1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD , VT, Legal); 407 setOperationAction(ISD::SUB , VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::STORE, VT, Promote); 435 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 436 437 // No other operations are legal. 438 setOperationAction(ISD::MUL , VT, Expand); 439 setOperationAction(ISD::SDIV, VT, Expand); 440 setOperationAction(ISD::SREM, VT, Expand); 441 setOperationAction(ISD::UDIV, VT, Expand); 442 setOperationAction(ISD::UREM, VT, Expand); 443 setOperationAction(ISD::FDIV, VT, Expand); 444 setOperationAction(ISD::FREM, VT, Expand); 445 setOperationAction(ISD::FNEG, VT, Expand); 446 setOperationAction(ISD::FSQRT, VT, Expand); 447 setOperationAction(ISD::FLOG, VT, Expand); 448 setOperationAction(ISD::FLOG10, VT, Expand); 449 setOperationAction(ISD::FLOG2, VT, Expand); 450 setOperationAction(ISD::FEXP, VT, Expand); 451 setOperationAction(ISD::FEXP2, VT, Expand); 452 setOperationAction(ISD::FSIN, VT, Expand); 453 setOperationAction(ISD::FCOS, VT, Expand); 454 setOperationAction(ISD::FABS, VT, Expand); 455 setOperationAction(ISD::FPOWI, VT, Expand); 456 setOperationAction(ISD::FFLOOR, VT, Expand); 457 setOperationAction(ISD::FCEIL, VT, Expand); 458 setOperationAction(ISD::FTRUNC, VT, Expand); 459 setOperationAction(ISD::FRINT, VT, Expand); 460 setOperationAction(ISD::FNEARBYINT, VT, Expand); 461 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 462 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 463 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 464 setOperationAction(ISD::MULHU, VT, Expand); 465 setOperationAction(ISD::MULHS, VT, Expand); 466 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 467 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 468 setOperationAction(ISD::UDIVREM, VT, Expand); 469 setOperationAction(ISD::SDIVREM, VT, Expand); 470 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 471 setOperationAction(ISD::FPOW, VT, Expand); 472 setOperationAction(ISD::BSWAP, VT, Expand); 473 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 474 setOperationAction(ISD::CTTZ, VT, Expand); 475 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::VSELECT, VT, Expand); 477 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 478 479 for (MVT InnerVT : MVT::vector_valuetypes()) { 480 setTruncStoreAction(VT, InnerVT, Expand); 481 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 482 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 483 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 484 } 485 } 486 487 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 488 // with merges, splats, etc. 489 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 490 491 setOperationAction(ISD::AND , MVT::v4i32, Legal); 492 setOperationAction(ISD::OR , MVT::v4i32, Legal); 493 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 494 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 495 setOperationAction(ISD::SELECT, MVT::v4i32, 496 Subtarget.useCRBits() ? Legal : Expand); 497 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 498 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 499 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 500 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 501 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 502 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 503 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 504 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 506 507 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 508 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 509 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 511 512 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 513 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 514 515 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 516 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 517 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 518 } 519 520 521 if (Subtarget.hasP8Altivec()) 522 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 523 else 524 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 525 526 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 527 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 528 529 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 531 532 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 536 537 // Altivec does not contain unordered floating-point compare instructions 538 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 539 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 542 543 if (Subtarget.hasVSX()) { 544 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 545 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 546 547 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 548 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 549 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 550 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 551 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 552 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 556 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 557 558 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 559 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 560 561 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 562 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 563 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 564 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 565 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 566 567 // Share the Altivec comparison restrictions. 568 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 569 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 570 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 571 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 572 573 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 574 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 575 576 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 577 578 if (Subtarget.hasP8Vector()) 579 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 580 581 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 582 583 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 584 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 585 586 if (Subtarget.hasP8Altivec()) { 587 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 588 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 589 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 590 591 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 592 } 593 else { 594 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 595 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 596 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 597 598 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 599 600 // VSX v2i64 only supports non-arithmetic operations. 601 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 602 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 603 } 604 605 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 606 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 607 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 608 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 609 610 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 611 612 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 613 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 614 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 615 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 616 617 // Vector operation legalization checks the result type of 618 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 619 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 620 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 621 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 622 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 623 624 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 625 } 626 627 if (Subtarget.hasP8Altivec()) { 628 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 629 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 630 } 631 } 632 633 if (Subtarget.hasQPX()) { 634 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 635 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 636 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 637 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 638 639 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 640 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 641 642 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 643 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 644 645 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 646 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 647 648 if (!Subtarget.useCRBits()) 649 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 650 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 651 652 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 653 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 654 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 655 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 656 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 657 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 658 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 659 660 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 661 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 662 663 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 664 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 665 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 666 667 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 668 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 669 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 670 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 671 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 672 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 673 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 674 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 675 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 676 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 677 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 678 679 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 680 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 681 682 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 683 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 684 685 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 686 687 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 688 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 689 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 690 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 691 692 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 693 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 694 695 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 696 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 697 698 if (!Subtarget.useCRBits()) 699 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 700 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 701 702 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 703 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 704 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 705 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 706 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 707 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 708 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 709 710 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 711 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 712 713 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 714 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 715 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 716 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 717 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 718 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 719 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 720 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 721 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 722 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 723 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 724 725 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 726 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 727 728 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 729 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 730 731 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 732 733 setOperationAction(ISD::AND , MVT::v4i1, Legal); 734 setOperationAction(ISD::OR , MVT::v4i1, Legal); 735 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 736 737 if (!Subtarget.useCRBits()) 738 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 739 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 740 741 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 742 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 743 744 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 745 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 746 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 747 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 748 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 749 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 750 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 751 752 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 753 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 754 755 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 756 757 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 758 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 759 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 760 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 761 762 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 763 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 764 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 765 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 766 767 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 768 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 769 770 // These need to set FE_INEXACT, and so cannot be vectorized here. 771 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 772 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 773 774 if (TM.Options.UnsafeFPMath) { 775 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 776 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 777 778 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 779 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 780 } else { 781 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 782 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 783 784 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 785 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 786 } 787 } 788 789 if (Subtarget.has64BitSupport()) 790 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 791 792 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 793 794 if (!isPPC64) { 795 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 796 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 797 } 798 799 setBooleanContents(ZeroOrOneBooleanContent); 800 801 if (Subtarget.hasAltivec()) { 802 // Altivec instructions set fields to all zeros or all ones. 803 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 804 } 805 806 if (!isPPC64) { 807 // These libcalls are not available in 32-bit. 808 setLibcallName(RTLIB::SHL_I128, nullptr); 809 setLibcallName(RTLIB::SRL_I128, nullptr); 810 setLibcallName(RTLIB::SRA_I128, nullptr); 811 } 812 813 if (isPPC64) { 814 setStackPointerRegisterToSaveRestore(PPC::X1); 815 setExceptionPointerRegister(PPC::X3); 816 setExceptionSelectorRegister(PPC::X4); 817 } else { 818 setStackPointerRegisterToSaveRestore(PPC::R1); 819 setExceptionPointerRegister(PPC::R3); 820 setExceptionSelectorRegister(PPC::R4); 821 } 822 823 // We have target-specific dag combine patterns for the following nodes: 824 setTargetDAGCombine(ISD::SINT_TO_FP); 825 if (Subtarget.hasFPCVT()) 826 setTargetDAGCombine(ISD::UINT_TO_FP); 827 setTargetDAGCombine(ISD::LOAD); 828 setTargetDAGCombine(ISD::STORE); 829 setTargetDAGCombine(ISD::BR_CC); 830 if (Subtarget.useCRBits()) 831 setTargetDAGCombine(ISD::BRCOND); 832 setTargetDAGCombine(ISD::BSWAP); 833 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 834 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 835 setTargetDAGCombine(ISD::INTRINSIC_VOID); 836 837 setTargetDAGCombine(ISD::SIGN_EXTEND); 838 setTargetDAGCombine(ISD::ZERO_EXTEND); 839 setTargetDAGCombine(ISD::ANY_EXTEND); 840 841 if (Subtarget.useCRBits()) { 842 setTargetDAGCombine(ISD::TRUNCATE); 843 setTargetDAGCombine(ISD::SETCC); 844 setTargetDAGCombine(ISD::SELECT_CC); 845 } 846 847 // Use reciprocal estimates. 848 if (TM.Options.UnsafeFPMath) { 849 setTargetDAGCombine(ISD::FDIV); 850 setTargetDAGCombine(ISD::FSQRT); 851 } 852 853 // Darwin long double math library functions have $LDBL128 appended. 854 if (Subtarget.isDarwin()) { 855 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 856 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 857 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 858 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 859 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 860 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 861 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 862 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 863 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 864 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 865 } 866 867 // With 32 condition bits, we don't need to sink (and duplicate) compares 868 // aggressively in CodeGenPrep. 869 if (Subtarget.useCRBits()) { 870 setHasMultipleConditionRegisters(); 871 setJumpIsExpensive(); 872 } 873 874 setMinFunctionAlignment(2); 875 if (Subtarget.isDarwin()) 876 setPrefFunctionAlignment(4); 877 878 switch (Subtarget.getDarwinDirective()) { 879 default: break; 880 case PPC::DIR_970: 881 case PPC::DIR_A2: 882 case PPC::DIR_E500mc: 883 case PPC::DIR_E5500: 884 case PPC::DIR_PWR4: 885 case PPC::DIR_PWR5: 886 case PPC::DIR_PWR5X: 887 case PPC::DIR_PWR6: 888 case PPC::DIR_PWR6X: 889 case PPC::DIR_PWR7: 890 case PPC::DIR_PWR8: 891 setPrefFunctionAlignment(4); 892 setPrefLoopAlignment(4); 893 break; 894 } 895 896 setInsertFencesForAtomic(true); 897 898 if (Subtarget.enableMachineScheduler()) 899 setSchedulingPreference(Sched::Source); 900 else 901 setSchedulingPreference(Sched::Hybrid); 902 903 computeRegisterProperties(STI.getRegisterInfo()); 904 905 // The Freescale cores do better with aggressive inlining of memcpy and 906 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 907 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 908 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 909 MaxStoresPerMemset = 32; 910 MaxStoresPerMemsetOptSize = 16; 911 MaxStoresPerMemcpy = 32; 912 MaxStoresPerMemcpyOptSize = 8; 913 MaxStoresPerMemmove = 32; 914 MaxStoresPerMemmoveOptSize = 8; 915 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 916 // The A2 also benefits from (very) aggressive inlining of memcpy and 917 // friends. The overhead of a the function call, even when warm, can be 918 // over one hundred cycles. 919 MaxStoresPerMemset = 128; 920 MaxStoresPerMemcpy = 128; 921 MaxStoresPerMemmove = 128; 922 } 923 } 924 925 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 926 /// the desired ByVal argument alignment. 927 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 928 unsigned MaxMaxAlign) { 929 if (MaxAlign == MaxMaxAlign) 930 return; 931 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 932 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 933 MaxAlign = 32; 934 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 935 MaxAlign = 16; 936 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 937 unsigned EltAlign = 0; 938 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 939 if (EltAlign > MaxAlign) 940 MaxAlign = EltAlign; 941 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 942 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 943 unsigned EltAlign = 0; 944 getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign); 945 if (EltAlign > MaxAlign) 946 MaxAlign = EltAlign; 947 if (MaxAlign == MaxMaxAlign) 948 break; 949 } 950 } 951 } 952 953 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 954 /// function arguments in the caller parameter area. 955 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 956 // Darwin passes everything on 4 byte boundary. 957 if (Subtarget.isDarwin()) 958 return 4; 959 960 // 16byte and wider vectors are passed on 16byte boundary. 961 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 962 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 963 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 964 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 965 return Align; 966 } 967 968 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 969 switch ((PPCISD::NodeType)Opcode) { 970 case PPCISD::FIRST_NUMBER: break; 971 case PPCISD::FSEL: return "PPCISD::FSEL"; 972 case PPCISD::FCFID: return "PPCISD::FCFID"; 973 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 974 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 975 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 976 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 977 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 978 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 979 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 980 case PPCISD::FRE: return "PPCISD::FRE"; 981 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 982 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 983 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 984 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 985 case PPCISD::VPERM: return "PPCISD::VPERM"; 986 case PPCISD::CMPB: return "PPCISD::CMPB"; 987 case PPCISD::Hi: return "PPCISD::Hi"; 988 case PPCISD::Lo: return "PPCISD::Lo"; 989 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 990 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 991 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 992 case PPCISD::SRL: return "PPCISD::SRL"; 993 case PPCISD::SRA: return "PPCISD::SRA"; 994 case PPCISD::SHL: return "PPCISD::SHL"; 995 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 996 case PPCISD::CALL: return "PPCISD::CALL"; 997 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 998 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 999 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1000 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1001 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1002 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1003 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1004 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1005 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1006 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1007 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1008 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1009 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1010 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1011 case PPCISD::VCMP: return "PPCISD::VCMP"; 1012 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1013 case PPCISD::LBRX: return "PPCISD::LBRX"; 1014 case PPCISD::STBRX: return "PPCISD::STBRX"; 1015 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1016 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1017 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1018 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1019 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1020 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1021 case PPCISD::BDZ: return "PPCISD::BDZ"; 1022 case PPCISD::MFFS: return "PPCISD::MFFS"; 1023 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1024 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1025 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1026 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1027 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1028 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1029 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1030 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1031 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1032 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1033 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1034 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1035 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1036 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1037 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1038 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1039 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1040 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1041 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1042 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1043 case PPCISD::SC: return "PPCISD::SC"; 1044 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1045 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1046 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1047 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1048 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1049 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1050 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1051 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1052 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1053 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1054 } 1055 return nullptr; 1056 } 1057 1058 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &C, EVT VT) const { 1059 if (!VT.isVector()) 1060 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1061 1062 if (Subtarget.hasQPX()) 1063 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1064 1065 return VT.changeVectorElementTypeToInteger(); 1066 } 1067 1068 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1069 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1070 return true; 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Node matching predicates, for use by the tblgen matching code. 1075 //===----------------------------------------------------------------------===// 1076 1077 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1078 static bool isFloatingPointZero(SDValue Op) { 1079 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1080 return CFP->getValueAPF().isZero(); 1081 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1082 // Maybe this has already been legalized into the constant pool? 1083 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1084 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1085 return CFP->getValueAPF().isZero(); 1086 } 1087 return false; 1088 } 1089 1090 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1091 /// true if Op is undef or if it matches the specified value. 1092 static bool isConstantOrUndef(int Op, int Val) { 1093 return Op < 0 || Op == Val; 1094 } 1095 1096 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1097 /// VPKUHUM instruction. 1098 /// The ShuffleKind distinguishes between big-endian operations with 1099 /// two different inputs (0), either-endian operations with two identical 1100 /// inputs (1), and little-endian operations with two different inputs (2). 1101 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1102 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1103 SelectionDAG &DAG) { 1104 bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 1105 if (ShuffleKind == 0) { 1106 if (IsLE) 1107 return false; 1108 for (unsigned i = 0; i != 16; ++i) 1109 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1110 return false; 1111 } else if (ShuffleKind == 2) { 1112 if (!IsLE) 1113 return false; 1114 for (unsigned i = 0; i != 16; ++i) 1115 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1116 return false; 1117 } else if (ShuffleKind == 1) { 1118 unsigned j = IsLE ? 0 : 1; 1119 for (unsigned i = 0; i != 8; ++i) 1120 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1121 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1122 return false; 1123 } 1124 return true; 1125 } 1126 1127 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1128 /// VPKUWUM instruction. 1129 /// The ShuffleKind distinguishes between big-endian operations with 1130 /// two different inputs (0), either-endian operations with two identical 1131 /// inputs (1), and little-endian operations with two different inputs (2). 1132 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1133 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1134 SelectionDAG &DAG) { 1135 bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 1136 if (ShuffleKind == 0) { 1137 if (IsLE) 1138 return false; 1139 for (unsigned i = 0; i != 16; i += 2) 1140 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1141 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1142 return false; 1143 } else if (ShuffleKind == 2) { 1144 if (!IsLE) 1145 return false; 1146 for (unsigned i = 0; i != 16; i += 2) 1147 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1148 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1149 return false; 1150 } else if (ShuffleKind == 1) { 1151 unsigned j = IsLE ? 0 : 2; 1152 for (unsigned i = 0; i != 8; i += 2) 1153 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1154 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1155 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1156 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1157 return false; 1158 } 1159 return true; 1160 } 1161 1162 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1163 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1164 /// current subtarget. 1165 /// 1166 /// The ShuffleKind distinguishes between big-endian operations with 1167 /// two different inputs (0), either-endian operations with two identical 1168 /// inputs (1), and little-endian operations with two different inputs (2). 1169 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1170 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1171 SelectionDAG &DAG) { 1172 const PPCSubtarget& Subtarget = 1173 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1174 if (!Subtarget.hasP8Vector()) 1175 return false; 1176 1177 bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 1178 if (ShuffleKind == 0) { 1179 if (IsLE) 1180 return false; 1181 for (unsigned i = 0; i != 16; i += 4) 1182 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1183 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1184 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1185 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1186 return false; 1187 } else if (ShuffleKind == 2) { 1188 if (!IsLE) 1189 return false; 1190 for (unsigned i = 0; i != 16; i += 4) 1191 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1192 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1193 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1194 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1195 return false; 1196 } else if (ShuffleKind == 1) { 1197 unsigned j = IsLE ? 0 : 4; 1198 for (unsigned i = 0; i != 8; i += 4) 1199 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1200 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1201 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1202 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1203 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1204 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1205 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1206 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1207 return false; 1208 } 1209 return true; 1210 } 1211 1212 /// isVMerge - Common function, used to match vmrg* shuffles. 1213 /// 1214 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1215 unsigned LHSStart, unsigned RHSStart) { 1216 if (N->getValueType(0) != MVT::v16i8) 1217 return false; 1218 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1219 "Unsupported merge size!"); 1220 1221 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1222 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1223 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1224 LHSStart+j+i*UnitSize) || 1225 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1226 RHSStart+j+i*UnitSize)) 1227 return false; 1228 } 1229 return true; 1230 } 1231 1232 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1233 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1234 /// The ShuffleKind distinguishes between big-endian merges with two 1235 /// different inputs (0), either-endian merges with two identical inputs (1), 1236 /// and little-endian merges with two different inputs (2). For the latter, 1237 /// the input operands are swapped (see PPCInstrAltivec.td). 1238 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1239 unsigned ShuffleKind, SelectionDAG &DAG) { 1240 if (DAG.getTarget().getDataLayout()->isLittleEndian()) { 1241 if (ShuffleKind == 1) // unary 1242 return isVMerge(N, UnitSize, 0, 0); 1243 else if (ShuffleKind == 2) // swapped 1244 return isVMerge(N, UnitSize, 0, 16); 1245 else 1246 return false; 1247 } else { 1248 if (ShuffleKind == 1) // unary 1249 return isVMerge(N, UnitSize, 8, 8); 1250 else if (ShuffleKind == 0) // normal 1251 return isVMerge(N, UnitSize, 8, 24); 1252 else 1253 return false; 1254 } 1255 } 1256 1257 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1258 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1259 /// The ShuffleKind distinguishes between big-endian merges with two 1260 /// different inputs (0), either-endian merges with two identical inputs (1), 1261 /// and little-endian merges with two different inputs (2). For the latter, 1262 /// the input operands are swapped (see PPCInstrAltivec.td). 1263 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1264 unsigned ShuffleKind, SelectionDAG &DAG) { 1265 if (DAG.getTarget().getDataLayout()->isLittleEndian()) { 1266 if (ShuffleKind == 1) // unary 1267 return isVMerge(N, UnitSize, 8, 8); 1268 else if (ShuffleKind == 2) // swapped 1269 return isVMerge(N, UnitSize, 8, 24); 1270 else 1271 return false; 1272 } else { 1273 if (ShuffleKind == 1) // unary 1274 return isVMerge(N, UnitSize, 0, 0); 1275 else if (ShuffleKind == 0) // normal 1276 return isVMerge(N, UnitSize, 0, 16); 1277 else 1278 return false; 1279 } 1280 } 1281 1282 /** 1283 * \brief Common function used to match vmrgew and vmrgow shuffles 1284 * 1285 * The indexOffset determines whether to look for even or odd words in 1286 * the shuffle mask. This is based on the of the endianness of the target 1287 * machine. 1288 * - Little Endian: 1289 * - Use offset of 0 to check for odd elements 1290 * - Use offset of 4 to check for even elements 1291 * - Big Endian: 1292 * - Use offset of 0 to check for even elements 1293 * - Use offset of 4 to check for odd elements 1294 * A detailed description of the vector element ordering for little endian and 1295 * big endian can be found at 1296 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1297 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1298 * compiler differences mean to you 1299 * 1300 * The mask to the shuffle vector instruction specifies the indices of the 1301 * elements from the two input vectors to place in the result. The elements are 1302 * numbered in array-access order, starting with the first vector. These vectors 1303 * are always of type v16i8, thus each vector will contain 16 elements of size 1304 * 8. More info on the shuffle vector can be found in the 1305 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1306 * Language Reference. 1307 * 1308 * The RHSStartValue indicates whether the same input vectors are used (unary) 1309 * or two different input vectors are used, based on the following: 1310 * - If the instruction uses the same vector for both inputs, the range of the 1311 * indices will be 0 to 15. In this case, the RHSStart value passed should 1312 * be 0. 1313 * - If the instruction has two different vectors then the range of the 1314 * indices will be 0 to 31. In this case, the RHSStart value passed should 1315 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1316 * to 31 specify elements in the second vector). 1317 * 1318 * \param[in] N The shuffle vector SD Node to analyze 1319 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1320 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1321 * vector to the shuffle_vector instruction 1322 * \return true iff this shuffle vector represents an even or odd word merge 1323 */ 1324 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1325 unsigned RHSStartValue) { 1326 if (N->getValueType(0) != MVT::v16i8) 1327 return false; 1328 1329 for (unsigned i = 0; i < 2; ++i) 1330 for (unsigned j = 0; j < 4; ++j) 1331 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1332 i*RHSStartValue+j+IndexOffset) || 1333 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1334 i*RHSStartValue+j+IndexOffset+8)) 1335 return false; 1336 return true; 1337 } 1338 1339 /** 1340 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1341 * vmrgow instructions. 1342 * 1343 * \param[in] N The shuffle vector SD Node to analyze 1344 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1345 * \param[in] ShuffleKind Identify the type of merge: 1346 * - 0 = big-endian merge with two different inputs; 1347 * - 1 = either-endian merge with two identical inputs; 1348 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1349 * little-endian merges). 1350 * \param[in] DAG The current SelectionDAG 1351 * \return true iff this shuffle mask 1352 */ 1353 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1354 unsigned ShuffleKind, SelectionDAG &DAG) { 1355 if (DAG.getTarget().getDataLayout()->isLittleEndian()) { 1356 unsigned indexOffset = CheckEven ? 4 : 0; 1357 if (ShuffleKind == 1) // Unary 1358 return isVMerge(N, indexOffset, 0); 1359 else if (ShuffleKind == 2) // swapped 1360 return isVMerge(N, indexOffset, 16); 1361 else 1362 return false; 1363 } 1364 else { 1365 unsigned indexOffset = CheckEven ? 0 : 4; 1366 if (ShuffleKind == 1) // Unary 1367 return isVMerge(N, indexOffset, 0); 1368 else if (ShuffleKind == 0) // Normal 1369 return isVMerge(N, indexOffset, 16); 1370 else 1371 return false; 1372 } 1373 return false; 1374 } 1375 1376 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1377 /// amount, otherwise return -1. 1378 /// The ShuffleKind distinguishes between big-endian operations with two 1379 /// different inputs (0), either-endian operations with two identical inputs 1380 /// (1), and little-endian operations with two different inputs (2). For the 1381 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1382 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1383 SelectionDAG &DAG) { 1384 if (N->getValueType(0) != MVT::v16i8) 1385 return -1; 1386 1387 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1388 1389 // Find the first non-undef value in the shuffle mask. 1390 unsigned i; 1391 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1392 /*search*/; 1393 1394 if (i == 16) return -1; // all undef. 1395 1396 // Otherwise, check to see if the rest of the elements are consecutively 1397 // numbered from this value. 1398 unsigned ShiftAmt = SVOp->getMaskElt(i); 1399 if (ShiftAmt < i) return -1; 1400 1401 ShiftAmt -= i; 1402 bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian(); 1403 1404 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1405 // Check the rest of the elements to see if they are consecutive. 1406 for (++i; i != 16; ++i) 1407 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1408 return -1; 1409 } else if (ShuffleKind == 1) { 1410 // Check the rest of the elements to see if they are consecutive. 1411 for (++i; i != 16; ++i) 1412 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1413 return -1; 1414 } else 1415 return -1; 1416 1417 if (ShuffleKind == 2 && isLE) 1418 ShiftAmt = 16 - ShiftAmt; 1419 1420 return ShiftAmt; 1421 } 1422 1423 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1424 /// specifies a splat of a single element that is suitable for input to 1425 /// VSPLTB/VSPLTH/VSPLTW. 1426 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1427 assert(N->getValueType(0) == MVT::v16i8 && 1428 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1429 1430 // This is a splat operation if each element of the permute is the same, and 1431 // if the value doesn't reference the second vector. 1432 unsigned ElementBase = N->getMaskElt(0); 1433 1434 // FIXME: Handle UNDEF elements too! 1435 if (ElementBase >= 16) 1436 return false; 1437 1438 // Check that the indices are consecutive, in the case of a multi-byte element 1439 // splatted with a v16i8 mask. 1440 for (unsigned i = 1; i != EltSize; ++i) 1441 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1442 return false; 1443 1444 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1445 if (N->getMaskElt(i) < 0) continue; 1446 for (unsigned j = 0; j != EltSize; ++j) 1447 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1448 return false; 1449 } 1450 return true; 1451 } 1452 1453 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1454 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1455 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1456 SelectionDAG &DAG) { 1457 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1458 assert(isSplatShuffleMask(SVOp, EltSize)); 1459 if (DAG.getTarget().getDataLayout()->isLittleEndian()) 1460 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1461 else 1462 return SVOp->getMaskElt(0) / EltSize; 1463 } 1464 1465 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1466 /// by using a vspltis[bhw] instruction of the specified element size, return 1467 /// the constant being splatted. The ByteSize field indicates the number of 1468 /// bytes of each element [124] -> [bhw]. 1469 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1470 SDValue OpVal(nullptr, 0); 1471 1472 // If ByteSize of the splat is bigger than the element size of the 1473 // build_vector, then we have a case where we are checking for a splat where 1474 // multiple elements of the buildvector are folded together into a single 1475 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1476 unsigned EltSize = 16/N->getNumOperands(); 1477 if (EltSize < ByteSize) { 1478 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1479 SDValue UniquedVals[4]; 1480 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1481 1482 // See if all of the elements in the buildvector agree across. 1483 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1484 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1485 // If the element isn't a constant, bail fully out. 1486 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1487 1488 1489 if (!UniquedVals[i&(Multiple-1)].getNode()) 1490 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1491 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1492 return SDValue(); // no match. 1493 } 1494 1495 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1496 // either constant or undef values that are identical for each chunk. See 1497 // if these chunks can form into a larger vspltis*. 1498 1499 // Check to see if all of the leading entries are either 0 or -1. If 1500 // neither, then this won't fit into the immediate field. 1501 bool LeadingZero = true; 1502 bool LeadingOnes = true; 1503 for (unsigned i = 0; i != Multiple-1; ++i) { 1504 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1505 1506 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1507 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1508 } 1509 // Finally, check the least significant entry. 1510 if (LeadingZero) { 1511 if (!UniquedVals[Multiple-1].getNode()) 1512 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1513 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1514 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1515 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1516 } 1517 if (LeadingOnes) { 1518 if (!UniquedVals[Multiple-1].getNode()) 1519 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1520 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1521 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1522 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1523 } 1524 1525 return SDValue(); 1526 } 1527 1528 // Check to see if this buildvec has a single non-undef value in its elements. 1529 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1530 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1531 if (!OpVal.getNode()) 1532 OpVal = N->getOperand(i); 1533 else if (OpVal != N->getOperand(i)) 1534 return SDValue(); 1535 } 1536 1537 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1538 1539 unsigned ValSizeInBytes = EltSize; 1540 uint64_t Value = 0; 1541 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1542 Value = CN->getZExtValue(); 1543 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1544 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1545 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1546 } 1547 1548 // If the splat value is larger than the element value, then we can never do 1549 // this splat. The only case that we could fit the replicated bits into our 1550 // immediate field for would be zero, and we prefer to use vxor for it. 1551 if (ValSizeInBytes < ByteSize) return SDValue(); 1552 1553 // If the element value is larger than the splat value, check if it consists 1554 // of a repeated bit pattern of size ByteSize. 1555 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1556 return SDValue(); 1557 1558 // Properly sign extend the value. 1559 int MaskVal = SignExtend32(Value, ByteSize * 8); 1560 1561 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1562 if (MaskVal == 0) return SDValue(); 1563 1564 // Finally, if this value fits in a 5 bit sext field, return it 1565 if (SignExtend32<5>(MaskVal) == MaskVal) 1566 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1567 return SDValue(); 1568 } 1569 1570 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1571 /// amount, otherwise return -1. 1572 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1573 EVT VT = N->getValueType(0); 1574 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1575 return -1; 1576 1577 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1578 1579 // Find the first non-undef value in the shuffle mask. 1580 unsigned i; 1581 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1582 /*search*/; 1583 1584 if (i == 4) return -1; // all undef. 1585 1586 // Otherwise, check to see if the rest of the elements are consecutively 1587 // numbered from this value. 1588 unsigned ShiftAmt = SVOp->getMaskElt(i); 1589 if (ShiftAmt < i) return -1; 1590 ShiftAmt -= i; 1591 1592 // Check the rest of the elements to see if they are consecutive. 1593 for (++i; i != 4; ++i) 1594 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1595 return -1; 1596 1597 return ShiftAmt; 1598 } 1599 1600 //===----------------------------------------------------------------------===// 1601 // Addressing Mode Selection 1602 //===----------------------------------------------------------------------===// 1603 1604 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1605 /// or 64-bit immediate, and if the value can be accurately represented as a 1606 /// sign extension from a 16-bit value. If so, this returns true and the 1607 /// immediate. 1608 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1609 if (!isa<ConstantSDNode>(N)) 1610 return false; 1611 1612 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1613 if (N->getValueType(0) == MVT::i32) 1614 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1615 else 1616 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1617 } 1618 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1619 return isIntS16Immediate(Op.getNode(), Imm); 1620 } 1621 1622 1623 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1624 /// can be represented as an indexed [r+r] operation. Returns false if it 1625 /// can be more efficiently represented with [r+imm]. 1626 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1627 SDValue &Index, 1628 SelectionDAG &DAG) const { 1629 short imm = 0; 1630 if (N.getOpcode() == ISD::ADD) { 1631 if (isIntS16Immediate(N.getOperand(1), imm)) 1632 return false; // r+i 1633 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1634 return false; // r+i 1635 1636 Base = N.getOperand(0); 1637 Index = N.getOperand(1); 1638 return true; 1639 } else if (N.getOpcode() == ISD::OR) { 1640 if (isIntS16Immediate(N.getOperand(1), imm)) 1641 return false; // r+i can fold it if we can. 1642 1643 // If this is an or of disjoint bitfields, we can codegen this as an add 1644 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1645 // disjoint. 1646 APInt LHSKnownZero, LHSKnownOne; 1647 APInt RHSKnownZero, RHSKnownOne; 1648 DAG.computeKnownBits(N.getOperand(0), 1649 LHSKnownZero, LHSKnownOne); 1650 1651 if (LHSKnownZero.getBoolValue()) { 1652 DAG.computeKnownBits(N.getOperand(1), 1653 RHSKnownZero, RHSKnownOne); 1654 // If all of the bits are known zero on the LHS or RHS, the add won't 1655 // carry. 1656 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1657 Base = N.getOperand(0); 1658 Index = N.getOperand(1); 1659 return true; 1660 } 1661 } 1662 } 1663 1664 return false; 1665 } 1666 1667 // If we happen to be doing an i64 load or store into a stack slot that has 1668 // less than a 4-byte alignment, then the frame-index elimination may need to 1669 // use an indexed load or store instruction (because the offset may not be a 1670 // multiple of 4). The extra register needed to hold the offset comes from the 1671 // register scavenger, and it is possible that the scavenger will need to use 1672 // an emergency spill slot. As a result, we need to make sure that a spill slot 1673 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1674 // stack slot. 1675 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1676 // FIXME: This does not handle the LWA case. 1677 if (VT != MVT::i64) 1678 return; 1679 1680 // NOTE: We'll exclude negative FIs here, which come from argument 1681 // lowering, because there are no known test cases triggering this problem 1682 // using packed structures (or similar). We can remove this exclusion if 1683 // we find such a test case. The reason why this is so test-case driven is 1684 // because this entire 'fixup' is only to prevent crashes (from the 1685 // register scavenger) on not-really-valid inputs. For example, if we have: 1686 // %a = alloca i1 1687 // %b = bitcast i1* %a to i64* 1688 // store i64* a, i64 b 1689 // then the store should really be marked as 'align 1', but is not. If it 1690 // were marked as 'align 1' then the indexed form would have been 1691 // instruction-selected initially, and the problem this 'fixup' is preventing 1692 // won't happen regardless. 1693 if (FrameIdx < 0) 1694 return; 1695 1696 MachineFunction &MF = DAG.getMachineFunction(); 1697 MachineFrameInfo *MFI = MF.getFrameInfo(); 1698 1699 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1700 if (Align >= 4) 1701 return; 1702 1703 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1704 FuncInfo->setHasNonRISpills(); 1705 } 1706 1707 /// Returns true if the address N can be represented by a base register plus 1708 /// a signed 16-bit displacement [r+imm], and if it is not better 1709 /// represented as reg+reg. If Aligned is true, only accept displacements 1710 /// suitable for STD and friends, i.e. multiples of 4. 