1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCallingConv.h"
17 #include "PPCCCState.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constant.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/GlobalValue.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCExpr.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/AtomicOrdering.h"
74 #include "llvm/Support/BranchProbability.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CodeGen.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/Format.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Target/TargetInstrInfo.h"
85 #include "llvm/Target/TargetLowering.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Target/TargetRegisterInfo.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "ppc-lowering"
100 
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
103 
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
106 
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
112 
113 STATISTIC(NumTailCalls, "Number of tail calls");
114 STATISTIC(NumSiblingCalls, "Number of sibling calls");
115 
116 // FIXME: Remove this once the bug has been fixed!
117 extern cl::opt<bool> ANDIGlueBug;
118 
119 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
120                                      const PPCSubtarget &STI)
121     : TargetLowering(TM), Subtarget(STI) {
122   // Use _setjmp/_longjmp instead of setjmp/longjmp.
123   setUseUnderscoreSetJmp(true);
124   setUseUnderscoreLongJmp(true);
125 
126   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
127   // arguments are at least 4/8 bytes aligned.
128   bool isPPC64 = Subtarget.isPPC64();
129   setMinStackArgumentAlignment(isPPC64 ? 8:4);
130 
131   // Set up the register classes.
132   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
133   if (!useSoftFloat()) {
134     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
135     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
136   }
137 
138   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
139   for (MVT VT : MVT::integer_valuetypes()) {
140     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
142   }
143 
144   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
145 
146   // PowerPC has pre-inc load and store's.
147   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
148   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
149   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
150   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
151   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
152   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
153   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
154   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
155   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
156   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
157   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
158   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
159   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
160   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
161 
162   if (Subtarget.useCRBits()) {
163     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164 
165     if (isPPC64 || Subtarget.hasFPCVT()) {
166       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
167       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
168                          isPPC64 ? MVT::i64 : MVT::i32);
169       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
170       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
171                         isPPC64 ? MVT::i64 : MVT::i32);
172     } else {
173       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
174       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
175     }
176 
177     // PowerPC does not support direct load / store of condition registers
178     setOperationAction(ISD::LOAD, MVT::i1, Custom);
179     setOperationAction(ISD::STORE, MVT::i1, Custom);
180 
181     // FIXME: Remove this once the ANDI glue bug is fixed:
182     if (ANDIGlueBug)
183       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
184 
185     for (MVT VT : MVT::integer_valuetypes()) {
186       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
187       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
188       setTruncStoreAction(VT, MVT::i1, Expand);
189     }
190 
191     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
192   }
193 
194   // This is used in the ppcf128->int sequence.  Note it has different semantics
195   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
196   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
197 
198   // We do not currently implement these libm ops for PowerPC.
199   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
200   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
201   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
202   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
203   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
204   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
205 
206   // PowerPC has no SREM/UREM instructions
207   setOperationAction(ISD::SREM, MVT::i32, Expand);
208   setOperationAction(ISD::UREM, MVT::i32, Expand);
209   setOperationAction(ISD::SREM, MVT::i64, Expand);
210   setOperationAction(ISD::UREM, MVT::i64, Expand);
211 
212   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
213   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
214   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
215   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
216   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
217   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
218   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
219   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
220   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
221 
222   // We don't support sin/cos/sqrt/fmod/pow
223   setOperationAction(ISD::FSIN , MVT::f64, Expand);
224   setOperationAction(ISD::FCOS , MVT::f64, Expand);
225   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
226   setOperationAction(ISD::FREM , MVT::f64, Expand);
227   setOperationAction(ISD::FPOW , MVT::f64, Expand);
228   setOperationAction(ISD::FMA  , MVT::f64, Legal);
229   setOperationAction(ISD::FSIN , MVT::f32, Expand);
230   setOperationAction(ISD::FCOS , MVT::f32, Expand);
231   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
232   setOperationAction(ISD::FREM , MVT::f32, Expand);
233   setOperationAction(ISD::FPOW , MVT::f32, Expand);
234   setOperationAction(ISD::FMA  , MVT::f32, Legal);
235 
236   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
237 
238   // If we're enabling GP optimizations, use hardware square root
239   if (!Subtarget.hasFSQRT() &&
240       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
241         Subtarget.hasFRE()))
242     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
243 
244   if (!Subtarget.hasFSQRT() &&
245       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
246         Subtarget.hasFRES()))
247     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
248 
249   if (Subtarget.hasFCPSGN()) {
250     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
251     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
252   } else {
253     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
254     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
255   }
256 
257   if (Subtarget.hasFPRND()) {
258     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
259     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
260     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
261     setOperationAction(ISD::FROUND, MVT::f64, Legal);
262 
263     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
264     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
265     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
266     setOperationAction(ISD::FROUND, MVT::f32, Legal);
267   }
268 
269   // PowerPC does not have BSWAP
270   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
271   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
272   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
273   if (Subtarget.isISA3_0()) {
274     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
275     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
276   } else {
277     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
278     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
279   }
280 
281   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
282     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
283     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
284   } else {
285     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
286     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
287   }
288 
289   // PowerPC does not have ROTR
290   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
291   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
292 
293   if (!Subtarget.useCRBits()) {
294     // PowerPC does not have Select
295     setOperationAction(ISD::SELECT, MVT::i32, Expand);
296     setOperationAction(ISD::SELECT, MVT::i64, Expand);
297     setOperationAction(ISD::SELECT, MVT::f32, Expand);
298     setOperationAction(ISD::SELECT, MVT::f64, Expand);
299   }
300 
301   // PowerPC wants to turn select_cc of FP into fsel when possible.
302   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
303   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
304 
305   // PowerPC wants to optimize integer setcc a bit
306   if (!Subtarget.useCRBits())
307     setOperationAction(ISD::SETCC, MVT::i32, Custom);
308 
309   // PowerPC does not have BRCOND which requires SetCC
310   if (!Subtarget.useCRBits())
311     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
312 
313   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
314 
315   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
316   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
317 
318   // PowerPC does not have [U|S]INT_TO_FP
319   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
320   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
321 
322   if (Subtarget.hasDirectMove() && isPPC64) {
323     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
324     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
325     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
326     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
327   } else {
328     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
329     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
330     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
331     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
332   }
333 
334   // We cannot sextinreg(i1).  Expand to shifts.
335   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
336 
337   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
338   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
339   // support continuation, user-level threading, and etc.. As a result, no
340   // other SjLj exception interfaces are implemented and please don't build
341   // your own exception handling based on them.
342   // LLVM/Clang supports zero-cost DWARF exception handling.
343   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
344   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
345 
346   // We want to legalize GlobalAddress and ConstantPool nodes into the
347   // appropriate instructions to materialize the address.
348   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
349   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
350   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
351   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
352   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
353   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
354   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
355   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
356   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
357   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
358 
359   // TRAP is legal.
360   setOperationAction(ISD::TRAP, MVT::Other, Legal);
361 
362   // TRAMPOLINE is custom lowered.
363   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
364   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
365 
366   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
367   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
368 
369   if (Subtarget.isSVR4ABI()) {
370     if (isPPC64) {
371       // VAARG always uses double-word chunks, so promote anything smaller.
372       setOperationAction(ISD::VAARG, MVT::i1, Promote);
373       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
374       setOperationAction(ISD::VAARG, MVT::i8, Promote);
375       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
376       setOperationAction(ISD::VAARG, MVT::i16, Promote);
377       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
378       setOperationAction(ISD::VAARG, MVT::i32, Promote);
379       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
380       setOperationAction(ISD::VAARG, MVT::Other, Expand);
381     } else {
382       // VAARG is custom lowered with the 32-bit SVR4 ABI.
383       setOperationAction(ISD::VAARG, MVT::Other, Custom);
384       setOperationAction(ISD::VAARG, MVT::i64, Custom);
385     }
386   } else
387     setOperationAction(ISD::VAARG, MVT::Other, Expand);
388 
389   if (Subtarget.isSVR4ABI() && !isPPC64)
390     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
391     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
392   else
393     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
394 
395   // Use the default implementation.
396   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
397   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
398   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
399   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
400   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
401   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
402   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
403   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
404   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
405 
406   // We want to custom lower some of our intrinsics.
407   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408 
409   // To handle counter-based loop conditions.
410   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
411 
412   // Comparisons that require checking two conditions.
413   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
414   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
415   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
416   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
417   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
418   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
419   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
420   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
421   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
422   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
423   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
424   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
425 
426   if (Subtarget.has64BitSupport()) {
427     // They also have instructions for converting between i64 and fp.
428     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
429     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
430     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
431     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
432     // This is just the low 32 bits of a (signed) fp->i64 conversion.
433     // We cannot do this with Promote because i64 is not a legal type.
434     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
435 
436     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
437       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
438   } else {
439     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
440     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
441   }
442 
443   // With the instructions enabled under FPCVT, we can do everything.
444   if (Subtarget.hasFPCVT()) {
445     if (Subtarget.has64BitSupport()) {
446       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
447       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
448       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
449       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
450     }
451 
452     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
453     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
454     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
455     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
456   }
457 
458   if (Subtarget.use64BitRegs()) {
459     // 64-bit PowerPC implementations can support i64 types directly
460     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
461     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
462     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
463     // 64-bit PowerPC wants to expand i128 shifts itself.
464     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
465     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
466     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
467   } else {
468     // 32-bit PowerPC wants to expand i64 shifts itself.
469     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
470     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
471     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
472   }
473 
474   if (Subtarget.hasAltivec()) {
475     // First set operation action for all vector types to expand. Then we
476     // will selectively turn on ones that can be effectively codegen'd.
477     for (MVT VT : MVT::vector_valuetypes()) {
478       // add/sub are legal for all supported vector VT's.
479       setOperationAction(ISD::ADD, VT, Legal);
480       setOperationAction(ISD::SUB, VT, Legal);
481 
482       // Vector instructions introduced in P8
483       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
484         setOperationAction(ISD::CTPOP, VT, Legal);
485         setOperationAction(ISD::CTLZ, VT, Legal);
486       }
487       else {
488         setOperationAction(ISD::CTPOP, VT, Expand);
489         setOperationAction(ISD::CTLZ, VT, Expand);
490       }
491 
492       // Vector instructions introduced in P9
493       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
494         setOperationAction(ISD::CTTZ, VT, Legal);
495       else
496         setOperationAction(ISD::CTTZ, VT, Expand);
497 
498       // We promote all shuffles to v16i8.
