9018 return nullptr; 9019 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9020 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9021 } 9022 9023 // Convert the argument APFloat to a single precision APFloat if there is no 9024 // loss in information during the conversion to single precision APFloat and the 9025 // resulting number is not a denormal number. Return true if successful. 9026 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9027 APFloat APFloatToConvert = ArgAPFloat; 9028 bool LosesInfo = true; 9029 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9030 &LosesInfo); 9031 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9032 if (Success) 9033 ArgAPFloat = APFloatToConvert; 9034 return Success; 9035 } 9036 9037 // Bitcast the argument APInt to a double and convert it to a single precision 9038 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9039 // argument if there is no loss in information during the conversion from 9040 // double to single precision APFloat and the resulting number is not a denormal 9041 // number. Return true if successful. 9042 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9043 double DpValue = ArgAPInt.bitsToDouble(); 9044 APFloat APFloatDp(DpValue); 9045 bool Success = convertToNonDenormSingle(APFloatDp); 9046 if (Success) 9047 ArgAPInt = APFloatDp.bitcastToAPInt(); 9048 return Success; 9049 } 9050 9051 // Nondestructive check for convertTonNonDenormSingle. 9052 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9053 // Only convert if it loses info, since XXSPLTIDP should 9054 // handle the other case. 9055 APFloat APFloatToConvert = ArgAPFloat; 9056 bool LosesInfo = true; 9057 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9058 &LosesInfo); 9059 9060 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9061 } 9062 9063 // If this is a case we can't handle, return null and let the default 9064 // expansion code take care of it. If we CAN select this case, and if it 9065 // selects to a single instruction, return Op. Otherwise, if we can codegen 9066 // this case more efficiently than a constant pool load, lower it to the 9067 // sequence of ops that should be used. 9068 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9069 SelectionDAG &DAG) const { 9070 SDLoc dl(Op); 9071 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9072 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9073 9074 // Check if this is a splat of a constant value. 9075 APInt APSplatBits, APSplatUndef; 9076 unsigned SplatBitSize; 9077 bool HasAnyUndefs; 9078 bool BVNIsConstantSplat = 9079 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9080 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9081 9082 // If it is a splat of a double, check if we can shrink it to a 32 bit 9083 // non-denormal float which when converted back to double gives us the same 9084 // double. This is to exploit the XXSPLTIDP instruction. 9085 // If we lose precision, we use XXSPLTI32DX. 9086 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9087 Subtarget.hasPrefixInstrs()) { 9088 // Check the type first to short-circuit so we don't modify APSplatBits if 9089 // this block isn't executed. 9090 if ((Op->getValueType(0) == MVT::v2f64) && 9091 convertToNonDenormSingle(APSplatBits)) { 9092 SDValue SplatNode = DAG.getNode( 9093 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9094 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9095 return DAG.getBitcast(Op.getValueType(), SplatNode); 9096 } else { 9097 // We may lose precision, so we have to use XXSPLTI32DX. 9098 9099 uint32_t Hi = 9100 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9101 uint32_t Lo = 9102 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9103 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9104 9105 if (!Hi || !Lo) 9106 // If either load is 0, then we should generate XXLXOR to set to 0. 9107 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9108 9109 if (Hi) 9110 SplatNode = DAG.getNode( 9111 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9112 DAG.getTargetConstant(0, dl, MVT::i32), 9113 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9114 9115 if (Lo) 9116 SplatNode = 9117 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9118 DAG.getTargetConstant(1, dl, MVT::i32), 9119 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9120 9121 return DAG.getBitcast(Op.getValueType(), SplatNode); 9122 } 9123 } 9124 9125 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9126 9127 bool IsPermutedLoad = false; 9128 const SDValue *InputLoad = 9129 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9130 // Handle load-and-splat patterns as we have instructions that will do this 9131 // in one go. 9132 if (InputLoad && DAG.isSplatValue(Op, true)) { 9133 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9134 9135 // We have handling for 4 and 8 byte elements. 9136 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9137 9138 // Checking for a single use of this load, we have to check for vector 9139 // width (128 bits) / ElementSize uses (since each operand of the 9140 // BUILD_VECTOR is a separate use of the value. 9141 unsigned NumUsesOfInputLD = 128 / ElementSize; 9142 for (SDValue BVInOp : Op->ops()) 9143 if (BVInOp.isUndef()) 9144 NumUsesOfInputLD--; 9145 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9146 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9147 ((Subtarget.hasVSX() && ElementSize == 64) || 9148 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9149 SDValue Ops[] = { 9150 LD->getChain(), // Chain 9151 LD->getBasePtr(), // Ptr 9152 DAG.getValueType(Op.getValueType()) // VT 9153 }; 9154 SDValue LdSplt = DAG.getMemIntrinsicNode( 9155 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9156 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9157 // Replace all uses of the output chain of the original load with the 9158 // output chain of the new load. 9159 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9160 LdSplt.getValue(1)); 9161 return LdSplt; 9162 } 9163 } 9164 9165 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9166 // 32-bits can be lowered to VSX instructions under certain conditions. 9167 // Without VSX, there is no pattern more efficient than expanding the node. 9168 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9169 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9170 Subtarget.hasP8Vector())) 9171 return Op; 9172 return SDValue(); 9173 } 9174 9175 uint64_t SplatBits = APSplatBits.getZExtValue(); 9176 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9177 unsigned SplatSize = SplatBitSize / 8; 9178 9179 // First, handle single instruction cases. 9180 9181 // All zeros? 9182 if (SplatBits == 0) { 9183 // Canonicalize all zero vectors to be v4i32. 9184 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9185 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9186 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9187 } 9188 return Op; 9189 } 9190 9191 // We have XXSPLTIW for constant splats four bytes wide. 9192 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9193 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9194 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9195 // turned into a 4-byte splat of 0xABABABAB. 9196 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9197 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9198 Op.getValueType(), DAG, dl); 9199 9200 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9201 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9202 dl); 9203 9204 // We have XXSPLTIB for constant splats one byte wide. 9205 if (Subtarget.hasP9Vector() && SplatSize == 1) 9206 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9207 dl); 9208 9209 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9210 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9211 (32-SplatBitSize)); 9212 if (SextVal >= -16 && SextVal <= 15) 9213 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9214 dl); 9215 9216 // Two instruction sequences. 9217 9218 // If this value is in the range [-32,30] and is even, use: 9219 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9220 // If this value is in the range [17,31] and is odd, use: 9221 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9222 // If this value is in the range [-31,-17] and is odd, use: 9223 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9224 // Note the last two are three-instruction sequences. 9225 if (SextVal >= -32 && SextVal <= 31) { 9226 // To avoid having these optimizations undone by constant folding, 9227 // we convert to a pseudo that will be expanded later into one of 9228 // the above forms. 9229 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9230 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9231 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9232 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9233 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9234 if (VT == Op.getValueType()) 9235 return RetVal; 9236 else 9237 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9238 } 9239 9240 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9241 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9242 // for fneg/fabs. 9243 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9244 // Make -1 and vspltisw -1: 9245 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9246 9247 // Make the VSLW intrinsic, computing 0x8000_0000. 9248 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9249 OnesV, DAG, dl); 9250 9251 // xor by OnesV to invert it. 9252 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9253 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9254 } 9255 9256 // Check to see if this is a wide variety of vsplti*, binop self cases. 9257 static const signed char SplatCsts[] = { 9258 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9259 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9260 }; 9261 9262 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9263 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9264 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9265 int i = SplatCsts[idx]; 9266 9267 // Figure out what shift amount will be used by altivec if shifted by i in 9268 // this splat size. 9269 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9270 9271 // vsplti + shl self. 9272 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9273 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9274 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9275 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9276 Intrinsic::ppc_altivec_vslw 9277 }; 9278 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9279 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9280 } 9281 9282 // vsplti + srl self. 9283 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9284 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9285 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9286 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9287 Intrinsic::ppc_altivec_vsrw 9288 }; 9289 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9290 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9291 } 9292 9293 // vsplti + rol self. 9294 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9295 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9296 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9297 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9298 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9299 Intrinsic::ppc_altivec_vrlw 9300 }; 9301 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9302 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9303 } 9304 9305 // t = vsplti c, result = vsldoi t, t, 1 9306 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9307 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9308 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9309 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9310 } 9311 // t = vsplti c, result = vsldoi t, t, 2 9312 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9313 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9314 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9315 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9316 } 9317 // t = vsplti c, result = vsldoi t, t, 3 9318 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9319 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9320 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9321 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9322 } 9323 } 9324 9325 return SDValue(); 9326 } 9327 9328 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9329 /// the specified operations to build the shuffle. 9330 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9331 SDValue RHS, SelectionDAG &DAG, 9332 const SDLoc &dl) { 9333 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9334 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9335 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9336 9337 enum { 9338 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9339 OP_VMRGHW, 9340 OP_VMRGLW, 9341 OP_VSPLTISW0, 9342 OP_VSPLTISW1, 9343 OP_VSPLTISW2, 9344 OP_VSPLTISW3, 9345 OP_VSLDOI4, 9346 OP_VSLDOI8, 9347 OP_VSLDOI12 9348 }; 9349 9350 if (OpNum == OP_COPY) { 9351 if (LHSID == (1*9+2)*9+3) return LHS; 9352 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9353 return RHS; 9354 } 9355 9356 SDValue OpLHS, OpRHS; 9357 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9358 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9359 9360 int ShufIdxs[16]; 9361 switch (OpNum) { 9362 default: llvm_unreachable("Unknown i32 permute!"); 9363 case OP_VMRGHW: 9364 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9365 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9366 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9367 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9368 break; 9369 case OP_VMRGLW: 9370 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9371 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9372 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9373 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9374 break; 9375 case OP_VSPLTISW0: 9376 for (unsigned i = 0; i != 16; ++i) 9377 ShufIdxs[i] = (i&3)+0; 9378 break; 9379 case OP_VSPLTISW1: 9380 for (unsigned i = 0; i != 16; ++i) 9381 ShufIdxs[i] = (i&3)+4; 9382 break; 9383 case OP_VSPLTISW2: 9384 for (unsigned i = 0; i != 16; ++i) 9385 ShufIdxs[i] = (i&3)+8; 9386 break; 9387 case OP_VSPLTISW3: 9388 for (unsigned i = 0; i != 16; ++i) 9389 ShufIdxs[i] = (i&3)+12; 9390 break; 9391 case OP_VSLDOI4: 9392 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9393 case OP_VSLDOI8: 9394 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9395 case OP_VSLDOI12: 9396 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9397 } 9398 EVT VT = OpLHS.getValueType(); 9399 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9400 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9401 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9402 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9403 } 9404 9405 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9406 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9407 /// SDValue. 9408 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9409 SelectionDAG &DAG) const { 9410 const unsigned BytesInVector = 16; 9411 bool IsLE = Subtarget.isLittleEndian(); 9412 SDLoc dl(N); 9413 SDValue V1 = N->getOperand(0); 9414 SDValue V2 = N->getOperand(1); 9415 unsigned ShiftElts = 0, InsertAtByte = 0; 9416 bool Swap = false; 9417 9418 // Shifts required to get the byte we want at element 7. 9419 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9420 0, 15, 14, 13, 12, 11, 10, 9}; 9421 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9422 1, 2, 3, 4, 5, 6, 7, 8}; 9423 9424 ArrayRef<int> Mask = N->getMask(); 9425 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9426 9427 // For each mask element, find out if we're just inserting something 9428 // from V2 into V1 or vice versa. 9429 // Possible permutations inserting an element from V2 into V1: 9430 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9431 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9432 // ... 9433 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9434 // Inserting from V1 into V2 will be similar, except mask range will be 9435 // [16,31]. 9436 9437 bool FoundCandidate = false; 9438 // If both vector operands for the shuffle are the same vector, the mask 9439 // will contain only elements from the first one and the second one will be 9440 // undef. 9441 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9442 // Go through the mask of half-words to find an element that's being moved 9443 // from one vector to the other. 9444 for (unsigned i = 0; i < BytesInVector; ++i) { 9445 unsigned CurrentElement = Mask[i]; 9446 // If 2nd operand is undefined, we should only look for element 7 in the 9447 // Mask. 9448 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9449 continue; 9450 9451 bool OtherElementsInOrder = true; 9452 // Examine the other elements in the Mask to see if they're in original 9453 // order. 9454 for (unsigned j = 0; j < BytesInVector; ++j) { 9455 if (j == i) 9456 continue; 9457 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9458 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9459 // in which we always assume we're always picking from the 1st operand. 9460 int MaskOffset = 9461 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9462 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9463 OtherElementsInOrder = false; 9464 break; 9465 } 9466 } 9467 // If other elements are in original order, we record the number of shifts 9468 // we need to get the element we want into element 7. Also record which byte 9469 // in the vector we should insert into. 9470 if (OtherElementsInOrder) { 9471 // If 2nd operand is undefined, we assume no shifts and no swapping. 9472 if (V2.isUndef()) { 9473 ShiftElts = 0; 9474 Swap = false; 9475 } else { 9476 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9477 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9478 : BigEndianShifts[CurrentElement & 0xF]; 9479 Swap = CurrentElement < BytesInVector; 9480 } 9481 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9482 FoundCandidate = true; 9483 break; 9484 } 9485 } 9486 9487 if (!FoundCandidate) 9488 return SDValue(); 9489 9490 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9491 // optionally with VECSHL if shift is required. 9492 if (Swap) 9493 std::swap(V1, V2); 9494 if (V2.isUndef()) 9495 V2 = V1; 9496 if (ShiftElts) { 9497 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9498 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9499 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9500 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9501 } 9502 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9503 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9504 } 9505 9506 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9507 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9508 /// SDValue. 9509 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9510 SelectionDAG &DAG) const { 9511 const unsigned NumHalfWords = 8; 9512 const unsigned BytesInVector = NumHalfWords * 2; 9513 // Check that the shuffle is on half-words. 9514 if (!isNByteElemShuffleMask(N, 2, 1)) 9515 return SDValue(); 9516 9517 bool IsLE = Subtarget.isLittleEndian(); 9518 SDLoc dl(N); 9519 SDValue V1 = N->getOperand(0); 9520 SDValue V2 = N->getOperand(1); 9521 unsigned ShiftElts = 0, InsertAtByte = 0; 9522 bool Swap = false; 9523 9524 // Shifts required to get the half-word we want at element 3. 9525 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9526 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9527 9528 uint32_t Mask = 0; 9529 uint32_t OriginalOrderLow = 0x1234567; 9530 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9531 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9532 // 32-bit space, only need 4-bit nibbles per element. 9533 for (unsigned i = 0; i < NumHalfWords; ++i) { 9534 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9535 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9536 } 9537 9538 // For each mask element, find out if we're just inserting something 9539 // from V2 into V1 or vice versa. Possible permutations inserting an element 9540 // from V2 into V1: 9541 // X, 1, 2, 3, 4, 5, 6, 7 9542 // 0, X, 2, 3, 4, 5, 6, 7 9543 // 0, 1, X, 3, 4, 5, 6, 7 9544 // 0, 1, 2, X, 4, 5, 6, 7 9545 // 0, 1, 2, 3, X, 5, 6, 7 9546 // 0, 1, 2, 3, 4, X, 6, 7 9547 // 0, 1, 2, 3, 4, 5, X, 7 9548 // 0, 1, 2, 3, 4, 5, 6, X 9549 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9550 9551 bool FoundCandidate = false; 9552 // Go through the mask of half-words to find an element that's being moved 9553 // from one vector to the other. 9554 for (unsigned i = 0; i < NumHalfWords; ++i) { 9555 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9556 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9557 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9558 uint32_t TargetOrder = 0x0; 9559 9560 // If both vector operands for the shuffle are the same vector, the mask 9561 // will contain only elements from the first one and the second one will be 9562 // undef. 9563 if (V2.isUndef()) { 9564 ShiftElts = 0; 9565 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9566 TargetOrder = OriginalOrderLow; 9567 Swap = false; 9568 // Skip if not the correct element or mask of other elements don't equal 9569 // to our expected order. 9570 if (MaskOneElt == VINSERTHSrcElem && 9571 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9572 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9573 FoundCandidate = true; 9574 break; 9575 } 9576 } else { // If both operands are defined. 9577 // Target order is [8,15] if the current mask is between [0,7]. 9578 TargetOrder = 9579 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9580 // Skip if mask of other elements don't equal our expected order. 9581 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9582 // We only need the last 3 bits for the number of shifts. 9583 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9584 : BigEndianShifts[MaskOneElt & 0x7]; 9585 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9586 Swap = MaskOneElt < NumHalfWords; 9587 FoundCandidate = true; 9588 break; 9589 } 9590 } 9591 } 9592 9593 if (!FoundCandidate) 9594 return SDValue(); 9595 9596 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9597 // optionally with VECSHL if shift is required. 9598 if (Swap) 9599 std::swap(V1, V2); 9600 if (V2.isUndef()) 9601 V2 = V1; 9602 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9603 if (ShiftElts) { 9604 // Double ShiftElts because we're left shifting on v16i8 type. 9605 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9606 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9607 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9608 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9609 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9610 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9611 } 9612 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9613 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9614 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9615 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9616 } 9617 9618 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9619 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9620 /// return the default SDValue. 9621 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9622 SelectionDAG &DAG) const { 9623 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9624 // to v16i8. Peek through the bitcasts to get the actual operands. 9625 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9626 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9627 9628 auto ShuffleMask = SVN->getMask(); 9629 SDValue VecShuffle(SVN, 0); 9630 SDLoc DL(SVN); 9631 9632 // Check that we have a four byte shuffle. 9633 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9634 return SDValue(); 9635 9636 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9637 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9638 std::swap(LHS, RHS); 9639 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9640 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9641 } 9642 9643 // Ensure that the RHS is a vector of constants. 9644 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9645 if (!BVN) 9646 return SDValue(); 9647 9648 // Check if RHS is a splat of 4-bytes (or smaller). 9649 APInt APSplatValue, APSplatUndef; 9650 unsigned SplatBitSize; 9651 bool HasAnyUndefs; 9652 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9653 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9654 SplatBitSize > 32) 9655 return SDValue(); 9656 9657 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9658 // The instruction splats a constant C into two words of the source vector 9659 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9660 // Thus we check that the shuffle mask is the equivalent of 9661 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9662 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9663 // within each word are consecutive, so we only need to check the first byte. 9664 SDValue Index; 9665 bool IsLE = Subtarget.isLittleEndian(); 9666 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9667 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9668 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9669 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9670 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9671 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9672 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9673 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9674 else 9675 return SDValue(); 9676 9677 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9678 // for XXSPLTI32DX. 9679 unsigned SplatVal = APSplatValue.getZExtValue(); 9680 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9681 SplatVal |= (SplatVal << SplatBitSize); 9682 9683 SDValue SplatNode = DAG.getNode( 9684 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9685 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9686 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9687 } 9688 9689 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9690 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9691 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9692 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9693 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9694 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9695 assert(Op.getValueType() == MVT::v1i128 && 9696 "Only set v1i128 as custom, other type shouldn't reach here!"); 9697 SDLoc dl(Op); 9698 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9699 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9700 unsigned SHLAmt = N1.getConstantOperandVal(0); 9701 if (SHLAmt % 8 == 0) { 9702 SmallVector<int, 16> Mask(16, 0); 9703 std::iota(Mask.begin(), Mask.end(), 0); 9704 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9705 if (SDValue Shuffle = 9706 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9707 DAG.getUNDEF(MVT::v16i8), Mask)) 9708 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9709 } 9710 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9711 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9712 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9713 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9714 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9715 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9716 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9717 } 9718 9719 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9720 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9721 /// return the code it can be lowered into. Worst case, it can always be 9722 /// lowered into a vperm. 9723 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9724 SelectionDAG &DAG) const { 9725 SDLoc dl(Op); 9726 SDValue V1 = Op.getOperand(0); 9727 SDValue V2 = Op.getOperand(1); 9728 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9729 9730 // Any nodes that were combined in the target-independent combiner prior 9731 // to vector legalization will not be sent to the target combine. Try to 9732 // combine it here. 9733 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9734 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9735 return NewShuffle; 9736 Op = NewShuffle; 9737 SVOp = cast<ShuffleVectorSDNode>(Op); 9738 V1 = Op.getOperand(0); 9739 V2 = Op.getOperand(1); 9740 } 9741 EVT VT = Op.getValueType(); 9742 bool isLittleEndian = Subtarget.isLittleEndian(); 9743 9744 unsigned ShiftElts, InsertAtByte; 9745 bool Swap = false; 9746 9747 // If this is a load-and-splat, we can do that with a single instruction 9748 // in some cases. However if the load has multiple uses, we don't want to 9749 // combine it because that will just produce multiple loads. 9750 bool IsPermutedLoad = false; 9751 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9752 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9753 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9754 InputLoad->hasOneUse()) { 9755 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9756 int SplatIdx = 9757 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9758 9759 // The splat index for permuted loads will be in the left half of the vector 9760 // which is strictly wider than the loaded value by 8 bytes. So we need to 9761 // adjust the splat index to point to the correct address in memory. 9762 if (IsPermutedLoad) { 9763 assert((isLittleEndian || IsFourByte) && 9764 "Unexpected size for permuted load on big endian target"); 9765 SplatIdx += IsFourByte ? 2 : 1; 9766 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9767 "Splat of a value outside of the loaded memory"); 9768 } 9769 9770 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9771 // For 4-byte load-and-splat, we need Power9. 9772 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9773 uint64_t Offset = 0; 9774 if (IsFourByte) 9775 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9776 else 9777 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9778 9779 // If the width of the load is the same as the width of the splat, 9780 // loading with an offset would load the wrong memory. 9781 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9782 Offset = 0; 9783 9784 SDValue BasePtr = LD->getBasePtr(); 9785 if (Offset != 0) 9786 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9787 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9788 SDValue Ops[] = { 9789 LD->getChain(), // Chain 9790 BasePtr, // BasePtr 9791 DAG.getValueType(Op.getValueType()) // VT 9792 }; 9793 SDVTList VTL = 9794 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9795 SDValue LdSplt = 9796 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9797 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9798 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9799 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9800 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9801 return LdSplt; 9802 } 9803 } 9804 if (Subtarget.hasP9Vector() && 9805 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9806 isLittleEndian)) { 9807 if (Swap) 9808 std::swap(V1, V2); 9809 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9810 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9811 if (ShiftElts) { 9812 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9813 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9814 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9815 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9816 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9817 } 9818 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9819 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9820 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9821 } 9822 9823 if (Subtarget.hasPrefixInstrs()) { 9824 SDValue SplatInsertNode; 9825 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9826 return SplatInsertNode; 9827 } 9828 9829 if (Subtarget.hasP9Altivec()) { 9830 SDValue NewISDNode; 9831 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9832 return NewISDNode; 9833 9834 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9835 return NewISDNode; 9836 } 9837 9838 if (Subtarget.hasVSX() && 9839 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9840 if (Swap) 9841 std::swap(V1, V2); 9842 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9843 SDValue Conv2 = 9844 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9845 9846 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9847 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9848 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9849 } 9850 9851 if (Subtarget.hasVSX() && 9852 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9853 if (Swap) 9854 std::swap(V1, V2); 9855 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9856 SDValue Conv2 = 9857 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9858 9859 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9860 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9861 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9862 } 9863 9864 if (Subtarget.hasP9Vector()) { 9865 if (PPC::isXXBRHShuffleMask(SVOp)) { 9866 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9867 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9868 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9869 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9870 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9871 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9872 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9873 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9874 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9875 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9876 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9877 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9878 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9879 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9880 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9881 } 9882 } 9883 9884 if (Subtarget.hasVSX()) { 9885 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9886 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9887 9888 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9889 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9890 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9891 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9892 } 9893 9894 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9895 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9896 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9897 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9898 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9899 } 9900 } 9901 9902 // Cases that are handled by instructions that take permute immediates 9903 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9904 // selected by the instruction selector. 9905 if (V2.isUndef()) { 9906 if (PPC::isSplatShuffleMask(SVOp, 1) || 9907 PPC::isSplatShuffleMask(SVOp, 2) || 9908 PPC::isSplatShuffleMask(SVOp, 4) || 9909 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9910 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9911 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9912 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9913 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9914 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9915 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9916 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9917 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9918 (Subtarget.hasP8Altivec() && ( 9919 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9920 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9921 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9922 return Op; 9923 } 9924 } 9925 9926 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9927 // and produce a fixed permutation. If any of these match, do not lower to 9928 // VPERM. 9929 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9930 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9931 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9932 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9933 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9934 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9935 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9936 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9937 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9938 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9939 (Subtarget.hasP8Altivec() && ( 9940 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9941 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9942 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9943 return Op; 9944 9945 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9946 // perfect shuffle table to emit an optimal matching sequence. 9947 ArrayRef<int> PermMask = SVOp->getMask(); 9948 9949 unsigned PFIndexes[4]; 9950 bool isFourElementShuffle = true; 9951 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9952 unsigned EltNo = 8; // Start out undef. 9953 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9954 if (PermMask[i*4+j] < 0) 9955 continue; // Undef, ignore it. 9956 9957 unsigned ByteSource = PermMask[i*4+j]; 9958 if ((ByteSource & 3) != j) { 9959 isFourElementShuffle = false; 9960 break; 9961 } 9962 9963 if (EltNo == 8) { 9964 EltNo = ByteSource/4; 9965 } else if (EltNo != ByteSource/4) { 9966 isFourElementShuffle = false; 9967 break; 9968 } 9969 } 9970 PFIndexes[i] = EltNo; 9971 } 9972 9973 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9974 // perfect shuffle vector to determine if it is cost effective to do this as 9975 // discrete instructions, or whether we should use a vperm. 9976 // For now, we skip this for little endian until such time as we have a 9977 // little-endian perfect shuffle table. 9978 if (isFourElementShuffle && !isLittleEndian) { 9979 // Compute the index in the perfect shuffle table. 9980 unsigned PFTableIndex = 9981 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9982 9983 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9984 unsigned Cost = (PFEntry >> 30); 9985 9986 // Determining when to avoid vperm is tricky. Many things affect the cost 9987 // of vperm, particularly how many times the perm mask needs to be computed. 9988 // For example, if the perm mask can be hoisted out of a loop or is already 9989 // used (perhaps because there are multiple permutes with the same shuffle 9990 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9991 // the loop requires an extra register. 9992 // 9993 // As a compromise, we only emit discrete instructions if the shuffle can be 9994 // generated in 3 or fewer operations. When we have loop information 9995 // available, if this block is within a loop, we should avoid using vperm 9996 // for 3-operation perms and use a constant pool load instead. 9997 if (Cost < 3) 9998 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9999 } 10000 10001 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10002 // vector that will get spilled to the constant pool. 10003 if (V2.isUndef()) V2 = V1; 10004 10005 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10006 // that it is in input element units, not in bytes. Convert now. 10007 10008 // For little endian, the order of the input vectors is reversed, and 10009 // the permutation mask is complemented with respect to 31. This is 10010 // necessary to produce proper semantics with the big-endian-biased vperm 10011 // instruction. 10012 EVT EltVT = V1.getValueType().getVectorElementType(); 10013 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10014 10015 SmallVector<SDValue, 16> ResultMask; 10016 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10017 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10018 10019 for (unsigned j = 0; j != BytesPerElement; ++j) 10020 if (isLittleEndian) 10021 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10022 dl, MVT::i32)); 10023 else 10024 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10025 MVT::i32)); 10026 } 10027 10028 ShufflesHandledWithVPERM++; 10029 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10030 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10031 LLVM_DEBUG(SVOp->dump()); 10032 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10033 LLVM_DEBUG(VPermMask.dump()); 10034 10035 if (isLittleEndian) 10036 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10037 V2, V1, VPermMask); 10038 else 10039 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10040 V1, V2, VPermMask); 10041 } 10042 10043 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10044 /// vector comparison. If it is, return true and fill in Opc/isDot with 10045 /// information about the intrinsic. 10046 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10047 bool &isDot, const PPCSubtarget &Subtarget) { 10048 unsigned IntrinsicID = 10049 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10050 CompareOpc = -1; 10051 isDot = false; 10052 switch (IntrinsicID) { 10053 default: 10054 return false; 10055 // Comparison predicates. 