1711 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1712 SDValue &Base, 1713 SelectionDAG &DAG, 1714 bool Aligned) const { 1715 // FIXME dl should come from parent load or store, not from address 1716 SDLoc dl(N); 1717 // If this can be more profitably realized as r+r, fail. 1718 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1719 return false; 1720 1721 if (N.getOpcode() == ISD::ADD) { 1722 short imm = 0; 1723 if (isIntS16Immediate(N.getOperand(1), imm) && 1724 (!Aligned || (imm & 3) == 0)) { 1725 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1726 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1727 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1728 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1729 } else { 1730 Base = N.getOperand(0); 1731 } 1732 return true; // [r+i] 1733 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1734 // Match LOAD (ADD (X, Lo(G))). 1735 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1736 && "Cannot handle constant offsets yet!"); 1737 Disp = N.getOperand(1).getOperand(0); // The global address. 1738 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1739 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1740 Disp.getOpcode() == ISD::TargetConstantPool || 1741 Disp.getOpcode() == ISD::TargetJumpTable); 1742 Base = N.getOperand(0); 1743 return true; // [&g+r] 1744 } 1745 } else if (N.getOpcode() == ISD::OR) { 1746 short imm = 0; 1747 if (isIntS16Immediate(N.getOperand(1), imm) && 1748 (!Aligned || (imm & 3) == 0)) { 1749 // If this is an or of disjoint bitfields, we can codegen this as an add 1750 // (for better address arithmetic) if the LHS and RHS of the OR are 1751 // provably disjoint. 1752 APInt LHSKnownZero, LHSKnownOne; 1753 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1754 1755 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1756 // If all of the bits are known zero on the LHS or RHS, the add won't 1757 // carry. 1758 if (FrameIndexSDNode *FI = 1759 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1760 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1761 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1762 } else { 1763 Base = N.getOperand(0); 1764 } 1765 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1766 return true; 1767 } 1768 } 1769 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1770 // Loading from a constant address. 1771 1772 // If this address fits entirely in a 16-bit sext immediate field, codegen 1773 // this as "d, 0" 1774 short Imm; 1775 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1776 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1777 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1778 CN->getValueType(0)); 1779 return true; 1780 } 1781 1782 // Handle 32-bit sext immediates with LIS + addr mode. 1783 if ((CN->getValueType(0) == MVT::i32 || 1784 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1785 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1786 int Addr = (int)CN->getZExtValue(); 1787 1788 // Otherwise, break this down into an LIS + disp. 1789 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1790 1791 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1792 MVT::i32); 1793 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1794 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1795 return true; 1796 } 1797 } 1798 1799 Disp = DAG.getTargetConstant(0, dl, getPointerTy()); 1800 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1801 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1802 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1803 } else 1804 Base = N; 1805 return true; // [r+0] 1806 } 1807 1808 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1809 /// represented as an indexed [r+r] operation. 1810 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1811 SDValue &Index, 1812 SelectionDAG &DAG) const { 1813 // Check to see if we can easily represent this as an [r+r] address. This 1814 // will fail if it thinks that the address is more profitably represented as 1815 // reg+imm, e.g. where imm = 0. 1816 if (SelectAddressRegReg(N, Base, Index, DAG)) 1817 return true; 1818 1819 // If the operand is an addition, always emit this as [r+r], since this is 1820 // better (for code size, and execution, as the memop does the add for free) 1821 // than emitting an explicit add. 1822 if (N.getOpcode() == ISD::ADD) { 1823 Base = N.getOperand(0); 1824 Index = N.getOperand(1); 1825 return true; 1826 } 1827 1828 // Otherwise, do it the hard way, using R0 as the base register. 1829 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1830 N.getValueType()); 1831 Index = N; 1832 return true; 1833 } 1834 1835 /// getPreIndexedAddressParts - returns true by value, base pointer and 1836 /// offset pointer and addressing mode by reference if the node's address 1837 /// can be legally represented as pre-indexed load / store address. 1838 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1839 SDValue &Offset, 1840 ISD::MemIndexedMode &AM, 1841 SelectionDAG &DAG) const { 1842 if (DisablePPCPreinc) return false; 1843 1844 bool isLoad = true; 1845 SDValue Ptr; 1846 EVT VT; 1847 unsigned Alignment; 1848 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1849 Ptr = LD->getBasePtr(); 1850 VT = LD->getMemoryVT(); 1851 Alignment = LD->getAlignment(); 1852 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1853 Ptr = ST->getBasePtr(); 1854 VT = ST->getMemoryVT(); 1855 Alignment = ST->getAlignment(); 1856 isLoad = false; 1857 } else 1858 return false; 1859 1860 // PowerPC doesn't have preinc load/store instructions for vectors (except 1861 // for QPX, which does have preinc r+r forms). 1862 if (VT.isVector()) { 1863 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1864 return false; 1865 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1866 AM = ISD::PRE_INC; 1867 return true; 1868 } 1869 } 1870 1871 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1872 1873 // Common code will reject creating a pre-inc form if the base pointer 1874 // is a frame index, or if N is a store and the base pointer is either 1875 // the same as or a predecessor of the value being stored. Check for 1876 // those situations here, and try with swapped Base/Offset instead. 1877 bool Swap = false; 1878 1879 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1880 Swap = true; 1881 else if (!isLoad) { 1882 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1883 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1884 Swap = true; 1885 } 1886 1887 if (Swap) 1888 std::swap(Base, Offset); 1889 1890 AM = ISD::PRE_INC; 1891 return true; 1892 } 1893 1894 // LDU/STU can only handle immediates that are a multiple of 4. 1895 if (VT != MVT::i64) { 1896 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1897 return false; 1898 } else { 1899 // LDU/STU need an address with at least 4-byte alignment. 1900 if (Alignment < 4) 1901 return false; 1902 1903 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1904 return false; 1905 } 1906 1907 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1908 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1909 // sext i32 to i64 when addr mode is r+i. 1910 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1911 LD->getExtensionType() == ISD::SEXTLOAD && 1912 isa<ConstantSDNode>(Offset)) 1913 return false; 1914 } 1915 1916 AM = ISD::PRE_INC; 1917 return true; 1918 } 1919 1920 //===----------------------------------------------------------------------===// 1921 // LowerOperation implementation 1922 //===----------------------------------------------------------------------===// 1923 1924 /// GetLabelAccessInfo - Return true if we should reference labels using a 1925 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1926 static bool GetLabelAccessInfo(const TargetMachine &TM, 1927 const PPCSubtarget &Subtarget, 1928 unsigned &HiOpFlags, unsigned &LoOpFlags, 1929 const GlobalValue *GV = nullptr) { 1930 HiOpFlags = PPCII::MO_HA; 1931 LoOpFlags = PPCII::MO_LO; 1932 1933 // Don't use the pic base if not in PIC relocation model. 1934 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1935 1936 if (isPIC) { 1937 HiOpFlags |= PPCII::MO_PIC_FLAG; 1938 LoOpFlags |= PPCII::MO_PIC_FLAG; 1939 } 1940 1941 // If this is a reference to a global value that requires a non-lazy-ptr, make 1942 // sure that instruction lowering adds it. 1943 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1944 HiOpFlags |= PPCII::MO_NLP_FLAG; 1945 LoOpFlags |= PPCII::MO_NLP_FLAG; 1946 1947 if (GV->hasHiddenVisibility()) { 1948 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1949 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1950 } 1951 } 1952 1953 return isPIC; 1954 } 1955 1956 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1957 SelectionDAG &DAG) { 1958 SDLoc DL(HiPart); 1959 EVT PtrVT = HiPart.getValueType(); 1960 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1961 1962 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1963 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1964 1965 // With PIC, the first instruction is actually "GR+hi(&G)". 1966 if (isPIC) 1967 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1968 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1969 1970 // Generate non-pic code that has direct accesses to the constant pool. 1971 // The address of the global is just (hi(&g)+lo(&g)). 1972 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1973 } 1974 1975 static void setUsesTOCBasePtr(MachineFunction &MF) { 1976 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1977 FuncInfo->setUsesTOCBasePtr(); 1978 } 1979 1980 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 1981 setUsesTOCBasePtr(DAG.getMachineFunction()); 1982 } 1983 1984 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 1985 SDValue GA) { 1986 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1987 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 1988 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 1989 1990 SDValue Ops[] = { GA, Reg }; 1991 return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl, 1992 DAG.getVTList(VT, MVT::Other), Ops, VT, 1993 MachinePointerInfo::getGOT(), 0, false, true, 1994 false, 0); 1995 } 1996 1997 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1998 SelectionDAG &DAG) const { 1999 EVT PtrVT = Op.getValueType(); 2000 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2001 const Constant *C = CP->getConstVal(); 2002 2003 // 64-bit SVR4 ABI code is always position-independent. 2004 // The actual address of the GlobalValue is stored in the TOC. 2005 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2006 setUsesTOCBasePtr(DAG); 2007 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2008 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2009 } 2010 2011 unsigned MOHiFlag, MOLoFlag; 2012 bool isPIC = 2013 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2014 2015 if (isPIC && Subtarget.isSVR4ABI()) { 2016 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2017 PPCII::MO_PIC_FLAG); 2018 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2019 } 2020 2021 SDValue CPIHi = 2022 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2023 SDValue CPILo = 2024 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2025 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2026 } 2027 2028 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2029 EVT PtrVT = Op.getValueType(); 2030 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2031 2032 // 64-bit SVR4 ABI code is always position-independent. 2033 // The actual address of the GlobalValue is stored in the TOC. 2034 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2035 setUsesTOCBasePtr(DAG); 2036 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2037 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2038 } 2039 2040 unsigned MOHiFlag, MOLoFlag; 2041 bool isPIC = 2042 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2043 2044 if (isPIC && Subtarget.isSVR4ABI()) { 2045 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2046 PPCII::MO_PIC_FLAG); 2047 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2048 } 2049 2050 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2051 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2052 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2053 } 2054 2055 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2056 SelectionDAG &DAG) const { 2057 EVT PtrVT = Op.getValueType(); 2058 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2059 const BlockAddress *BA = BASDN->getBlockAddress(); 2060 2061 // 64-bit SVR4 ABI code is always position-independent. 2062 // The actual BlockAddress is stored in the TOC. 2063 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2064 setUsesTOCBasePtr(DAG); 2065 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2066 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2067 } 2068 2069 unsigned MOHiFlag, MOLoFlag; 2070 bool isPIC = 2071 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2072 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2073 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2074 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2075 } 2076 2077 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2078 SelectionDAG &DAG) const { 2079 2080 // FIXME: TLS addresses currently use medium model code sequences, 2081 // which is the most useful form. Eventually support for small and 2082 // large models could be added if users need it, at the cost of 2083 // additional complexity. 2084 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2085 SDLoc dl(GA); 2086 const GlobalValue *GV = GA->getGlobal(); 2087 EVT PtrVT = getPointerTy(); 2088 bool is64bit = Subtarget.isPPC64(); 2089 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2090 PICLevel::Level picLevel = M->getPICLevel(); 2091 2092 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2093 2094 if (Model == TLSModel::LocalExec) { 2095 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2096 PPCII::MO_TPREL_HA); 2097 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2098 PPCII::MO_TPREL_LO); 2099 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2100 is64bit ? MVT::i64 : MVT::i32); 2101 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2102 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2103 } 2104 2105 if (Model == TLSModel::InitialExec) { 2106 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2107 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2108 PPCII::MO_TLS); 2109 SDValue GOTPtr; 2110 if (is64bit) { 2111 setUsesTOCBasePtr(DAG); 2112 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2113 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2114 PtrVT, GOTReg, TGA); 2115 } else 2116 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2117 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2118 PtrVT, TGA, GOTPtr); 2119 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2120 } 2121 2122 if (Model == TLSModel::GeneralDynamic) { 2123 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2124 SDValue GOTPtr; 2125 if (is64bit) { 2126 setUsesTOCBasePtr(DAG); 2127 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2128 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2129 GOTReg, TGA); 2130 } else { 2131 if (picLevel == PICLevel::Small) 2132 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2133 else 2134 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2135 } 2136 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2137 GOTPtr, TGA, TGA); 2138 } 2139 2140 if (Model == TLSModel::LocalDynamic) { 2141 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2142 SDValue GOTPtr; 2143 if (is64bit) { 2144 setUsesTOCBasePtr(DAG); 2145 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2146 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2147 GOTReg, TGA); 2148 } else { 2149 if (picLevel == PICLevel::Small) 2150 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2151 else 2152 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2153 } 2154 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2155 PtrVT, GOTPtr, TGA, TGA); 2156 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2157 PtrVT, TLSAddr, TGA); 2158 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2159 } 2160 2161 llvm_unreachable("Unknown TLS model!"); 2162 } 2163 2164 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2165 SelectionDAG &DAG) const { 2166 EVT PtrVT = Op.getValueType(); 2167 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2168 SDLoc DL(GSDN); 2169 const GlobalValue *GV = GSDN->getGlobal(); 2170 2171 // 64-bit SVR4 ABI code is always position-independent. 2172 // The actual address of the GlobalValue is stored in the TOC. 2173 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2174 setUsesTOCBasePtr(DAG); 2175 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2176 return getTOCEntry(DAG, DL, true, GA); 2177 } 2178 2179 unsigned MOHiFlag, MOLoFlag; 2180 bool isPIC = 2181 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2182 2183 if (isPIC && Subtarget.isSVR4ABI()) { 2184 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2185 GSDN->getOffset(), 2186 PPCII::MO_PIC_FLAG); 2187 return getTOCEntry(DAG, DL, false, GA); 2188 } 2189 2190 SDValue GAHi = 2191 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2192 SDValue GALo = 2193 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2194 2195 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2196 2197 // If the global reference is actually to a non-lazy-pointer, we have to do an 2198 // extra load to get the address of the global. 2199 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2200 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2201 false, false, false, 0); 2202 return Ptr; 2203 } 2204 2205 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2206 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2207 SDLoc dl(Op); 2208 2209 if (Op.getValueType() == MVT::v2i64) { 2210 // When the operands themselves are v2i64 values, we need to do something 2211 // special because VSX has no underlying comparison operations for these. 2212 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2213 // Equality can be handled by casting to the legal type for Altivec 2214 // comparisons, everything else needs to be expanded. 2215 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2216 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2217 DAG.getSetCC(dl, MVT::v4i32, 2218 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2219 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2220 CC)); 2221 } 2222 2223 return SDValue(); 2224 } 2225 2226 // We handle most of these in the usual way. 2227 return Op; 2228 } 2229 2230 // If we're comparing for equality to zero, expose the fact that this is 2231 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2232 // fold the new nodes. 2233 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2234 if (C->isNullValue() && CC == ISD::SETEQ) { 2235 EVT VT = Op.getOperand(0).getValueType(); 2236 SDValue Zext = Op.getOperand(0); 2237 if (VT.bitsLT(MVT::i32)) { 2238 VT = MVT::i32; 2239 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2240 } 2241 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2242 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2243 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2244 DAG.getConstant(Log2b, dl, MVT::i32)); 2245 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2246 } 2247 // Leave comparisons against 0 and -1 alone for now, since they're usually 2248 // optimized. FIXME: revisit this when we can custom lower all setcc 2249 // optimizations. 2250 if (C->isAllOnesValue() || C->isNullValue()) 2251 return SDValue(); 2252 } 2253 2254 // If we have an integer seteq/setne, turn it into a compare against zero 2255 // by xor'ing the rhs with the lhs, which is faster than setting a 2256 // condition register, reading it back out, and masking the correct bit. The 2257 // normal approach here uses sub to do this instead of xor. Using xor exposes 2258 // the result to other bit-twiddling opportunities. 2259 EVT LHSVT = Op.getOperand(0).getValueType(); 2260 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2261 EVT VT = Op.getValueType(); 2262 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2263 Op.getOperand(1)); 2264 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2265 } 2266 return SDValue(); 2267 } 2268 2269 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2270 const PPCSubtarget &Subtarget) const { 2271 SDNode *Node = Op.getNode(); 2272 EVT VT = Node->getValueType(0); 2273 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2274 SDValue InChain = Node->getOperand(0); 2275 SDValue VAListPtr = Node->getOperand(1); 2276 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2277 SDLoc dl(Node); 2278 2279 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2280 2281 // gpr_index 2282 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2283 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2284 false, false, false, 0); 2285 InChain = GprIndex.getValue(1); 2286 2287 if (VT == MVT::i64) { 2288 // Check if GprIndex is even 2289 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2290 DAG.getConstant(1, dl, MVT::i32)); 2291 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2292 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2293 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2294 DAG.getConstant(1, dl, MVT::i32)); 2295 // Align GprIndex to be even if it isn't 2296 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2297 GprIndex); 2298 } 2299 2300 // fpr index is 1 byte after gpr 2301 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2302 DAG.getConstant(1, dl, MVT::i32)); 2303 2304 // fpr 2305 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2306 FprPtr, MachinePointerInfo(SV), MVT::i8, 2307 false, false, false, 0); 2308 InChain = FprIndex.getValue(1); 2309 2310 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2311 DAG.getConstant(8, dl, MVT::i32)); 2312 2313 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2314 DAG.getConstant(4, dl, MVT::i32)); 2315 2316 // areas 2317 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2318 MachinePointerInfo(), false, false, 2319 false, 0); 2320 InChain = OverflowArea.getValue(1); 2321 2322 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2323 MachinePointerInfo(), false, false, 2324 false, 0); 2325 InChain = RegSaveArea.getValue(1); 2326 2327 // select overflow_area if index > 8 2328 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2329 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2330 2331 // adjustment constant gpr_index * 4/8 2332 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2333 VT.isInteger() ? GprIndex : FprIndex, 2334 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2335 MVT::i32)); 2336 2337 // OurReg = RegSaveArea + RegConstant 2338 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2339 RegConstant); 2340 2341 // Floating types are 32 bytes into RegSaveArea 2342 if (VT.isFloatingPoint()) 2343 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2344 DAG.getConstant(32, dl, MVT::i32)); 2345 2346 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2347 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2348 VT.isInteger() ? GprIndex : FprIndex, 2349 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2350 MVT::i32)); 2351 2352 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2353 VT.isInteger() ? VAListPtr : FprPtr, 2354 MachinePointerInfo(SV), 2355 MVT::i8, false, false, 0); 2356 2357 // determine if we should load from reg_save_area or overflow_area 2358 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2359 2360 // increase overflow_area by 4/8 if gpr/fpr > 8 2361 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2362 DAG.getConstant(VT.isInteger() ? 4 : 8, 2363 dl, MVT::i32)); 2364 2365 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2366 OverflowAreaPlusN); 2367 2368 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2369 OverflowAreaPtr, 2370 MachinePointerInfo(), 2371 MVT::i32, false, false, 0); 2372 2373 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2374 false, false, false, 0); 2375 } 2376 2377 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2378 const PPCSubtarget &Subtarget) const { 2379 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2380 2381 // We have to copy the entire va_list struct: 2382 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2383 return DAG.getMemcpy(Op.getOperand(0), Op, 2384 Op.getOperand(1), Op.getOperand(2), 2385 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2386 false, MachinePointerInfo(), MachinePointerInfo()); 2387 } 2388 2389 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2390 SelectionDAG &DAG) const { 2391 return Op.getOperand(0); 2392 } 2393 2394 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2395 SelectionDAG &DAG) const { 2396 SDValue Chain = Op.getOperand(0); 2397 SDValue Trmp = Op.getOperand(1); // trampoline 2398 SDValue FPtr = Op.getOperand(2); // nested function 2399 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2400 SDLoc dl(Op); 2401 2402 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2403 bool isPPC64 = (PtrVT == MVT::i64); 2404 Type *IntPtrTy = 2405 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( 2406 *DAG.getContext()); 2407 2408 TargetLowering::ArgListTy Args; 2409 TargetLowering::ArgListEntry Entry; 2410 2411 Entry.Ty = IntPtrTy; 2412 Entry.Node = Trmp; Args.push_back(Entry); 2413 2414 // TrampSize == (isPPC64 ? 48 : 40); 2415 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2416 isPPC64 ? MVT::i64 : MVT::i32); 2417 Args.push_back(Entry); 2418 2419 Entry.Node = FPtr; Args.push_back(Entry); 2420 Entry.Node = Nest; Args.push_back(Entry); 2421 2422 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2423 TargetLowering::CallLoweringInfo CLI(DAG); 2424 CLI.setDebugLoc(dl).setChain(Chain) 2425 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2426 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2427 std::move(Args), 0); 2428 2429 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2430 return CallResult.second; 2431 } 2432 2433 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2434 const PPCSubtarget &Subtarget) const { 2435 MachineFunction &MF = DAG.getMachineFunction(); 2436 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2437 2438 SDLoc dl(Op); 2439 2440 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2441 // vastart just stores the address of the VarArgsFrameIndex slot into the 2442 // memory location argument. 2443 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2444 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2445 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2446 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2447 MachinePointerInfo(SV), 2448 false, false, 0); 2449 } 2450 2451 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2452 // We suppose the given va_list is already allocated. 2453 // 2454 // typedef struct { 2455 // char gpr; /* index into the array of 8 GPRs 2456 // * stored in the register save area 2457 // * gpr=0 corresponds to r3, 2458 // * gpr=1 to r4, etc. 2459 // */ 2460 // char fpr; /* index into the array of 8 FPRs 2461 // * stored in the register save area 2462 // * fpr=0 corresponds to f1, 2463 // * fpr=1 to f2, etc. 2464 // */ 2465 // char *overflow_arg_area; 2466 // /* location on stack that holds 2467 // * the next overflow argument 2468 // */ 2469 // char *reg_save_area; 2470 // /* where r3:r10 and f1:f8 (if saved) 2471 // * are stored 2472 // */ 2473 // } va_list[1]; 2474 2475 2476 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2477 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2478 2479 2480 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2481 2482 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2483 PtrVT); 2484 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2485 PtrVT); 2486 2487 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2488 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2489 2490 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2491 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2492 2493 uint64_t FPROffset = 1; 2494 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2495 2496 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2497 2498 // Store first byte : number of int regs 2499 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2500 Op.getOperand(1), 2501 MachinePointerInfo(SV), 2502 MVT::i8, false, false, 0); 2503 uint64_t nextOffset = FPROffset; 2504 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2505 ConstFPROffset); 2506 2507 // Store second byte : number of float regs 2508 SDValue secondStore = 2509 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2510 MachinePointerInfo(SV, nextOffset), MVT::i8, 2511 false, false, 0); 2512 nextOffset += StackOffset; 2513 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2514 2515 // Store second word : arguments given on stack 2516 SDValue thirdStore = 2517 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2518 MachinePointerInfo(SV, nextOffset), 2519 false, false, 0); 2520 nextOffset += FrameOffset; 2521 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2522 2523 // Store third word : arguments given in registers 2524 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2525 MachinePointerInfo(SV, nextOffset), 2526 false, false, 0); 2527 2528 } 2529 2530 #include "PPCGenCallingConv.inc" 2531 2532 // Function whose sole purpose is to kill compiler warnings 2533 // stemming from unused functions included from PPCGenCallingConv.inc. 2534 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2535 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2536 } 2537 2538 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2539 CCValAssign::LocInfo &LocInfo, 2540 ISD::ArgFlagsTy &ArgFlags, 2541 CCState &State) { 2542 return true; 2543 } 2544 2545 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2546 MVT &LocVT, 2547 CCValAssign::LocInfo &LocInfo, 2548 ISD::ArgFlagsTy &ArgFlags, 2549 CCState &State) { 2550 static const MCPhysReg ArgRegs[] = { 2551 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2552 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2553 }; 2554 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2555 2556 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2557 2558 // Skip one register if the first unallocated register has an even register 2559 // number and there are still argument registers available which have not been 2560 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2561 // need to skip a register if RegNum is odd. 2562 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2563 State.AllocateReg(ArgRegs[RegNum]); 2564 } 2565 2566 // Always return false here, as this function only makes sure that the first 2567 // unallocated register has an odd register number and does not actually 2568 // allocate a register for the current argument. 2569 return false; 2570 } 2571 2572 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2573 MVT &LocVT, 2574 CCValAssign::LocInfo &LocInfo, 2575 ISD::ArgFlagsTy &ArgFlags, 2576 CCState &State) { 2577 static const MCPhysReg ArgRegs[] = { 2578 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2579 PPC::F8 2580 }; 2581 2582 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2583 2584 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2585 2586 // If there is only one Floating-point register left we need to put both f64 2587 // values of a split ppc_fp128 value on the stack. 2588 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2589 State.AllocateReg(ArgRegs[RegNum]); 2590 } 2591 2592 // Always return false here, as this function only makes sure that the two f64 2593 // values a ppc_fp128 value is split into are both passed in registers or both 2594 // passed on the stack and does not actually allocate a register for the 2595 // current argument. 2596 return false; 2597 } 2598 2599 /// FPR - The set of FP registers that should be allocated for arguments, 2600 /// on Darwin. 2601 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2602 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2603 PPC::F11, PPC::F12, PPC::F13}; 2604 2605 /// QFPR - The set of QPX registers that should be allocated for arguments. 2606 static const MCPhysReg QFPR[] = { 2607 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2608 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2609 2610 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2611 /// the stack. 2612 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2613 unsigned PtrByteSize) { 2614 unsigned ArgSize = ArgVT.getStoreSize(); 2615 if (Flags.isByVal()) 2616 ArgSize = Flags.getByValSize(); 2617 2618 // Round up to multiples of the pointer size, except for array members, 2619 // which are always packed. 2620 if (!Flags.isInConsecutiveRegs()) 2621 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2622 2623 return ArgSize; 2624 } 2625 2626 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2627 /// on the stack. 2628 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2629 ISD::ArgFlagsTy Flags, 2630 unsigned PtrByteSize) { 2631 unsigned Align = PtrByteSize; 2632 2633 // Altivec parameters are padded to a 16 byte boundary. 2634 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2635 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2636 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2637 ArgVT == MVT::v1i128) 2638 Align = 16; 2639 // QPX vector types stored in double-precision are padded to a 32 byte 2640 // boundary. 2641 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2642 Align = 32; 2643 2644 // ByVal parameters are aligned as requested. 2645 if (Flags.isByVal()) { 2646 unsigned BVAlign = Flags.getByValAlign(); 2647 if (BVAlign > PtrByteSize) { 2648 if (BVAlign % PtrByteSize != 0) 2649 llvm_unreachable( 2650 "ByVal alignment is not a multiple of the pointer size"); 2651 2652 Align = BVAlign; 2653 } 2654 } 2655 2656 // Array members are always packed to their original alignment. 2657 if (Flags.isInConsecutiveRegs()) { 2658 // If the array member was split into multiple registers, the first 2659 // needs to be aligned to the size of the full type. (Except for 2660 // ppcf128, which is only aligned as its f64 components.) 2661 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2662 Align = OrigVT.getStoreSize(); 2663 else 2664 Align = ArgVT.getStoreSize(); 2665 } 2666 2667 return Align; 2668 } 2669 2670 /// CalculateStackSlotUsed - Return whether this argument will use its 2671 /// stack slot (instead of being passed in registers). ArgOffset, 2672 /// AvailableFPRs, and AvailableVRs must hold the current argument 2673 /// position, and will be updated to account for this argument. 2674 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2675 ISD::ArgFlagsTy Flags, 2676 unsigned PtrByteSize, 2677 unsigned LinkageSize, 2678 unsigned ParamAreaSize, 2679 unsigned &ArgOffset, 2680 unsigned &AvailableFPRs, 2681 unsigned &AvailableVRs, bool HasQPX) { 2682 bool UseMemory = false; 2683 2684 // Respect alignment of argument on the stack. 2685 unsigned Align = 2686 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2687 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2688 // If there's no space left in the argument save area, we must 2689 // use memory (this check also catches zero-sized arguments). 2690 if (ArgOffset >= LinkageSize + ParamAreaSize) 2691 UseMemory = true; 2692 2693 // Allocate argument on the stack. 2694 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2695 if (Flags.isInConsecutiveRegsLast()) 2696 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2697 // If we overran the argument save area, we must use memory 2698 // (this check catches arguments passed partially in memory) 2699 if (ArgOffset > LinkageSize + ParamAreaSize) 2700 UseMemory = true; 2701 2702 // However, if the argument is actually passed in an FPR or a VR, 2703 // we don't use memory after all. 2704 if (!Flags.isByVal()) { 2705 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2706 // QPX registers overlap with the scalar FP registers. 2707 (HasQPX && (ArgVT == MVT::v4f32 || 2708 ArgVT == MVT::v4f64 || 2709 ArgVT == MVT::v4i1))) 2710 if (AvailableFPRs > 0) { 2711 --AvailableFPRs; 2712 return false; 2713 } 2714 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2715 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2716 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2717 ArgVT == MVT::v1i128) 2718 if (AvailableVRs > 0) { 2719 --AvailableVRs; 2720 return false; 2721 } 2722 } 2723 2724 return UseMemory; 2725 } 2726 2727 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2728 /// ensure minimum alignment required for target. 2729 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2730 unsigned NumBytes) { 2731 unsigned TargetAlign = Lowering->getStackAlignment(); 2732 unsigned AlignMask = TargetAlign - 1; 2733 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2734 return NumBytes; 2735 } 2736 2737 SDValue 2738 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2739 CallingConv::ID CallConv, bool isVarArg, 2740 const SmallVectorImpl<ISD::InputArg> 2741 &Ins, 2742 SDLoc dl, SelectionDAG &DAG, 2743 SmallVectorImpl<SDValue> &InVals) 2744 const { 2745 if (Subtarget.isSVR4ABI()) { 2746 if (Subtarget.isPPC64()) 2747 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2748 dl, DAG, InVals); 2749 else 2750 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2751 dl, DAG, InVals); 2752 } else { 2753 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2754 dl, DAG, InVals); 2755 } 2756 } 2757 2758 SDValue 2759 PPCTargetLowering::LowerFormalArguments_32SVR4( 2760 SDValue Chain, 2761 CallingConv::ID CallConv, bool isVarArg, 2762 const SmallVectorImpl<ISD::InputArg> 2763 &Ins, 2764 SDLoc dl, SelectionDAG &DAG, 2765 SmallVectorImpl<SDValue> &InVals) const { 2766 2767 // 32-bit SVR4 ABI Stack Frame Layout: 2768 // +-----------------------------------+ 2769 // +--> | Back chain | 2770 // | +-----------------------------------+ 2771 // | | Floating-point register save area | 2772 // | +-----------------------------------+ 2773 // | | General register save area | 2774 // | +-----------------------------------+ 2775 // | | CR save word | 2776 // | +-----------------------------------+ 2777 // | | VRSAVE save word | 2778 // | +-----------------------------------+ 2779 // | | Alignment padding | 2780 // | +-----------------------------------+ 2781 // | | Vector register save area | 2782 // | +-----------------------------------+ 2783 // | | Local variable space | 2784 // | +-----------------------------------+ 2785 // | | Parameter list area | 2786 // | +-----------------------------------+ 2787 // | | LR save word | 2788 // | +-----------------------------------+ 2789 // SP--> +--- | Back chain | 2790 // +-----------------------------------+ 2791 // 2792 // Specifications: 2793 // System V Application Binary Interface PowerPC Processor Supplement 2794 // AltiVec Technology Programming Interface Manual 2795 2796 MachineFunction &MF = DAG.getMachineFunction(); 2797 MachineFrameInfo *MFI = MF.getFrameInfo(); 2798 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2799 2800 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2801 // Potential tail calls could cause overwriting of argument stack slots. 2802 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2803 (CallConv == CallingConv::Fast)); 2804 unsigned PtrByteSize = 4; 2805 2806 // Assign locations to all of the incoming arguments. 2807 SmallVector<CCValAssign, 16> ArgLocs; 2808 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2809 *DAG.getContext()); 2810 2811 // Reserve space for the linkage area on the stack. 2812 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2813 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2814 2815 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2816 2817 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2818 CCValAssign &VA = ArgLocs[i]; 2819 2820 // Arguments stored in registers. 2821 if (VA.isRegLoc()) { 2822 const TargetRegisterClass *RC; 2823 EVT ValVT = VA.getValVT(); 2824 2825 switch (ValVT.getSimpleVT().SimpleTy) { 2826 default: 2827 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2828 case MVT::i1: 2829 case MVT::i32: 2830 RC = &PPC::GPRCRegClass; 2831 break; 2832 case MVT::f32: 2833 if (Subtarget.hasP8Vector()) 2834 RC = &PPC::VSSRCRegClass; 2835 else 2836 RC = &PPC::F4RCRegClass; 2837 break; 2838 case MVT::f64: 2839 if (Subtarget.hasVSX()) 2840 RC = &PPC::VSFRCRegClass; 2841 else 2842 RC = &PPC::F8RCRegClass; 2843 break; 2844 case MVT::v16i8: 2845 case MVT::v8i16: 2846 case MVT::v4i32: 2847 RC = &PPC::VRRCRegClass; 2848 break; 2849 case MVT::v4f32: 2850 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2851 break; 2852 case MVT::v2f64: 2853 case MVT::v2i64: 2854 RC = &PPC::VSHRCRegClass; 2855 break; 2856 case MVT::v4f64: 2857 RC = &PPC::QFRCRegClass; 2858 break; 2859 case MVT::v4i1: 2860 RC = &PPC::QBRCRegClass; 2861 break; 2862 } 2863 2864 // Transform the arguments stored in physical registers into virtual ones. 2865 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2866 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2867 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2868 2869 if (ValVT == MVT::i1) 2870 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2871 2872 InVals.push_back(ArgValue); 2873 } else { 2874 // Argument stored in memory. 2875 assert(VA.isMemLoc()); 2876 2877 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2878 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2879 isImmutable); 2880 2881 // Create load nodes to retrieve arguments from the stack. 2882 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2883 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2884 MachinePointerInfo(), 2885 false, false, false, 0)); 2886 } 2887 } 2888 2889 // Assign locations to all of the incoming aggregate by value arguments. 2890 // Aggregates passed by value are stored in the local variable space of the 2891 // caller's stack frame, right above the parameter list area. 2892 SmallVector<CCValAssign, 16> ByValArgLocs; 2893 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2894 ByValArgLocs, *DAG.getContext()); 2895 2896 // Reserve stack space for the allocations in CCInfo. 2897 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2898 2899 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2900 2901 // Area that is at least reserved in the caller of this function. 2902 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2903 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2904 2905 // Set the size that is at least reserved in caller of this function. Tail 2906 // call optimized function's reserved stack space needs to be aligned so that 2907 // taking the difference between two stack areas will result in an aligned 2908 // stack. 2909 MinReservedArea = 2910 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2911 FuncInfo->setMinReservedArea(MinReservedArea); 2912 2913 SmallVector<SDValue, 8> MemOps; 2914 2915 // If the function takes variable number of arguments, make a frame index for 2916 // the start of the first vararg value... for expansion of llvm.va_start. 2917 if (isVarArg) { 2918 static const MCPhysReg GPArgRegs[] = { 2919 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2920 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2921 }; 2922 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2923 2924 static const MCPhysReg FPArgRegs[] = { 2925 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2926 PPC::F8 2927 }; 2928 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2929 if (DisablePPCFloatInVariadic) 2930 NumFPArgRegs = 0; 2931 2932 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2933 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2934 2935 // Make room for NumGPArgRegs and NumFPArgRegs. 2936 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2937 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2938 2939 FuncInfo->setVarArgsStackOffset( 2940 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2941 CCInfo.getNextStackOffset(), true)); 2942 2943 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2944 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2945 2946 // The fixed integer arguments of a variadic function are stored to the 2947 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2948 // the result of va_next. 2949 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2950 // Get an existing live-in vreg, or add a new one. 2951 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2952 if (!VReg) 2953 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2954 2955 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2956 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2957 MachinePointerInfo(), false, false, 0); 2958 MemOps.push_back(Store); 2959 // Increment the address by four for the next argument to store 2960 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2961 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2962 } 2963 2964 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2965 // is set. 2966 // The double arguments are stored to the VarArgsFrameIndex 2967 // on the stack. 2968 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2969 // Get an existing live-in vreg, or add a new one. 2970 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2971 if (!VReg) 2972 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2973 2974 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2975 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2976 MachinePointerInfo(), false, false, 0); 2977 MemOps.push_back(Store); 2978 // Increment the address by eight for the next argument to store 2979 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 2980 PtrVT); 2981 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2982 } 2983 } 2984 2985 if (!MemOps.empty()) 2986 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 2987 2988 return Chain; 2989 } 2990 2991 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2992 // value to MVT::i64 and then truncate to the correct register size. 2993 SDValue 2994 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 2995 SelectionDAG &DAG, SDValue ArgVal, 2996 SDLoc dl) const { 2997 if (Flags.isSExt()) 2998 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2999 DAG.getValueType(ObjectVT)); 3000 else if (Flags.isZExt()) 3001 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3002 DAG.getValueType(ObjectVT)); 3003 3004 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3005 } 3006 3007 SDValue 3008 PPCTargetLowering::LowerFormalArguments_64SVR4( 3009 SDValue Chain, 3010 CallingConv::ID CallConv, bool isVarArg, 3011 const SmallVectorImpl<ISD::InputArg> 3012 &Ins, 3013 SDLoc dl, SelectionDAG &DAG, 3014 SmallVectorImpl<SDValue> &InVals) const { 3015 // TODO: add description of PPC stack frame format, or at least some docs. 3016 // 3017 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3018 bool isLittleEndian = Subtarget.isLittleEndian(); 3019 MachineFunction &MF = DAG.getMachineFunction(); 3020 MachineFrameInfo *MFI = MF.getFrameInfo(); 3021 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3022 3023 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3024 "fastcc not supported on varargs functions"); 3025 3026 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3027 // Potential tail calls could cause overwriting of argument stack slots. 3028 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3029 (CallConv == CallingConv::Fast)); 3030 unsigned PtrByteSize = 8; 3031 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3032 3033 static const MCPhysReg GPR[] = { 3034 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3035 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3036 }; 3037 static const MCPhysReg VR[] = { 3038 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3039 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3040 }; 3041 static const MCPhysReg VSRH[] = { 3042 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3043 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3044 }; 3045 3046 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3047 const unsigned Num_FPR_Regs = 13; 3048 const unsigned Num_VR_Regs = array_lengthof(VR); 3049 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3050 3051 // Do a first pass over the arguments to determine whether the ABI 3052 // guarantees that our caller has allocated the parameter save area 3053 // on its stack frame. In the ELFv1 ABI, this is always the case; 3054 // in the ELFv2 ABI, it is true if this is a vararg function or if 3055 // any parameter is located in a stack slot. 3056 3057 bool HasParameterArea = !isELFv2ABI || isVarArg; 3058 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3059 unsigned NumBytes = LinkageSize; 3060 unsigned AvailableFPRs = Num_FPR_Regs; 3061 unsigned AvailableVRs = Num_VR_Regs; 3062 for (unsigned i = 0, e = Ins.size(); i != e; ++i) 3063 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3064 PtrByteSize, LinkageSize, ParamAreaSize, 3065 NumBytes, AvailableFPRs, AvailableVRs, 3066 Subtarget.hasQPX())) 3067 HasParameterArea = true; 3068 3069 // Add DAG nodes to load the arguments or copy them out of registers. On 3070 // entry to a function on PPC, the arguments start after the linkage area, 3071 // although the first ones are often in registers. 3072 3073 unsigned ArgOffset = LinkageSize; 3074 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3075 unsigned &QFPR_idx = FPR_idx; 3076 SmallVector<SDValue, 8> MemOps; 3077 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3078 unsigned CurArgIdx = 0; 3079 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3080 SDValue ArgVal; 3081 bool needsLoad = false; 3082 EVT ObjectVT = Ins[ArgNo].VT; 3083 EVT OrigVT = Ins[ArgNo].ArgVT; 3084 unsigned ObjSize = ObjectVT.getStoreSize(); 3085 unsigned ArgSize = ObjSize; 3086 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3087 if (Ins[ArgNo].isOrigArg()) { 3088 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3089 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3090 } 3091 // We re-align the argument offset for each argument, except when using the 3092 // fast calling convention, when we need to make sure we do that only when 3093 // we'll actually use a stack slot. 3094 unsigned CurArgOffset, Align; 3095 auto ComputeArgOffset = [&]() { 3096 /* Respect alignment of argument on the stack. */ 3097 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3098 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3099 CurArgOffset = ArgOffset; 3100 }; 3101 3102 if (CallConv != CallingConv::Fast) { 3103 ComputeArgOffset(); 3104 3105 /* Compute GPR index associated with argument offset. */ 3106 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3107 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3108 } 3109 3110 // FIXME the codegen can be much improved in some cases. 3111 // We do not have to keep everything in memory. 