499       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
500       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
501 
502       // We promote all non-typed operations to v4i32.
503       setOperationAction(ISD::AND   , VT, Promote);
504       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
505       setOperationAction(ISD::OR    , VT, Promote);
506       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
507       setOperationAction(ISD::XOR   , VT, Promote);
508       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
509       setOperationAction(ISD::LOAD  , VT, Promote);
510       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
511       setOperationAction(ISD::SELECT, VT, Promote);
512       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
513       setOperationAction(ISD::SELECT_CC, VT, Promote);
514       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
515       setOperationAction(ISD::STORE, VT, Promote);
516       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
517 
518       // No other operations are legal.
519       setOperationAction(ISD::MUL , VT, Expand);
520       setOperationAction(ISD::SDIV, VT, Expand);
521       setOperationAction(ISD::SREM, VT, Expand);
522       setOperationAction(ISD::UDIV, VT, Expand);
523       setOperationAction(ISD::UREM, VT, Expand);
524       setOperationAction(ISD::FDIV, VT, Expand);
525       setOperationAction(ISD::FREM, VT, Expand);
526       setOperationAction(ISD::FNEG, VT, Expand);
527       setOperationAction(ISD::FSQRT, VT, Expand);
528       setOperationAction(ISD::FLOG, VT, Expand);
529       setOperationAction(ISD::FLOG10, VT, Expand);
530       setOperationAction(ISD::FLOG2, VT, Expand);
531       setOperationAction(ISD::FEXP, VT, Expand);
532       setOperationAction(ISD::FEXP2, VT, Expand);
533       setOperationAction(ISD::FSIN, VT, Expand);
534       setOperationAction(ISD::FCOS, VT, Expand);
535       setOperationAction(ISD::FABS, VT, Expand);
536       setOperationAction(ISD::FPOWI, VT, Expand);
537       setOperationAction(ISD::FFLOOR, VT, Expand);
538       setOperationAction(ISD::FCEIL,  VT, Expand);
539       setOperationAction(ISD::FTRUNC, VT, Expand);
540       setOperationAction(ISD::FRINT,  VT, Expand);
541       setOperationAction(ISD::FNEARBYINT, VT, Expand);
542       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
543       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
544       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
545       setOperationAction(ISD::MULHU, VT, Expand);
546       setOperationAction(ISD::MULHS, VT, Expand);
547       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
548       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
549       setOperationAction(ISD::UDIVREM, VT, Expand);
550       setOperationAction(ISD::SDIVREM, VT, Expand);
551       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
552       setOperationAction(ISD::FPOW, VT, Expand);
553       setOperationAction(ISD::BSWAP, VT, Expand);
554       setOperationAction(ISD::VSELECT, VT, Expand);
555       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
556       setOperationAction(ISD::ROTL, VT, Expand);
557       setOperationAction(ISD::ROTR, VT, Expand);
558 
559       for (MVT InnerVT : MVT::vector_valuetypes()) {
560         setTruncStoreAction(VT, InnerVT, Expand);
561         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
562         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
563         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
564       }
565     }
566 
567     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
568     // with merges, splats, etc.
569     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
570 
571     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
572     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
573     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
574     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
575     setOperationAction(ISD::SELECT, MVT::v4i32,
576                        Subtarget.useCRBits() ? Legal : Expand);
577     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
578     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
579     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
580     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
581     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
582     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
583     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
584     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
585     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
586 
587     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
588     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
589     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
590     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
591 
592     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
593     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
594 
595     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
596       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
597       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
598     }
599 
600     if (Subtarget.hasP8Altivec())
601       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
602     else
603       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
604 
605     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
606     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
607 
608     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
609     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
610 
611     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
612     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
613     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
614     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
615 
616     // Altivec does not contain unordered floating-point compare instructions
617     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
618     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
619     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
620     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
621 
622     if (Subtarget.hasVSX()) {
623       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
624       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
625       if (Subtarget.hasP8Vector()) {
626         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
627         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
628       }
629       if (Subtarget.hasDirectMove() && isPPC64) {
630         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
631         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
632         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
633         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
634         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
635         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
636         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
637         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
638       }
639       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
640 
641       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
642       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
643       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
644       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
645       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
646 
647       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
648 
649       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
650       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
651 
652       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
653       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
654 
655       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
656       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
657       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
658       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
659       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
660 
661       // Share the Altivec comparison restrictions.
662       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
663       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
664       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
665       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
666 
667       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
668       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
669 
670       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
671 
672       if (Subtarget.hasP8Vector())
673         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
674 
675       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
676 
677       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
678       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
679       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
680 
681       if (Subtarget.hasP8Altivec()) {
682         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
683         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
684         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
685 
686         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
687       }
688       else {
689         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
690         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
691         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
692 
693         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
694 
695         // VSX v2i64 only supports non-arithmetic operations.
696         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
697         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
698       }
699 
700       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
701       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
702       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
703       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
704 
705       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
706 
707       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
708       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
709       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
710       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
711 
712       // Vector operation legalization checks the result type of
713       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
714       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
715       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
716       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
717       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
718 
719       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
720       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
721       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
722       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
723 
724       if (Subtarget.hasDirectMove())
725         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
726       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
727 
728       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
729     }
730 
731     if (Subtarget.hasP8Altivec()) {
732       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
733       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
734     }
735 
736     if (Subtarget.hasP9Vector()) {
737       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
738       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
739     }
740   }
741 
742   if (Subtarget.hasQPX()) {
743     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
744     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
745     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
746     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
747 
748     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
749     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
750 
751     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
752     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
753 
754     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
755     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
756 
757     if (!Subtarget.useCRBits())
758       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
759     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
760 
761     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
762     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
763     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
764     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
765     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
766     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
767     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
768 
769     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
770     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
771 
772     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
773     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
774     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
775 
776     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
777     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
778     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
779     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
780     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
781     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
782     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
783     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
784     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
785     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
786     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
787 
788     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
789     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
790 
791     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
792     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
793 
794     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
795 
796     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
797     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
798     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
799     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
800 
801     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
802     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
803 
804     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
805     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
806 
807     if (!Subtarget.useCRBits())
808       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
809     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
810 
811     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
812     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
813     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
814     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
815     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
816     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
817     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
818 
819     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
820     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
821 
822     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
823     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
824     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
825     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
826     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
827     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
828     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
829     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
830     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
831     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
832     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
833 
834     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
835     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
836 
837     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
838     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
839 
840     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
841 
842     setOperationAction(ISD::AND , MVT::v4i1, Legal);
843     setOperationAction(ISD::OR , MVT::v4i1, Legal);
844     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
845 
846     if (!Subtarget.useCRBits())
847       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
848     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
849 
850     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
851     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
852 
853     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
854     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
855     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
856     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
857     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
858     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
859     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
860 
861     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
862     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
863 
864     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
865 
866     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
867     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
868     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
869     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
870 
871     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
872     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
873     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
874     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
875 
876     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
877     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
878 
879     // These need to set FE_INEXACT, and so cannot be vectorized here.
880     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
881     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
882 
883     if (TM.Options.UnsafeFPMath) {
884       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
885       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
886 
887       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
888       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
889     } else {
890       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
891       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
892 
893       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
894       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
895     }
896   }
897 
898   if (Subtarget.has64BitSupport())
899     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
900 
901   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
902 
903   if (!isPPC64) {
904     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
905     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
906   }
907 
908   setBooleanContents(ZeroOrOneBooleanContent);
909 
910   if (Subtarget.hasAltivec()) {
911     // Altivec instructions set fields to all zeros or all ones.
912     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
913   }
914 
915   if (!isPPC64) {
916     // These libcalls are not available in 32-bit.
917     setLibcallName(RTLIB::SHL_I128, nullptr);
918     setLibcallName(RTLIB::SRL_I128, nullptr);
919     setLibcallName(RTLIB::SRA_I128, nullptr);
920   }
921 
922   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
923 
924   // We have target-specific dag combine patterns for the following nodes:
925   setTargetDAGCombine(ISD::SINT_TO_FP);
926   setTargetDAGCombine(ISD::BUILD_VECTOR);
927   if (Subtarget.hasFPCVT())
928     setTargetDAGCombine(ISD::UINT_TO_FP);
929   setTargetDAGCombine(ISD::LOAD);
930   setTargetDAGCombine(ISD::STORE);
931   setTargetDAGCombine(ISD::BR_CC);
932   if (Subtarget.useCRBits())
933     setTargetDAGCombine(ISD::BRCOND);
934   setTargetDAGCombine(ISD::BSWAP);
935   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
936   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
937   setTargetDAGCombine(ISD::INTRINSIC_VOID);
938 
939   setTargetDAGCombine(ISD::SIGN_EXTEND);
940   setTargetDAGCombine(ISD::ZERO_EXTEND);
941   setTargetDAGCombine(ISD::ANY_EXTEND);
942 
943   if (Subtarget.useCRBits()) {
944     setTargetDAGCombine(ISD::TRUNCATE);
945     setTargetDAGCombine(ISD::SETCC);
946     setTargetDAGCombine(ISD::SELECT_CC);
947   }
948 
949   // Use reciprocal estimates.
950   if (TM.Options.UnsafeFPMath) {
951     setTargetDAGCombine(ISD::FDIV);
952     setTargetDAGCombine(ISD::FSQRT);
953   }
954 
955   // Darwin long double math library functions have $LDBL128 appended.
956   if (Subtarget.isDarwin()) {
957     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
958     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
959     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
960     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
961     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
962     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
963     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
964     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
965     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
966     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
967   }
968 
969   // With 32 condition bits, we don't need to sink (and duplicate) compares
970   // aggressively in CodeGenPrep.