10056 case Intrinsic::ppc_altivec_vcmpbfp_p: 10057 CompareOpc = 966; 10058 isDot = true; 10059 break; 10060 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10061 CompareOpc = 198; 10062 isDot = true; 10063 break; 10064 case Intrinsic::ppc_altivec_vcmpequb_p: 10065 CompareOpc = 6; 10066 isDot = true; 10067 break; 10068 case Intrinsic::ppc_altivec_vcmpequh_p: 10069 CompareOpc = 70; 10070 isDot = true; 10071 break; 10072 case Intrinsic::ppc_altivec_vcmpequw_p: 10073 CompareOpc = 134; 10074 isDot = true; 10075 break; 10076 case Intrinsic::ppc_altivec_vcmpequd_p: 10077 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10078 CompareOpc = 199; 10079 isDot = true; 10080 } else 10081 return false; 10082 break; 10083 case Intrinsic::ppc_altivec_vcmpneb_p: 10084 case Intrinsic::ppc_altivec_vcmpneh_p: 10085 case Intrinsic::ppc_altivec_vcmpnew_p: 10086 case Intrinsic::ppc_altivec_vcmpnezb_p: 10087 case Intrinsic::ppc_altivec_vcmpnezh_p: 10088 case Intrinsic::ppc_altivec_vcmpnezw_p: 10089 if (Subtarget.hasP9Altivec()) { 10090 switch (IntrinsicID) { 10091 default: 10092 llvm_unreachable("Unknown comparison intrinsic."); 10093 case Intrinsic::ppc_altivec_vcmpneb_p: 10094 CompareOpc = 7; 10095 break; 10096 case Intrinsic::ppc_altivec_vcmpneh_p: 10097 CompareOpc = 71; 10098 break; 10099 case Intrinsic::ppc_altivec_vcmpnew_p: 10100 CompareOpc = 135; 10101 break; 10102 case Intrinsic::ppc_altivec_vcmpnezb_p: 10103 CompareOpc = 263; 10104 break; 10105 case Intrinsic::ppc_altivec_vcmpnezh_p: 10106 CompareOpc = 327; 10107 break; 10108 case Intrinsic::ppc_altivec_vcmpnezw_p: 10109 CompareOpc = 391; 10110 break; 10111 } 10112 isDot = true; 10113 } else 10114 return false; 10115 break; 10116 case Intrinsic::ppc_altivec_vcmpgefp_p: 10117 CompareOpc = 454; 10118 isDot = true; 10119 break; 10120 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10121 CompareOpc = 710; 10122 isDot = true; 10123 break; 10124 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10125 CompareOpc = 774; 10126 isDot = true; 10127 break; 10128 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10129 CompareOpc = 838; 10130 isDot = true; 10131 break; 10132 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10133 CompareOpc = 902; 10134 isDot = true; 10135 break; 10136 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10137 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10138 CompareOpc = 967; 10139 isDot = true; 10140 } else 10141 return false; 10142 break; 10143 case Intrinsic::ppc_altivec_vcmpgtub_p: 10144 CompareOpc = 518; 10145 isDot = true; 10146 break; 10147 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10148 CompareOpc = 582; 10149 isDot = true; 10150 break; 10151 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10152 CompareOpc = 646; 10153 isDot = true; 10154 break; 10155 case Intrinsic::ppc_altivec_vcmpgtud_p: 10156 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10157 CompareOpc = 711; 10158 isDot = true; 10159 } else 10160 return false; 10161 break; 10162 10163 case Intrinsic::ppc_altivec_vcmpequq: 10164 case Intrinsic::ppc_altivec_vcmpgtsq: 10165 case Intrinsic::ppc_altivec_vcmpgtuq: 10166 if (!Subtarget.isISA3_1()) 10167 return false; 10168 switch (IntrinsicID) { 10169 default: 10170 llvm_unreachable("Unknown comparison intrinsic."); 10171 case Intrinsic::ppc_altivec_vcmpequq: 10172 CompareOpc = 455; 10173 break; 10174 case Intrinsic::ppc_altivec_vcmpgtsq: 10175 CompareOpc = 903; 10176 break; 10177 case Intrinsic::ppc_altivec_vcmpgtuq: 10178 CompareOpc = 647; 10179 break; 10180 } 10181 break; 10182 10183 // VSX predicate comparisons use the same infrastructure 10184 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10185 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10186 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10187 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10188 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10189 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10190 if (Subtarget.hasVSX()) { 10191 switch (IntrinsicID) { 10192 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10193 CompareOpc = 99; 10194 break; 10195 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10196 CompareOpc = 115; 10197 break; 10198 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10199 CompareOpc = 107; 10200 break; 10201 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10202 CompareOpc = 67; 10203 break; 10204 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10205 CompareOpc = 83; 10206 break; 10207 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10208 CompareOpc = 75; 10209 break; 10210 } 10211 isDot = true; 10212 } else 10213 return false; 10214 break; 10215 10216 // Normal Comparisons. 10217 case Intrinsic::ppc_altivec_vcmpbfp: 10218 CompareOpc = 966; 10219 break; 10220 case Intrinsic::ppc_altivec_vcmpeqfp: 10221 CompareOpc = 198; 10222 break; 10223 case Intrinsic::ppc_altivec_vcmpequb: 10224 CompareOpc = 6; 10225 break; 10226 case Intrinsic::ppc_altivec_vcmpequh: 10227 CompareOpc = 70; 10228 break; 10229 case Intrinsic::ppc_altivec_vcmpequw: 10230 CompareOpc = 134; 10231 break; 10232 case Intrinsic::ppc_altivec_vcmpequd: 10233 if (Subtarget.hasP8Altivec()) 10234 CompareOpc = 199; 10235 else 10236 return false; 10237 break; 10238 case Intrinsic::ppc_altivec_vcmpneb: 10239 case Intrinsic::ppc_altivec_vcmpneh: 10240 case Intrinsic::ppc_altivec_vcmpnew: 10241 case Intrinsic::ppc_altivec_vcmpnezb: 10242 case Intrinsic::ppc_altivec_vcmpnezh: 10243 case Intrinsic::ppc_altivec_vcmpnezw: 10244 if (Subtarget.hasP9Altivec()) 10245 switch (IntrinsicID) { 10246 default: 10247 llvm_unreachable("Unknown comparison intrinsic."); 10248 case Intrinsic::ppc_altivec_vcmpneb: 10249 CompareOpc = 7; 10250 break; 10251 case Intrinsic::ppc_altivec_vcmpneh: 10252 CompareOpc = 71; 10253 break; 10254 case Intrinsic::ppc_altivec_vcmpnew: 10255 CompareOpc = 135; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpnezb: 10258 CompareOpc = 263; 10259 break; 10260 case Intrinsic::ppc_altivec_vcmpnezh: 10261 CompareOpc = 327; 10262 break; 10263 case Intrinsic::ppc_altivec_vcmpnezw: 10264 CompareOpc = 391; 10265 break; 10266 } 10267 else 10268 return false; 10269 break; 10270 case Intrinsic::ppc_altivec_vcmpgefp: 10271 CompareOpc = 454; 10272 break; 10273 case Intrinsic::ppc_altivec_vcmpgtfp: 10274 CompareOpc = 710; 10275 break; 10276 case Intrinsic::ppc_altivec_vcmpgtsb: 10277 CompareOpc = 774; 10278 break; 10279 case Intrinsic::ppc_altivec_vcmpgtsh: 10280 CompareOpc = 838; 10281 break; 10282 case Intrinsic::ppc_altivec_vcmpgtsw: 10283 CompareOpc = 902; 10284 break; 10285 case Intrinsic::ppc_altivec_vcmpgtsd: 10286 if (Subtarget.hasP8Altivec()) 10287 CompareOpc = 967; 10288 else 10289 return false; 10290 break; 10291 case Intrinsic::ppc_altivec_vcmpgtub: 10292 CompareOpc = 518; 10293 break; 10294 case Intrinsic::ppc_altivec_vcmpgtuh: 10295 CompareOpc = 582; 10296 break; 10297 case Intrinsic::ppc_altivec_vcmpgtuw: 10298 CompareOpc = 646; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpgtud: 10301 if (Subtarget.hasP8Altivec()) 10302 CompareOpc = 711; 10303 else 10304 return false; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpequq_p: 10307 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10308 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10309 if (!Subtarget.isISA3_1()) 10310 return false; 10311 switch (IntrinsicID) { 10312 default: 10313 llvm_unreachable("Unknown comparison intrinsic."); 10314 case Intrinsic::ppc_altivec_vcmpequq_p: 10315 CompareOpc = 455; 10316 break; 10317 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10318 CompareOpc = 903; 10319 break; 10320 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10321 CompareOpc = 647; 10322 break; 10323 } 10324 isDot = true; 10325 break; 10326 } 10327 return true; 10328 } 10329 10330 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10331 /// lower, do it, otherwise return null. 10332 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10333 SelectionDAG &DAG) const { 10334 unsigned IntrinsicID = 10335 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10336 10337 SDLoc dl(Op); 10338 10339 switch (IntrinsicID) { 10340 case Intrinsic::thread_pointer: 10341 // Reads the thread pointer register, used for __builtin_thread_pointer. 10342 if (Subtarget.isPPC64()) 10343 return DAG.getRegister(PPC::X13, MVT::i64); 10344 return DAG.getRegister(PPC::R2, MVT::i32); 10345 10346 case Intrinsic::ppc_mma_disassemble_acc: 10347 case Intrinsic::ppc_vsx_disassemble_pair: { 10348 int NumVecs = 2; 10349 SDValue WideVec = Op.getOperand(1); 10350 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10351 NumVecs = 4; 10352 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10353 } 10354 SmallVector<SDValue, 4> RetOps; 10355 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10356 SDValue Extract = DAG.getNode( 10357 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10358 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10359 : VecNo, 10360 dl, getPointerTy(DAG.getDataLayout()))); 10361 RetOps.push_back(Extract); 10362 } 10363 return DAG.getMergeValues(RetOps, dl); 10364 } 10365 case Intrinsic::ppc_compare_exp_lt: 10366 case Intrinsic::ppc_compare_exp_gt: 10367 case Intrinsic::ppc_compare_exp_eq: 10368 case Intrinsic::ppc_compare_exp_uo: { 10369 unsigned Pred; 10370 switch (IntrinsicID) { 10371 case Intrinsic::ppc_compare_exp_lt: 10372 Pred = PPC::PRED_LT; 10373 break; 10374 case Intrinsic::ppc_compare_exp_gt: 10375 Pred = PPC::PRED_GT; 10376 break; 10377 case Intrinsic::ppc_compare_exp_eq: 10378 Pred = PPC::PRED_EQ; 10379 break; 10380 case Intrinsic::ppc_compare_exp_uo: 10381 Pred = PPC::PRED_UN; 10382 break; 10383 } 10384 return SDValue( 10385 DAG.getMachineNode( 10386 PPC::SELECT_CC_I4, dl, MVT::i32, 10387 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10388 Op.getOperand(1), Op.getOperand(2)), 10389 0), 10390 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10391 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10392 0); 10393 } 10394 case Intrinsic::ppc_test_data_class_d: 10395 case Intrinsic::ppc_test_data_class_f: { 10396 unsigned CmprOpc = PPC::XSTSTDCDP; 10397 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10398 CmprOpc = PPC::XSTSTDCSP; 10399 return SDValue( 10400 DAG.getMachineNode( 10401 PPC::SELECT_CC_I4, dl, MVT::i32, 10402 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10403 Op.getOperand(1)), 10404 0), 10405 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10406 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10407 0); 10408 } 10409 } 10410 10411 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10412 // opcode number of the comparison. 10413 int CompareOpc; 10414 bool isDot; 10415 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10416 return SDValue(); // Don't custom lower most intrinsics. 10417 10418 // If this is a non-dot comparison, make the VCMP node and we are done. 10419 if (!isDot) { 10420 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10421 Op.getOperand(1), Op.getOperand(2), 10422 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10423 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10424 } 10425 10426 // Create the PPCISD altivec 'dot' comparison node. 10427 SDValue Ops[] = { 10428 Op.getOperand(2), // LHS 10429 Op.getOperand(3), // RHS 10430 DAG.getConstant(CompareOpc, dl, MVT::i32) 10431 }; 10432 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10433 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10434 10435 // Now that we have the comparison, emit a copy from the CR to a GPR. 10436 // This is flagged to the above dot comparison. 10437 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10438 DAG.getRegister(PPC::CR6, MVT::i32), 10439 CompNode.getValue(1)); 10440 10441 // Unpack the result based on how the target uses it. 10442 unsigned BitNo; // Bit # of CR6. 10443 bool InvertBit; // Invert result? 10444 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10445 default: // Can't happen, don't crash on invalid number though. 10446 case 0: // Return the value of the EQ bit of CR6. 10447 BitNo = 0; InvertBit = false; 10448 break; 10449 case 1: // Return the inverted value of the EQ bit of CR6. 10450 BitNo = 0; InvertBit = true; 10451 break; 10452 case 2: // Return the value of the LT bit of CR6. 10453 BitNo = 2; InvertBit = false; 10454 break; 10455 case 3: // Return the inverted value of the LT bit of CR6. 10456 BitNo = 2; InvertBit = true; 10457 break; 10458 } 10459 10460 // Shift the bit into the low position. 10461 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10462 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10463 // Isolate the bit. 10464 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10465 DAG.getConstant(1, dl, MVT::i32)); 10466 10467 // If we are supposed to, toggle the bit. 10468 if (InvertBit) 10469 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10470 DAG.getConstant(1, dl, MVT::i32)); 10471 return Flags; 10472 } 10473 10474 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10475 SelectionDAG &DAG) const { 10476 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10477 // the beginning of the argument list. 10478 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10479 SDLoc DL(Op); 10480 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10481 case Intrinsic::ppc_cfence: { 10482 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10483 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10484 SDValue Val = Op.getOperand(ArgStart + 1); 10485 EVT Ty = Val.getValueType(); 10486 if (Ty == MVT::i128) { 10487 // FIXME: Testing one of two paired registers is sufficient to guarantee 10488 // ordering? 10489 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10490 } 10491 return SDValue( 10492 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10493 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10494 Op.getOperand(0)), 10495 0); 10496 } 10497 default: 10498 break; 10499 } 10500 return SDValue(); 10501 } 10502 10503 // Lower scalar BSWAP64 to xxbrd. 10504 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10505 SDLoc dl(Op); 10506 if (!Subtarget.isPPC64()) 10507 return Op; 10508 // MTVSRDD 10509 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10510 Op.getOperand(0)); 10511 // XXBRD 10512 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10513 // MFVSRD 10514 int VectorIndex = 0; 10515 if (Subtarget.isLittleEndian()) 10516 VectorIndex = 1; 10517 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10518 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10519 return Op; 10520 } 10521 10522 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10523 // compared to a value that is atomically loaded (atomic loads zero-extend). 10524 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10525 SelectionDAG &DAG) const { 10526 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10527 "Expecting an atomic compare-and-swap here."); 10528 SDLoc dl(Op); 10529 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10530 EVT MemVT = AtomicNode->getMemoryVT(); 10531 if (MemVT.getSizeInBits() >= 32) 10532 return Op; 10533 10534 SDValue CmpOp = Op.getOperand(2); 10535 // If this is already correctly zero-extended, leave it alone. 10536 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10537 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10538 return Op; 10539 10540 // Clear the high bits of the compare operand. 10541 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10542 SDValue NewCmpOp = 10543 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10544 DAG.getConstant(MaskVal, dl, MVT::i32)); 10545 10546 // Replace the existing compare operand with the properly zero-extended one. 10547 SmallVector<SDValue, 4> Ops; 10548 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10549 Ops.push_back(AtomicNode->getOperand(i)); 10550 Ops[2] = NewCmpOp; 10551 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10552 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10553 auto NodeTy = 10554 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10555 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10556 } 10557 10558 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10559 SelectionDAG &DAG) const { 10560 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10561 EVT MemVT = N->getMemoryVT(); 10562 assert(MemVT.getSimpleVT() == MVT::i128 && 10563 "Expect quadword atomic operations"); 10564 SDLoc dl(N); 10565 unsigned Opc = N->getOpcode(); 10566 switch (Opc) { 10567 case ISD::ATOMIC_LOAD: { 10568 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10569 // lowered to ppc instructions by pattern matching instruction selector. 10570 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10571 SmallVector<SDValue, 4> Ops{ 10572 N->getOperand(0), 10573 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10574 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10575 Ops.push_back(N->getOperand(I)); 10576 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10577 Ops, MemVT, N->getMemOperand()); 10578 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10579 SDValue ValHi = 10580 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10581 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10582 DAG.getConstant(64, dl, MVT::i32)); 10583 SDValue Val = 10584 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10585 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10586 {Val, LoadedVal.getValue(2)}); 10587 } 10588 case ISD::ATOMIC_STORE: { 10589 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10590 // lowered to ppc instructions by pattern matching instruction selector. 10591 SDVTList Tys = DAG.getVTList(MVT::Other); 10592 SmallVector<SDValue, 4> Ops{ 10593 N->getOperand(0), 10594 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10595 SDValue Val = N->getOperand(2); 10596 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10597 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10598 DAG.getConstant(64, dl, MVT::i32)); 10599 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10600 Ops.push_back(ValLo); 10601 Ops.push_back(ValHi); 10602 Ops.push_back(N->getOperand(1)); 10603 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10604 N->getMemOperand()); 10605 } 10606 default: 10607 llvm_unreachable("Unexpected atomic opcode"); 10608 } 10609 } 10610 10611 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10612 SelectionDAG &DAG) const { 10613 SDLoc dl(Op); 10614 // Create a stack slot that is 16-byte aligned. 10615 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10616 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10617 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10618 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10619 10620 // Store the input value into Value#0 of the stack slot. 10621 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10622 MachinePointerInfo()); 10623 // Load it out. 10624 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10625 } 10626 10627 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10628 SelectionDAG &DAG) const { 10629 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10630 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10631 10632 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10633 10634 EVT VT = Op.getValueType(); 10635 SDLoc dl(Op); 10636 SDValue V1 = Op.getOperand(0); 10637 SDValue V2 = Op.getOperand(1); 10638 SDValue V3 = Op.getOperand(2); 10639 10640 if (VT == MVT::v2f64 && C) 10641 return Op; 10642 10643 if (Subtarget.isISA3_1()) { 10644 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10645 return SDValue(); 10646 // On P10, we have legal lowering for constant and variable indices for 10647 // integer vectors. 10648 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10649 VT == MVT::v2i64) 10650 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10651 // For f32 and f64 vectors, we have legal lowering for variable indices. 10652 // For f32 we also have legal lowering when the element is loaded from 10653 // memory. 10654 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10655 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10656 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10657 return Op; 10658 } 10659 } 10660 10661 // Before P10, we have legal lowering for constant indices but not for 10662 // variable ones. 10663 if (!C) 10664 return SDValue(); 10665 10666 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10667 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10668 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10669 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10670 unsigned InsertAtElement = C->getZExtValue(); 10671 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10672 if (Subtarget.isLittleEndian()) { 10673 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10674 } 10675 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10676 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10677 } 10678 return Op; 10679 } 10680 10681 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10682 SelectionDAG &DAG) const { 10683 SDLoc dl(Op); 10684 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10685 SDValue LoadChain = LN->getChain(); 10686 SDValue BasePtr = LN->getBasePtr(); 10687 EVT VT = Op.getValueType(); 10688 10689 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10690 return Op; 10691 10692 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10693 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10694 // 2 or 4 vsx registers. 10695 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10696 "Type unsupported without MMA"); 10697 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10698 "Type unsupported without paired vector support"); 10699 Align Alignment = LN->getAlign(); 10700 SmallVector<SDValue, 4> Loads; 10701 SmallVector<SDValue, 4> LoadChains; 10702 unsigned NumVecs = VT.getSizeInBits() / 128; 10703 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10704 SDValue Load = 10705 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10706 LN->getPointerInfo().getWithOffset(Idx * 16), 10707 commonAlignment(Alignment, Idx * 16), 10708 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10709 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10710 DAG.getConstant(16, dl, BasePtr.getValueType())); 10711 Loads.push_back(Load); 10712 LoadChains.push_back(Load.getValue(1)); 10713 } 10714 if (Subtarget.isLittleEndian()) { 10715 std::reverse(Loads.begin(), Loads.end()); 10716 std::reverse(LoadChains.begin(), LoadChains.end()); 10717 } 10718 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10719 SDValue Value = 10720 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10721 dl, VT, Loads); 10722 SDValue RetOps[] = {Value, TF}; 10723 return DAG.getMergeValues(RetOps, dl); 10724 } 10725 10726 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10727 SelectionDAG &DAG) const { 10728 SDLoc dl(Op); 10729 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10730 SDValue StoreChain = SN->getChain(); 10731 SDValue BasePtr = SN->getBasePtr(); 10732 SDValue Value = SN->getValue(); 10733 EVT StoreVT = Value.getValueType(); 10734 10735 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10736 return Op; 10737 10738 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10739 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10740 // underlying registers individually. 10741 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10742 "Type unsupported without MMA"); 10743 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10744 "Type unsupported without paired vector support"); 10745 Align Alignment = SN->getAlign(); 10746 SmallVector<SDValue, 4> Stores; 10747 unsigned NumVecs = 2; 10748 if (StoreVT == MVT::v512i1) { 10749 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10750 NumVecs = 4; 10751 } 10752 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10753 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10754 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10755 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10756 SDValue Store = 10757 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10758 SN->getPointerInfo().getWithOffset(Idx * 16), 10759 commonAlignment(Alignment, Idx * 16), 10760 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10761 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10762 DAG.getConstant(16, dl, BasePtr.getValueType())); 10763 Stores.push_back(Store); 10764 } 10765 SDValue TF = DAG.getTokenFactor(dl, Stores); 10766 return TF; 10767 } 10768 10769 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10770 SDLoc dl(Op); 10771 if (Op.getValueType() == MVT::v4i32) { 10772 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10773 10774 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10775 // +16 as shift amt. 10776 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10777 SDValue RHSSwap = // = vrlw RHS, 16 10778 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10779 10780 // Shrinkify inputs to v8i16. 10781 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10782 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10783 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10784 10785 // Low parts multiplied together, generating 32-bit results (we ignore the 10786 // top parts). 10787 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10788 LHS, RHS, DAG, dl, MVT::v4i32); 10789 10790 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10791 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10792 // Shift the high parts up 16 bits. 10793 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10794 Neg16, DAG, dl); 10795 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10796 } else if (Op.getValueType() == MVT::v16i8) { 10797 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10798 bool isLittleEndian = Subtarget.isLittleEndian(); 10799 10800 // Multiply the even 8-bit parts, producing 16-bit sums. 10801 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10802 LHS, RHS, DAG, dl, MVT::v8i16); 10803 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10804 10805 // Multiply the odd 8-bit parts, producing 16-bit sums. 10806 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10807 LHS, RHS, DAG, dl, MVT::v8i16); 10808 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10809 10810 // Merge the results together. Because vmuleub and vmuloub are 10811 // instructions with a big-endian bias, we must reverse the 10812 // element numbering and reverse the meaning of "odd" and "even" 10813 // when generating little endian code. 10814 int Ops[16]; 10815 for (unsigned i = 0; i != 8; ++i) { 10816 if (isLittleEndian) { 10817 Ops[i*2 ] = 2*i; 10818 Ops[i*2+1] = 2*i+16; 10819 } else { 10820 Ops[i*2 ] = 2*i+1; 10821 Ops[i*2+1] = 2*i+1+16; 10822 } 10823 } 10824 if (isLittleEndian) 10825 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10826 else 10827 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10828 } else { 10829 llvm_unreachable("Unknown mul to lower!"); 10830 } 10831 } 10832 10833 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10834 bool IsStrict = Op->isStrictFPOpcode(); 10835 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10836 !Subtarget.hasP9Vector()) 10837 return SDValue(); 10838 10839 return Op; 10840 } 10841 10842 // Custom lowering for fpext vf32 to v2f64 10843 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10844 10845 assert(Op.getOpcode() == ISD::FP_EXTEND && 10846 "Should only be called for ISD::FP_EXTEND"); 10847 10848 // FIXME: handle extends from half precision float vectors on P9. 10849 // We only want to custom lower an extend from v2f32 to v2f64. 10850 if (Op.getValueType() != MVT::v2f64 || 10851 Op.getOperand(0).getValueType() != MVT::v2f32) 10852 return SDValue(); 10853 10854 SDLoc dl(Op); 10855 SDValue Op0 = Op.getOperand(0); 10856 10857 switch (Op0.getOpcode()) { 10858 default: 10859 return SDValue(); 10860 case ISD::EXTRACT_SUBVECTOR: { 10861 assert(Op0.getNumOperands() == 2 && 10862 isa<ConstantSDNode>(Op0->getOperand(1)) && 10863 "Node should have 2 operands with second one being a constant!"); 10864 10865 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10866 return SDValue(); 10867 10868 // Custom lower is only done for high or low doubleword. 10869 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10870 if (Idx % 2 != 0) 10871 return SDValue(); 10872 10873 // Since input is v4f32, at this point Idx is either 0 or 2. 10874 // Shift to get the doubleword position we want. 10875 int DWord = Idx >> 1; 10876 10877 // High and low word positions are different on little endian. 10878 if (Subtarget.isLittleEndian()) 10879 DWord ^= 0x1; 10880 10881 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10882 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10883 } 10884 case ISD::FADD: 10885 case ISD::FMUL: 10886 case ISD::FSUB: { 10887 SDValue NewLoad[2]; 10888 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10889 // Ensure both input are loads. 10890 SDValue LdOp = Op0.getOperand(i); 10891 if (LdOp.getOpcode() != ISD::LOAD) 10892 return SDValue(); 10893 // Generate new load node. 10894 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10895 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10896 NewLoad[i] = DAG.getMemIntrinsicNode( 10897 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10898 LD->getMemoryVT(), LD->getMemOperand()); 10899 } 10900 SDValue NewOp = 10901 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10902 NewLoad[1], Op0.getNode()->getFlags()); 10903 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10904 DAG.getConstant(0, dl, MVT::i32)); 10905 } 10906 case ISD::LOAD: { 10907 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10908 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10909 SDValue NewLd = DAG.getMemIntrinsicNode( 10910 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10911 LD->getMemoryVT(), LD->getMemOperand()); 10912 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10913 DAG.getConstant(0, dl, MVT::i32)); 10914 } 10915 } 10916 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10917 } 10918 10919 /// LowerOperation - Provide custom lowering hooks for some operations. 10920 /// 10921 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10922 switch (Op.getOpcode()) { 10923 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10924 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10925 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10926 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10927 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10928 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10929 case ISD::STRICT_FSETCC: 10930 case ISD::STRICT_FSETCCS: 10931 case ISD::SETCC: return LowerSETCC(Op, DAG); 10932 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10933 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10934 10935 case ISD::INLINEASM: 10936 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10937 // Variable argument lowering. 10938 case ISD::VASTART: return LowerVASTART(Op, DAG); 10939 case ISD::VAARG: return LowerVAARG(Op, DAG); 10940 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10941 10942 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10943 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10944 case ISD::GET_DYNAMIC_AREA_OFFSET: 10945 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10946 10947 // Exception handling lowering. 10948 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10949 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10950 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10951 10952 case ISD::LOAD: return LowerLOAD(Op, DAG); 10953 case ISD::STORE: return LowerSTORE(Op, DAG); 10954 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10955 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10956 case ISD::STRICT_FP_TO_UINT: 10957 case ISD::STRICT_FP_TO_SINT: 10958 case ISD::FP_TO_UINT: 10959 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10960 case ISD::STRICT_UINT_TO_FP: 10961 case ISD::STRICT_SINT_TO_FP: 10962 case ISD::UINT_TO_FP: 10963 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10964 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10965 10966 // Lower 64-bit shifts. 10967 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10968 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10969 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10970 10971 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10972 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10973 10974 // Vector-related lowering. 10975 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10976 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10977 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10978 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10979 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10980 case ISD::MUL: return LowerMUL(Op, DAG); 10981 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10982 case ISD::STRICT_FP_ROUND: 10983 case ISD::FP_ROUND: 10984 return LowerFP_ROUND(Op, DAG); 10985 case ISD::ROTL: return LowerROTL(Op, DAG); 10986 10987 // For counter-based loop handling. 10988 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10989 10990 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10991 10992 // Frame & Return address. 10993 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10994 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10995 10996 case ISD::INTRINSIC_VOID: 10997 return LowerINTRINSIC_VOID(Op, DAG); 10998 case ISD::BSWAP: 10999 return LowerBSWAP(Op, DAG); 11000 case ISD::ATOMIC_CMP_SWAP: 11001 return LowerATOMIC_CMP_SWAP(Op, DAG); 11002 case ISD::ATOMIC_STORE: 11003 return LowerATOMIC_LOAD_STORE(Op, DAG); 11004 } 11005 } 11006 11007 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11008 SmallVectorImpl<SDValue>&Results, 11009 SelectionDAG &DAG) const { 11010 SDLoc dl(N); 11011 switch (N->getOpcode()) { 11012 default: 11013 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11014 case ISD::ATOMIC_LOAD: { 11015 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11016 Results.push_back(Res); 11017 Results.push_back(Res.getValue(1)); 11018 break; 11019 } 11020 case ISD::READCYCLECOUNTER: { 11021 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11022 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11023 11024 Results.push_back( 11025 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11026 Results.push_back(RTB.getValue(2)); 11027 break; 11028 } 11029 case ISD::INTRINSIC_W_CHAIN: { 11030 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11031 Intrinsic::loop_decrement) 11032 break; 11033 11034 assert(N->getValueType(0) == MVT::i1 && 11035 "Unexpected result type for CTR decrement intrinsic"); 11036 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11037 N->getValueType(0)); 11038 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11039 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11040 N->getOperand(1)); 11041 11042 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11043 Results.push_back(NewInt.getValue(1)); 11044 break; 11045 } 11046 case ISD::VAARG: { 11047 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11048 return; 11049 11050 EVT VT = N->getValueType(0); 11051 11052 if (VT == MVT::i64) { 11053 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11054 11055 Results.push_back(NewNode); 11056 Results.push_back(NewNode.getValue(1)); 11057 } 11058 return; 11059 } 11060 case ISD::STRICT_FP_TO_SINT: 11061 case ISD::STRICT_FP_TO_UINT: 11062 case ISD::FP_TO_SINT: 11063 case ISD::FP_TO_UINT: 11064 // LowerFP_TO_INT() can only handle f32 and f64. 11065 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11066 MVT::ppcf128) 11067 return; 11068 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11069 return; 11070 case ISD::TRUNCATE: { 11071 if (!N->getValueType(0).isVector()) 11072 return; 11073 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11074 if (Lowered) 11075 Results.push_back(Lowered); 11076 return; 11077 } 11078 case ISD::FSHL: 11079 case ISD::FSHR: 11080 // Don't handle funnel shifts here. 11081 return; 11082 case ISD::BITCAST: 11083 // Don't handle bitcast here. 11084 return; 11085 case ISD::FP_EXTEND: 11086 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11087 if (Lowered) 11088 Results.push_back(Lowered); 11089 return; 11090 } 11091 } 11092 11093 //===----------------------------------------------------------------------===// 11094 // Other Lowering Code 11095 //===----------------------------------------------------------------------===// 11096 11097 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11098 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11099 Function *Func = Intrinsic::getDeclaration(M, Id); 11100 return Builder.CreateCall(Func, {}); 11101 } 11102 11103 // The mappings for emitLeading/TrailingFence is taken from 11104 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11105 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11106 Instruction *Inst, 11107 AtomicOrdering Ord) const { 11108 if (Ord == AtomicOrdering::SequentiallyConsistent) 11109 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11110 if (isReleaseOrStronger(Ord)) 11111 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11112 return nullptr; 11113 } 11114 11115 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11116 Instruction *Inst, 11117 AtomicOrdering Ord) const { 11118 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11119 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11120 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11121 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11122 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11123 return Builder.CreateCall( 11124 Intrinsic::getDeclaration( 11125 Builder.GetInsertBlock()->getParent()->getParent(), 11126 Intrinsic::ppc_cfence, {Inst->getType()}), 11127 {Inst}); 11128 // FIXME: Can use isync for rmw operation. 11129 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11130 } 11131 return nullptr; 11132 } 11133 11134 MachineBasicBlock * 11135 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11136 unsigned AtomicSize, 11137 unsigned BinOpcode, 11138 unsigned CmpOpcode, 11139 unsigned CmpPred) const { 11140 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11141 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11142 11143 auto LoadMnemonic = PPC::LDARX; 11144 auto StoreMnemonic = PPC::STDCX; 11145 switch (AtomicSize) { 11146 default: 11147 llvm_unreachable("Unexpected size of atomic entity"); 11148 case 1: 11149 LoadMnemonic = PPC::LBARX; 11150 StoreMnemonic = PPC::STBCX; 11151 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11152 break; 11153 case 2: 11154 LoadMnemonic = PPC::LHARX; 11155 StoreMnemonic = PPC::STHCX; 11156 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11157 break; 11158 case 4: 11159 LoadMnemonic = PPC::LWARX; 11160 StoreMnemonic = PPC::STWCX; 11161 break; 11162 case 8: 11163 LoadMnemonic = PPC::LDARX; 11164 StoreMnemonic = PPC::STDCX; 11165 break; 11166 } 11167 11168 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11169 MachineFunction *F = BB->getParent(); 11170 MachineFunction::iterator It = ++BB->getIterator(); 11171 11172 Register dest = MI.getOperand(0).getReg(); 11173 Register ptrA = MI.getOperand(1).getReg(); 11174 Register ptrB = MI.getOperand(2).getReg(); 11175 Register incr = MI.getOperand(3).getReg(); 11176 DebugLoc dl = MI.getDebugLoc(); 11177 11178 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11179 MachineBasicBlock *loop2MBB = 11180 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11181 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11182 F->insert(It, loopMBB); 11183 if (CmpOpcode) 11184 F->insert(It, loop2MBB); 11185 F->insert(It, exitMBB); 11186 exitMBB->splice(exitMBB->begin(), BB, 11187 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11188 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11189 11190 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11191 Register TmpReg = (!BinOpcode) ? incr : 11192 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11193 : &PPC::GPRCRegClass); 11194 11195 // thisMBB: 11196 // ... 11197 // fallthrough --> loopMBB 11198 BB->addSuccessor(loopMBB); 11199 11200 // loopMBB: 11201 // l[wd]arx dest, ptr 11202 // add r0, dest, incr 11203 // st[wd]cx. r0, ptr 11204 // bne- loopMBB 11205 // fallthrough --> exitMBB 11206 11207 // For max/min... 11208 // loopMBB: 11209 // l[wd]arx dest, ptr 11210 // cmpl?[wd] incr, dest 11211 // bgt exitMBB 11212 // loop2MBB: 11213 // st[wd]cx. dest, ptr 11214 // bne- loopMBB 11215 // fallthrough --> exitMBB 11216 11217 BB = loopMBB; 11218 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11219 .addReg(ptrA).addReg(ptrB); 11220 if (BinOpcode) 11221 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11222 if (CmpOpcode) { 11223 // Signed comparisons of byte or halfword values must be sign-extended. 11224 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11225 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11226 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11227 ExtReg).addReg(dest); 11228 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11229 .addReg(incr).addReg(ExtReg); 11230 } else 11231 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11232 .addReg(incr).addReg(dest); 11233 11234 BuildMI(BB, dl, TII->get(PPC::BCC)) 11235 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11236 BB->addSuccessor(loop2MBB); 11237 BB->addSuccessor(exitMBB); 11238 BB = loop2MBB; 11239 } 11240 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11241 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11242 BuildMI(BB, dl, TII->get(PPC::BCC)) 11243 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11244 BB->addSuccessor(loopMBB); 11245 BB->addSuccessor(exitMBB); 11246 11247 // exitMBB: 11248 // ... 