3112 if (Flags.isByVal()) { 3113 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3114 3115 if (CallConv == CallingConv::Fast) 3116 ComputeArgOffset(); 3117 3118 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3119 ObjSize = Flags.getByValSize(); 3120 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3121 // Empty aggregate parameters do not take up registers. Examples: 3122 // struct { } a; 3123 // union { } b; 3124 // int c[0]; 3125 // etc. However, we have to provide a place-holder in InVals, so 3126 // pretend we have an 8-byte item at the current address for that 3127 // purpose. 3128 if (!ObjSize) { 3129 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3130 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3131 InVals.push_back(FIN); 3132 continue; 3133 } 3134 3135 // Create a stack object covering all stack doublewords occupied 3136 // by the argument. If the argument is (fully or partially) on 3137 // the stack, or if the argument is fully in registers but the 3138 // caller has allocated the parameter save anyway, we can refer 3139 // directly to the caller's stack frame. Otherwise, create a 3140 // local copy in our own frame. 3141 int FI; 3142 if (HasParameterArea || 3143 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3144 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3145 else 3146 FI = MFI->CreateStackObject(ArgSize, Align, false); 3147 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3148 3149 // Handle aggregates smaller than 8 bytes. 3150 if (ObjSize < PtrByteSize) { 3151 // The value of the object is its address, which differs from the 3152 // address of the enclosing doubleword on big-endian systems. 3153 SDValue Arg = FIN; 3154 if (!isLittleEndian) { 3155 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3156 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3157 } 3158 InVals.push_back(Arg); 3159 3160 if (GPR_idx != Num_GPR_Regs) { 3161 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3162 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3163 SDValue Store; 3164 3165 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3166 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3167 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3168 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3169 MachinePointerInfo(FuncArg), 3170 ObjType, false, false, 0); 3171 } else { 3172 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3173 // store the whole register as-is to the parameter save area 3174 // slot. 3175 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3176 MachinePointerInfo(FuncArg), 3177 false, false, 0); 3178 } 3179 3180 MemOps.push_back(Store); 3181 } 3182 // Whether we copied from a register or not, advance the offset 3183 // into the parameter save area by a full doubleword. 3184 ArgOffset += PtrByteSize; 3185 continue; 3186 } 3187 3188 // The value of the object is its address, which is the address of 3189 // its first stack doubleword. 3190 InVals.push_back(FIN); 3191 3192 // Store whatever pieces of the object are in registers to memory. 3193 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3194 if (GPR_idx == Num_GPR_Regs) 3195 break; 3196 3197 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3198 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3199 SDValue Addr = FIN; 3200 if (j) { 3201 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3202 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3203 } 3204 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3205 MachinePointerInfo(FuncArg, j), 3206 false, false, 0); 3207 MemOps.push_back(Store); 3208 ++GPR_idx; 3209 } 3210 ArgOffset += ArgSize; 3211 continue; 3212 } 3213 3214 switch (ObjectVT.getSimpleVT().SimpleTy) { 3215 default: llvm_unreachable("Unhandled argument type!"); 3216 case MVT::i1: 3217 case MVT::i32: 3218 case MVT::i64: 3219 // These can be scalar arguments or elements of an integer array type 3220 // passed directly. Clang may use those instead of "byval" aggregate 3221 // types to avoid forcing arguments to memory unnecessarily. 3222 if (GPR_idx != Num_GPR_Regs) { 3223 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3224 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3225 3226 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3227 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3228 // value to MVT::i64 and then truncate to the correct register size. 3229 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3230 } else { 3231 if (CallConv == CallingConv::Fast) 3232 ComputeArgOffset(); 3233 3234 needsLoad = true; 3235 ArgSize = PtrByteSize; 3236 } 3237 if (CallConv != CallingConv::Fast || needsLoad) 3238 ArgOffset += 8; 3239 break; 3240 3241 case MVT::f32: 3242 case MVT::f64: 3243 // These can be scalar arguments or elements of a float array type 3244 // passed directly. The latter are used to implement ELFv2 homogenous 3245 // float aggregates. 3246 if (FPR_idx != Num_FPR_Regs) { 3247 unsigned VReg; 3248 3249 if (ObjectVT == MVT::f32) 3250 VReg = MF.addLiveIn(FPR[FPR_idx], 3251 Subtarget.hasP8Vector() 3252 ? &PPC::VSSRCRegClass 3253 : &PPC::F4RCRegClass); 3254 else 3255 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3256 ? &PPC::VSFRCRegClass 3257 : &PPC::F8RCRegClass); 3258 3259 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3260 ++FPR_idx; 3261 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3262 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3263 // once we support fp <-> gpr moves. 3264 3265 // This can only ever happen in the presence of f32 array types, 3266 // since otherwise we never run out of FPRs before running out 3267 // of GPRs. 3268 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3269 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3270 3271 if (ObjectVT == MVT::f32) { 3272 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3273 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3274 DAG.getConstant(32, dl, MVT::i32)); 3275 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3276 } 3277 3278 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3279 } else { 3280 if (CallConv == CallingConv::Fast) 3281 ComputeArgOffset(); 3282 3283 needsLoad = true; 3284 } 3285 3286 // When passing an array of floats, the array occupies consecutive 3287 // space in the argument area; only round up to the next doubleword 3288 // at the end of the array. Otherwise, each float takes 8 bytes. 3289 if (CallConv != CallingConv::Fast || needsLoad) { 3290 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3291 ArgOffset += ArgSize; 3292 if (Flags.isInConsecutiveRegsLast()) 3293 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3294 } 3295 break; 3296 case MVT::v4f32: 3297 case MVT::v4i32: 3298 case MVT::v8i16: 3299 case MVT::v16i8: 3300 case MVT::v2f64: 3301 case MVT::v2i64: 3302 case MVT::v1i128: 3303 if (!Subtarget.hasQPX()) { 3304 // These can be scalar arguments or elements of a vector array type 3305 // passed directly. The latter are used to implement ELFv2 homogenous 3306 // vector aggregates. 3307 if (VR_idx != Num_VR_Regs) { 3308 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3309 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3310 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3311 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3312 ++VR_idx; 3313 } else { 3314 if (CallConv == CallingConv::Fast) 3315 ComputeArgOffset(); 3316 3317 needsLoad = true; 3318 } 3319 if (CallConv != CallingConv::Fast || needsLoad) 3320 ArgOffset += 16; 3321 break; 3322 } // not QPX 3323 3324 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3325 "Invalid QPX parameter type"); 3326 /* fall through */ 3327 3328 case MVT::v4f64: 3329 case MVT::v4i1: 3330 // QPX vectors are treated like their scalar floating-point subregisters 3331 // (except that they're larger). 3332 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3333 if (QFPR_idx != Num_QFPR_Regs) { 3334 const TargetRegisterClass *RC; 3335 switch (ObjectVT.getSimpleVT().SimpleTy) { 3336 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3337 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3338 default: RC = &PPC::QBRCRegClass; break; 3339 } 3340 3341 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3342 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3343 ++QFPR_idx; 3344 } else { 3345 if (CallConv == CallingConv::Fast) 3346 ComputeArgOffset(); 3347 needsLoad = true; 3348 } 3349 if (CallConv != CallingConv::Fast || needsLoad) 3350 ArgOffset += Sz; 3351 break; 3352 } 3353 3354 // We need to load the argument to a virtual register if we determined 3355 // above that we ran out of physical registers of the appropriate type. 3356 if (needsLoad) { 3357 if (ObjSize < ArgSize && !isLittleEndian) 3358 CurArgOffset += ArgSize - ObjSize; 3359 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3360 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3361 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3362 false, false, false, 0); 3363 } 3364 3365 InVals.push_back(ArgVal); 3366 } 3367 3368 // Area that is at least reserved in the caller of this function. 3369 unsigned MinReservedArea; 3370 if (HasParameterArea) 3371 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3372 else 3373 MinReservedArea = LinkageSize; 3374 3375 // Set the size that is at least reserved in caller of this function. Tail 3376 // call optimized functions' reserved stack space needs to be aligned so that 3377 // taking the difference between two stack areas will result in an aligned 3378 // stack. 3379 MinReservedArea = 3380 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3381 FuncInfo->setMinReservedArea(MinReservedArea); 3382 3383 // If the function takes variable number of arguments, make a frame index for 3384 // the start of the first vararg value... for expansion of llvm.va_start. 3385 if (isVarArg) { 3386 int Depth = ArgOffset; 3387 3388 FuncInfo->setVarArgsFrameIndex( 3389 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3390 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3391 3392 // If this function is vararg, store any remaining integer argument regs 3393 // to their spots on the stack so that they may be loaded by deferencing the 3394 // result of va_next. 3395 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3396 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3397 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3398 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3399 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3400 MachinePointerInfo(), false, false, 0); 3401 MemOps.push_back(Store); 3402 // Increment the address by four for the next argument to store 3403 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3404 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3405 } 3406 } 3407 3408 if (!MemOps.empty()) 3409 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3410 3411 return Chain; 3412 } 3413 3414 SDValue 3415 PPCTargetLowering::LowerFormalArguments_Darwin( 3416 SDValue Chain, 3417 CallingConv::ID CallConv, bool isVarArg, 3418 const SmallVectorImpl<ISD::InputArg> 3419 &Ins, 3420 SDLoc dl, SelectionDAG &DAG, 3421 SmallVectorImpl<SDValue> &InVals) const { 3422 // TODO: add description of PPC stack frame format, or at least some docs. 3423 // 3424 MachineFunction &MF = DAG.getMachineFunction(); 3425 MachineFrameInfo *MFI = MF.getFrameInfo(); 3426 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3427 3428 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3429 bool isPPC64 = PtrVT == MVT::i64; 3430 // Potential tail calls could cause overwriting of argument stack slots. 3431 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3432 (CallConv == CallingConv::Fast)); 3433 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3434 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3435 unsigned ArgOffset = LinkageSize; 3436 // Area that is at least reserved in caller of this function. 3437 unsigned MinReservedArea = ArgOffset; 3438 3439 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3440 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3441 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3442 }; 3443 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3444 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3445 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3446 }; 3447 static const MCPhysReg VR[] = { 3448 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3449 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3450 }; 3451 3452 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3453 const unsigned Num_FPR_Regs = 13; 3454 const unsigned Num_VR_Regs = array_lengthof( VR); 3455 3456 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3457 3458 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3459 3460 // In 32-bit non-varargs functions, the stack space for vectors is after the 3461 // stack space for non-vectors. We do not use this space unless we have 3462 // too many vectors to fit in registers, something that only occurs in 3463 // constructed examples:), but we have to walk the arglist to figure 3464 // that out...for the pathological case, compute VecArgOffset as the 3465 // start of the vector parameter area. Computing VecArgOffset is the 3466 // entire point of the following loop. 3467 unsigned VecArgOffset = ArgOffset; 3468 if (!isVarArg && !isPPC64) { 3469 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3470 ++ArgNo) { 3471 EVT ObjectVT = Ins[ArgNo].VT; 3472 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3473 3474 if (Flags.isByVal()) { 3475 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3476 unsigned ObjSize = Flags.getByValSize(); 3477 unsigned ArgSize = 3478 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3479 VecArgOffset += ArgSize; 3480 continue; 3481 } 3482 3483 switch(ObjectVT.getSimpleVT().SimpleTy) { 3484 default: llvm_unreachable("Unhandled argument type!"); 3485 case MVT::i1: 3486 case MVT::i32: 3487 case MVT::f32: 3488 VecArgOffset += 4; 3489 break; 3490 case MVT::i64: // PPC64 3491 case MVT::f64: 3492 // FIXME: We are guaranteed to be !isPPC64 at this point. 3493 // Does MVT::i64 apply? 3494 VecArgOffset += 8; 3495 break; 3496 case MVT::v4f32: 3497 case MVT::v4i32: 3498 case MVT::v8i16: 3499 case MVT::v16i8: 3500 // Nothing to do, we're only looking at Nonvector args here. 3501 break; 3502 } 3503 } 3504 } 3505 // We've found where the vector parameter area in memory is. Skip the 3506 // first 12 parameters; these don't use that memory. 3507 VecArgOffset = ((VecArgOffset+15)/16)*16; 3508 VecArgOffset += 12*16; 3509 3510 // Add DAG nodes to load the arguments or copy them out of registers. On 3511 // entry to a function on PPC, the arguments start after the linkage area, 3512 // although the first ones are often in registers. 3513 3514 SmallVector<SDValue, 8> MemOps; 3515 unsigned nAltivecParamsAtEnd = 0; 3516 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3517 unsigned CurArgIdx = 0; 3518 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3519 SDValue ArgVal; 3520 bool needsLoad = false; 3521 EVT ObjectVT = Ins[ArgNo].VT; 3522 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3523 unsigned ArgSize = ObjSize; 3524 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3525 if (Ins[ArgNo].isOrigArg()) { 3526 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3527 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3528 } 3529 unsigned CurArgOffset = ArgOffset; 3530 3531 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3532 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3533 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3534 if (isVarArg || isPPC64) { 3535 MinReservedArea = ((MinReservedArea+15)/16)*16; 3536 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3537 Flags, 3538 PtrByteSize); 3539 } else nAltivecParamsAtEnd++; 3540 } else 3541 // Calculate min reserved area. 3542 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3543 Flags, 3544 PtrByteSize); 3545 3546 // FIXME the codegen can be much improved in some cases. 3547 // We do not have to keep everything in memory. 3548 if (Flags.isByVal()) { 3549 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3550 3551 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3552 ObjSize = Flags.getByValSize(); 3553 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3554 // Objects of size 1 and 2 are right justified, everything else is 3555 // left justified. This means the memory address is adjusted forwards. 3556 if (ObjSize==1 || ObjSize==2) { 3557 CurArgOffset = CurArgOffset + (4 - ObjSize); 3558 } 3559 // The value of the object is its address. 3560 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3561 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3562 InVals.push_back(FIN); 3563 if (ObjSize==1 || ObjSize==2) { 3564 if (GPR_idx != Num_GPR_Regs) { 3565 unsigned VReg; 3566 if (isPPC64) 3567 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3568 else 3569 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3570 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3571 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3572 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3573 MachinePointerInfo(FuncArg), 3574 ObjType, false, false, 0); 3575 MemOps.push_back(Store); 3576 ++GPR_idx; 3577 } 3578 3579 ArgOffset += PtrByteSize; 3580 3581 continue; 3582 } 3583 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3584 // Store whatever pieces of the object are in registers 3585 // to memory. ArgOffset will be the address of the beginning 3586 // of the object. 3587 if (GPR_idx != Num_GPR_Regs) { 3588 unsigned VReg; 3589 if (isPPC64) 3590 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3591 else 3592 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3593 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3594 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3595 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3596 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3597 MachinePointerInfo(FuncArg, j), 3598 false, false, 0); 3599 MemOps.push_back(Store); 3600 ++GPR_idx; 3601 ArgOffset += PtrByteSize; 3602 } else { 3603 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3604 break; 3605 } 3606 } 3607 continue; 3608 } 3609 3610 switch (ObjectVT.getSimpleVT().SimpleTy) { 3611 default: llvm_unreachable("Unhandled argument type!"); 3612 case MVT::i1: 3613 case MVT::i32: 3614 if (!isPPC64) { 3615 if (GPR_idx != Num_GPR_Regs) { 3616 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3617 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3618 3619 if (ObjectVT == MVT::i1) 3620 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3621 3622 ++GPR_idx; 3623 } else { 3624 needsLoad = true; 3625 ArgSize = PtrByteSize; 3626 } 3627 // All int arguments reserve stack space in the Darwin ABI. 3628 ArgOffset += PtrByteSize; 3629 break; 3630 } 3631 // FALLTHROUGH 3632 case MVT::i64: // PPC64 3633 if (GPR_idx != Num_GPR_Regs) { 3634 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3635 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3636 3637 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3638 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3639 // value to MVT::i64 and then truncate to the correct register size. 3640 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3641 3642 ++GPR_idx; 3643 } else { 3644 needsLoad = true; 3645 ArgSize = PtrByteSize; 3646 } 3647 // All int arguments reserve stack space in the Darwin ABI. 3648 ArgOffset += 8; 3649 break; 3650 3651 case MVT::f32: 3652 case MVT::f64: 3653 // Every 4 bytes of argument space consumes one of the GPRs available for 3654 // argument passing. 3655 if (GPR_idx != Num_GPR_Regs) { 3656 ++GPR_idx; 3657 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3658 ++GPR_idx; 3659 } 3660 if (FPR_idx != Num_FPR_Regs) { 3661 unsigned VReg; 3662 3663 if (ObjectVT == MVT::f32) 3664 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3665 else 3666 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3667 3668 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3669 ++FPR_idx; 3670 } else { 3671 needsLoad = true; 3672 } 3673 3674 // All FP arguments reserve stack space in the Darwin ABI. 3675 ArgOffset += isPPC64 ? 8 : ObjSize; 3676 break; 3677 case MVT::v4f32: 3678 case MVT::v4i32: 3679 case MVT::v8i16: 3680 case MVT::v16i8: 3681 // Note that vector arguments in registers don't reserve stack space, 3682 // except in varargs functions. 3683 if (VR_idx != Num_VR_Regs) { 3684 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3685 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3686 if (isVarArg) { 3687 while ((ArgOffset % 16) != 0) { 3688 ArgOffset += PtrByteSize; 3689 if (GPR_idx != Num_GPR_Regs) 3690 GPR_idx++; 3691 } 3692 ArgOffset += 16; 3693 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3694 } 3695 ++VR_idx; 3696 } else { 3697 if (!isVarArg && !isPPC64) { 3698 // Vectors go after all the nonvectors. 3699 CurArgOffset = VecArgOffset; 3700 VecArgOffset += 16; 3701 } else { 3702 // Vectors are aligned. 3703 ArgOffset = ((ArgOffset+15)/16)*16; 3704 CurArgOffset = ArgOffset; 3705 ArgOffset += 16; 3706 } 3707 needsLoad = true; 3708 } 3709 break; 3710 } 3711 3712 // We need to load the argument to a virtual register if we determined above 3713 // that we ran out of physical registers of the appropriate type. 3714 if (needsLoad) { 3715 int FI = MFI->CreateFixedObject(ObjSize, 3716 CurArgOffset + (ArgSize - ObjSize), 3717 isImmutable); 3718 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3719 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3720 false, false, false, 0); 3721 } 3722 3723 InVals.push_back(ArgVal); 3724 } 3725 3726 // Allow for Altivec parameters at the end, if needed. 3727 if (nAltivecParamsAtEnd) { 3728 MinReservedArea = ((MinReservedArea+15)/16)*16; 3729 MinReservedArea += 16*nAltivecParamsAtEnd; 3730 } 3731 3732 // Area that is at least reserved in the caller of this function. 3733 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3734 3735 // Set the size that is at least reserved in caller of this function. Tail 3736 // call optimized functions' reserved stack space needs to be aligned so that 3737 // taking the difference between two stack areas will result in an aligned 3738 // stack. 3739 MinReservedArea = 3740 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3741 FuncInfo->setMinReservedArea(MinReservedArea); 3742 3743 // If the function takes variable number of arguments, make a frame index for 3744 // the start of the first vararg value... for expansion of llvm.va_start. 3745 if (isVarArg) { 3746 int Depth = ArgOffset; 3747 3748 FuncInfo->setVarArgsFrameIndex( 3749 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3750 Depth, true)); 3751 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3752 3753 // If this function is vararg, store any remaining integer argument regs 3754 // to their spots on the stack so that they may be loaded by deferencing the 3755 // result of va_next. 3756 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3757 unsigned VReg; 3758 3759 if (isPPC64) 3760 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3761 else 3762 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3763 3764 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3765 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3766 MachinePointerInfo(), false, false, 0); 3767 MemOps.push_back(Store); 3768 // Increment the address by four for the next argument to store 3769 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3770 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3771 } 3772 } 3773 3774 if (!MemOps.empty()) 3775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3776 3777 return Chain; 3778 } 3779 3780 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3781 /// adjusted to accommodate the arguments for the tailcall. 3782 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3783 unsigned ParamSize) { 3784 3785 if (!isTailCall) return 0; 3786 3787 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3788 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3789 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3790 // Remember only if the new adjustement is bigger. 3791 if (SPDiff < FI->getTailCallSPDelta()) 3792 FI->setTailCallSPDelta(SPDiff); 3793 3794 return SPDiff; 3795 } 3796 3797 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3798 /// for tail call optimization. Targets which want to do tail call 3799 /// optimization should implement this function. 3800 bool 3801 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3802 CallingConv::ID CalleeCC, 3803 bool isVarArg, 3804 const SmallVectorImpl<ISD::InputArg> &Ins, 3805 SelectionDAG& DAG) const { 3806 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3807 return false; 3808 3809 // Variable argument functions are not supported. 3810 if (isVarArg) 3811 return false; 3812 3813 MachineFunction &MF = DAG.getMachineFunction(); 3814 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3815 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3816 // Functions containing by val parameters are not supported. 3817 for (unsigned i = 0; i != Ins.size(); i++) { 3818 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3819 if (Flags.isByVal()) return false; 3820 } 3821 3822 // Non-PIC/GOT tail calls are supported. 3823 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3824 return true; 3825 3826 // At the moment we can only do local tail calls (in same module, hidden 3827 // or protected) if we are generating PIC. 3828 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3829 return G->getGlobal()->hasHiddenVisibility() 3830 || G->getGlobal()->hasProtectedVisibility(); 3831 } 3832 3833 return false; 3834 } 3835 3836 /// isCallCompatibleAddress - Return the immediate to use if the specified 3837 /// 32-bit value is representable in the immediate field of a BxA instruction. 3838 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3839 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3840 if (!C) return nullptr; 3841 3842 int Addr = C->getZExtValue(); 3843 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3844 SignExtend32<26>(Addr) != Addr) 3845 return nullptr; // Top 6 bits have to be sext of immediate. 3846 3847 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3848 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 3849 } 3850 3851 namespace { 3852 3853 struct TailCallArgumentInfo { 3854 SDValue Arg; 3855 SDValue FrameIdxOp; 3856 int FrameIdx; 3857 3858 TailCallArgumentInfo() : FrameIdx(0) {} 3859 }; 3860 3861 } 3862 3863 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3864 static void 3865 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3866 SDValue Chain, 3867 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3868 SmallVectorImpl<SDValue> &MemOpChains, 3869 SDLoc dl) { 3870 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3871 SDValue Arg = TailCallArgs[i].Arg; 3872 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3873 int FI = TailCallArgs[i].FrameIdx; 3874 // Store relative to framepointer. 3875 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 3876 MachinePointerInfo::getFixedStack(FI), 3877 false, false, 0)); 3878 } 3879 } 3880 3881 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3882 /// the appropriate stack slot for the tail call optimized function call. 3883 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3884 MachineFunction &MF, 3885 SDValue Chain, 3886 SDValue OldRetAddr, 3887 SDValue OldFP, 3888 int SPDiff, 3889 bool isPPC64, 3890 bool isDarwinABI, 3891 SDLoc dl) { 3892 if (SPDiff) { 3893 // Calculate the new stack slot for the return address. 3894 int SlotSize = isPPC64 ? 8 : 4; 3895 const PPCFrameLowering *FL = 3896 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3897 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3898 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3899 NewRetAddrLoc, true); 3900 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3901 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3902 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3903 MachinePointerInfo::getFixedStack(NewRetAddr), 3904 false, false, 0); 3905 3906 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3907 // slot as the FP is never overwritten. 3908 if (isDarwinABI) { 3909 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3910 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3911 true); 3912 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3913 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 3914 MachinePointerInfo::getFixedStack(NewFPIdx), 3915 false, false, 0); 3916 } 3917 } 3918 return Chain; 3919 } 3920 3921 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3922 /// the position of the argument. 3923 static void 3924 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3925 SDValue Arg, int SPDiff, unsigned ArgOffset, 3926 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3927 int Offset = ArgOffset + SPDiff; 3928 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3929 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3930 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3931 SDValue FIN = DAG.getFrameIndex(FI, VT); 3932 TailCallArgumentInfo Info; 3933 Info.Arg = Arg; 3934 Info.FrameIdxOp = FIN; 3935 Info.FrameIdx = FI; 3936 TailCallArguments.push_back(Info); 3937 } 3938 3939 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3940 /// stack slot. Returns the chain as result and the loaded frame pointers in 3941 /// LROpOut/FPOpout. Used when tail calling. 3942 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3943 int SPDiff, 3944 SDValue Chain, 3945 SDValue &LROpOut, 3946 SDValue &FPOpOut, 3947 bool isDarwinABI, 3948 SDLoc dl) const { 3949 if (SPDiff) { 3950 // Load the LR and FP stack slot for later adjusting. 3951 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3952 LROpOut = getReturnAddrFrameIndex(DAG); 3953 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3954 false, false, false, 0); 3955 Chain = SDValue(LROpOut.getNode(), 1); 3956 3957 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3958 // slot as the FP is never overwritten. 3959 if (isDarwinABI) { 3960 FPOpOut = getFramePointerFrameIndex(DAG); 3961 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 3962 false, false, false, 0); 3963 Chain = SDValue(FPOpOut.getNode(), 1); 3964 } 3965 } 3966 return Chain; 3967 } 3968 3969 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 3970 /// by "Src" to address "Dst" of size "Size". Alignment information is 3971 /// specified by the specific parameter attribute. The copy will be passed as 3972 /// a byval function parameter. 3973 /// Sometimes what we are copying is the end of a larger object, the part that 3974 /// does not fit in registers. 3975 static SDValue 3976 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 3977 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 3978 SDLoc dl) { 3979 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 3980 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 3981 false, false, false, MachinePointerInfo(), 3982 MachinePointerInfo()); 3983 } 3984 3985 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 3986 /// tail calls. 3987 static void 3988 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 3989 SDValue Arg, SDValue PtrOff, int SPDiff, 3990 unsigned ArgOffset, bool isPPC64, bool isTailCall, 3991 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 3992 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 3993 SDLoc dl) { 3994 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3995 if (!isTailCall) { 3996 if (isVector) { 3997 SDValue StackPtr; 3998 if (isPPC64) 3999 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4000 else 4001 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4002 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4003 DAG.getConstant(ArgOffset, dl, PtrVT)); 4004 } 4005 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4006 MachinePointerInfo(), false, false, 0)); 4007 // Calculate and remember argument location. 4008 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4009 TailCallArguments); 4010 } 4011 4012 static 4013 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4014 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4015 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4016 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4017 MachineFunction &MF = DAG.getMachineFunction(); 4018 4019 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4020 // might overwrite each other in case of tail call optimization. 4021 SmallVector<SDValue, 8> MemOpChains2; 4022 // Do not flag preceding copytoreg stuff together with the following stuff. 4023 InFlag = SDValue(); 4024 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4025 MemOpChains2, dl); 4026 if (!MemOpChains2.empty()) 4027 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4028 4029 // Store the return address to the appropriate stack slot. 4030 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4031 isPPC64, isDarwinABI, dl); 4032 4033 // Emit callseq_end just before tailcall node. 4034 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4035 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4036 InFlag = Chain.getValue(1); 4037 } 4038 4039 // Is this global address that of a function that can be called by name? (as 4040 // opposed to something that must hold a descriptor for an indirect call). 4041 static bool isFunctionGlobalAddress(SDValue Callee) { 4042 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4043 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4044 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4045 return false; 4046 4047 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4048 } 4049 4050 return false; 4051 } 4052 4053 static 4054 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4055 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4056 bool isTailCall, bool IsPatchPoint, 4057 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4058 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4059 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4060 4061 bool isPPC64 = Subtarget.isPPC64(); 4062 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4063 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4064 4065 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4066 NodeTys.push_back(MVT::Other); // Returns a chain 4067 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4068 4069 unsigned CallOpc = PPCISD::CALL; 4070 4071 bool needIndirectCall = true; 4072 if (!isSVR4ABI || !isPPC64) 4073 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4074 // If this is an absolute destination address, use the munged value. 4075 Callee = SDValue(Dest, 0); 4076 needIndirectCall = false; 4077 } 4078 4079 if (isFunctionGlobalAddress(Callee)) { 4080 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4081 // A call to a TLS address is actually an indirect call to a 4082 // thread-specific pointer. 4083 unsigned OpFlags = 0; 4084 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4085 (Subtarget.getTargetTriple().isMacOSX() && 4086 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4087 (G->getGlobal()->isDeclaration() || 4088 G->getGlobal()->isWeakForLinker())) || 4089 (Subtarget.isTargetELF() && !isPPC64 && 4090 !G->getGlobal()->hasLocalLinkage() && 4091 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4092 // PC-relative references to external symbols should go through $stub, 4093 // unless we're building with the leopard linker or later, which 4094 // automatically synthesizes these stubs. 4095 OpFlags = PPCII::MO_PLT_OR_STUB; 4096 } 4097 4098 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4099 // every direct call is) turn it into a TargetGlobalAddress / 4100 // TargetExternalSymbol node so that legalize doesn't hack it. 4101 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4102 Callee.getValueType(), 0, OpFlags); 4103 needIndirectCall = false; 4104 } 4105 4106 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4107 unsigned char OpFlags = 0; 4108 4109 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4110 (Subtarget.getTargetTriple().isMacOSX() && 4111 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4112 (Subtarget.isTargetELF() && !isPPC64 && 4113 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4114 // PC-relative references to external symbols should go through $stub, 4115 // unless we're building with the leopard linker or later, which 4116 // automatically synthesizes these stubs. 4117 OpFlags = PPCII::MO_PLT_OR_STUB; 4118 } 4119 4120 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4121 OpFlags); 4122 needIndirectCall = false; 4123 } 4124 4125 if (IsPatchPoint) { 4126 // We'll form an invalid direct call when lowering a patchpoint; the full 4127 // sequence for an indirect call is complicated, and many of the 4128 // instructions introduced might have side effects (and, thus, can't be 4129 // removed later). The call itself will be removed as soon as the 4130 // argument/return lowering is complete, so the fact that it has the wrong 4131 // kind of operands should not really matter. 4132 needIndirectCall = false; 4133 } 4134 4135 if (needIndirectCall) { 4136 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4137 // to do the call, we can't use PPCISD::CALL. 4138 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4139 4140 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4141 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4142 // entry point, but to the function descriptor (the function entry point 4143 // address is part of the function descriptor though). 4144 // The function descriptor is a three doubleword structure with the 4145 // following fields: function entry point, TOC base address and 4146 // environment pointer. 4147 // Thus for a call through a function pointer, the following actions need 4148 // to be performed: 4149 // 1. Save the TOC of the caller in the TOC save area of its stack 4150 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4151 // 2. Load the address of the function entry point from the function 4152 // descriptor. 4153 // 3. Load the TOC of the callee from the function descriptor into r2. 4154 // 4. Load the environment pointer from the function descriptor into 4155 // r11. 4156 // 5. Branch to the function entry point address. 4157 // 6. On return of the callee, the TOC of the caller needs to be 4158 // restored (this is done in FinishCall()). 4159 // 4160 // The loads are scheduled at the beginning of the call sequence, and the 4161 // register copies are flagged together to ensure that no other 4162 // operations can be scheduled in between. E.g. without flagging the 4163 // copies together, a TOC access in the caller could be scheduled between 4164 // the assignment of the callee TOC and the branch to the callee, which 4165 // results in the TOC access going through the TOC of the callee instead 4166 // of going through the TOC of the caller, which leads to incorrect code. 4167 4168 // Load the address of the function entry point from the function 4169 // descriptor. 4170 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4171 if (LDChain.getValueType() == MVT::Glue) 4172 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4173 4174 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4175 4176 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4177 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4178 false, false, LoadsInv, 8); 4179 4180 // Load environment pointer into r11. 4181 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4182 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4183 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4184 MPI.getWithOffset(16), false, false, 4185 LoadsInv, 8); 4186 4187 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4188 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4189 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4190 MPI.getWithOffset(8), false, false, 4191 LoadsInv, 8); 4192 4193 setUsesTOCBasePtr(DAG); 4194 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4195 InFlag); 4196 Chain = TOCVal.getValue(0); 4197 InFlag = TOCVal.getValue(1); 4198 4199 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4200 InFlag); 4201 4202 Chain = EnvVal.getValue(0); 4203 InFlag = EnvVal.getValue(1); 4204 4205 MTCTROps[0] = Chain; 4206 MTCTROps[1] = LoadFuncPtr; 4207 MTCTROps[2] = InFlag; 4208 } 4209 4210 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4211 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4212 InFlag = Chain.getValue(1); 4213 4214 NodeTys.clear(); 4215 NodeTys.push_back(MVT::Other); 4216 NodeTys.push_back(MVT::Glue); 4217 Ops.push_back(Chain); 4218 CallOpc = PPCISD::BCTRL; 4219 Callee.setNode(nullptr); 4220 // Add use of X11 (holding environment pointer) 4221 if (isSVR4ABI && isPPC64 && !isELFv2ABI) 4222 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4223 // Add CTR register as callee so a bctr can be emitted later. 4224 if (isTailCall) 4225 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4226 } 4227 4228 // If this is a direct call, pass the chain and the callee. 4229 if (Callee.getNode()) { 4230 Ops.push_back(Chain); 4231 Ops.push_back(Callee); 4232 } 4233 // If this is a tail call add stack pointer delta. 4234 if (isTailCall) 4235 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4236 4237 // Add argument registers to the end of the list so that they are known live 4238 // into the call. 4239 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4240 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4241 RegsToPass[i].second.getValueType())); 4242 4243 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4244 // into the call. 4245 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4246 setUsesTOCBasePtr(DAG); 4247 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4248 } 4249 4250 return CallOpc; 4251 } 4252 4253 static 4254 bool isLocalCall(const SDValue &Callee) 4255 { 4256 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4257 return !G->getGlobal()->isDeclaration() && 4258 !G->getGlobal()->isWeakForLinker(); 4259 return false; 4260 } 4261 4262 SDValue 4263 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4264 CallingConv::ID CallConv, bool isVarArg, 4265 const SmallVectorImpl<ISD::InputArg> &Ins, 4266 SDLoc dl, SelectionDAG &DAG, 4267 SmallVectorImpl<SDValue> &InVals) const { 4268 4269 SmallVector<CCValAssign, 16> RVLocs; 4270 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4271 *DAG.getContext()); 4272 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4273 4274 // Copy all of the result registers out of their specified physreg. 4275 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4276 CCValAssign &VA = RVLocs[i]; 4277 assert(VA.isRegLoc() && "Can only return in registers!"); 4278 4279 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4280 VA.getLocReg(), VA.getLocVT(), InFlag); 4281 Chain = Val.getValue(1); 4282 InFlag = Val.getValue(2); 4283 4284 switch (VA.getLocInfo()) { 4285 default: llvm_unreachable("Unknown loc info!"); 4286 case CCValAssign::Full: break; 4287 case CCValAssign::AExt: 4288 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4289 break; 4290 case CCValAssign::ZExt: 4291 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4292 DAG.getValueType(VA.getValVT())); 4293 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4294 break; 4295 case CCValAssign::SExt: 4296 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4297 DAG.getValueType(VA.getValVT())); 4298 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4299 break; 4300 } 4301 4302 InVals.push_back(Val); 4303 } 4304 4305 return Chain; 4306 } 4307 4308 SDValue 4309 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4310 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4311 SelectionDAG &DAG, 4312 SmallVector<std::pair<unsigned, SDValue>, 8> 4313 &RegsToPass, 4314 SDValue InFlag, SDValue Chain, 4315 SDValue CallSeqStart, SDValue &Callee, 4316 int SPDiff, unsigned NumBytes, 4317 const SmallVectorImpl<ISD::InputArg> &Ins, 4318 SmallVectorImpl<SDValue> &InVals, 4319 ImmutableCallSite *CS) const { 4320 4321 std::vector<EVT> NodeTys; 4322 SmallVector<SDValue, 8> Ops; 4323 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4324 SPDiff, isTailCall, IsPatchPoint, RegsToPass, 4325 Ops, NodeTys, CS, Subtarget); 4326 4327 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4328 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4329 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4330 4331 // When performing tail call optimization the callee pops its arguments off 4332 // the stack. Account for this here so these bytes can be pushed back on in 4333 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4334 int BytesCalleePops = 4335 (CallConv == CallingConv::Fast && 4336 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4337 4338 // Add a register mask operand representing the call-preserved registers. 4339 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4340 const uint32_t *Mask = 4341 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4342 assert(Mask && "Missing call preserved mask for calling convention"); 4343 Ops.push_back(DAG.getRegisterMask(Mask)); 4344 4345 if (InFlag.getNode()) 4346 Ops.push_back(InFlag); 4347 4348 // Emit tail call. 4349 if (isTailCall) { 4350 assert(((Callee.getOpcode() == ISD::Register && 4351 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4352 Callee.getOpcode() == ISD::TargetExternalSymbol || 4353 Callee.getOpcode() == ISD::TargetGlobalAddress || 4354 isa<ConstantSDNode>(Callee)) && 4355 "Expecting an global address, external symbol, absolute value or register"); 4356 4357 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4358 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4359 } 4360 4361 // Add a NOP immediately after the branch instruction when using the 64-bit 4362 // SVR4 ABI. At link time, if caller and callee are in a different module and 4363 // thus have a different TOC, the call will be replaced with a call to a stub 4364 // function which saves the current TOC, loads the TOC of the callee and 4365 // branches to the callee. The NOP will be replaced with a load instruction 4366 // which restores the TOC of the caller from the TOC save slot of the current 4367 // stack frame. If caller and callee belong to the same module (and have the 4368 // same TOC), the NOP will remain unchanged. 4369 4370 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4371 !IsPatchPoint) { 4372 if (CallOpc == PPCISD::BCTRL) { 4373 // This is a call through a function pointer. 4374 // Restore the caller TOC from the save area into R2. 4375 // See PrepareCall() for more information about calls through function 4376 // pointers in the 64-bit SVR4 ABI. 4377 // We are using a target-specific load with r2 hard coded, because the 4378 // result of a target-independent load would never go directly into r2, 4379 // since r2 is a reserved register (which prevents the register allocator 4380 // from allocating it), resulting in an additional register being 4381 // allocated and an unnecessary move instruction being generated. 4382 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4383 4384 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4385 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4386 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4387 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4388 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4389 4390 // The address needs to go after the chain input but before the flag (or 4391 // any other variadic arguments). 4392 Ops.insert(std::next(Ops.begin()), AddTOC); 4393 } else if ((CallOpc == PPCISD::CALL) && 4394 (!isLocalCall(Callee) || 4395 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4396 // Otherwise insert NOP for non-local calls. 4397 CallOpc = PPCISD::CALL_NOP; 4398 } 4399 4400 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4401 InFlag = Chain.getValue(1); 4402 4403 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4404 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4405 InFlag, dl); 4406 if (!Ins.empty()) 4407 InFlag = Chain.getValue(1); 4408 4409 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4410 Ins, dl, DAG, InVals); 4411 } 4412 4413 SDValue 4414 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4415 SmallVectorImpl<SDValue> &InVals) const { 4416 SelectionDAG &DAG = CLI.DAG; 4417 SDLoc &dl = CLI.DL; 4418 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4419 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4420 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4421 SDValue Chain = CLI.Chain; 4422 SDValue Callee = CLI.Callee; 4423 bool &isTailCall = CLI.IsTailCall; 4424 CallingConv::ID CallConv = CLI.CallConv; 4425 bool isVarArg = CLI.IsVarArg; 4426 bool IsPatchPoint = CLI.IsPatchPoint; 4427 ImmutableCallSite *CS = CLI.CS; 4428 4429 if (isTailCall) 4430 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4431 Ins, DAG); 4432 4433 if (!isTailCall && CS && CS->isMustTailCall()) 4434 report_fatal_error("failed to perform tail call elimination on a call " 4435 "site marked musttail"); 4436 4437 if (Subtarget.isSVR4ABI()) { 4438 if (Subtarget.isPPC64()) 4439 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4440 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4441 dl, DAG, InVals, CS); 4442 else 4443 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4444 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4445 dl, DAG, InVals, CS); 4446 } 4447 4448 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4449 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4450 dl, DAG, InVals, CS); 4451 } 4452 4453 SDValue 4454 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4455 CallingConv::ID CallConv, bool isVarArg, 4456 bool isTailCall, bool IsPatchPoint, 4457 const SmallVectorImpl<ISD::OutputArg> &Outs, 4458 const SmallVectorImpl<SDValue> &OutVals, 4459 const SmallVectorImpl<ISD::InputArg> &Ins, 4460 SDLoc dl, SelectionDAG &DAG, 4461 SmallVectorImpl<SDValue> &InVals, 4462 ImmutableCallSite *CS) const { 4463 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4464 // of the 32-bit SVR4 ABI stack frame layout. 4465 4466 assert((CallConv == CallingConv::C || 4467 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4468 4469 unsigned PtrByteSize = 4; 4470 4471 MachineFunction &MF = DAG.getMachineFunction(); 4472 4473 // Mark this function as potentially containing a function that contains a 4474 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4475 // and restoring the callers stack pointer in this functions epilog. This is 4476 // done because by tail calling the called function might overwrite the value 4477 // in this function's (MF) stack pointer stack slot 0(SP). 4478 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4479 CallConv == CallingConv::Fast) 4480 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4481 4482 // Count how many bytes are to be pushed on the stack, including the linkage 4483 // area, parameter list area and the part of the local variable space which 4484 // contains copies of aggregates which are passed by value. 4485 4486 // Assign locations to all of the outgoing arguments. 4487 SmallVector<CCValAssign, 16> ArgLocs; 4488 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4489 *DAG.getContext()); 4490 4491 // Reserve space for the linkage area on the stack. 4492 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4493 PtrByteSize); 4494 4495 if (isVarArg) { 4496 // Handle fixed and variable vector arguments differently. 