971   if (Subtarget.useCRBits()) {
972     setHasMultipleConditionRegisters();
973     setJumpIsExpensive();
974   }
975 
976   setMinFunctionAlignment(2);
977   if (Subtarget.isDarwin())
978     setPrefFunctionAlignment(4);
979 
980   switch (Subtarget.getDarwinDirective()) {
981   default: break;
982   case PPC::DIR_970:
983   case PPC::DIR_A2:
984   case PPC::DIR_E500mc:
985   case PPC::DIR_E5500:
986   case PPC::DIR_PWR4:
987   case PPC::DIR_PWR5:
988   case PPC::DIR_PWR5X:
989   case PPC::DIR_PWR6:
990   case PPC::DIR_PWR6X:
991   case PPC::DIR_PWR7:
992   case PPC::DIR_PWR8:
993   case PPC::DIR_PWR9:
994     setPrefFunctionAlignment(4);
995     setPrefLoopAlignment(4);
996     break;
997   }
998 
999   if (Subtarget.enableMachineScheduler())
1000     setSchedulingPreference(Sched::Source);
1001   else
1002     setSchedulingPreference(Sched::Hybrid);
1003 
1004   computeRegisterProperties(STI.getRegisterInfo());
1005 
1006   // The Freescale cores do better with aggressive inlining of memcpy and
1007   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1008   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1009       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1010     MaxStoresPerMemset = 32;
1011     MaxStoresPerMemsetOptSize = 16;
1012     MaxStoresPerMemcpy = 32;
1013     MaxStoresPerMemcpyOptSize = 8;
1014     MaxStoresPerMemmove = 32;
1015     MaxStoresPerMemmoveOptSize = 8;
1016   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1017     // The A2 also benefits from (very) aggressive inlining of memcpy and
1018     // friends. The overhead of a the function call, even when warm, can be
1019     // over one hundred cycles.
1020     MaxStoresPerMemset = 128;
1021     MaxStoresPerMemcpy = 128;
1022     MaxStoresPerMemmove = 128;
1023   }
1024 }
1025 
1026 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1027 /// the desired ByVal argument alignment.
1028 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1029                              unsigned MaxMaxAlign) {
1030   if (MaxAlign == MaxMaxAlign)
1031     return;
1032   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1033     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1034       MaxAlign = 32;
1035     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1036       MaxAlign = 16;
1037   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1038     unsigned EltAlign = 0;
1039     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1040     if (EltAlign > MaxAlign)
1041       MaxAlign = EltAlign;
1042   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1043     for (auto *EltTy : STy->elements()) {
1044       unsigned EltAlign = 0;
1045       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1046       if (EltAlign > MaxAlign)
1047         MaxAlign = EltAlign;
1048       if (MaxAlign == MaxMaxAlign)
1049         break;
1050     }
1051   }
1052 }
1053 
1054 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1055 /// function arguments in the caller parameter area.
1056 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1057                                                   const DataLayout &DL) const {
1058   // Darwin passes everything on 4 byte boundary.
1059   if (Subtarget.isDarwin())
1060     return 4;
1061 
1062   // 16byte and wider vectors are passed on 16byte boundary.
1063   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1064   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1065   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1066     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1067   return Align;
1068 }
1069 
1070 bool PPCTargetLowering::useSoftFloat() const {
1071   return Subtarget.useSoftFloat();
1072 }
1073 
1074 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1075   switch ((PPCISD::NodeType)Opcode) {
1076   case PPCISD::FIRST_NUMBER:    break;
1077   case PPCISD::FSEL:            return "PPCISD::FSEL";
1078   case PPCISD::FCFID:           return "PPCISD::FCFID";
1079   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1080   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1081   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1082   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1083   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1084   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1085   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1086   case PPCISD::FRE:             return "PPCISD::FRE";
1087   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1088   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1089   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1090   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1091   case PPCISD::VPERM:           return "PPCISD::VPERM";
1092   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1093   case PPCISD::XXINSERT:        return "PPCISD::XXINSERT";
1094   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1095   case PPCISD::CMPB:            return "PPCISD::CMPB";
1096   case PPCISD::Hi:              return "PPCISD::Hi";
1097   case PPCISD::Lo:              return "PPCISD::Lo";
1098   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1099   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1100   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1101   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1102   case PPCISD::SRL:             return "PPCISD::SRL";
1103   case PPCISD::SRA:             return "PPCISD::SRA";
1104   case PPCISD::SHL:             return "PPCISD::SHL";
1105   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1106   case PPCISD::CALL:            return "PPCISD::CALL";
1107   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1108   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1109   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1110   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1111   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1112   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1113   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1114   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1115   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1116   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1117   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1118   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1119   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1120   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1121   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1122   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1123   case PPCISD::VCMP:            return "PPCISD::VCMP";
1124   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1125   case PPCISD::LBRX:            return "PPCISD::LBRX";
1126   case PPCISD::STBRX:           return "PPCISD::STBRX";
1127   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1128   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1129   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1130   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1131   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1132   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1133   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1134   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1135   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1136   case PPCISD::BDZ:             return "PPCISD::BDZ";
1137   case PPCISD::MFFS:            return "PPCISD::MFFS";
1138   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1139   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1140   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1141   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1142   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1143   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1144   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1145   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1146   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1147   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1148   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1149   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1150   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1151   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1152   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1153   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1154   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1155   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1156   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1157   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1158   case PPCISD::SC:              return "PPCISD::SC";
1159   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1160   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1161   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1162   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1163   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1164   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1165   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1166   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1167   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1168   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1169   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1170   }
1171   return nullptr;
1172 }
1173 
1174 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1175                                           EVT VT) const {
1176   if (!VT.isVector())
1177     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1178 
1179   if (Subtarget.hasQPX())
1180     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1181 
1182   return VT.changeVectorElementTypeToInteger();
1183 }
1184 
1185 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1186   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1187   return true;
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 // Node matching predicates, for use by the tblgen matching code.
1192 //===----------------------------------------------------------------------===//
1193 
1194 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1195 static bool isFloatingPointZero(SDValue Op) {
1196   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1197     return CFP->getValueAPF().isZero();
1198   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1199     // Maybe this has already been legalized into the constant pool?
1200     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1201       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1202         return CFP->getValueAPF().isZero();
1203   }
1204   return false;
1205 }
1206 
1207 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1208 /// true if Op is undef or if it matches the specified value.
1209 static bool isConstantOrUndef(int Op, int Val) {
1210   return Op < 0 || Op == Val;
1211 }
1212 
1213 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1214 /// VPKUHUM instruction.
1215 /// The ShuffleKind distinguishes between big-endian operations with
1216 /// two different inputs (0), either-endian operations with two identical
1217 /// inputs (1), and little-endian operations with two different inputs (2).
1218 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1219 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1220                                SelectionDAG &DAG) {
1221   bool IsLE = DAG.getDataLayout().isLittleEndian();
1222   if (ShuffleKind == 0) {
1223     if (IsLE)
1224       return false;
1225     for (unsigned i = 0; i != 16; ++i)
1226       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1227         return false;
1228   } else if (ShuffleKind == 2) {
1229     if (!IsLE)
1230       return false;
1231     for (unsigned i = 0; i != 16; ++i)
1232       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1233         return false;
1234   } else if (ShuffleKind == 1) {
1235     unsigned j = IsLE ? 0 : 1;
1236     for (unsigned i = 0; i != 8; ++i)
1237       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1238           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1239         return false;
1240   }
1241   return true;
1242 }
1243 
1244 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1245 /// VPKUWUM instruction.
1246 /// The ShuffleKind distinguishes between big-endian operations with
1247 /// two different inputs (0), either-endian operations with two identical
1248 /// inputs (1), and little-endian operations with two different inputs (2).
1249 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1250 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1251                                SelectionDAG &DAG) {
1252   bool IsLE = DAG.getDataLayout().isLittleEndian();
1253   if (ShuffleKind == 0) {
1254     if (IsLE)
1255       return false;
1256     for (unsigned i = 0; i != 16; i += 2)
1257       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1258           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1259         return false;
1260   } else if (ShuffleKind == 2) {
1261     if (!IsLE)
1262       return false;
1263     for (unsigned i = 0; i != 16; i += 2)
1264       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1265           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1266         return false;
1267   } else if (ShuffleKind == 1) {
1268     unsigned j = IsLE ? 0 : 2;
1269     for (unsigned i = 0; i != 8; i += 2)
1270       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1271           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1272           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1273           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1274         return false;
1275   }
1276   return true;
1277 }
1278 
1279 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1280 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1281 /// current subtarget.
1282 ///
1283 /// The ShuffleKind distinguishes between big-endian operations with
1284 /// two different inputs (0), either-endian operations with two identical
1285 /// inputs (1), and little-endian operations with two different inputs (2).
1286 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1287 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1288                                SelectionDAG &DAG) {
1289   const PPCSubtarget& Subtarget =
1290     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1291   if (!Subtarget.hasP8Vector())
1292     return false;
1293 
1294   bool IsLE = DAG.getDataLayout().isLittleEndian();
1295   if (ShuffleKind == 0) {
1296     if (IsLE)
1297       return false;
1298     for (unsigned i = 0; i != 16; i += 4)
1299       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1300           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1301           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1302           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1303         return false;
1304   } else if (ShuffleKind == 2) {
1305     if (!IsLE)
1306       return false;
1307     for (unsigned i = 0; i != 16; i += 4)
1308       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1309           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1310           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1311           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1312         return false;
1313   } else if (ShuffleKind == 1) {
1314     unsigned j = IsLE ? 0 : 4;
1315     for (unsigned i = 0; i != 8; i += 4)
1316       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1317           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1318           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1319           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1320           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1321           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1322           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1323           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1324         return false;
1325   }
1326   return true;
1327 }
1328 
1329 /// isVMerge - Common function, used to match vmrg* shuffles.
1330 ///
1331 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1332                      unsigned LHSStart, unsigned RHSStart) {
1333   if (N->getValueType(0) != MVT::v16i8)
1334     return false;
1335   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1336          "Unsupported merge size!");
1337 
1338   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1339     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1340       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1341                              LHSStart+j+i*UnitSize) ||
1342           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1343                              RHSStart+j+i*UnitSize))
1344         return false;
1345     }
1346   return true;
1347 }
1348 
1349 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1350 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1351 /// The ShuffleKind distinguishes between big-endian merges with two
1352 /// different inputs (0), either-endian merges with two identical inputs (1),
1353 /// and little-endian merges with two different inputs (2).  For the latter,
1354 /// the input operands are swapped (see PPCInstrAltivec.td).