11249 BB = exitMBB; 11250 return BB; 11251 } 11252 11253 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11254 switch(MI.getOpcode()) { 11255 default: 11256 return false; 11257 case PPC::COPY: 11258 return TII->isSignExtended(MI); 11259 case PPC::LHA: 11260 case PPC::LHA8: 11261 case PPC::LHAU: 11262 case PPC::LHAU8: 11263 case PPC::LHAUX: 11264 case PPC::LHAUX8: 11265 case PPC::LHAX: 11266 case PPC::LHAX8: 11267 case PPC::LWA: 11268 case PPC::LWAUX: 11269 case PPC::LWAX: 11270 case PPC::LWAX_32: 11271 case PPC::LWA_32: 11272 case PPC::PLHA: 11273 case PPC::PLHA8: 11274 case PPC::PLHA8pc: 11275 case PPC::PLHApc: 11276 case PPC::PLWA: 11277 case PPC::PLWA8: 11278 case PPC::PLWA8pc: 11279 case PPC::PLWApc: 11280 case PPC::EXTSB: 11281 case PPC::EXTSB8: 11282 case PPC::EXTSB8_32_64: 11283 case PPC::EXTSB8_rec: 11284 case PPC::EXTSB_rec: 11285 case PPC::EXTSH: 11286 case PPC::EXTSH8: 11287 case PPC::EXTSH8_32_64: 11288 case PPC::EXTSH8_rec: 11289 case PPC::EXTSH_rec: 11290 case PPC::EXTSW: 11291 case PPC::EXTSWSLI: 11292 case PPC::EXTSWSLI_32_64: 11293 case PPC::EXTSWSLI_32_64_rec: 11294 case PPC::EXTSWSLI_rec: 11295 case PPC::EXTSW_32: 11296 case PPC::EXTSW_32_64: 11297 case PPC::EXTSW_32_64_rec: 11298 case PPC::EXTSW_rec: 11299 case PPC::SRAW: 11300 case PPC::SRAWI: 11301 case PPC::SRAWI_rec: 11302 case PPC::SRAW_rec: 11303 return true; 11304 } 11305 return false; 11306 } 11307 11308 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11309 MachineInstr &MI, MachineBasicBlock *BB, 11310 bool is8bit, // operation 11311 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11312 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11313 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11314 11315 // If this is a signed comparison and the value being compared is not known 11316 // to be sign extended, sign extend it here. 11317 DebugLoc dl = MI.getDebugLoc(); 11318 MachineFunction *F = BB->getParent(); 11319 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11320 Register incr = MI.getOperand(3).getReg(); 11321 bool IsSignExtended = Register::isVirtualRegister(incr) && 11322 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11323 11324 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11325 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11326 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11327 .addReg(MI.getOperand(3).getReg()); 11328 MI.getOperand(3).setReg(ValueReg); 11329 } 11330 // If we support part-word atomic mnemonics, just use them 11331 if (Subtarget.hasPartwordAtomics()) 11332 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11333 CmpPred); 11334 11335 // In 64 bit mode we have to use 64 bits for addresses, even though the 11336 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11337 // registers without caring whether they're 32 or 64, but here we're 11338 // doing actual arithmetic on the addresses. 11339 bool is64bit = Subtarget.isPPC64(); 11340 bool isLittleEndian = Subtarget.isLittleEndian(); 11341 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11342 11343 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11344 MachineFunction::iterator It = ++BB->getIterator(); 11345 11346 Register dest = MI.getOperand(0).getReg(); 11347 Register ptrA = MI.getOperand(1).getReg(); 11348 Register ptrB = MI.getOperand(2).getReg(); 11349 11350 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11351 MachineBasicBlock *loop2MBB = 11352 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11353 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11354 F->insert(It, loopMBB); 11355 if (CmpOpcode) 11356 F->insert(It, loop2MBB); 11357 F->insert(It, exitMBB); 11358 exitMBB->splice(exitMBB->begin(), BB, 11359 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11360 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11361 11362 const TargetRegisterClass *RC = 11363 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11364 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11365 11366 Register PtrReg = RegInfo.createVirtualRegister(RC); 11367 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11368 Register ShiftReg = 11369 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11370 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11371 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11372 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11373 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11374 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11375 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11376 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11377 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11378 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11379 Register Ptr1Reg; 11380 Register TmpReg = 11381 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11382 11383 // thisMBB: 11384 // ... 11385 // fallthrough --> loopMBB 11386 BB->addSuccessor(loopMBB); 11387 11388 // The 4-byte load must be aligned, while a char or short may be 11389 // anywhere in the word. Hence all this nasty bookkeeping code. 11390 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11391 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11392 // xori shift, shift1, 24 [16] 11393 // rlwinm ptr, ptr1, 0, 0, 29 11394 // slw incr2, incr, shift 11395 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11396 // slw mask, mask2, shift 11397 // loopMBB: 11398 // lwarx tmpDest, ptr 11399 // add tmp, tmpDest, incr2 11400 // andc tmp2, tmpDest, mask 11401 // and tmp3, tmp, mask 11402 // or tmp4, tmp3, tmp2 11403 // stwcx. tmp4, ptr 11404 // bne- loopMBB 11405 // fallthrough --> exitMBB 11406 // srw SrwDest, tmpDest, shift 11407 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11408 if (ptrA != ZeroReg) { 11409 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11410 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11411 .addReg(ptrA) 11412 .addReg(ptrB); 11413 } else { 11414 Ptr1Reg = ptrB; 11415 } 11416 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11417 // mode. 11418 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11419 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11420 .addImm(3) 11421 .addImm(27) 11422 .addImm(is8bit ? 28 : 27); 11423 if (!isLittleEndian) 11424 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11425 .addReg(Shift1Reg) 11426 .addImm(is8bit ? 24 : 16); 11427 if (is64bit) 11428 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11429 .addReg(Ptr1Reg) 11430 .addImm(0) 11431 .addImm(61); 11432 else 11433 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11434 .addReg(Ptr1Reg) 11435 .addImm(0) 11436 .addImm(0) 11437 .addImm(29); 11438 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11439 if (is8bit) 11440 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11441 else { 11442 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11443 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11444 .addReg(Mask3Reg) 11445 .addImm(65535); 11446 } 11447 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11448 .addReg(Mask2Reg) 11449 .addReg(ShiftReg); 11450 11451 BB = loopMBB; 11452 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11453 .addReg(ZeroReg) 11454 .addReg(PtrReg); 11455 if (BinOpcode) 11456 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11457 .addReg(Incr2Reg) 11458 .addReg(TmpDestReg); 11459 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11460 .addReg(TmpDestReg) 11461 .addReg(MaskReg); 11462 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11463 if (CmpOpcode) { 11464 // For unsigned comparisons, we can directly compare the shifted values. 11465 // For signed comparisons we shift and sign extend. 11466 Register SReg = RegInfo.createVirtualRegister(GPRC); 11467 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11468 .addReg(TmpDestReg) 11469 .addReg(MaskReg); 11470 unsigned ValueReg = SReg; 11471 unsigned CmpReg = Incr2Reg; 11472 if (CmpOpcode == PPC::CMPW) { 11473 ValueReg = RegInfo.createVirtualRegister(GPRC); 11474 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11475 .addReg(SReg) 11476 .addReg(ShiftReg); 11477 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11478 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11479 .addReg(ValueReg); 11480 ValueReg = ValueSReg; 11481 CmpReg = incr; 11482 } 11483 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11484 .addReg(CmpReg) 11485 .addReg(ValueReg); 11486 BuildMI(BB, dl, TII->get(PPC::BCC)) 11487 .addImm(CmpPred) 11488 .addReg(PPC::CR0) 11489 .addMBB(exitMBB); 11490 BB->addSuccessor(loop2MBB); 11491 BB->addSuccessor(exitMBB); 11492 BB = loop2MBB; 11493 } 11494 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11495 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11496 .addReg(Tmp4Reg) 11497 .addReg(ZeroReg) 11498 .addReg(PtrReg); 11499 BuildMI(BB, dl, TII->get(PPC::BCC)) 11500 .addImm(PPC::PRED_NE) 11501 .addReg(PPC::CR0) 11502 .addMBB(loopMBB); 11503 BB->addSuccessor(loopMBB); 11504 BB->addSuccessor(exitMBB); 11505 11506 // exitMBB: 11507 // ... 11508 BB = exitMBB; 11509 // Since the shift amount is not a constant, we need to clear 11510 // the upper bits with a separate RLWINM. 11511 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11512 .addReg(SrwDestReg) 11513 .addImm(0) 11514 .addImm(is8bit ? 24 : 16) 11515 .addImm(31); 11516 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11517 .addReg(TmpDestReg) 11518 .addReg(ShiftReg); 11519 return BB; 11520 } 11521 11522 llvm::MachineBasicBlock * 11523 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11524 MachineBasicBlock *MBB) const { 11525 DebugLoc DL = MI.getDebugLoc(); 11526 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11527 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11528 11529 MachineFunction *MF = MBB->getParent(); 11530 MachineRegisterInfo &MRI = MF->getRegInfo(); 11531 11532 const BasicBlock *BB = MBB->getBasicBlock(); 11533 MachineFunction::iterator I = ++MBB->getIterator(); 11534 11535 Register DstReg = MI.getOperand(0).getReg(); 11536 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11537 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11538 Register mainDstReg = MRI.createVirtualRegister(RC); 11539 Register restoreDstReg = MRI.createVirtualRegister(RC); 11540 11541 MVT PVT = getPointerTy(MF->getDataLayout()); 11542 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11543 "Invalid Pointer Size!"); 11544 // For v = setjmp(buf), we generate 11545 // 11546 // thisMBB: 11547 // SjLjSetup mainMBB 11548 // bl mainMBB 11549 // v_restore = 1 11550 // b sinkMBB 11551 // 11552 // mainMBB: 11553 // buf[LabelOffset] = LR 11554 // v_main = 0 11555 // 11556 // sinkMBB: 11557 // v = phi(main, restore) 11558 // 11559 11560 MachineBasicBlock *thisMBB = MBB; 11561 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11562 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11563 MF->insert(I, mainMBB); 11564 MF->insert(I, sinkMBB); 11565 11566 MachineInstrBuilder MIB; 11567 11568 // Transfer the remainder of BB and its successor edges to sinkMBB. 11569 sinkMBB->splice(sinkMBB->begin(), MBB, 11570 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11571 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11572 11573 // Note that the structure of the jmp_buf used here is not compatible 11574 // with that used by libc, and is not designed to be. Specifically, it 11575 // stores only those 'reserved' registers that LLVM does not otherwise 11576 // understand how to spill. Also, by convention, by the time this 11577 // intrinsic is called, Clang has already stored the frame address in the 11578 // first slot of the buffer and stack address in the third. Following the 11579 // X86 target code, we'll store the jump address in the second slot. We also 11580 // need to save the TOC pointer (R2) to handle jumps between shared 11581 // libraries, and that will be stored in the fourth slot. The thread 11582 // identifier (R13) is not affected. 11583 11584 // thisMBB: 11585 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11586 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11587 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11588 11589 // Prepare IP either in reg. 11590 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11591 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11592 Register BufReg = MI.getOperand(1).getReg(); 11593 11594 if (Subtarget.is64BitELFABI()) { 11595 setUsesTOCBasePtr(*MBB->getParent()); 11596 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11597 .addReg(PPC::X2) 11598 .addImm(TOCOffset) 11599 .addReg(BufReg) 11600 .cloneMemRefs(MI); 11601 } 11602 11603 // Naked functions never have a base pointer, and so we use r1. For all 11604 // other functions, this decision must be delayed until during PEI. 11605 unsigned BaseReg; 11606 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11607 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11608 else 11609 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11610 11611 MIB = BuildMI(*thisMBB, MI, DL, 11612 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11613 .addReg(BaseReg) 11614 .addImm(BPOffset) 11615 .addReg(BufReg) 11616 .cloneMemRefs(MI); 11617 11618 // Setup 11619 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11620 MIB.addRegMask(TRI->getNoPreservedMask()); 11621 11622 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11623 11624 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11625 .addMBB(mainMBB); 11626 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11627 11628 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11629 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11630 11631 // mainMBB: 11632 // mainDstReg = 0 11633 MIB = 11634 BuildMI(mainMBB, DL, 11635 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11636 11637 // Store IP 11638 if (Subtarget.isPPC64()) { 11639 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11640 .addReg(LabelReg) 11641 .addImm(LabelOffset) 11642 .addReg(BufReg); 11643 } else { 11644 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11645 .addReg(LabelReg) 11646 .addImm(LabelOffset) 11647 .addReg(BufReg); 11648 } 11649 MIB.cloneMemRefs(MI); 11650 11651 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11652 mainMBB->addSuccessor(sinkMBB); 11653 11654 // sinkMBB: 11655 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11656 TII->get(PPC::PHI), DstReg) 11657 .addReg(mainDstReg).addMBB(mainMBB) 11658 .addReg(restoreDstReg).addMBB(thisMBB); 11659 11660 MI.eraseFromParent(); 11661 return sinkMBB; 11662 } 11663 11664 MachineBasicBlock * 11665 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11666 MachineBasicBlock *MBB) const { 11667 DebugLoc DL = MI.getDebugLoc(); 11668 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11669 11670 MachineFunction *MF = MBB->getParent(); 11671 MachineRegisterInfo &MRI = MF->getRegInfo(); 11672 11673 MVT PVT = getPointerTy(MF->getDataLayout()); 11674 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11675 "Invalid Pointer Size!"); 11676 11677 const TargetRegisterClass *RC = 11678 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11679 Register Tmp = MRI.createVirtualRegister(RC); 11680 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11681 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11682 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11683 unsigned BP = 11684 (PVT == MVT::i64) 11685 ? PPC::X30 11686 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11687 : PPC::R30); 11688 11689 MachineInstrBuilder MIB; 11690 11691 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11692 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11693 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11694 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11695 11696 Register BufReg = MI.getOperand(0).getReg(); 11697 11698 // Reload FP (the jumped-to function may not have had a 11699 // frame pointer, and if so, then its r31 will be restored 11700 // as necessary). 11701 if (PVT == MVT::i64) { 11702 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11703 .addImm(0) 11704 .addReg(BufReg); 11705 } else { 11706 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11707 .addImm(0) 11708 .addReg(BufReg); 11709 } 11710 MIB.cloneMemRefs(MI); 11711 11712 // Reload IP 11713 if (PVT == MVT::i64) { 11714 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11715 .addImm(LabelOffset) 11716 .addReg(BufReg); 11717 } else { 11718 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11719 .addImm(LabelOffset) 11720 .addReg(BufReg); 11721 } 11722 MIB.cloneMemRefs(MI); 11723 11724 // Reload SP 11725 if (PVT == MVT::i64) { 11726 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11727 .addImm(SPOffset) 11728 .addReg(BufReg); 11729 } else { 11730 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11731 .addImm(SPOffset) 11732 .addReg(BufReg); 11733 } 11734 MIB.cloneMemRefs(MI); 11735 11736 // Reload BP 11737 if (PVT == MVT::i64) { 11738 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11739 .addImm(BPOffset) 11740 .addReg(BufReg); 11741 } else { 11742 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11743 .addImm(BPOffset) 11744 .addReg(BufReg); 11745 } 11746 MIB.cloneMemRefs(MI); 11747 11748 // Reload TOC 11749 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11750 setUsesTOCBasePtr(*MBB->getParent()); 11751 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11752 .addImm(TOCOffset) 11753 .addReg(BufReg) 11754 .cloneMemRefs(MI); 11755 } 11756 11757 // Jump 11758 BuildMI(*MBB, MI, DL, 11759 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11760 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11761 11762 MI.eraseFromParent(); 11763 return MBB; 11764 } 11765 11766 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11767 // If the function specifically requests inline stack probes, emit them. 11768 if (MF.getFunction().hasFnAttribute("probe-stack")) 11769 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11770 "inline-asm"; 11771 return false; 11772 } 11773 11774 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11775 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11776 unsigned StackAlign = TFI->getStackAlignment(); 11777 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11778 "Unexpected stack alignment"); 11779 // The default stack probe size is 4096 if the function has no 11780 // stack-probe-size attribute. 11781 unsigned StackProbeSize = 4096; 11782 const Function &Fn = MF.getFunction(); 11783 if (Fn.hasFnAttribute("stack-probe-size")) 11784 Fn.getFnAttribute("stack-probe-size") 11785 .getValueAsString() 11786 .getAsInteger(0, StackProbeSize); 11787 // Round down to the stack alignment. 11788 StackProbeSize &= ~(StackAlign - 1); 11789 return StackProbeSize ? StackProbeSize : StackAlign; 11790 } 11791 11792 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11793 // into three phases. In the first phase, it uses pseudo instruction 11794 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11795 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11796 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11797 // MaxCallFrameSize so that it can calculate correct data area pointer. 11798 MachineBasicBlock * 11799 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11800 MachineBasicBlock *MBB) const { 11801 const bool isPPC64 = Subtarget.isPPC64(); 11802 MachineFunction *MF = MBB->getParent(); 11803 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11804 DebugLoc DL = MI.getDebugLoc(); 11805 const unsigned ProbeSize = getStackProbeSize(*MF); 11806 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11807 MachineRegisterInfo &MRI = MF->getRegInfo(); 11808 // The CFG of probing stack looks as 11809 // +-----+ 11810 // | MBB | 11811 // +--+--+ 11812 // | 11813 // +----v----+ 11814 // +--->+ TestMBB +---+ 11815 // | +----+----+ | 11816 // | | | 11817 // | +-----v----+ | 11818 // +---+ BlockMBB | | 11819 // +----------+ | 11820 // | 11821 // +---------+ | 11822 // | TailMBB +<--+ 11823 // +---------+ 11824 // In MBB, calculate previous frame pointer and final stack pointer. 11825 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11826 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11827 // TailMBB is spliced via \p MI. 11828 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11829 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11830 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11831 11832 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11833 MF->insert(MBBIter, TestMBB); 11834 MF->insert(MBBIter, BlockMBB); 11835 MF->insert(MBBIter, TailMBB); 11836 11837 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11838 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11839 11840 Register DstReg = MI.getOperand(0).getReg(); 11841 Register NegSizeReg = MI.getOperand(1).getReg(); 11842 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11843 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11844 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11845 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11846 11847 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11848 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11849 // NegSize. 11850 unsigned ProbeOpc; 11851 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11852 ProbeOpc = 11853 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11854 else 11855 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11856 // and NegSizeReg will be allocated in the same phyreg to avoid 11857 // redundant copy when NegSizeReg has only one use which is current MI and 11858 // will be replaced by PREPARE_PROBED_ALLOCA then. 11859 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11860 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11861 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11862 .addDef(ActualNegSizeReg) 11863 .addReg(NegSizeReg) 11864 .add(MI.getOperand(2)) 11865 .add(MI.getOperand(3)); 11866 11867 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11868 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11869 FinalStackPtr) 11870 .addReg(SPReg) 11871 .addReg(ActualNegSizeReg); 11872 11873 // Materialize a scratch register for update. 11874 int64_t NegProbeSize = -(int64_t)ProbeSize; 11875 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11876 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11877 if (!isInt<16>(NegProbeSize)) { 11878 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11879 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11880 .addImm(NegProbeSize >> 16); 11881 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11882 ScratchReg) 11883 .addReg(TempReg) 11884 .addImm(NegProbeSize & 0xFFFF); 11885 } else 11886 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11887 .addImm(NegProbeSize); 11888 11889 { 11890 // Probing leading residual part. 11891 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11892 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11893 .addReg(ActualNegSizeReg) 11894 .addReg(ScratchReg); 11895 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11896 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11897 .addReg(Div) 11898 .addReg(ScratchReg); 11899 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11900 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11901 .addReg(Mul) 11902 .addReg(ActualNegSizeReg); 11903 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11904 .addReg(FramePointer) 11905 .addReg(SPReg) 11906 .addReg(NegMod); 11907 } 11908 11909 { 11910 // Remaining part should be multiple of ProbeSize. 11911 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11912 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11913 .addReg(SPReg) 11914 .addReg(FinalStackPtr); 11915 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11916 .addImm(PPC::PRED_EQ) 11917 .addReg(CmpResult) 11918 .addMBB(TailMBB); 11919 TestMBB->addSuccessor(BlockMBB); 11920 TestMBB->addSuccessor(TailMBB); 11921 } 11922 11923 { 11924 // Touch the block. 11925 // |P...|P...|P... 11926 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11927 .addReg(FramePointer) 11928 .addReg(SPReg) 11929 .addReg(ScratchReg); 11930 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11931 BlockMBB->addSuccessor(TestMBB); 11932 } 11933 11934 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11935 // DYNAREAOFFSET pseudo instruction to get the future result. 11936 Register MaxCallFrameSizeReg = 11937 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11938 BuildMI(TailMBB, DL, 11939 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11940 MaxCallFrameSizeReg) 11941 .add(MI.getOperand(2)) 11942 .add(MI.getOperand(3)); 11943 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11944 .addReg(SPReg) 11945 .addReg(MaxCallFrameSizeReg); 11946 11947 // Splice instructions after MI to TailMBB. 11948 TailMBB->splice(TailMBB->end(), MBB, 11949 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11950 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11951 MBB->addSuccessor(TestMBB); 11952 11953 // Delete the pseudo instruction. 11954 MI.eraseFromParent(); 11955 11956 ++NumDynamicAllocaProbed; 11957 return TailMBB; 11958 } 11959 11960 MachineBasicBlock * 11961 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11962 MachineBasicBlock *BB) const { 11963 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11964 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11965 if (Subtarget.is64BitELFABI() && 11966 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11967 !Subtarget.isUsingPCRelativeCalls()) { 11968 // Call lowering should have added an r2 operand to indicate a dependence 11969 // on the TOC base pointer value. It can't however, because there is no 11970 // way to mark the dependence as implicit there, and so the stackmap code 11971 // will confuse it with a regular operand. Instead, add the dependence 11972 // here. 11973 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11974 } 11975 11976 return emitPatchPoint(MI, BB); 11977 } 11978 11979 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11980 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11981 return emitEHSjLjSetJmp(MI, BB); 11982 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11983 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11984 return emitEHSjLjLongJmp(MI, BB); 11985 } 11986 11987 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11988 11989 // To "insert" these instructions we actually have to insert their 11990 // control-flow patterns. 11991 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11992 MachineFunction::iterator It = ++BB->getIterator(); 11993 11994 MachineFunction *F = BB->getParent(); 11995 11996 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11997 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11998 MI.getOpcode() == PPC::SELECT_I8) { 11999 SmallVector<MachineOperand, 2> Cond; 12000 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12001 MI.getOpcode() == PPC::SELECT_CC_I8) 12002 Cond.push_back(MI.getOperand(4)); 12003 else 12004 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12005 Cond.push_back(MI.getOperand(1)); 12006 12007 DebugLoc dl = MI.getDebugLoc(); 12008 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12009 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12010 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12011 MI.getOpcode() == PPC::SELECT_CC_F8 || 12012 MI.getOpcode() == PPC::SELECT_CC_F16 || 12013 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12014 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12015 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12016 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12017 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12018 MI.getOpcode() == PPC::SELECT_CC_SPE || 12019 MI.getOpcode() == PPC::SELECT_F4 || 12020 MI.getOpcode() == PPC::SELECT_F8 || 12021 MI.getOpcode() == PPC::SELECT_F16 || 12022 MI.getOpcode() == PPC::SELECT_SPE || 12023 MI.getOpcode() == PPC::SELECT_SPE4 || 12024 MI.getOpcode() == PPC::SELECT_VRRC || 12025 MI.getOpcode() == PPC::SELECT_VSFRC || 12026 MI.getOpcode() == PPC::SELECT_VSSRC || 12027 MI.getOpcode() == PPC::SELECT_VSRC) { 12028 // The incoming instruction knows the destination vreg to set, the 12029 // condition code register to branch on, the true/false values to 12030 // select between, and a branch opcode to use. 12031 12032 // thisMBB: 12033 // ... 12034 // TrueVal = ... 12035 // cmpTY ccX, r1, r2 12036 // bCC copy1MBB 12037 // fallthrough --> copy0MBB 12038 MachineBasicBlock *thisMBB = BB; 12039 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12040 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12041 DebugLoc dl = MI.getDebugLoc(); 12042 F->insert(It, copy0MBB); 12043 F->insert(It, sinkMBB); 12044 12045 // Transfer the remainder of BB and its successor edges to sinkMBB. 12046 sinkMBB->splice(sinkMBB->begin(), BB, 12047 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12048 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12049 12050 // Next, add the true and fallthrough blocks as its successors. 12051 BB->addSuccessor(copy0MBB); 12052 BB->addSuccessor(sinkMBB); 12053 12054 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12055 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12056 MI.getOpcode() == PPC::SELECT_F16 || 12057 MI.getOpcode() == PPC::SELECT_SPE4 || 12058 MI.getOpcode() == PPC::SELECT_SPE || 12059 MI.getOpcode() == PPC::SELECT_VRRC || 12060 MI.getOpcode() == PPC::SELECT_VSFRC || 12061 MI.getOpcode() == PPC::SELECT_VSSRC || 12062 MI.getOpcode() == PPC::SELECT_VSRC) { 12063 BuildMI(BB, dl, TII->get(PPC::BC)) 12064 .addReg(MI.getOperand(1).getReg()) 12065 .addMBB(sinkMBB); 12066 } else { 12067 unsigned SelectPred = MI.getOperand(4).getImm(); 12068 BuildMI(BB, dl, TII->get(PPC::BCC)) 12069 .addImm(SelectPred) 12070 .addReg(MI.getOperand(1).getReg()) 12071 .addMBB(sinkMBB); 12072 } 12073 12074 // copy0MBB: 12075 // %FalseValue = ... 12076 // # fallthrough to sinkMBB 12077 BB = copy0MBB; 12078 12079 // Update machine-CFG edges 12080 BB->addSuccessor(sinkMBB); 12081 12082 // sinkMBB: 12083 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12084 // ... 12085 BB = sinkMBB; 12086 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12087 .addReg(MI.getOperand(3).getReg()) 12088 .addMBB(copy0MBB) 12089 .addReg(MI.getOperand(2).getReg()) 12090 .addMBB(thisMBB); 12091 } else if (MI.getOpcode() == PPC::ReadTB) { 12092 // To read the 64-bit time-base register on a 32-bit target, we read the 12093 // two halves. Should the counter have wrapped while it was being read, we 12094 // need to try again. 12095 // ... 12096 // readLoop: 12097 // mfspr Rx,TBU # load from TBU 12098 // mfspr Ry,TB # load from TB 12099 // mfspr Rz,TBU # load from TBU 12100 // cmpw crX,Rx,Rz # check if 'old'='new' 12101 // bne readLoop # branch if they're not equal 12102 // ... 12103 12104 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12105 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12106 DebugLoc dl = MI.getDebugLoc(); 12107 F->insert(It, readMBB); 12108 F->insert(It, sinkMBB); 12109 12110 // Transfer the remainder of BB and its successor edges to sinkMBB. 12111 sinkMBB->splice(sinkMBB->begin(), BB, 12112 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12113 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12114 12115 BB->addSuccessor(readMBB); 12116 BB = readMBB; 12117 12118 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12119 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12120 Register LoReg = MI.getOperand(0).getReg(); 12121 Register HiReg = MI.getOperand(1).getReg(); 12122 12123 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12124 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12125 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12126 12127 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12128 12129 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12130 .addReg(HiReg) 12131 .addReg(ReadAgainReg); 12132 BuildMI(BB, dl, TII->get(PPC::BCC)) 12133 .addImm(PPC::PRED_NE) 12134 .addReg(CmpReg) 12135 .addMBB(readMBB); 12136 12137 BB->addSuccessor(readMBB); 12138 BB->addSuccessor(sinkMBB); 12139 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12140 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12141 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12142 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12143 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12144 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12145 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12146 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12147 12148 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12149 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12150 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12151 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12152 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12153 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12154 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12155 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12156 12157 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12158 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12159 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12160 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12161 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12162 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12163 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12164 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12165 12166 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12167 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12168 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12169 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12170 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12171 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12172 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12173 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12174 12175 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12176 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12177 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12178 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12179 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12180 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12181 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12182 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12183 12184 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12185 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12186 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12187 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12188 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12189 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12190 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12191 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12192 12193 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12194 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12195 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12196 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12197 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12198 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12199 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12200 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12201 12202 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12203 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12204 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12205 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12206 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12207 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12208 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12209 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12210 12211 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12212 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12213 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12214 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12215 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12216 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12217 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12218 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12219 12220 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12221 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12222 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12223 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12224 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12225 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12226 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12227 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12228 12229 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12230 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12231 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12232 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12233 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12234 BB = EmitAtomicBinary(MI, BB, 4, 0); 12235 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12236 BB = EmitAtomicBinary(MI, BB, 8, 0); 12237 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12238 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12239 (Subtarget.hasPartwordAtomics() && 12240 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12241 (Subtarget.hasPartwordAtomics() && 12242 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12243 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12244 12245 auto LoadMnemonic = PPC::LDARX; 12246 auto StoreMnemonic = PPC::STDCX; 12247 switch (MI.getOpcode()) { 12248 default: 12249 llvm_unreachable("Compare and swap of unknown size"); 12250 case PPC::ATOMIC_CMP_SWAP_I8: 12251 LoadMnemonic = PPC::LBARX; 12252 StoreMnemonic = PPC::STBCX; 12253 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12254 break; 12255 case PPC::ATOMIC_CMP_SWAP_I16: 12256 LoadMnemonic = PPC::LHARX; 12257 StoreMnemonic = PPC::STHCX; 12258 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12259 break; 12260 case PPC::ATOMIC_CMP_SWAP_I32: 12261 LoadMnemonic = PPC::LWARX; 12262 StoreMnemonic = PPC::STWCX; 12263 break; 12264 case PPC::ATOMIC_CMP_SWAP_I64: 12265 LoadMnemonic = PPC::LDARX; 12266 StoreMnemonic = PPC::STDCX; 12267 break; 12268 } 12269 Register dest = MI.getOperand(0).getReg(); 12270 Register ptrA = MI.getOperand(1).getReg(); 12271 Register ptrB = MI.getOperand(2).getReg(); 12272 Register oldval = MI.getOperand(3).getReg(); 12273 Register newval = MI.getOperand(4).getReg(); 12274 DebugLoc dl = MI.getDebugLoc(); 12275 12276 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12277 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12278 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12279 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12280 F->insert(It, loop1MBB); 12281 F->insert(It, loop2MBB); 12282 F->insert(It, midMBB); 12283 F->insert(It, exitMBB); 12284 exitMBB->splice(exitMBB->begin(), BB, 12285 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12286 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12287 12288 // thisMBB: 12289 // ... 12290 // fallthrough --> loopMBB 12291 BB->addSuccessor(loop1MBB); 12292 12293 // loop1MBB: 12294 // l[bhwd]arx dest, ptr 12295 // cmp[wd] dest, oldval 12296 // bne- midMBB 12297 // loop2MBB: 12298 // st[bhwd]cx. newval, ptr 12299 // bne- loopMBB 12300 // b exitBB 12301 // midMBB: 12302 // st[bhwd]cx. dest, ptr 12303 // exitBB: 12304 BB = loop1MBB; 12305 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12306 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12307 .addReg(oldval) 12308 .addReg(dest); 12309 BuildMI(BB, dl, TII->get(PPC::BCC)) 12310 .addImm(PPC::PRED_NE) 12311 .addReg(PPC::CR0) 12312 .addMBB(midMBB); 12313 BB->addSuccessor(loop2MBB); 12314 BB->addSuccessor(midMBB); 12315 12316 BB = loop2MBB; 12317 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12318 .addReg(newval) 12319 .addReg(ptrA) 12320 .addReg(ptrB); 12321 BuildMI(BB, dl, TII->get(PPC::BCC)) 12322 .addImm(PPC::PRED_NE) 12323 .addReg(PPC::CR0) 12324 .addMBB(loop1MBB); 12325 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12326 BB->addSuccessor(loop1MBB); 12327 BB->addSuccessor(exitMBB); 12328 12329 BB = midMBB; 12330 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12331 .addReg(dest) 12332 .addReg(ptrA) 12333 .addReg(ptrB); 12334 BB->addSuccessor(exitMBB); 12335 12336 // exitMBB: 12337 // ... 