4497 // Fixed vector arguments go into registers as long as registers are 4498 // available. Variable vector arguments always go into memory. 4499 unsigned NumArgs = Outs.size(); 4500 4501 for (unsigned i = 0; i != NumArgs; ++i) { 4502 MVT ArgVT = Outs[i].VT; 4503 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4504 bool Result; 4505 4506 if (Outs[i].IsFixed) { 4507 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4508 CCInfo); 4509 } else { 4510 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4511 ArgFlags, CCInfo); 4512 } 4513 4514 if (Result) { 4515 #ifndef NDEBUG 4516 errs() << "Call operand #" << i << " has unhandled type " 4517 << EVT(ArgVT).getEVTString() << "\n"; 4518 #endif 4519 llvm_unreachable(nullptr); 4520 } 4521 } 4522 } else { 4523 // All arguments are treated the same. 4524 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4525 } 4526 4527 // Assign locations to all of the outgoing aggregate by value arguments. 4528 SmallVector<CCValAssign, 16> ByValArgLocs; 4529 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4530 ByValArgLocs, *DAG.getContext()); 4531 4532 // Reserve stack space for the allocations in CCInfo. 4533 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4534 4535 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4536 4537 // Size of the linkage area, parameter list area and the part of the local 4538 // space variable where copies of aggregates which are passed by value are 4539 // stored. 4540 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4541 4542 // Calculate by how many bytes the stack has to be adjusted in case of tail 4543 // call optimization. 4544 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4545 4546 // Adjust the stack pointer for the new arguments... 4547 // These operations are automatically eliminated by the prolog/epilog pass 4548 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4549 dl); 4550 SDValue CallSeqStart = Chain; 4551 4552 // Load the return address and frame pointer so it can be moved somewhere else 4553 // later. 4554 SDValue LROp, FPOp; 4555 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4556 dl); 4557 4558 // Set up a copy of the stack pointer for use loading and storing any 4559 // arguments that may not fit in the registers available for argument 4560 // passing. 4561 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4562 4563 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4564 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4565 SmallVector<SDValue, 8> MemOpChains; 4566 4567 bool seenFloatArg = false; 4568 // Walk the register/memloc assignments, inserting copies/loads. 4569 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4570 i != e; 4571 ++i) { 4572 CCValAssign &VA = ArgLocs[i]; 4573 SDValue Arg = OutVals[i]; 4574 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4575 4576 if (Flags.isByVal()) { 4577 // Argument is an aggregate which is passed by value, thus we need to 4578 // create a copy of it in the local variable space of the current stack 4579 // frame (which is the stack frame of the caller) and pass the address of 4580 // this copy to the callee. 4581 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4582 CCValAssign &ByValVA = ByValArgLocs[j++]; 4583 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4584 4585 // Memory reserved in the local variable space of the callers stack frame. 4586 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4587 4588 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4589 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 4590 4591 // Create a copy of the argument in the local area of the current 4592 // stack frame. 4593 SDValue MemcpyCall = 4594 CreateCopyOfByValArgument(Arg, PtrOff, 4595 CallSeqStart.getNode()->getOperand(0), 4596 Flags, DAG, dl); 4597 4598 // This must go outside the CALLSEQ_START..END. 4599 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4600 CallSeqStart.getNode()->getOperand(1), 4601 SDLoc(MemcpyCall)); 4602 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4603 NewCallSeqStart.getNode()); 4604 Chain = CallSeqStart = NewCallSeqStart; 4605 4606 // Pass the address of the aggregate copy on the stack either in a 4607 // physical register or in the parameter list area of the current stack 4608 // frame to the callee. 4609 Arg = PtrOff; 4610 } 4611 4612 if (VA.isRegLoc()) { 4613 if (Arg.getValueType() == MVT::i1) 4614 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4615 4616 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4617 // Put argument in a physical register. 4618 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4619 } else { 4620 // Put argument in the parameter list area of the current stack frame. 4621 assert(VA.isMemLoc()); 4622 unsigned LocMemOffset = VA.getLocMemOffset(); 4623 4624 if (!isTailCall) { 4625 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4626 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 4627 4628 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4629 MachinePointerInfo(), 4630 false, false, 0)); 4631 } else { 4632 // Calculate and remember argument location. 4633 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4634 TailCallArguments); 4635 } 4636 } 4637 } 4638 4639 if (!MemOpChains.empty()) 4640 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4641 4642 // Build a sequence of copy-to-reg nodes chained together with token chain 4643 // and flag operands which copy the outgoing args into the appropriate regs. 4644 SDValue InFlag; 4645 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4646 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4647 RegsToPass[i].second, InFlag); 4648 InFlag = Chain.getValue(1); 4649 } 4650 4651 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4652 // registers. 4653 if (isVarArg) { 4654 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4655 SDValue Ops[] = { Chain, InFlag }; 4656 4657 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4658 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4659 4660 InFlag = Chain.getValue(1); 4661 } 4662 4663 if (isTailCall) 4664 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4665 false, TailCallArguments); 4666 4667 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 4668 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4669 NumBytes, Ins, InVals, CS); 4670 } 4671 4672 // Copy an argument into memory, being careful to do this outside the 4673 // call sequence for the call to which the argument belongs. 4674 SDValue 4675 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4676 SDValue CallSeqStart, 4677 ISD::ArgFlagsTy Flags, 4678 SelectionDAG &DAG, 4679 SDLoc dl) const { 4680 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4681 CallSeqStart.getNode()->getOperand(0), 4682 Flags, DAG, dl); 4683 // The MEMCPY must go outside the CALLSEQ_START..END. 4684 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4685 CallSeqStart.getNode()->getOperand(1), 4686 SDLoc(MemcpyCall)); 4687 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4688 NewCallSeqStart.getNode()); 4689 return NewCallSeqStart; 4690 } 4691 4692 SDValue 4693 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4694 CallingConv::ID CallConv, bool isVarArg, 4695 bool isTailCall, bool IsPatchPoint, 4696 const SmallVectorImpl<ISD::OutputArg> &Outs, 4697 const SmallVectorImpl<SDValue> &OutVals, 4698 const SmallVectorImpl<ISD::InputArg> &Ins, 4699 SDLoc dl, SelectionDAG &DAG, 4700 SmallVectorImpl<SDValue> &InVals, 4701 ImmutableCallSite *CS) const { 4702 4703 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4704 bool isLittleEndian = Subtarget.isLittleEndian(); 4705 unsigned NumOps = Outs.size(); 4706 4707 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 4708 unsigned PtrByteSize = 8; 4709 4710 MachineFunction &MF = DAG.getMachineFunction(); 4711 4712 // Mark this function as potentially containing a function that contains a 4713 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4714 // and restoring the callers stack pointer in this functions epilog. This is 4715 // done because by tail calling the called function might overwrite the value 4716 // in this function's (MF) stack pointer stack slot 0(SP). 4717 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4718 CallConv == CallingConv::Fast) 4719 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4720 4721 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4722 "fastcc not supported on varargs functions"); 4723 4724 // Count how many bytes are to be pushed on the stack, including the linkage 4725 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4726 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4727 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4728 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4729 unsigned NumBytes = LinkageSize; 4730 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4731 unsigned &QFPR_idx = FPR_idx; 4732 4733 static const MCPhysReg GPR[] = { 4734 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4735 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4736 }; 4737 static const MCPhysReg VR[] = { 4738 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4739 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4740 }; 4741 static const MCPhysReg VSRH[] = { 4742 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4743 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4744 }; 4745 4746 const unsigned NumGPRs = array_lengthof(GPR); 4747 const unsigned NumFPRs = 13; 4748 const unsigned NumVRs = array_lengthof(VR); 4749 const unsigned NumQFPRs = NumFPRs; 4750 4751 // When using the fast calling convention, we don't provide backing for 4752 // arguments that will be in registers. 4753 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4754 4755 // Add up all the space actually used. 4756 for (unsigned i = 0; i != NumOps; ++i) { 4757 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4758 EVT ArgVT = Outs[i].VT; 4759 EVT OrigVT = Outs[i].ArgVT; 4760 4761 if (CallConv == CallingConv::Fast) { 4762 if (Flags.isByVal()) 4763 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4764 else 4765 switch (ArgVT.getSimpleVT().SimpleTy) { 4766 default: llvm_unreachable("Unexpected ValueType for argument!"); 4767 case MVT::i1: 4768 case MVT::i32: 4769 case MVT::i64: 4770 if (++NumGPRsUsed <= NumGPRs) 4771 continue; 4772 break; 4773 case MVT::v4i32: 4774 case MVT::v8i16: 4775 case MVT::v16i8: 4776 case MVT::v2f64: 4777 case MVT::v2i64: 4778 case MVT::v1i128: 4779 if (++NumVRsUsed <= NumVRs) 4780 continue; 4781 break; 4782 case MVT::v4f32: 4783 // When using QPX, this is handled like a FP register, otherwise, it 4784 // is an Altivec register. 4785 if (Subtarget.hasQPX()) { 4786 if (++NumFPRsUsed <= NumFPRs) 4787 continue; 4788 } else { 4789 if (++NumVRsUsed <= NumVRs) 4790 continue; 4791 } 4792 break; 4793 case MVT::f32: 4794 case MVT::f64: 4795 case MVT::v4f64: // QPX 4796 case MVT::v4i1: // QPX 4797 if (++NumFPRsUsed <= NumFPRs) 4798 continue; 4799 break; 4800 } 4801 } 4802 4803 /* Respect alignment of argument on the stack. */ 4804 unsigned Align = 4805 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4806 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4807 4808 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4809 if (Flags.isInConsecutiveRegsLast()) 4810 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4811 } 4812 4813 unsigned NumBytesActuallyUsed = NumBytes; 4814 4815 // The prolog code of the callee may store up to 8 GPR argument registers to 4816 // the stack, allowing va_start to index over them in memory if its varargs. 4817 // Because we cannot tell if this is needed on the caller side, we have to 4818 // conservatively assume that it is needed. As such, make sure we have at 4819 // least enough stack space for the caller to store the 8 GPRs. 4820 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4821 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4822 4823 // Tail call needs the stack to be aligned. 4824 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4825 CallConv == CallingConv::Fast) 4826 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4827 4828 // Calculate by how many bytes the stack has to be adjusted in case of tail 4829 // call optimization. 4830 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4831 4832 // To protect arguments on the stack from being clobbered in a tail call, 4833 // force all the loads to happen before doing any other lowering. 4834 if (isTailCall) 4835 Chain = DAG.getStackArgumentTokenFactor(Chain); 4836 4837 // Adjust the stack pointer for the new arguments... 4838 // These operations are automatically eliminated by the prolog/epilog pass 4839 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4840 dl); 4841 SDValue CallSeqStart = Chain; 4842 4843 // Load the return address and frame pointer so it can be move somewhere else 4844 // later. 4845 SDValue LROp, FPOp; 4846 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4847 dl); 4848 4849 // Set up a copy of the stack pointer for use loading and storing any 4850 // arguments that may not fit in the registers available for argument 4851 // passing. 4852 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4853 4854 // Figure out which arguments are going to go in registers, and which in 4855 // memory. Also, if this is a vararg function, floating point operations 4856 // must be stored to our stack, and loaded into integer regs as well, if 4857 // any integer regs are available for argument passing. 4858 unsigned ArgOffset = LinkageSize; 4859 4860 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4861 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4862 4863 SmallVector<SDValue, 8> MemOpChains; 4864 for (unsigned i = 0; i != NumOps; ++i) { 4865 SDValue Arg = OutVals[i]; 4866 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4867 EVT ArgVT = Outs[i].VT; 4868 EVT OrigVT = Outs[i].ArgVT; 4869 4870 // PtrOff will be used to store the current argument to the stack if a 4871 // register cannot be found for it. 4872 SDValue PtrOff; 4873 4874 // We re-align the argument offset for each argument, except when using the 4875 // fast calling convention, when we need to make sure we do that only when 4876 // we'll actually use a stack slot. 4877 auto ComputePtrOff = [&]() { 4878 /* Respect alignment of argument on the stack. */ 4879 unsigned Align = 4880 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4881 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4882 4883 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4884 4885 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4886 }; 4887 4888 if (CallConv != CallingConv::Fast) { 4889 ComputePtrOff(); 4890 4891 /* Compute GPR index associated with argument offset. */ 4892 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4893 GPR_idx = std::min(GPR_idx, NumGPRs); 4894 } 4895 4896 // Promote integers to 64-bit values. 4897 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4898 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4899 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4900 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4901 } 4902 4903 // FIXME memcpy is used way more than necessary. Correctness first. 4904 // Note: "by value" is code for passing a structure by value, not 4905 // basic types. 4906 if (Flags.isByVal()) { 4907 // Note: Size includes alignment padding, so 4908 // struct x { short a; char b; } 4909 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4910 // These are the proper values we need for right-justifying the 4911 // aggregate in a parameter register. 4912 unsigned Size = Flags.getByValSize(); 4913 4914 // An empty aggregate parameter takes up no storage and no 4915 // registers. 4916 if (Size == 0) 4917 continue; 4918 4919 if (CallConv == CallingConv::Fast) 4920 ComputePtrOff(); 4921 4922 // All aggregates smaller than 8 bytes must be passed right-justified. 4923 if (Size==1 || Size==2 || Size==4) { 4924 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4925 if (GPR_idx != NumGPRs) { 4926 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4927 MachinePointerInfo(), VT, 4928 false, false, false, 0); 4929 MemOpChains.push_back(Load.getValue(1)); 4930 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4931 4932 ArgOffset += PtrByteSize; 4933 continue; 4934 } 4935 } 4936 4937 if (GPR_idx == NumGPRs && Size < 8) { 4938 SDValue AddPtr = PtrOff; 4939 if (!isLittleEndian) { 4940 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4941 PtrOff.getValueType()); 4942 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4943 } 4944 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4945 CallSeqStart, 4946 Flags, DAG, dl); 4947 ArgOffset += PtrByteSize; 4948 continue; 4949 } 4950 // Copy entire object into memory. There are cases where gcc-generated 4951 // code assumes it is there, even if it could be put entirely into 4952 // registers. (This is not what the doc says.) 4953 4954 // FIXME: The above statement is likely due to a misunderstanding of the 4955 // documents. All arguments must be copied into the parameter area BY 4956 // THE CALLEE in the event that the callee takes the address of any 4957 // formal argument. That has not yet been implemented. However, it is 4958 // reasonable to use the stack area as a staging area for the register 4959 // load. 4960 4961 // Skip this for small aggregates, as we will use the same slot for a 4962 // right-justified copy, below. 4963 if (Size >= 8) 4964 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 4965 CallSeqStart, 4966 Flags, DAG, dl); 4967 4968 // When a register is available, pass a small aggregate right-justified. 4969 if (Size < 8 && GPR_idx != NumGPRs) { 4970 // The easiest way to get this right-justified in a register 4971 // is to copy the structure into the rightmost portion of a 4972 // local variable slot, then load the whole slot into the 4973 // register. 4974 // FIXME: The memcpy seems to produce pretty awful code for 4975 // small aggregates, particularly for packed ones. 4976 // FIXME: It would be preferable to use the slot in the 4977 // parameter save area instead of a new local variable. 4978 SDValue AddPtr = PtrOff; 4979 if (!isLittleEndian) { 4980 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 4981 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4982 } 4983 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4984 CallSeqStart, 4985 Flags, DAG, dl); 4986 4987 // Load the slot into the register. 4988 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 4989 MachinePointerInfo(), 4990 false, false, false, 0); 4991 MemOpChains.push_back(Load.getValue(1)); 4992 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4993 4994 // Done with this argument. 4995 ArgOffset += PtrByteSize; 4996 continue; 4997 } 4998 4999 // For aggregates larger than PtrByteSize, copy the pieces of the 5000 // object that fit into registers from the parameter save area. 5001 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5002 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5003 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5004 if (GPR_idx != NumGPRs) { 5005 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5006 MachinePointerInfo(), 5007 false, false, false, 0); 5008 MemOpChains.push_back(Load.getValue(1)); 5009 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5010 ArgOffset += PtrByteSize; 5011 } else { 5012 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5013 break; 5014 } 5015 } 5016 continue; 5017 } 5018 5019 switch (Arg.getSimpleValueType().SimpleTy) { 5020 default: llvm_unreachable("Unexpected ValueType for argument!"); 5021 case MVT::i1: 5022 case MVT::i32: 5023 case MVT::i64: 5024 // These can be scalar arguments or elements of an integer array type 5025 // passed directly. Clang may use those instead of "byval" aggregate 5026 // types to avoid forcing arguments to memory unnecessarily. 5027 if (GPR_idx != NumGPRs) { 5028 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5029 } else { 5030 if (CallConv == CallingConv::Fast) 5031 ComputePtrOff(); 5032 5033 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5034 true, isTailCall, false, MemOpChains, 5035 TailCallArguments, dl); 5036 if (CallConv == CallingConv::Fast) 5037 ArgOffset += PtrByteSize; 5038 } 5039 if (CallConv != CallingConv::Fast) 5040 ArgOffset += PtrByteSize; 5041 break; 5042 case MVT::f32: 5043 case MVT::f64: { 5044 // These can be scalar arguments or elements of a float array type 5045 // passed directly. The latter are used to implement ELFv2 homogenous 5046 // float aggregates. 5047 5048 // Named arguments go into FPRs first, and once they overflow, the 5049 // remaining arguments go into GPRs and then the parameter save area. 5050 // Unnamed arguments for vararg functions always go to GPRs and 5051 // then the parameter save area. For now, put all arguments to vararg 5052 // routines always in both locations (FPR *and* GPR or stack slot). 5053 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5054 bool NeededLoad = false; 5055 5056 // First load the argument into the next available FPR. 5057 if (FPR_idx != NumFPRs) 5058 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5059 5060 // Next, load the argument into GPR or stack slot if needed. 5061 if (!NeedGPROrStack) 5062 ; 5063 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5064 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5065 // once we support fp <-> gpr moves. 5066 5067 // In the non-vararg case, this can only ever happen in the 5068 // presence of f32 array types, since otherwise we never run 5069 // out of FPRs before running out of GPRs. 5070 SDValue ArgVal; 5071 5072 // Double values are always passed in a single GPR. 5073 if (Arg.getValueType() != MVT::f32) { 5074 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5075 5076 // Non-array float values are extended and passed in a GPR. 5077 } else if (!Flags.isInConsecutiveRegs()) { 5078 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5079 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5080 5081 // If we have an array of floats, we collect every odd element 5082 // together with its predecessor into one GPR. 5083 } else if (ArgOffset % PtrByteSize != 0) { 5084 SDValue Lo, Hi; 5085 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5086 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5087 if (!isLittleEndian) 5088 std::swap(Lo, Hi); 5089 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5090 5091 // The final element, if even, goes into the first half of a GPR. 5092 } else if (Flags.isInConsecutiveRegsLast()) { 5093 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5094 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5095 if (!isLittleEndian) 5096 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5097 DAG.getConstant(32, dl, MVT::i32)); 5098 5099 // Non-final even elements are skipped; they will be handled 5100 // together the with subsequent argument on the next go-around. 5101 } else 5102 ArgVal = SDValue(); 5103 5104 if (ArgVal.getNode()) 5105 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5106 } else { 5107 if (CallConv == CallingConv::Fast) 5108 ComputePtrOff(); 5109 5110 // Single-precision floating-point values are mapped to the 5111 // second (rightmost) word of the stack doubleword. 5112 if (Arg.getValueType() == MVT::f32 && 5113 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5114 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5115 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5116 } 5117 5118 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5119 true, isTailCall, false, MemOpChains, 5120 TailCallArguments, dl); 5121 5122 NeededLoad = true; 5123 } 5124 // When passing an array of floats, the array occupies consecutive 5125 // space in the argument area; only round up to the next doubleword 5126 // at the end of the array. Otherwise, each float takes 8 bytes. 5127 if (CallConv != CallingConv::Fast || NeededLoad) { 5128 ArgOffset += (Arg.getValueType() == MVT::f32 && 5129 Flags.isInConsecutiveRegs()) ? 4 : 8; 5130 if (Flags.isInConsecutiveRegsLast()) 5131 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5132 } 5133 break; 5134 } 5135 case MVT::v4f32: 5136 case MVT::v4i32: 5137 case MVT::v8i16: 5138 case MVT::v16i8: 5139 case MVT::v2f64: 5140 case MVT::v2i64: 5141 case MVT::v1i128: 5142 if (!Subtarget.hasQPX()) { 5143 // These can be scalar arguments or elements of a vector array type 5144 // passed directly. The latter are used to implement ELFv2 homogenous 5145 // vector aggregates. 5146 5147 // For a varargs call, named arguments go into VRs or on the stack as 5148 // usual; unnamed arguments always go to the stack or the corresponding 5149 // GPRs when within range. For now, we always put the value in both 5150 // locations (or even all three). 5151 if (isVarArg) { 5152 // We could elide this store in the case where the object fits 5153 // entirely in R registers. Maybe later. 5154 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5155 MachinePointerInfo(), false, false, 0); 5156 MemOpChains.push_back(Store); 5157 if (VR_idx != NumVRs) { 5158 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5159 MachinePointerInfo(), 5160 false, false, false, 0); 5161 MemOpChains.push_back(Load.getValue(1)); 5162 5163 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5164 Arg.getSimpleValueType() == MVT::v2i64) ? 5165 VSRH[VR_idx] : VR[VR_idx]; 5166 ++VR_idx; 5167 5168 RegsToPass.push_back(std::make_pair(VReg, Load)); 5169 } 5170 ArgOffset += 16; 5171 for (unsigned i=0; i<16; i+=PtrByteSize) { 5172 if (GPR_idx == NumGPRs) 5173 break; 5174 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5175 DAG.getConstant(i, dl, PtrVT)); 5176 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5177 false, false, false, 0); 5178 MemOpChains.push_back(Load.getValue(1)); 5179 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5180 } 5181 break; 5182 } 5183 5184 // Non-varargs Altivec params go into VRs or on the stack. 5185 if (VR_idx != NumVRs) { 5186 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5187 Arg.getSimpleValueType() == MVT::v2i64) ? 5188 VSRH[VR_idx] : VR[VR_idx]; 5189 ++VR_idx; 5190 5191 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5192 } else { 5193 if (CallConv == CallingConv::Fast) 5194 ComputePtrOff(); 5195 5196 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5197 true, isTailCall, true, MemOpChains, 5198 TailCallArguments, dl); 5199 if (CallConv == CallingConv::Fast) 5200 ArgOffset += 16; 5201 } 5202 5203 if (CallConv != CallingConv::Fast) 5204 ArgOffset += 16; 5205 break; 5206 } // not QPX 5207 5208 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5209 "Invalid QPX parameter type"); 5210 5211 /* fall through */ 5212 case MVT::v4f64: 5213 case MVT::v4i1: { 5214 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5215 if (isVarArg) { 5216 // We could elide this store in the case where the object fits 5217 // entirely in R registers. Maybe later. 5218 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5219 MachinePointerInfo(), false, false, 0); 5220 MemOpChains.push_back(Store); 5221 if (QFPR_idx != NumQFPRs) { 5222 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5223 Store, PtrOff, MachinePointerInfo(), 5224 false, false, false, 0); 5225 MemOpChains.push_back(Load.getValue(1)); 5226 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5227 } 5228 ArgOffset += (IsF32 ? 16 : 32); 5229 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5230 if (GPR_idx == NumGPRs) 5231 break; 5232 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5233 DAG.getConstant(i, dl, PtrVT)); 5234 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5235 false, false, false, 0); 5236 MemOpChains.push_back(Load.getValue(1)); 5237 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5238 } 5239 break; 5240 } 5241 5242 // Non-varargs QPX params go into registers or on the stack. 5243 if (QFPR_idx != NumQFPRs) { 5244 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5245 } else { 5246 if (CallConv == CallingConv::Fast) 5247 ComputePtrOff(); 5248 5249 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5250 true, isTailCall, true, MemOpChains, 5251 TailCallArguments, dl); 5252 if (CallConv == CallingConv::Fast) 5253 ArgOffset += (IsF32 ? 16 : 32); 5254 } 5255 5256 if (CallConv != CallingConv::Fast) 5257 ArgOffset += (IsF32 ? 16 : 32); 5258 break; 5259 } 5260 } 5261 } 5262 5263 assert(NumBytesActuallyUsed == ArgOffset); 5264 (void)NumBytesActuallyUsed; 5265 5266 if (!MemOpChains.empty()) 5267 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5268 5269 // Check if this is an indirect call (MTCTR/BCTRL). 5270 // See PrepareCall() for more information about calls through function 5271 // pointers in the 64-bit SVR4 ABI. 5272 if (!isTailCall && !IsPatchPoint && 5273 !isFunctionGlobalAddress(Callee) && 5274 !isa<ExternalSymbolSDNode>(Callee)) { 5275 // Load r2 into a virtual register and store it to the TOC save area. 5276 setUsesTOCBasePtr(DAG); 5277 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5278 // TOC save area offset. 5279 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5280 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5281 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5282 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 5283 MachinePointerInfo::getStack(TOCSaveOffset), 5284 false, false, 0); 5285 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5286 // This does not mean the MTCTR instruction must use R12; it's easier 5287 // to model this as an extra parameter, so do that. 5288 if (isELFv2ABI && !IsPatchPoint) 5289 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5290 } 5291 5292 // Build a sequence of copy-to-reg nodes chained together with token chain 5293 // and flag operands which copy the outgoing args into the appropriate regs. 5294 SDValue InFlag; 5295 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5296 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5297 RegsToPass[i].second, InFlag); 5298 InFlag = Chain.getValue(1); 5299 } 5300 5301 if (isTailCall) 5302 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5303 FPOp, true, TailCallArguments); 5304 5305 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 5306 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5307 NumBytes, Ins, InVals, CS); 5308 } 5309 5310 SDValue 5311 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5312 CallingConv::ID CallConv, bool isVarArg, 5313 bool isTailCall, bool IsPatchPoint, 5314 const SmallVectorImpl<ISD::OutputArg> &Outs, 5315 const SmallVectorImpl<SDValue> &OutVals, 5316 const SmallVectorImpl<ISD::InputArg> &Ins, 5317 SDLoc dl, SelectionDAG &DAG, 5318 SmallVectorImpl<SDValue> &InVals, 5319 ImmutableCallSite *CS) const { 5320 5321 unsigned NumOps = Outs.size(); 5322 5323 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5324 bool isPPC64 = PtrVT == MVT::i64; 5325 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5326 5327 MachineFunction &MF = DAG.getMachineFunction(); 5328 5329 // Mark this function as potentially containing a function that contains a 5330 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5331 // and restoring the callers stack pointer in this functions epilog. This is 5332 // done because by tail calling the called function might overwrite the value 5333 // in this function's (MF) stack pointer stack slot 0(SP). 5334 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5335 CallConv == CallingConv::Fast) 5336 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5337 5338 // Count how many bytes are to be pushed on the stack, including the linkage 5339 // area, and parameter passing area. We start with 24/48 bytes, which is 5340 // prereserved space for [SP][CR][LR][3 x unused]. 5341 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5342 unsigned NumBytes = LinkageSize; 5343 5344 // Add up all the space actually used. 5345 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5346 // they all go in registers, but we must reserve stack space for them for 5347 // possible use by the caller. In varargs or 64-bit calls, parameters are 5348 // assigned stack space in order, with padding so Altivec parameters are 5349 // 16-byte aligned. 5350 unsigned nAltivecParamsAtEnd = 0; 5351 for (unsigned i = 0; i != NumOps; ++i) { 5352 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5353 EVT ArgVT = Outs[i].VT; 5354 // Varargs Altivec parameters are padded to a 16 byte boundary. 5355 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5356 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5357 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5358 if (!isVarArg && !isPPC64) { 5359 // Non-varargs Altivec parameters go after all the non-Altivec 5360 // parameters; handle those later so we know how much padding we need. 5361 nAltivecParamsAtEnd++; 5362 continue; 5363 } 5364 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5365 NumBytes = ((NumBytes+15)/16)*16; 5366 } 5367 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5368 } 5369 5370 // Allow for Altivec parameters at the end, if needed. 5371 if (nAltivecParamsAtEnd) { 5372 NumBytes = ((NumBytes+15)/16)*16; 5373 NumBytes += 16*nAltivecParamsAtEnd; 5374 } 5375 5376 // The prolog code of the callee may store up to 8 GPR argument registers to 5377 // the stack, allowing va_start to index over them in memory if its varargs. 5378 // Because we cannot tell if this is needed on the caller side, we have to 5379 // conservatively assume that it is needed. As such, make sure we have at 5380 // least enough stack space for the caller to store the 8 GPRs. 5381 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5382 5383 // Tail call needs the stack to be aligned. 5384 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5385 CallConv == CallingConv::Fast) 5386 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5387 5388 // Calculate by how many bytes the stack has to be adjusted in case of tail 5389 // call optimization. 5390 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5391 5392 // To protect arguments on the stack from being clobbered in a tail call, 5393 // force all the loads to happen before doing any other lowering. 5394 if (isTailCall) 5395 Chain = DAG.getStackArgumentTokenFactor(Chain); 5396 5397 // Adjust the stack pointer for the new arguments... 5398 // These operations are automatically eliminated by the prolog/epilog pass 5399 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5400 dl); 5401 SDValue CallSeqStart = Chain; 5402 5403 // Load the return address and frame pointer so it can be move somewhere else 5404 // later. 5405 SDValue LROp, FPOp; 5406 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5407 dl); 5408 5409 // Set up a copy of the stack pointer for use loading and storing any 5410 // arguments that may not fit in the registers available for argument 5411 // passing. 5412 SDValue StackPtr; 5413 if (isPPC64) 5414 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5415 else 5416 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5417 5418 // Figure out which arguments are going to go in registers, and which in 5419 // memory. Also, if this is a vararg function, floating point operations 5420 // must be stored to our stack, and loaded into integer regs as well, if 5421 // any integer regs are available for argument passing. 5422 unsigned ArgOffset = LinkageSize; 5423 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5424 5425 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5426 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5427 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5428 }; 5429 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5430 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5431 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5432 }; 5433 static const MCPhysReg VR[] = { 5434 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5435 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5436 }; 5437 const unsigned NumGPRs = array_lengthof(GPR_32); 5438 const unsigned NumFPRs = 13; 5439 const unsigned NumVRs = array_lengthof(VR); 5440 5441 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5442 5443 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5444 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5445 5446 SmallVector<SDValue, 8> MemOpChains; 5447 for (unsigned i = 0; i != NumOps; ++i) { 5448 SDValue Arg = OutVals[i]; 5449 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5450 5451 // PtrOff will be used to store the current argument to the stack if a 5452 // register cannot be found for it. 5453 SDValue PtrOff; 5454 5455 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5456 5457 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5458 5459 // On PPC64, promote integers to 64-bit values. 5460 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5461 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5462 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5463 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5464 } 5465 5466 // FIXME memcpy is used way more than necessary. Correctness first. 5467 // Note: "by value" is code for passing a structure by value, not 5468 // basic types. 5469 if (Flags.isByVal()) { 5470 unsigned Size = Flags.getByValSize(); 5471 // Very small objects are passed right-justified. Everything else is 5472 // passed left-justified. 5473 if (Size==1 || Size==2) { 5474 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5475 if (GPR_idx != NumGPRs) { 5476 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5477 MachinePointerInfo(), VT, 5478 false, false, false, 0); 5479 MemOpChains.push_back(Load.getValue(1)); 5480 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5481 5482 ArgOffset += PtrByteSize; 5483 } else { 5484 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5485 PtrOff.getValueType()); 5486 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5487 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5488 CallSeqStart, 5489 Flags, DAG, dl); 5490 ArgOffset += PtrByteSize; 5491 } 5492 continue; 5493 } 5494 // Copy entire object into memory. There are cases where gcc-generated 5495 // code assumes it is there, even if it could be put entirely into 5496 // registers. (This is not what the doc says.) 5497 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5498 CallSeqStart, 5499 Flags, DAG, dl); 5500 5501 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5502 // copy the pieces of the object that fit into registers from the 5503 // parameter save area. 5504 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5505 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5506 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5507 if (GPR_idx != NumGPRs) { 5508 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5509 MachinePointerInfo(), 5510 false, false, false, 0); 5511 MemOpChains.push_back(Load.getValue(1)); 5512 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5513 ArgOffset += PtrByteSize; 5514 } else { 5515 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5516 break; 5517 } 5518 } 5519 continue; 5520 } 5521 5522 switch (Arg.getSimpleValueType().SimpleTy) { 5523 default: llvm_unreachable("Unexpected ValueType for argument!"); 5524 case MVT::i1: 5525 case MVT::i32: 5526 case MVT::i64: 5527 if (GPR_idx != NumGPRs) { 5528 if (Arg.getValueType() == MVT::i1) 5529 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5530 5531 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5532 } else { 5533 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5534 isPPC64, isTailCall, false, MemOpChains, 5535 TailCallArguments, dl); 5536 } 5537 ArgOffset += PtrByteSize; 5538 break; 5539 case MVT::f32: 5540 case MVT::f64: 5541 if (FPR_idx != NumFPRs) { 5542 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5543 5544 if (isVarArg) { 5545 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5546 MachinePointerInfo(), false, false, 0); 5547 MemOpChains.push_back(Store); 5548 5549 // Float varargs are always shadowed in available integer registers 5550 if (GPR_idx != NumGPRs) { 5551 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5552 MachinePointerInfo(), false, false, 5553 false, 0); 5554 MemOpChains.push_back(Load.getValue(1)); 5555 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5556 } 5557 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5558 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5559 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5560 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5561 MachinePointerInfo(), 5562 false, false, false, 0); 5563 MemOpChains.push_back(Load.getValue(1)); 5564 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5565 } 5566 } else { 5567 // If we have any FPRs remaining, we may also have GPRs remaining. 5568 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5569 // GPRs. 5570 if (GPR_idx != NumGPRs) 5571 ++GPR_idx; 5572 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5573 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5574 ++GPR_idx; 5575 } 5576 } else 5577 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5578 isPPC64, isTailCall, false, MemOpChains, 5579 TailCallArguments, dl); 5580 if (isPPC64) 5581 ArgOffset += 8; 5582 else 5583 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5584 break; 5585 case MVT::v4f32: 5586 case MVT::v4i32: 5587 case MVT::v8i16: 5588 case MVT::v16i8: 5589 if (isVarArg) { 5590 // These go aligned on the stack, or in the corresponding R registers 5591 // when within range. The Darwin PPC ABI doc claims they also go in 5592 // V registers; in fact gcc does this only for arguments that are 5593 // prototyped, not for those that match the ... We do it for all 5594 // arguments, seems to work. 5595 while (ArgOffset % 16 !=0) { 5596 ArgOffset += PtrByteSize; 5597 if (GPR_idx != NumGPRs) 5598 GPR_idx++; 5599 } 5600 // We could elide this store in the case where the object fits 5601 // entirely in R registers. Maybe later. 5602 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5603 DAG.getConstant(ArgOffset, dl, PtrVT)); 5604 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5605 MachinePointerInfo(), false, false, 0); 5606 MemOpChains.push_back(Store); 5607 if (VR_idx != NumVRs) { 5608 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5609 MachinePointerInfo(), 5610 false, false, false, 0); 5611 MemOpChains.push_back(Load.getValue(1)); 5612 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5613 } 5614 ArgOffset += 16; 5615 for (unsigned i=0; i<16; i+=PtrByteSize) { 5616 if (GPR_idx == NumGPRs) 5617 break; 5618 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5619 DAG.getConstant(i, dl, PtrVT)); 5620 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5621 false, false, false, 0); 5622 MemOpChains.push_back(Load.getValue(1)); 5623 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5624 } 5625 break; 5626 } 5627 5628 // Non-varargs Altivec params generally go in registers, but have 5629 // stack space allocated at the end. 5630 if (VR_idx != NumVRs) { 5631 // Doesn't have GPR space allocated. 5632 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5633 } else if (nAltivecParamsAtEnd==0) { 5634 // We are emitting Altivec params in order. 5635 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5636 isPPC64, isTailCall, true, MemOpChains, 5637 TailCallArguments, dl); 5638 ArgOffset += 16; 5639 } 5640 break; 5641 } 5642 } 5643 // If all Altivec parameters fit in registers, as they usually do, 5644 // they get stack space following the non-Altivec parameters. We 5645 // don't track this here because nobody below needs it. 5646 // If there are more Altivec parameters than fit in registers emit 5647 // the stores here. 5648 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5649 unsigned j = 0; 5650 // Offset is aligned; skip 1st 12 params which go in V registers. 5651 ArgOffset = ((ArgOffset+15)/16)*16; 5652 ArgOffset += 12*16; 5653 for (unsigned i = 0; i != NumOps; ++i) { 5654 SDValue Arg = OutVals[i]; 5655 EVT ArgType = Outs[i].VT; 5656 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5657 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5658 if (++j > NumVRs) { 5659 SDValue PtrOff; 5660 // We are emitting Altivec params in order. 5661 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5662 isPPC64, isTailCall, true, MemOpChains, 5663 TailCallArguments, dl); 5664 ArgOffset += 16; 5665 } 5666 } 5667 } 5668 } 5669 5670 if (!MemOpChains.empty()) 5671 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5672 5673 // On Darwin, R12 must contain the address of an indirect callee. This does 5674 // not mean the MTCTR instruction must use R12; it's easier to model this as 5675 // an extra parameter, so do that. 5676 if (!isTailCall && 5677 !isFunctionGlobalAddress(Callee) && 5678 !isa<ExternalSymbolSDNode>(Callee) && 5679 !isBLACompatibleAddress(Callee, DAG)) 5680 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5681 PPC::R12), Callee)); 5682 5683 // Build a sequence of copy-to-reg nodes chained together with token chain 5684 // and flag operands which copy the outgoing args into the appropriate regs. 5685 SDValue InFlag; 5686 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5687 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5688 RegsToPass[i].second, InFlag); 5689 InFlag = Chain.getValue(1); 5690 } 5691 5692 if (isTailCall) 5693 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5694 FPOp, true, TailCallArguments); 5695 5696 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG, 5697 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5698 NumBytes, Ins, InVals, CS); 5699 } 5700 5701 bool 5702 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5703 MachineFunction &MF, bool isVarArg, 5704 const SmallVectorImpl<ISD::OutputArg> &Outs, 5705 LLVMContext &Context) const { 5706 SmallVector<CCValAssign, 16> RVLocs; 5707 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5708 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5709 } 5710 5711 SDValue 5712 PPCTargetLowering::LowerReturn(SDValue Chain, 5713 CallingConv::ID CallConv, bool isVarArg, 5714 const SmallVectorImpl<ISD::OutputArg> &Outs, 5715 const SmallVectorImpl<SDValue> &OutVals, 5716 SDLoc dl, SelectionDAG &DAG) const { 5717 5718 SmallVector<CCValAssign, 16> RVLocs; 5719 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5720 *DAG.getContext()); 5721 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5722 5723 SDValue Flag; 5724 SmallVector<SDValue, 4> RetOps(1, Chain); 5725 5726 // Copy the result values into the output registers. 5727 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5728 CCValAssign &VA = RVLocs[i]; 5729 assert(VA.isRegLoc() && "Can only return in registers!"); 5730 5731 SDValue Arg = OutVals[i]; 5732 5733 switch (VA.getLocInfo()) { 5734 default: llvm_unreachable("Unknown loc info!"); 5735 case CCValAssign::Full: break; 5736 case CCValAssign::AExt: 5737 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5738 break; 5739 case CCValAssign::ZExt: 5740 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5741 break; 5742 case CCValAssign::SExt: 5743 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5744 break; 5745 } 5746 5747 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5748 Flag = Chain.getValue(1); 5749 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5750 } 5751 5752 RetOps[0] = Chain; // Update chain. 5753 5754 // Add the flag if we have it. 5755 if (Flag.getNode()) 5756 RetOps.push_back(Flag); 5757 5758 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5759 } 5760 5761 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5762 const PPCSubtarget &Subtarget) const { 5763 // When we pop the dynamic allocation we need to restore the SP link. 5764 SDLoc dl(Op); 5765 5766 // Get the corect type for pointers. 5767 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5768 5769 // Construct the stack pointer operand. 5770 bool isPPC64 = Subtarget.isPPC64(); 5771 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5772 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5773 5774 // Get the operands for the STACKRESTORE. 5775 SDValue Chain = Op.getOperand(0); 5776 SDValue SaveSP = Op.getOperand(1); 5777 5778 // Load the old link SP. 5779 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5780 MachinePointerInfo(), 5781 false, false, false, 0); 5782 5783 // Restore the stack pointer. 5784 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5785 5786 // Store the old link SP. 5787 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5788 false, false, 0); 5789 } 5790 5791 5792 5793 SDValue 5794 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 5795 MachineFunction &MF = DAG.getMachineFunction(); 5796 bool isPPC64 = Subtarget.isPPC64(); 5797 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5798 5799 // Get current frame pointer save index. The users of this index will be 5800 // primarily DYNALLOC instructions. 5801 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5802 int RASI = FI->getReturnAddrSaveIndex(); 5803 5804 // If the frame pointer save index hasn't been defined yet. 5805 if (!RASI) { 5806 // Find out what the fix offset of the frame pointer save area. 5807 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5808 // Allocate the frame index for frame pointer save area. 5809 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5810 // Save the result. 5811 FI->setReturnAddrSaveIndex(RASI); 5812 } 5813 return DAG.getFrameIndex(RASI, PtrVT); 5814 } 5815 5816 SDValue 5817 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5818 MachineFunction &MF = DAG.getMachineFunction(); 5819 bool isPPC64 = Subtarget.isPPC64(); 5820 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5821 5822 // Get current frame pointer save index. The users of this index will be 5823 // primarily DYNALLOC instructions. 5824 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5825 int FPSI = FI->getFramePointerSaveIndex(); 5826 5827 // If the frame pointer save index hasn't been defined yet. 5828 if (!FPSI) { 5829 // Find out what the fix offset of the frame pointer save area. 5830 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5831 // Allocate the frame index for frame pointer save area. 5832 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5833 // Save the result. 5834 FI->setFramePointerSaveIndex(FPSI); 5835 } 5836 return DAG.getFrameIndex(FPSI, PtrVT); 5837 } 5838 5839 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5840 SelectionDAG &DAG, 5841 const PPCSubtarget &Subtarget) const { 5842 // Get the inputs. 5843 SDValue Chain = Op.getOperand(0); 5844 SDValue Size = Op.getOperand(1); 5845 SDLoc dl(Op); 5846 5847 // Get the corect type for pointers. 5848 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5849 // Negate the size. 5850 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5851 DAG.getConstant(0, dl, PtrVT), Size); 5852 // Construct a node for the frame pointer save index. 