1355 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1356                              unsigned ShuffleKind, SelectionDAG &DAG) {
1357   if (DAG.getDataLayout().isLittleEndian()) {
1358     if (ShuffleKind == 1) // unary
1359       return isVMerge(N, UnitSize, 0, 0);
1360     else if (ShuffleKind == 2) // swapped
1361       return isVMerge(N, UnitSize, 0, 16);
1362     else
1363       return false;
1364   } else {
1365     if (ShuffleKind == 1) // unary
1366       return isVMerge(N, UnitSize, 8, 8);
1367     else if (ShuffleKind == 0) // normal
1368       return isVMerge(N, UnitSize, 8, 24);
1369     else
1370       return false;
1371   }
1372 }
1373 
1374 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1375 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1376 /// The ShuffleKind distinguishes between big-endian merges with two
1377 /// different inputs (0), either-endian merges with two identical inputs (1),
1378 /// and little-endian merges with two different inputs (2).  For the latter,
1379 /// the input operands are swapped (see PPCInstrAltivec.td).
1380 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1381                              unsigned ShuffleKind, SelectionDAG &DAG) {
1382   if (DAG.getDataLayout().isLittleEndian()) {
1383     if (ShuffleKind == 1) // unary
1384       return isVMerge(N, UnitSize, 8, 8);
1385     else if (ShuffleKind == 2) // swapped
1386       return isVMerge(N, UnitSize, 8, 24);
1387     else
1388       return false;
1389   } else {
1390     if (ShuffleKind == 1) // unary
1391       return isVMerge(N, UnitSize, 0, 0);
1392     else if (ShuffleKind == 0) // normal
1393       return isVMerge(N, UnitSize, 0, 16);
1394     else
1395       return false;
1396   }
1397 }
1398 
1399 /**
1400  * \brief Common function used to match vmrgew and vmrgow shuffles
1401  *
1402  * The indexOffset determines whether to look for even or odd words in
1403  * the shuffle mask. This is based on the of the endianness of the target
1404  * machine.
1405  *   - Little Endian:
1406  *     - Use offset of 0 to check for odd elements
1407  *     - Use offset of 4 to check for even elements
1408  *   - Big Endian:
1409  *     - Use offset of 0 to check for even elements
1410  *     - Use offset of 4 to check for odd elements
1411  * A detailed description of the vector element ordering for little endian and
1412  * big endian can be found at
1413  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1414  * Targeting your applications - what little endian and big endian IBM XL C/C++
1415  * compiler differences mean to you
1416  *
1417  * The mask to the shuffle vector instruction specifies the indices of the
1418  * elements from the two input vectors to place in the result. The elements are
1419  * numbered in array-access order, starting with the first vector. These vectors
1420  * are always of type v16i8, thus each vector will contain 16 elements of size
1421  * 8. More info on the shuffle vector can be found in the
1422  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1423  * Language Reference.
1424  *
1425  * The RHSStartValue indicates whether the same input vectors are used (unary)
1426  * or two different input vectors are used, based on the following:
1427  *   - If the instruction uses the same vector for both inputs, the range of the
1428  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1429  *     be 0.
1430  *   - If the instruction has two different vectors then the range of the
1431  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1432  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1433  *     to 31 specify elements in the second vector).
1434  *
1435  * \param[in] N The shuffle vector SD Node to analyze
1436  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1437  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1438  * vector to the shuffle_vector instruction
1439  * \return true iff this shuffle vector represents an even or odd word merge
1440  */
1441 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1442                      unsigned RHSStartValue) {
1443   if (N->getValueType(0) != MVT::v16i8)
1444     return false;
1445 
1446   for (unsigned i = 0; i < 2; ++i)
1447     for (unsigned j = 0; j < 4; ++j)
1448       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1449                              i*RHSStartValue+j+IndexOffset) ||
1450           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1451                              i*RHSStartValue+j+IndexOffset+8))
1452         return false;
1453   return true;
1454 }
1455 
1456 /**
1457  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1458  * vmrgow instructions.
1459  *
1460  * \param[in] N The shuffle vector SD Node to analyze
1461  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1462  * \param[in] ShuffleKind Identify the type of merge:
1463  *   - 0 = big-endian merge with two different inputs;
1464  *   - 1 = either-endian merge with two identical inputs;
1465  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1466  *     little-endian merges).
1467  * \param[in] DAG The current SelectionDAG
1468  * \return true iff this shuffle mask
1469  */
1470 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1471                               unsigned ShuffleKind, SelectionDAG &DAG) {
1472   if (DAG.getDataLayout().isLittleEndian()) {
1473     unsigned indexOffset = CheckEven ? 4 : 0;
1474     if (ShuffleKind == 1) // Unary
1475       return isVMerge(N, indexOffset, 0);
1476     else if (ShuffleKind == 2) // swapped
1477       return isVMerge(N, indexOffset, 16);
1478     else
1479       return false;
1480   }
1481   else {
1482     unsigned indexOffset = CheckEven ? 0 : 4;
1483     if (ShuffleKind == 1) // Unary
1484       return isVMerge(N, indexOffset, 0);
1485     else if (ShuffleKind == 0) // Normal
1486       return isVMerge(N, indexOffset, 16);
1487     else
1488       return false;
1489   }
1490   return false;
1491 }
1492 
1493 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1494 /// amount, otherwise return -1.
1495 /// The ShuffleKind distinguishes between big-endian operations with two
1496 /// different inputs (0), either-endian operations with two identical inputs
1497 /// (1), and little-endian operations with two different inputs (2).  For the
1498 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1499 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1500                              SelectionDAG &DAG) {
1501   if (N->getValueType(0) != MVT::v16i8)
1502     return -1;
1503 
1504   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1505 
1506   // Find the first non-undef value in the shuffle mask.
1507   unsigned i;
1508   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1509     /*search*/;
1510 
1511   if (i == 16) return -1;  // all undef.
1512 
1513   // Otherwise, check to see if the rest of the elements are consecutively
1514   // numbered from this value.
1515   unsigned ShiftAmt = SVOp->getMaskElt(i);
1516   if (ShiftAmt < i) return -1;
1517 
1518   ShiftAmt -= i;
1519   bool isLE = DAG.getDataLayout().isLittleEndian();
1520 
1521   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1522     // Check the rest of the elements to see if they are consecutive.
1523     for (++i; i != 16; ++i)
1524       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1525         return -1;
1526   } else if (ShuffleKind == 1) {
1527     // Check the rest of the elements to see if they are consecutive.
1528     for (++i; i != 16; ++i)
1529       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1530         return -1;
1531   } else
1532     return -1;
1533 
1534   if (isLE)
1535     ShiftAmt = 16 - ShiftAmt;
1536 
1537   return ShiftAmt;
1538 }
1539 
1540 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1541 /// specifies a splat of a single element that is suitable for input to
1542 /// VSPLTB/VSPLTH/VSPLTW.
1543 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1544   assert(N->getValueType(0) == MVT::v16i8 &&
1545          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1546 
1547   // The consecutive indices need to specify an element, not part of two
1548   // different elements.  So abandon ship early if this isn't the case.
1549   if (N->getMaskElt(0) % EltSize != 0)
1550     return false;
1551 
1552   // This is a splat operation if each element of the permute is the same, and
1553   // if the value doesn't reference the second vector.
1554   unsigned ElementBase = N->getMaskElt(0);
1555 
1556   // FIXME: Handle UNDEF elements too!
1557   if (ElementBase >= 16)
1558     return false;
1559 
1560   // Check that the indices are consecutive, in the case of a multi-byte element
1561   // splatted with a v16i8 mask.
1562   for (unsigned i = 1; i != EltSize; ++i)
1563     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1564       return false;
1565 
1566   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1567     if (N->getMaskElt(i) < 0) continue;
1568     for (unsigned j = 0; j != EltSize; ++j)
1569       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1570         return false;
1571   }
1572   return true;
1573 }
1574 
1575 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1576                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1577   // Check that the mask is shuffling words
1578   for (unsigned i = 0; i < 4; ++i) {
1579     unsigned B0 = N->getMaskElt(i*4);
1580     unsigned B1 = N->getMaskElt(i*4+1);
1581     unsigned B2 = N->getMaskElt(i*4+2);
1582     unsigned B3 = N->getMaskElt(i*4+3);
1583     if (B0 % 4)
1584       return false;
1585     if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1)
1586       return false;
1587   }
1588 
1589   // Now we look at mask elements 0,4,8,12
1590   unsigned M0 = N->getMaskElt(0) / 4;
1591   unsigned M1 = N->getMaskElt(4) / 4;
1592   unsigned M2 = N->getMaskElt(8) / 4;
1593   unsigned M3 = N->getMaskElt(12) / 4;
1594   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1595   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1596 
1597   // Below, let H and L be arbitrary elements of the shuffle mask
1598   // where H is in the range [4,7] and L is in the range [0,3].
1599   // H, 1, 2, 3 or L, 5, 6, 7
1600   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1601       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1602     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1603     InsertAtByte = IsLE ? 12 : 0;
1604     Swap = M0 < 4;
1605     return true;
1606   }
1607   // 0, H, 2, 3 or 4, L, 6, 7
1608   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1609       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1610     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1611     InsertAtByte = IsLE ? 8 : 4;
1612     Swap = M1 < 4;
1613     return true;
1614   }
1615   // 0, 1, H, 3 or 4, 5, L, 7
1616   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1617       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1618     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1619     InsertAtByte = IsLE ? 4 : 8;
1620     Swap = M2 < 4;
1621     return true;
1622   }
1623   // 0, 1, 2, H or 4, 5, 6, L
1624   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1625       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1626     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1627     InsertAtByte = IsLE ? 0 : 12;
1628     Swap = M3 < 4;
1629     return true;
1630   }
1631 
1632   // If both vector operands for the shuffle are the same vector, the mask will
1633   // contain only elements from the first one and the second one will be undef.