12338 BB = exitMBB; 12339 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12340 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12341 // We must use 64-bit registers for addresses when targeting 64-bit, 12342 // since we're actually doing arithmetic on them. Other registers 12343 // can be 32-bit. 12344 bool is64bit = Subtarget.isPPC64(); 12345 bool isLittleEndian = Subtarget.isLittleEndian(); 12346 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12347 12348 Register dest = MI.getOperand(0).getReg(); 12349 Register ptrA = MI.getOperand(1).getReg(); 12350 Register ptrB = MI.getOperand(2).getReg(); 12351 Register oldval = MI.getOperand(3).getReg(); 12352 Register newval = MI.getOperand(4).getReg(); 12353 DebugLoc dl = MI.getDebugLoc(); 12354 12355 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12356 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12357 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12358 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12359 F->insert(It, loop1MBB); 12360 F->insert(It, loop2MBB); 12361 F->insert(It, midMBB); 12362 F->insert(It, exitMBB); 12363 exitMBB->splice(exitMBB->begin(), BB, 12364 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12365 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12366 12367 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12368 const TargetRegisterClass *RC = 12369 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12370 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12371 12372 Register PtrReg = RegInfo.createVirtualRegister(RC); 12373 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12374 Register ShiftReg = 12375 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12376 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12377 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12378 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12379 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12380 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12381 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12382 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12383 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12384 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12385 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12386 Register Ptr1Reg; 12387 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12388 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12389 // thisMBB: 12390 // ... 12391 // fallthrough --> loopMBB 12392 BB->addSuccessor(loop1MBB); 12393 12394 // The 4-byte load must be aligned, while a char or short may be 12395 // anywhere in the word. Hence all this nasty bookkeeping code. 12396 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12397 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12398 // xori shift, shift1, 24 [16] 12399 // rlwinm ptr, ptr1, 0, 0, 29 12400 // slw newval2, newval, shift 12401 // slw oldval2, oldval,shift 12402 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12403 // slw mask, mask2, shift 12404 // and newval3, newval2, mask 12405 // and oldval3, oldval2, mask 12406 // loop1MBB: 12407 // lwarx tmpDest, ptr 12408 // and tmp, tmpDest, mask 12409 // cmpw tmp, oldval3 12410 // bne- midMBB 12411 // loop2MBB: 12412 // andc tmp2, tmpDest, mask 12413 // or tmp4, tmp2, newval3 12414 // stwcx. tmp4, ptr 12415 // bne- loop1MBB 12416 // b exitBB 12417 // midMBB: 12418 // stwcx. tmpDest, ptr 12419 // exitBB: 12420 // srw dest, tmpDest, shift 12421 if (ptrA != ZeroReg) { 12422 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12423 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12424 .addReg(ptrA) 12425 .addReg(ptrB); 12426 } else { 12427 Ptr1Reg = ptrB; 12428 } 12429 12430 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12431 // mode. 12432 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12433 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12434 .addImm(3) 12435 .addImm(27) 12436 .addImm(is8bit ? 28 : 27); 12437 if (!isLittleEndian) 12438 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12439 .addReg(Shift1Reg) 12440 .addImm(is8bit ? 24 : 16); 12441 if (is64bit) 12442 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12443 .addReg(Ptr1Reg) 12444 .addImm(0) 12445 .addImm(61); 12446 else 12447 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12448 .addReg(Ptr1Reg) 12449 .addImm(0) 12450 .addImm(0) 12451 .addImm(29); 12452 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12453 .addReg(newval) 12454 .addReg(ShiftReg); 12455 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12456 .addReg(oldval) 12457 .addReg(ShiftReg); 12458 if (is8bit) 12459 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12460 else { 12461 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12462 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12463 .addReg(Mask3Reg) 12464 .addImm(65535); 12465 } 12466 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12467 .addReg(Mask2Reg) 12468 .addReg(ShiftReg); 12469 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12470 .addReg(NewVal2Reg) 12471 .addReg(MaskReg); 12472 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12473 .addReg(OldVal2Reg) 12474 .addReg(MaskReg); 12475 12476 BB = loop1MBB; 12477 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12478 .addReg(ZeroReg) 12479 .addReg(PtrReg); 12480 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12481 .addReg(TmpDestReg) 12482 .addReg(MaskReg); 12483 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12484 .addReg(TmpReg) 12485 .addReg(OldVal3Reg); 12486 BuildMI(BB, dl, TII->get(PPC::BCC)) 12487 .addImm(PPC::PRED_NE) 12488 .addReg(PPC::CR0) 12489 .addMBB(midMBB); 12490 BB->addSuccessor(loop2MBB); 12491 BB->addSuccessor(midMBB); 12492 12493 BB = loop2MBB; 12494 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12495 .addReg(TmpDestReg) 12496 .addReg(MaskReg); 12497 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12498 .addReg(Tmp2Reg) 12499 .addReg(NewVal3Reg); 12500 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12501 .addReg(Tmp4Reg) 12502 .addReg(ZeroReg) 12503 .addReg(PtrReg); 12504 BuildMI(BB, dl, TII->get(PPC::BCC)) 12505 .addImm(PPC::PRED_NE) 12506 .addReg(PPC::CR0) 12507 .addMBB(loop1MBB); 12508 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12509 BB->addSuccessor(loop1MBB); 12510 BB->addSuccessor(exitMBB); 12511 12512 BB = midMBB; 12513 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12514 .addReg(TmpDestReg) 12515 .addReg(ZeroReg) 12516 .addReg(PtrReg); 12517 BB->addSuccessor(exitMBB); 12518 12519 // exitMBB: 12520 // ... 12521 BB = exitMBB; 12522 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12523 .addReg(TmpReg) 12524 .addReg(ShiftReg); 12525 } else if (MI.getOpcode() == PPC::FADDrtz) { 12526 // This pseudo performs an FADD with rounding mode temporarily forced 12527 // to round-to-zero. We emit this via custom inserter since the FPSCR 12528 // is not modeled at the SelectionDAG level. 12529 Register Dest = MI.getOperand(0).getReg(); 12530 Register Src1 = MI.getOperand(1).getReg(); 12531 Register Src2 = MI.getOperand(2).getReg(); 12532 DebugLoc dl = MI.getDebugLoc(); 12533 12534 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12535 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12536 12537 // Save FPSCR value. 12538 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12539 12540 // Set rounding mode to round-to-zero. 12541 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12542 .addImm(31) 12543 .addReg(PPC::RM, RegState::ImplicitDefine); 12544 12545 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12546 .addImm(30) 12547 .addReg(PPC::RM, RegState::ImplicitDefine); 12548 12549 // Perform addition. 12550 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12551 .addReg(Src1) 12552 .addReg(Src2); 12553 if (MI.getFlag(MachineInstr::NoFPExcept)) 12554 MIB.setMIFlag(MachineInstr::NoFPExcept); 12555 12556 // Restore FPSCR value. 12557 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12558 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12559 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12560 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12561 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12562 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12563 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12564 ? PPC::ANDI8_rec 12565 : PPC::ANDI_rec; 12566 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12567 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12568 12569 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12570 Register Dest = RegInfo.createVirtualRegister( 12571 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12572 12573 DebugLoc Dl = MI.getDebugLoc(); 12574 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12575 .addReg(MI.getOperand(1).getReg()) 12576 .addImm(1); 12577 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12578 MI.getOperand(0).getReg()) 12579 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12580 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12581 DebugLoc Dl = MI.getDebugLoc(); 12582 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12583 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12584 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12585 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12586 MI.getOperand(0).getReg()) 12587 .addReg(CRReg); 12588 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12589 DebugLoc Dl = MI.getDebugLoc(); 12590 unsigned Imm = MI.getOperand(1).getImm(); 12591 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12592 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12593 MI.getOperand(0).getReg()) 12594 .addReg(PPC::CR0EQ); 12595 } else if (MI.getOpcode() == PPC::SETRNDi) { 12596 DebugLoc dl = MI.getDebugLoc(); 12597 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12598 12599 // Save FPSCR value. 12600 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12601 12602 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12603 // the following settings: 12604 // 00 Round to nearest 12605 // 01 Round to 0 12606 // 10 Round to +inf 12607 // 11 Round to -inf 12608 12609 // When the operand is immediate, using the two least significant bits of 12610 // the immediate to set the bits 62:63 of FPSCR. 12611 unsigned Mode = MI.getOperand(1).getImm(); 12612 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12613 .addImm(31) 12614 .addReg(PPC::RM, RegState::ImplicitDefine); 12615 12616 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12617 .addImm(30) 12618 .addReg(PPC::RM, RegState::ImplicitDefine); 12619 } else if (MI.getOpcode() == PPC::SETRND) { 12620 DebugLoc dl = MI.getDebugLoc(); 12621 12622 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12623 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12624 // If the target doesn't have DirectMove, we should use stack to do the 12625 // conversion, because the target doesn't have the instructions like mtvsrd 12626 // or mfvsrd to do this conversion directly. 12627 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12628 if (Subtarget.hasDirectMove()) { 12629 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12630 .addReg(SrcReg); 12631 } else { 12632 // Use stack to do the register copy. 12633 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12634 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12635 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12636 if (RC == &PPC::F8RCRegClass) { 12637 // Copy register from F8RCRegClass to G8RCRegclass. 12638 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12639 "Unsupported RegClass."); 12640 12641 StoreOp = PPC::STFD; 12642 LoadOp = PPC::LD; 12643 } else { 12644 // Copy register from G8RCRegClass to F8RCRegclass. 12645 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12646 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12647 "Unsupported RegClass."); 12648 } 12649 12650 MachineFrameInfo &MFI = F->getFrameInfo(); 12651 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12652 12653 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12654 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12655 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12656 MFI.getObjectAlign(FrameIdx)); 12657 12658 // Store the SrcReg into the stack. 12659 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12660 .addReg(SrcReg) 12661 .addImm(0) 12662 .addFrameIndex(FrameIdx) 12663 .addMemOperand(MMOStore); 12664 12665 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12666 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12667 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12668 MFI.getObjectAlign(FrameIdx)); 12669 12670 // Load from the stack where SrcReg is stored, and save to DestReg, 12671 // so we have done the RegClass conversion from RegClass::SrcReg to 12672 // RegClass::DestReg. 12673 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12674 .addImm(0) 12675 .addFrameIndex(FrameIdx) 12676 .addMemOperand(MMOLoad); 12677 } 12678 }; 12679 12680 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12681 12682 // Save FPSCR value. 12683 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12684 12685 // When the operand is gprc register, use two least significant bits of the 12686 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12687 // 12688 // copy OldFPSCRTmpReg, OldFPSCRReg 12689 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12690 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12691 // copy NewFPSCRReg, NewFPSCRTmpReg 12692 // mtfsf 255, NewFPSCRReg 12693 MachineOperand SrcOp = MI.getOperand(1); 12694 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12695 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12696 12697 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12698 12699 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12700 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12701 12702 // The first operand of INSERT_SUBREG should be a register which has 12703 // subregisters, we only care about its RegClass, so we should use an 12704 // IMPLICIT_DEF register. 12705 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12706 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12707 .addReg(ImDefReg) 12708 .add(SrcOp) 12709 .addImm(1); 12710 12711 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12712 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12713 .addReg(OldFPSCRTmpReg) 12714 .addReg(ExtSrcReg) 12715 .addImm(0) 12716 .addImm(62); 12717 12718 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12719 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12720 12721 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12722 // bits of FPSCR. 12723 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12724 .addImm(255) 12725 .addReg(NewFPSCRReg) 12726 .addImm(0) 12727 .addImm(0); 12728 } else if (MI.getOpcode() == PPC::SETFLM) { 12729 DebugLoc Dl = MI.getDebugLoc(); 12730 12731 // Result of setflm is previous FPSCR content, so we need to save it first. 12732 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12733 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12734 12735 // Put bits in 32:63 to FPSCR. 12736 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12737 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12738 .addImm(255) 12739 .addReg(NewFPSCRReg) 12740 .addImm(0) 12741 .addImm(0); 12742 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12743 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12744 return emitProbedAlloca(MI, BB); 12745 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12746 DebugLoc DL = MI.getDebugLoc(); 12747 Register Src = MI.getOperand(2).getReg(); 12748 Register Lo = MI.getOperand(0).getReg(); 12749 Register Hi = MI.getOperand(1).getReg(); 12750 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12751 .addDef(Lo) 12752 .addUse(Src, 0, PPC::sub_gp8_x1); 12753 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12754 .addDef(Hi) 12755 .addUse(Src, 0, PPC::sub_gp8_x0); 12756 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12757 MI.getOpcode() == PPC::STQX_PSEUDO) { 12758 DebugLoc DL = MI.getDebugLoc(); 12759 // Ptr is used as the ptr_rc_no_r0 part 12760 // of LQ/STQ's memory operand and adding result of RA and RB, 12761 // so it has to be g8rc_and_g8rc_nox0. 12762 Register Ptr = 12763 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12764 Register Val = MI.getOperand(0).getReg(); 12765 Register RA = MI.getOperand(1).getReg(); 12766 Register RB = MI.getOperand(2).getReg(); 12767 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12768 BuildMI(*BB, MI, DL, 12769 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12770 : TII->get(PPC::STQ)) 12771 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12772 .addImm(0) 12773 .addReg(Ptr); 12774 } else { 12775 llvm_unreachable("Unexpected instr type to insert"); 12776 } 12777 12778 MI.eraseFromParent(); // The pseudo instruction is gone now. 12779 return BB; 12780 } 12781 12782 //===----------------------------------------------------------------------===// 12783 // Target Optimization Hooks 12784 //===----------------------------------------------------------------------===// 12785 12786 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12787 // For the estimates, convergence is quadratic, so we essentially double the 12788 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12789 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12790 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12791 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12792 if (VT.getScalarType() == MVT::f64) 12793 RefinementSteps++; 12794 return RefinementSteps; 12795 } 12796 12797 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12798 const DenormalMode &Mode) const { 12799 // We only have VSX Vector Test for software Square Root. 12800 EVT VT = Op.getValueType(); 12801 if (!isTypeLegal(MVT::i1) || 12802 (VT != MVT::f64 && 12803 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12804 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12805 12806 SDLoc DL(Op); 12807 // The output register of FTSQRT is CR field. 12808 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12809 // ftsqrt BF,FRB 12810 // Let e_b be the unbiased exponent of the double-precision 12811 // floating-point operand in register FRB. 12812 // fe_flag is set to 1 if either of the following conditions occurs. 12813 // - The double-precision floating-point operand in register FRB is a zero, 12814 // a NaN, or an infinity, or a negative value. 12815 // - e_b is less than or equal to -970. 12816 // Otherwise fe_flag is set to 0. 12817 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12818 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12819 // exponent is less than -970) 12820 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12821 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12822 FTSQRT, SRIdxVal), 12823 0); 12824 } 12825 12826 SDValue 12827 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12828 SelectionDAG &DAG) const { 12829 // We only have VSX Vector Square Root. 12830 EVT VT = Op.getValueType(); 12831 if (VT != MVT::f64 && 12832 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12833 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12834 12835 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12836 } 12837 12838 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12839 int Enabled, int &RefinementSteps, 12840 bool &UseOneConstNR, 12841 bool Reciprocal) const { 12842 EVT VT = Operand.getValueType(); 12843 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12844 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12845 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12846 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12847 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12848 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12849 12850 // The Newton-Raphson computation with a single constant does not provide 12851 // enough accuracy on some CPUs. 12852 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12853 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12854 } 12855 return SDValue(); 12856 } 12857 12858 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12859 int Enabled, 12860 int &RefinementSteps) const { 12861 EVT VT = Operand.getValueType(); 12862 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12863 (VT == MVT::f64 && Subtarget.hasFRE()) || 12864 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12865 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12866 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12867 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12868 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12869 } 12870 return SDValue(); 12871 } 12872 12873 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12874 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12875 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12876 // enabled for division), this functionality is redundant with the default 12877 // combiner logic (once the division -> reciprocal/multiply transformation 12878 // has taken place). As a result, this matters more for older cores than for 12879 // newer ones. 12880 12881 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12882 // reciprocal if there are two or more FDIVs (for embedded cores with only 12883 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12884 switch (Subtarget.getCPUDirective()) { 12885 default: 12886 return 3; 12887 case PPC::DIR_440: 12888 case PPC::DIR_A2: 12889 case PPC::DIR_E500: 12890 case PPC::DIR_E500mc: 12891 case PPC::DIR_E5500: 12892 return 2; 12893 } 12894 } 12895 12896 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12897 // collapsed, and so we need to look through chains of them. 12898 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12899 int64_t& Offset, SelectionDAG &DAG) { 12900 if (DAG.isBaseWithConstantOffset(Loc)) { 12901 Base = Loc.getOperand(0); 12902 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12903 12904 // The base might itself be a base plus an offset, and if so, accumulate 12905 // that as well. 12906 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12907 } 12908 } 12909 12910 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12911 unsigned Bytes, int Dist, 12912 SelectionDAG &DAG) { 12913 if (VT.getSizeInBits() / 8 != Bytes) 12914 return false; 12915 12916 SDValue BaseLoc = Base->getBasePtr(); 12917 if (Loc.getOpcode() == ISD::FrameIndex) { 12918 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12919 return false; 12920 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12921 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12922 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12923 int FS = MFI.getObjectSize(FI); 12924 int BFS = MFI.getObjectSize(BFI); 12925 if (FS != BFS || FS != (int)Bytes) return false; 12926 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12927 } 12928 12929 SDValue Base1 = Loc, Base2 = BaseLoc; 12930 int64_t Offset1 = 0, Offset2 = 0; 12931 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12932 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12933 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12934 return true; 12935 12936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12937 const GlobalValue *GV1 = nullptr; 12938 const GlobalValue *GV2 = nullptr; 12939 Offset1 = 0; 12940 Offset2 = 0; 12941 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12942 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12943 if (isGA1 && isGA2 && GV1 == GV2) 12944 return Offset1 == (Offset2 + Dist*Bytes); 12945 return false; 12946 } 12947 12948 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12949 // not enforce equality of the chain operands. 12950 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12951 unsigned Bytes, int Dist, 12952 SelectionDAG &DAG) { 12953 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12954 EVT VT = LS->getMemoryVT(); 12955 SDValue Loc = LS->getBasePtr(); 12956 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12957 } 12958 12959 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12960 EVT VT; 12961 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12962 default: return false; 12963 case Intrinsic::ppc_altivec_lvx: 12964 case Intrinsic::ppc_altivec_lvxl: 12965 case Intrinsic::ppc_vsx_lxvw4x: 12966 case Intrinsic::ppc_vsx_lxvw4x_be: 12967 VT = MVT::v4i32; 12968 break; 12969 case Intrinsic::ppc_vsx_lxvd2x: 12970 case Intrinsic::ppc_vsx_lxvd2x_be: 12971 VT = MVT::v2f64; 12972 break; 12973 case Intrinsic::ppc_altivec_lvebx: 12974 VT = MVT::i8; 12975 break; 12976 case Intrinsic::ppc_altivec_lvehx: 12977 VT = MVT::i16; 12978 break; 12979 case Intrinsic::ppc_altivec_lvewx: 12980 VT = MVT::i32; 12981 break; 12982 } 12983 12984 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12985 } 12986 12987 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12988 EVT VT; 12989 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12990 default: return false; 12991 case Intrinsic::ppc_altivec_stvx: 12992 case Intrinsic::ppc_altivec_stvxl: 12993 case Intrinsic::ppc_vsx_stxvw4x: 12994 VT = MVT::v4i32; 12995 break; 12996 case Intrinsic::ppc_vsx_stxvd2x: 12997 VT = MVT::v2f64; 12998 break; 12999 case Intrinsic::ppc_vsx_stxvw4x_be: 13000 VT = MVT::v4i32; 13001 break; 13002 case Intrinsic::ppc_vsx_stxvd2x_be: 13003 VT = MVT::v2f64; 13004 break; 13005 case Intrinsic::ppc_altivec_stvebx: 13006 VT = MVT::i8; 13007 break; 13008 case Intrinsic::ppc_altivec_stvehx: 13009 VT = MVT::i16; 13010 break; 13011 case Intrinsic::ppc_altivec_stvewx: 13012 VT = MVT::i32; 13013 break; 13014 } 13015 13016 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13017 } 13018 13019 return false; 13020 } 13021 13022 // Return true is there is a nearyby consecutive load to the one provided 13023 // (regardless of alignment). We search up and down the chain, looking though 13024 // token factors and other loads (but nothing else). As a result, a true result 13025 // indicates that it is safe to create a new consecutive load adjacent to the 13026 // load provided. 13027 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13028 SDValue Chain = LD->getChain(); 13029 EVT VT = LD->getMemoryVT(); 13030 13031 SmallSet<SDNode *, 16> LoadRoots; 13032 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13033 SmallSet<SDNode *, 16> Visited; 13034 13035 // First, search up the chain, branching to follow all token-factor operands. 13036 // If we find a consecutive load, then we're done, otherwise, record all 13037 // nodes just above the top-level loads and token factors. 13038 while (!Queue.empty()) { 13039 SDNode *ChainNext = Queue.pop_back_val(); 13040 if (!Visited.insert(ChainNext).second) 13041 continue; 13042 13043 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13044 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13045 return true; 13046 13047 if (!Visited.count(ChainLD->getChain().getNode())) 13048 Queue.push_back(ChainLD->getChain().getNode()); 13049 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13050 for (const SDUse &O : ChainNext->ops()) 13051 if (!Visited.count(O.getNode())) 13052 Queue.push_back(O.getNode()); 13053 } else 13054 LoadRoots.insert(ChainNext); 13055 } 13056 13057 // Second, search down the chain, starting from the top-level nodes recorded 13058 // in the first phase. These top-level nodes are the nodes just above all 13059 // loads and token factors. Starting with their uses, recursively look though 13060 // all loads (just the chain uses) and token factors to find a consecutive 13061 // load. 13062 Visited.clear(); 13063 Queue.clear(); 13064 13065 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13066 IE = LoadRoots.end(); I != IE; ++I) { 13067 Queue.push_back(*I); 13068 13069 while (!Queue.empty()) { 13070 SDNode *LoadRoot = Queue.pop_back_val(); 13071 if (!Visited.insert(LoadRoot).second) 13072 continue; 13073 13074 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13075 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13076 return true; 13077 13078 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 13079 UE = LoadRoot->use_end(); UI != UE; ++UI) 13080 if (((isa<MemSDNode>(*UI) && 13081 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 13082 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 13083 Queue.push_back(*UI); 13084 } 13085 } 13086 13087 return false; 13088 } 13089 13090 /// This function is called when we have proved that a SETCC node can be replaced 13091 /// by subtraction (and other supporting instructions) so that the result of 13092 /// comparison is kept in a GPR instead of CR. This function is purely for 13093 /// codegen purposes and has some flags to guide the codegen process. 13094 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13095 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13096 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13097 13098 // Zero extend the operands to the largest legal integer. Originally, they 13099 // must be of a strictly smaller size. 13100 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13101 DAG.getConstant(Size, DL, MVT::i32)); 13102 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13103 DAG.getConstant(Size, DL, MVT::i32)); 13104 13105 // Swap if needed. Depends on the condition code. 13106 if (Swap) 13107 std::swap(Op0, Op1); 13108 13109 // Subtract extended integers. 13110 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13111 13112 // Move the sign bit to the least significant position and zero out the rest. 13113 // Now the least significant bit carries the result of original comparison. 13114 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13115 DAG.getConstant(Size - 1, DL, MVT::i32)); 13116 auto Final = Shifted; 13117 13118 // Complement the result if needed. Based on the condition code. 13119 if (Complement) 13120 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13121 DAG.getConstant(1, DL, MVT::i64)); 13122 13123 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13124 } 13125 13126 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13127 DAGCombinerInfo &DCI) const { 13128 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13129 13130 SelectionDAG &DAG = DCI.DAG; 13131 SDLoc DL(N); 13132 13133 // Size of integers being compared has a critical role in the following 13134 // analysis, so we prefer to do this when all types are legal. 13135 if (!DCI.isAfterLegalizeDAG()) 13136 return SDValue(); 13137 13138 // If all users of SETCC extend its value to a legal integer type 13139 // then we replace SETCC with a subtraction 13140 for (SDNode::use_iterator UI = N->use_begin(), 13141 UE = N->use_end(); UI != UE; ++UI) { 13142 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13143 return SDValue(); 13144 } 13145 13146 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13147 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13148 13149 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13150 13151 if (OpSize < Size) { 13152 switch (CC) { 13153 default: break; 13154 case ISD::SETULT: 13155 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13156 case ISD::SETULE: 13157 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13158 case ISD::SETUGT: 13159 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13160 case ISD::SETUGE: 13161 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13162 } 13163 } 13164 13165 return SDValue(); 13166 } 13167 13168 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13169 DAGCombinerInfo &DCI) const { 13170 SelectionDAG &DAG = DCI.DAG; 13171 SDLoc dl(N); 13172 13173 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13174 // If we're tracking CR bits, we need to be careful that we don't have: 13175 // trunc(binary-ops(zext(x), zext(y))) 13176 // or 13177 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13178 // such that we're unnecessarily moving things into GPRs when it would be 13179 // better to keep them in CR bits. 13180 13181 // Note that trunc here can be an actual i1 trunc, or can be the effective 13182 // truncation that comes from a setcc or select_cc. 13183 if (N->getOpcode() == ISD::TRUNCATE && 13184 N->getValueType(0) != MVT::i1) 13185 return SDValue(); 13186 13187 if (N->getOperand(0).getValueType() != MVT::i32 && 13188 N->getOperand(0).getValueType() != MVT::i64) 13189 return SDValue(); 13190 13191 if (N->getOpcode() == ISD::SETCC || 13192 N->getOpcode() == ISD::SELECT_CC) { 13193 // If we're looking at a comparison, then we need to make sure that the 13194 // high bits (all except for the first) don't matter the result. 13195 ISD::CondCode CC = 13196 cast<CondCodeSDNode>(N->getOperand( 13197 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13198 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13199 13200 if (ISD::isSignedIntSetCC(CC)) { 13201 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13202 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13203 return SDValue(); 13204 } else if (ISD::isUnsignedIntSetCC(CC)) { 13205 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13206 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13207 !DAG.MaskedValueIsZero(N->getOperand(1), 13208 APInt::getHighBitsSet(OpBits, OpBits-1))) 13209 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13210 : SDValue()); 13211 } else { 13212 // This is neither a signed nor an unsigned comparison, just make sure 13213 // that the high bits are equal. 13214 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13215 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13216 13217 // We don't really care about what is known about the first bit (if 13218 // anything), so pretend that it is known zero for both to ensure they can 13219 // be compared as constants. 13220 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13221 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13222 13223 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13224 Op1Known.getConstant() != Op2Known.getConstant()) 13225 return SDValue(); 13226 } 13227 } 13228 13229 // We now know that the higher-order bits are irrelevant, we just need to 13230 // make sure that all of the intermediate operations are bit operations, and 13231 // all inputs are extensions. 13232 if (N->getOperand(0).getOpcode() != ISD::AND && 13233 N->getOperand(0).getOpcode() != ISD::OR && 13234 N->getOperand(0).getOpcode() != ISD::XOR && 13235 N->getOperand(0).getOpcode() != ISD::SELECT && 13236 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13237 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13238 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13239 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13240 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13241 return SDValue(); 13242 13243 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13244 N->getOperand(1).getOpcode() != ISD::AND && 13245 N->getOperand(1).getOpcode() != ISD::OR && 13246 N->getOperand(1).getOpcode() != ISD::XOR && 13247 N->getOperand(1).getOpcode() != ISD::SELECT && 13248 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13249 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13250 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13251 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13252 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13253 return SDValue(); 13254 13255 SmallVector<SDValue, 4> Inputs; 13256 SmallVector<SDValue, 8> BinOps, PromOps; 13257 SmallPtrSet<SDNode *, 16> Visited; 13258 13259 for (unsigned i = 0; i < 2; ++i) { 13260 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13261 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13262 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13263 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13264 isa<ConstantSDNode>(N->getOperand(i))) 13265 Inputs.push_back(N->getOperand(i)); 13266 else 13267 BinOps.push_back(N->getOperand(i)); 13268 13269 if (N->getOpcode() == ISD::TRUNCATE) 13270 break; 13271 } 13272 13273 // Visit all inputs, collect all binary operations (and, or, xor and 13274 // select) that are all fed by extensions. 13275 while (!BinOps.empty()) { 13276 SDValue BinOp = BinOps.pop_back_val(); 13277 13278 if (!Visited.insert(BinOp.getNode()).second) 13279 continue; 13280 13281 PromOps.push_back(BinOp); 13282 13283 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13284 // The condition of the select is not promoted. 13285 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13286 continue; 13287 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13288 continue; 13289 13290 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13291 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13292 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13293 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13294 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13295 Inputs.push_back(BinOp.getOperand(i)); 13296 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13297 BinOp.getOperand(i).getOpcode() == ISD::OR || 13298 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13299 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13300 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13301 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13302 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13303 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13304 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13305 BinOps.push_back(BinOp.getOperand(i)); 13306 } else { 13307 // We have an input that is not an extension or another binary 13308 // operation; we'll abort this transformation. 13309 return SDValue(); 13310 } 13311 } 13312 } 13313 13314 // Make sure that this is a self-contained cluster of operations (which 13315 // is not quite the same thing as saying that everything has only one 13316 // use). 13317 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13318 if (isa<ConstantSDNode>(Inputs[i])) 13319 continue; 13320 13321 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13322 UE = Inputs[i].getNode()->use_end(); 13323 UI != UE; ++UI) { 13324 SDNode *User = *UI; 13325 if (User != N && !Visited.count(User)) 13326 return SDValue(); 13327 13328 // Make sure that we're not going to promote the non-output-value 13329 // operand(s) or SELECT or SELECT_CC. 13330 // FIXME: Although we could sometimes handle this, and it does occur in 13331 // practice that one of the condition inputs to the select is also one of 13332 // the outputs, we currently can't deal with this. 13333 if (User->getOpcode() == ISD::SELECT) { 13334 if (User->getOperand(0) == Inputs[i]) 13335 return SDValue(); 13336 } else if (User->getOpcode() == ISD::SELECT_CC) { 13337 if (User->getOperand(0) == Inputs[i] || 13338 User->getOperand(1) == Inputs[i]) 13339 return SDValue(); 13340 } 13341 } 13342 } 13343 13344 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13345 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13346 UE = PromOps[i].getNode()->use_end(); 13347 UI != UE; ++UI) { 13348 SDNode *User = *UI; 13349 if (User != N && !Visited.count(User)) 13350 return SDValue(); 13351 13352 // Make sure that we're not going to promote the non-output-value 13353 // operand(s) or SELECT or SELECT_CC. 13354 // FIXME: Although we could sometimes handle this, and it does occur in 13355 // practice that one of the condition inputs to the select is also one of 13356 // the outputs, we currently can't deal with this. 13357 if (User->getOpcode() == ISD::SELECT) { 13358 if (User->getOperand(0) == PromOps[i]) 13359 return SDValue(); 13360 } else if (User->getOpcode() == ISD::SELECT_CC) { 13361 if (User->getOperand(0) == PromOps[i] || 13362 User->getOperand(1) == PromOps[i]) 13363 return SDValue(); 13364 } 13365 } 13366 } 13367 13368 // Replace all inputs with the extension operand. 13369 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13370 // Constants may have users outside the cluster of to-be-promoted nodes, 13371 // and so we need to replace those as we do the promotions. 13372 if (isa<ConstantSDNode>(Inputs[i])) 13373 continue; 13374 else 13375 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13376 } 13377 13378 std::list<HandleSDNode> PromOpHandles; 13379 for (auto &PromOp : PromOps) 13380 PromOpHandles.emplace_back(PromOp); 13381 13382 // Replace all operations (these are all the same, but have a different 13383 // (i1) return type). DAG.getNode will validate that the types of 13384 // a binary operator match, so go through the list in reverse so that 13385 // we've likely promoted both operands first. Any intermediate truncations or 13386 // extensions disappear. 13387 while (!PromOpHandles.empty()) { 13388 SDValue PromOp = PromOpHandles.back().getValue(); 13389 PromOpHandles.pop_back(); 13390 13391 if (PromOp.getOpcode() == ISD::TRUNCATE || 13392 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13393 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13394 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13395 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13396 PromOp.getOperand(0).getValueType() != MVT::i1) { 13397 // The operand is not yet ready (see comment below). 13398 PromOpHandles.emplace_front(PromOp); 13399 continue; 13400 } 13401 13402 SDValue RepValue = PromOp.getOperand(0); 13403 if (isa<ConstantSDNode>(RepValue)) 13404 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13405 13406 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13407 continue; 13408 } 13409 13410 unsigned C; 13411 switch (PromOp.getOpcode()) { 13412 default: C = 0; break; 13413 case ISD::SELECT: C = 1; break; 13414 case ISD::SELECT_CC: C = 2; break; 13415 } 13416 13417 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13418 PromOp.getOperand(C).getValueType() != MVT::i1) || 13419 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13420 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13421 // The to-be-promoted operands of this node have not yet been 13422 // promoted (this should be rare because we're going through the 13423 // list backward, but if one of the operands has several users in 13424 // this cluster of to-be-promoted nodes, it is possible). 