5853 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5854 // Build a DYNALLOC node. 5855 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5856 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5857 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5858 } 5859 5860 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5861 SelectionDAG &DAG) const { 5862 SDLoc DL(Op); 5863 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5864 DAG.getVTList(MVT::i32, MVT::Other), 5865 Op.getOperand(0), Op.getOperand(1)); 5866 } 5867 5868 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5869 SelectionDAG &DAG) const { 5870 SDLoc DL(Op); 5871 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5872 Op.getOperand(0), Op.getOperand(1)); 5873 } 5874 5875 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5876 if (Op.getValueType().isVector()) 5877 return LowerVectorLoad(Op, DAG); 5878 5879 assert(Op.getValueType() == MVT::i1 && 5880 "Custom lowering only for i1 loads"); 5881 5882 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5883 5884 SDLoc dl(Op); 5885 LoadSDNode *LD = cast<LoadSDNode>(Op); 5886 5887 SDValue Chain = LD->getChain(); 5888 SDValue BasePtr = LD->getBasePtr(); 5889 MachineMemOperand *MMO = LD->getMemOperand(); 5890 5891 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain, 5892 BasePtr, MVT::i8, MMO); 5893 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5894 5895 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5896 return DAG.getMergeValues(Ops, dl); 5897 } 5898 5899 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5900 if (Op.getOperand(1).getValueType().isVector()) 5901 return LowerVectorStore(Op, DAG); 5902 5903 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5904 "Custom lowering only for i1 stores"); 5905 5906 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5907 5908 SDLoc dl(Op); 5909 StoreSDNode *ST = cast<StoreSDNode>(Op); 5910 5911 SDValue Chain = ST->getChain(); 5912 SDValue BasePtr = ST->getBasePtr(); 5913 SDValue Value = ST->getValue(); 5914 MachineMemOperand *MMO = ST->getMemOperand(); 5915 5916 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value); 5917 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5918 } 5919 5920 // FIXME: Remove this once the ANDI glue bug is fixed: 5921 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5922 assert(Op.getValueType() == MVT::i1 && 5923 "Custom lowering only for i1 results"); 5924 5925 SDLoc DL(Op); 5926 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5927 Op.getOperand(0)); 5928 } 5929 5930 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5931 /// possible. 5932 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5933 // Not FP? Not a fsel. 5934 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5935 !Op.getOperand(2).getValueType().isFloatingPoint()) 5936 return Op; 5937 5938 // We might be able to do better than this under some circumstances, but in 5939 // general, fsel-based lowering of select is a finite-math-only optimization. 5940 // For more information, see section F.3 of the 2.06 ISA specification. 5941 if (!DAG.getTarget().Options.NoInfsFPMath || 5942 !DAG.getTarget().Options.NoNaNsFPMath) 5943 return Op; 5944 5945 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5946 5947 EVT ResVT = Op.getValueType(); 5948 EVT CmpVT = Op.getOperand(0).getValueType(); 5949 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 5950 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 5951 SDLoc dl(Op); 5952 5953 // If the RHS of the comparison is a 0.0, we don't need to do the 5954 // subtraction at all. 5955 SDValue Sel1; 5956 if (isFloatingPointZero(RHS)) 5957 switch (CC) { 5958 default: break; // SETUO etc aren't handled by fsel. 5959 case ISD::SETNE: 5960 std::swap(TV, FV); 5961 case ISD::SETEQ: 5962 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5963 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5964 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 5965 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 5966 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 5967 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 5968 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 5969 case ISD::SETULT: 5970 case ISD::SETLT: 5971 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 5972 case ISD::SETOGE: 5973 case ISD::SETGE: 5974 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5975 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5976 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 5977 case ISD::SETUGT: 5978 case ISD::SETGT: 5979 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 5980 case ISD::SETOLE: 5981 case ISD::SETLE: 5982 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 5983 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 5984 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 5985 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 5986 } 5987 5988 SDValue Cmp; 5989 switch (CC) { 5990 default: break; // SETUO etc aren't handled by fsel. 5991 case ISD::SETNE: 5992 std::swap(TV, FV); 5993 case ISD::SETEQ: 5994 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 5995 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 5996 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 5997 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 5998 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 5999 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6000 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6001 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6002 case ISD::SETULT: 6003 case ISD::SETLT: 6004 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6005 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6006 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6007 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6008 case ISD::SETOGE: 6009 case ISD::SETGE: 6010 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 6011 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6012 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6013 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6014 case ISD::SETUGT: 6015 case ISD::SETGT: 6016 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6017 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6018 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6019 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6020 case ISD::SETOLE: 6021 case ISD::SETLE: 6022 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 6023 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6024 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6025 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6026 } 6027 return Op; 6028 } 6029 6030 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6031 SelectionDAG &DAG, 6032 SDLoc dl) const { 6033 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6034 SDValue Src = Op.getOperand(0); 6035 if (Src.getValueType() == MVT::f32) 6036 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6037 6038 SDValue Tmp; 6039 switch (Op.getSimpleValueType().SimpleTy) { 6040 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6041 case MVT::i32: 6042 Tmp = DAG.getNode( 6043 Op.getOpcode() == ISD::FP_TO_SINT 6044 ? PPCISD::FCTIWZ 6045 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6046 dl, MVT::f64, Src); 6047 break; 6048 case MVT::i64: 6049 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6050 "i64 FP_TO_UINT is supported only with FPCVT"); 6051 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6052 PPCISD::FCTIDUZ, 6053 dl, MVT::f64, Src); 6054 break; 6055 } 6056 6057 // Convert the FP value to an int value through memory. 6058 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6059 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6060 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6061 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6062 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI); 6063 6064 // Emit a store to the stack slot. 6065 SDValue Chain; 6066 if (i32Stack) { 6067 MachineFunction &MF = DAG.getMachineFunction(); 6068 MachineMemOperand *MMO = 6069 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6070 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6071 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6072 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6073 } else 6074 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6075 MPI, false, false, 0); 6076 6077 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6078 // add in a bias. 6079 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6080 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6081 DAG.getConstant(4, dl, FIPtr.getValueType())); 6082 MPI = MPI.getWithOffset(4); 6083 } 6084 6085 RLI.Chain = Chain; 6086 RLI.Ptr = FIPtr; 6087 RLI.MPI = MPI; 6088 } 6089 6090 /// \brief Custom lowers floating point to integer conversions to use 6091 /// the direct move instructions available in ISA 2.07 to avoid the 6092 /// need for load/store combinations. 6093 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6094 SelectionDAG &DAG, 6095 SDLoc dl) const { 6096 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6097 SDValue Src = Op.getOperand(0); 6098 6099 if (Src.getValueType() == MVT::f32) 6100 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6101 6102 SDValue Tmp; 6103 switch (Op.getSimpleValueType().SimpleTy) { 6104 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6105 case MVT::i32: 6106 Tmp = DAG.getNode( 6107 Op.getOpcode() == ISD::FP_TO_SINT 6108 ? PPCISD::FCTIWZ 6109 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6110 dl, MVT::f64, Src); 6111 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6112 break; 6113 case MVT::i64: 6114 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6115 "i64 FP_TO_UINT is supported only with FPCVT"); 6116 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6117 PPCISD::FCTIDUZ, 6118 dl, MVT::f64, Src); 6119 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6120 break; 6121 } 6122 return Tmp; 6123 } 6124 6125 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6126 SDLoc dl) const { 6127 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6128 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6129 6130 ReuseLoadInfo RLI; 6131 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6132 6133 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6134 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6135 RLI.Ranges); 6136 } 6137 6138 // We're trying to insert a regular store, S, and then a load, L. If the 6139 // incoming value, O, is a load, we might just be able to have our load use the 6140 // address used by O. However, we don't know if anything else will store to 6141 // that address before we can load from it. To prevent this situation, we need 6142 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6143 // the same chain operand as O, we create a token factor from the chain results 6144 // of O and L, and we replace all uses of O's chain result with that token 6145 // factor (see spliceIntoChain below for this last part). 6146 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6147 ReuseLoadInfo &RLI, 6148 SelectionDAG &DAG, 6149 ISD::LoadExtType ET) const { 6150 SDLoc dl(Op); 6151 if (ET == ISD::NON_EXTLOAD && 6152 (Op.getOpcode() == ISD::FP_TO_UINT || 6153 Op.getOpcode() == ISD::FP_TO_SINT) && 6154 isOperationLegalOrCustom(Op.getOpcode(), 6155 Op.getOperand(0).getValueType())) { 6156 6157 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6158 return true; 6159 } 6160 6161 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6162 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6163 LD->isNonTemporal()) 6164 return false; 6165 if (LD->getMemoryVT() != MemVT) 6166 return false; 6167 6168 RLI.Ptr = LD->getBasePtr(); 6169 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6170 assert(LD->getAddressingMode() == ISD::PRE_INC && 6171 "Non-pre-inc AM on PPC?"); 6172 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6173 LD->getOffset()); 6174 } 6175 6176 RLI.Chain = LD->getChain(); 6177 RLI.MPI = LD->getPointerInfo(); 6178 RLI.IsInvariant = LD->isInvariant(); 6179 RLI.Alignment = LD->getAlignment(); 6180 RLI.AAInfo = LD->getAAInfo(); 6181 RLI.Ranges = LD->getRanges(); 6182 6183 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6184 return true; 6185 } 6186 6187 // Given the head of the old chain, ResChain, insert a token factor containing 6188 // it and NewResChain, and make users of ResChain now be users of that token 6189 // factor. 6190 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6191 SDValue NewResChain, 6192 SelectionDAG &DAG) const { 6193 if (!ResChain) 6194 return; 6195 6196 SDLoc dl(NewResChain); 6197 6198 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6199 NewResChain, DAG.getUNDEF(MVT::Other)); 6200 assert(TF.getNode() != NewResChain.getNode() && 6201 "A new TF really is required here"); 6202 6203 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6204 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6205 } 6206 6207 /// \brief Custom lowers integer to floating point conversions to use 6208 /// the direct move instructions available in ISA 2.07 to avoid the 6209 /// need for load/store combinations. 6210 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6211 SelectionDAG &DAG, 6212 SDLoc dl) const { 6213 assert((Op.getValueType() == MVT::f32 || 6214 Op.getValueType() == MVT::f64) && 6215 "Invalid floating point type as target of conversion"); 6216 assert(Subtarget.hasFPCVT() && 6217 "Int to FP conversions with direct moves require FPCVT"); 6218 SDValue FP; 6219 SDValue Src = Op.getOperand(0); 6220 bool SinglePrec = Op.getValueType() == MVT::f32; 6221 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6222 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6223 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6224 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6225 6226 if (WordInt) { 6227 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6228 dl, MVT::f64, Src); 6229 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6230 } 6231 else { 6232 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6233 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6234 } 6235 6236 return FP; 6237 } 6238 6239 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6240 SelectionDAG &DAG) const { 6241 SDLoc dl(Op); 6242 6243 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6244 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6245 return SDValue(); 6246 6247 SDValue Value = Op.getOperand(0); 6248 // The values are now known to be -1 (false) or 1 (true). To convert this 6249 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6250 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6251 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6252 6253 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6254 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6255 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 6256 6257 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6258 6259 if (Op.getValueType() != MVT::v4f64) 6260 Value = DAG.getNode(ISD::FP_ROUND, dl, 6261 Op.getValueType(), Value, 6262 DAG.getIntPtrConstant(1, dl)); 6263 return Value; 6264 } 6265 6266 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6267 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6268 return SDValue(); 6269 6270 if (Op.getOperand(0).getValueType() == MVT::i1) 6271 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6272 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6273 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6274 6275 // If we have direct moves, we can do all the conversion, skip the store/load 6276 // however, without FPCVT we can't do most conversions. 6277 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6278 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6279 6280 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6281 "UINT_TO_FP is supported only with FPCVT"); 6282 6283 // If we have FCFIDS, then use it when converting to single-precision. 6284 // Otherwise, convert to double-precision and then round. 6285 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6286 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6287 : PPCISD::FCFIDS) 6288 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6289 : PPCISD::FCFID); 6290 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6291 ? MVT::f32 6292 : MVT::f64; 6293 6294 if (Op.getOperand(0).getValueType() == MVT::i64) { 6295 SDValue SINT = Op.getOperand(0); 6296 // When converting to single-precision, we actually need to convert 6297 // to double-precision first and then round to single-precision. 6298 // To avoid double-rounding effects during that operation, we have 6299 // to prepare the input operand. Bits that might be truncated when 6300 // converting to double-precision are replaced by a bit that won't 6301 // be lost at this stage, but is below the single-precision rounding 6302 // position. 6303 // 6304 // However, if -enable-unsafe-fp-math is in effect, accept double 6305 // rounding to avoid the extra overhead. 6306 if (Op.getValueType() == MVT::f32 && 6307 !Subtarget.hasFPCVT() && 6308 !DAG.getTarget().Options.UnsafeFPMath) { 6309 6310 // Twiddle input to make sure the low 11 bits are zero. (If this 6311 // is the case, we are guaranteed the value will fit into the 53 bit 6312 // mantissa of an IEEE double-precision value without rounding.) 6313 // If any of those low 11 bits were not zero originally, make sure 6314 // bit 12 (value 2048) is set instead, so that the final rounding 6315 // to single-precision gets the correct result. 6316 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6317 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6318 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6319 Round, DAG.getConstant(2047, dl, MVT::i64)); 6320 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6321 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6322 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6323 6324 // However, we cannot use that value unconditionally: if the magnitude 6325 // of the input value is small, the bit-twiddling we did above might 6326 // end up visibly changing the output. Fortunately, in that case, we 6327 // don't need to twiddle bits since the original input will convert 6328 // exactly to double-precision floating-point already. Therefore, 6329 // construct a conditional to use the original value if the top 11 6330 // bits are all sign-bit copies, and use the rounded value computed 6331 // above otherwise. 6332 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6333 SINT, DAG.getConstant(53, dl, MVT::i32)); 6334 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6335 Cond, DAG.getConstant(1, dl, MVT::i64)); 6336 Cond = DAG.getSetCC(dl, MVT::i32, 6337 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6338 6339 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6340 } 6341 6342 ReuseLoadInfo RLI; 6343 SDValue Bits; 6344 6345 MachineFunction &MF = DAG.getMachineFunction(); 6346 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6347 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6348 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6349 RLI.Ranges); 6350 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6351 } else if (Subtarget.hasLFIWAX() && 6352 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6353 MachineMemOperand *MMO = 6354 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6355 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6356 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6357 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6358 DAG.getVTList(MVT::f64, MVT::Other), 6359 Ops, MVT::i32, MMO); 6360 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6361 } else if (Subtarget.hasFPCVT() && 6362 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6363 MachineMemOperand *MMO = 6364 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6365 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6366 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6367 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6368 DAG.getVTList(MVT::f64, MVT::Other), 6369 Ops, MVT::i32, MMO); 6370 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6371 } else if (((Subtarget.hasLFIWAX() && 6372 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6373 (Subtarget.hasFPCVT() && 6374 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6375 SINT.getOperand(0).getValueType() == MVT::i32) { 6376 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6377 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 6378 6379 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6380 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6381 6382 SDValue Store = 6383 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6384 MachinePointerInfo::getFixedStack(FrameIdx), 6385 false, false, 0); 6386 6387 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6388 "Expected an i32 store"); 6389 6390 RLI.Ptr = FIdx; 6391 RLI.Chain = Store; 6392 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6393 RLI.Alignment = 4; 6394 6395 MachineMemOperand *MMO = 6396 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6397 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6398 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6399 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6400 PPCISD::LFIWZX : PPCISD::LFIWAX, 6401 dl, DAG.getVTList(MVT::f64, MVT::Other), 6402 Ops, MVT::i32, MMO); 6403 } else 6404 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6405 6406 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6407 6408 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6409 FP = DAG.getNode(ISD::FP_ROUND, dl, 6410 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6411 return FP; 6412 } 6413 6414 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6415 "Unhandled INT_TO_FP type in custom expander!"); 6416 // Since we only generate this in 64-bit mode, we can take advantage of 6417 // 64-bit registers. In particular, sign extend the input value into the 6418 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6419 // then lfd it and fcfid it. 6420 MachineFunction &MF = DAG.getMachineFunction(); 6421 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6422 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 6423 6424 SDValue Ld; 6425 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6426 ReuseLoadInfo RLI; 6427 bool ReusingLoad; 6428 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6429 DAG))) { 6430 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6431 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6432 6433 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6434 MachinePointerInfo::getFixedStack(FrameIdx), 6435 false, false, 0); 6436 6437 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6438 "Expected an i32 store"); 6439 6440 RLI.Ptr = FIdx; 6441 RLI.Chain = Store; 6442 RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx); 6443 RLI.Alignment = 4; 6444 } 6445 6446 MachineMemOperand *MMO = 6447 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6448 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6449 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6450 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6451 PPCISD::LFIWZX : PPCISD::LFIWAX, 6452 dl, DAG.getVTList(MVT::f64, MVT::Other), 6453 Ops, MVT::i32, MMO); 6454 if (ReusingLoad) 6455 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6456 } else { 6457 assert(Subtarget.isPPC64() && 6458 "i32->FP without LFIWAX supported only on PPC64"); 6459 6460 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6461 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6462 6463 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6464 Op.getOperand(0)); 6465 6466 // STD the extended value into the stack slot. 6467 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx, 6468 MachinePointerInfo::getFixedStack(FrameIdx), 6469 false, false, 0); 6470 6471 // Load the value as a double. 6472 Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, 6473 MachinePointerInfo::getFixedStack(FrameIdx), 6474 false, false, false, 0); 6475 } 6476 6477 // FCFID it and return it. 6478 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6479 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6480 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6481 DAG.getIntPtrConstant(0, dl)); 6482 return FP; 6483 } 6484 6485 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6486 SelectionDAG &DAG) const { 6487 SDLoc dl(Op); 6488 /* 6489 The rounding mode is in bits 30:31 of FPSR, and has the following 6490 settings: 6491 00 Round to nearest 6492 01 Round to 0 6493 10 Round to +inf 6494 11 Round to -inf 6495 6496 FLT_ROUNDS, on the other hand, expects the following: 6497 -1 Undefined 6498 0 Round to 0 6499 1 Round to nearest 6500 2 Round to +inf 6501 3 Round to -inf 6502 6503 To perform the conversion, we do: 6504 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6505 */ 6506 6507 MachineFunction &MF = DAG.getMachineFunction(); 6508 EVT VT = Op.getValueType(); 6509 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 6510 6511 // Save FP Control Word to register 6512 EVT NodeTys[] = { 6513 MVT::f64, // return register 6514 MVT::Glue // unused in this context 6515 }; 6516 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6517 6518 // Save FP register to stack slot 6519 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6520 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6521 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6522 StackSlot, MachinePointerInfo(), false, false,0); 6523 6524 // Load FP Control Word from low 32 bits of stack slot. 6525 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6526 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6527 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6528 false, false, false, 0); 6529 6530 // Transform as necessary 6531 SDValue CWD1 = 6532 DAG.getNode(ISD::AND, dl, MVT::i32, 6533 CWD, DAG.getConstant(3, dl, MVT::i32)); 6534 SDValue CWD2 = 6535 DAG.getNode(ISD::SRL, dl, MVT::i32, 6536 DAG.getNode(ISD::AND, dl, MVT::i32, 6537 DAG.getNode(ISD::XOR, dl, MVT::i32, 6538 CWD, DAG.getConstant(3, dl, MVT::i32)), 6539 DAG.getConstant(3, dl, MVT::i32)), 6540 DAG.getConstant(1, dl, MVT::i32)); 6541 6542 SDValue RetVal = 6543 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6544 6545 return DAG.getNode((VT.getSizeInBits() < 16 ? 6546 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6547 } 6548 6549 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6550 EVT VT = Op.getValueType(); 6551 unsigned BitWidth = VT.getSizeInBits(); 6552 SDLoc dl(Op); 6553 assert(Op.getNumOperands() == 3 && 6554 VT == Op.getOperand(1).getValueType() && 6555 "Unexpected SHL!"); 6556 6557 // Expand into a bunch of logical ops. Note that these ops 6558 // depend on the PPC behavior for oversized shift amounts. 6559 SDValue Lo = Op.getOperand(0); 6560 SDValue Hi = Op.getOperand(1); 6561 SDValue Amt = Op.getOperand(2); 6562 EVT AmtVT = Amt.getValueType(); 6563 6564 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6565 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6566 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6567 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6568 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6569 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6570 DAG.getConstant(-BitWidth, dl, AmtVT)); 6571 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6572 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6573 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6574 SDValue OutOps[] = { OutLo, OutHi }; 6575 return DAG.getMergeValues(OutOps, dl); 6576 } 6577 6578 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6579 EVT VT = Op.getValueType(); 6580 SDLoc dl(Op); 6581 unsigned BitWidth = VT.getSizeInBits(); 6582 assert(Op.getNumOperands() == 3 && 6583 VT == Op.getOperand(1).getValueType() && 6584 "Unexpected SRL!"); 6585 6586 // Expand into a bunch of logical ops. Note that these ops 6587 // depend on the PPC behavior for oversized shift amounts. 6588 SDValue Lo = Op.getOperand(0); 6589 SDValue Hi = Op.getOperand(1); 6590 SDValue Amt = Op.getOperand(2); 6591 EVT AmtVT = Amt.getValueType(); 6592 6593 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6594 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6595 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6596 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6597 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6598 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6599 DAG.getConstant(-BitWidth, dl, AmtVT)); 6600 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6601 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6602 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6603 SDValue OutOps[] = { OutLo, OutHi }; 6604 return DAG.getMergeValues(OutOps, dl); 6605 } 6606 6607 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6608 SDLoc dl(Op); 6609 EVT VT = Op.getValueType(); 6610 unsigned BitWidth = VT.getSizeInBits(); 6611 assert(Op.getNumOperands() == 3 && 6612 VT == Op.getOperand(1).getValueType() && 6613 "Unexpected SRA!"); 6614 6615 // Expand into a bunch of logical ops, followed by a select_cc. 6616 SDValue Lo = Op.getOperand(0); 6617 SDValue Hi = Op.getOperand(1); 6618 SDValue Amt = Op.getOperand(2); 6619 EVT AmtVT = Amt.getValueType(); 6620 6621 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6622 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6623 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6624 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6625 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6626 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6627 DAG.getConstant(-BitWidth, dl, AmtVT)); 6628 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6629 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6630 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6631 Tmp4, Tmp6, ISD::SETLE); 6632 SDValue OutOps[] = { OutLo, OutHi }; 6633 return DAG.getMergeValues(OutOps, dl); 6634 } 6635 6636 //===----------------------------------------------------------------------===// 6637 // Vector related lowering. 6638 // 6639 6640 /// BuildSplatI - Build a canonical splati of Val with an element size of 6641 /// SplatSize. Cast the result to VT. 6642 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6643 SelectionDAG &DAG, SDLoc dl) { 6644 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6645 6646 static const MVT VTys[] = { // canonical VT to use for each size. 6647 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6648 }; 6649 6650 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6651 6652 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6653 if (Val == -1) 6654 SplatSize = 1; 6655 6656 EVT CanonicalVT = VTys[SplatSize-1]; 6657 6658 // Build a canonical splat for this value. 6659 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6660 SmallVector<SDValue, 8> Ops; 6661 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6662 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6663 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6664 } 6665 6666 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6667 /// specified intrinsic ID. 6668 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6669 SelectionDAG &DAG, SDLoc dl, 6670 EVT DestVT = MVT::Other) { 6671 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6672 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6673 DAG.getConstant(IID, dl, MVT::i32), Op); 6674 } 6675 6676 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6677 /// specified intrinsic ID. 6678 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6679 SelectionDAG &DAG, SDLoc dl, 6680 EVT DestVT = MVT::Other) { 6681 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6682 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6683 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6684 } 6685 6686 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6687 /// specified intrinsic ID. 6688 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6689 SDValue Op2, SelectionDAG &DAG, 6690 SDLoc dl, EVT DestVT = MVT::Other) { 6691 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6692 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6693 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6694 } 6695 6696 6697 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6698 /// amount. The result has the specified value type. 6699 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6700 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6701 // Force LHS/RHS to be the right type. 6702 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6703 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6704 6705 int Ops[16]; 6706 for (unsigned i = 0; i != 16; ++i) 6707 Ops[i] = i + Amt; 6708 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6709 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6710 } 6711 6712 // If this is a case we can't handle, return null and let the default 6713 // expansion code take care of it. If we CAN select this case, and if it 6714 // selects to a single instruction, return Op. Otherwise, if we can codegen 6715 // this case more efficiently than a constant pool load, lower it to the 6716 // sequence of ops that should be used. 6717 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6718 SelectionDAG &DAG) const { 6719 SDLoc dl(Op); 6720 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6721 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6722 6723 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6724 // We first build an i32 vector, load it into a QPX register, 6725 // then convert it to a floating-point vector and compare it 6726 // to a zero vector to get the boolean result. 6727 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6728 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6729 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 6730 EVT PtrVT = getPointerTy(); 6731 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6732 6733 assert(BVN->getNumOperands() == 4 && 6734 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6735 6736 bool IsConst = true; 6737 for (unsigned i = 0; i < 4; ++i) { 6738 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6739 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6740 IsConst = false; 6741 break; 6742 } 6743 } 6744 6745 if (IsConst) { 6746 Constant *One = 6747 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6748 Constant *NegOne = 6749 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6750 6751 SmallVector<Constant*, 4> CV(4, NegOne); 6752 for (unsigned i = 0; i < 4; ++i) { 6753 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6754 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6755 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6756 getConstantIntValue()->isZero()) 6757 continue; 6758 else 6759 CV[i] = One; 6760 } 6761 6762 Constant *CP = ConstantVector::get(CV); 6763 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(), 6764 16 /* alignment */); 6765 6766 SmallVector<SDValue, 2> Ops; 6767 Ops.push_back(DAG.getEntryNode()); 6768 Ops.push_back(CPIdx); 6769 6770 SmallVector<EVT, 2> ValueVTs; 6771 ValueVTs.push_back(MVT::v4i1); 6772 ValueVTs.push_back(MVT::Other); // chain 6773 SDVTList VTs = DAG.getVTList(ValueVTs); 6774 6775 return DAG.getMemIntrinsicNode(PPCISD::QVLFSb, 6776 dl, VTs, Ops, MVT::v4f32, 6777 MachinePointerInfo::getConstantPool()); 6778 } 6779 6780 SmallVector<SDValue, 4> Stores; 6781 for (unsigned i = 0; i < 4; ++i) { 6782 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6783 6784 unsigned Offset = 4*i; 6785 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6786 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6787 6788 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6789 if (StoreSize > 4) { 6790 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6791 BVN->getOperand(i), Idx, 6792 PtrInfo.getWithOffset(Offset), 6793 MVT::i32, false, false, 0)); 6794 } else { 6795 SDValue StoreValue = BVN->getOperand(i); 6796 if (StoreSize < 4) 6797 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6798 6799 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6800 StoreValue, Idx, 6801 PtrInfo.getWithOffset(Offset), 6802 false, false, 0)); 6803 } 6804 } 6805 6806 SDValue StoreChain; 6807 if (!Stores.empty()) 6808 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6809 else 6810 StoreChain = DAG.getEntryNode(); 6811 6812 // Now load from v4i32 into the QPX register; this will extend it to 6813 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6814 // is typed as v4f64 because the QPX register integer states are not 6815 // explicitly represented. 6816 6817 SmallVector<SDValue, 2> Ops; 6818 Ops.push_back(StoreChain); 6819 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6820 Ops.push_back(FIdx); 6821 6822 SmallVector<EVT, 2> ValueVTs; 6823 ValueVTs.push_back(MVT::v4f64); 6824 ValueVTs.push_back(MVT::Other); // chain 6825 SDVTList VTs = DAG.getVTList(ValueVTs); 6826 6827 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6828 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6829 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6830 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6831 LoadedVect); 6832 6833 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6834 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6835 FPZeros, FPZeros, FPZeros, FPZeros); 6836 6837 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6838 } 6839 6840 // All other QPX vectors are handled by generic code. 6841 if (Subtarget.hasQPX()) 6842 return SDValue(); 6843 6844 // Check if this is a splat of a constant value. 6845 APInt APSplatBits, APSplatUndef; 6846 unsigned SplatBitSize; 6847 bool HasAnyUndefs; 6848 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6849 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6850 SplatBitSize > 32) 6851 return SDValue(); 6852 6853 unsigned SplatBits = APSplatBits.getZExtValue(); 6854 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6855 unsigned SplatSize = SplatBitSize / 8; 6856 6857 // First, handle single instruction cases. 6858 6859 // All zeros? 6860 if (SplatBits == 0) { 6861 // Canonicalize all zero vectors to be v4i32. 6862 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6863 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6864 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6865 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6866 } 6867 return Op; 6868 } 6869 6870 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6871 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6872 (32-SplatBitSize)); 6873 if (SextVal >= -16 && SextVal <= 15) 6874 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6875 6876 6877 // Two instruction sequences. 6878 6879 // If this value is in the range [-32,30] and is even, use: 6880 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6881 // If this value is in the range [17,31] and is odd, use: 6882 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6883 // If this value is in the range [-31,-17] and is odd, use: 6884 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6885 // Note the last two are three-instruction sequences. 6886 if (SextVal >= -32 && SextVal <= 31) { 6887 // To avoid having these optimizations undone by constant folding, 6888 // we convert to a pseudo that will be expanded later into one of 6889 // the above forms. 6890 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6891 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6892 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6893 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6894 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6895 if (VT == Op.getValueType()) 6896 return RetVal; 6897 else 6898 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6899 } 6900 6901 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6902 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6903 // for fneg/fabs. 6904 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6905 // Make -1 and vspltisw -1: 6906 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6907 6908 // Make the VSLW intrinsic, computing 0x8000_0000. 6909 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6910 OnesV, DAG, dl); 6911 6912 // xor by OnesV to invert it. 6913 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6914 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6915 } 6916 6917 // Check to see if this is a wide variety of vsplti*, binop self cases. 6918 static const signed char SplatCsts[] = { 6919 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6920 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6921 }; 6922 6923 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6924 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6925 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6926 int i = SplatCsts[idx]; 6927 6928 // Figure out what shift amount will be used by altivec if shifted by i in 6929 // this splat size. 6930 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6931 6932 // vsplti + shl self. 6933 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 6934 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6935 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6936 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 6937 Intrinsic::ppc_altivec_vslw 6938 }; 6939 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6940 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6941 } 6942 6943 // vsplti + srl self. 6944 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6945 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6946 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6947 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 6948 Intrinsic::ppc_altivec_vsrw 6949 }; 6950 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6951 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6952 } 6953 6954 // vsplti + sra self. 6955 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 6956 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6957 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6958 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 6959 Intrinsic::ppc_altivec_vsraw 6960 }; 6961 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6962 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6963 } 6964 6965 // vsplti + rol self. 6966 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 6967 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 6968 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 6969 static const unsigned IIDs[] = { // Intrinsic to use for each size. 6970 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 6971 Intrinsic::ppc_altivec_vrlw 6972 }; 6973 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 6974 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6975 } 6976 6977 // t = vsplti c, result = vsldoi t, t, 1 6978 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 6979 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6980 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 6981 } 6982 // t = vsplti c, result = vsldoi t, t, 2 6983 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 6984 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6985 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 6986 } 6987 // t = vsplti c, result = vsldoi t, t, 3 6988 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 6989 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 6990 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 6991 } 6992 } 6993 6994 return SDValue(); 6995 } 6996 6997 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 6998 /// the specified operations to build the shuffle. 6999 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7000 SDValue RHS, SelectionDAG &DAG, 7001 SDLoc dl) { 7002 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7003 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7004 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7005 7006 enum { 7007 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7008 OP_VMRGHW, 7009 OP_VMRGLW, 7010 OP_VSPLTISW0, 7011 OP_VSPLTISW1, 7012 OP_VSPLTISW2, 7013 OP_VSPLTISW3, 7014 OP_VSLDOI4, 7015 OP_VSLDOI8, 7016 OP_VSLDOI12 7017 }; 7018 7019 if (OpNum == OP_COPY) { 7020 if (LHSID == (1*9+2)*9+3) return LHS; 7021 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7022 return RHS; 7023 } 7024 7025 SDValue OpLHS, OpRHS; 7026 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7027 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7028 7029 int ShufIdxs[16]; 7030 switch (OpNum) { 7031 default: llvm_unreachable("Unknown i32 permute!"); 7032 case OP_VMRGHW: 7033 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7034 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7035 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7036 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7037 break; 7038 case OP_VMRGLW: 7039 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7040 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7041 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7042 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7043 break; 7044 case OP_VSPLTISW0: 7045 for (unsigned i = 0; i != 16; ++i) 7046 ShufIdxs[i] = (i&3)+0; 7047 break; 7048 case OP_VSPLTISW1: 7049 for (unsigned i = 0; i != 16; ++i) 7050 ShufIdxs[i] = (i&3)+4; 7051 break; 7052 case OP_VSPLTISW2: 7053 for (unsigned i = 0; i != 16; ++i) 7054 ShufIdxs[i] = (i&3)+8; 7055 break; 7056 case OP_VSPLTISW3: 7057 for (unsigned i = 0; i != 16; ++i) 7058 ShufIdxs[i] = (i&3)+12; 7059 break; 7060 case OP_VSLDOI4: 7061 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7062 case OP_VSLDOI8: 7063 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7064 case OP_VSLDOI12: 7065 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7066 } 7067 EVT VT = OpLHS.getValueType(); 7068 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7069 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7070 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7071 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7072 } 7073 7074 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7075 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7076 /// return the code it can be lowered into. Worst case, it can always be 7077 /// lowered into a vperm. 7078 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7079 SelectionDAG &DAG) const { 7080 SDLoc dl(Op); 7081 SDValue V1 = Op.getOperand(0); 7082 SDValue V2 = Op.getOperand(1); 7083 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7084 EVT VT = Op.getValueType(); 7085 bool isLittleEndian = Subtarget.isLittleEndian(); 7086 7087 if (Subtarget.hasQPX()) { 7088 if (VT.getVectorNumElements() != 4) 7089 return SDValue(); 7090 7091 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7092 7093 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7094 if (AlignIdx != -1) { 7095 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7096 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7097 } else if (SVOp->isSplat()) { 7098 int SplatIdx = SVOp->getSplatIndex(); 7099 if (SplatIdx >= 4) { 7100 std::swap(V1, V2); 7101 SplatIdx -= 4; 7102 } 7103 7104 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7105 // nothing to do. 7106 7107 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7108 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7109 } 7110 7111 // Lower this into a qvgpci/qvfperm pair. 7112 7113 // Compute the qvgpci literal 7114 unsigned idx = 0; 7115 for (unsigned i = 0; i < 4; ++i) { 7116 int m = SVOp->getMaskElt(i); 7117 unsigned mm = m >= 0 ? (unsigned) m : i; 7118 idx |= mm << (3-i)*3; 7119 } 7120 7121 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7122 DAG.getConstant(idx, dl, MVT::i32)); 7123 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7124 } 7125 7126 // Cases that are handled by instructions that take permute immediates 7127 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7128 // selected by the instruction selector. 7129 if (V2.getOpcode() == ISD::UNDEF) { 7130 if (PPC::isSplatShuffleMask(SVOp, 1) || 7131 PPC::isSplatShuffleMask(SVOp, 2) || 7132 PPC::isSplatShuffleMask(SVOp, 4) || 7133 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7134 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7135 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7136 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7137 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7138 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7139 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7140 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7141 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7142 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7143 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7144 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)) { 7145 return Op; 7146 } 7147 } 7148 7149 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7150 // and produce a fixed permutation. If any of these match, do not lower to 7151 // VPERM. 7152 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7153 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7154 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7155 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7156 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7157 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7158 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7159 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7160 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7161 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7162 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7163 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7164 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)) 7165 return Op; 7166 7167 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7168 // perfect shuffle table to emit an optimal matching sequence. 7169 ArrayRef<int> PermMask = SVOp->getMask(); 7170 7171 unsigned PFIndexes[4]; 7172 bool isFourElementShuffle = true; 7173 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7174 unsigned EltNo = 8; // Start out undef. 7175 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7176 if (PermMask[i*4+j] < 0) 7177 continue; // Undef, ignore it. 7178 7179 unsigned ByteSource = PermMask[i*4+j]; 7180 if ((ByteSource & 3) != j) { 7181 isFourElementShuffle = false; 7182 break; 7183 } 7184 7185 if (EltNo == 8) { 7186 EltNo = ByteSource/4; 7187 } else if (EltNo != ByteSource/4) { 7188 isFourElementShuffle = false; 7189 break; 7190 } 7191 } 7192 PFIndexes[i] = EltNo; 7193 } 7194 7195 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7196 // perfect shuffle vector to determine if it is cost effective to do this as 7197 // discrete instructions, or whether we should use a vperm. 7198 // For now, we skip this for little endian until such time as we have a 7199 // little-endian perfect shuffle table. 7200 if (isFourElementShuffle && !isLittleEndian) { 7201 // Compute the index in the perfect shuffle table. 7202 unsigned PFTableIndex = 7203 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7204 7205 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7206 unsigned Cost = (PFEntry >> 30); 7207 7208 // Determining when to avoid vperm is tricky. Many things affect the cost 7209 // of vperm, particularly how many times the perm mask needs to be computed. 7210 // For example, if the perm mask can be hoisted out of a loop or is already 7211 // used (perhaps because there are multiple permutes with the same shuffle 7212 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7213 // the loop requires an extra register. 7214 // 7215 // As a compromise, we only emit discrete instructions if the shuffle can be 7216 // generated in 3 or fewer operations. When we have loop information 7217 // available, if this block is within a loop, we should avoid using vperm 7218 // for 3-operation perms and use a constant pool load instead. 