1634   if (N->getOperand(1).isUndef()) {
1635     ShiftElts = 0;
1636     Swap = true;
1637     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1638     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1639       InsertAtByte = IsLE ? 12 : 0;
1640       return true;
1641     }
1642     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1643       InsertAtByte = IsLE ? 8 : 4;
1644       return true;
1645     }
1646     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1647       InsertAtByte = IsLE ? 4 : 8;
1648       return true;
1649     }
1650     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1651       InsertAtByte = IsLE ? 0 : 12;
1652       return true;
1653     }
1654   }
1655 
1656   return false;
1657 }
1658 
1659 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1660 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1661 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1662                                 SelectionDAG &DAG) {
1663   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1664   assert(isSplatShuffleMask(SVOp, EltSize));
1665   if (DAG.getDataLayout().isLittleEndian())
1666     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1667   else
1668     return SVOp->getMaskElt(0) / EltSize;
1669 }
1670 
1671 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1672 /// by using a vspltis[bhw] instruction of the specified element size, return
1673 /// the constant being splatted.  The ByteSize field indicates the number of
1674 /// bytes of each element [124] -> [bhw].
1675 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1676   SDValue OpVal(nullptr, 0);
1677 
1678   // If ByteSize of the splat is bigger than the element size of the
1679   // build_vector, then we have a case where we are checking for a splat where
1680   // multiple elements of the buildvector are folded together into a single
1681   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1682   unsigned EltSize = 16/N->getNumOperands();
1683   if (EltSize < ByteSize) {
1684     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1685     SDValue UniquedVals[4];
1686     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1687 
1688     // See if all of the elements in the buildvector agree across.
1689     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1690       if (N->getOperand(i).isUndef()) continue;
1691       // If the element isn't a constant, bail fully out.
1692       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1693 
1694       if (!UniquedVals[i&(Multiple-1)].getNode())
1695         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1696       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1697         return SDValue();  // no match.
1698     }
1699 
1700     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1701     // either constant or undef values that are identical for each chunk.  See
1702     // if these chunks can form into a larger vspltis*.
1703 
1704     // Check to see if all of the leading entries are either 0 or -1.  If
1705     // neither, then this won't fit into the immediate field.
1706     bool LeadingZero = true;
1707     bool LeadingOnes = true;
1708     for (unsigned i = 0; i != Multiple-1; ++i) {
1709       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1710 
1711       LeadingZero &= isNullConstant(UniquedVals[i]);
1712       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1713     }
1714     // Finally, check the least significant entry.
1715     if (LeadingZero) {
1716       if (!UniquedVals[Multiple-1].getNode())
1717         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1718       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1719       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1720         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1721     }
1722     if (LeadingOnes) {
1723       if (!UniquedVals[Multiple-1].getNode())
1724         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1725       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1726       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1727         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1728     }
1729 
1730     return SDValue();
1731   }
1732 
1733   // Check to see if this buildvec has a single non-undef value in its elements.
1734   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1735     if (N->getOperand(i).isUndef()) continue;
1736     if (!OpVal.getNode())
1737       OpVal = N->getOperand(i);
1738     else if (OpVal != N->getOperand(i))
1739       return SDValue();
1740   }
1741 
1742   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1743 
1744   unsigned ValSizeInBytes = EltSize;
1745   uint64_t Value = 0;
1746   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1747     Value = CN->getZExtValue();
1748   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1749     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1750     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1751   }
1752 
1753   // If the splat value is larger than the element value, then we can never do
1754   // this splat.  The only case that we could fit the replicated bits into our
1755   // immediate field for would be zero, and we prefer to use vxor for it.
1756   if (ValSizeInBytes < ByteSize) return SDValue();
1757 
1758   // If the element value is larger than the splat value, check if it consists
1759   // of a repeated bit pattern of size ByteSize.
1760   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1761     return SDValue();
1762 
1763   // Properly sign extend the value.
1764   int MaskVal = SignExtend32(Value, ByteSize * 8);
1765 
1766   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1767   if (MaskVal == 0) return SDValue();
1768 
1769   // Finally, if this value fits in a 5 bit sext field, return it
1770   if (SignExtend32<5>(MaskVal) == MaskVal)
1771     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1772   return SDValue();
1773 }
1774 
1775 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1776 /// amount, otherwise return -1.
1777 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1778   EVT VT = N->getValueType(0);
1779   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1780     return -1;
1781 
1782   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1783 
1784   // Find the first non-undef value in the shuffle mask.
1785   unsigned i;
1786   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1787     /*search*/;
1788 
1789   if (i == 4) return -1;  // all undef.
1790 
1791   // Otherwise, check to see if the rest of the elements are consecutively
1792   // numbered from this value.
1793   unsigned ShiftAmt = SVOp->getMaskElt(i);
1794   if (ShiftAmt < i) return -1;
1795   ShiftAmt -= i;
1796 
1797   // Check the rest of the elements to see if they are consecutive.
1798   for (++i; i != 4; ++i)
1799     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1800       return -1;
1801 
1802   return ShiftAmt;
1803 }
1804 
1805 //===----------------------------------------------------------------------===//
1806 //  Addressing Mode Selection
1807 //===----------------------------------------------------------------------===//
1808 
1809 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1810 /// or 64-bit immediate, and if the value can be accurately represented as a
1811 /// sign extension from a 16-bit value.  If so, this returns true and the
1812 /// immediate.
1813 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1814   if (!isa<ConstantSDNode>(N))
1815     return false;
1816 
1817   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1818   if (N->getValueType(0) == MVT::i32)
1819     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1820   else
1821     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1822 }
1823 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1824   return isIntS16Immediate(Op.getNode(), Imm);
1825 }
1826 
1827 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1828 /// can be represented as an indexed [r+r] operation.  Returns false if it
1829 /// can be more efficiently represented with [r+imm].
1830 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1831                                             SDValue &Index,
1832                                             SelectionDAG &DAG) const {
1833   short imm = 0;
1834   if (N.getOpcode() == ISD::ADD) {
1835     if (isIntS16Immediate(N.getOperand(1), imm))
1836       return false;    // r+i
1837     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1838       return false;    // r+i
1839 
1840     Base = N.getOperand(0);
1841     Index = N.getOperand(1);
1842     return true;
1843   } else if (N.getOpcode() == ISD::OR) {
1844     if (isIntS16Immediate(N.getOperand(1), imm))
1845       return false;    // r+i can fold it if we can.
1846 
1847     // If this is an or of disjoint bitfields, we can codegen this as an add
1848     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1849     // disjoint.
1850     APInt LHSKnownZero, LHSKnownOne;
1851     APInt RHSKnownZero, RHSKnownOne;
1852     DAG.computeKnownBits(N.getOperand(0),
1853                          LHSKnownZero, LHSKnownOne);
1854 
1855     if (LHSKnownZero.getBoolValue()) {
1856       DAG.computeKnownBits(N.getOperand(1),
1857                            RHSKnownZero, RHSKnownOne);
1858       // If all of the bits are known zero on the LHS or RHS, the add won't
1859       // carry.
1860       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1861         Base = N.getOperand(0);
1862         Index = N.getOperand(1);
1863         return true;
1864       }
1865     }
1866   }
1867 
1868   return false;
1869 }
1870 
1871 // If we happen to be doing an i64 load or store into a stack slot that has
1872 // less than a 4-byte alignment, then the frame-index elimination may need to
1873 // use an indexed load or store instruction (because the offset may not be a
1874 // multiple of 4). The extra register needed to hold the offset comes from the
1875 // register scavenger, and it is possible that the scavenger will need to use
1876 // an emergency spill slot. As a result, we need to make sure that a spill slot
1877 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1878 // stack slot.
1879 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1880   // FIXME: This does not handle the LWA case.
1881   if (VT != MVT::i64)
1882     return;
1883 
1884   // NOTE: We'll exclude negative FIs here, which come from argument
1885   // lowering, because there are no known test cases triggering this problem
1886   // using packed structures (or similar). We can remove this exclusion if
1887   // we find such a test case. The reason why this is so test-case driven is
1888   // because this entire 'fixup' is only to prevent crashes (from the
1889   // register scavenger) on not-really-valid inputs. For example, if we have:
1890   //   %a = alloca i1
1891   //   %b = bitcast i1* %a to i64*
1892   //   store i64* a, i64 b
1893   // then the store should really be marked as 'align 1', but is not. If it
1894   // were marked as 'align 1' then the indexed form would have been
1895   // instruction-selected initially, and the problem this 'fixup' is preventing
1896   // won't happen regardless.
1897   if (FrameIdx < 0)
1898     return;
1899 
1900   MachineFunction &MF = DAG.getMachineFunction();
1901   MachineFrameInfo &MFI = MF.getFrameInfo();
1902 
1903   unsigned Align = MFI.getObjectAlignment(FrameIdx);
1904   if (Align >= 4)
1905     return;
1906 
1907   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1908   FuncInfo->setHasNonRISpills();
1909 }
1910 
1911 /// Returns true if the address N can be represented by a base register plus
1912 /// a signed 16-bit displacement [r+imm], and if it is not better
1913 /// represented as reg+reg.  If Aligned is true, only accept displacements
1914 /// suitable for STD and friends, i.e. multiples of 4.
1915 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1916                                             SDValue &Base,
1917                                             SelectionDAG &DAG,
1918                                             bool Aligned) const {
1919   // FIXME dl should come from parent load or store, not from address
1920   SDLoc dl(N);
1921   // If this can be more profitably realized as r+r, fail.
1922   if (SelectAddressRegReg(N, Disp, Base, DAG))
1923     return false;
1924 
1925   if (N.getOpcode() == ISD::ADD) {
1926     short imm = 0;
1927     if (isIntS16Immediate(N.getOperand(1), imm) &&
1928         (!Aligned || (imm & 3) == 0)) {
1929       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1930       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1931         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1932         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1933       } else {
1934         Base = N.getOperand(0);
1935       }
1936       return true; // [r+i]
1937     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1938       // Match LOAD (ADD (X, Lo(G))).