13425 PromOpHandles.emplace_front(PromOp); 13426 continue; 13427 } 13428 13429 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13430 PromOp.getNode()->op_end()); 13431 13432 // If there are any constant inputs, make sure they're replaced now. 13433 for (unsigned i = 0; i < 2; ++i) 13434 if (isa<ConstantSDNode>(Ops[C+i])) 13435 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13436 13437 DAG.ReplaceAllUsesOfValueWith(PromOp, 13438 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13439 } 13440 13441 // Now we're left with the initial truncation itself. 13442 if (N->getOpcode() == ISD::TRUNCATE) 13443 return N->getOperand(0); 13444 13445 // Otherwise, this is a comparison. The operands to be compared have just 13446 // changed type (to i1), but everything else is the same. 13447 return SDValue(N, 0); 13448 } 13449 13450 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13451 DAGCombinerInfo &DCI) const { 13452 SelectionDAG &DAG = DCI.DAG; 13453 SDLoc dl(N); 13454 13455 // If we're tracking CR bits, we need to be careful that we don't have: 13456 // zext(binary-ops(trunc(x), trunc(y))) 13457 // or 13458 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13459 // such that we're unnecessarily moving things into CR bits that can more 13460 // efficiently stay in GPRs. Note that if we're not certain that the high 13461 // bits are set as required by the final extension, we still may need to do 13462 // some masking to get the proper behavior. 13463 13464 // This same functionality is important on PPC64 when dealing with 13465 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13466 // the return values of functions. Because it is so similar, it is handled 13467 // here as well. 13468 13469 if (N->getValueType(0) != MVT::i32 && 13470 N->getValueType(0) != MVT::i64) 13471 return SDValue(); 13472 13473 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13474 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13475 return SDValue(); 13476 13477 if (N->getOperand(0).getOpcode() != ISD::AND && 13478 N->getOperand(0).getOpcode() != ISD::OR && 13479 N->getOperand(0).getOpcode() != ISD::XOR && 13480 N->getOperand(0).getOpcode() != ISD::SELECT && 13481 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13482 return SDValue(); 13483 13484 SmallVector<SDValue, 4> Inputs; 13485 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13486 SmallPtrSet<SDNode *, 16> Visited; 13487 13488 // Visit all inputs, collect all binary operations (and, or, xor and 13489 // select) that are all fed by truncations. 13490 while (!BinOps.empty()) { 13491 SDValue BinOp = BinOps.pop_back_val(); 13492 13493 if (!Visited.insert(BinOp.getNode()).second) 13494 continue; 13495 13496 PromOps.push_back(BinOp); 13497 13498 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13499 // The condition of the select is not promoted. 13500 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13501 continue; 13502 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13503 continue; 13504 13505 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13506 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13507 Inputs.push_back(BinOp.getOperand(i)); 13508 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13509 BinOp.getOperand(i).getOpcode() == ISD::OR || 13510 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13511 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13512 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13513 BinOps.push_back(BinOp.getOperand(i)); 13514 } else { 13515 // We have an input that is not a truncation or another binary 13516 // operation; we'll abort this transformation. 13517 return SDValue(); 13518 } 13519 } 13520 } 13521 13522 // The operands of a select that must be truncated when the select is 13523 // promoted because the operand is actually part of the to-be-promoted set. 13524 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13525 13526 // Make sure that this is a self-contained cluster of operations (which 13527 // is not quite the same thing as saying that everything has only one 13528 // use). 13529 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13530 if (isa<ConstantSDNode>(Inputs[i])) 13531 continue; 13532 13533 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13534 UE = Inputs[i].getNode()->use_end(); 13535 UI != UE; ++UI) { 13536 SDNode *User = *UI; 13537 if (User != N && !Visited.count(User)) 13538 return SDValue(); 13539 13540 // If we're going to promote the non-output-value operand(s) or SELECT or 13541 // SELECT_CC, record them for truncation. 13542 if (User->getOpcode() == ISD::SELECT) { 13543 if (User->getOperand(0) == Inputs[i]) 13544 SelectTruncOp[0].insert(std::make_pair(User, 13545 User->getOperand(0).getValueType())); 13546 } else if (User->getOpcode() == ISD::SELECT_CC) { 13547 if (User->getOperand(0) == Inputs[i]) 13548 SelectTruncOp[0].insert(std::make_pair(User, 13549 User->getOperand(0).getValueType())); 13550 if (User->getOperand(1) == Inputs[i]) 13551 SelectTruncOp[1].insert(std::make_pair(User, 13552 User->getOperand(1).getValueType())); 13553 } 13554 } 13555 } 13556 13557 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13558 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13559 UE = PromOps[i].getNode()->use_end(); 13560 UI != UE; ++UI) { 13561 SDNode *User = *UI; 13562 if (User != N && !Visited.count(User)) 13563 return SDValue(); 13564 13565 // If we're going to promote the non-output-value operand(s) or SELECT or 13566 // SELECT_CC, record them for truncation. 13567 if (User->getOpcode() == ISD::SELECT) { 13568 if (User->getOperand(0) == PromOps[i]) 13569 SelectTruncOp[0].insert(std::make_pair(User, 13570 User->getOperand(0).getValueType())); 13571 } else if (User->getOpcode() == ISD::SELECT_CC) { 13572 if (User->getOperand(0) == PromOps[i]) 13573 SelectTruncOp[0].insert(std::make_pair(User, 13574 User->getOperand(0).getValueType())); 13575 if (User->getOperand(1) == PromOps[i]) 13576 SelectTruncOp[1].insert(std::make_pair(User, 13577 User->getOperand(1).getValueType())); 13578 } 13579 } 13580 } 13581 13582 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13583 bool ReallyNeedsExt = false; 13584 if (N->getOpcode() != ISD::ANY_EXTEND) { 13585 // If all of the inputs are not already sign/zero extended, then 13586 // we'll still need to do that at the end. 13587 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13588 if (isa<ConstantSDNode>(Inputs[i])) 13589 continue; 13590 13591 unsigned OpBits = 13592 Inputs[i].getOperand(0).getValueSizeInBits(); 13593 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13594 13595 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13596 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13597 APInt::getHighBitsSet(OpBits, 13598 OpBits-PromBits))) || 13599 (N->getOpcode() == ISD::SIGN_EXTEND && 13600 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13601 (OpBits-(PromBits-1)))) { 13602 ReallyNeedsExt = true; 13603 break; 13604 } 13605 } 13606 } 13607 13608 // Replace all inputs, either with the truncation operand, or a 13609 // truncation or extension to the final output type. 13610 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13611 // Constant inputs need to be replaced with the to-be-promoted nodes that 13612 // use them because they might have users outside of the cluster of 13613 // promoted nodes. 13614 if (isa<ConstantSDNode>(Inputs[i])) 13615 continue; 13616 13617 SDValue InSrc = Inputs[i].getOperand(0); 13618 if (Inputs[i].getValueType() == N->getValueType(0)) 13619 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13620 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13621 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13622 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13623 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13624 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13625 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13626 else 13627 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13628 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13629 } 13630 13631 std::list<HandleSDNode> PromOpHandles; 13632 for (auto &PromOp : PromOps) 13633 PromOpHandles.emplace_back(PromOp); 13634 13635 // Replace all operations (these are all the same, but have a different 13636 // (promoted) return type). DAG.getNode will validate that the types of 13637 // a binary operator match, so go through the list in reverse so that 13638 // we've likely promoted both operands first. 13639 while (!PromOpHandles.empty()) { 13640 SDValue PromOp = PromOpHandles.back().getValue(); 13641 PromOpHandles.pop_back(); 13642 13643 unsigned C; 13644 switch (PromOp.getOpcode()) { 13645 default: C = 0; break; 13646 case ISD::SELECT: C = 1; break; 13647 case ISD::SELECT_CC: C = 2; break; 13648 } 13649 13650 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13651 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13652 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13653 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13654 // The to-be-promoted operands of this node have not yet been 13655 // promoted (this should be rare because we're going through the 13656 // list backward, but if one of the operands has several users in 13657 // this cluster of to-be-promoted nodes, it is possible). 13658 PromOpHandles.emplace_front(PromOp); 13659 continue; 13660 } 13661 13662 // For SELECT and SELECT_CC nodes, we do a similar check for any 13663 // to-be-promoted comparison inputs. 13664 if (PromOp.getOpcode() == ISD::SELECT || 13665 PromOp.getOpcode() == ISD::SELECT_CC) { 13666 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13667 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13668 (SelectTruncOp[1].count(PromOp.getNode()) && 13669 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13670 PromOpHandles.emplace_front(PromOp); 13671 continue; 13672 } 13673 } 13674 13675 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13676 PromOp.getNode()->op_end()); 13677 13678 // If this node has constant inputs, then they'll need to be promoted here. 13679 for (unsigned i = 0; i < 2; ++i) { 13680 if (!isa<ConstantSDNode>(Ops[C+i])) 13681 continue; 13682 if (Ops[C+i].getValueType() == N->getValueType(0)) 13683 continue; 13684 13685 if (N->getOpcode() == ISD::SIGN_EXTEND) 13686 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13687 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13688 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13689 else 13690 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13691 } 13692 13693 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13694 // truncate them again to the original value type. 13695 if (PromOp.getOpcode() == ISD::SELECT || 13696 PromOp.getOpcode() == ISD::SELECT_CC) { 13697 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13698 if (SI0 != SelectTruncOp[0].end()) 13699 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13700 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13701 if (SI1 != SelectTruncOp[1].end()) 13702 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13703 } 13704 13705 DAG.ReplaceAllUsesOfValueWith(PromOp, 13706 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13707 } 13708 13709 // Now we're left with the initial extension itself. 13710 if (!ReallyNeedsExt) 13711 return N->getOperand(0); 13712 13713 // To zero extend, just mask off everything except for the first bit (in the 13714 // i1 case). 13715 if (N->getOpcode() == ISD::ZERO_EXTEND) 13716 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13717 DAG.getConstant(APInt::getLowBitsSet( 13718 N->getValueSizeInBits(0), PromBits), 13719 dl, N->getValueType(0))); 13720 13721 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13722 "Invalid extension type"); 13723 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13724 SDValue ShiftCst = 13725 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13726 return DAG.getNode( 13727 ISD::SRA, dl, N->getValueType(0), 13728 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13729 ShiftCst); 13730 } 13731 13732 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13733 DAGCombinerInfo &DCI) const { 13734 assert(N->getOpcode() == ISD::SETCC && 13735 "Should be called with a SETCC node"); 13736 13737 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13738 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13739 SDValue LHS = N->getOperand(0); 13740 SDValue RHS = N->getOperand(1); 13741 13742 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13743 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13744 LHS.hasOneUse()) 13745 std::swap(LHS, RHS); 13746 13747 // x == 0-y --> x+y == 0 13748 // x != 0-y --> x+y != 0 13749 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13750 RHS.hasOneUse()) { 13751 SDLoc DL(N); 13752 SelectionDAG &DAG = DCI.DAG; 13753 EVT VT = N->getValueType(0); 13754 EVT OpVT = LHS.getValueType(); 13755 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13756 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13757 } 13758 } 13759 13760 return DAGCombineTruncBoolExt(N, DCI); 13761 } 13762 13763 // Is this an extending load from an f32 to an f64? 13764 static bool isFPExtLoad(SDValue Op) { 13765 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13766 return LD->getExtensionType() == ISD::EXTLOAD && 13767 Op.getValueType() == MVT::f64; 13768 return false; 13769 } 13770 13771 /// Reduces the number of fp-to-int conversion when building a vector. 13772 /// 13773 /// If this vector is built out of floating to integer conversions, 13774 /// transform it to a vector built out of floating point values followed by a 13775 /// single floating to integer conversion of the vector. 13776 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13777 /// becomes (fptosi (build_vector ($A, $B, ...))) 13778 SDValue PPCTargetLowering:: 13779 combineElementTruncationToVectorTruncation(SDNode *N, 13780 DAGCombinerInfo &DCI) const { 13781 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13782 "Should be called with a BUILD_VECTOR node"); 13783 13784 SelectionDAG &DAG = DCI.DAG; 13785 SDLoc dl(N); 13786 13787 SDValue FirstInput = N->getOperand(0); 13788 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13789 "The input operand must be an fp-to-int conversion."); 13790 13791 // This combine happens after legalization so the fp_to_[su]i nodes are 13792 // already converted to PPCSISD nodes. 13793 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13794 if (FirstConversion == PPCISD::FCTIDZ || 13795 FirstConversion == PPCISD::FCTIDUZ || 13796 FirstConversion == PPCISD::FCTIWZ || 13797 FirstConversion == PPCISD::FCTIWUZ) { 13798 bool IsSplat = true; 13799 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13800 FirstConversion == PPCISD::FCTIWUZ; 13801 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13802 SmallVector<SDValue, 4> Ops; 13803 EVT TargetVT = N->getValueType(0); 13804 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13805 SDValue NextOp = N->getOperand(i); 13806 if (NextOp.getOpcode() != PPCISD::MFVSR) 13807 return SDValue(); 13808 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13809 if (NextConversion != FirstConversion) 13810 return SDValue(); 13811 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13812 // This is not valid if the input was originally double precision. It is 13813 // also not profitable to do unless this is an extending load in which 13814 // case doing this combine will allow us to combine consecutive loads. 13815 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13816 return SDValue(); 13817 if (N->getOperand(i) != FirstInput) 13818 IsSplat = false; 13819 } 13820 13821 // If this is a splat, we leave it as-is since there will be only a single 13822 // fp-to-int conversion followed by a splat of the integer. This is better 13823 // for 32-bit and smaller ints and neutral for 64-bit ints. 13824 if (IsSplat) 13825 return SDValue(); 13826 13827 // Now that we know we have the right type of node, get its operands 13828 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13829 SDValue In = N->getOperand(i).getOperand(0); 13830 if (Is32Bit) { 13831 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13832 // here, we know that all inputs are extending loads so this is safe). 13833 if (In.isUndef()) 13834 Ops.push_back(DAG.getUNDEF(SrcVT)); 13835 else { 13836 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13837 MVT::f32, In.getOperand(0), 13838 DAG.getIntPtrConstant(1, dl)); 13839 Ops.push_back(Trunc); 13840 } 13841 } else 13842 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13843 } 13844 13845 unsigned Opcode; 13846 if (FirstConversion == PPCISD::FCTIDZ || 13847 FirstConversion == PPCISD::FCTIWZ) 13848 Opcode = ISD::FP_TO_SINT; 13849 else 13850 Opcode = ISD::FP_TO_UINT; 13851 13852 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13853 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13854 return DAG.getNode(Opcode, dl, TargetVT, BV); 13855 } 13856 return SDValue(); 13857 } 13858 13859 /// Reduce the number of loads when building a vector. 13860 /// 13861 /// Building a vector out of multiple loads can be converted to a load 13862 /// of the vector type if the loads are consecutive. If the loads are 13863 /// consecutive but in descending order, a shuffle is added at the end 13864 /// to reorder the vector. 13865 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13866 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13867 "Should be called with a BUILD_VECTOR node"); 13868 13869 SDLoc dl(N); 13870 13871 // Return early for non byte-sized type, as they can't be consecutive. 13872 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13873 return SDValue(); 13874 13875 bool InputsAreConsecutiveLoads = true; 13876 bool InputsAreReverseConsecutive = true; 13877 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13878 SDValue FirstInput = N->getOperand(0); 13879 bool IsRoundOfExtLoad = false; 13880 13881 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13882 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13883 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13884 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13885 } 13886 // Not a build vector of (possibly fp_rounded) loads. 13887 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13888 N->getNumOperands() == 1) 13889 return SDValue(); 13890 13891 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13892 // If any inputs are fp_round(extload), they all must be. 13893 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13894 return SDValue(); 13895 13896 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13897 N->getOperand(i); 13898 if (NextInput.getOpcode() != ISD::LOAD) 13899 return SDValue(); 13900 13901 SDValue PreviousInput = 13902 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13903 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13904 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13905 13906 // If any inputs are fp_round(extload), they all must be. 13907 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13908 return SDValue(); 13909 13910 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13911 InputsAreConsecutiveLoads = false; 13912 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13913 InputsAreReverseConsecutive = false; 13914 13915 // Exit early if the loads are neither consecutive nor reverse consecutive. 13916 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13917 return SDValue(); 13918 } 13919 13920 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13921 "The loads cannot be both consecutive and reverse consecutive."); 13922 13923 SDValue FirstLoadOp = 13924 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13925 SDValue LastLoadOp = 13926 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13927 N->getOperand(N->getNumOperands()-1); 13928 13929 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13930 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13931 if (InputsAreConsecutiveLoads) { 13932 assert(LD1 && "Input needs to be a LoadSDNode."); 13933 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13934 LD1->getBasePtr(), LD1->getPointerInfo(), 13935 LD1->getAlignment()); 13936 } 13937 if (InputsAreReverseConsecutive) { 13938 assert(LDL && "Input needs to be a LoadSDNode."); 13939 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13940 LDL->getBasePtr(), LDL->getPointerInfo(), 13941 LDL->getAlignment()); 13942 SmallVector<int, 16> Ops; 13943 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13944 Ops.push_back(i); 13945 13946 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13947 DAG.getUNDEF(N->getValueType(0)), Ops); 13948 } 13949 return SDValue(); 13950 } 13951 13952 // This function adds the required vector_shuffle needed to get 13953 // the elements of the vector extract in the correct position 13954 // as specified by the CorrectElems encoding. 13955 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13956 SDValue Input, uint64_t Elems, 13957 uint64_t CorrectElems) { 13958 SDLoc dl(N); 13959 13960 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13961 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13962 13963 // Knowing the element indices being extracted from the original 13964 // vector and the order in which they're being inserted, just put 13965 // them at element indices required for the instruction. 13966 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13967 if (DAG.getDataLayout().isLittleEndian()) 13968 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13969 else 13970 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13971 CorrectElems = CorrectElems >> 8; 13972 Elems = Elems >> 8; 13973 } 13974 13975 SDValue Shuffle = 13976 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13977 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13978 13979 EVT VT = N->getValueType(0); 13980 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13981 13982 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13983 Input.getValueType().getVectorElementType(), 13984 VT.getVectorNumElements()); 13985 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13986 DAG.getValueType(ExtVT)); 13987 } 13988 13989 // Look for build vector patterns where input operands come from sign 13990 // extended vector_extract elements of specific indices. If the correct indices 13991 // aren't used, add a vector shuffle to fix up the indices and create 13992 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13993 // during instruction selection. 13994 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13995 // This array encodes the indices that the vector sign extend instructions 13996 // extract from when extending from one type to another for both BE and LE. 13997 // The right nibble of each byte corresponds to the LE incides. 13998 // and the left nibble of each byte corresponds to the BE incides. 13999 // For example: 0x3074B8FC byte->word 14000 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14001 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14002 // For example: 0x000070F8 byte->double word 14003 // For LE: the allowed indices are: 0x0,0x8 14004 // For BE: the allowed indices are: 0x7,0xF 14005 uint64_t TargetElems[] = { 14006 0x3074B8FC, // b->w 14007 0x000070F8, // b->d 14008 0x10325476, // h->w 14009 0x00003074, // h->d 14010 0x00001032, // w->d 14011 }; 14012 14013 uint64_t Elems = 0; 14014 int Index; 14015 SDValue Input; 14016 14017 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14018 if (!Op) 14019 return false; 14020 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14021 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14022 return false; 14023 14024 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14025 // of the right width. 14026 SDValue Extract = Op.getOperand(0); 14027 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14028 Extract = Extract.getOperand(0); 14029 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14030 return false; 14031 14032 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14033 if (!ExtOp) 14034 return false; 14035 14036 Index = ExtOp->getZExtValue(); 14037 if (Input && Input != Extract.getOperand(0)) 14038 return false; 14039 14040 if (!Input) 14041 Input = Extract.getOperand(0); 14042 14043 Elems = Elems << 8; 14044 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14045 Elems |= Index; 14046 14047 return true; 14048 }; 14049 14050 // If the build vector operands aren't sign extended vector extracts, 14051 // of the same input vector, then return. 14052 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14053 if (!isSExtOfVecExtract(N->getOperand(i))) { 14054 return SDValue(); 14055 } 14056 } 14057 14058 // If the vector extract indicies are not correct, add the appropriate 14059 // vector_shuffle. 14060 int TgtElemArrayIdx; 14061 int InputSize = Input.getValueType().getScalarSizeInBits(); 14062 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14063 if (InputSize + OutputSize == 40) 14064 TgtElemArrayIdx = 0; 14065 else if (InputSize + OutputSize == 72) 14066 TgtElemArrayIdx = 1; 14067 else if (InputSize + OutputSize == 48) 14068 TgtElemArrayIdx = 2; 14069 else if (InputSize + OutputSize == 80) 14070 TgtElemArrayIdx = 3; 14071 else if (InputSize + OutputSize == 96) 14072 TgtElemArrayIdx = 4; 14073 else 14074 return SDValue(); 14075 14076 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14077 CorrectElems = DAG.getDataLayout().isLittleEndian() 14078 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14079 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14080 if (Elems != CorrectElems) { 14081 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14082 } 14083 14084 // Regular lowering will catch cases where a shuffle is not needed. 14085 return SDValue(); 14086 } 14087 14088 // Look for the pattern of a load from a narrow width to i128, feeding 14089 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14090 // (LXVRZX). This node represents a zero extending load that will be matched 14091 // to the Load VSX Vector Rightmost instructions. 14092 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14093 SDLoc DL(N); 14094 14095 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14096 if (N->getValueType(0) != MVT::v1i128) 14097 return SDValue(); 14098 14099 SDValue Operand = N->getOperand(0); 14100 // Proceed with the transformation if the operand to the BUILD_VECTOR 14101 // is a load instruction. 14102 if (Operand.getOpcode() != ISD::LOAD) 14103 return SDValue(); 14104 14105 auto *LD = cast<LoadSDNode>(Operand); 14106 EVT MemoryType = LD->getMemoryVT(); 14107 14108 // This transformation is only valid if the we are loading either a byte, 14109 // halfword, word, or doubleword. 14110 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14111 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14112 14113 // Ensure that the load from the narrow width is being zero extended to i128. 14114 if (!ValidLDType || 14115 (LD->getExtensionType() != ISD::ZEXTLOAD && 14116 LD->getExtensionType() != ISD::EXTLOAD)) 14117 return SDValue(); 14118 14119 SDValue LoadOps[] = { 14120 LD->getChain(), LD->getBasePtr(), 14121 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14122 14123 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14124 DAG.getVTList(MVT::v1i128, MVT::Other), 14125 LoadOps, MemoryType, LD->getMemOperand()); 14126 } 14127 14128 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14129 DAGCombinerInfo &DCI) const { 14130 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14131 "Should be called with a BUILD_VECTOR node"); 14132 14133 SelectionDAG &DAG = DCI.DAG; 14134 SDLoc dl(N); 14135 14136 if (!Subtarget.hasVSX()) 14137 return SDValue(); 14138 14139 // The target independent DAG combiner will leave a build_vector of 14140 // float-to-int conversions intact. We can generate MUCH better code for 14141 // a float-to-int conversion of a vector of floats. 14142 SDValue FirstInput = N->getOperand(0); 14143 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14144 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14145 if (Reduced) 14146 return Reduced; 14147 } 14148 14149 // If we're building a vector out of consecutive loads, just load that 14150 // vector type. 14151 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14152 if (Reduced) 14153 return Reduced; 14154 14155 // If we're building a vector out of extended elements from another vector 14156 // we have P9 vector integer extend instructions. The code assumes legal 14157 // input types (i.e. it can't handle things like v4i16) so do not run before 14158 // legalization. 14159 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14160 Reduced = combineBVOfVecSExt(N, DAG); 14161 if (Reduced) 14162 return Reduced; 14163 } 14164 14165 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14166 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14167 // is a load from <valid narrow width> to i128. 14168 if (Subtarget.isISA3_1()) { 14169 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14170 if (BVOfZLoad) 14171 return BVOfZLoad; 14172 } 14173 14174 if (N->getValueType(0) != MVT::v2f64) 14175 return SDValue(); 14176 14177 // Looking for: 14178 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14179 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14180 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14181 return SDValue(); 14182 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14183 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14184 return SDValue(); 14185 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14186 return SDValue(); 14187 14188 SDValue Ext1 = FirstInput.getOperand(0); 14189 SDValue Ext2 = N->getOperand(1).getOperand(0); 14190 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14191 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14192 return SDValue(); 14193 14194 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14195 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14196 if (!Ext1Op || !Ext2Op) 14197 return SDValue(); 14198 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14199 Ext1.getOperand(0) != Ext2.getOperand(0)) 14200 return SDValue(); 14201 14202 int FirstElem = Ext1Op->getZExtValue(); 14203 int SecondElem = Ext2Op->getZExtValue(); 14204 int SubvecIdx; 14205 if (FirstElem == 0 && SecondElem == 1) 14206 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14207 else if (FirstElem == 2 && SecondElem == 3) 14208 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14209 else 14210 return SDValue(); 14211 14212 SDValue SrcVec = Ext1.getOperand(0); 14213 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14214 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14215 return DAG.getNode(NodeType, dl, MVT::v2f64, 14216 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14217 } 14218 14219 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14220 DAGCombinerInfo &DCI) const { 14221 assert((N->getOpcode() == ISD::SINT_TO_FP || 14222 N->getOpcode() == ISD::UINT_TO_FP) && 14223 "Need an int -> FP conversion node here"); 14224 14225 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14226 return SDValue(); 14227 14228 SelectionDAG &DAG = DCI.DAG; 14229 SDLoc dl(N); 14230 SDValue Op(N, 0); 14231 14232 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14233 // from the hardware. 14234 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14235 return SDValue(); 14236 if (!Op.getOperand(0).getValueType().isSimple()) 14237 return SDValue(); 14238 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14239 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14240 return SDValue(); 14241 14242 SDValue FirstOperand(Op.getOperand(0)); 14243 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14244 (FirstOperand.getValueType() == MVT::i8 || 14245 FirstOperand.getValueType() == MVT::i16); 14246 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14247 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14248 bool DstDouble = Op.getValueType() == MVT::f64; 14249 unsigned ConvOp = Signed ? 14250 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14251 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14252 SDValue WidthConst = 14253 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14254 dl, false); 14255 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14256 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14257 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14258 DAG.getVTList(MVT::f64, MVT::Other), 14259 Ops, MVT::i8, LDN->getMemOperand()); 14260 14261 // For signed conversion, we need to sign-extend the value in the VSR 14262 if (Signed) { 14263 SDValue ExtOps[] = { Ld, WidthConst }; 14264 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14265 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14266 } else 14267 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14268 } 14269 14270 14271 // For i32 intermediate values, unfortunately, the conversion functions 14272 // leave the upper 32 bits of the value are undefined. Within the set of 14273 // scalar instructions, we have no method for zero- or sign-extending the 14274 // value. Thus, we cannot handle i32 intermediate values here. 14275 if (Op.getOperand(0).getValueType() == MVT::i32) 14276 return SDValue(); 14277 14278 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14279 "UINT_TO_FP is supported only with FPCVT"); 14280 14281 // If we have FCFIDS, then use it when converting to single-precision. 14282 // Otherwise, convert to double-precision and then round. 14283 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14284 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14285 : PPCISD::FCFIDS) 14286 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14287 : PPCISD::FCFID); 14288 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14289 ? MVT::f32 14290 : MVT::f64; 14291 14292 // If we're converting from a float, to an int, and back to a float again, 14293 // then we don't need the store/load pair at all. 14294 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14295 Subtarget.hasFPCVT()) || 14296 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14297 SDValue Src = Op.getOperand(0).getOperand(0); 14298 if (Src.getValueType() == MVT::f32) { 14299 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14300 DCI.AddToWorklist(Src.getNode()); 14301 } else if (Src.getValueType() != MVT::f64) { 14302 // Make sure that we don't pick up a ppc_fp128 source value. 14303 return SDValue(); 14304 } 14305 14306 unsigned FCTOp = 14307 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14308 PPCISD::FCTIDUZ; 14309 14310 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14311 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14312 14313 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14314 FP = DAG.getNode(ISD::FP_ROUND, dl, 14315 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14316 DCI.AddToWorklist(FP.getNode()); 14317 } 14318 14319 return FP; 14320 } 14321 14322 return SDValue(); 14323 } 14324 14325 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14326 // builtins) into loads with swaps. 14327 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14328 DAGCombinerInfo &DCI) const { 14329 SelectionDAG &DAG = DCI.DAG; 14330 SDLoc dl(N); 14331 SDValue Chain; 14332 SDValue Base; 14333 MachineMemOperand *MMO; 14334 14335 switch (N->getOpcode()) { 14336 default: 14337 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14338 case ISD::LOAD: { 14339 LoadSDNode *LD = cast<LoadSDNode>(N); 14340 Chain = LD->getChain(); 14341 Base = LD->getBasePtr(); 14342 MMO = LD->getMemOperand(); 14343 // If the MMO suggests this isn't a load of a full vector, leave 14344 // things alone. For a built-in, we have to make the change for 14345 // correctness, so if there is a size problem that will be a bug. 14346 if (MMO->getSize() < 16) 14347 return SDValue(); 14348 break; 14349 } 14350 case ISD::INTRINSIC_W_CHAIN: { 14351 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14352 Chain = Intrin->getChain(); 14353 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14354 // us what we want. Get operand 2 instead. 14355 Base = Intrin->getOperand(2); 14356 MMO = Intrin->getMemOperand(); 14357 break; 14358 } 14359 } 14360 14361 MVT VecTy = N->getValueType(0).getSimpleVT(); 14362 14363 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14364 // aligned and the type is a vector with elements up to 4 bytes 14365 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14366 VecTy.getScalarSizeInBits() <= 32) { 14367 return SDValue(); 14368 } 14369 14370 SDValue LoadOps[] = { Chain, Base }; 14371 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14372 DAG.getVTList(MVT::v2f64, MVT::Other), 14373 LoadOps, MVT::v2f64, MMO); 14374 14375 DCI.AddToWorklist(Load.getNode()); 14376 Chain = Load.getValue(1); 14377 SDValue Swap = DAG.getNode( 14378 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14379 DCI.AddToWorklist(Swap.getNode()); 14380 14381 // Add a bitcast if the resulting load type doesn't match v2f64. 14382 if (VecTy != MVT::v2f64) { 14383 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14384 DCI.AddToWorklist(N.getNode()); 14385 // Package {bitcast value, swap's chain} to match Load's shape. 14386 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14387 N, Swap.getValue(1)); 14388 } 14389 14390 return Swap; 14391 } 14392 14393 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14394 // builtins) into stores with swaps. 14395 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14396 DAGCombinerInfo &DCI) const { 14397 SelectionDAG &DAG = DCI.DAG; 14398 SDLoc dl(N); 14399 SDValue Chain; 14400 SDValue Base; 14401 unsigned SrcOpnd; 14402 MachineMemOperand *MMO; 14403 14404 switch (N->getOpcode()) { 14405 default: 14406 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14407 case ISD::STORE: { 14408 StoreSDNode *ST = cast<StoreSDNode>(N); 14409 Chain = ST->getChain(); 14410 Base = ST->getBasePtr(); 14411 MMO = ST->getMemOperand(); 14412 SrcOpnd = 1; 14413 // If the MMO suggests this isn't a store of a full vector, leave 14414 // things alone. For a built-in, we have to make the change for 14415 // correctness, so if there is a size problem that will be a bug. 14416 if (MMO->getSize() < 16) 14417 return SDValue(); 14418 break; 14419 } 14420 case ISD::INTRINSIC_VOID: { 14421 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14422 Chain = Intrin->getChain(); 14423 // Intrin->getBasePtr() oddly does not get what we want. 14424 Base = Intrin->getOperand(3); 14425 MMO = Intrin->getMemOperand(); 14426 SrcOpnd = 2; 14427 break; 14428 } 14429 } 14430 14431 SDValue Src = N->getOperand(SrcOpnd); 14432 MVT VecTy = Src.getValueType().getSimpleVT(); 14433 14434 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14435 // aligned and the type is a vector with elements up to 4 bytes 14436 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14437 VecTy.getScalarSizeInBits() <= 32) { 14438 return SDValue(); 14439 } 14440 14441 // All stores are done as v2f64 and possible bit cast. 14442 if (VecTy != MVT::v2f64) { 14443 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14444 DCI.AddToWorklist(Src.getNode()); 14445 } 14446 14447 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14448 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14449 DCI.AddToWorklist(Swap.getNode()); 14450 Chain = Swap.getValue(1); 14451 SDValue StoreOps[] = { Chain, Swap, Base }; 14452 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14453 DAG.getVTList(MVT::Other), 14454 StoreOps, VecTy, MMO); 14455 DCI.AddToWorklist(Store.getNode()); 14456 return Store; 14457 } 14458 14459 // Handle DAG combine for STORE (FP_TO_INT F). 14460 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14461 DAGCombinerInfo &DCI) const { 14462 14463 SelectionDAG &DAG = DCI.DAG; 14464 SDLoc dl(N); 14465 unsigned Opcode = N->getOperand(1).getOpcode(); 14466 14467 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14468 && "Not a FP_TO_INT Instruction!"); 14469 14470 SDValue Val = N->getOperand(1).getOperand(0); 14471 EVT Op1VT = N->getOperand(1).getValueType(); 14472 EVT ResVT = Val.getValueType(); 14473 14474 if (!isTypeLegal(ResVT)) 14475 return SDValue(); 14476 14477 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14478 bool ValidTypeForStoreFltAsInt = 14479 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14480 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14481 14482 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14483 return SDValue(); 14484 14485 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14486 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14487 return SDValue(); 14488 14489 // Extend f32 values to f64 14490 if (ResVT.getScalarSizeInBits() == 32) { 14491 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14492 DCI.AddToWorklist(Val.getNode()); 14493 } 14494 14495 // Set signed or unsigned conversion opcode. 14496 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14497 PPCISD::FP_TO_SINT_IN_VSR : 14498 PPCISD::FP_TO_UINT_IN_VSR; 14499 14500 Val = DAG.getNode(ConvOpcode, 14501 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14502 DCI.AddToWorklist(Val.getNode()); 14503 14504 // Set number of bytes being converted. 