7219 if (Cost < 3) 7220 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7221 } 7222 7223 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7224 // vector that will get spilled to the constant pool. 7225 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7226 7227 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7228 // that it is in input element units, not in bytes. Convert now. 7229 7230 // For little endian, the order of the input vectors is reversed, and 7231 // the permutation mask is complemented with respect to 31. This is 7232 // necessary to produce proper semantics with the big-endian-biased vperm 7233 // instruction. 7234 EVT EltVT = V1.getValueType().getVectorElementType(); 7235 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7236 7237 SmallVector<SDValue, 16> ResultMask; 7238 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7239 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7240 7241 for (unsigned j = 0; j != BytesPerElement; ++j) 7242 if (isLittleEndian) 7243 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7244 dl, MVT::i32)); 7245 else 7246 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7247 MVT::i32)); 7248 } 7249 7250 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7251 ResultMask); 7252 if (isLittleEndian) 7253 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7254 V2, V1, VPermMask); 7255 else 7256 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7257 V1, V2, VPermMask); 7258 } 7259 7260 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 7261 /// altivec comparison. If it is, return true and fill in Opc/isDot with 7262 /// information about the intrinsic. 7263 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 7264 bool &isDot, const PPCSubtarget &Subtarget) { 7265 unsigned IntrinsicID = 7266 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7267 CompareOpc = -1; 7268 isDot = false; 7269 switch (IntrinsicID) { 7270 default: return false; 7271 // Comparison predicates. 7272 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7273 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7274 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7275 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7276 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7277 case Intrinsic::ppc_altivec_vcmpequd_p: 7278 if (Subtarget.hasP8Altivec()) { 7279 CompareOpc = 199; 7280 isDot = 1; 7281 } 7282 else 7283 return false; 7284 7285 break; 7286 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7287 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7288 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7289 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7290 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7291 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7292 if (Subtarget.hasP8Altivec()) { 7293 CompareOpc = 967; 7294 isDot = 1; 7295 } 7296 else 7297 return false; 7298 7299 break; 7300 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7301 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7302 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7303 case Intrinsic::ppc_altivec_vcmpgtud_p: 7304 if (Subtarget.hasP8Altivec()) { 7305 CompareOpc = 711; 7306 isDot = 1; 7307 } 7308 else 7309 return false; 7310 7311 break; 7312 7313 // Normal Comparisons. 7314 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7315 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7316 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7317 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7318 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7319 case Intrinsic::ppc_altivec_vcmpequd: 7320 if (Subtarget.hasP8Altivec()) { 7321 CompareOpc = 199; 7322 isDot = 0; 7323 } 7324 else 7325 return false; 7326 7327 break; 7328 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7329 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7330 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7331 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7332 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7333 case Intrinsic::ppc_altivec_vcmpgtsd: 7334 if (Subtarget.hasP8Altivec()) { 7335 CompareOpc = 967; 7336 isDot = 0; 7337 } 7338 else 7339 return false; 7340 7341 break; 7342 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7343 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7344 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7345 case Intrinsic::ppc_altivec_vcmpgtud: 7346 if (Subtarget.hasP8Altivec()) { 7347 CompareOpc = 711; 7348 isDot = 0; 7349 } 7350 else 7351 return false; 7352 7353 break; 7354 } 7355 return true; 7356 } 7357 7358 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7359 /// lower, do it, otherwise return null. 7360 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7361 SelectionDAG &DAG) const { 7362 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7363 // opcode number of the comparison. 7364 SDLoc dl(Op); 7365 int CompareOpc; 7366 bool isDot; 7367 if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7368 return SDValue(); // Don't custom lower most intrinsics. 7369 7370 // If this is a non-dot comparison, make the VCMP node and we are done. 7371 if (!isDot) { 7372 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7373 Op.getOperand(1), Op.getOperand(2), 7374 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7375 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7376 } 7377 7378 // Create the PPCISD altivec 'dot' comparison node. 7379 SDValue Ops[] = { 7380 Op.getOperand(2), // LHS 7381 Op.getOperand(3), // RHS 7382 DAG.getConstant(CompareOpc, dl, MVT::i32) 7383 }; 7384 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7385 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7386 7387 // Now that we have the comparison, emit a copy from the CR to a GPR. 7388 // This is flagged to the above dot comparison. 7389 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7390 DAG.getRegister(PPC::CR6, MVT::i32), 7391 CompNode.getValue(1)); 7392 7393 // Unpack the result based on how the target uses it. 7394 unsigned BitNo; // Bit # of CR6. 7395 bool InvertBit; // Invert result? 7396 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7397 default: // Can't happen, don't crash on invalid number though. 7398 case 0: // Return the value of the EQ bit of CR6. 7399 BitNo = 0; InvertBit = false; 7400 break; 7401 case 1: // Return the inverted value of the EQ bit of CR6. 7402 BitNo = 0; InvertBit = true; 7403 break; 7404 case 2: // Return the value of the LT bit of CR6. 7405 BitNo = 2; InvertBit = false; 7406 break; 7407 case 3: // Return the inverted value of the LT bit of CR6. 7408 BitNo = 2; InvertBit = true; 7409 break; 7410 } 7411 7412 // Shift the bit into the low position. 7413 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7414 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7415 // Isolate the bit. 7416 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7417 DAG.getConstant(1, dl, MVT::i32)); 7418 7419 // If we are supposed to, toggle the bit. 7420 if (InvertBit) 7421 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7422 DAG.getConstant(1, dl, MVT::i32)); 7423 return Flags; 7424 } 7425 7426 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7427 SelectionDAG &DAG) const { 7428 SDLoc dl(Op); 7429 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7430 // instructions), but for smaller types, we need to first extend up to v2i32 7431 // before doing going farther. 7432 if (Op.getValueType() == MVT::v2i64) { 7433 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7434 if (ExtVT != MVT::v2i32) { 7435 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7436 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7437 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7438 ExtVT.getVectorElementType(), 4))); 7439 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7440 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7441 DAG.getValueType(MVT::v2i32)); 7442 } 7443 7444 return Op; 7445 } 7446 7447 return SDValue(); 7448 } 7449 7450 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7451 SelectionDAG &DAG) const { 7452 SDLoc dl(Op); 7453 // Create a stack slot that is 16-byte aligned. 7454 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7455 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7456 EVT PtrVT = getPointerTy(); 7457 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7458 7459 // Store the input value into Value#0 of the stack slot. 7460 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7461 Op.getOperand(0), FIdx, MachinePointerInfo(), 7462 false, false, 0); 7463 // Load it out. 7464 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7465 false, false, false, 0); 7466 } 7467 7468 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7469 SelectionDAG &DAG) const { 7470 SDLoc dl(Op); 7471 SDNode *N = Op.getNode(); 7472 7473 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7474 "Unknown extract_vector_elt type"); 7475 7476 SDValue Value = N->getOperand(0); 7477 7478 // The first part of this is like the store lowering except that we don't 7479 // need to track the chain. 7480 7481 // The values are now known to be -1 (false) or 1 (true). To convert this 7482 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7483 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7484 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7485 7486 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7487 // understand how to form the extending load. 7488 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7489 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7490 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7491 7492 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7493 7494 // Now convert to an integer and store. 7495 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7496 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7497 Value); 7498 7499 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7500 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7501 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7502 EVT PtrVT = getPointerTy(); 7503 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7504 7505 SDValue StoreChain = DAG.getEntryNode(); 7506 SmallVector<SDValue, 2> Ops; 7507 Ops.push_back(StoreChain); 7508 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7509 Ops.push_back(Value); 7510 Ops.push_back(FIdx); 7511 7512 SmallVector<EVT, 2> ValueVTs; 7513 ValueVTs.push_back(MVT::Other); // chain 7514 SDVTList VTs = DAG.getVTList(ValueVTs); 7515 7516 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7517 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7518 7519 // Extract the value requested. 7520 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7521 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7522 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7523 7524 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7525 PtrInfo.getWithOffset(Offset), 7526 false, false, false, 0); 7527 7528 if (!Subtarget.useCRBits()) 7529 return IntVal; 7530 7531 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7532 } 7533 7534 /// Lowering for QPX v4i1 loads 7535 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7536 SelectionDAG &DAG) const { 7537 SDLoc dl(Op); 7538 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7539 SDValue LoadChain = LN->getChain(); 7540 SDValue BasePtr = LN->getBasePtr(); 7541 7542 if (Op.getValueType() == MVT::v4f64 || 7543 Op.getValueType() == MVT::v4f32) { 7544 EVT MemVT = LN->getMemoryVT(); 7545 unsigned Alignment = LN->getAlignment(); 7546 7547 // If this load is properly aligned, then it is legal. 7548 if (Alignment >= MemVT.getStoreSize()) 7549 return Op; 7550 7551 EVT ScalarVT = Op.getValueType().getScalarType(), 7552 ScalarMemVT = MemVT.getScalarType(); 7553 unsigned Stride = ScalarMemVT.getStoreSize(); 7554 7555 SmallVector<SDValue, 8> Vals, LoadChains; 7556 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7557 SDValue Load; 7558 if (ScalarVT != ScalarMemVT) 7559 Load = 7560 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7561 BasePtr, 7562 LN->getPointerInfo().getWithOffset(Idx*Stride), 7563 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7564 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7565 LN->getAAInfo()); 7566 else 7567 Load = 7568 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7569 LN->getPointerInfo().getWithOffset(Idx*Stride), 7570 LN->isVolatile(), LN->isNonTemporal(), 7571 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7572 LN->getAAInfo()); 7573 7574 if (Idx == 0 && LN->isIndexed()) { 7575 assert(LN->getAddressingMode() == ISD::PRE_INC && 7576 "Unknown addressing mode on vector load"); 7577 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7578 LN->getAddressingMode()); 7579 } 7580 7581 Vals.push_back(Load); 7582 LoadChains.push_back(Load.getValue(1)); 7583 7584 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7585 DAG.getConstant(Stride, dl, 7586 BasePtr.getValueType())); 7587 } 7588 7589 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7590 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7591 Op.getValueType(), Vals); 7592 7593 if (LN->isIndexed()) { 7594 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7595 return DAG.getMergeValues(RetOps, dl); 7596 } 7597 7598 SDValue RetOps[] = { Value, TF }; 7599 return DAG.getMergeValues(RetOps, dl); 7600 } 7601 7602 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7603 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7604 7605 // To lower v4i1 from a byte array, we load the byte elements of the 7606 // vector and then reuse the BUILD_VECTOR logic. 7607 7608 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7609 for (unsigned i = 0; i < 4; ++i) { 7610 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7611 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7612 7613 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7614 dl, MVT::i32, LoadChain, Idx, 7615 LN->getPointerInfo().getWithOffset(i), 7616 MVT::i8 /* memory type */, 7617 LN->isVolatile(), LN->isNonTemporal(), 7618 LN->isInvariant(), 7619 1 /* alignment */, LN->getAAInfo())); 7620 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7621 } 7622 7623 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7624 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7625 7626 SDValue RVals[] = { Value, LoadChain }; 7627 return DAG.getMergeValues(RVals, dl); 7628 } 7629 7630 /// Lowering for QPX v4i1 stores 7631 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7632 SelectionDAG &DAG) const { 7633 SDLoc dl(Op); 7634 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7635 SDValue StoreChain = SN->getChain(); 7636 SDValue BasePtr = SN->getBasePtr(); 7637 SDValue Value = SN->getValue(); 7638 7639 if (Value.getValueType() == MVT::v4f64 || 7640 Value.getValueType() == MVT::v4f32) { 7641 EVT MemVT = SN->getMemoryVT(); 7642 unsigned Alignment = SN->getAlignment(); 7643 7644 // If this store is properly aligned, then it is legal. 7645 if (Alignment >= MemVT.getStoreSize()) 7646 return Op; 7647 7648 EVT ScalarVT = Value.getValueType().getScalarType(), 7649 ScalarMemVT = MemVT.getScalarType(); 7650 unsigned Stride = ScalarMemVT.getStoreSize(); 7651 7652 SmallVector<SDValue, 8> Stores; 7653 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7654 SDValue Ex = 7655 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7656 DAG.getConstant(Idx, dl, getVectorIdxTy())); 7657 SDValue Store; 7658 if (ScalarVT != ScalarMemVT) 7659 Store = 7660 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7661 SN->getPointerInfo().getWithOffset(Idx*Stride), 7662 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7663 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7664 else 7665 Store = 7666 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7667 SN->getPointerInfo().getWithOffset(Idx*Stride), 7668 SN->isVolatile(), SN->isNonTemporal(), 7669 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7670 7671 if (Idx == 0 && SN->isIndexed()) { 7672 assert(SN->getAddressingMode() == ISD::PRE_INC && 7673 "Unknown addressing mode on vector store"); 7674 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7675 SN->getAddressingMode()); 7676 } 7677 7678 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7679 DAG.getConstant(Stride, dl, 7680 BasePtr.getValueType())); 7681 Stores.push_back(Store); 7682 } 7683 7684 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7685 7686 if (SN->isIndexed()) { 7687 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7688 return DAG.getMergeValues(RetOps, dl); 7689 } 7690 7691 return TF; 7692 } 7693 7694 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7695 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7696 7697 // The values are now known to be -1 (false) or 1 (true). To convert this 7698 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7699 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7700 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7701 7702 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7703 // understand how to form the extending load. 7704 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7705 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7706 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7707 7708 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7709 7710 // Now convert to an integer and store. 7711 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7712 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7713 Value); 7714 7715 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7716 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7717 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx); 7718 EVT PtrVT = getPointerTy(); 7719 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7720 7721 SmallVector<SDValue, 2> Ops; 7722 Ops.push_back(StoreChain); 7723 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7724 Ops.push_back(Value); 7725 Ops.push_back(FIdx); 7726 7727 SmallVector<EVT, 2> ValueVTs; 7728 ValueVTs.push_back(MVT::Other); // chain 7729 SDVTList VTs = DAG.getVTList(ValueVTs); 7730 7731 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7732 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7733 7734 // Move data into the byte array. 7735 SmallVector<SDValue, 4> Loads, LoadChains; 7736 for (unsigned i = 0; i < 4; ++i) { 7737 unsigned Offset = 4*i; 7738 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7739 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7740 7741 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7742 PtrInfo.getWithOffset(Offset), 7743 false, false, false, 0)); 7744 LoadChains.push_back(Loads[i].getValue(1)); 7745 } 7746 7747 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7748 7749 SmallVector<SDValue, 4> Stores; 7750 for (unsigned i = 0; i < 4; ++i) { 7751 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7752 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7753 7754 Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx, 7755 SN->getPointerInfo().getWithOffset(i), 7756 MVT::i8 /* memory type */, 7757 SN->isNonTemporal(), SN->isVolatile(), 7758 1 /* alignment */, SN->getAAInfo())); 7759 } 7760 7761 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7762 7763 return StoreChain; 7764 } 7765 7766 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7767 SDLoc dl(Op); 7768 if (Op.getValueType() == MVT::v4i32) { 7769 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7770 7771 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7772 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7773 7774 SDValue RHSSwap = // = vrlw RHS, 16 7775 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7776 7777 // Shrinkify inputs to v8i16. 7778 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7779 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7780 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7781 7782 // Low parts multiplied together, generating 32-bit results (we ignore the 7783 // top parts). 7784 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7785 LHS, RHS, DAG, dl, MVT::v4i32); 7786 7787 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7788 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7789 // Shift the high parts up 16 bits. 7790 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7791 Neg16, DAG, dl); 7792 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7793 } else if (Op.getValueType() == MVT::v8i16) { 7794 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7795 7796 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7797 7798 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7799 LHS, RHS, Zero, DAG, dl); 7800 } else if (Op.getValueType() == MVT::v16i8) { 7801 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7802 bool isLittleEndian = Subtarget.isLittleEndian(); 7803 7804 // Multiply the even 8-bit parts, producing 16-bit sums. 7805 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7806 LHS, RHS, DAG, dl, MVT::v8i16); 7807 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7808 7809 // Multiply the odd 8-bit parts, producing 16-bit sums. 7810 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7811 LHS, RHS, DAG, dl, MVT::v8i16); 7812 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7813 7814 // Merge the results together. Because vmuleub and vmuloub are 7815 // instructions with a big-endian bias, we must reverse the 7816 // element numbering and reverse the meaning of "odd" and "even" 7817 // when generating little endian code. 7818 int Ops[16]; 7819 for (unsigned i = 0; i != 8; ++i) { 7820 if (isLittleEndian) { 7821 Ops[i*2 ] = 2*i; 7822 Ops[i*2+1] = 2*i+16; 7823 } else { 7824 Ops[i*2 ] = 2*i+1; 7825 Ops[i*2+1] = 2*i+1+16; 7826 } 7827 } 7828 if (isLittleEndian) 7829 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7830 else 7831 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7832 } else { 7833 llvm_unreachable("Unknown mul to lower!"); 7834 } 7835 } 7836 7837 /// LowerOperation - Provide custom lowering hooks for some operations. 7838 /// 7839 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7840 switch (Op.getOpcode()) { 7841 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7842 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7843 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7844 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7845 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7846 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7847 case ISD::SETCC: return LowerSETCC(Op, DAG); 7848 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7849 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7850 case ISD::VASTART: 7851 return LowerVASTART(Op, DAG, Subtarget); 7852 7853 case ISD::VAARG: 7854 return LowerVAARG(Op, DAG, Subtarget); 7855 7856 case ISD::VACOPY: 7857 return LowerVACOPY(Op, DAG, Subtarget); 7858 7859 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7860 case ISD::DYNAMIC_STACKALLOC: 7861 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7862 7863 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7864 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7865 7866 case ISD::LOAD: return LowerLOAD(Op, DAG); 7867 case ISD::STORE: return LowerSTORE(Op, DAG); 7868 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7869 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7870 case ISD::FP_TO_UINT: 7871 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7872 SDLoc(Op)); 7873 case ISD::UINT_TO_FP: 7874 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7875 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7876 7877 // Lower 64-bit shifts. 7878 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7879 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7880 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7881 7882 // Vector-related lowering. 7883 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7884 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7885 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7886 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7887 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7888 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7889 case ISD::MUL: return LowerMUL(Op, DAG); 7890 7891 // For counter-based loop handling. 7892 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7893 7894 // Frame & Return address. 7895 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7896 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7897 } 7898 } 7899 7900 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7901 SmallVectorImpl<SDValue>&Results, 7902 SelectionDAG &DAG) const { 7903 SDLoc dl(N); 7904 switch (N->getOpcode()) { 7905 default: 7906 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7907 case ISD::READCYCLECOUNTER: { 7908 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7909 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7910 7911 Results.push_back(RTB); 7912 Results.push_back(RTB.getValue(1)); 7913 Results.push_back(RTB.getValue(2)); 7914 break; 7915 } 7916 case ISD::INTRINSIC_W_CHAIN: { 7917 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 7918 Intrinsic::ppc_is_decremented_ctr_nonzero) 7919 break; 7920 7921 assert(N->getValueType(0) == MVT::i1 && 7922 "Unexpected result type for CTR decrement intrinsic"); 7923 EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0)); 7924 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 7925 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 7926 N->getOperand(1)); 7927 7928 Results.push_back(NewInt); 7929 Results.push_back(NewInt.getValue(1)); 7930 break; 7931 } 7932 case ISD::VAARG: { 7933 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 7934 return; 7935 7936 EVT VT = N->getValueType(0); 7937 7938 if (VT == MVT::i64) { 7939 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 7940 7941 Results.push_back(NewNode); 7942 Results.push_back(NewNode.getValue(1)); 7943 } 7944 return; 7945 } 7946 case ISD::FP_ROUND_INREG: { 7947 assert(N->getValueType(0) == MVT::ppcf128); 7948 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 7949 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7950 MVT::f64, N->getOperand(0), 7951 DAG.getIntPtrConstant(0, dl)); 7952 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7953 MVT::f64, N->getOperand(0), 7954 DAG.getIntPtrConstant(1, dl)); 7955 7956 // Add the two halves of the long double in round-to-zero mode. 7957 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7958 7959 // We know the low half is about to be thrown away, so just use something 7960 // convenient. 7961 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 7962 FPreg, FPreg)); 7963 return; 7964 } 7965 case ISD::FP_TO_SINT: 7966 case ISD::FP_TO_UINT: 7967 // LowerFP_TO_INT() can only handle f32 and f64. 7968 if (N->getOperand(0).getValueType() == MVT::ppcf128) 7969 return; 7970 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 7971 return; 7972 } 7973 } 7974 7975 7976 //===----------------------------------------------------------------------===// 7977 // Other Lowering Code 7978 //===----------------------------------------------------------------------===// 7979 7980 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 7981 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 7982 Function *Func = Intrinsic::getDeclaration(M, Id); 7983 return Builder.CreateCall(Func, {}); 7984 } 7985 7986 // The mappings for emitLeading/TrailingFence is taken from 7987 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 7988 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 7989 AtomicOrdering Ord, bool IsStore, 7990 bool IsLoad) const { 7991 if (Ord == SequentiallyConsistent) 7992 return callIntrinsic(Builder, Intrinsic::ppc_sync); 7993 if (isAtLeastRelease(Ord)) 7994 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 7995 return nullptr; 7996 } 7997 7998 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 7999 AtomicOrdering Ord, bool IsStore, 8000 bool IsLoad) const { 8001 if (IsLoad && isAtLeastAcquire(Ord)) 8002 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8003 // FIXME: this is too conservative, a dependent branch + isync is enough. 8004 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8005 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8006 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8007 return nullptr; 8008 } 8009 8010 MachineBasicBlock * 8011 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8012 unsigned AtomicSize, 8013 unsigned BinOpcode) const { 8014 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8015 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8016 8017 auto LoadMnemonic = PPC::LDARX; 8018 auto StoreMnemonic = PPC::STDCX; 8019 switch (AtomicSize) { 8020 default: 8021 llvm_unreachable("Unexpected size of atomic entity"); 8022 case 1: 8023 LoadMnemonic = PPC::LBARX; 8024 StoreMnemonic = PPC::STBCX; 8025 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8026 break; 8027 case 2: 8028 LoadMnemonic = PPC::LHARX; 8029 StoreMnemonic = PPC::STHCX; 8030 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8031 break; 8032 case 4: 8033 LoadMnemonic = PPC::LWARX; 8034 StoreMnemonic = PPC::STWCX; 8035 break; 8036 case 8: 8037 LoadMnemonic = PPC::LDARX; 8038 StoreMnemonic = PPC::STDCX; 8039 break; 8040 } 8041 8042 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8043 MachineFunction *F = BB->getParent(); 8044 MachineFunction::iterator It = BB; 8045 ++It; 8046 8047 unsigned dest = MI->getOperand(0).getReg(); 8048 unsigned ptrA = MI->getOperand(1).getReg(); 8049 unsigned ptrB = MI->getOperand(2).getReg(); 8050 unsigned incr = MI->getOperand(3).getReg(); 8051 DebugLoc dl = MI->getDebugLoc(); 8052 8053 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8054 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8055 F->insert(It, loopMBB); 8056 F->insert(It, exitMBB); 8057 exitMBB->splice(exitMBB->begin(), BB, 8058 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8059 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8060 8061 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8062 unsigned TmpReg = (!BinOpcode) ? incr : 8063 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8064 : &PPC::GPRCRegClass); 8065 8066 // thisMBB: 8067 // ... 8068 // fallthrough --> loopMBB 8069 BB->addSuccessor(loopMBB); 8070 8071 // loopMBB: 8072 // l[wd]arx dest, ptr 8073 // add r0, dest, incr 8074 // st[wd]cx. r0, ptr 8075 // bne- loopMBB 8076 // fallthrough --> exitMBB 8077 BB = loopMBB; 8078 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8079 .addReg(ptrA).addReg(ptrB); 8080 if (BinOpcode) 8081 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8082 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8083 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8084 BuildMI(BB, dl, TII->get(PPC::BCC)) 8085 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8086 BB->addSuccessor(loopMBB); 8087 BB->addSuccessor(exitMBB); 8088 8089 // exitMBB: 8090 // ... 8091 BB = exitMBB; 8092 return BB; 8093 } 8094 8095 MachineBasicBlock * 8096 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8097 MachineBasicBlock *BB, 8098 bool is8bit, // operation 8099 unsigned BinOpcode) const { 8100 // If we support part-word atomic mnemonics, just use them 8101 if (Subtarget.hasPartwordAtomics()) 8102 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8103 8104 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8105 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8106 // In 64 bit mode we have to use 64 bits for addresses, even though the 8107 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8108 // registers without caring whether they're 32 or 64, but here we're 8109 // doing actual arithmetic on the addresses. 8110 bool is64bit = Subtarget.isPPC64(); 8111 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8112 8113 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8114 MachineFunction *F = BB->getParent(); 8115 MachineFunction::iterator It = BB; 8116 ++It; 8117 8118 unsigned dest = MI->getOperand(0).getReg(); 8119 unsigned ptrA = MI->getOperand(1).getReg(); 8120 unsigned ptrB = MI->getOperand(2).getReg(); 8121 unsigned incr = MI->getOperand(3).getReg(); 8122 DebugLoc dl = MI->getDebugLoc(); 8123 8124 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8125 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8126 F->insert(It, loopMBB); 8127 F->insert(It, exitMBB); 8128 exitMBB->splice(exitMBB->begin(), BB, 8129 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8130 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8131 8132 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8133 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8134 : &PPC::GPRCRegClass; 8135 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8136 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8137 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8138 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8139 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8140 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8141 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8142 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8143 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8144 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8145 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8146 unsigned Ptr1Reg; 8147 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8148 8149 // thisMBB: 8150 // ... 8151 // fallthrough --> loopMBB 8152 BB->addSuccessor(loopMBB); 8153 8154 // The 4-byte load must be aligned, while a char or short may be 8155 // anywhere in the word. Hence all this nasty bookkeeping code. 8156 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8157 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8158 // xori shift, shift1, 24 [16] 8159 // rlwinm ptr, ptr1, 0, 0, 29 8160 // slw incr2, incr, shift 8161 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8162 // slw mask, mask2, shift 8163 // loopMBB: 8164 // lwarx tmpDest, ptr 8165 // add tmp, tmpDest, incr2 8166 // andc tmp2, tmpDest, mask 8167 // and tmp3, tmp, mask 8168 // or tmp4, tmp3, tmp2 8169 // stwcx. tmp4, ptr 8170 // bne- loopMBB 8171 // fallthrough --> exitMBB 8172 // srw dest, tmpDest, shift 8173 if (ptrA != ZeroReg) { 8174 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8175 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8176 .addReg(ptrA).addReg(ptrB); 8177 } else { 8178 Ptr1Reg = ptrB; 8179 } 8180 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8181 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8182 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8183 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8184 if (is64bit) 8185 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8186 .addReg(Ptr1Reg).addImm(0).addImm(61); 8187 else 8188 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8189 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8190 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8191 .addReg(incr).addReg(ShiftReg); 8192 if (is8bit) 8193 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8194 else { 8195 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8196 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8197 } 8198 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8199 .addReg(Mask2Reg).addReg(ShiftReg); 8200 8201 BB = loopMBB; 8202 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8203 .addReg(ZeroReg).addReg(PtrReg); 8204 if (BinOpcode) 8205 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8206 .addReg(Incr2Reg).addReg(TmpDestReg); 8207 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8208 .addReg(TmpDestReg).addReg(MaskReg); 8209 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8210 .addReg(TmpReg).addReg(MaskReg); 8211 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8212 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8213 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8214 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8215 BuildMI(BB, dl, TII->get(PPC::BCC)) 8216 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8217 BB->addSuccessor(loopMBB); 8218 BB->addSuccessor(exitMBB); 8219 8220 // exitMBB: 8221 // ... 8222 BB = exitMBB; 8223 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8224 .addReg(ShiftReg); 8225 return BB; 8226 } 8227 8228 llvm::MachineBasicBlock* 8229 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8230 MachineBasicBlock *MBB) const { 8231 DebugLoc DL = MI->getDebugLoc(); 8232 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8233 8234 MachineFunction *MF = MBB->getParent(); 8235 MachineRegisterInfo &MRI = MF->getRegInfo(); 8236 8237 const BasicBlock *BB = MBB->getBasicBlock(); 8238 MachineFunction::iterator I = MBB; 8239 ++I; 8240 8241 // Memory Reference 8242 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8243 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8244 8245 unsigned DstReg = MI->getOperand(0).getReg(); 8246 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8247 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8248 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8249 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8250 8251 MVT PVT = getPointerTy(); 8252 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8253 "Invalid Pointer Size!"); 8254 // For v = setjmp(buf), we generate 8255 // 8256 // thisMBB: 8257 // SjLjSetup mainMBB 8258 // bl mainMBB 8259 // v_restore = 1 8260 // b sinkMBB 8261 // 8262 // mainMBB: 8263 // buf[LabelOffset] = LR 8264 // v_main = 0 8265 // 8266 // sinkMBB: 8267 // v = phi(main, restore) 8268 // 8269 8270 MachineBasicBlock *thisMBB = MBB; 8271 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8272 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8273 MF->insert(I, mainMBB); 8274 MF->insert(I, sinkMBB); 8275 8276 MachineInstrBuilder MIB; 8277 8278 // Transfer the remainder of BB and its successor edges to sinkMBB. 8279 sinkMBB->splice(sinkMBB->begin(), MBB, 8280 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8281 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8282 8283 // Note that the structure of the jmp_buf used here is not compatible 8284 // with that used by libc, and is not designed to be. Specifically, it 8285 // stores only those 'reserved' registers that LLVM does not otherwise 8286 // understand how to spill. Also, by convention, by the time this 8287 // intrinsic is called, Clang has already stored the frame address in the 8288 // first slot of the buffer and stack address in the third. Following the 8289 // X86 target code, we'll store the jump address in the second slot. We also 8290 // need to save the TOC pointer (R2) to handle jumps between shared 8291 // libraries, and that will be stored in the fourth slot. The thread 8292 // identifier (R13) is not affected. 8293 8294 // thisMBB: 8295 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8296 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8297 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8298 8299 // Prepare IP either in reg. 8300 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8301 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8302 unsigned BufReg = MI->getOperand(1).getReg(); 8303 8304 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8305 setUsesTOCBasePtr(*MBB->getParent()); 8306 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8307 .addReg(PPC::X2) 8308 .addImm(TOCOffset) 8309 .addReg(BufReg); 8310 MIB.setMemRefs(MMOBegin, MMOEnd); 8311 } 8312 8313 // Naked functions never have a base pointer, and so we use r1. For all 8314 // other functions, this decision must be delayed until during PEI. 8315 unsigned BaseReg; 8316 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8317 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8318 else 8319 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8320 8321 MIB = BuildMI(*thisMBB, MI, DL, 8322 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8323 .addReg(BaseReg) 8324 .addImm(BPOffset) 8325 .addReg(BufReg); 8326 MIB.setMemRefs(MMOBegin, MMOEnd); 8327 8328 // Setup 8329 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8330 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8331 MIB.addRegMask(TRI->getNoPreservedMask()); 8332 8333 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8334 8335 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8336 .addMBB(mainMBB); 8337 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8338 8339 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8340 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8341 8342 // mainMBB: 8343 // mainDstReg = 0 8344 MIB = 8345 BuildMI(mainMBB, DL, 8346 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8347 8348 // Store IP 8349 if (Subtarget.isPPC64()) { 8350 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8351 .addReg(LabelReg) 8352 .addImm(LabelOffset) 8353 .addReg(BufReg); 8354 } else { 8355 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8356 .addReg(LabelReg) 8357 .addImm(LabelOffset) 8358 .addReg(BufReg); 8359 } 8360 8361 MIB.setMemRefs(MMOBegin, MMOEnd); 8362 8363 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8364 mainMBB->addSuccessor(sinkMBB); 8365 8366 // sinkMBB: 8367 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8368 TII->get(PPC::PHI), DstReg) 8369 .addReg(mainDstReg).addMBB(mainMBB) 8370 .addReg(restoreDstReg).addMBB(thisMBB); 8371 8372 MI->eraseFromParent(); 8373 return sinkMBB; 8374 } 8375 8376 MachineBasicBlock * 8377 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8378 MachineBasicBlock *MBB) const { 8379 DebugLoc DL = MI->getDebugLoc(); 8380 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8381 8382 MachineFunction *MF = MBB->getParent(); 8383 MachineRegisterInfo &MRI = MF->getRegInfo(); 8384 8385 // Memory Reference 8386 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8387 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8388 8389 MVT PVT = getPointerTy(); 8390 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8391 "Invalid Pointer Size!"); 8392 8393 const TargetRegisterClass *RC = 8394 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8395 unsigned Tmp = MRI.createVirtualRegister(RC); 8396 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8397 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8398 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8399 unsigned BP = 8400 (PVT == MVT::i64) 8401 ? PPC::X30 8402 : (Subtarget.isSVR4ABI() && 8403 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8404 ? PPC::R29 8405 : PPC::R30); 8406 8407 MachineInstrBuilder MIB; 8408 8409 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8410 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8411 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8412 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8413 8414 unsigned BufReg = MI->getOperand(0).getReg(); 8415 8416 // Reload FP (the jumped-to function may not have had a 8417 // frame pointer, and if so, then its r31 will be restored 8418 // as necessary). 8419 if (PVT == MVT::i64) { 8420 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8421 .addImm(0) 8422 .addReg(BufReg); 8423 } else { 8424 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8425 .addImm(0) 8426 .addReg(BufReg); 8427 } 8428 MIB.setMemRefs(MMOBegin, MMOEnd); 8429 8430 // Reload IP 8431 if (PVT == MVT::i64) { 8432 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8433 .addImm(LabelOffset) 8434 .addReg(BufReg); 8435 } else { 8436 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8437 .addImm(LabelOffset) 8438 .addReg(BufReg); 8439 } 8440 MIB.setMemRefs(MMOBegin, MMOEnd); 8441 8442 // Reload SP 8443 if (PVT == MVT::i64) { 8444 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8445 .addImm(SPOffset) 8446 .addReg(BufReg); 8447 } else { 8448 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8449 .addImm(SPOffset) 8450 .addReg(BufReg); 8451 } 8452 MIB.setMemRefs(MMOBegin, MMOEnd); 8453 8454 // Reload BP 8455 if (PVT == MVT::i64) { 8456 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8457 .addImm(BPOffset) 8458 .addReg(BufReg); 8459 } else { 8460 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8461 .addImm(BPOffset) 8462 .addReg(BufReg); 8463 } 8464 MIB.setMemRefs(MMOBegin, MMOEnd); 8465 8466 // Reload TOC 8467 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8468 setUsesTOCBasePtr(*MBB->getParent()); 8469 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8470 .addImm(TOCOffset) 8471 .addReg(BufReg); 8472 8473 MIB.setMemRefs(MMOBegin, MMOEnd); 8474 } 8475 8476 // Jump 8477 BuildMI(*MBB, MI, DL, 8478 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8479 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8480 8481 MI->eraseFromParent(); 8482 return MBB; 8483 } 8484 8485 MachineBasicBlock * 8486 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8487 MachineBasicBlock *BB) const { 8488 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8489 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8490 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8491 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8492 // Call lowering should have added an r2 operand to indicate a dependence 8493 // on the TOC base pointer value. It can't however, because there is no 8494 // way to mark the dependence as implicit there, and so the stackmap code 8495 // will confuse it with a regular operand. Instead, add the dependence 8496 // here. 8497 setUsesTOCBasePtr(*BB->getParent()); 8498 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8499 } 8500 8501 return emitPatchPoint(MI, BB); 8502 } 8503 8504 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8505 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8506 return emitEHSjLjSetJmp(MI, BB); 8507 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8508 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8509 return emitEHSjLjLongJmp(MI, BB); 8510 } 8511 8512 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8513 8514 // To "insert" these instructions we actually have to insert their 8515 // control-flow patterns. 8516 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8517 MachineFunction::iterator It = BB; 8518 ++It; 8519 8520 MachineFunction *F = BB->getParent(); 8521 8522 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8523 MI->getOpcode() == PPC::SELECT_CC_I8 || 8524 MI->getOpcode() == PPC::SELECT_I4 || 8525 MI->getOpcode() == PPC::SELECT_I8)) { 8526 SmallVector<MachineOperand, 2> Cond; 8527 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8528 MI->getOpcode() == PPC::SELECT_CC_I8) 8529 Cond.push_back(MI->getOperand(4)); 8530 else 8531 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8532 Cond.push_back(MI->getOperand(1)); 8533 8534 DebugLoc dl = MI->getDebugLoc(); 8535 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8536 Cond, MI->getOperand(2).getReg(), 8537 MI->getOperand(3).getReg()); 8538 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8539 MI->getOpcode() == PPC::SELECT_CC_I8 || 8540 MI->getOpcode() == PPC::SELECT_CC_F4 || 8541 MI->getOpcode() == PPC::SELECT_CC_F8 || 8542 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8543 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8544 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8545 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8546 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8547 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8548 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8549 MI->getOpcode() == PPC::SELECT_I4 || 8550 MI->getOpcode() == PPC::SELECT_I8 || 8551 MI->getOpcode() == PPC::SELECT_F4 || 8552 MI->getOpcode() == PPC::SELECT_F8 || 8553 MI->getOpcode() == PPC::SELECT_QFRC || 8554 MI->getOpcode() == PPC::SELECT_QSRC || 8555 MI->getOpcode() == PPC::SELECT_QBRC || 8556 MI->getOpcode() == PPC::SELECT_VRRC || 8557 MI->getOpcode() == PPC::SELECT_VSFRC || 8558 MI->getOpcode() == PPC::SELECT_VSSRC || 8559 MI->getOpcode() == PPC::SELECT_VSRC) { 8560 // The incoming instruction knows the destination vreg to set, the 8561 // condition code register to branch on, the true/false values to 8562 // select between, and a branch opcode to use. 8563 8564 // thisMBB: 8565 // ... 8566 // TrueVal = ... 8567 // cmpTY ccX, r1, r2 8568 // bCC copy1MBB 8569 // fallthrough --> copy0MBB 8570 MachineBasicBlock *thisMBB = BB; 8571 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8572 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8573 DebugLoc dl = MI->getDebugLoc(); 8574 F->insert(It, copy0MBB); 8575 F->insert(It, sinkMBB); 8576 8577 // Transfer the remainder of BB and its successor edges to sinkMBB. 8578 sinkMBB->splice(sinkMBB->begin(), BB, 8579 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8580 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8581 8582 // Next, add the true and fallthrough blocks as its successors. 8583 BB->addSuccessor(copy0MBB); 8584 BB->addSuccessor(sinkMBB); 8585 8586 if (MI->getOpcode() == PPC::SELECT_I4 || 8587 MI->getOpcode() == PPC::SELECT_I8 || 8588 MI->getOpcode() == PPC::SELECT_F4 || 8589 MI->getOpcode() == PPC::SELECT_F8 || 8590 MI->getOpcode() == PPC::SELECT_QFRC || 8591 MI->getOpcode() == PPC::SELECT_QSRC || 8592 MI->getOpcode() == PPC::SELECT_QBRC || 8593 MI->getOpcode() == PPC::SELECT_VRRC || 8594 MI->getOpcode() == PPC::SELECT_VSFRC || 8595 MI->getOpcode() == PPC::SELECT_VSSRC || 8596 MI->getOpcode() == PPC::SELECT_VSRC) { 8597 BuildMI(BB, dl, TII->get(PPC::BC)) 8598 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8599 } else { 8600 unsigned SelectPred = MI->getOperand(4).getImm(); 8601 BuildMI(BB, dl, TII->get(PPC::BCC)) 8602 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8603 } 8604 8605 // copy0MBB: 8606 // %FalseValue = ... 8607 // # fallthrough to sinkMBB 8608 BB = copy0MBB; 8609 8610 // Update machine-CFG edges 8611 BB->addSuccessor(sinkMBB); 8612 8613 // sinkMBB: 8614 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8615 // ... 8616 BB = sinkMBB; 8617 BuildMI(*BB, BB->begin(), dl, 8618 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8619 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8620 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8621 } else if (MI->getOpcode() == PPC::ReadTB) { 8622 // To read the 64-bit time-base register on a 32-bit target, we read the 8623 // two halves. Should the counter have wrapped while it was being read, we 8624 // need to try again. 8625 // ... 8626 // readLoop: 8627 // mfspr Rx,TBU # load from TBU 8628 // mfspr Ry,TB # load from TB 8629 // mfspr Rz,TBU # load from TBU 8630 // cmpw crX,Rx,Rz # check if ‘old’=’new’ 8631 // bne readLoop # branch if they're not equal 8632 // ... 8633 8634 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8635 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8636 DebugLoc dl = MI->getDebugLoc(); 8637 F->insert(It, readMBB); 8638 F->insert(It, sinkMBB); 8639 8640 // Transfer the remainder of BB and its successor edges to sinkMBB. 