1939       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1940              && "Cannot handle constant offsets yet!");
1941       Disp = N.getOperand(1).getOperand(0);  // The global address.
1942       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1943              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1944              Disp.getOpcode() == ISD::TargetConstantPool ||
1945              Disp.getOpcode() == ISD::TargetJumpTable);
1946       Base = N.getOperand(0);
1947       return true;  // [&g+r]
1948     }
1949   } else if (N.getOpcode() == ISD::OR) {
1950     short imm = 0;
1951     if (isIntS16Immediate(N.getOperand(1), imm) &&
1952         (!Aligned || (imm & 3) == 0)) {
1953       // If this is an or of disjoint bitfields, we can codegen this as an add
1954       // (for better address arithmetic) if the LHS and RHS of the OR are
1955       // provably disjoint.
1956       APInt LHSKnownZero, LHSKnownOne;
1957       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1958 
1959       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1960         // If all of the bits are known zero on the LHS or RHS, the add won't
1961         // carry.
1962         if (FrameIndexSDNode *FI =
1963               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1964           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1965           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1966         } else {
1967           Base = N.getOperand(0);
1968         }
1969         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1970         return true;
1971       }
1972     }
1973   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1974     // Loading from a constant address.
1975 
1976     // If this address fits entirely in a 16-bit sext immediate field, codegen
1977     // this as "d, 0"
1978     short Imm;
1979     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1980       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1981       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1982                              CN->getValueType(0));
1983       return true;
1984     }
1985 
1986     // Handle 32-bit sext immediates with LIS + addr mode.
1987     if ((CN->getValueType(0) == MVT::i32 ||
1988          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1989         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1990       int Addr = (int)CN->getZExtValue();
1991 
1992       // Otherwise, break this down into an LIS + disp.
1993       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1994 
1995       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1996                                    MVT::i32);
1997       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1998       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1999       return true;
2000     }
2001   }
2002 
2003   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2004   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2005     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2006     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2007   } else
2008     Base = N;
2009   return true;      // [r+0]
2010 }
2011 
2012 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2013 /// represented as an indexed [r+r] operation.
2014 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2015                                                 SDValue &Index,
2016                                                 SelectionDAG &DAG) const {
2017   // Check to see if we can easily represent this as an [r+r] address.  This
2018   // will fail if it thinks that the address is more profitably represented as
2019   // reg+imm, e.g. where imm = 0.
2020   if (SelectAddressRegReg(N, Base, Index, DAG))
2021     return true;
2022 
2023   // If the operand is an addition, always emit this as [r+r], since this is
2024   // better (for code size, and execution, as the memop does the add for free)
2025   // than emitting an explicit add.
2026   if (N.getOpcode() == ISD::ADD) {
2027     Base = N.getOperand(0);
2028     Index = N.getOperand(1);
2029     return true;
2030   }
2031 
2032   // Otherwise, do it the hard way, using R0 as the base register.
2033   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2034                          N.getValueType());
2035   Index = N;
2036   return true;
2037 }
2038 
2039 /// getPreIndexedAddressParts - returns true by value, base pointer and
2040 /// offset pointer and addressing mode by reference if the node's address
2041 /// can be legally represented as pre-indexed load / store address.
2042 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2043                                                   SDValue &Offset,
2044                                                   ISD::MemIndexedMode &AM,
2045                                                   SelectionDAG &DAG) const {
2046   if (DisablePPCPreinc) return false;
2047 
2048   bool isLoad = true;
2049   SDValue Ptr;
2050   EVT VT;
2051   unsigned Alignment;
2052   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2053     Ptr = LD->getBasePtr();
2054     VT = LD->getMemoryVT();
2055     Alignment = LD->getAlignment();
2056   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2057     Ptr = ST->getBasePtr();
2058     VT  = ST->getMemoryVT();
2059     Alignment = ST->getAlignment();
2060     isLoad = false;
2061   } else
2062     return false;
2063 
2064   // PowerPC doesn't have preinc load/store instructions for vectors (except
2065   // for QPX, which does have preinc r+r forms).
2066   if (VT.isVector()) {
2067     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2068       return false;
2069     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2070       AM = ISD::PRE_INC;
2071       return true;
2072     }
2073   }
2074 
2075   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2076     // Common code will reject creating a pre-inc form if the base pointer
2077     // is a frame index, or if N is a store and the base pointer is either
2078     // the same as or a predecessor of the value being stored.  Check for
2079     // those situations here, and try with swapped Base/Offset instead.
2080     bool Swap = false;
2081 
2082     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2083       Swap = true;
2084     else if (!isLoad) {
2085       SDValue Val = cast<StoreSDNode>(N)->getValue();
2086       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2087         Swap = true;
2088     }
2089 
2090     if (Swap)
2091       std::swap(Base, Offset);
2092 
2093     AM = ISD::PRE_INC;
2094     return true;
2095   }
2096 
2097   // LDU/STU can only handle immediates that are a multiple of 4.
2098   if (VT != MVT::i64) {
2099     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
2100       return false;
2101   } else {
2102     // LDU/STU need an address with at least 4-byte alignment.
2103     if (Alignment < 4)
2104       return false;
2105 
2106     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
2107       return false;
2108   }
2109 
2110   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2111     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2112     // sext i32 to i64 when addr mode is r+i.
2113     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2114         LD->getExtensionType() == ISD::SEXTLOAD &&
2115         isa<ConstantSDNode>(Offset))
2116       return false;
2117   }
2118 
2119   AM = ISD::PRE_INC;
2120   return true;
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 //  LowerOperation implementation
2125 //===----------------------------------------------------------------------===//
2126 
2127 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2128 /// and LoOpFlags to the target MO flags.
2129 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2130                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2131                                const GlobalValue *GV = nullptr) {
2132   HiOpFlags = PPCII::MO_HA;
2133   LoOpFlags = PPCII::MO_LO;
2134 
2135   // Don't use the pic base if not in PIC relocation model.
2136   if (IsPIC) {
2137     HiOpFlags |= PPCII::MO_PIC_FLAG;
2138     LoOpFlags |= PPCII::MO_PIC_FLAG;
2139   }
2140 
2141   // If this is a reference to a global value that requires a non-lazy-ptr, make
2142   // sure that instruction lowering adds it.
2143   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2144     HiOpFlags |= PPCII::MO_NLP_FLAG;
2145     LoOpFlags |= PPCII::MO_NLP_FLAG;
2146 
2147     if (GV->hasHiddenVisibility()) {
2148       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2149       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2150     }
2151   }
2152 }
2153 
2154 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2155                              SelectionDAG &DAG) {
2156   SDLoc DL(HiPart);
2157   EVT PtrVT = HiPart.getValueType();
2158   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2159 
2160   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2161   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2162 
2163   // With PIC, the first instruction is actually "GR+hi(&G)".
2164   if (isPIC)
2165     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2166                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2167 
2168   // Generate non-pic code that has direct accesses to the constant pool.
2169   // The address of the global is just (hi(&g)+lo(&g)).
2170   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2171 }
2172 
2173 static void setUsesTOCBasePtr(MachineFunction &MF) {
2174   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2175   FuncInfo->setUsesTOCBasePtr();
2176 }
2177 
2178 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2179   setUsesTOCBasePtr(DAG.getMachineFunction());
2180 }
2181 
2182 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2183                            SDValue GA) {
2184   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2185   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2186                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2187 
2188   SDValue Ops[] = { GA, Reg };
2189   return DAG.getMemIntrinsicNode(
2190       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2191       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2192       false, 0);
2193 }
2194 
2195 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2196                                              SelectionDAG &DAG) const {
2197   EVT PtrVT = Op.getValueType();
2198   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2199   const Constant *C = CP->getConstVal();
2200 
2201   // 64-bit SVR4 ABI code is always position-independent.
2202   // The actual address of the GlobalValue is stored in the TOC.
2203   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2204     setUsesTOCBasePtr(DAG);
2205     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2206     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2207   }
2208 
2209   unsigned MOHiFlag, MOLoFlag;
2210   bool IsPIC = isPositionIndependent();
2211   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2212 
2213   if (IsPIC && Subtarget.isSVR4ABI()) {
2214     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2215                                            PPCII::MO_PIC_FLAG);
2216     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2217   }
2218 
2219   SDValue CPIHi =
2220     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2221   SDValue CPILo =
2222     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2223   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2224 }
2225 
2226 // For 64-bit PowerPC, prefer the more compact relative encodings.
2227 // This trades 32 bits per jump table entry for one or two instructions
2228 // on the jump site.
2229 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2230   if (isJumpTableRelative())
2231     return MachineJumpTableInfo::EK_LabelDifference32;
2232 
2233   return TargetLowering::getJumpTableEncoding();
2234 }
2235 
2236 bool PPCTargetLowering::isJumpTableRelative() const {
2237   if (Subtarget.isPPC64())
2238     return true;
2239   return TargetLowering::isJumpTableRelative();
2240 }
2241 
2242 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2243                                                     SelectionDAG &DAG) const {
2244   if (!Subtarget.isPPC64())
2245     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2246 
2247   switch (getTargetMachine().getCodeModel()) {
2248   case CodeModel::Default:
2249   case CodeModel::Small:
2250   case CodeModel::Medium:
2251     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2252   default:
2253     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2254                        getPointerTy(DAG.getDataLayout()));
2255   }
2256 }
2257 
2258 const MCExpr *
2259 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2260                                                 unsigned JTI,
2261                                                 MCContext &Ctx) const {
2262   if (!Subtarget.isPPC64())
2263     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2264 
2265   switch (getTargetMachine().getCodeModel()) {
2266   case CodeModel::Default:
2267   case CodeModel::Small:
2268   case CodeModel::Medium:
2269     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2270   default:
2271     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2272   }
2273 }
2274 
2275 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2276   EVT PtrVT = Op.getValueType();
2277   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2278 
2279   // 64-bit SVR4 ABI code is always position-independent.
2280   // The actual address of the GlobalValue is stored in the TOC.
2281   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2282     setUsesTOCBasePtr(DAG);
2283     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2284     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2285   }
2286 
2287   unsigned MOHiFlag, MOLoFlag;
2288   bool IsPIC = isPositionIndependent();
2289   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2290 
2291   if (IsPIC && Subtarget.isSVR4ABI()) {
2292     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2293                                         PPCII::MO_PIC_FLAG);
2294     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2295   }
2296 
2297   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2298   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2299   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2300 }
2301 
2302 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2303                                              SelectionDAG &DAG) const {
2304   EVT PtrVT = Op.getValueType();
2305   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2306   const BlockAddress *BA = BASDN->getBlockAddress();
2307 
2308   // 64-bit SVR4 ABI code is always position-independent.