14505 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14506 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14507 DAG.getIntPtrConstant(ByteSize, dl, false), 14508 DAG.getValueType(Op1VT) }; 14509 14510 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14511 DAG.getVTList(MVT::Other), Ops, 14512 cast<StoreSDNode>(N)->getMemoryVT(), 14513 cast<StoreSDNode>(N)->getMemOperand()); 14514 14515 DCI.AddToWorklist(Val.getNode()); 14516 return Val; 14517 } 14518 14519 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14520 // Check that the source of the element keeps flipping 14521 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14522 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14523 for (int i = 1, e = Mask.size(); i < e; i++) { 14524 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14525 return false; 14526 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14527 return false; 14528 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14529 } 14530 return true; 14531 } 14532 14533 static bool isSplatBV(SDValue Op) { 14534 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14535 return false; 14536 SDValue FirstOp; 14537 14538 // Find first non-undef input. 14539 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14540 FirstOp = Op.getOperand(i); 14541 if (!FirstOp.isUndef()) 14542 break; 14543 } 14544 14545 // All inputs are undef or the same as the first non-undef input. 14546 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14547 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14548 return false; 14549 return true; 14550 } 14551 14552 static SDValue isScalarToVec(SDValue Op) { 14553 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14554 return Op; 14555 if (Op.getOpcode() != ISD::BITCAST) 14556 return SDValue(); 14557 Op = Op.getOperand(0); 14558 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14559 return Op; 14560 return SDValue(); 14561 } 14562 14563 // Fix up the shuffle mask to account for the fact that the result of 14564 // scalar_to_vector is not in lane zero. This just takes all values in 14565 // the ranges specified by the min/max indices and adds the number of 14566 // elements required to ensure each element comes from the respective 14567 // position in the valid lane. 14568 // On little endian, that's just the corresponding element in the other 14569 // half of the vector. On big endian, it is in the same half but right 14570 // justified rather than left justified in that half. 14571 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14572 int LHSMaxIdx, int RHSMinIdx, 14573 int RHSMaxIdx, int HalfVec, 14574 unsigned ValidLaneWidth, 14575 const PPCSubtarget &Subtarget) { 14576 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14577 int Idx = ShuffV[i]; 14578 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14579 ShuffV[i] += 14580 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14581 } 14582 } 14583 14584 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14585 // the original is: 14586 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14587 // In such a case, just change the shuffle mask to extract the element 14588 // from the permuted index. 14589 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14590 const PPCSubtarget &Subtarget) { 14591 SDLoc dl(OrigSToV); 14592 EVT VT = OrigSToV.getValueType(); 14593 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14594 "Expecting a SCALAR_TO_VECTOR here"); 14595 SDValue Input = OrigSToV.getOperand(0); 14596 14597 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14598 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14599 SDValue OrigVector = Input.getOperand(0); 14600 14601 // Can't handle non-const element indices or different vector types 14602 // for the input to the extract and the output of the scalar_to_vector. 14603 if (Idx && VT == OrigVector.getValueType()) { 14604 unsigned NumElts = VT.getVectorNumElements(); 14605 assert( 14606 NumElts > 1 && 14607 "Cannot produce a permuted scalar_to_vector for one element vector"); 14608 SmallVector<int, 16> NewMask(NumElts, -1); 14609 unsigned ResultInElt = NumElts / 2; 14610 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14611 NewMask[ResultInElt] = Idx->getZExtValue(); 14612 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14613 } 14614 } 14615 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14616 OrigSToV.getOperand(0)); 14617 } 14618 14619 // On little endian subtargets, combine shuffles such as: 14620 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14621 // into: 14622 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14623 // because the latter can be matched to a single instruction merge. 14624 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14625 // to put the value into element zero. Adjust the shuffle mask so that the 14626 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14627 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14628 // nodes with elements smaller than doubleword because all the ways 14629 // of getting scalar data into a vector register put the value in the 14630 // rightmost element of the left half of the vector. 14631 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14632 SelectionDAG &DAG) const { 14633 SDValue LHS = SVN->getOperand(0); 14634 SDValue RHS = SVN->getOperand(1); 14635 auto Mask = SVN->getMask(); 14636 int NumElts = LHS.getValueType().getVectorNumElements(); 14637 SDValue Res(SVN, 0); 14638 SDLoc dl(SVN); 14639 bool IsLittleEndian = Subtarget.isLittleEndian(); 14640 14641 // On big endian targets this is only useful for subtargets with direct moves. 14642 // On little endian targets it would be useful for all subtargets with VSX. 14643 // However adding special handling for LE subtargets without direct moves 14644 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14645 // which includes direct moves. 14646 if (!Subtarget.hasDirectMove()) 14647 return Res; 14648 14649 // If this is not a shuffle of a shuffle and the first element comes from 14650 // the second vector, canonicalize to the commuted form. This will make it 14651 // more likely to match one of the single instruction patterns. 14652 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14653 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14654 std::swap(LHS, RHS); 14655 Res = DAG.getCommutedVectorShuffle(*SVN); 14656 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14657 } 14658 14659 // Adjust the shuffle mask if either input vector comes from a 14660 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14661 // form (to prevent the need for a swap). 14662 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14663 SDValue SToVLHS = isScalarToVec(LHS); 14664 SDValue SToVRHS = isScalarToVec(RHS); 14665 if (SToVLHS || SToVRHS) { 14666 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14667 : SToVRHS.getValueType().getVectorNumElements(); 14668 int NumEltsOut = ShuffV.size(); 14669 // The width of the "valid lane" (i.e. the lane that contains the value that 14670 // is vectorized) needs to be expressed in terms of the number of elements 14671 // of the shuffle. It is thereby the ratio of the values before and after 14672 // any bitcast. 14673 unsigned ValidLaneWidth = 14674 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14675 LHS.getValueType().getScalarSizeInBits() 14676 : SToVRHS.getValueType().getScalarSizeInBits() / 14677 RHS.getValueType().getScalarSizeInBits(); 14678 14679 // Initially assume that neither input is permuted. These will be adjusted 14680 // accordingly if either input is. 14681 int LHSMaxIdx = -1; 14682 int RHSMinIdx = -1; 14683 int RHSMaxIdx = -1; 14684 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14685 14686 // Get the permuted scalar to vector nodes for the source(s) that come from 14687 // ISD::SCALAR_TO_VECTOR. 14688 // On big endian systems, this only makes sense for element sizes smaller 14689 // than 64 bits since for 64-bit elements, all instructions already put 14690 // the value into element zero. Since scalar size of LHS and RHS may differ 14691 // after isScalarToVec, this should be checked using their own sizes. 14692 if (SToVLHS) { 14693 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14694 return Res; 14695 // Set up the values for the shuffle vector fixup. 14696 LHSMaxIdx = NumEltsOut / NumEltsIn; 14697 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14698 if (SToVLHS.getValueType() != LHS.getValueType()) 14699 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14700 LHS = SToVLHS; 14701 } 14702 if (SToVRHS) { 14703 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14704 return Res; 14705 RHSMinIdx = NumEltsOut; 14706 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14707 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14708 if (SToVRHS.getValueType() != RHS.getValueType()) 14709 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14710 RHS = SToVRHS; 14711 } 14712 14713 // Fix up the shuffle mask to reflect where the desired element actually is. 14714 // The minimum and maximum indices that correspond to element zero for both 14715 // the LHS and RHS are computed and will control which shuffle mask entries 14716 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14717 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14718 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14719 HalfVec, ValidLaneWidth, Subtarget); 14720 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14721 14722 // We may have simplified away the shuffle. We won't be able to do anything 14723 // further with it here. 14724 if (!isa<ShuffleVectorSDNode>(Res)) 14725 return Res; 14726 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14727 } 14728 14729 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14730 // The common case after we commuted the shuffle is that the RHS is a splat 14731 // and we have elements coming in from the splat at indices that are not 14732 // conducive to using a merge. 14733 // Example: 14734 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14735 if (!isSplatBV(TheSplat)) 14736 return Res; 14737 14738 // We are looking for a mask such that all even elements are from 14739 // one vector and all odd elements from the other. 14740 if (!isAlternatingShuffMask(Mask, NumElts)) 14741 return Res; 14742 14743 // Adjust the mask so we are pulling in the same index from the splat 14744 // as the index from the interesting vector in consecutive elements. 14745 if (IsLittleEndian) { 14746 // Example (even elements from first vector): 14747 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14748 if (Mask[0] < NumElts) 14749 for (int i = 1, e = Mask.size(); i < e; i += 2) 14750 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14751 // Example (odd elements from first vector): 14752 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14753 else 14754 for (int i = 0, e = Mask.size(); i < e; i += 2) 14755 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14756 } else { 14757 // Example (even elements from first vector): 14758 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14759 if (Mask[0] < NumElts) 14760 for (int i = 0, e = Mask.size(); i < e; i += 2) 14761 ShuffV[i] = ShuffV[i + 1] - NumElts; 14762 // Example (odd elements from first vector): 14763 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14764 else 14765 for (int i = 1, e = Mask.size(); i < e; i += 2) 14766 ShuffV[i] = ShuffV[i - 1] - NumElts; 14767 } 14768 14769 // If the RHS has undefs, we need to remove them since we may have created 14770 // a shuffle that adds those instead of the splat value. 14771 SDValue SplatVal = 14772 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14773 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14774 14775 if (IsLittleEndian) 14776 RHS = TheSplat; 14777 else 14778 LHS = TheSplat; 14779 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14780 } 14781 14782 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14783 LSBaseSDNode *LSBase, 14784 DAGCombinerInfo &DCI) const { 14785 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14786 "Not a reverse memop pattern!"); 14787 14788 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14789 auto Mask = SVN->getMask(); 14790 int i = 0; 14791 auto I = Mask.rbegin(); 14792 auto E = Mask.rend(); 14793 14794 for (; I != E; ++I) { 14795 if (*I != i) 14796 return false; 14797 i++; 14798 } 14799 return true; 14800 }; 14801 14802 SelectionDAG &DAG = DCI.DAG; 14803 EVT VT = SVN->getValueType(0); 14804 14805 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14806 return SDValue(); 14807 14808 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14809 // See comment in PPCVSXSwapRemoval.cpp. 14810 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14811 if (!Subtarget.hasP9Vector()) 14812 return SDValue(); 14813 14814 if(!IsElementReverse(SVN)) 14815 return SDValue(); 14816 14817 if (LSBase->getOpcode() == ISD::LOAD) { 14818 // If the load return value 0 has more than one user except the 14819 // shufflevector instruction, it is not profitable to replace the 14820 // shufflevector with a reverse load. 14821 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14822 UI != UE; ++UI) 14823 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14824 return SDValue(); 14825 14826 SDLoc dl(LSBase); 14827 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14828 return DAG.getMemIntrinsicNode( 14829 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14830 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14831 } 14832 14833 if (LSBase->getOpcode() == ISD::STORE) { 14834 // If there are other uses of the shuffle, the swap cannot be avoided. 14835 // Forcing the use of an X-Form (since swapped stores only have 14836 // X-Forms) without removing the swap is unprofitable. 14837 if (!SVN->hasOneUse()) 14838 return SDValue(); 14839 14840 SDLoc dl(LSBase); 14841 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14842 LSBase->getBasePtr()}; 14843 return DAG.getMemIntrinsicNode( 14844 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14845 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14846 } 14847 14848 llvm_unreachable("Expected a load or store node here"); 14849 } 14850 14851 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14852 DAGCombinerInfo &DCI) const { 14853 SelectionDAG &DAG = DCI.DAG; 14854 SDLoc dl(N); 14855 switch (N->getOpcode()) { 14856 default: break; 14857 case ISD::ADD: 14858 return combineADD(N, DCI); 14859 case ISD::SHL: 14860 return combineSHL(N, DCI); 14861 case ISD::SRA: 14862 return combineSRA(N, DCI); 14863 case ISD::SRL: 14864 return combineSRL(N, DCI); 14865 case ISD::MUL: 14866 return combineMUL(N, DCI); 14867 case ISD::FMA: 14868 case PPCISD::FNMSUB: 14869 return combineFMALike(N, DCI); 14870 case PPCISD::SHL: 14871 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14872 return N->getOperand(0); 14873 break; 14874 case PPCISD::SRL: 14875 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14876 return N->getOperand(0); 14877 break; 14878 case PPCISD::SRA: 14879 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14880 if (C->isZero() || // 0 >>s V -> 0. 14881 C->isAllOnes()) // -1 >>s V -> -1. 14882 return N->getOperand(0); 14883 } 14884 break; 14885 case ISD::SIGN_EXTEND: 14886 case ISD::ZERO_EXTEND: 14887 case ISD::ANY_EXTEND: 14888 return DAGCombineExtBoolTrunc(N, DCI); 14889 case ISD::TRUNCATE: 14890 return combineTRUNCATE(N, DCI); 14891 case ISD::SETCC: 14892 if (SDValue CSCC = combineSetCC(N, DCI)) 14893 return CSCC; 14894 LLVM_FALLTHROUGH; 14895 case ISD::SELECT_CC: 14896 return DAGCombineTruncBoolExt(N, DCI); 14897 case ISD::SINT_TO_FP: 14898 case ISD::UINT_TO_FP: 14899 return combineFPToIntToFP(N, DCI); 14900 case ISD::VECTOR_SHUFFLE: 14901 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14902 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14903 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14904 } 14905 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14906 case ISD::STORE: { 14907 14908 EVT Op1VT = N->getOperand(1).getValueType(); 14909 unsigned Opcode = N->getOperand(1).getOpcode(); 14910 14911 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14912 SDValue Val= combineStoreFPToInt(N, DCI); 14913 if (Val) 14914 return Val; 14915 } 14916 14917 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14918 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14919 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14920 if (Val) 14921 return Val; 14922 } 14923 14924 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14925 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14926 N->getOperand(1).getNode()->hasOneUse() && 14927 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14928 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14929 14930 // STBRX can only handle simple types and it makes no sense to store less 14931 // two bytes in byte-reversed order. 14932 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14933 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14934 break; 14935 14936 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14937 // Do an any-extend to 32-bits if this is a half-word input. 14938 if (BSwapOp.getValueType() == MVT::i16) 14939 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14940 14941 // If the type of BSWAP operand is wider than stored memory width 14942 // it need to be shifted to the right side before STBRX. 14943 if (Op1VT.bitsGT(mVT)) { 14944 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14945 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14946 DAG.getConstant(Shift, dl, MVT::i32)); 14947 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14948 if (Op1VT == MVT::i64) 14949 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14950 } 14951 14952 SDValue Ops[] = { 14953 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14954 }; 14955 return 14956 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14957 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14958 cast<StoreSDNode>(N)->getMemOperand()); 14959 } 14960 14961 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14962 // So it can increase the chance of CSE constant construction. 14963 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14964 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14965 // Need to sign-extended to 64-bits to handle negative values. 14966 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14967 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14968 MemVT.getSizeInBits()); 14969 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14970 14971 // DAG.getTruncStore() can't be used here because it doesn't accept 14972 // the general (base + offset) addressing mode. 14973 // So we use UpdateNodeOperands and setTruncatingStore instead. 14974 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14975 N->getOperand(3)); 14976 cast<StoreSDNode>(N)->setTruncatingStore(true); 14977 return SDValue(N, 0); 14978 } 14979 14980 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14981 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14982 if (Op1VT.isSimple()) { 14983 MVT StoreVT = Op1VT.getSimpleVT(); 14984 if (Subtarget.needsSwapsForVSXMemOps() && 14985 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14986 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14987 return expandVSXStoreForLE(N, DCI); 14988 } 14989 break; 14990 } 14991 case ISD::LOAD: { 14992 LoadSDNode *LD = cast<LoadSDNode>(N); 14993 EVT VT = LD->getValueType(0); 14994 14995 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14996 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14997 if (VT.isSimple()) { 14998 MVT LoadVT = VT.getSimpleVT(); 14999 if (Subtarget.needsSwapsForVSXMemOps() && 15000 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15001 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15002 return expandVSXLoadForLE(N, DCI); 15003 } 15004 15005 // We sometimes end up with a 64-bit integer load, from which we extract 15006 // two single-precision floating-point numbers. This happens with 15007 // std::complex<float>, and other similar structures, because of the way we 15008 // canonicalize structure copies. However, if we lack direct moves, 15009 // then the final bitcasts from the extracted integer values to the 15010 // floating-point numbers turn into store/load pairs. Even with direct moves, 15011 // just loading the two floating-point numbers is likely better. 15012 auto ReplaceTwoFloatLoad = [&]() { 15013 if (VT != MVT::i64) 15014 return false; 15015 15016 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15017 LD->isVolatile()) 15018 return false; 15019 15020 // We're looking for a sequence like this: 15021 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15022 // t16: i64 = srl t13, Constant:i32<32> 15023 // t17: i32 = truncate t16 15024 // t18: f32 = bitcast t17 15025 // t19: i32 = truncate t13 15026 // t20: f32 = bitcast t19 15027 15028 if (!LD->hasNUsesOfValue(2, 0)) 15029 return false; 15030 15031 auto UI = LD->use_begin(); 15032 while (UI.getUse().getResNo() != 0) ++UI; 15033 SDNode *Trunc = *UI++; 15034 while (UI.getUse().getResNo() != 0) ++UI; 15035 SDNode *RightShift = *UI; 15036 if (Trunc->getOpcode() != ISD::TRUNCATE) 15037 std::swap(Trunc, RightShift); 15038 15039 if (Trunc->getOpcode() != ISD::TRUNCATE || 15040 Trunc->getValueType(0) != MVT::i32 || 15041 !Trunc->hasOneUse()) 15042 return false; 15043 if (RightShift->getOpcode() != ISD::SRL || 15044 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15045 RightShift->getConstantOperandVal(1) != 32 || 15046 !RightShift->hasOneUse()) 15047 return false; 15048 15049 SDNode *Trunc2 = *RightShift->use_begin(); 15050 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15051 Trunc2->getValueType(0) != MVT::i32 || 15052 !Trunc2->hasOneUse()) 15053 return false; 15054 15055 SDNode *Bitcast = *Trunc->use_begin(); 15056 SDNode *Bitcast2 = *Trunc2->use_begin(); 15057 15058 if (Bitcast->getOpcode() != ISD::BITCAST || 15059 Bitcast->getValueType(0) != MVT::f32) 15060 return false; 15061 if (Bitcast2->getOpcode() != ISD::BITCAST || 15062 Bitcast2->getValueType(0) != MVT::f32) 15063 return false; 15064 15065 if (Subtarget.isLittleEndian()) 15066 std::swap(Bitcast, Bitcast2); 15067 15068 // Bitcast has the second float (in memory-layout order) and Bitcast2 15069 // has the first one. 15070 15071 SDValue BasePtr = LD->getBasePtr(); 15072 if (LD->isIndexed()) { 15073 assert(LD->getAddressingMode() == ISD::PRE_INC && 15074 "Non-pre-inc AM on PPC?"); 15075 BasePtr = 15076 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15077 LD->getOffset()); 15078 } 15079 15080 auto MMOFlags = 15081 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15082 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15083 LD->getPointerInfo(), LD->getAlignment(), 15084 MMOFlags, LD->getAAInfo()); 15085 SDValue AddPtr = 15086 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15087 BasePtr, DAG.getIntPtrConstant(4, dl)); 15088 SDValue FloatLoad2 = DAG.getLoad( 15089 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15090 LD->getPointerInfo().getWithOffset(4), 15091 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15092 15093 if (LD->isIndexed()) { 15094 // Note that DAGCombine should re-form any pre-increment load(s) from 15095 // what is produced here if that makes sense. 15096 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15097 } 15098 15099 DCI.CombineTo(Bitcast2, FloatLoad); 15100 DCI.CombineTo(Bitcast, FloatLoad2); 15101 15102 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15103 SDValue(FloatLoad2.getNode(), 1)); 15104 return true; 15105 }; 15106 15107 if (ReplaceTwoFloatLoad()) 15108 return SDValue(N, 0); 15109 15110 EVT MemVT = LD->getMemoryVT(); 15111 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15112 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15113 if (LD->isUnindexed() && VT.isVector() && 15114 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15115 // P8 and later hardware should just use LOAD. 15116 !Subtarget.hasP8Vector() && 15117 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15118 VT == MVT::v4f32))) && 15119 LD->getAlign() < ABIAlignment) { 15120 // This is a type-legal unaligned Altivec load. 15121 SDValue Chain = LD->getChain(); 15122 SDValue Ptr = LD->getBasePtr(); 15123 bool isLittleEndian = Subtarget.isLittleEndian(); 15124 15125 // This implements the loading of unaligned vectors as described in 15126 // the venerable Apple Velocity Engine overview. Specifically: 15127 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15128 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15129 // 15130 // The general idea is to expand a sequence of one or more unaligned 15131 // loads into an alignment-based permutation-control instruction (lvsl 15132 // or lvsr), a series of regular vector loads (which always truncate 15133 // their input address to an aligned address), and a series of 15134 // permutations. The results of these permutations are the requested 15135 // loaded values. The trick is that the last "extra" load is not taken 15136 // from the address you might suspect (sizeof(vector) bytes after the 15137 // last requested load), but rather sizeof(vector) - 1 bytes after the 15138 // last requested vector. The point of this is to avoid a page fault if 15139 // the base address happened to be aligned. This works because if the 15140 // base address is aligned, then adding less than a full vector length 15141 // will cause the last vector in the sequence to be (re)loaded. 15142 // Otherwise, the next vector will be fetched as you might suspect was 15143 // necessary. 15144 15145 // We might be able to reuse the permutation generation from 15146 // a different base address offset from this one by an aligned amount. 15147 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15148 // optimization later. 15149 Intrinsic::ID Intr, IntrLD, IntrPerm; 15150 MVT PermCntlTy, PermTy, LDTy; 15151 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15152 : Intrinsic::ppc_altivec_lvsl; 15153 IntrLD = Intrinsic::ppc_altivec_lvx; 15154 IntrPerm = Intrinsic::ppc_altivec_vperm; 15155 PermCntlTy = MVT::v16i8; 15156 PermTy = MVT::v4i32; 15157 LDTy = MVT::v4i32; 15158 15159 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15160 15161 // Create the new MMO for the new base load. It is like the original MMO, 15162 // but represents an area in memory almost twice the vector size centered 15163 // on the original address. If the address is unaligned, we might start 15164 // reading up to (sizeof(vector)-1) bytes below the address of the 15165 // original unaligned load. 15166 MachineFunction &MF = DAG.getMachineFunction(); 15167 MachineMemOperand *BaseMMO = 15168 MF.getMachineMemOperand(LD->getMemOperand(), 15169 -(long)MemVT.getStoreSize()+1, 15170 2*MemVT.getStoreSize()-1); 15171 15172 // Create the new base load. 15173 SDValue LDXIntID = 15174 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15175 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15176 SDValue BaseLoad = 15177 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15178 DAG.getVTList(PermTy, MVT::Other), 15179 BaseLoadOps, LDTy, BaseMMO); 15180 15181 // Note that the value of IncOffset (which is provided to the next 15182 // load's pointer info offset value, and thus used to calculate the 15183 // alignment), and the value of IncValue (which is actually used to 15184 // increment the pointer value) are different! This is because we 15185 // require the next load to appear to be aligned, even though it 15186 // is actually offset from the base pointer by a lesser amount. 15187 int IncOffset = VT.getSizeInBits() / 8; 15188 int IncValue = IncOffset; 15189 15190 // Walk (both up and down) the chain looking for another load at the real 15191 // (aligned) offset (the alignment of the other load does not matter in 15192 // this case). If found, then do not use the offset reduction trick, as 15193 // that will prevent the loads from being later combined (as they would 15194 // otherwise be duplicates). 15195 if (!findConsecutiveLoad(LD, DAG)) 15196 --IncValue; 15197 15198 SDValue Increment = 15199 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15200 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15201 15202 MachineMemOperand *ExtraMMO = 15203 MF.getMachineMemOperand(LD->getMemOperand(), 15204 1, 2*MemVT.getStoreSize()-1); 15205 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15206 SDValue ExtraLoad = 15207 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15208 DAG.getVTList(PermTy, MVT::Other), 15209 ExtraLoadOps, LDTy, ExtraMMO); 15210 15211 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15212 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15213 15214 // Because vperm has a big-endian bias, we must reverse the order 15215 // of the input vectors and complement the permute control vector 15216 // when generating little endian code. We have already handled the 15217 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15218 // and ExtraLoad here. 15219 SDValue Perm; 15220 if (isLittleEndian) 15221 Perm = BuildIntrinsicOp(IntrPerm, 15222 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15223 else 15224 Perm = BuildIntrinsicOp(IntrPerm, 15225 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15226 15227 if (VT != PermTy) 15228 Perm = Subtarget.hasAltivec() 15229 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15230 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15231 DAG.getTargetConstant(1, dl, MVT::i64)); 15232 // second argument is 1 because this rounding 15233 // is always exact. 15234 15235 // The output of the permutation is our loaded result, the TokenFactor is 15236 // our new chain. 15237 DCI.CombineTo(N, Perm, TF); 15238 return SDValue(N, 0); 15239 } 15240 } 15241 break; 15242 case ISD::INTRINSIC_WO_CHAIN: { 15243 bool isLittleEndian = Subtarget.isLittleEndian(); 15244 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15245 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15246 : Intrinsic::ppc_altivec_lvsl); 15247 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15248 SDValue Add = N->getOperand(1); 15249 15250 int Bits = 4 /* 16 byte alignment */; 15251 15252 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15253 APInt::getAllOnes(Bits /* alignment */) 15254 .zext(Add.getScalarValueSizeInBits()))) { 15255 SDNode *BasePtr = Add->getOperand(0).getNode(); 15256 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15257 UE = BasePtr->use_end(); 15258 UI != UE; ++UI) { 15259 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15260 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15261 IID) { 15262 // We've found another LVSL/LVSR, and this address is an aligned 15263 // multiple of that one. The results will be the same, so use the 15264 // one we've just found instead. 15265 15266 return SDValue(*UI, 0); 15267 } 15268 } 15269 } 15270 15271 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15272 SDNode *BasePtr = Add->getOperand(0).getNode(); 15273 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15274 UE = BasePtr->use_end(); UI != UE; ++UI) { 15275 if (UI->getOpcode() == ISD::ADD && 15276 isa<ConstantSDNode>(UI->getOperand(1)) && 15277 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15278 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15279 (1ULL << Bits) == 0) { 15280 SDNode *OtherAdd = *UI; 15281 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15282 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15283 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15284 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15285 return SDValue(*VI, 0); 15286 } 15287 } 15288 } 15289 } 15290 } 15291 } 15292 15293 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15294 // Expose the vabsduw/h/b opportunity for down stream 15295 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15296 (IID == Intrinsic::ppc_altivec_vmaxsw || 15297 IID == Intrinsic::ppc_altivec_vmaxsh || 15298 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15299 SDValue V1 = N->getOperand(1); 15300 SDValue V2 = N->getOperand(2); 15301 if ((V1.getSimpleValueType() == MVT::v4i32 || 15302 V1.getSimpleValueType() == MVT::v8i16 || 15303 V1.getSimpleValueType() == MVT::v16i8) && 15304 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15305 // (0-a, a) 15306 if (V1.getOpcode() == ISD::SUB && 15307 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15308 V1.getOperand(1) == V2) { 15309 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15310 } 15311 // (a, 0-a) 15312 if (V2.getOpcode() == ISD::SUB && 15313 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15314 V2.getOperand(1) == V1) { 15315 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15316 } 15317 // (x-y, y-x) 15318 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15319 V1.getOperand(0) == V2.getOperand(1) && 15320 V1.getOperand(1) == V2.getOperand(0)) { 15321 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15322 } 15323 } 15324 } 15325 } 15326 15327 break; 15328 case ISD::INTRINSIC_W_CHAIN: 15329 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15330 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15331 if (Subtarget.needsSwapsForVSXMemOps()) { 15332 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15333 default: 15334 break; 15335 case Intrinsic::ppc_vsx_lxvw4x: 15336 case Intrinsic::ppc_vsx_lxvd2x: 15337 return expandVSXLoadForLE(N, DCI); 15338 } 15339 } 15340 break; 15341 case ISD::INTRINSIC_VOID: 15342 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15343 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15344 if (Subtarget.needsSwapsForVSXMemOps()) { 15345 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15346 default: 15347 break; 15348 case Intrinsic::ppc_vsx_stxvw4x: 15349 case Intrinsic::ppc_vsx_stxvd2x: 15350 return expandVSXStoreForLE(N, DCI); 15351 } 15352 } 15353 break; 15354 case ISD::BSWAP: { 15355 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15356 // For subtargets without LDBRX, we can still do better than the default 15357 // expansion even for 64-bit BSWAP (LOAD). 15358 bool Is64BitBswapOn64BitTgt = 15359 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15360 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15361 N->getOperand(0).hasOneUse(); 15362 if (IsSingleUseNormalLd && 15363 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15364 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15365 SDValue Load = N->getOperand(0); 15366 LoadSDNode *LD = cast<LoadSDNode>(Load); 15367 // Create the byte-swapping load. 15368 SDValue Ops[] = { 15369 LD->getChain(), // Chain 15370 LD->getBasePtr(), // Ptr 15371 DAG.getValueType(N->getValueType(0)) // VT 15372 }; 15373 SDValue BSLoad = 15374 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15375 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15376 MVT::i64 : MVT::i32, MVT::Other), 15377 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15378 15379 // If this is an i16 load, insert the truncate. 15380 SDValue ResVal = BSLoad; 15381 if (N->getValueType(0) == MVT::i16) 15382 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15383 15384 // First, combine the bswap away. This makes the value produced by the 15385 // load dead. 15386 DCI.CombineTo(N, ResVal); 15387 15388 // Next, combine the load away, we give it a bogus result value but a real 15389 // chain result. The result value is dead because the bswap is dead. 15390 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15391 15392 // Return N so it doesn't get rechecked! 15393 return SDValue(N, 0); 15394 } 15395 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15396 // before legalization so that the BUILD_PAIR is handled correctly. 15397 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15398 !IsSingleUseNormalLd) 15399 return SDValue(); 15400 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15401 15402 // Can't split volatile or atomic loads. 15403 if (!LD->isSimple()) 15404 return SDValue(); 15405 SDValue BasePtr = LD->getBasePtr(); 15406 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15407 LD->getPointerInfo(), LD->getAlignment()); 15408 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15409 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15410 DAG.getIntPtrConstant(4, dl)); 15411 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15412 LD->getMemOperand(), 4, 4); 15413 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15414 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15415 SDValue Res; 15416 if (Subtarget.isLittleEndian()) 15417 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15418 else 15419 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15420 SDValue TF = 15421 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15422 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15423 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15424 return Res; 15425 } 15426 case PPCISD::VCMP: 15427 // If a VCMP_rec node already exists with exactly the same operands as this 15428 // node, use its result instead of this node (VCMP_rec computes both a CR6 15429 // and a normal output). 15430 // 15431 if (!N->getOperand(0).hasOneUse() && 15432 !N->getOperand(1).hasOneUse() && 15433 !N->getOperand(2).hasOneUse()) { 15434 15435 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15436 SDNode *VCMPrecNode = nullptr; 15437 15438 SDNode *LHSN = N->getOperand(0).getNode(); 15439 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15440 UI != E; ++UI) 15441 if (UI->getOpcode() == PPCISD::VCMP_rec && 15442 UI->getOperand(1) == N->getOperand(1) && 15443 UI->getOperand(2) == N->getOperand(2) && 15444 UI->getOperand(0) == N->getOperand(0)) { 15445 VCMPrecNode = *UI; 15446 break; 15447 } 15448 15449 // If there is no VCMP_rec node, or if the flag value has a single use, 15450 // don't transform this. 15451 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15452 break; 15453 15454 // Look at the (necessarily single) use of the flag value. If it has a 15455 // chain, this transformation is more complex. Note that multiple things 15456 // could use the value result, which we should ignore. 15457 SDNode *FlagUser = nullptr; 15458 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15459 FlagUser == nullptr; ++UI) { 15460 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15461 SDNode *User = *UI; 15462 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15463 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15464 FlagUser = User; 15465 break; 15466 } 15467 } 15468 } 15469 15470 // If the user is a MFOCRF instruction, we know this is safe. 15471 // Otherwise we give up for right now. 15472 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15473 return SDValue(VCMPrecNode, 0); 15474 } 15475 break; 15476 case ISD::BRCOND: { 15477 SDValue Cond = N->getOperand(1); 15478 SDValue Target = N->getOperand(2); 15479 15480 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15481 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15482 Intrinsic::loop_decrement) { 15483 15484 // We now need to make the intrinsic dead (it cannot be instruction 15485 // selected). 15486 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15487 assert(Cond.getNode()->hasOneUse() && 15488 "Counter decrement has more than one use"); 15489 15490 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15491 N->getOperand(0), Target); 15492 } 15493 } 15494 break; 15495 case ISD::BR_CC: { 15496 // If this is a branch on an altivec predicate comparison, lower this so 15497 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15498 // lowering is done pre-legalize, because the legalizer lowers the predicate 15499 // compare down to code that is difficult to reassemble. 15500 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15501 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15502 15503 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15504 // value. If so, pass-through the AND to get to the intrinsic. 15505 if (LHS.getOpcode() == ISD::AND && 15506 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15507 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15508 Intrinsic::loop_decrement && 15509 isa<ConstantSDNode>(LHS.getOperand(1)) && 15510 !isNullConstant(LHS.getOperand(1))) 15511 LHS = LHS.getOperand(0); 15512 15513 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15514 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15515 Intrinsic::loop_decrement && 15516 isa<ConstantSDNode>(RHS)) { 15517 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15518 "Counter decrement comparison is not EQ or NE"); 15519 15520 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15521 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15522 (CC == ISD::SETNE && !Val); 15523 15524 // We now need to make the intrinsic dead (it cannot be instruction 15525 // selected). 15526 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15527 assert(LHS.getNode()->hasOneUse() && 15528 "Counter decrement has more than one use"); 15529 15530 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15531 N->getOperand(0), N->getOperand(4)); 15532 } 15533 15534 int CompareOpc; 15535 bool isDot; 15536 15537 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15538 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15539 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15540 assert(isDot && "Can't compare against a vector result!"); 15541 15542 // If this is a comparison against something other than 0/1, then we know 15543 // that the condition is never/always true. 15544 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15545 if (Val != 0 && Val != 1) { 15546 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15547 return N->getOperand(0); 15548 // Always !