8641 sinkMBB->splice(sinkMBB->begin(), BB, 8642 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8643 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8644 8645 BB->addSuccessor(readMBB); 8646 BB = readMBB; 8647 8648 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8649 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8650 unsigned LoReg = MI->getOperand(0).getReg(); 8651 unsigned HiReg = MI->getOperand(1).getReg(); 8652 8653 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8654 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8655 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8656 8657 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8658 8659 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8660 .addReg(HiReg).addReg(ReadAgainReg); 8661 BuildMI(BB, dl, TII->get(PPC::BCC)) 8662 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8663 8664 BB->addSuccessor(readMBB); 8665 BB->addSuccessor(sinkMBB); 8666 } 8667 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8668 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8669 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8670 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8671 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8672 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8673 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8674 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8675 8676 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8677 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8678 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8679 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8680 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8681 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8682 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8683 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8684 8685 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8686 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8687 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8688 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8689 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8690 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8691 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8692 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8693 8694 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8695 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8696 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8697 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8698 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8699 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8700 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8701 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8702 8703 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8704 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8705 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8706 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8707 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8708 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8709 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8710 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8711 8712 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8713 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8714 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8715 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8716 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8717 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8718 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8719 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8720 8721 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8722 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8723 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8724 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8725 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8726 BB = EmitAtomicBinary(MI, BB, 4, 0); 8727 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8728 BB = EmitAtomicBinary(MI, BB, 8, 0); 8729 8730 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8731 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8732 (Subtarget.hasPartwordAtomics() && 8733 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8734 (Subtarget.hasPartwordAtomics() && 8735 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8736 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8737 8738 auto LoadMnemonic = PPC::LDARX; 8739 auto StoreMnemonic = PPC::STDCX; 8740 switch(MI->getOpcode()) { 8741 default: 8742 llvm_unreachable("Compare and swap of unknown size"); 8743 case PPC::ATOMIC_CMP_SWAP_I8: 8744 LoadMnemonic = PPC::LBARX; 8745 StoreMnemonic = PPC::STBCX; 8746 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8747 break; 8748 case PPC::ATOMIC_CMP_SWAP_I16: 8749 LoadMnemonic = PPC::LHARX; 8750 StoreMnemonic = PPC::STHCX; 8751 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8752 break; 8753 case PPC::ATOMIC_CMP_SWAP_I32: 8754 LoadMnemonic = PPC::LWARX; 8755 StoreMnemonic = PPC::STWCX; 8756 break; 8757 case PPC::ATOMIC_CMP_SWAP_I64: 8758 LoadMnemonic = PPC::LDARX; 8759 StoreMnemonic = PPC::STDCX; 8760 break; 8761 } 8762 unsigned dest = MI->getOperand(0).getReg(); 8763 unsigned ptrA = MI->getOperand(1).getReg(); 8764 unsigned ptrB = MI->getOperand(2).getReg(); 8765 unsigned oldval = MI->getOperand(3).getReg(); 8766 unsigned newval = MI->getOperand(4).getReg(); 8767 DebugLoc dl = MI->getDebugLoc(); 8768 8769 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8770 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8771 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8772 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8773 F->insert(It, loop1MBB); 8774 F->insert(It, loop2MBB); 8775 F->insert(It, midMBB); 8776 F->insert(It, exitMBB); 8777 exitMBB->splice(exitMBB->begin(), BB, 8778 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8779 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8780 8781 // thisMBB: 8782 // ... 8783 // fallthrough --> loopMBB 8784 BB->addSuccessor(loop1MBB); 8785 8786 // loop1MBB: 8787 // l[bhwd]arx dest, ptr 8788 // cmp[wd] dest, oldval 8789 // bne- midMBB 8790 // loop2MBB: 8791 // st[bhwd]cx. newval, ptr 8792 // bne- loopMBB 8793 // b exitBB 8794 // midMBB: 8795 // st[bhwd]cx. dest, ptr 8796 // exitBB: 8797 BB = loop1MBB; 8798 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8799 .addReg(ptrA).addReg(ptrB); 8800 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8801 .addReg(oldval).addReg(dest); 8802 BuildMI(BB, dl, TII->get(PPC::BCC)) 8803 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8804 BB->addSuccessor(loop2MBB); 8805 BB->addSuccessor(midMBB); 8806 8807 BB = loop2MBB; 8808 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8809 .addReg(newval).addReg(ptrA).addReg(ptrB); 8810 BuildMI(BB, dl, TII->get(PPC::BCC)) 8811 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8812 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8813 BB->addSuccessor(loop1MBB); 8814 BB->addSuccessor(exitMBB); 8815 8816 BB = midMBB; 8817 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8818 .addReg(dest).addReg(ptrA).addReg(ptrB); 8819 BB->addSuccessor(exitMBB); 8820 8821 // exitMBB: 8822 // ... 8823 BB = exitMBB; 8824 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8825 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8826 // We must use 64-bit registers for addresses when targeting 64-bit, 8827 // since we're actually doing arithmetic on them. Other registers 8828 // can be 32-bit. 8829 bool is64bit = Subtarget.isPPC64(); 8830 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8831 8832 unsigned dest = MI->getOperand(0).getReg(); 8833 unsigned ptrA = MI->getOperand(1).getReg(); 8834 unsigned ptrB = MI->getOperand(2).getReg(); 8835 unsigned oldval = MI->getOperand(3).getReg(); 8836 unsigned newval = MI->getOperand(4).getReg(); 8837 DebugLoc dl = MI->getDebugLoc(); 8838 8839 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8840 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8841 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8842 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8843 F->insert(It, loop1MBB); 8844 F->insert(It, loop2MBB); 8845 F->insert(It, midMBB); 8846 F->insert(It, exitMBB); 8847 exitMBB->splice(exitMBB->begin(), BB, 8848 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8849 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8850 8851 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8852 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8853 : &PPC::GPRCRegClass; 8854 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8855 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8856 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8857 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8858 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8859 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8860 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8861 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8862 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8863 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8864 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8865 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8866 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8867 unsigned Ptr1Reg; 8868 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8869 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8870 // thisMBB: 8871 // ... 8872 // fallthrough --> loopMBB 8873 BB->addSuccessor(loop1MBB); 8874 8875 // The 4-byte load must be aligned, while a char or short may be 8876 // anywhere in the word. Hence all this nasty bookkeeping code. 8877 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8878 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8879 // xori shift, shift1, 24 [16] 8880 // rlwinm ptr, ptr1, 0, 0, 29 8881 // slw newval2, newval, shift 8882 // slw oldval2, oldval,shift 8883 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8884 // slw mask, mask2, shift 8885 // and newval3, newval2, mask 8886 // and oldval3, oldval2, mask 8887 // loop1MBB: 8888 // lwarx tmpDest, ptr 8889 // and tmp, tmpDest, mask 8890 // cmpw tmp, oldval3 8891 // bne- midMBB 8892 // loop2MBB: 8893 // andc tmp2, tmpDest, mask 8894 // or tmp4, tmp2, newval3 8895 // stwcx. tmp4, ptr 8896 // bne- loop1MBB 8897 // b exitBB 8898 // midMBB: 8899 // stwcx. tmpDest, ptr 8900 // exitBB: 8901 // srw dest, tmpDest, shift 8902 if (ptrA != ZeroReg) { 8903 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8904 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8905 .addReg(ptrA).addReg(ptrB); 8906 } else { 8907 Ptr1Reg = ptrB; 8908 } 8909 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8910 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8911 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8912 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8913 if (is64bit) 8914 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8915 .addReg(Ptr1Reg).addImm(0).addImm(61); 8916 else 8917 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8918 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8919 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 8920 .addReg(newval).addReg(ShiftReg); 8921 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 8922 .addReg(oldval).addReg(ShiftReg); 8923 if (is8bit) 8924 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8925 else { 8926 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8927 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 8928 .addReg(Mask3Reg).addImm(65535); 8929 } 8930 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8931 .addReg(Mask2Reg).addReg(ShiftReg); 8932 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 8933 .addReg(NewVal2Reg).addReg(MaskReg); 8934 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 8935 .addReg(OldVal2Reg).addReg(MaskReg); 8936 8937 BB = loop1MBB; 8938 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8939 .addReg(ZeroReg).addReg(PtrReg); 8940 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 8941 .addReg(TmpDestReg).addReg(MaskReg); 8942 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 8943 .addReg(TmpReg).addReg(OldVal3Reg); 8944 BuildMI(BB, dl, TII->get(PPC::BCC)) 8945 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8946 BB->addSuccessor(loop2MBB); 8947 BB->addSuccessor(midMBB); 8948 8949 BB = loop2MBB; 8950 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 8951 .addReg(TmpDestReg).addReg(MaskReg); 8952 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 8953 .addReg(Tmp2Reg).addReg(NewVal3Reg); 8954 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 8955 .addReg(ZeroReg).addReg(PtrReg); 8956 BuildMI(BB, dl, TII->get(PPC::BCC)) 8957 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8958 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8959 BB->addSuccessor(loop1MBB); 8960 BB->addSuccessor(exitMBB); 8961 8962 BB = midMBB; 8963 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 8964 .addReg(ZeroReg).addReg(PtrReg); 8965 BB->addSuccessor(exitMBB); 8966 8967 // exitMBB: 8968 // ... 8969 BB = exitMBB; 8970 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 8971 .addReg(ShiftReg); 8972 } else if (MI->getOpcode() == PPC::FADDrtz) { 8973 // This pseudo performs an FADD with rounding mode temporarily forced 8974 // to round-to-zero. We emit this via custom inserter since the FPSCR 8975 // is not modeled at the SelectionDAG level. 8976 unsigned Dest = MI->getOperand(0).getReg(); 8977 unsigned Src1 = MI->getOperand(1).getReg(); 8978 unsigned Src2 = MI->getOperand(2).getReg(); 8979 DebugLoc dl = MI->getDebugLoc(); 8980 8981 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8982 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 8983 8984 // Save FPSCR value. 8985 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 8986 8987 // Set rounding mode to round-to-zero. 8988 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 8989 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 8990 8991 // Perform addition. 8992 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 8993 8994 // Restore FPSCR value. 8995 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 8996 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 8997 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 8998 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 8999 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9000 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9001 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9002 PPC::ANDIo8 : PPC::ANDIo; 9003 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9004 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9005 9006 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9007 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9008 &PPC::GPRCRegClass : 9009 &PPC::G8RCRegClass); 9010 9011 DebugLoc dl = MI->getDebugLoc(); 9012 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9013 .addReg(MI->getOperand(1).getReg()).addImm(1); 9014 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9015 MI->getOperand(0).getReg()) 9016 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9017 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9018 DebugLoc Dl = MI->getDebugLoc(); 9019 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9020 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9021 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9022 return BB; 9023 } else { 9024 llvm_unreachable("Unexpected instr type to insert"); 9025 } 9026 9027 MI->eraseFromParent(); // The pseudo instruction is gone now. 9028 return BB; 9029 } 9030 9031 //===----------------------------------------------------------------------===// 9032 // Target Optimization Hooks 9033 //===----------------------------------------------------------------------===// 9034 9035 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9036 DAGCombinerInfo &DCI, 9037 unsigned &RefinementSteps, 9038 bool &UseOneConstNR) const { 9039 EVT VT = Operand.getValueType(); 9040 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9041 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9042 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9043 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9044 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9045 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9046 // Convergence is quadratic, so we essentially double the number of digits 9047 // correct after every iteration. For both FRE and FRSQRTE, the minimum 9048 // architected relative accuracy is 2^-5. When hasRecipPrec(), this is 9049 // 2^-14. IEEE float has 23 digits and double has 52 digits. 9050 RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 9051 if (VT.getScalarType() == MVT::f64) 9052 ++RefinementSteps; 9053 UseOneConstNR = true; 9054 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9055 } 9056 return SDValue(); 9057 } 9058 9059 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9060 DAGCombinerInfo &DCI, 9061 unsigned &RefinementSteps) const { 9062 EVT VT = Operand.getValueType(); 9063 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9064 (VT == MVT::f64 && Subtarget.hasFRE()) || 9065 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9066 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9067 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9068 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9069 // Convergence is quadratic, so we essentially double the number of digits 9070 // correct after every iteration. For both FRE and FRSQRTE, the minimum 9071 // architected relative accuracy is 2^-5. When hasRecipPrec(), this is 9072 // 2^-14. IEEE float has 23 digits and double has 52 digits. 9073 RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 9074 if (VT.getScalarType() == MVT::f64) 9075 ++RefinementSteps; 9076 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9077 } 9078 return SDValue(); 9079 } 9080 9081 bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const { 9082 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9083 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9084 // enabled for division), this functionality is redundant with the default 9085 // combiner logic (once the division -> reciprocal/multiply transformation 9086 // has taken place). As a result, this matters more for older cores than for 9087 // newer ones. 9088 9089 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9090 // reciprocal if there are two or more FDIVs (for embedded cores with only 9091 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9092 switch (Subtarget.getDarwinDirective()) { 9093 default: 9094 return NumUsers > 2; 9095 case PPC::DIR_440: 9096 case PPC::DIR_A2: 9097 case PPC::DIR_E500mc: 9098 case PPC::DIR_E5500: 9099 return NumUsers > 1; 9100 } 9101 } 9102 9103 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9104 unsigned Bytes, int Dist, 9105 SelectionDAG &DAG) { 9106 if (VT.getSizeInBits() / 8 != Bytes) 9107 return false; 9108 9109 SDValue BaseLoc = Base->getBasePtr(); 9110 if (Loc.getOpcode() == ISD::FrameIndex) { 9111 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9112 return false; 9113 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9114 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9115 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9116 int FS = MFI->getObjectSize(FI); 9117 int BFS = MFI->getObjectSize(BFI); 9118 if (FS != BFS || FS != (int)Bytes) return false; 9119 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9120 } 9121 9122 // Handle X+C 9123 if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc && 9124 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes) 9125 return true; 9126 9127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9128 const GlobalValue *GV1 = nullptr; 9129 const GlobalValue *GV2 = nullptr; 9130 int64_t Offset1 = 0; 9131 int64_t Offset2 = 0; 9132 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9133 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9134 if (isGA1 && isGA2 && GV1 == GV2) 9135 return Offset1 == (Offset2 + Dist*Bytes); 9136 return false; 9137 } 9138 9139 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9140 // not enforce equality of the chain operands. 9141 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9142 unsigned Bytes, int Dist, 9143 SelectionDAG &DAG) { 9144 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9145 EVT VT = LS->getMemoryVT(); 9146 SDValue Loc = LS->getBasePtr(); 9147 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9148 } 9149 9150 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9151 EVT VT; 9152 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9153 default: return false; 9154 case Intrinsic::ppc_qpx_qvlfd: 9155 case Intrinsic::ppc_qpx_qvlfda: 9156 VT = MVT::v4f64; 9157 break; 9158 case Intrinsic::ppc_qpx_qvlfs: 9159 case Intrinsic::ppc_qpx_qvlfsa: 9160 VT = MVT::v4f32; 9161 break; 9162 case Intrinsic::ppc_qpx_qvlfcd: 9163 case Intrinsic::ppc_qpx_qvlfcda: 9164 VT = MVT::v2f64; 9165 break; 9166 case Intrinsic::ppc_qpx_qvlfcs: 9167 case Intrinsic::ppc_qpx_qvlfcsa: 9168 VT = MVT::v2f32; 9169 break; 9170 case Intrinsic::ppc_qpx_qvlfiwa: 9171 case Intrinsic::ppc_qpx_qvlfiwz: 9172 case Intrinsic::ppc_altivec_lvx: 9173 case Intrinsic::ppc_altivec_lvxl: 9174 case Intrinsic::ppc_vsx_lxvw4x: 9175 VT = MVT::v4i32; 9176 break; 9177 case Intrinsic::ppc_vsx_lxvd2x: 9178 VT = MVT::v2f64; 9179 break; 9180 case Intrinsic::ppc_altivec_lvebx: 9181 VT = MVT::i8; 9182 break; 9183 case Intrinsic::ppc_altivec_lvehx: 9184 VT = MVT::i16; 9185 break; 9186 case Intrinsic::ppc_altivec_lvewx: 9187 VT = MVT::i32; 9188 break; 9189 } 9190 9191 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9192 } 9193 9194 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9195 EVT VT; 9196 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9197 default: return false; 9198 case Intrinsic::ppc_qpx_qvstfd: 9199 case Intrinsic::ppc_qpx_qvstfda: 9200 VT = MVT::v4f64; 9201 break; 9202 case Intrinsic::ppc_qpx_qvstfs: 9203 case Intrinsic::ppc_qpx_qvstfsa: 9204 VT = MVT::v4f32; 9205 break; 9206 case Intrinsic::ppc_qpx_qvstfcd: 9207 case Intrinsic::ppc_qpx_qvstfcda: 9208 VT = MVT::v2f64; 9209 break; 9210 case Intrinsic::ppc_qpx_qvstfcs: 9211 case Intrinsic::ppc_qpx_qvstfcsa: 9212 VT = MVT::v2f32; 9213 break; 9214 case Intrinsic::ppc_qpx_qvstfiw: 9215 case Intrinsic::ppc_qpx_qvstfiwa: 9216 case Intrinsic::ppc_altivec_stvx: 9217 case Intrinsic::ppc_altivec_stvxl: 9218 case Intrinsic::ppc_vsx_stxvw4x: 9219 VT = MVT::v4i32; 9220 break; 9221 case Intrinsic::ppc_vsx_stxvd2x: 9222 VT = MVT::v2f64; 9223 break; 9224 case Intrinsic::ppc_altivec_stvebx: 9225 VT = MVT::i8; 9226 break; 9227 case Intrinsic::ppc_altivec_stvehx: 9228 VT = MVT::i16; 9229 break; 9230 case Intrinsic::ppc_altivec_stvewx: 9231 VT = MVT::i32; 9232 break; 9233 } 9234 9235 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9236 } 9237 9238 return false; 9239 } 9240 9241 // Return true is there is a nearyby consecutive load to the one provided 9242 // (regardless of alignment). We search up and down the chain, looking though 9243 // token factors and other loads (but nothing else). As a result, a true result 9244 // indicates that it is safe to create a new consecutive load adjacent to the 9245 // load provided. 9246 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9247 SDValue Chain = LD->getChain(); 9248 EVT VT = LD->getMemoryVT(); 9249 9250 SmallSet<SDNode *, 16> LoadRoots; 9251 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9252 SmallSet<SDNode *, 16> Visited; 9253 9254 // First, search up the chain, branching to follow all token-factor operands. 9255 // If we find a consecutive load, then we're done, otherwise, record all 9256 // nodes just above the top-level loads and token factors. 9257 while (!Queue.empty()) { 9258 SDNode *ChainNext = Queue.pop_back_val(); 9259 if (!Visited.insert(ChainNext).second) 9260 continue; 9261 9262 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9263 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9264 return true; 9265 9266 if (!Visited.count(ChainLD->getChain().getNode())) 9267 Queue.push_back(ChainLD->getChain().getNode()); 9268 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9269 for (const SDUse &O : ChainNext->ops()) 9270 if (!Visited.count(O.getNode())) 9271 Queue.push_back(O.getNode()); 9272 } else 9273 LoadRoots.insert(ChainNext); 9274 } 9275 9276 // Second, search down the chain, starting from the top-level nodes recorded 9277 // in the first phase. These top-level nodes are the nodes just above all 9278 // loads and token factors. Starting with their uses, recursively look though 9279 // all loads (just the chain uses) and token factors to find a consecutive 9280 // load. 9281 Visited.clear(); 9282 Queue.clear(); 9283 9284 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9285 IE = LoadRoots.end(); I != IE; ++I) { 9286 Queue.push_back(*I); 9287 9288 while (!Queue.empty()) { 9289 SDNode *LoadRoot = Queue.pop_back_val(); 9290 if (!Visited.insert(LoadRoot).second) 9291 continue; 9292 9293 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9294 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9295 return true; 9296 9297 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9298 UE = LoadRoot->use_end(); UI != UE; ++UI) 9299 if (((isa<MemSDNode>(*UI) && 9300 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9301 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9302 Queue.push_back(*UI); 9303 } 9304 } 9305 9306 return false; 9307 } 9308 9309 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9310 DAGCombinerInfo &DCI) const { 9311 SelectionDAG &DAG = DCI.DAG; 9312 SDLoc dl(N); 9313 9314 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9315 // If we're tracking CR bits, we need to be careful that we don't have: 9316 // trunc(binary-ops(zext(x), zext(y))) 9317 // or 9318 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9319 // such that we're unnecessarily moving things into GPRs when it would be 9320 // better to keep them in CR bits. 9321 9322 // Note that trunc here can be an actual i1 trunc, or can be the effective 9323 // truncation that comes from a setcc or select_cc. 9324 if (N->getOpcode() == ISD::TRUNCATE && 9325 N->getValueType(0) != MVT::i1) 9326 return SDValue(); 9327 9328 if (N->getOperand(0).getValueType() != MVT::i32 && 9329 N->getOperand(0).getValueType() != MVT::i64) 9330 return SDValue(); 9331 9332 if (N->getOpcode() == ISD::SETCC || 9333 N->getOpcode() == ISD::SELECT_CC) { 9334 // If we're looking at a comparison, then we need to make sure that the 9335 // high bits (all except for the first) don't matter the result. 9336 ISD::CondCode CC = 9337 cast<CondCodeSDNode>(N->getOperand( 9338 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9339 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9340 9341 if (ISD::isSignedIntSetCC(CC)) { 9342 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9343 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9344 return SDValue(); 9345 } else if (ISD::isUnsignedIntSetCC(CC)) { 9346 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9347 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9348 !DAG.MaskedValueIsZero(N->getOperand(1), 9349 APInt::getHighBitsSet(OpBits, OpBits-1))) 9350 return SDValue(); 9351 } else { 9352 // This is neither a signed nor an unsigned comparison, just make sure 9353 // that the high bits are equal. 9354 APInt Op1Zero, Op1One; 9355 APInt Op2Zero, Op2One; 9356 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9357 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9358 9359 // We don't really care about what is known about the first bit (if 9360 // anything), so clear it in all masks prior to comparing them. 9361 Op1Zero.clearBit(0); Op1One.clearBit(0); 9362 Op2Zero.clearBit(0); Op2One.clearBit(0); 9363 9364 if (Op1Zero != Op2Zero || Op1One != Op2One) 9365 return SDValue(); 9366 } 9367 } 9368 9369 // We now know that the higher-order bits are irrelevant, we just need to 9370 // make sure that all of the intermediate operations are bit operations, and 9371 // all inputs are extensions. 9372 if (N->getOperand(0).getOpcode() != ISD::AND && 9373 N->getOperand(0).getOpcode() != ISD::OR && 9374 N->getOperand(0).getOpcode() != ISD::XOR && 9375 N->getOperand(0).getOpcode() != ISD::SELECT && 9376 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9377 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9378 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9379 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9380 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9381 return SDValue(); 9382 9383 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9384 N->getOperand(1).getOpcode() != ISD::AND && 9385 N->getOperand(1).getOpcode() != ISD::OR && 9386 N->getOperand(1).getOpcode() != ISD::XOR && 9387 N->getOperand(1).getOpcode() != ISD::SELECT && 9388 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9389 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9390 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9391 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9392 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9393 return SDValue(); 9394 9395 SmallVector<SDValue, 4> Inputs; 9396 SmallVector<SDValue, 8> BinOps, PromOps; 9397 SmallPtrSet<SDNode *, 16> Visited; 9398 9399 for (unsigned i = 0; i < 2; ++i) { 9400 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9401 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9402 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9403 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9404 isa<ConstantSDNode>(N->getOperand(i))) 9405 Inputs.push_back(N->getOperand(i)); 9406 else 9407 BinOps.push_back(N->getOperand(i)); 9408 9409 if (N->getOpcode() == ISD::TRUNCATE) 9410 break; 9411 } 9412 9413 // Visit all inputs, collect all binary operations (and, or, xor and 9414 // select) that are all fed by extensions. 9415 while (!BinOps.empty()) { 9416 SDValue BinOp = BinOps.back(); 9417 BinOps.pop_back(); 9418 9419 if (!Visited.insert(BinOp.getNode()).second) 9420 continue; 9421 9422 PromOps.push_back(BinOp); 9423 9424 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9425 // The condition of the select is not promoted. 9426 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9427 continue; 9428 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9429 continue; 9430 9431 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9432 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9433 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9434 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9435 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9436 Inputs.push_back(BinOp.getOperand(i)); 9437 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9438 BinOp.getOperand(i).getOpcode() == ISD::OR || 9439 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9440 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9441 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9442 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9443 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9444 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9445 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9446 BinOps.push_back(BinOp.getOperand(i)); 9447 } else { 9448 // We have an input that is not an extension or another binary 9449 // operation; we'll abort this transformation. 9450 return SDValue(); 9451 } 9452 } 9453 } 9454 9455 // Make sure that this is a self-contained cluster of operations (which 9456 // is not quite the same thing as saying that everything has only one 9457 // use). 9458 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9459 if (isa<ConstantSDNode>(Inputs[i])) 9460 continue; 9461 9462 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9463 UE = Inputs[i].getNode()->use_end(); 9464 UI != UE; ++UI) { 9465 SDNode *User = *UI; 9466 if (User != N && !Visited.count(User)) 9467 return SDValue(); 9468 9469 // Make sure that we're not going to promote the non-output-value 9470 // operand(s) or SELECT or SELECT_CC. 9471 // FIXME: Although we could sometimes handle this, and it does occur in 9472 // practice that one of the condition inputs to the select is also one of 9473 // the outputs, we currently can't deal with this. 9474 if (User->getOpcode() == ISD::SELECT) { 9475 if (User->getOperand(0) == Inputs[i]) 9476 return SDValue(); 9477 } else if (User->getOpcode() == ISD::SELECT_CC) { 9478 if (User->getOperand(0) == Inputs[i] || 9479 User->getOperand(1) == Inputs[i]) 9480 return SDValue(); 9481 } 9482 } 9483 } 9484 9485 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9486 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9487 UE = PromOps[i].getNode()->use_end(); 9488 UI != UE; ++UI) { 9489 SDNode *User = *UI; 9490 if (User != N && !Visited.count(User)) 9491 return SDValue(); 9492 9493 // Make sure that we're not going to promote the non-output-value 9494 // operand(s) or SELECT or SELECT_CC. 9495 // FIXME: Although we could sometimes handle this, and it does occur in 9496 // practice that one of the condition inputs to the select is also one of 9497 // the outputs, we currently can't deal with this. 9498 if (User->getOpcode() == ISD::SELECT) { 9499 if (User->getOperand(0) == PromOps[i]) 9500 return SDValue(); 9501 } else if (User->getOpcode() == ISD::SELECT_CC) { 9502 if (User->getOperand(0) == PromOps[i] || 9503 User->getOperand(1) == PromOps[i]) 9504 return SDValue(); 9505 } 9506 } 9507 } 9508 9509 // Replace all inputs with the extension operand. 9510 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9511 // Constants may have users outside the cluster of to-be-promoted nodes, 9512 // and so we need to replace those as we do the promotions. 9513 if (isa<ConstantSDNode>(Inputs[i])) 9514 continue; 9515 else 9516 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9517 } 9518 9519 // Replace all operations (these are all the same, but have a different 9520 // (i1) return type). DAG.getNode will validate that the types of 9521 // a binary operator match, so go through the list in reverse so that 9522 // we've likely promoted both operands first. Any intermediate truncations or 9523 // extensions disappear. 9524 while (!PromOps.empty()) { 9525 SDValue PromOp = PromOps.back(); 9526 PromOps.pop_back(); 9527 9528 if (PromOp.getOpcode() == ISD::TRUNCATE || 9529 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9530 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9531 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9532 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9533 PromOp.getOperand(0).getValueType() != MVT::i1) { 9534 // The operand is not yet ready (see comment below). 9535 PromOps.insert(PromOps.begin(), PromOp); 9536 continue; 9537 } 9538 9539 SDValue RepValue = PromOp.getOperand(0); 9540 if (isa<ConstantSDNode>(RepValue)) 9541 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9542 9543 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9544 continue; 9545 } 9546 9547 unsigned C; 9548 switch (PromOp.getOpcode()) { 9549 default: C = 0; break; 9550 case ISD::SELECT: C = 1; break; 9551 case ISD::SELECT_CC: C = 2; break; 9552 } 9553 9554 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9555 PromOp.getOperand(C).getValueType() != MVT::i1) || 9556 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9557 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9558 // The to-be-promoted operands of this node have not yet been 9559 // promoted (this should be rare because we're going through the 9560 // list backward, but if one of the operands has several users in 9561 // this cluster of to-be-promoted nodes, it is possible). 9562 PromOps.insert(PromOps.begin(), PromOp); 9563 continue; 9564 } 9565 9566 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9567 PromOp.getNode()->op_end()); 9568 9569 // If there are any constant inputs, make sure they're replaced now. 9570 for (unsigned i = 0; i < 2; ++i) 9571 if (isa<ConstantSDNode>(Ops[C+i])) 9572 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9573 9574 DAG.ReplaceAllUsesOfValueWith(PromOp, 9575 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9576 } 9577 9578 // Now we're left with the initial truncation itself. 9579 if (N->getOpcode() == ISD::TRUNCATE) 9580 return N->getOperand(0); 9581 9582 // Otherwise, this is a comparison. The operands to be compared have just 9583 // changed type (to i1), but everything else is the same. 9584 return SDValue(N, 0); 9585 } 9586 9587 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9588 DAGCombinerInfo &DCI) const { 9589 SelectionDAG &DAG = DCI.DAG; 9590 SDLoc dl(N); 9591 9592 // If we're tracking CR bits, we need to be careful that we don't have: 9593 // zext(binary-ops(trunc(x), trunc(y))) 9594 // or 9595 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9596 // such that we're unnecessarily moving things into CR bits that can more 9597 // efficiently stay in GPRs. Note that if we're not certain that the high 9598 // bits are set as required by the final extension, we still may need to do 9599 // some masking to get the proper behavior. 9600 9601 // This same functionality is important on PPC64 when dealing with 9602 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9603 // the return values of functions. Because it is so similar, it is handled 9604 // here as well. 9605 9606 if (N->getValueType(0) != MVT::i32 && 9607 N->getValueType(0) != MVT::i64) 9608 return SDValue(); 9609 9610 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9611 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9612 return SDValue(); 9613 9614 if (N->getOperand(0).getOpcode() != ISD::AND && 9615 N->getOperand(0).getOpcode() != ISD::OR && 9616 N->getOperand(0).getOpcode() != ISD::XOR && 9617 N->getOperand(0).getOpcode() != ISD::SELECT && 9618 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9619 return SDValue(); 9620 9621 SmallVector<SDValue, 4> Inputs; 9622 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9623 SmallPtrSet<SDNode *, 16> Visited; 9624 9625 // Visit all inputs, collect all binary operations (and, or, xor and 9626 // select) that are all fed by truncations. 9627 while (!BinOps.empty()) { 9628 SDValue BinOp = BinOps.back(); 9629 BinOps.pop_back(); 9630 9631 if (!Visited.insert(BinOp.getNode()).second) 9632 continue; 9633 9634 PromOps.push_back(BinOp); 9635 9636 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9637 // The condition of the select is not promoted. 9638 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9639 continue; 9640 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9641 continue; 9642 9643 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9644 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9645 Inputs.push_back(BinOp.getOperand(i)); 9646 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9647 BinOp.getOperand(i).getOpcode() == ISD::OR || 9648 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9649 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9650 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9651 BinOps.push_back(BinOp.getOperand(i)); 9652 } else { 9653 // We have an input that is not a truncation or another binary 9654 // operation; we'll abort this transformation. 9655 return SDValue(); 9656 } 9657 } 9658 } 9659 9660 // The operands of a select that must be truncated when the select is 9661 // promoted because the operand is actually part of the to-be-promoted set. 9662 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9663 9664 // Make sure that this is a self-contained cluster of operations (which 9665 // is not quite the same thing as saying that everything has only one 9666 // use). 9667 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9668 if (isa<ConstantSDNode>(Inputs[i])) 9669 continue; 9670 9671 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9672 UE = Inputs[i].getNode()->use_end(); 9673 UI != UE; ++UI) { 9674 SDNode *User = *UI; 9675 if (User != N && !Visited.count(User)) 9676 return SDValue(); 9677 9678 // If we're going to promote the non-output-value operand(s) or SELECT or 9679 // SELECT_CC, record them for truncation. 9680 if (User->getOpcode() == ISD::SELECT) { 9681 if (User->getOperand(0) == Inputs[i]) 9682 SelectTruncOp[0].insert(std::make_pair(User, 9683 User->getOperand(0).getValueType())); 9684 } else if (User->getOpcode() == ISD::SELECT_CC) { 9685 if (User->getOperand(0) == Inputs[i]) 9686 SelectTruncOp[0].insert(std::make_pair(User, 9687 User->getOperand(0).getValueType())); 9688 if (User->getOperand(1) == Inputs[i]) 9689 SelectTruncOp[1].insert(std::make_pair(User, 9690 User->getOperand(1).getValueType())); 9691 } 9692 } 9693 } 9694 9695 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9696 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9697 UE = PromOps[i].getNode()->use_end(); 9698 UI != UE; ++UI) { 9699 SDNode *User = *UI; 9700 if (User != N && !Visited.count(User)) 9701 return SDValue(); 9702 9703 // If we're going to promote the non-output-value operand(s) or SELECT or 9704 // SELECT_CC, record them for truncation. 9705 if (User->getOpcode() == ISD::SELECT) { 9706 if (User->getOperand(0) == PromOps[i]) 9707 SelectTruncOp[0].insert(std::make_pair(User, 9708 User->getOperand(0).getValueType())); 9709 } else if (User->getOpcode() == ISD::SELECT_CC) { 9710 if (User->getOperand(0) == PromOps[i]) 9711 SelectTruncOp[0].insert(std::make_pair(User, 9712 User->getOperand(0).getValueType())); 9713 if (User->getOperand(1) == PromOps[i]) 9714 SelectTruncOp[1].insert(std::make_pair(User, 9715 User->getOperand(1).getValueType())); 9716 } 9717 } 9718 } 9719 9720 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9721 bool ReallyNeedsExt = false; 9722 if (N->getOpcode() != ISD::ANY_EXTEND) { 9723 // If all of the inputs are not already sign/zero extended, then 9724 // we'll still need to do that at the end. 9725 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9726 if (isa<ConstantSDNode>(Inputs[i])) 9727 continue; 9728 9729 unsigned OpBits = 9730 Inputs[i].getOperand(0).getValueSizeInBits(); 9731 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9732 9733 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9734 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9735 APInt::getHighBitsSet(OpBits, 9736 OpBits-PromBits))) || 9737 (N->getOpcode() == ISD::SIGN_EXTEND && 9738 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9739 (OpBits-(PromBits-1)))) { 9740 ReallyNeedsExt = true; 9741 break; 9742 } 9743 } 9744 } 9745 9746 // Replace all inputs, either with the truncation operand, or a 9747 // truncation or extension to the final output type. 9748 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9749 // Constant inputs need to be replaced with the to-be-promoted nodes that 9750 // use them because they might have users outside of the cluster of 9751 // promoted nodes. 9752 if (isa<ConstantSDNode>(Inputs[i])) 9753 continue; 9754 9755 SDValue InSrc = Inputs[i].getOperand(0); 9756 if (Inputs[i].getValueType() == N->getValueType(0)) 9757 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9758 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9759 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9760 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9761 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9762 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9763 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9764 else 9765 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9766 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9767 } 9768 9769 // Replace all operations (these are all the same, but have a different 9770 // (promoted) return type). DAG.getNode will validate that the types of 9771 // a binary operator match, so go through the list in reverse so that 9772 // we've likely promoted both operands first. 9773 while (!PromOps.empty()) { 9774 SDValue PromOp = PromOps.back(); 9775 PromOps.pop_back(); 9776 9777 unsigned C; 9778 switch (PromOp.getOpcode()) { 9779 default: C = 0; break; 9780 case ISD::SELECT: C = 1; break; 9781 case ISD::SELECT_CC: C = 2; break; 9782 } 9783 9784 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9785 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9786 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9787 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9788 // The to-be-promoted operands of this node have not yet been 9789 // promoted (this should be rare because we're going through the 9790 // list backward, but if one of the operands has several users in 9791 // this cluster of to-be-promoted nodes, it is possible). 9792 PromOps.insert(PromOps.begin(), PromOp); 9793 continue; 9794 } 9795 9796 // For SELECT and SELECT_CC nodes, we do a similar check for any 9797 // to-be-promoted comparison inputs. 9798 if (PromOp.getOpcode() == ISD::SELECT || 9799 PromOp.getOpcode() == ISD::SELECT_CC) { 9800 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9801 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9802 (SelectTruncOp[1].count(PromOp.getNode()) && 9803 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9804 PromOps.insert(PromOps.begin(), PromOp); 9805 continue; 9806 } 9807 } 9808 9809 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9810 PromOp.getNode()->op_end()); 9811 9812 // If this node has constant inputs, then they'll need to be promoted here. 9813 for (unsigned i = 0; i < 2; ++i) { 9814 if (!isa<ConstantSDNode>(Ops[C+i])) 9815 continue; 9816 if (Ops[C+i].getValueType() == N->getValueType(0)) 9817 continue; 9818 9819 if (N->getOpcode() == ISD::SIGN_EXTEND) 9820 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9821 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9822 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9823 else 9824 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9825 } 9826 9827 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9828 // truncate them again to the original value type. 9829 if (PromOp.getOpcode() == ISD::SELECT || 9830 PromOp.getOpcode() == ISD::SELECT_CC) { 9831 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9832 if (SI0 != SelectTruncOp[0].end()) 9833 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9834 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9835 if (SI1 != SelectTruncOp[1].end()) 9836 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9837 } 9838 9839 DAG.ReplaceAllUsesOfValueWith(PromOp, 9840 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9841 } 9842 9843 // Now we're left with the initial extension itself. 9844 if (!ReallyNeedsExt) 9845 return N->getOperand(0); 9846 9847 // To zero extend, just mask off everything except for the first bit (in the 9848 // i1 case). 9849 if (N->getOpcode() == ISD::ZERO_EXTEND) 9850 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9851 DAG.getConstant(APInt::getLowBitsSet( 9852 N->getValueSizeInBits(0), PromBits), 9853 dl, N->getValueType(0))); 9854 9855 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9856 "Invalid extension type"); 9857 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0)); 9858 SDValue ShiftCst = 9859 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9860 return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 9861 DAG.getNode(ISD::SHL, dl, N->getValueType(0), 9862 N->getOperand(0), ShiftCst), ShiftCst); 9863 } 9864 9865 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9866 DAGCombinerInfo &DCI) const { 9867 assert((N->getOpcode() == ISD::SINT_TO_FP || 9868 N->getOpcode() == ISD::UINT_TO_FP) && 9869 "Need an int -> FP conversion node here"); 9870 9871 if (!Subtarget.has64BitSupport()) 9872 return SDValue(); 9873 9874 SelectionDAG &DAG = DCI.DAG; 9875 SDLoc dl(N); 9876 SDValue Op(N, 0); 9877 9878 // Don't handle ppc_fp128 here or i1 conversions. 9879 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9880 return SDValue(); 9881 if (Op.getOperand(0).getValueType() == MVT::i1) 9882 return SDValue(); 9883 9884 // For i32 intermediate values, unfortunately, the conversion functions 9885 // leave the upper 32 bits of the value are undefined. Within the set of 9886 // scalar instructions, we have no method for zero- or sign-extending the 9887 // value. Thus, we cannot handle i32 intermediate values here. 9888 if (Op.getOperand(0).getValueType() == MVT::i32) 9889 return SDValue(); 9890 9891 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 9892 "UINT_TO_FP is supported only with FPCVT"); 9893 9894 // If we have FCFIDS, then use it when converting to single-precision. 9895 // Otherwise, convert to double-precision and then round. 9896 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9897 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 9898 : PPCISD::FCFIDS) 9899 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 9900 : PPCISD::FCFID); 9901 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 9902 ? MVT::f32 9903 : MVT::f64; 9904 9905 // If we're converting from a float, to an int, and back to a float again, 9906 // then we don't need the store/load pair at all. 9907 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 9908 Subtarget.hasFPCVT()) || 9909 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 9910 SDValue Src = Op.getOperand(0).getOperand(0); 9911 if (Src.getValueType() == MVT::f32) { 9912 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 9913 DCI.AddToWorklist(Src.getNode()); 9914 } 9915 9916 unsigned FCTOp = 9917 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 9918 PPCISD::FCTIDUZ; 9919 9920 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 9921 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 9922 9923 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 9924 FP = DAG.getNode(ISD::FP_ROUND, dl, 9925 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 9926 DCI.AddToWorklist(FP.getNode()); 9927 } 9928 9929 return FP; 9930 } 9931 9932 return SDValue(); 9933 } 9934 9935 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 9936 // builtins) into loads with swaps. 9937 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 9938 DAGCombinerInfo &DCI) const { 9939 SelectionDAG &DAG = DCI.DAG; 9940 SDLoc dl(N); 9941 SDValue Chain; 9942 SDValue Base; 9943 MachineMemOperand *MMO; 9944 9945 switch (N->getOpcode()) { 9946 default: 9947 llvm_unreachable("Unexpected opcode for little endian VSX load"); 9948 case ISD::LOAD: { 9949 LoadSDNode *LD = cast<LoadSDNode>(N); 9950 Chain = LD->getChain(); 9951 Base = LD->getBasePtr(); 9952 MMO = LD->getMemOperand(); 9953 // If the MMO suggests this isn't a load of a full vector, leave 9954 // things alone. For a built-in, we have to make the change for 9955 // correctness, so if there is a size problem that will be a bug. 9956 if (MMO->getSize() < 16) 9957 return SDValue(); 9958 break; 9959 } 9960 case ISD::INTRINSIC_W_CHAIN: { 9961 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 9962 Chain = Intrin->getChain(); 9963 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 9964 // us what we want. Get operand 2 instead. 9965 Base = Intrin->getOperand(2); 9966 MMO = Intrin->getMemOperand(); 9967 break; 9968 } 9969 } 9970 9971 MVT VecTy = N->getValueType(0).getSimpleVT(); 9972 SDValue LoadOps[] = { Chain, Base }; 9973 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 9974 DAG.getVTList(VecTy, MVT::Other), 9975 LoadOps, VecTy, MMO); 9976 DCI.AddToWorklist(Load.getNode()); 9977 Chain = Load.getValue(1); 9978 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 9979 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 9980 DCI.AddToWorklist(Swap.getNode()); 9981 return Swap; 9982 } 9983 9984 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 9985 // builtins) into stores with swaps. 