2309   // The actual BlockAddress is stored in the TOC.
2310   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2311     setUsesTOCBasePtr(DAG);
2312     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2313     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2314   }
2315 
2316   unsigned MOHiFlag, MOLoFlag;
2317   bool IsPIC = isPositionIndependent();
2318   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2319   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2320   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2321   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2322 }
2323 
2324 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2325                                               SelectionDAG &DAG) const {
2326   // FIXME: TLS addresses currently use medium model code sequences,
2327   // which is the most useful form.  Eventually support for small and
2328   // large models could be added if users need it, at the cost of
2329   // additional complexity.
2330   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2331   if (DAG.getTarget().Options.EmulatedTLS)
2332     return LowerToTLSEmulatedModel(GA, DAG);
2333 
2334   SDLoc dl(GA);
2335   const GlobalValue *GV = GA->getGlobal();
2336   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2337   bool is64bit = Subtarget.isPPC64();
2338   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2339   PICLevel::Level picLevel = M->getPICLevel();
2340 
2341   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2342 
2343   if (Model == TLSModel::LocalExec) {
2344     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2345                                                PPCII::MO_TPREL_HA);
2346     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2347                                                PPCII::MO_TPREL_LO);
2348     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2349                                      is64bit ? MVT::i64 : MVT::i32);
2350     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2351     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2352   }
2353 
2354   if (Model == TLSModel::InitialExec) {
2355     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2356     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2357                                                 PPCII::MO_TLS);
2358     SDValue GOTPtr;
2359     if (is64bit) {
2360       setUsesTOCBasePtr(DAG);
2361       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2362       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2363                            PtrVT, GOTReg, TGA);
2364     } else
2365       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2366     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2367                                    PtrVT, TGA, GOTPtr);
2368     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2369   }
2370 
2371   if (Model == TLSModel::GeneralDynamic) {
2372     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2373     SDValue GOTPtr;
2374     if (is64bit) {
2375       setUsesTOCBasePtr(DAG);
2376       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2377       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2378                                    GOTReg, TGA);
2379     } else {
2380       if (picLevel == PICLevel::SmallPIC)
2381         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2382       else
2383         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2384     }
2385     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2386                        GOTPtr, TGA, TGA);
2387   }
2388 
2389   if (Model == TLSModel::LocalDynamic) {
2390     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2391     SDValue GOTPtr;
2392     if (is64bit) {
2393       setUsesTOCBasePtr(DAG);
2394       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2395       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2396                            GOTReg, TGA);
2397     } else {
2398       if (picLevel == PICLevel::SmallPIC)
2399         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2400       else
2401         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2402     }
2403     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2404                                   PtrVT, GOTPtr, TGA, TGA);
2405     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2406                                       PtrVT, TLSAddr, TGA);
2407     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2408   }
2409 
2410   llvm_unreachable("Unknown TLS model!");
2411 }
2412 
2413 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2414                                               SelectionDAG &DAG) const {
2415   EVT PtrVT = Op.getValueType();
2416   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2417   SDLoc DL(GSDN);
2418   const GlobalValue *GV = GSDN->getGlobal();
2419 
2420   // 64-bit SVR4 ABI code is always position-independent.
2421   // The actual address of the GlobalValue is stored in the TOC.
2422   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2423     setUsesTOCBasePtr(DAG);
2424     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2425     return getTOCEntry(DAG, DL, true, GA);
2426   }
2427 
2428   unsigned MOHiFlag, MOLoFlag;
2429   bool IsPIC = isPositionIndependent();
2430   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2431 
2432   if (IsPIC && Subtarget.isSVR4ABI()) {
2433     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2434                                             GSDN->getOffset(),
2435                                             PPCII::MO_PIC_FLAG);
2436     return getTOCEntry(DAG, DL, false, GA);
2437   }
2438 
2439   SDValue GAHi =
2440     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2441   SDValue GALo =
2442     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2443 
2444   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2445 
2446   // If the global reference is actually to a non-lazy-pointer, we have to do an
2447   // extra load to get the address of the global.
2448   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2449     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2450   return Ptr;
2451 }
2452 
2453 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2454   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2455   SDLoc dl(Op);
2456 
2457   if (Op.getValueType() == MVT::v2i64) {
2458     // When the operands themselves are v2i64 values, we need to do something
2459     // special because VSX has no underlying comparison operations for these.
2460     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2461       // Equality can be handled by casting to the legal type for Altivec
2462       // comparisons, everything else needs to be expanded.
2463       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2464         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2465                  DAG.getSetCC(dl, MVT::v4i32,
2466                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2467                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2468                    CC));
2469       }
2470 
2471       return SDValue();
2472     }
2473 
2474     // We handle most of these in the usual way.
2475     return Op;
2476   }
2477 
2478   // If we're comparing for equality to zero, expose the fact that this is
2479   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2480   // fold the new nodes.
2481   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2482     return V;
2483 
2484   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2485     // Leave comparisons against 0 and -1 alone for now, since they're usually
2486     // optimized.  FIXME: revisit this when we can custom lower all setcc
2487     // optimizations.
2488     if (C->isAllOnesValue() || C->isNullValue())
2489       return SDValue();
2490   }
2491 
2492   // If we have an integer seteq/setne, turn it into a compare against zero
2493   // by xor'ing the rhs with the lhs, which is faster than setting a
2494   // condition register, reading it back out, and masking the correct bit.  The
2495   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2496   // the result to other bit-twiddling opportunities.
2497   EVT LHSVT = Op.getOperand(0).getValueType();
2498   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2499     EVT VT = Op.getValueType();
2500     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2501                                 Op.getOperand(1));
2502     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2503   }
2504   return SDValue();
2505 }
2506 
2507 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2508   SDNode *Node = Op.getNode();
2509   EVT VT = Node->getValueType(0);
2510   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2511   SDValue InChain = Node->getOperand(0);
2512   SDValue VAListPtr = Node->getOperand(1);
2513   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2514   SDLoc dl(Node);
2515 
2516   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2517 
2518   // gpr_index
2519   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2520                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2521   InChain = GprIndex.getValue(1);
2522 
2523   if (VT == MVT::i64) {
2524     // Check if GprIndex is even
2525     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2526                                  DAG.getConstant(1, dl, MVT::i32));
2527     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2528                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2529     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2530                                           DAG.getConstant(1, dl, MVT::i32));
2531     // Align GprIndex to be even if it isn't
2532     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2533                            GprIndex);
2534   }
2535 
2536   // fpr index is 1 byte after gpr
2537   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2538                                DAG.getConstant(1, dl, MVT::i32));
2539 
2540   // fpr
2541   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2542                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2543   InChain = FprIndex.getValue(1);
2544 
2545   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2546                                        DAG.getConstant(8, dl, MVT::i32));
2547 
2548   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2549                                         DAG.getConstant(4, dl, MVT::i32));
2550 
2551   // areas
2552   SDValue OverflowArea =
2553       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2554   InChain = OverflowArea.getValue(1);
2555 
2556   SDValue RegSaveArea =
2557       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2558   InChain = RegSaveArea.getValue(1);
2559 
2560   // select overflow_area if index > 8
2561   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2562                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2563 
2564   // adjustment constant gpr_index * 4/8
2565   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2566                                     VT.isInteger() ? GprIndex : FprIndex,
2567                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2568                                                     MVT::i32));
2569 
2570   // OurReg = RegSaveArea + RegConstant
2571   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2572                                RegConstant);
2573 
2574   // Floating types are 32 bytes into RegSaveArea
2575   if (VT.isFloatingPoint())
2576     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2577                          DAG.getConstant(32, dl, MVT::i32));
2578 
2579   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2580   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2581                                    VT.isInteger() ? GprIndex : FprIndex,
2582                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2583                                                    MVT::i32));
2584 
2585   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2586                               VT.isInteger() ? VAListPtr : FprPtr,
2587                               MachinePointerInfo(SV), MVT::i8);
2588 
2589   // determine if we should load from reg_save_area or overflow_area
2590   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2591 
2592   // increase overflow_area by 4/8 if gpr/fpr > 8
2593   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2594                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2595                                           dl, MVT::i32));
2596 
2597   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2598                              OverflowAreaPlusN);
2599 
2600   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2601                               MachinePointerInfo(), MVT::i32);
2602 
2603   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2604 }
2605 
2606 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2607   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2608 
2609   // We have to copy the entire va_list struct:
2610   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2611   return DAG.getMemcpy(Op.getOperand(0), Op,
2612                        Op.getOperand(1), Op.getOperand(2),
2613                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2614                        false, MachinePointerInfo(), MachinePointerInfo());
2615 }
2616 
2617 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2618                                                   SelectionDAG &DAG) const {
2619   return Op.getOperand(0);
2620 }
2621 
2622 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2623                                                 SelectionDAG &DAG) const {
2624   SDValue Chain = Op.getOperand(0);
2625   SDValue Trmp = Op.getOperand(1); // trampoline
2626   SDValue FPtr = Op.getOperand(2); // nested function
2627   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2628   SDLoc dl(Op);
2629 
2630   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2631   bool isPPC64 = (PtrVT == MVT::i64);
2632   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2633 
2634   TargetLowering::ArgListTy Args;
2635   TargetLowering::ArgListEntry Entry;
2636 
2637   Entry.Ty = IntPtrTy;
2638   Entry.Node = Trmp; Args.push_back(Entry);
2639 
2640   // TrampSize == (isPPC64 ? 48 : 40);
2641   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2642                                isPPC64 ? MVT::i64 : MVT::i32);
2643   Args.push_back(Entry);
2644 
2645   Entry.Node = FPtr; Args.push_back(Entry);
2646   Entry.Node = Nest; Args.push_back(Entry);
2647 
2648   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2649   TargetLowering::CallLoweringInfo CLI(DAG);
2650   CLI.setDebugLoc(dl).setChain(Chain)
2651     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2652                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2653                std::move(Args));
2654 
2655   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2656   return CallResult.second;
2657 }
2658 
2659 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2660   MachineFunction &MF = DAG.getMachineFunction();
2661   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2662   EVT PtrVT = getPointerTy(MF.getDataLayout());
2663 
2664   SDLoc dl(Op);
2665 
2666   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2667     // vastart just stores the address of the VarArgsFrameIndex slot into the
2668     // memory location argument.