=, turn it into an unconditional branch. 15549 return DAG.getNode(ISD::BR, dl, MVT::Other, 15550 N->getOperand(0), N->getOperand(4)); 15551 } 15552 15553 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15554 15555 // Create the PPCISD altivec 'dot' comparison node. 15556 SDValue Ops[] = { 15557 LHS.getOperand(2), // LHS of compare 15558 LHS.getOperand(3), // RHS of compare 15559 DAG.getConstant(CompareOpc, dl, MVT::i32) 15560 }; 15561 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15562 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15563 15564 // Unpack the result based on how the target uses it. 15565 PPC::Predicate CompOpc; 15566 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15567 default: // Can't happen, don't crash on invalid number though. 15568 case 0: // Branch on the value of the EQ bit of CR6. 15569 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15570 break; 15571 case 1: // Branch on the inverted value of the EQ bit of CR6. 15572 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15573 break; 15574 case 2: // Branch on the value of the LT bit of CR6. 15575 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15576 break; 15577 case 3: // Branch on the inverted value of the LT bit of CR6. 15578 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15579 break; 15580 } 15581 15582 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15583 DAG.getConstant(CompOpc, dl, MVT::i32), 15584 DAG.getRegister(PPC::CR6, MVT::i32), 15585 N->getOperand(4), CompNode.getValue(1)); 15586 } 15587 break; 15588 } 15589 case ISD::BUILD_VECTOR: 15590 return DAGCombineBuildVector(N, DCI); 15591 case ISD::ABS: 15592 return combineABS(N, DCI); 15593 case ISD::VSELECT: 15594 return combineVSelect(N, DCI); 15595 } 15596 15597 return SDValue(); 15598 } 15599 15600 SDValue 15601 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15602 SelectionDAG &DAG, 15603 SmallVectorImpl<SDNode *> &Created) const { 15604 // fold (sdiv X, pow2) 15605 EVT VT = N->getValueType(0); 15606 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15607 return SDValue(); 15608 if ((VT != MVT::i32 && VT != MVT::i64) || 15609 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15610 return SDValue(); 15611 15612 SDLoc DL(N); 15613 SDValue N0 = N->getOperand(0); 15614 15615 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15616 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15617 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15618 15619 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15620 Created.push_back(Op.getNode()); 15621 15622 if (IsNegPow2) { 15623 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15624 Created.push_back(Op.getNode()); 15625 } 15626 15627 return Op; 15628 } 15629 15630 //===----------------------------------------------------------------------===// 15631 // Inline Assembly Support 15632 //===----------------------------------------------------------------------===// 15633 15634 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15635 KnownBits &Known, 15636 const APInt &DemandedElts, 15637 const SelectionDAG &DAG, 15638 unsigned Depth) const { 15639 Known.resetAll(); 15640 switch (Op.getOpcode()) { 15641 default: break; 15642 case PPCISD::LBRX: { 15643 // lhbrx is known to have the top bits cleared out. 15644 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15645 Known.Zero = 0xFFFF0000; 15646 break; 15647 } 15648 case ISD::INTRINSIC_WO_CHAIN: { 15649 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15650 default: break; 15651 case Intrinsic::ppc_altivec_vcmpbfp_p: 15652 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15653 case Intrinsic::ppc_altivec_vcmpequb_p: 15654 case Intrinsic::ppc_altivec_vcmpequh_p: 15655 case Intrinsic::ppc_altivec_vcmpequw_p: 15656 case Intrinsic::ppc_altivec_vcmpequd_p: 15657 case Intrinsic::ppc_altivec_vcmpequq_p: 15658 case Intrinsic::ppc_altivec_vcmpgefp_p: 15659 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15660 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15661 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15662 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15663 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15664 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15665 case Intrinsic::ppc_altivec_vcmpgtub_p: 15666 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15667 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15668 case Intrinsic::ppc_altivec_vcmpgtud_p: 15669 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15670 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15671 break; 15672 } 15673 break; 15674 } 15675 case ISD::INTRINSIC_W_CHAIN: { 15676 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15677 default: 15678 break; 15679 case Intrinsic::ppc_load2r: 15680 // Top bits are cleared for load2r (which is the same as lhbrx). 15681 Known.Zero = 0xFFFF0000; 15682 break; 15683 } 15684 break; 15685 } 15686 } 15687 } 15688 15689 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15690 switch (Subtarget.getCPUDirective()) { 15691 default: break; 15692 case PPC::DIR_970: 15693 case PPC::DIR_PWR4: 15694 case PPC::DIR_PWR5: 15695 case PPC::DIR_PWR5X: 15696 case PPC::DIR_PWR6: 15697 case PPC::DIR_PWR6X: 15698 case PPC::DIR_PWR7: 15699 case PPC::DIR_PWR8: 15700 case PPC::DIR_PWR9: 15701 case PPC::DIR_PWR10: 15702 case PPC::DIR_PWR_FUTURE: { 15703 if (!ML) 15704 break; 15705 15706 if (!DisableInnermostLoopAlign32) { 15707 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15708 // so that we can decrease cache misses and branch-prediction misses. 15709 // Actual alignment of the loop will depend on the hotness check and other 15710 // logic in alignBlocks. 15711 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15712 return Align(32); 15713 } 15714 15715 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15716 15717 // For small loops (between 5 and 8 instructions), align to a 32-byte 15718 // boundary so that the entire loop fits in one instruction-cache line. 15719 uint64_t LoopSize = 0; 15720 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15721 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15722 LoopSize += TII->getInstSizeInBytes(*J); 15723 if (LoopSize > 32) 15724 break; 15725 } 15726 15727 if (LoopSize > 16 && LoopSize <= 32) 15728 return Align(32); 15729 15730 break; 15731 } 15732 } 15733 15734 return TargetLowering::getPrefLoopAlignment(ML); 15735 } 15736 15737 /// getConstraintType - Given a constraint, return the type of 15738 /// constraint it is for this target. 15739 PPCTargetLowering::ConstraintType 15740 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15741 if (Constraint.size() == 1) { 15742 switch (Constraint[0]) { 15743 default: break; 15744 case 'b': 15745 case 'r': 15746 case 'f': 15747 case 'd': 15748 case 'v': 15749 case 'y': 15750 return C_RegisterClass; 15751 case 'Z': 15752 // FIXME: While Z does indicate a memory constraint, it specifically 15753 // indicates an r+r address (used in conjunction with the 'y' modifier 15754 // in the replacement string). Currently, we're forcing the base 15755 // register to be r0 in the asm printer (which is interpreted as zero) 15756 // and forming the complete address in the second register. This is 15757 // suboptimal. 15758 return C_Memory; 15759 } 15760 } else if (Constraint == "wc") { // individual CR bits. 15761 return C_RegisterClass; 15762 } else if (Constraint == "wa" || Constraint == "wd" || 15763 Constraint == "wf" || Constraint == "ws" || 15764 Constraint == "wi" || Constraint == "ww") { 15765 return C_RegisterClass; // VSX registers. 15766 } 15767 return TargetLowering::getConstraintType(Constraint); 15768 } 15769 15770 /// Examine constraint type and operand type and determine a weight value. 15771 /// This object must already have been set up with the operand type 15772 /// and the current alternative constraint selected. 15773 TargetLowering::ConstraintWeight 15774 PPCTargetLowering::getSingleConstraintMatchWeight( 15775 AsmOperandInfo &info, const char *constraint) const { 15776 ConstraintWeight weight = CW_Invalid; 15777 Value *CallOperandVal = info.CallOperandVal; 15778 // If we don't have a value, we can't do a match, 15779 // but allow it at the lowest weight. 15780 if (!CallOperandVal) 15781 return CW_Default; 15782 Type *type = CallOperandVal->getType(); 15783 15784 // Look at the constraint type. 15785 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15786 return CW_Register; // an individual CR bit. 15787 else if ((StringRef(constraint) == "wa" || 15788 StringRef(constraint) == "wd" || 15789 StringRef(constraint) == "wf") && 15790 type->isVectorTy()) 15791 return CW_Register; 15792 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15793 return CW_Register; // just hold 64-bit integers data. 15794 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15795 return CW_Register; 15796 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15797 return CW_Register; 15798 15799 switch (*constraint) { 15800 default: 15801 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15802 break; 15803 case 'b': 15804 if (type->isIntegerTy()) 15805 weight = CW_Register; 15806 break; 15807 case 'f': 15808 if (type->isFloatTy()) 15809 weight = CW_Register; 15810 break; 15811 case 'd': 15812 if (type->isDoubleTy()) 15813 weight = CW_Register; 15814 break; 15815 case 'v': 15816 if (type->isVectorTy()) 15817 weight = CW_Register; 15818 break; 15819 case 'y': 15820 weight = CW_Register; 15821 break; 15822 case 'Z': 15823 weight = CW_Memory; 15824 break; 15825 } 15826 return weight; 15827 } 15828 15829 std::pair<unsigned, const TargetRegisterClass *> 15830 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15831 StringRef Constraint, 15832 MVT VT) const { 15833 if (Constraint.size() == 1) { 15834 // GCC RS6000 Constraint Letters 15835 switch (Constraint[0]) { 15836 case 'b': // R1-R31 15837 if (VT == MVT::i64 && Subtarget.isPPC64()) 15838 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15839 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15840 case 'r': // R0-R31 15841 if (VT == MVT::i64 && Subtarget.isPPC64()) 15842 return std::make_pair(0U, &PPC::G8RCRegClass); 15843 return std::make_pair(0U, &PPC::GPRCRegClass); 15844 // 'd' and 'f' constraints are both defined to be "the floating point 15845 // registers", where one is for 32-bit and the other for 64-bit. We don't 15846 // really care overly much here so just give them all the same reg classes. 15847 case 'd': 15848 case 'f': 15849 if (Subtarget.hasSPE()) { 15850 if (VT == MVT::f32 || VT == MVT::i32) 15851 return std::make_pair(0U, &PPC::GPRCRegClass); 15852 if (VT == MVT::f64 || VT == MVT::i64) 15853 return std::make_pair(0U, &PPC::SPERCRegClass); 15854 } else { 15855 if (VT == MVT::f32 || VT == MVT::i32) 15856 return std::make_pair(0U, &PPC::F4RCRegClass); 15857 if (VT == MVT::f64 || VT == MVT::i64) 15858 return std::make_pair(0U, &PPC::F8RCRegClass); 15859 } 15860 break; 15861 case 'v': 15862 if (Subtarget.hasAltivec()) 15863 return std::make_pair(0U, &PPC::VRRCRegClass); 15864 break; 15865 case 'y': // crrc 15866 return std::make_pair(0U, &PPC::CRRCRegClass); 15867 } 15868 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15869 // An individual CR bit. 15870 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15871 } else if ((Constraint == "wa" || Constraint == "wd" || 15872 Constraint == "wf" || Constraint == "wi") && 15873 Subtarget.hasVSX()) { 15874 // A VSX register for either a scalar (FP) or vector. There is no 15875 // support for single precision scalars on subtargets prior to Power8. 15876 if (VT.isVector()) 15877 return std::make_pair(0U, &PPC::VSRCRegClass); 15878 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15879 return std::make_pair(0U, &PPC::VSSRCRegClass); 15880 return std::make_pair(0U, &PPC::VSFRCRegClass); 15881 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15882 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15883 return std::make_pair(0U, &PPC::VSSRCRegClass); 15884 else 15885 return std::make_pair(0U, &PPC::VSFRCRegClass); 15886 } else if (Constraint == "lr") { 15887 if (VT == MVT::i64) 15888 return std::make_pair(0U, &PPC::LR8RCRegClass); 15889 else 15890 return std::make_pair(0U, &PPC::LRRCRegClass); 15891 } 15892 15893 // Handle special cases of physical registers that are not properly handled 15894 // by the base class. 15895 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15896 // If we name a VSX register, we can't defer to the base class because it 15897 // will not recognize the correct register (their names will be VSL{0-31} 15898 // and V{0-31} so they won't match). So we match them here. 15899 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15900 int VSNum = atoi(Constraint.data() + 3); 15901 assert(VSNum >= 0 && VSNum <= 63 && 15902 "Attempted to access a vsr out of range"); 15903 if (VSNum < 32) 15904 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15905 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15906 } 15907 15908 // For float registers, we can't defer to the base class as it will match 15909 // the SPILLTOVSRRC class. 15910 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15911 int RegNum = atoi(Constraint.data() + 2); 15912 if (RegNum > 31 || RegNum < 0) 15913 report_fatal_error("Invalid floating point register number"); 15914 if (VT == MVT::f32 || VT == MVT::i32) 15915 return Subtarget.hasSPE() 15916 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15917 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15918 if (VT == MVT::f64 || VT == MVT::i64) 15919 return Subtarget.hasSPE() 15920 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15921 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15922 } 15923 } 15924 15925 std::pair<unsigned, const TargetRegisterClass *> R = 15926 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15927 15928 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15929 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15930 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15931 // register. 15932 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15933 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15934 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15935 PPC::GPRCRegClass.contains(R.first)) 15936 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15937 PPC::sub_32, &PPC::G8RCRegClass), 15938 &PPC::G8RCRegClass); 15939 15940 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15941 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 15942 R.first = PPC::CR0; 15943 R.second = &PPC::CRRCRegClass; 15944 } 15945 // FIXME: This warning should ideally be emitted in the front end. 15946 const auto &TM = getTargetMachine(); 15947 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15948 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15949 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15950 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15951 errs() << "warning: vector registers 20 to 32 are reserved in the " 15952 "default AIX AltiVec ABI and cannot be used\n"; 15953 } 15954 15955 return R; 15956 } 15957 15958 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15959 /// vector. If it is invalid, don't add anything to Ops. 15960 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15961 std::string &Constraint, 15962 std::vector<SDValue>&Ops, 15963 SelectionDAG &DAG) const { 15964 SDValue Result; 15965 15966 // Only support length 1 constraints. 15967 if (Constraint.length() > 1) return; 15968 15969 char Letter = Constraint[0]; 15970 switch (Letter) { 15971 default: break; 15972 case 'I': 15973 case 'J': 15974 case 'K': 15975 case 'L': 15976 case 'M': 15977 case 'N': 15978 case 'O': 15979 case 'P': { 15980 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15981 if (!CST) return; // Must be an immediate to match. 15982 SDLoc dl(Op); 15983 int64_t Value = CST->getSExtValue(); 15984 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15985 // numbers are printed as such. 15986 switch (Letter) { 15987 default: llvm_unreachable("Unknown constraint letter!"); 15988 case 'I': // "I" is a signed 16-bit constant. 15989 if (isInt<16>(Value)) 15990 Result = DAG.getTargetConstant(Value, dl, TCVT); 15991 break; 15992 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15993 if (isShiftedUInt<16, 16>(Value)) 15994 Result = DAG.getTargetConstant(Value, dl, TCVT); 15995 break; 15996 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15997 if (isShiftedInt<16, 16>(Value)) 15998 Result = DAG.getTargetConstant(Value, dl, TCVT); 15999 break; 16000 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16001 if (isUInt<16>(Value)) 16002 Result = DAG.getTargetConstant(Value, dl, TCVT); 16003 break; 16004 case 'M': // "M" is a constant that is greater than 31. 16005 if (Value > 31) 16006 Result = DAG.getTargetConstant(Value, dl, TCVT); 16007 break; 16008 case 'N': // "N" is a positive constant that is an exact power of two. 16009 if (Value > 0 && isPowerOf2_64(Value)) 16010 Result = DAG.getTargetConstant(Value, dl, TCVT); 16011 break; 16012 case 'O': // "O" is the constant zero. 16013 if (Value == 0) 16014 Result = DAG.getTargetConstant(Value, dl, TCVT); 16015 break; 16016 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16017 if (isInt<16>(-Value)) 16018 Result = DAG.getTargetConstant(Value, dl, TCVT); 16019 break; 16020 } 16021 break; 16022 } 16023 } 16024 16025 if (Result.getNode()) { 16026 Ops.push_back(Result); 16027 return; 16028 } 16029 16030 // Handle standard constraint letters. 16031 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16032 } 16033 16034 // isLegalAddressingMode - Return true if the addressing mode represented 16035 // by AM is legal for this target, for a load/store of the specified type. 16036 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16037 const AddrMode &AM, Type *Ty, 16038 unsigned AS, 16039 Instruction *I) const { 16040 // Vector type r+i form is supported since power9 as DQ form. We don't check 16041 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16042 // imm form is preferred and the offset can be adjusted to use imm form later 16043 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16044 // max offset to check legal addressing mode, we should be a little aggressive 16045 // to contain other offsets for that LSRUse. 16046 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16047 return false; 16048 16049 // PPC allows a sign-extended 16-bit immediate field. 16050 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16051 return false; 16052 16053 // No global is ever allowed as a base. 16054 if (AM.BaseGV) 16055 return false; 16056 16057 // PPC only support r+r, 16058 switch (AM.Scale) { 16059 case 0: // "r+i" or just "i", depending on HasBaseReg. 16060 break; 16061 case 1: 16062 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16063 return false; 16064 // Otherwise we have r+r or r+i. 16065 break; 16066 case 2: 16067 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16068 return false; 16069 // Allow 2*r as r+r. 16070 break; 16071 default: 16072 // No other scales are supported. 16073 return false; 16074 } 16075 16076 return true; 16077 } 16078 16079 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16080 SelectionDAG &DAG) const { 16081 MachineFunction &MF = DAG.getMachineFunction(); 16082 MachineFrameInfo &MFI = MF.getFrameInfo(); 16083 MFI.setReturnAddressIsTaken(true); 16084 16085 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16086 return SDValue(); 16087 16088 SDLoc dl(Op); 16089 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16090 16091 // Make sure the function does not optimize away the store of the RA to 16092 // the stack. 16093 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16094 FuncInfo->setLRStoreRequired(); 16095 bool isPPC64 = Subtarget.isPPC64(); 16096 auto PtrVT = getPointerTy(MF.getDataLayout()); 16097 16098 if (Depth > 0) { 16099 // The link register (return address) is saved in the caller's frame 16100 // not the callee's stack frame. So we must get the caller's frame 16101 // address and load the return address at the LR offset from there. 16102 SDValue FrameAddr = 16103 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16104 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16105 SDValue Offset = 16106 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16107 isPPC64 ? MVT::i64 : MVT::i32); 16108 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16109 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16110 MachinePointerInfo()); 16111 } 16112 16113 // Just load the return address off the stack. 16114 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16115 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16116 MachinePointerInfo()); 16117 } 16118 16119 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16120 SelectionDAG &DAG) const { 16121 SDLoc dl(Op); 16122 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16123 16124 MachineFunction &MF = DAG.getMachineFunction(); 16125 MachineFrameInfo &MFI = MF.getFrameInfo(); 16126 MFI.setFrameAddressIsTaken(true); 16127 16128 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16129 bool isPPC64 = PtrVT == MVT::i64; 16130 16131 // Naked functions never have a frame pointer, and so we use r1. For all 16132 // other functions, this decision must be delayed until during PEI. 16133 unsigned FrameReg; 16134 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16135 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16136 else 16137 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16138 16139 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16140 PtrVT); 16141 while (Depth--) 16142 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16143 FrameAddr, MachinePointerInfo()); 16144 return FrameAddr; 16145 } 16146 16147 // FIXME? Maybe this could be a TableGen attribute on some registers and 16148 // this table could be generated automatically from RegInfo. 16149 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16150 const MachineFunction &MF) const { 16151 bool isPPC64 = Subtarget.isPPC64(); 16152 16153 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16154 if (!is64Bit && VT != LLT::scalar(32)) 16155 report_fatal_error("Invalid register global variable type"); 16156 16157 Register Reg = StringSwitch<Register>(RegName) 16158 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16159 .Case("r2", isPPC64 ? Register() : PPC::R2) 16160 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16161 .Default(Register()); 16162 16163 if (Reg) 16164 return Reg; 16165 report_fatal_error("Invalid register name global variable"); 16166 } 16167 16168 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16169 // 32-bit SVR4 ABI access everything as got-indirect. 16170 if (Subtarget.is32BitELFABI()) 16171 return true; 16172 16173 // AIX accesses everything indirectly through the TOC, which is similar to 16174 // the GOT. 16175 if (Subtarget.isAIXABI()) 16176 return true; 16177 16178 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16179 // If it is small or large code model, module locals are accessed 16180 // indirectly by loading their address from .toc/.got. 16181 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16182 return true; 16183 16184 // JumpTable and BlockAddress are accessed as got-indirect. 16185 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16186 return true; 16187 16188 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16189 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16190 16191 return false; 16192 } 16193 16194 bool 16195 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16196 // The PowerPC target isn't yet aware of offsets. 16197 return false; 16198 } 16199 16200 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16201 const CallInst &I, 16202 MachineFunction &MF, 16203 unsigned Intrinsic) const { 16204 switch (Intrinsic) { 16205 case Intrinsic::ppc_atomicrmw_xchg_i128: 16206 case Intrinsic::ppc_atomicrmw_add_i128: 16207 case Intrinsic::ppc_atomicrmw_sub_i128: 16208 case Intrinsic::ppc_atomicrmw_nand_i128: 16209 case Intrinsic::ppc_atomicrmw_and_i128: 16210 case Intrinsic::ppc_atomicrmw_or_i128: 16211 case Intrinsic::ppc_atomicrmw_xor_i128: 16212 case Intrinsic::ppc_cmpxchg_i128: 16213 Info.opc = ISD::INTRINSIC_W_CHAIN; 16214 Info.memVT = MVT::i128; 16215 Info.ptrVal = I.getArgOperand(0); 16216 Info.offset = 0; 16217 Info.align = Align(16); 16218 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16219 MachineMemOperand::MOVolatile; 16220 return true; 16221 case Intrinsic::ppc_atomic_load_i128: 16222 Info.opc = ISD::INTRINSIC_W_CHAIN; 16223 Info.memVT = MVT::i128; 16224 Info.ptrVal = I.getArgOperand(0); 16225 Info.offset = 0; 16226 Info.align = Align(16); 16227 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16228 return true; 16229 case Intrinsic::ppc_atomic_store_i128: 16230 Info.opc = ISD::INTRINSIC_VOID; 16231 Info.memVT = MVT::i128; 16232 Info.ptrVal = I.getArgOperand(2); 16233 Info.offset = 0; 16234 Info.align = Align(16); 16235 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16236 return true; 16237 case Intrinsic::ppc_altivec_lvx: 16238 case Intrinsic::ppc_altivec_lvxl: 16239 case Intrinsic::ppc_altivec_lvebx: 16240 case Intrinsic::ppc_altivec_lvehx: 16241 case Intrinsic::ppc_altivec_lvewx: 16242 case Intrinsic::ppc_vsx_lxvd2x: 16243 case Intrinsic::ppc_vsx_lxvw4x: 16244 case Intrinsic::ppc_vsx_lxvd2x_be: 16245 case Intrinsic::ppc_vsx_lxvw4x_be: 16246 case Intrinsic::ppc_vsx_lxvl: 16247 case Intrinsic::ppc_vsx_lxvll: { 16248 EVT VT; 16249 switch (Intrinsic) { 16250 case Intrinsic::ppc_altivec_lvebx: 16251 VT = MVT::i8; 16252 break; 16253 case Intrinsic::ppc_altivec_lvehx: 16254 VT = MVT::i16; 16255 break; 16256 case Intrinsic::ppc_altivec_lvewx: 16257 VT = MVT::i32; 16258 break; 16259 case Intrinsic::ppc_vsx_lxvd2x: 16260 case Intrinsic::ppc_vsx_lxvd2x_be: 16261 VT = MVT::v2f64; 16262 break; 16263 default: 16264 VT = MVT::v4i32; 16265 break; 16266 } 16267 16268 Info.opc = ISD::INTRINSIC_W_CHAIN; 16269 Info.memVT = VT; 16270 Info.ptrVal = I.getArgOperand(0); 16271 Info.offset = -VT.getStoreSize()+1; 16272 Info.size = 2*VT.getStoreSize()-1; 16273 Info.align = Align(1); 16274 Info.flags = MachineMemOperand::MOLoad; 16275 return true; 16276 } 16277 case Intrinsic::ppc_altivec_stvx: 16278 case Intrinsic::ppc_altivec_stvxl: 16279 case Intrinsic::ppc_altivec_stvebx: 16280 case Intrinsic::ppc_altivec_stvehx: 16281 case Intrinsic::ppc_altivec_stvewx: 16282 case Intrinsic::ppc_vsx_stxvd2x: 16283 case Intrinsic::ppc_vsx_stxvw4x: 16284 case Intrinsic::ppc_vsx_stxvd2x_be: 16285 case Intrinsic::ppc_vsx_stxvw4x_be: 16286 case Intrinsic::ppc_vsx_stxvl: 16287 case Intrinsic::ppc_vsx_stxvll: { 16288 EVT VT; 16289 switch (Intrinsic) { 16290 case Intrinsic::ppc_altivec_stvebx: 16291 VT = MVT::i8; 16292 break; 16293 case Intrinsic::ppc_altivec_stvehx: 16294 VT = MVT::i16; 16295 break; 16296 case Intrinsic::ppc_altivec_stvewx: 16297 VT = MVT::i32; 16298 break; 16299 case Intrinsic::ppc_vsx_stxvd2x: 16300 case Intrinsic::ppc_vsx_stxvd2x_be: 16301 VT = MVT::v2f64; 16302 break; 16303 default: 16304 VT = MVT::v4i32; 16305 break; 16306 } 16307 16308 Info.opc = ISD::INTRINSIC_VOID; 16309 Info.memVT = VT; 16310 Info.ptrVal = I.getArgOperand(1); 16311 Info.offset = -VT.getStoreSize()+1; 16312 Info.size = 2*VT.getStoreSize()-1; 16313 Info.align = Align(1); 16314 Info.flags = MachineMemOperand::MOStore; 16315 return true; 16316 } 16317 default: 16318 break; 16319 } 16320 16321 return false; 16322 } 16323 16324 /// It returns EVT::Other if the type should be determined using generic 16325 /// target-independent logic. 16326 EVT PPCTargetLowering::getOptimalMemOpType( 16327 const MemOp &Op, const AttributeList &FuncAttributes) const { 16328 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16329 // We should use Altivec/VSX loads and stores when available. For unaligned 16330 // addresses, unaligned VSX loads are only fast starting with the P8. 16331 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16332 (Op.isAligned(Align(16)) || 16333 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16334 return MVT::v4i32; 16335 } 16336 16337 if (Subtarget.isPPC64()) { 16338 return MVT::i64; 16339 } 16340 16341 return MVT::i32; 16342 } 16343 16344 /// Returns true if it is beneficial to convert a load of a constant 16345 /// to just the constant itself. 16346 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16347 Type *Ty) const { 16348 assert(Ty->isIntegerTy()); 16349 16350 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16351 return !(BitSize == 0 || BitSize > 64); 16352 } 16353 16354 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16355 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16356 return false; 16357 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16358 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16359 return NumBits1 == 64 && NumBits2 == 32; 16360 } 16361 16362 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16363 if (!VT1.isInteger() || !VT2.isInteger()) 16364 return false; 16365 unsigned NumBits1 = VT1.getSizeInBits(); 16366 unsigned NumBits2 = VT2.getSizeInBits(); 16367 return NumBits1 == 64 && NumBits2 == 32; 16368 } 16369 16370 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16371 // Generally speaking, zexts are not free, but they are free when they can be 16372 // folded with other operations. 16373 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16374 EVT MemVT = LD->getMemoryVT(); 16375 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16376 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16377 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16378 LD->getExtensionType() == ISD::ZEXTLOAD)) 16379 return true; 16380 } 16381 16382 // FIXME: Add other cases... 16383 // - 32-bit shifts with a zext to i64 16384 // - zext after ctlz, bswap, etc. 16385 // - zext after and by a constant mask 16386 16387 return TargetLowering::isZExtFree(Val, VT2); 16388 } 16389 16390 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16391 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16392 "invalid fpext types"); 16393 // Extending to float128 is not free. 16394 if (DestVT == MVT::f128) 16395 return false; 16396 return true; 16397 } 16398 16399 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16400 return isInt<16>(Imm) || isUInt<16>(Imm); 16401 } 16402 16403 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16404 return isInt<16>(Imm) || isUInt<16>(Imm); 16405 } 16406 16407 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16408 MachineMemOperand::Flags, 16409 bool *Fast) const { 16410 if (DisablePPCUnaligned) 16411 return false; 16412 16413 // PowerPC supports unaligned memory access for simple non-vector types. 16414 // Although accessing unaligned addresses is not as efficient as accessing 16415 // aligned addresses, it is generally more efficient than manual expansion, 16416 // and generally only traps for software emulation when crossing page 16417 // boundaries. 16418 16419 if (!VT.isSimple()) 16420 return false; 16421 16422 if (VT.isFloatingPoint() && !VT.isVector() && 16423 !Subtarget.allowsUnalignedFPAccess()) 16424 return false; 16425 16426 if (VT.getSimpleVT().isVector()) { 16427 if (Subtarget.hasVSX()) { 16428 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16429 VT != MVT::v4f32 && VT != MVT::v4i32) 16430 return false; 16431 } else { 16432 return false; 16433 } 16434 } 16435 16436 if (VT == MVT::ppcf128) 16437 return false; 16438 16439 if (Fast) 16440 *Fast = true; 16441 16442 return true; 16443 } 16444 16445 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16446 SDValue C) const { 16447 // Check integral scalar types. 16448 if (!VT.isScalarInteger()) 16449 return false; 16450 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16451 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16452 return false; 16453 // This transformation will generate >= 2 operations. But the following 16454 // cases will generate <= 2 instructions during ISEL. So exclude them. 16455 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16456 // HW instruction, ie. MULLI 16457 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16458 // instruction is needed than case 1, ie. MULLI and RLDICR 16459 int64_t Imm = ConstNode->getSExtValue(); 16460 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16461 Imm >>= Shift; 16462 if (isInt<16>(Imm)) 16463 return false; 16464 uint64_t UImm = static_cast<uint64_t>(Imm); 16465 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16466 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16467 return true; 16468 } 16469 return false; 16470 } 16471 16472 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16473 EVT VT) const { 16474 return isFMAFasterThanFMulAndFAdd( 16475 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16476 } 16477 16478 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16479 Type *Ty) const { 16480 switch (Ty->getScalarType()->getTypeID()) { 16481 case Type::FloatTyID: 16482 case Type::DoubleTyID: 16483 return true; 16484 case Type::FP128TyID: 16485 return Subtarget.hasP9Vector(); 16486 default: 16487 return false; 16488 } 16489 } 16490 16491 // FIXME: add more patterns which are not profitable to hoist. 16492 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16493 if (!I->hasOneUse()) 16494 return true; 16495 16496 Instruction *User = I->user_back(); 16497 assert(User && "A single use instruction with no uses."); 16498 16499 switch (I->getOpcode()) { 16500 case Instruction::FMul: { 16501 // Don't break FMA, PowerPC prefers FMA. 16502 if (User->getOpcode() != Instruction::FSub && 16503 User->getOpcode() != Instruction::FAdd) 16504 return true; 16505 16506 const TargetOptions &Options = getTargetMachine().Options; 16507 const Function *F = I->getFunction(); 16508 const DataLayout &DL = F->getParent()->getDataLayout(); 16509 Type *Ty = User->getOperand(0)->getType(); 16510 16511 return !( 16512 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16513 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16514 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16515 } 16516 case Instruction::Load: { 16517 // Don't break "store (load float*)" pattern, this pattern will be combined 16518 // to "store (load int32)" in later InstCombine pass. See function 16519 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16520 // cycles than loading a 32 bit integer. 16521 LoadInst *LI = cast<LoadInst>(I); 16522 // For the loads that combineLoadToOperationType does nothing, like 16523 // ordered load, it should be profitable to hoist them. 16524 // For swifterror load, it can only be used for pointer to pointer type, so 16525 // later type check should get rid of this case. 16526 if (!LI->isUnordered()) 16527 return true; 16528 16529 if (User->getOpcode() != Instruction::Store) 16530 return true; 16531 16532 if (I->getType()->getTypeID() != Type::FloatTyID) 16533 return true; 16534 16535 return false; 16536 } 16537 default: 16538 return true; 16539 } 16540 return true; 16541 } 16542 16543 const MCPhysReg * 16544 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16545 // LR is a callee-save register, but we must treat it as clobbered by any call 16546 // site. Hence we include LR in the scratch registers, which are in turn added 16547 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16548 // to CTR, which is used by any indirect call. 16549 static const MCPhysReg ScratchRegs[] = { 16550 PPC::X12, PPC::LR8, PPC::CTR8, 0 16551 }; 16552 16553 return ScratchRegs; 16554 } 16555 16556 Register PPCTargetLowering::getExceptionPointerRegister( 16557 const Constant *PersonalityFn) const { 16558 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16559 } 16560 16561 Register PPCTargetLowering::getExceptionSelectorRegister( 16562 const Constant *PersonalityFn) const { 16563 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16564 } 16565 16566 bool 16567 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16568 EVT VT , unsigned DefinedValues) const { 16569 if (VT == MVT::v2i64) 16570 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16571 16572 if (Subtarget.hasVSX()) 16573 return true; 16574 16575 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16576 } 16577 16578 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16579 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16580 return TargetLowering::getSchedulingPreference(N); 16581 16582 return Sched::ILP; 16583 } 16584 16585 // Create a fast isel object. 16586 FastISel * 16587 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16588 const TargetLibraryInfo *LibInfo) const { 16589 return PPC::createFastISel(FuncInfo, LibInfo); 16590 } 16591 16592 // 'Inverted' means the FMA opcode after negating one multiplicand. 16593 // For example, (fma -a b c) = (fnmsub a b c) 16594 static unsigned invertFMAOpcode(unsigned Opc) { 16595 switch (Opc) { 16596 default: 16597 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16598 case ISD::FMA: 16599 return PPCISD::FNMSUB; 16600 case PPCISD::FNMSUB: 16601 return ISD::FMA; 16602 } 16603 } 16604 16605 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16606 bool LegalOps, bool OptForSize, 16607 NegatibleCost &Cost, 16608 unsigned Depth) const { 16609 if (Depth > SelectionDAG::MaxRecursionDepth) 16610 return SDValue(); 16611 16612 unsigned Opc = Op.getOpcode(); 16613 EVT VT = Op.getValueType(); 16614 SDNodeFlags Flags = Op.getNode()->getFlags(); 16615 16616 switch (Opc) { 16617 case PPCISD::FNMSUB: 16618 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16619 break; 16620 16621 const TargetOptions &Options = getTargetMachine().Options; 16622 SDValue N0 = Op.getOperand(0); 16623 SDValue N1 = Op.getOperand(1); 16624 SDValue N2 = Op.getOperand(2); 16625 SDLoc Loc(Op); 16626 16627 NegatibleCost N2Cost = NegatibleCost::Expensive; 16628 SDValue NegN2 = 16629 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16630 16631 if (!NegN2) 16632 return SDValue(); 16633 16634 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16635 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16636 // These transformations may change sign of zeroes. For example, 16637 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16638 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16639 // Try and choose the cheaper one to negate. 16640 NegatibleCost N0Cost = NegatibleCost::Expensive; 16641 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16642 N0Cost, Depth + 1); 16643 16644 NegatibleCost N1Cost = NegatibleCost::Expensive; 16645 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16646 N1Cost, Depth + 1); 16647 16648 if (NegN0 && N0Cost <= N1Cost) { 16649 Cost = std::min(N0Cost, N2Cost); 16650 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16651 } else if (NegN1) { 16652 Cost = std::min(N1Cost, N2Cost); 16653 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16654 } 16655 } 16656 16657 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16658 if (isOperationLegal(ISD::FMA, VT)) { 16659 Cost = N2Cost; 16660 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16661 } 16662 16663 break; 16664 } 16665 16666 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16667 Cost, Depth); 16668 } 16669 16670 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16671 bool PPCTargetLowering::useLoadStackGuardNode() const { 16672 if (!Subtarget.isTargetLinux()) 16673 return TargetLowering::useLoadStackGuardNode(); 16674 return true; 16675 } 16676 16677 // Override to disable global variable loading on Linux and insert AIX canary 16678 // word declaration. 16679 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16680 if (Subtarget.isAIXABI()) { 16681 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16682 Type::getInt8PtrTy(M.getContext())); 16683 return; 16684 } 16685 if (!Subtarget.isTargetLinux()) 16686 return TargetLowering::insertSSPDeclarations(M); 16687 } 16688 16689 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16690 if (Subtarget.isAIXABI()) 16691 return M.getGlobalVariable(AIXSSPCanaryWordName); 16692 return TargetLowering::getSDagStackGuard(M); 16693 } 16694 16695 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16696 bool ForCodeSize) const { 16697 if (!VT.isSimple() || !Subtarget.hasVSX()) 16698 return false; 16699 16700 switch(VT.getSimpleVT().SimpleTy) { 16701 default: 16702 // For FP types that are currently not supported by PPC backend, return 16703 // false. Examples: f16, f80. 