9986 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 9987 DAGCombinerInfo &DCI) const { 9988 SelectionDAG &DAG = DCI.DAG; 9989 SDLoc dl(N); 9990 SDValue Chain; 9991 SDValue Base; 9992 unsigned SrcOpnd; 9993 MachineMemOperand *MMO; 9994 9995 switch (N->getOpcode()) { 9996 default: 9997 llvm_unreachable("Unexpected opcode for little endian VSX store"); 9998 case ISD::STORE: { 9999 StoreSDNode *ST = cast<StoreSDNode>(N); 10000 Chain = ST->getChain(); 10001 Base = ST->getBasePtr(); 10002 MMO = ST->getMemOperand(); 10003 SrcOpnd = 1; 10004 // If the MMO suggests this isn't a store of a full vector, leave 10005 // things alone. For a built-in, we have to make the change for 10006 // correctness, so if there is a size problem that will be a bug. 10007 if (MMO->getSize() < 16) 10008 return SDValue(); 10009 break; 10010 } 10011 case ISD::INTRINSIC_VOID: { 10012 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10013 Chain = Intrin->getChain(); 10014 // Intrin->getBasePtr() oddly does not get what we want. 10015 Base = Intrin->getOperand(3); 10016 MMO = Intrin->getMemOperand(); 10017 SrcOpnd = 2; 10018 break; 10019 } 10020 } 10021 10022 SDValue Src = N->getOperand(SrcOpnd); 10023 MVT VecTy = Src.getValueType().getSimpleVT(); 10024 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10025 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10026 DCI.AddToWorklist(Swap.getNode()); 10027 Chain = Swap.getValue(1); 10028 SDValue StoreOps[] = { Chain, Swap, Base }; 10029 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10030 DAG.getVTList(MVT::Other), 10031 StoreOps, VecTy, MMO); 10032 DCI.AddToWorklist(Store.getNode()); 10033 return Store; 10034 } 10035 10036 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10037 DAGCombinerInfo &DCI) const { 10038 SelectionDAG &DAG = DCI.DAG; 10039 SDLoc dl(N); 10040 switch (N->getOpcode()) { 10041 default: break; 10042 case PPCISD::SHL: 10043 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10044 if (C->isNullValue()) // 0 << V -> 0. 10045 return N->getOperand(0); 10046 } 10047 break; 10048 case PPCISD::SRL: 10049 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10050 if (C->isNullValue()) // 0 >>u V -> 0. 10051 return N->getOperand(0); 10052 } 10053 break; 10054 case PPCISD::SRA: 10055 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10056 if (C->isNullValue() || // 0 >>s V -> 0. 10057 C->isAllOnesValue()) // -1 >>s V -> -1. 10058 return N->getOperand(0); 10059 } 10060 break; 10061 case ISD::SIGN_EXTEND: 10062 case ISD::ZERO_EXTEND: 10063 case ISD::ANY_EXTEND: 10064 return DAGCombineExtBoolTrunc(N, DCI); 10065 case ISD::TRUNCATE: 10066 case ISD::SETCC: 10067 case ISD::SELECT_CC: 10068 return DAGCombineTruncBoolExt(N, DCI); 10069 case ISD::SINT_TO_FP: 10070 case ISD::UINT_TO_FP: 10071 return combineFPToIntToFP(N, DCI); 10072 case ISD::STORE: { 10073 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10074 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10075 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10076 N->getOperand(1).getValueType() == MVT::i32 && 10077 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10078 SDValue Val = N->getOperand(1).getOperand(0); 10079 if (Val.getValueType() == MVT::f32) { 10080 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10081 DCI.AddToWorklist(Val.getNode()); 10082 } 10083 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10084 DCI.AddToWorklist(Val.getNode()); 10085 10086 SDValue Ops[] = { 10087 N->getOperand(0), Val, N->getOperand(2), 10088 DAG.getValueType(N->getOperand(1).getValueType()) 10089 }; 10090 10091 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10092 DAG.getVTList(MVT::Other), Ops, 10093 cast<StoreSDNode>(N)->getMemoryVT(), 10094 cast<StoreSDNode>(N)->getMemOperand()); 10095 DCI.AddToWorklist(Val.getNode()); 10096 return Val; 10097 } 10098 10099 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10100 if (cast<StoreSDNode>(N)->isUnindexed() && 10101 N->getOperand(1).getOpcode() == ISD::BSWAP && 10102 N->getOperand(1).getNode()->hasOneUse() && 10103 (N->getOperand(1).getValueType() == MVT::i32 || 10104 N->getOperand(1).getValueType() == MVT::i16 || 10105 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10106 N->getOperand(1).getValueType() == MVT::i64))) { 10107 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10108 // Do an any-extend to 32-bits if this is a half-word input. 10109 if (BSwapOp.getValueType() == MVT::i16) 10110 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10111 10112 SDValue Ops[] = { 10113 N->getOperand(0), BSwapOp, N->getOperand(2), 10114 DAG.getValueType(N->getOperand(1).getValueType()) 10115 }; 10116 return 10117 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10118 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10119 cast<StoreSDNode>(N)->getMemOperand()); 10120 } 10121 10122 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10123 EVT VT = N->getOperand(1).getValueType(); 10124 if (VT.isSimple()) { 10125 MVT StoreVT = VT.getSimpleVT(); 10126 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10127 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10128 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10129 return expandVSXStoreForLE(N, DCI); 10130 } 10131 break; 10132 } 10133 case ISD::LOAD: { 10134 LoadSDNode *LD = cast<LoadSDNode>(N); 10135 EVT VT = LD->getValueType(0); 10136 10137 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10138 if (VT.isSimple()) { 10139 MVT LoadVT = VT.getSimpleVT(); 10140 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10141 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10142 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10143 return expandVSXLoadForLE(N, DCI); 10144 } 10145 10146 EVT MemVT = LD->getMemoryVT(); 10147 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10148 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); 10149 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10150 unsigned ScalarABIAlignment = getDataLayout()->getABITypeAlignment(STy); 10151 if (LD->isUnindexed() && VT.isVector() && 10152 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10153 // P8 and later hardware should just use LOAD. 10154 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10155 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10156 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10157 LD->getAlignment() >= ScalarABIAlignment)) && 10158 LD->getAlignment() < ABIAlignment) { 10159 // This is a type-legal unaligned Altivec or QPX load. 10160 SDValue Chain = LD->getChain(); 10161 SDValue Ptr = LD->getBasePtr(); 10162 bool isLittleEndian = Subtarget.isLittleEndian(); 10163 10164 // This implements the loading of unaligned vectors as described in 10165 // the venerable Apple Velocity Engine overview. Specifically: 10166 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10167 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10168 // 10169 // The general idea is to expand a sequence of one or more unaligned 10170 // loads into an alignment-based permutation-control instruction (lvsl 10171 // or lvsr), a series of regular vector loads (which always truncate 10172 // their input address to an aligned address), and a series of 10173 // permutations. The results of these permutations are the requested 10174 // loaded values. The trick is that the last "extra" load is not taken 10175 // from the address you might suspect (sizeof(vector) bytes after the 10176 // last requested load), but rather sizeof(vector) - 1 bytes after the 10177 // last requested vector. The point of this is to avoid a page fault if 10178 // the base address happened to be aligned. This works because if the 10179 // base address is aligned, then adding less than a full vector length 10180 // will cause the last vector in the sequence to be (re)loaded. 10181 // Otherwise, the next vector will be fetched as you might suspect was 10182 // necessary. 10183 10184 // We might be able to reuse the permutation generation from 10185 // a different base address offset from this one by an aligned amount. 10186 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10187 // optimization later. 10188 Intrinsic::ID Intr, IntrLD, IntrPerm; 10189 MVT PermCntlTy, PermTy, LDTy; 10190 if (Subtarget.hasAltivec()) { 10191 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10192 Intrinsic::ppc_altivec_lvsl; 10193 IntrLD = Intrinsic::ppc_altivec_lvx; 10194 IntrPerm = Intrinsic::ppc_altivec_vperm; 10195 PermCntlTy = MVT::v16i8; 10196 PermTy = MVT::v4i32; 10197 LDTy = MVT::v4i32; 10198 } else { 10199 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10200 Intrinsic::ppc_qpx_qvlpcls; 10201 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10202 Intrinsic::ppc_qpx_qvlfs; 10203 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10204 PermCntlTy = MVT::v4f64; 10205 PermTy = MVT::v4f64; 10206 LDTy = MemVT.getSimpleVT(); 10207 } 10208 10209 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10210 10211 // Create the new MMO for the new base load. It is like the original MMO, 10212 // but represents an area in memory almost twice the vector size centered 10213 // on the original address. If the address is unaligned, we might start 10214 // reading up to (sizeof(vector)-1) bytes below the address of the 10215 // original unaligned load. 10216 MachineFunction &MF = DAG.getMachineFunction(); 10217 MachineMemOperand *BaseMMO = 10218 MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1, 10219 2*MemVT.getStoreSize()-1); 10220 10221 // Create the new base load. 10222 SDValue LDXIntID = DAG.getTargetConstant(IntrLD, dl, getPointerTy()); 10223 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10224 SDValue BaseLoad = 10225 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10226 DAG.getVTList(PermTy, MVT::Other), 10227 BaseLoadOps, LDTy, BaseMMO); 10228 10229 // Note that the value of IncOffset (which is provided to the next 10230 // load's pointer info offset value, and thus used to calculate the 10231 // alignment), and the value of IncValue (which is actually used to 10232 // increment the pointer value) are different! This is because we 10233 // require the next load to appear to be aligned, even though it 10234 // is actually offset from the base pointer by a lesser amount. 10235 int IncOffset = VT.getSizeInBits() / 8; 10236 int IncValue = IncOffset; 10237 10238 // Walk (both up and down) the chain looking for another load at the real 10239 // (aligned) offset (the alignment of the other load does not matter in 10240 // this case). If found, then do not use the offset reduction trick, as 10241 // that will prevent the loads from being later combined (as they would 10242 // otherwise be duplicates). 10243 if (!findConsecutiveLoad(LD, DAG)) 10244 --IncValue; 10245 10246 SDValue Increment = DAG.getConstant(IncValue, dl, getPointerTy()); 10247 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10248 10249 MachineMemOperand *ExtraMMO = 10250 MF.getMachineMemOperand(LD->getMemOperand(), 10251 1, 2*MemVT.getStoreSize()-1); 10252 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10253 SDValue ExtraLoad = 10254 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10255 DAG.getVTList(PermTy, MVT::Other), 10256 ExtraLoadOps, LDTy, ExtraMMO); 10257 10258 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10259 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10260 10261 // Because vperm has a big-endian bias, we must reverse the order 10262 // of the input vectors and complement the permute control vector 10263 // when generating little endian code. We have already handled the 10264 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10265 // and ExtraLoad here. 10266 SDValue Perm; 10267 if (isLittleEndian) 10268 Perm = BuildIntrinsicOp(IntrPerm, 10269 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10270 else 10271 Perm = BuildIntrinsicOp(IntrPerm, 10272 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10273 10274 if (VT != PermTy) 10275 Perm = Subtarget.hasAltivec() ? 10276 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10277 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10278 DAG.getTargetConstant(1, dl, MVT::i64)); 10279 // second argument is 1 because this rounding 10280 // is always exact. 10281 10282 // The output of the permutation is our loaded result, the TokenFactor is 10283 // our new chain. 10284 DCI.CombineTo(N, Perm, TF); 10285 return SDValue(N, 0); 10286 } 10287 } 10288 break; 10289 case ISD::INTRINSIC_WO_CHAIN: { 10290 bool isLittleEndian = Subtarget.isLittleEndian(); 10291 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10292 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10293 : Intrinsic::ppc_altivec_lvsl); 10294 if ((IID == Intr || 10295 IID == Intrinsic::ppc_qpx_qvlpcld || 10296 IID == Intrinsic::ppc_qpx_qvlpcls) && 10297 N->getOperand(1)->getOpcode() == ISD::ADD) { 10298 SDValue Add = N->getOperand(1); 10299 10300 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10301 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10302 10303 if (DAG.MaskedValueIsZero( 10304 Add->getOperand(1), 10305 APInt::getAllOnesValue(Bits /* alignment */) 10306 .zext( 10307 Add.getValueType().getScalarType().getSizeInBits()))) { 10308 SDNode *BasePtr = Add->getOperand(0).getNode(); 10309 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10310 UE = BasePtr->use_end(); 10311 UI != UE; ++UI) { 10312 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10313 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10314 // We've found another LVSL/LVSR, and this address is an aligned 10315 // multiple of that one. The results will be the same, so use the 10316 // one we've just found instead. 10317 10318 return SDValue(*UI, 0); 10319 } 10320 } 10321 } 10322 10323 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10324 SDNode *BasePtr = Add->getOperand(0).getNode(); 10325 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10326 UE = BasePtr->use_end(); UI != UE; ++UI) { 10327 if (UI->getOpcode() == ISD::ADD && 10328 isa<ConstantSDNode>(UI->getOperand(1)) && 10329 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10330 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10331 (1ULL << Bits) == 0) { 10332 SDNode *OtherAdd = *UI; 10333 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10334 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10335 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10336 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10337 return SDValue(*VI, 0); 10338 } 10339 } 10340 } 10341 } 10342 } 10343 } 10344 } 10345 10346 break; 10347 case ISD::INTRINSIC_W_CHAIN: { 10348 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10349 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10350 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10351 default: 10352 break; 10353 case Intrinsic::ppc_vsx_lxvw4x: 10354 case Intrinsic::ppc_vsx_lxvd2x: 10355 return expandVSXLoadForLE(N, DCI); 10356 } 10357 } 10358 break; 10359 } 10360 case ISD::INTRINSIC_VOID: { 10361 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10362 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10363 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10364 default: 10365 break; 10366 case Intrinsic::ppc_vsx_stxvw4x: 10367 case Intrinsic::ppc_vsx_stxvd2x: 10368 return expandVSXStoreForLE(N, DCI); 10369 } 10370 } 10371 break; 10372 } 10373 case ISD::BSWAP: 10374 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10375 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10376 N->getOperand(0).hasOneUse() && 10377 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10378 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10379 N->getValueType(0) == MVT::i64))) { 10380 SDValue Load = N->getOperand(0); 10381 LoadSDNode *LD = cast<LoadSDNode>(Load); 10382 // Create the byte-swapping load. 10383 SDValue Ops[] = { 10384 LD->getChain(), // Chain 10385 LD->getBasePtr(), // Ptr 10386 DAG.getValueType(N->getValueType(0)) // VT 10387 }; 10388 SDValue BSLoad = 10389 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10390 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10391 MVT::i64 : MVT::i32, MVT::Other), 10392 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10393 10394 // If this is an i16 load, insert the truncate. 10395 SDValue ResVal = BSLoad; 10396 if (N->getValueType(0) == MVT::i16) 10397 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10398 10399 // First, combine the bswap away. This makes the value produced by the 10400 // load dead. 10401 DCI.CombineTo(N, ResVal); 10402 10403 // Next, combine the load away, we give it a bogus result value but a real 10404 // chain result. The result value is dead because the bswap is dead. 10405 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10406 10407 // Return N so it doesn't get rechecked! 10408 return SDValue(N, 0); 10409 } 10410 10411 break; 10412 case PPCISD::VCMP: { 10413 // If a VCMPo node already exists with exactly the same operands as this 10414 // node, use its result instead of this node (VCMPo computes both a CR6 and 10415 // a normal output). 10416 // 10417 if (!N->getOperand(0).hasOneUse() && 10418 !N->getOperand(1).hasOneUse() && 10419 !N->getOperand(2).hasOneUse()) { 10420 10421 // Scan all of the users of the LHS, looking for VCMPo's that match. 10422 SDNode *VCMPoNode = nullptr; 10423 10424 SDNode *LHSN = N->getOperand(0).getNode(); 10425 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10426 UI != E; ++UI) 10427 if (UI->getOpcode() == PPCISD::VCMPo && 10428 UI->getOperand(1) == N->getOperand(1) && 10429 UI->getOperand(2) == N->getOperand(2) && 10430 UI->getOperand(0) == N->getOperand(0)) { 10431 VCMPoNode = *UI; 10432 break; 10433 } 10434 10435 // If there is no VCMPo node, or if the flag value has a single use, don't 10436 // transform this. 10437 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10438 break; 10439 10440 // Look at the (necessarily single) use of the flag value. If it has a 10441 // chain, this transformation is more complex. Note that multiple things 10442 // could use the value result, which we should ignore. 10443 SDNode *FlagUser = nullptr; 10444 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10445 FlagUser == nullptr; ++UI) { 10446 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10447 SDNode *User = *UI; 10448 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10449 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10450 FlagUser = User; 10451 break; 10452 } 10453 } 10454 } 10455 10456 // If the user is a MFOCRF instruction, we know this is safe. 10457 // Otherwise we give up for right now. 10458 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10459 return SDValue(VCMPoNode, 0); 10460 } 10461 break; 10462 } 10463 case ISD::BRCOND: { 10464 SDValue Cond = N->getOperand(1); 10465 SDValue Target = N->getOperand(2); 10466 10467 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10468 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10469 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10470 10471 // We now need to make the intrinsic dead (it cannot be instruction 10472 // selected). 10473 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10474 assert(Cond.getNode()->hasOneUse() && 10475 "Counter decrement has more than one use"); 10476 10477 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10478 N->getOperand(0), Target); 10479 } 10480 } 10481 break; 10482 case ISD::BR_CC: { 10483 // If this is a branch on an altivec predicate comparison, lower this so 10484 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10485 // lowering is done pre-legalize, because the legalizer lowers the predicate 10486 // compare down to code that is difficult to reassemble. 10487 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10488 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10489 10490 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10491 // value. If so, pass-through the AND to get to the intrinsic. 10492 if (LHS.getOpcode() == ISD::AND && 10493 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10494 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10495 Intrinsic::ppc_is_decremented_ctr_nonzero && 10496 isa<ConstantSDNode>(LHS.getOperand(1)) && 10497 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10498 isZero()) 10499 LHS = LHS.getOperand(0); 10500 10501 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10502 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10503 Intrinsic::ppc_is_decremented_ctr_nonzero && 10504 isa<ConstantSDNode>(RHS)) { 10505 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10506 "Counter decrement comparison is not EQ or NE"); 10507 10508 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10509 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10510 (CC == ISD::SETNE && !Val); 10511 10512 // We now need to make the intrinsic dead (it cannot be instruction 10513 // selected). 10514 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10515 assert(LHS.getNode()->hasOneUse() && 10516 "Counter decrement has more than one use"); 10517 10518 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10519 N->getOperand(0), N->getOperand(4)); 10520 } 10521 10522 int CompareOpc; 10523 bool isDot; 10524 10525 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10526 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10527 getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10528 assert(isDot && "Can't compare against a vector result!"); 10529 10530 // If this is a comparison against something other than 0/1, then we know 10531 // that the condition is never/always true. 10532 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10533 if (Val != 0 && Val != 1) { 10534 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10535 return N->getOperand(0); 10536 // Always !=, turn it into an unconditional branch. 10537 return DAG.getNode(ISD::BR, dl, MVT::Other, 10538 N->getOperand(0), N->getOperand(4)); 10539 } 10540 10541 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10542 10543 // Create the PPCISD altivec 'dot' comparison node. 10544 SDValue Ops[] = { 10545 LHS.getOperand(2), // LHS of compare 10546 LHS.getOperand(3), // RHS of compare 10547 DAG.getConstant(CompareOpc, dl, MVT::i32) 10548 }; 10549 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10550 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10551 10552 // Unpack the result based on how the target uses it. 10553 PPC::Predicate CompOpc; 10554 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10555 default: // Can't happen, don't crash on invalid number though. 10556 case 0: // Branch on the value of the EQ bit of CR6. 10557 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10558 break; 10559 case 1: // Branch on the inverted value of the EQ bit of CR6. 10560 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10561 break; 10562 case 2: // Branch on the value of the LT bit of CR6. 10563 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10564 break; 10565 case 3: // Branch on the inverted value of the LT bit of CR6. 10566 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10567 break; 10568 } 10569 10570 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10571 DAG.getConstant(CompOpc, dl, MVT::i32), 10572 DAG.getRegister(PPC::CR6, MVT::i32), 10573 N->getOperand(4), CompNode.getValue(1)); 10574 } 10575 break; 10576 } 10577 } 10578 10579 return SDValue(); 10580 } 10581 10582 SDValue 10583 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10584 SelectionDAG &DAG, 10585 std::vector<SDNode *> *Created) const { 10586 // fold (sdiv X, pow2) 10587 EVT VT = N->getValueType(0); 10588 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10589 return SDValue(); 10590 if ((VT != MVT::i32 && VT != MVT::i64) || 10591 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10592 return SDValue(); 10593 10594 SDLoc DL(N); 10595 SDValue N0 = N->getOperand(0); 10596 10597 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10598 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10599 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10600 10601 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10602 if (Created) 10603 Created->push_back(Op.getNode()); 10604 10605 if (IsNegPow2) { 10606 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10607 if (Created) 10608 Created->push_back(Op.getNode()); 10609 } 10610 10611 return Op; 10612 } 10613 10614 //===----------------------------------------------------------------------===// 10615 // Inline Assembly Support 10616 //===----------------------------------------------------------------------===// 10617 10618 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10619 APInt &KnownZero, 10620 APInt &KnownOne, 10621 const SelectionDAG &DAG, 10622 unsigned Depth) const { 10623 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10624 switch (Op.getOpcode()) { 10625 default: break; 10626 case PPCISD::LBRX: { 10627 // lhbrx is known to have the top bits cleared out. 10628 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10629 KnownZero = 0xFFFF0000; 10630 break; 10631 } 10632 case ISD::INTRINSIC_WO_CHAIN: { 10633 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10634 default: break; 10635 case Intrinsic::ppc_altivec_vcmpbfp_p: 10636 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10637 case Intrinsic::ppc_altivec_vcmpequb_p: 10638 case Intrinsic::ppc_altivec_vcmpequh_p: 10639 case Intrinsic::ppc_altivec_vcmpequw_p: 10640 case Intrinsic::ppc_altivec_vcmpequd_p: 10641 case Intrinsic::ppc_altivec_vcmpgefp_p: 10642 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10643 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10644 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10645 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10646 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10647 case Intrinsic::ppc_altivec_vcmpgtub_p: 10648 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10649 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10650 case Intrinsic::ppc_altivec_vcmpgtud_p: 10651 KnownZero = ~1U; // All bits but the low one are known to be zero. 10652 break; 10653 } 10654 } 10655 } 10656 } 10657 10658 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10659 switch (Subtarget.getDarwinDirective()) { 10660 default: break; 10661 case PPC::DIR_970: 10662 case PPC::DIR_PWR4: 10663 case PPC::DIR_PWR5: 10664 case PPC::DIR_PWR5X: 10665 case PPC::DIR_PWR6: 10666 case PPC::DIR_PWR6X: 10667 case PPC::DIR_PWR7: 10668 case PPC::DIR_PWR8: { 10669 if (!ML) 10670 break; 10671 10672 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10673 10674 // For small loops (between 5 and 8 instructions), align to a 32-byte 10675 // boundary so that the entire loop fits in one instruction-cache line. 10676 uint64_t LoopSize = 0; 10677 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10678 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10679 LoopSize += TII->GetInstSizeInBytes(J); 10680 10681 if (LoopSize > 16 && LoopSize <= 32) 10682 return 5; 10683 10684 break; 10685 } 10686 } 10687 10688 return TargetLowering::getPrefLoopAlignment(ML); 10689 } 10690 10691 /// getConstraintType - Given a constraint, return the type of 10692 /// constraint it is for this target. 10693 PPCTargetLowering::ConstraintType 10694 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 10695 if (Constraint.size() == 1) { 10696 switch (Constraint[0]) { 10697 default: break; 10698 case 'b': 10699 case 'r': 10700 case 'f': 10701 case 'v': 10702 case 'y': 10703 return C_RegisterClass; 10704 case 'Z': 10705 // FIXME: While Z does indicate a memory constraint, it specifically 10706 // indicates an r+r address (used in conjunction with the 'y' modifier 10707 // in the replacement string). Currently, we're forcing the base 10708 // register to be r0 in the asm printer (which is interpreted as zero) 10709 // and forming the complete address in the second register. This is 10710 // suboptimal. 10711 return C_Memory; 10712 } 10713 } else if (Constraint == "wc") { // individual CR bits. 10714 return C_RegisterClass; 10715 } else if (Constraint == "wa" || Constraint == "wd" || 10716 Constraint == "wf" || Constraint == "ws") { 10717 return C_RegisterClass; // VSX registers. 10718 } 10719 return TargetLowering::getConstraintType(Constraint); 10720 } 10721 10722 /// Examine constraint type and operand type and determine a weight value. 10723 /// This object must already have been set up with the operand type 10724 /// and the current alternative constraint selected. 10725 TargetLowering::ConstraintWeight 10726 PPCTargetLowering::getSingleConstraintMatchWeight( 10727 AsmOperandInfo &info, const char *constraint) const { 10728 ConstraintWeight weight = CW_Invalid; 10729 Value *CallOperandVal = info.CallOperandVal; 10730 // If we don't have a value, we can't do a match, 10731 // but allow it at the lowest weight. 10732 if (!CallOperandVal) 10733 return CW_Default; 10734 Type *type = CallOperandVal->getType(); 10735 10736 // Look at the constraint type. 10737 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10738 return CW_Register; // an individual CR bit. 10739 else if ((StringRef(constraint) == "wa" || 10740 StringRef(constraint) == "wd" || 10741 StringRef(constraint) == "wf") && 10742 type->isVectorTy()) 10743 return CW_Register; 10744 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10745 return CW_Register; 10746 10747 switch (*constraint) { 10748 default: 10749 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10750 break; 10751 case 'b': 10752 if (type->isIntegerTy()) 10753 weight = CW_Register; 10754 break; 10755 case 'f': 10756 if (type->isFloatTy()) 10757 weight = CW_Register; 10758 break; 10759 case 'd': 10760 if (type->isDoubleTy()) 10761 weight = CW_Register; 10762 break; 10763 case 'v': 10764 if (type->isVectorTy()) 10765 weight = CW_Register; 10766 break; 10767 case 'y': 10768 weight = CW_Register; 10769 break; 10770 case 'Z': 10771 weight = CW_Memory; 10772 break; 10773 } 10774 return weight; 10775 } 10776 10777 std::pair<unsigned, const TargetRegisterClass *> 10778 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10779 const std::string &Constraint, 10780 MVT VT) const { 10781 if (Constraint.size() == 1) { 10782 // GCC RS6000 Constraint Letters 10783 switch (Constraint[0]) { 10784 case 'b': // R1-R31 10785 if (VT == MVT::i64 && Subtarget.isPPC64()) 10786 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10787 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10788 case 'r': // R0-R31 10789 if (VT == MVT::i64 && Subtarget.isPPC64()) 10790 return std::make_pair(0U, &PPC::G8RCRegClass); 10791 return std::make_pair(0U, &PPC::GPRCRegClass); 10792 case 'f': 10793 if (VT == MVT::f32 || VT == MVT::i32) 10794 return std::make_pair(0U, &PPC::F4RCRegClass); 10795 if (VT == MVT::f64 || VT == MVT::i64) 10796 return std::make_pair(0U, &PPC::F8RCRegClass); 10797 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10798 return std::make_pair(0U, &PPC::QFRCRegClass); 10799 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10800 return std::make_pair(0U, &PPC::QSRCRegClass); 10801 break; 10802 case 'v': 10803 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10804 return std::make_pair(0U, &PPC::QFRCRegClass); 10805 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10806 return std::make_pair(0U, &PPC::QSRCRegClass); 10807 return std::make_pair(0U, &PPC::VRRCRegClass); 10808 case 'y': // crrc 10809 return std::make_pair(0U, &PPC::CRRCRegClass); 10810 } 10811 } else if (Constraint == "wc") { // an individual CR bit. 10812 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10813 } else if (Constraint == "wa" || Constraint == "wd" || 10814 Constraint == "wf") { 10815 return std::make_pair(0U, &PPC::VSRCRegClass); 10816 } else if (Constraint == "ws") { 10817 if (VT == MVT::f32) 10818 return std::make_pair(0U, &PPC::VSSRCRegClass); 10819 else 10820 return std::make_pair(0U, &PPC::VSFRCRegClass); 10821 } 10822 10823 std::pair<unsigned, const TargetRegisterClass *> R = 10824 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10825 10826 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10827 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10828 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10829 // register. 10830 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10831 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10832 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10833 PPC::GPRCRegClass.contains(R.first)) 10834 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10835 PPC::sub_32, &PPC::G8RCRegClass), 10836 &PPC::G8RCRegClass); 10837 10838 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10839 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10840 R.first = PPC::CR0; 10841 R.second = &PPC::CRRCRegClass; 10842 } 10843 10844 return R; 10845 } 10846 10847 10848 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10849 /// vector. If it is invalid, don't add anything to Ops. 10850 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10851 std::string &Constraint, 10852 std::vector<SDValue>&Ops, 10853 SelectionDAG &DAG) const { 10854 SDValue Result; 10855 10856 // Only support length 1 constraints. 10857 if (Constraint.length() > 1) return; 10858 10859 char Letter = Constraint[0]; 10860 switch (Letter) { 10861 default: break; 10862 case 'I': 10863 case 'J': 10864 case 'K': 10865 case 'L': 10866 case 'M': 10867 case 'N': 10868 case 'O': 10869 case 'P': { 10870 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10871 if (!CST) return; // Must be an immediate to match. 10872 SDLoc dl(Op); 10873 int64_t Value = CST->getSExtValue(); 10874 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10875 // numbers are printed as such. 10876 switch (Letter) { 10877 default: llvm_unreachable("Unknown constraint letter!"); 10878 case 'I': // "I" is a signed 16-bit constant. 10879 if (isInt<16>(Value)) 10880 Result = DAG.getTargetConstant(Value, dl, TCVT); 10881 break; 10882 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 10883 if (isShiftedUInt<16, 16>(Value)) 10884 Result = DAG.getTargetConstant(Value, dl, TCVT); 10885 break; 10886 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 10887 if (isShiftedInt<16, 16>(Value)) 10888 Result = DAG.getTargetConstant(Value, dl, TCVT); 10889 break; 10890 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 10891 if (isUInt<16>(Value)) 10892 Result = DAG.getTargetConstant(Value, dl, TCVT); 10893 break; 10894 case 'M': // "M" is a constant that is greater than 31. 10895 if (Value > 31) 10896 Result = DAG.getTargetConstant(Value, dl, TCVT); 10897 break; 10898 case 'N': // "N" is a positive constant that is an exact power of two. 10899 if (Value > 0 && isPowerOf2_64(Value)) 10900 Result = DAG.getTargetConstant(Value, dl, TCVT); 10901 break; 10902 case 'O': // "O" is the constant zero. 10903 if (Value == 0) 10904 Result = DAG.getTargetConstant(Value, dl, TCVT); 10905 break; 10906 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 10907 if (isInt<16>(-Value)) 10908 Result = DAG.getTargetConstant(Value, dl, TCVT); 10909 break; 10910 } 10911 break; 10912 } 10913 } 10914 10915 if (Result.getNode()) { 10916 Ops.push_back(Result); 10917 return; 10918 } 10919 10920 // Handle standard constraint letters. 10921 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10922 } 10923 10924 // isLegalAddressingMode - Return true if the addressing mode represented 10925 // by AM is legal for this target, for a load/store of the specified type. 10926 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 10927 Type *Ty, 10928 unsigned AS) const { 10929 // PPC does not allow r+i addressing modes for vectors! 10930 if (Ty->isVectorTy() && AM.BaseOffs != 0) 10931 return false; 10932 10933 // PPC allows a sign-extended 16-bit immediate field. 10934 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 10935 return false; 10936 10937 // No global is ever allowed as a base. 10938 if (AM.BaseGV) 10939 return false; 10940 10941 // PPC only support r+r, 10942 switch (AM.Scale) { 10943 case 0: // "r+i" or just "i", depending on HasBaseReg. 10944 break; 10945 case 1: 10946 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 10947 return false; 10948 // Otherwise we have r+r or r+i. 10949 break; 10950 case 2: 10951 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 10952 return false; 10953 // Allow 2*r as r+r. 10954 break; 10955 default: 10956 // No other scales are supported. 10957 return false; 10958 } 10959 10960 return true; 10961 } 10962 10963 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 10964 SelectionDAG &DAG) const { 10965 MachineFunction &MF = DAG.getMachineFunction(); 10966 MachineFrameInfo *MFI = MF.getFrameInfo(); 10967 MFI->setReturnAddressIsTaken(true); 10968 10969 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 10970 return SDValue(); 10971 10972 SDLoc dl(Op); 10973 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10974 10975 // Make sure the function does not optimize away the store of the RA to 10976 // the stack. 10977 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 10978 FuncInfo->setLRStoreRequired(); 10979 bool isPPC64 = Subtarget.isPPC64(); 10980 10981 if (Depth > 0) { 10982 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 10983 SDValue Offset = 10984 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 10985 isPPC64 ? MVT::i64 : MVT::i32); 10986 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 10987 DAG.getNode(ISD::ADD, dl, getPointerTy(), 10988 FrameAddr, Offset), 10989 MachinePointerInfo(), false, false, false, 0); 10990 } 10991 10992 // Just load the return address off the stack. 10993 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 10994 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 10995 RetAddrFI, MachinePointerInfo(), false, false, false, 0); 10996 } 10997 10998 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 10999 SelectionDAG &DAG) const { 11000 SDLoc dl(Op); 11001 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11002 11003 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 11004 bool isPPC64 = PtrVT == MVT::i64; 11005 11006 MachineFunction &MF = DAG.getMachineFunction(); 11007 MachineFrameInfo *MFI = MF.getFrameInfo(); 11008 MFI->setFrameAddressIsTaken(true); 11009 11010 // Naked functions never have a frame pointer, and so we use r1. For all 11011 // other functions, this decision must be delayed until during PEI. 11012 unsigned FrameReg; 11013 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11014 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11015 else 11016 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11017 11018 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11019 PtrVT); 11020 while (Depth--) 11021 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11022 FrameAddr, MachinePointerInfo(), false, false, 11023 false, 0); 11024 return FrameAddr; 11025 } 11026 11027 // FIXME? Maybe this could be a TableGen attribute on some registers and 11028 // this table could be generated automatically from RegInfo. 11029 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, 11030 EVT VT) const { 11031 bool isPPC64 = Subtarget.isPPC64(); 11032 bool isDarwinABI = Subtarget.isDarwinABI(); 11033 11034 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11035 (!isPPC64 && VT != MVT::i32)) 11036 report_fatal_error("Invalid register global variable type"); 11037 11038 bool is64Bit = isPPC64 && VT == MVT::i64; 11039 unsigned Reg = StringSwitch<unsigned>(RegName) 11040 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11041 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11042 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11043 (is64Bit ? PPC::X13 : PPC::R13)) 11044 .Default(0); 11045 11046 if (Reg) 11047 return Reg; 11048 report_fatal_error("Invalid register name global variable"); 11049 } 11050 11051 bool 11052 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11053 // The PowerPC target isn't yet aware of offsets. 11054 return false; 11055 } 11056 11057 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11058 const CallInst &I, 11059 unsigned Intrinsic) const { 11060 11061 switch (Intrinsic) { 11062 case Intrinsic::ppc_qpx_qvlfd: 11063 case Intrinsic::ppc_qpx_qvlfs: 11064 case Intrinsic::ppc_qpx_qvlfcd: 11065 case Intrinsic::ppc_qpx_qvlfcs: 11066 case Intrinsic::ppc_qpx_qvlfiwa: 11067 case Intrinsic::ppc_qpx_qvlfiwz: 11068 case Intrinsic::ppc_altivec_lvx: 11069 case Intrinsic::ppc_altivec_lvxl: 11070 case Intrinsic::ppc_altivec_lvebx: 11071 case Intrinsic::ppc_altivec_lvehx: 11072 case Intrinsic::ppc_altivec_lvewx: 11073 case Intrinsic::ppc_vsx_lxvd2x: 11074 case Intrinsic::ppc_vsx_lxvw4x: { 11075 EVT VT; 11076 switch (Intrinsic) { 11077 case Intrinsic::ppc_altivec_lvebx: 11078 VT = MVT::i8; 11079 break; 11080 case Intrinsic::ppc_altivec_lvehx: 11081 VT = MVT::i16; 11082 break; 11083 case Intrinsic::ppc_altivec_lvewx: 11084 VT = MVT::i32; 11085 break; 11086 case Intrinsic::ppc_vsx_lxvd2x: 11087 VT = MVT::v2f64; 11088 break; 11089 case Intrinsic::ppc_qpx_qvlfd: 11090 VT = MVT::v4f64; 11091 break; 11092 case Intrinsic::ppc_qpx_qvlfs: 11093 VT = MVT::v4f32; 11094 break; 11095 case Intrinsic::ppc_qpx_qvlfcd: 11096 VT = MVT::v2f64; 11097 break; 11098 case Intrinsic::ppc_qpx_qvlfcs: 11099 VT = MVT::v2f32; 11100 break; 11101 default: 11102 VT = MVT::v4i32; 11103 break; 11104 } 11105 11106 Info.opc = ISD::INTRINSIC_W_CHAIN; 11107 Info.memVT = VT; 11108 Info.ptrVal = I.getArgOperand(0); 11109 Info.offset = -VT.getStoreSize()+1; 11110 Info.size = 2*VT.getStoreSize()-1; 11111 Info.align = 1; 11112 Info.vol = false; 11113 Info.readMem = true; 11114 Info.writeMem = false; 11115 return true; 11116 } 11117 case Intrinsic::ppc_qpx_qvlfda: 11118 case Intrinsic::ppc_qpx_qvlfsa: 11119 case Intrinsic::ppc_qpx_qvlfcda: 11120 case Intrinsic::ppc_qpx_qvlfcsa: 11121 case Intrinsic::ppc_qpx_qvlfiwaa: 11122 case Intrinsic::ppc_qpx_qvlfiwza: { 11123 EVT VT; 11124 switch (Intrinsic) { 11125 case Intrinsic::ppc_qpx_qvlfda: 11126 VT = MVT::v4f64; 11127 break; 11128 case Intrinsic::ppc_qpx_qvlfsa: 11129 VT = MVT::v4f32; 11130 break; 11131 case Intrinsic::ppc_qpx_qvlfcda: 11132 VT = MVT::v2f64; 11133 break; 11134 case Intrinsic::ppc_qpx_qvlfcsa: 11135 VT = MVT::v2f32; 11136 break; 11137 default: 11138 VT = MVT::v4i32; 11139 break; 11140 } 11141 11142 Info.opc = ISD::INTRINSIC_W_CHAIN; 11143 Info.memVT = VT; 11144 Info.ptrVal = I.getArgOperand(0); 11145 Info.offset = 0; 11146 Info.size = VT.getStoreSize(); 11147 Info.align = 1; 11148 Info.vol = false; 11149 Info.readMem = true; 11150 Info.writeMem = false; 11151 return true; 11152 } 11153 case Intrinsic::ppc_qpx_qvstfd: 11154 case Intrinsic::ppc_qpx_qvstfs: 11155 case Intrinsic::ppc_qpx_qvstfcd: 11156 case Intrinsic::ppc_qpx_qvstfcs: 11157 case Intrinsic::ppc_qpx_qvstfiw: 11158 case Intrinsic::ppc_altivec_stvx: 11159 case Intrinsic::ppc_altivec_stvxl: 11160 case Intrinsic::ppc_altivec_stvebx: 11161 case Intrinsic::ppc_altivec_stvehx: 11162 case Intrinsic::ppc_altivec_stvewx: 11163 case Intrinsic::ppc_vsx_stxvd2x: 11164 case Intrinsic::ppc_vsx_stxvw4x: { 11165 EVT VT; 11166 switch (Intrinsic) { 11167 case Intrinsic::ppc_altivec_stvebx: 11168 VT = MVT::i8; 11169 break; 11170 case Intrinsic::ppc_altivec_stvehx: 11171 VT = MVT::i16; 11172 break; 11173 case Intrinsic::ppc_altivec_stvewx: 11174 VT = MVT::i32; 11175 break; 11176 case Intrinsic::ppc_vsx_stxvd2x: 11177 VT = MVT::v2f64; 11178 break; 11179 case Intrinsic::ppc_qpx_qvstfd: 11180 VT = MVT::v4f64; 11181 break; 11182 case Intrinsic::ppc_qpx_qvstfs: 11183 VT = MVT::v4f32; 11184 break; 11185 case Intrinsic::ppc_qpx_qvstfcd: 11186 VT = MVT::v2f64; 11187 break; 11188 case Intrinsic::ppc_qpx_qvstfcs: 11189 VT = MVT::v2f32; 11190 break; 11191 default: 11192 VT = MVT::v4i32; 11193 break; 11194 } 11195 11196 Info.opc = ISD::INTRINSIC_VOID; 11197 Info.memVT = VT; 11198 Info.ptrVal = I.getArgOperand(1); 11199 Info.offset = -VT.getStoreSize()+1; 11200 Info.size = 2*VT.getStoreSize()-1; 11201 Info.align = 1; 11202 Info.vol = false; 11203 Info.readMem = false; 11204 Info.writeMem = true; 11205 return true; 11206 } 11207 case Intrinsic::ppc_qpx_qvstfda: 11208 case Intrinsic::ppc_qpx_qvstfsa: 11209 case Intrinsic::ppc_qpx_qvstfcda: 11210 case Intrinsic::ppc_qpx_qvstfcsa: 11211 case Intrinsic::ppc_qpx_qvstfiwa: { 11212 EVT VT; 11213 switch (Intrinsic) { 11214 case Intrinsic::ppc_qpx_qvstfda: 11215 VT = MVT::v4f64; 11216 break; 11217 case Intrinsic::ppc_qpx_qvstfsa: 11218 VT = MVT::v4f32; 11219 break; 11220 case Intrinsic::ppc_qpx_qvstfcda: 11221 VT = MVT::v2f64; 11222 break; 11223 case Intrinsic::ppc_qpx_qvstfcsa: 11224 VT = MVT::v2f32; 11225 break; 11226 default: 11227 VT = MVT::v4i32; 11228 break; 11229 } 11230 11231 Info.opc = ISD::INTRINSIC_VOID; 11232 Info.memVT = VT; 11233 Info.ptrVal = I.getArgOperand(1); 11234 Info.offset = 0; 11235 Info.size = VT.getStoreSize(); 11236 Info.align = 1; 11237 Info.vol = false; 11238 Info.readMem = false; 11239 Info.writeMem = true; 11240 return true; 11241 } 11242 default: 11243 break; 11244 } 11245 11246 return false; 11247 } 11248 11249 /// getOptimalMemOpType - Returns the target specific optimal type for load 11250 /// and store operations as a result of memset, memcpy, and memmove 11251 /// lowering. If DstAlign is zero that means it's safe to destination 11252 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11253 /// means there isn't a need to check it against alignment requirement, 11254 /// probably because the source does not need to be loaded. If 'IsMemset' is 11255 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11256 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11257 /// source is constant so it does not need to be loaded. 11258 /// It returns EVT::Other if the type should be determined using generic 11259 /// target-independent logic. 11260 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11261 unsigned DstAlign, unsigned SrcAlign, 11262 bool IsMemset, bool ZeroMemset, 11263 bool MemcpyStrSrc, 11264 MachineFunction &MF) const { 11265 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11266 const Function *F = MF.getFunction(); 11267 // When expanding a memset, require at least two QPX instructions to cover 11268 // the cost of loading the value to be stored from the constant pool. 11269 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11270 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11271 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11272 return MVT::v4f64; 11273 } 11274 11275 // We should use Altivec/VSX loads and stores when available. For unaligned 11276 // addresses, unaligned VSX loads are only fast starting with the P8. 11277 if (Subtarget.hasAltivec() && Size >= 16 && 11278 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11279 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11280 return MVT::v4i32; 11281 } 11282 11283 if (Subtarget.isPPC64()) { 11284 return MVT::i64; 11285 } 11286 11287 return MVT::i32; 11288 } 11289 11290 /// \brief Returns true if it is beneficial to convert a load of a constant 11291 /// to just the constant itself. 11292 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11293 Type *Ty) const { 11294 assert(Ty->isIntegerTy()); 11295 11296 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11297 if (BitSize == 0 || BitSize > 64) 11298 return false; 11299 return true; 11300 } 11301 11302 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11303 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11304 return false; 11305 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11306 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11307 return NumBits1 == 64 && NumBits2 == 32; 11308 } 11309 11310 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11311 if (!VT1.isInteger() || !VT2.isInteger()) 11312 return false; 11313 unsigned NumBits1 = VT1.getSizeInBits(); 11314 unsigned NumBits2 = VT2.getSizeInBits(); 11315 return NumBits1 == 64 && NumBits2 == 32; 11316 } 11317 11318 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11319 // Generally speaking, zexts are not free, but they are free when they can be 11320 // folded with other operations. 11321 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11322 EVT MemVT = LD->getMemoryVT(); 11323 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11324 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11325 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11326 LD->getExtensionType() == ISD::ZEXTLOAD)) 11327 return true; 11328 } 11329 11330 // FIXME: Add other cases... 11331 // - 32-bit shifts with a zext to i64 11332 // - zext after ctlz, bswap, etc. 11333 // - zext after and by a constant mask 11334 11335 return TargetLowering::isZExtFree(Val, VT2); 11336 } 11337 11338 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11339 assert(VT.isFloatingPoint()); 11340 return true; 11341 } 11342 11343 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11344 return isInt<16>(Imm) || isUInt<16>(Imm); 11345 } 11346 11347 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11348 return isInt<16>(Imm) || isUInt<16>(Imm); 11349 } 11350 11351 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11352 unsigned, 11353 unsigned, 11354 bool *Fast) const { 11355 if (DisablePPCUnaligned) 11356 return false; 11357 11358 // PowerPC supports unaligned memory access for simple non-vector types. 11359 // Although accessing unaligned addresses is not as efficient as accessing 11360 // aligned addresses, it is generally more efficient than manual expansion, 11361 // and generally only traps for software emulation when crossing page 11362 // boundaries. 11363 11364 if (!VT.isSimple()) 11365 return false; 11366 11367 if (VT.getSimpleVT().isVector()) { 11368 if (Subtarget.hasVSX()) { 11369 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11370 VT != MVT::v4f32 && VT != MVT::v4i32) 11371 return false; 11372 } else { 11373 return false; 11374 } 11375 } 11376 11377 if (VT == MVT::ppcf128) 11378 return false; 11379 11380 if (Fast) 11381 *Fast = true; 11382 11383 return true; 11384 } 11385 11386 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11387 VT = VT.getScalarType(); 11388 11389 if (!VT.isSimple()) 11390 return false; 11391 11392 switch (VT.getSimpleVT().SimpleTy) { 11393 case MVT::f32: 11394 case MVT::f64: 11395 return true; 11396 default: 11397 break; 11398 } 11399 11400 return false; 11401 } 11402 11403 const MCPhysReg * 11404 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11405 // LR is a callee-save register, but we must treat it as clobbered by any call 11406 // site. Hence we include LR in the scratch registers, which are in turn added 11407 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11408 // to CTR, which is used by any indirect call. 11409 static const MCPhysReg ScratchRegs[] = { 11410 PPC::X12, PPC::LR8, PPC::CTR8, 0 11411 }; 11412 11413 return ScratchRegs; 11414 } 11415 11416 bool 11417 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11418 EVT VT , unsigned DefinedValues) const { 11419 if (VT == MVT::v2i64) 11420 return false; 11421 11422 if (Subtarget.hasQPX()) { 11423 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11424 return true; 11425 } 11426 11427 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11428 } 11429 11430 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11431 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11432 return TargetLowering::getSchedulingPreference(N); 11433 11434 return Sched::ILP; 11435 } 11436 11437 // Create a fast isel object. 11438 FastISel * 11439 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11440 const TargetLibraryInfo *LibInfo) const { 11441 return PPC::createFastISel(FuncInfo, LibInfo); 11442 } 11443