16704 return false; 16705 case MVT::f32: 16706 case MVT::f64: 16707 if (Subtarget.hasPrefixInstrs()) { 16708 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16709 return true; 16710 } 16711 LLVM_FALLTHROUGH; 16712 case MVT::ppcf128: 16713 return Imm.isPosZero(); 16714 } 16715 } 16716 16717 // For vector shift operation op, fold 16718 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16719 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16720 SelectionDAG &DAG) { 16721 SDValue N0 = N->getOperand(0); 16722 SDValue N1 = N->getOperand(1); 16723 EVT VT = N0.getValueType(); 16724 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16725 unsigned Opcode = N->getOpcode(); 16726 unsigned TargetOpcode; 16727 16728 switch (Opcode) { 16729 default: 16730 llvm_unreachable("Unexpected shift operation"); 16731 case ISD::SHL: 16732 TargetOpcode = PPCISD::SHL; 16733 break; 16734 case ISD::SRL: 16735 TargetOpcode = PPCISD::SRL; 16736 break; 16737 case ISD::SRA: 16738 TargetOpcode = PPCISD::SRA; 16739 break; 16740 } 16741 16742 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16743 N1->getOpcode() == ISD::AND) 16744 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16745 if (Mask->getZExtValue() == OpSizeInBits - 1) 16746 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16747 16748 return SDValue(); 16749 } 16750 16751 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16752 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16753 return Value; 16754 16755 SDValue N0 = N->getOperand(0); 16756 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16757 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16758 N0.getOpcode() != ISD::SIGN_EXTEND || 16759 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16760 N->getValueType(0) != MVT::i64) 16761 return SDValue(); 16762 16763 // We can't save an operation here if the value is already extended, and 16764 // the existing shift is easier to combine. 16765 SDValue ExtsSrc = N0.getOperand(0); 16766 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16767 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16768 return SDValue(); 16769 16770 SDLoc DL(N0); 16771 SDValue ShiftBy = SDValue(CN1, 0); 16772 // We want the shift amount to be i32 on the extswli, but the shift could 16773 // have an i64. 16774 if (ShiftBy.getValueType() == MVT::i64) 16775 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16776 16777 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16778 ShiftBy); 16779 } 16780 16781 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16782 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16783 return Value; 16784 16785 return SDValue(); 16786 } 16787 16788 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16789 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16790 return Value; 16791 16792 return SDValue(); 16793 } 16794 16795 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16796 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16797 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16798 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16799 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16800 const PPCSubtarget &Subtarget) { 16801 if (!Subtarget.isPPC64()) 16802 return SDValue(); 16803 16804 SDValue LHS = N->getOperand(0); 16805 SDValue RHS = N->getOperand(1); 16806 16807 auto isZextOfCompareWithConstant = [](SDValue Op) { 16808 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16809 Op.getValueType() != MVT::i64) 16810 return false; 16811 16812 SDValue Cmp = Op.getOperand(0); 16813 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16814 Cmp.getOperand(0).getValueType() != MVT::i64) 16815 return false; 16816 16817 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16818 int64_t NegConstant = 0 - Constant->getSExtValue(); 16819 // Due to the limitations of the addi instruction, 16820 // -C is required to be [-32768, 32767]. 16821 return isInt<16>(NegConstant); 16822 } 16823 16824 return false; 16825 }; 16826 16827 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16828 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16829 16830 // If there is a pattern, canonicalize a zext operand to the RHS. 16831 if (LHSHasPattern && !RHSHasPattern) 16832 std::swap(LHS, RHS); 16833 else if (!LHSHasPattern && !RHSHasPattern) 16834 return SDValue(); 16835 16836 SDLoc DL(N); 16837 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16838 SDValue Cmp = RHS.getOperand(0); 16839 SDValue Z = Cmp.getOperand(0); 16840 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16841 int64_t NegConstant = 0 - Constant->getSExtValue(); 16842 16843 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16844 default: break; 16845 case ISD::SETNE: { 16846 // when C == 0 16847 // --> addze X, (addic Z, -1).carry 16848 // / 16849 // add X, (zext(setne Z, C))-- 16850 // \ when -32768 <= -C <= 32767 && C != 0 16851 // --> addze X, (addic (addi Z, -C), -1).carry 16852 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16853 DAG.getConstant(NegConstant, DL, MVT::i64)); 16854 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16855 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16856 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16857 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16858 SDValue(Addc.getNode(), 1)); 16859 } 16860 case ISD::SETEQ: { 16861 // when C == 0 16862 // --> addze X, (subfic Z, 0).carry 16863 // / 16864 // add X, (zext(sete Z, C))-- 16865 // \ when -32768 <= -C <= 32767 && C != 0 16866 // --> addze X, (subfic (addi Z, -C), 0).carry 16867 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16868 DAG.getConstant(NegConstant, DL, MVT::i64)); 16869 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16870 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16871 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16872 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16873 SDValue(Subc.getNode(), 1)); 16874 } 16875 } 16876 16877 return SDValue(); 16878 } 16879 16880 // Transform 16881 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16882 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16883 // In this case both C1 and C2 must be known constants. 16884 // C1+C2 must fit into a 34 bit signed integer. 16885 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16886 const PPCSubtarget &Subtarget) { 16887 if (!Subtarget.isUsingPCRelativeCalls()) 16888 return SDValue(); 16889 16890 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16891 // If we find that node try to cast the Global Address and the Constant. 16892 SDValue LHS = N->getOperand(0); 16893 SDValue RHS = N->getOperand(1); 16894 16895 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16896 std::swap(LHS, RHS); 16897 16898 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16899 return SDValue(); 16900 16901 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16902 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16903 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16904 16905 // Check that both casts succeeded. 16906 if (!GSDN || !ConstNode) 16907 return SDValue(); 16908 16909 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16910 SDLoc DL(GSDN); 16911 16912 // The signed int offset needs to fit in 34 bits. 16913 if (!isInt<34>(NewOffset)) 16914 return SDValue(); 16915 16916 // The new global address is a copy of the old global address except 16917 // that it has the updated Offset. 16918 SDValue GA = 16919 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16920 NewOffset, GSDN->getTargetFlags()); 16921 SDValue MatPCRel = 16922 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16923 return MatPCRel; 16924 } 16925 16926 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16927 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16928 return Value; 16929 16930 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16931 return Value; 16932 16933 return SDValue(); 16934 } 16935 16936 // Detect TRUNCATE operations on bitcasts of float128 values. 16937 // What we are looking for here is the situtation where we extract a subset 16938 // of bits from a 128 bit float. 16939 // This can be of two forms: 16940 // 1) BITCAST of f128 feeding TRUNCATE 16941 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16942 // The reason this is required is because we do not have a legal i128 type 16943 // and so we want to prevent having to store the f128 and then reload part 16944 // of it. 16945 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16946 DAGCombinerInfo &DCI) const { 16947 // If we are using CRBits then try that first. 16948 if (Subtarget.useCRBits()) { 16949 // Check if CRBits did anything and return that if it did. 16950 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16951 return CRTruncValue; 16952 } 16953 16954 SDLoc dl(N); 16955 SDValue Op0 = N->getOperand(0); 16956 16957 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16958 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16959 EVT VT = N->getValueType(0); 16960 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16961 return SDValue(); 16962 SDValue Sub = Op0.getOperand(0); 16963 if (Sub.getOpcode() == ISD::SUB) { 16964 SDValue SubOp0 = Sub.getOperand(0); 16965 SDValue SubOp1 = Sub.getOperand(1); 16966 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16967 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16968 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16969 SubOp1.getOperand(0), 16970 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16971 } 16972 } 16973 } 16974 16975 // Looking for a truncate of i128 to i64. 16976 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16977 return SDValue(); 16978 16979 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16980 16981 // SRL feeding TRUNCATE. 16982 if (Op0.getOpcode() == ISD::SRL) { 16983 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16984 // The right shift has to be by 64 bits. 16985 if (!ConstNode || ConstNode->getZExtValue() != 64) 16986 return SDValue(); 16987 16988 // Switch the element number to extract. 16989 EltToExtract = EltToExtract ? 0 : 1; 16990 // Update Op0 past the SRL. 16991 Op0 = Op0.getOperand(0); 16992 } 16993 16994 // BITCAST feeding a TRUNCATE possibly via SRL. 16995 if (Op0.getOpcode() == ISD::BITCAST && 16996 Op0.getValueType() == MVT::i128 && 16997 Op0.getOperand(0).getValueType() == MVT::f128) { 16998 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16999 return DCI.DAG.getNode( 17000 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17001 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17002 } 17003 return SDValue(); 17004 } 17005 17006 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17007 SelectionDAG &DAG = DCI.DAG; 17008 17009 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17010 if (!ConstOpOrElement) 17011 return SDValue(); 17012 17013 // An imul is usually smaller than the alternative sequence for legal type. 17014 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17015 isOperationLegal(ISD::MUL, N->getValueType(0))) 17016 return SDValue(); 17017 17018 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17019 switch (this->Subtarget.getCPUDirective()) { 17020 default: 17021 // TODO: enhance the condition for subtarget before pwr8 17022 return false; 17023 case PPC::DIR_PWR8: 17024 // type mul add shl 17025 // scalar 4 1 1 17026 // vector 7 2 2 17027 return true; 17028 case PPC::DIR_PWR9: 17029 case PPC::DIR_PWR10: 17030 case PPC::DIR_PWR_FUTURE: 17031 // type mul add shl 17032 // scalar 5 2 2 17033 // vector 7 2 2 17034 17035 // The cycle RATIO of related operations are showed as a table above. 17036 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17037 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17038 // are 4, it is always profitable; but for 3 instrs patterns 17039 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17040 // So we should only do it for vector type. 17041 return IsAddOne && IsNeg ? VT.isVector() : true; 17042 } 17043 }; 17044 17045 EVT VT = N->getValueType(0); 17046 SDLoc DL(N); 17047 17048 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17049 bool IsNeg = MulAmt.isNegative(); 17050 APInt MulAmtAbs = MulAmt.abs(); 17051 17052 if ((MulAmtAbs - 1).isPowerOf2()) { 17053 // (mul x, 2^N + 1) => (add (shl x, N), x) 17054 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17055 17056 if (!IsProfitable(IsNeg, true, VT)) 17057 return SDValue(); 17058 17059 SDValue Op0 = N->getOperand(0); 17060 SDValue Op1 = 17061 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17062 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17063 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17064 17065 if (!IsNeg) 17066 return Res; 17067 17068 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17069 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17070 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17071 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17072 17073 if (!IsProfitable(IsNeg, false, VT)) 17074 return SDValue(); 17075 17076 SDValue Op0 = N->getOperand(0); 17077 SDValue Op1 = 17078 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17079 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17080 17081 if (!IsNeg) 17082 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17083 else 17084 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17085 17086 } else { 17087 return SDValue(); 17088 } 17089 } 17090 17091 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17092 // in combiner since we need to check SD flags and other subtarget features. 17093 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17094 DAGCombinerInfo &DCI) const { 17095 SDValue N0 = N->getOperand(0); 17096 SDValue N1 = N->getOperand(1); 17097 SDValue N2 = N->getOperand(2); 17098 SDNodeFlags Flags = N->getFlags(); 17099 EVT VT = N->getValueType(0); 17100 SelectionDAG &DAG = DCI.DAG; 17101 const TargetOptions &Options = getTargetMachine().Options; 17102 unsigned Opc = N->getOpcode(); 17103 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17104 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17105 SDLoc Loc(N); 17106 17107 if (!isOperationLegal(ISD::FMA, VT)) 17108 return SDValue(); 17109 17110 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17111 // since (fnmsub a b c)=-0 while c-ab=+0. 17112 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17113 return SDValue(); 17114 17115 // (fma (fneg a) b c) => (fnmsub a b c) 17116 // (fnmsub (fneg a) b c) => (fma a b c) 17117 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17118 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17119 17120 // (fma a (fneg b) c) => (fnmsub a b c) 17121 // (fnmsub a (fneg b) c) => (fma a b c) 17122 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17123 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17124 17125 return SDValue(); 17126 } 17127 17128 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17129 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17130 if (!Subtarget.is64BitELFABI()) 17131 return false; 17132 17133 // If not a tail call then no need to proceed. 17134 if (!CI->isTailCall()) 17135 return false; 17136 17137 // If sibling calls have been disabled and tail-calls aren't guaranteed 17138 // there is no reason to duplicate. 17139 auto &TM = getTargetMachine(); 17140 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17141 return false; 17142 17143 // Can't tail call a function called indirectly, or if it has variadic args. 17144 const Function *Callee = CI->getCalledFunction(); 17145 if (!Callee || Callee->isVarArg()) 17146 return false; 17147 17148 // Make sure the callee and caller calling conventions are eligible for tco. 17149 const Function *Caller = CI->getParent()->getParent(); 17150 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17151 CI->getCallingConv())) 17152 return false; 17153 17154 // If the function is local then we have a good chance at tail-calling it 17155 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17156 } 17157 17158 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17159 if (!Subtarget.hasVSX()) 17160 return false; 17161 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17162 return true; 17163 return VT == MVT::f32 || VT == MVT::f64 || 17164 VT == MVT::v4f32 || VT == MVT::v2f64; 17165 } 17166 17167 bool PPCTargetLowering:: 17168 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17169 const Value *Mask = AndI.getOperand(1); 17170 // If the mask is suitable for andi. or andis. we should sink the and. 17171 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17172 // Can't handle constants wider than 64-bits. 17173 if (CI->getBitWidth() > 64) 17174 return false; 17175 int64_t ConstVal = CI->getZExtValue(); 17176 return isUInt<16>(ConstVal) || 17177 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17178 } 17179 17180 // For non-constant masks, we can always use the record-form and. 17181 return true; 17182 } 17183 17184 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17185 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17186 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17187 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17188 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17189 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17190 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17191 assert(Subtarget.hasP9Altivec() && 17192 "Only combine this when P9 altivec supported!"); 17193 EVT VT = N->getValueType(0); 17194 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17195 return SDValue(); 17196 17197 SelectionDAG &DAG = DCI.DAG; 17198 SDLoc dl(N); 17199 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17200 // Even for signed integers, if it's known to be positive (as signed 17201 // integer) due to zero-extended inputs. 17202 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17203 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17204 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17205 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17206 (SubOpcd1 == ISD::ZERO_EXTEND || 17207 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17208 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17209 N->getOperand(0)->getOperand(0), 17210 N->getOperand(0)->getOperand(1), 17211 DAG.getTargetConstant(0, dl, MVT::i32)); 17212 } 17213 17214 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17215 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17216 N->getOperand(0).hasOneUse()) { 17217 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17218 N->getOperand(0)->getOperand(0), 17219 N->getOperand(0)->getOperand(1), 17220 DAG.getTargetConstant(1, dl, MVT::i32)); 17221 } 17222 } 17223 17224 return SDValue(); 17225 } 17226 17227 // For type v4i32/v8ii16/v16i8, transform 17228 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17229 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17230 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17231 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17232 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17233 DAGCombinerInfo &DCI) const { 17234 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17235 assert(Subtarget.hasP9Altivec() && 17236 "Only combine this when P9 altivec supported!"); 17237 17238 SelectionDAG &DAG = DCI.DAG; 17239 SDLoc dl(N); 17240 SDValue Cond = N->getOperand(0); 17241 SDValue TrueOpnd = N->getOperand(1); 17242 SDValue FalseOpnd = N->getOperand(2); 17243 EVT VT = N->getOperand(1).getValueType(); 17244 17245 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17246 FalseOpnd.getOpcode() != ISD::SUB) 17247 return SDValue(); 17248 17249 // ABSD only available for type v4i32/v8i16/v16i8 17250 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17251 return SDValue(); 17252 17253 // At least to save one more dependent computation 17254 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17255 return SDValue(); 17256 17257 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17258 17259 // Can only handle unsigned comparison here 17260 switch (CC) { 17261 default: 17262 return SDValue(); 17263 case ISD::SETUGT: 17264 case ISD::SETUGE: 17265 break; 17266 case ISD::SETULT: 17267 case ISD::SETULE: 17268 std::swap(TrueOpnd, FalseOpnd); 17269 break; 17270 } 17271 17272 SDValue CmpOpnd1 = Cond.getOperand(0); 17273 SDValue CmpOpnd2 = Cond.getOperand(1); 17274 17275 // SETCC CmpOpnd1 CmpOpnd2 cond 17276 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17277 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17278 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17279 TrueOpnd.getOperand(1) == CmpOpnd2 && 17280 FalseOpnd.getOperand(0) == CmpOpnd2 && 17281 FalseOpnd.getOperand(1) == CmpOpnd1) { 17282 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17283 CmpOpnd1, CmpOpnd2, 17284 DAG.getTargetConstant(0, dl, MVT::i32)); 17285 } 17286 17287 return SDValue(); 17288 } 17289 17290 /// getAddrModeForFlags - Based on the set of address flags, select the most 17291 /// optimal instruction format to match by. 17292 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17293 // This is not a node we should be handling here. 17294 if (Flags == PPC::MOF_None) 17295 return PPC::AM_None; 17296 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17297 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17298 if ((Flags & FlagSet) == FlagSet) 17299 return PPC::AM_DForm; 17300 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17301 if ((Flags & FlagSet) == FlagSet) 17302 return PPC::AM_DSForm; 17303 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17304 if ((Flags & FlagSet) == FlagSet) 17305 return PPC::AM_DQForm; 17306 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17307 if ((Flags & FlagSet) == FlagSet) 17308 return PPC::AM_PrefixDForm; 17309 // If no other forms are selected, return an X-Form as it is the most 17310 // general addressing mode. 17311 return PPC::AM_XForm; 17312 } 17313 17314 /// Set alignment flags based on whether or not the Frame Index is aligned. 17315 /// Utilized when computing flags for address computation when selecting 17316 /// load and store instructions. 17317 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17318 SelectionDAG &DAG) { 17319 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17320 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17321 if (!FI) 17322 return; 17323 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17324 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17325 // If this is (add $FI, $S16Imm), the alignment flags are already set 17326 // based on the immediate. We just need to clear the alignment flags 17327 // if the FI alignment is weaker. 17328 if ((FrameIndexAlign % 4) != 0) 17329 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17330 if ((FrameIndexAlign % 16) != 0) 17331 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17332 // If the address is a plain FrameIndex, set alignment flags based on 17333 // FI alignment. 17334 if (!IsAdd) { 17335 if ((FrameIndexAlign % 4) == 0) 17336 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17337 if ((FrameIndexAlign % 16) == 0) 17338 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17339 } 17340 } 17341 17342 /// Given a node, compute flags that are used for address computation when 17343 /// selecting load and store instructions. The flags computed are stored in 17344 /// FlagSet. This function takes into account whether the node is a constant, 17345 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17346 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17347 SelectionDAG &DAG) { 17348 // Set the alignment flags for the node depending on if the node is 17349 // 4-byte or 16-byte aligned. 17350 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17351 if ((Imm & 0x3) == 0) 17352 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17353 if ((Imm & 0xf) == 0) 17354 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17355 }; 17356 17357 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17358 // All 32-bit constants can be computed as LIS + Disp. 17359 const APInt &ConstImm = CN->getAPIntValue(); 17360 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17361 FlagSet |= PPC::MOF_AddrIsSImm32; 17362 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17363 setAlignFlagsForFI(N, FlagSet, DAG); 17364 } 17365 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17366 FlagSet |= PPC::MOF_RPlusSImm34; 17367 else // Let constant materialization handle large constants. 17368 FlagSet |= PPC::MOF_NotAddNorCst; 17369 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17370 // This address can be represented as an addition of: 17371 // - Register + Imm16 (possibly a multiple of 4/16) 17372 // - Register + Imm34 17373 // - Register + PPCISD::Lo 17374 // - Register + Register 17375 // In any case, we won't have to match this as Base + Zero. 17376 SDValue RHS = N.getOperand(1); 17377 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17378 const APInt &ConstImm = CN->getAPIntValue(); 17379 if (ConstImm.isSignedIntN(16)) { 17380 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17381 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17382 setAlignFlagsForFI(N, FlagSet, DAG); 17383 } 17384 if (ConstImm.isSignedIntN(34)) 17385 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17386 else 17387 FlagSet |= PPC::MOF_RPlusR; // Register. 17388 } else if (RHS.getOpcode() == PPCISD::Lo && 17389 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17390 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17391 else 17392 FlagSet |= PPC::MOF_RPlusR; 17393 } else { // The address computation is not a constant or an addition. 17394 setAlignFlagsForFI(N, FlagSet, DAG); 17395 FlagSet |= PPC::MOF_NotAddNorCst; 17396 } 17397 } 17398 17399 static bool isPCRelNode(SDValue N) { 17400 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17401 isValidPCRelNode<ConstantPoolSDNode>(N) || 17402 isValidPCRelNode<GlobalAddressSDNode>(N) || 17403 isValidPCRelNode<JumpTableSDNode>(N) || 17404 isValidPCRelNode<BlockAddressSDNode>(N)); 17405 } 17406 17407 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17408 /// the address flags of the load/store instruction that is to be matched. 17409 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17410 SelectionDAG &DAG) const { 17411 unsigned FlagSet = PPC::MOF_None; 17412 17413 // Compute subtarget flags. 17414 if (!Subtarget.hasP9Vector()) 17415 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17416 else { 17417 FlagSet |= PPC::MOF_SubtargetP9; 17418 if (Subtarget.hasPrefixInstrs()) 17419 FlagSet |= PPC::MOF_SubtargetP10; 17420 } 17421 if (Subtarget.hasSPE()) 17422 FlagSet |= PPC::MOF_SubtargetSPE; 17423 17424 // Check if we have a PCRel node and return early. 17425 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17426 return FlagSet; 17427 17428 // If the node is the paired load/store intrinsics, compute flags for 17429 // address computation and return early. 17430 unsigned ParentOp = Parent->getOpcode(); 17431 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17432 (ParentOp == ISD::INTRINSIC_VOID))) { 17433 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17434 assert( 17435 ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) && 17436 "Only the paired load and store (lxvp/stxvp) intrinsics are valid."); 17437 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) ? Parent->getOperand(2) 17438 : Parent->getOperand(3); 17439 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17440 FlagSet |= PPC::MOF_Vector; 17441 return FlagSet; 17442 } 17443 17444 // Mark this as something we don't want to handle here if it is atomic 17445 // or pre-increment instruction. 17446 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17447 if (LSB->isIndexed()) 17448 return PPC::MOF_None; 17449 17450 // Compute in-memory type flags. This is based on if there are scalars, 17451 // floats or vectors. 17452 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17453 assert(MN && "Parent should be a MemSDNode!"); 17454 EVT MemVT = MN->getMemoryVT(); 17455 unsigned Size = MemVT.getSizeInBits(); 17456 if (MemVT.isScalarInteger()) { 17457 assert(Size <= 128 && 17458 "Not expecting scalar integers larger than 16 bytes!"); 17459 if (Size < 32) 17460 FlagSet |= PPC::MOF_SubWordInt; 17461 else if (Size == 32) 17462 FlagSet |= PPC::MOF_WordInt; 17463 else 17464 FlagSet |= PPC::MOF_DoubleWordInt; 17465 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17466 if (Size == 128) 17467 FlagSet |= PPC::MOF_Vector; 17468 else if (Size == 256) { 17469 assert(Subtarget.pairedVectorMemops() && 17470 "256-bit vectors are only available when paired vector memops is " 17471 "enabled!"); 17472 FlagSet |= PPC::MOF_Vector; 17473 } else 17474 llvm_unreachable("Not expecting illegal vectors!"); 17475 } else { // Floating point type: can be scalar, f128 or vector types. 17476 if (Size == 32 || Size == 64) 17477 FlagSet |= PPC::MOF_ScalarFloat; 17478 else if (MemVT == MVT::f128 || MemVT.isVector()) 17479 FlagSet |= PPC::MOF_Vector; 17480 else 17481 llvm_unreachable("Not expecting illegal scalar floats!"); 17482 } 17483 17484 // Compute flags for address computation. 17485 computeFlagsForAddressComputation(N, FlagSet, DAG); 17486 17487 // Compute type extension flags. 17488 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17489 switch (LN->getExtensionType()) { 17490 case ISD::SEXTLOAD: 17491 FlagSet |= PPC::MOF_SExt; 17492 break; 17493 case ISD::EXTLOAD: 17494 case ISD::ZEXTLOAD: 17495 FlagSet |= PPC::MOF_ZExt; 17496 break; 17497 case ISD::NON_EXTLOAD: 17498 FlagSet |= PPC::MOF_NoExt; 17499 break; 17500 } 17501 } else 17502 FlagSet |= PPC::MOF_NoExt; 17503 17504 // For integers, no extension is the same as zero extension. 17505 // We set the extension mode to zero extension so we don't have 17506 // to add separate entries in AddrModesMap for loads and stores. 17507 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17508 FlagSet |= PPC::MOF_ZExt; 17509 FlagSet &= ~PPC::MOF_NoExt; 17510 } 17511 17512 // If we don't have prefixed instructions, 34-bit constants should be 17513 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17514 bool IsNonP1034BitConst = 17515 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17516 FlagSet) == PPC::MOF_RPlusSImm34; 17517 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17518 IsNonP1034BitConst) 17519 FlagSet |= PPC::MOF_NotAddNorCst; 17520 17521 return FlagSet; 17522 } 17523 17524 /// SelectForceXFormMode - Given the specified address, force it to be 17525 /// represented as an indexed [r+r] operation (an XForm instruction). 17526 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17527 SDValue &Base, 17528 SelectionDAG &DAG) const { 17529 17530 PPC::AddrMode Mode = PPC::AM_XForm; 17531 int16_t ForceXFormImm = 0; 17532 if (provablyDisjointOr(DAG, N) && 17533 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17534 Disp = N.getOperand(0); 17535 Base = N.getOperand(1); 17536 return Mode; 17537 } 17538 17539 // If the address is the result of an add, we will utilize the fact that the 17540 // address calculation includes an implicit add. However, we can reduce 17541 // register pressure if we do not materialize a constant just for use as the 17542 // index register. We only get rid of the add if it is not an add of a 17543 // value and a 16-bit signed constant and both have a single use. 17544 if (N.getOpcode() == ISD::ADD && 17545 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17546 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17547 Disp = N.getOperand(0); 17548 Base = N.getOperand(1); 17549 return Mode; 17550 } 17551 17552 // Otherwise, use R0 as the base register. 17553 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17554 N.getValueType()); 17555 Base = N; 17556 17557 return Mode; 17558 } 17559 17560 // If we happen to match to an aligned D-Form, check if the Frame Index is 17561 // adequately aligned. If it is not, reset the mode to match to X-Form. 17562 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17563 PPC::AddrMode &Mode) { 17564 if (!isa<FrameIndexSDNode>(N)) 17565 return; 17566 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17567 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17568 Mode = PPC::AM_XForm; 17569 } 17570 17571 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17572 /// compute the address flags of the node, get the optimal address mode based 17573 /// on the flags, and set the Base and Disp based on the address mode. 17574 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17575 SDValue N, SDValue &Disp, 17576 SDValue &Base, 17577 SelectionDAG &DAG, 17578 MaybeAlign Align) const { 17579 SDLoc DL(Parent); 17580 17581 // Compute the address flags. 17582 unsigned Flags = computeMOFlags(Parent, N, DAG); 17583 17584 // Get the optimal address mode based on the Flags. 17585 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17586 17587 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17588 // Select an X-Form load if it is not. 17589 setXFormForUnalignedFI(N, Flags, Mode); 17590 17591 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17592 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17593 assert(Subtarget.isUsingPCRelativeCalls() && 17594 "Must be using PC-Relative calls when a valid PC-Relative node is " 17595 "present!"); 17596 Mode = PPC::AM_PCRel; 17597 } 17598 17599 // Set Base and Disp accordingly depending on the address mode. 17600 switch (Mode) { 17601 case PPC::AM_DForm: 17602 case PPC::AM_DSForm: 17603 case PPC::AM_DQForm: { 17604 // This is a register plus a 16-bit immediate. The base will be the 17605 // register and the displacement will be the immediate unless it 17606 // isn't sufficiently aligned. 17607 if (Flags & PPC::MOF_RPlusSImm16) { 17608 SDValue Op0 = N.getOperand(0); 17609 SDValue Op1 = N.getOperand(1); 17610 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17611 if (!Align || isAligned(*Align, Imm)) { 17612 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17613 Base = Op0; 17614 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17615 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17616 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17617 } 17618 break; 17619 } 17620 } 17621 // This is a register plus the @lo relocation. The base is the register 17622 // and the displacement is the global address. 17623 else if (Flags & PPC::MOF_RPlusLo) { 17624 Disp = N.getOperand(1).getOperand(0); // The global address. 17625 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17626 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17627 Disp.getOpcode() == ISD::TargetConstantPool || 17628 Disp.getOpcode() == ISD::TargetJumpTable); 17629 Base = N.getOperand(0); 17630 break; 17631 } 17632 // This is a constant address at most 32 bits. The base will be 17633 // zero or load-immediate-shifted and the displacement will be 17634 // the low 16 bits of the address. 17635 else if (Flags & PPC::MOF_AddrIsSImm32) { 17636 auto *CN = cast<ConstantSDNode>(N); 17637 EVT CNType = CN->getValueType(0); 17638 uint64_t CNImm = CN->getZExtValue(); 17639 // If this address fits entirely in a 16-bit sext immediate field, codegen 17640 // this as "d, 0". 17641 int16_t Imm; 17642 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17643 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17644 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17645 CNType); 17646 break; 17647 } 17648 // Handle 32-bit sext immediate with LIS + Addr mode. 17649 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17650 (!Align || isAligned(*Align, CNImm))) { 17651 int32_t Addr = (int32_t)CNImm; 17652 // Otherwise, break this down into LIS + Disp. 17653 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17654 Base = 17655 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17656 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17657 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17658 break; 17659 } 17660 } 17661 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17662 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17663 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17664 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17665 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17666 } else 17667 Base = N; 17668 break; 17669 } 17670 case PPC::AM_PrefixDForm: { 17671 int64_t Imm34 = 0; 17672 unsigned Opcode = N.getOpcode(); 17673 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 17674 (isIntS34Immediate(N.getOperand(1), Imm34))) { 17675 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 17676 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17677 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 17678 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17679 else 17680 Base = N.getOperand(0); 17681 } else if (isIntS34Immediate(N, Imm34)) { 17682 // The address is a 34-bit signed immediate. 17683 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 17684 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 17685 } 17686 break; 17687 } 17688 case PPC::AM_PCRel: { 17689 // When selecting PC-Relative instructions, "Base" is not utilized as 17690 // we select the address as [PC+imm]. 17691 Disp = N; 17692 break; 17693 } 17694 case PPC::AM_None: 17695 break; 17696 default: { // By default, X-Form is always available to be selected. 17697 // When a frame index is not aligned, we also match by XForm. 17698 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17699 Base = FI ? N : N.getOperand(1); 17700 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17701 N.getValueType()) 17702 : N.getOperand(0); 17703 break; 17704 } 17705 } 17706 return Mode; 17707 } 17708 17709 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17710 bool Return, 17711 bool IsVarArg) const { 17712 switch (CC) { 17713 case CallingConv::Cold: 17714 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17715 default: 17716 return CC_PPC64_ELF_FIS; 17717 } 17718 } 17719 17720 TargetLowering::AtomicExpansionKind 17721 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17722 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17723 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17724 return AtomicExpansionKind::MaskedIntrinsic; 17725 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17726 } 17727 17728 TargetLowering::AtomicExpansionKind 17729 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17730 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 17731 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17732 return AtomicExpansionKind::MaskedIntrinsic; 17733 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17734 } 17735 17736 static Intrinsic::ID 17737 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17738 switch (BinOp) { 17739 default: 17740 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17741 case AtomicRMWInst::Xchg: 17742 return Intrinsic::ppc_atomicrmw_xchg_i128; 17743 case AtomicRMWInst::Add: 17744 return Intrinsic::ppc_atomicrmw_add_i128; 17745 case AtomicRMWInst::Sub: 17746 return Intrinsic::ppc_atomicrmw_sub_i128; 17747 case AtomicRMWInst::And: 17748 return Intrinsic::ppc_atomicrmw_and_i128; 17749 case AtomicRMWInst::Or: 17750 return Intrinsic::ppc_atomicrmw_or_i128; 17751 case AtomicRMWInst::Xor: 17752 return Intrinsic::ppc_atomicrmw_xor_i128; 17753 case AtomicRMWInst::Nand: 17754 return Intrinsic::ppc_atomicrmw_nand_i128; 17755 } 17756 } 17757 17758 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17759 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17760 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17761 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17762 "Only support quadword now"); 17763 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17764 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17765 assert(ValTy->getPrimitiveSizeInBits() == 128); 17766 Function *RMW = Intrinsic::getDeclaration( 17767 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17768 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17769 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17770 Value *IncrHi = 17771 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17772 Value *Addr = 17773 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17774 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17775 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17776 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17777 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17778 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17779 return Builder.CreateOr( 17780 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17781 } 17782 17783 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17784 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17785 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17786 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17787 "Only support quadword now"); 17788 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17789 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17790 assert(ValTy->getPrimitiveSizeInBits() == 128); 17791 Function *IntCmpXchg = 17792 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17793 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17794 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17795 Value *CmpHi = 17796 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17797 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17798 Value *NewHi = 17799 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17800 Value *Addr = 17801 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17802 emitLeadingFence(Builder, CI, Ord); 17803 Value *LoHi = 17804 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17805 emitTrailingFence(Builder, CI, Ord); 17806 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17807 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17808 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17809 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17810 return Builder.CreateOr( 17811 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17812 } 17813