2669     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2670     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2671     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2672                         MachinePointerInfo(SV));
2673   }
2674 
2675   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2676   // We suppose the given va_list is already allocated.
2677   //
2678   // typedef struct {
2679   //  char gpr;     /* index into the array of 8 GPRs
2680   //                 * stored in the register save area
2681   //                 * gpr=0 corresponds to r3,
2682   //                 * gpr=1 to r4, etc.
2683   //                 */
2684   //  char fpr;     /* index into the array of 8 FPRs
2685   //                 * stored in the register save area
2686   //                 * fpr=0 corresponds to f1,
2687   //                 * fpr=1 to f2, etc.
2688   //                 */
2689   //  char *overflow_arg_area;
2690   //                /* location on stack that holds
2691   //                 * the next overflow argument
2692   //                 */
2693   //  char *reg_save_area;
2694   //               /* where r3:r10 and f1:f8 (if saved)
2695   //                * are stored
2696   //                */
2697   // } va_list[1];
2698 
2699   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2700   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2701   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2702                                             PtrVT);
2703   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2704                                  PtrVT);
2705 
2706   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2707   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2708 
2709   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2710   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2711 
2712   uint64_t FPROffset = 1;
2713   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2714 
2715   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2716 
2717   // Store first byte : number of int regs
2718   SDValue firstStore =
2719       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2720                         MachinePointerInfo(SV), MVT::i8);
2721   uint64_t nextOffset = FPROffset;
2722   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2723                                   ConstFPROffset);
2724 
2725   // Store second byte : number of float regs
2726   SDValue secondStore =
2727       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2728                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2729   nextOffset += StackOffset;
2730   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2731 
2732   // Store second word : arguments given on stack
2733   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2734                                     MachinePointerInfo(SV, nextOffset));
2735   nextOffset += FrameOffset;
2736   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2737 
2738   // Store third word : arguments given in registers
2739   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2740                       MachinePointerInfo(SV, nextOffset));
2741 }
2742 
2743 #include "PPCGenCallingConv.inc"
2744 
2745 // Function whose sole purpose is to kill compiler warnings
2746 // stemming from unused functions included from PPCGenCallingConv.inc.
2747 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2748   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2749 }
2750 
2751 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2752                                       CCValAssign::LocInfo &LocInfo,
2753                                       ISD::ArgFlagsTy &ArgFlags,
2754                                       CCState &State) {
2755   return true;
2756 }
2757 
2758 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2759                                              MVT &LocVT,
2760                                              CCValAssign::LocInfo &LocInfo,
2761                                              ISD::ArgFlagsTy &ArgFlags,
2762                                              CCState &State) {
2763   static const MCPhysReg ArgRegs[] = {
2764     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2765     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2766   };
2767   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2768 
2769   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2770 
2771   // Skip one register if the first unallocated register has an even register
2772   // number and there are still argument registers available which have not been
2773   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2774   // need to skip a register if RegNum is odd.
2775   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2776     State.AllocateReg(ArgRegs[RegNum]);
2777   }
2778 
2779   // Always return false here, as this function only makes sure that the first
2780   // unallocated register has an odd register number and does not actually
2781   // allocate a register for the current argument.
2782   return false;
2783 }
2784 
2785 bool
2786 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
2787                                                   MVT &LocVT,
2788                                                   CCValAssign::LocInfo &LocInfo,
2789                                                   ISD::ArgFlagsTy &ArgFlags,
2790                                                   CCState &State) {
2791   static const MCPhysReg ArgRegs[] = {
2792     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2793     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2794   };
2795   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2796 
2797   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2798   int RegsLeft = NumArgRegs - RegNum;
2799 
2800   // Skip if there is not enough registers left for long double type (4 gpr regs
2801   // in soft float mode) and put long double argument on the stack.
2802   if (RegNum != NumArgRegs && RegsLeft < 4) {
2803     for (int i = 0; i < RegsLeft; i++) {
2804       State.AllocateReg(ArgRegs[RegNum + i]);
2805     }
2806   }
2807 
2808   return false;
2809 }
2810 
2811 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2812                                                MVT &LocVT,
2813                                                CCValAssign::LocInfo &LocInfo,
2814                                                ISD::ArgFlagsTy &ArgFlags,
2815                                                CCState &State) {
2816   static const MCPhysReg ArgRegs[] = {
2817     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2818     PPC::F8
2819   };
2820 
2821   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2822 
2823   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2824 
2825   // If there is only one Floating-point register left we need to put both f64
2826   // values of a split ppc_fp128 value on the stack.
2827   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2828     State.AllocateReg(ArgRegs[RegNum]);
2829   }
2830 
2831   // Always return false here, as this function only makes sure that the two f64
2832   // values a ppc_fp128 value is split into are both passed in registers or both
2833   // passed on the stack and does not actually allocate a register for the
2834   // current argument.
2835   return false;
2836 }
2837 
2838 /// FPR - The set of FP registers that should be allocated for arguments,
2839 /// on Darwin.
2840 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2841                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2842                                 PPC::F11, PPC::F12, PPC::F13};
2843 
2844 /// QFPR - The set of QPX registers that should be allocated for arguments.
2845 static const MCPhysReg QFPR[] = {
2846     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2847     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2848 
2849 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2850 /// the stack.
2851 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2852                                        unsigned PtrByteSize) {
2853   unsigned ArgSize = ArgVT.getStoreSize();
2854   if (Flags.isByVal())
2855     ArgSize = Flags.getByValSize();
2856 
2857   // Round up to multiples of the pointer size, except for array members,
2858   // which are always packed.
2859   if (!Flags.isInConsecutiveRegs())
2860     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2861 
2862   return ArgSize;
2863 }
2864 
2865 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2866 /// on the stack.
2867 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2868                                             ISD::ArgFlagsTy Flags,
2869                                             unsigned PtrByteSize) {
2870   unsigned Align = PtrByteSize;
2871 
2872   // Altivec parameters are padded to a 16 byte boundary.
2873   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2874       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2875       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2876       ArgVT == MVT::v1i128)
2877     Align = 16;
2878   // QPX vector types stored in double-precision are padded to a 32 byte
2879   // boundary.
2880   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2881     Align = 32;
2882 
2883   // ByVal parameters are aligned as requested.
2884   if (Flags.isByVal()) {
2885     unsigned BVAlign = Flags.getByValAlign();
2886     if (BVAlign > PtrByteSize) {
2887       if (BVAlign % PtrByteSize != 0)
2888           llvm_unreachable(
2889             "ByVal alignment is not a multiple of the pointer size");
2890 
2891       Align = BVAlign;
2892     }
2893   }
2894 
2895   // Array members are always packed to their original alignment.
2896   if (Flags.isInConsecutiveRegs()) {
2897     // If the array member was split into multiple registers, the first
2898     // needs to be aligned to the size of the full type.  (Except for
2899     // ppcf128, which is only aligned as its f64 components.)
2900     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2901       Align = OrigVT.getStoreSize();
2902     else
2903       Align = ArgVT.getStoreSize();
2904   }
2905 
2906   return Align;
2907 }
2908 
2909 /// CalculateStackSlotUsed - Return whether this argument will use its
2910 /// stack slot (instead of being passed in registers).  ArgOffset,
2911 /// AvailableFPRs, and AvailableVRs must hold the current argument
2912 /// position, and will be updated to account for this argument.
2913 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2914                                    ISD::ArgFlagsTy Flags,
2915                                    unsigned PtrByteSize,
2916                                    unsigned LinkageSize,
2917                                    unsigned ParamAreaSize,
2918                                    unsigned &ArgOffset,
2919                                    unsigned &AvailableFPRs,
2920                                    unsigned &AvailableVRs, bool HasQPX) {
2921   bool UseMemory = false;
2922 
2923   // Respect alignment of argument on the stack.
2924   unsigned Align =
2925     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2926   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2927   // If there's no space left in the argument save area, we must
2928   // use memory (this check also catches zero-sized arguments).
2929   if (ArgOffset >= LinkageSize + ParamAreaSize)
2930     UseMemory = true;
2931 
2932   // Allocate argument on the stack.
2933   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2934   if (Flags.isInConsecutiveRegsLast())
2935     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2936   // If we overran the argument save area, we must use memory
2937   // (this check catches arguments passed partially in memory)
2938   if (ArgOffset > LinkageSize + ParamAreaSize)
2939     UseMemory = true;
2940 
2941   // However, if the argument is actually passed in an FPR or a VR,
2942   // we don't use memory after all.
2943   if (!Flags.isByVal()) {
2944     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2945         // QPX registers overlap with the scalar FP registers.
2946         (HasQPX && (ArgVT == MVT::v4f32 ||
2947                     ArgVT == MVT::v4f64 ||
2948                     ArgVT == MVT::v4i1)))
2949       if (AvailableFPRs > 0) {
2950         --AvailableFPRs;
2951         return false;
2952       }
2953     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2954         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2955         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2956         ArgVT == MVT::v1i128)
2957       if (AvailableVRs > 0) {
2958         --AvailableVRs;
2959         return false;
2960       }
2961   }
2962 
2963   return UseMemory;
2964 }
2965 
2966 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2967 /// ensure minimum alignment required for target.
2968 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2969                                      unsigned NumBytes) {
2970   unsigned TargetAlign = Lowering->getStackAlignment();
2971   unsigned AlignMask = TargetAlign - 1;
2972   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2973   return NumBytes;
2974 }
2975 
2976 SDValue PPCTargetLowering::LowerFormalArguments(
2977     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2978     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2979     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2980   if (Subtarget.isSVR4ABI()) {
2981     if (Subtarget.isPPC64())
2982       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2983                                          dl, DAG, InVals);
2984     else
2985       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2986                                          dl, DAG, InVals);
2987   } else {
2988     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2989                                        dl, DAG, InVals);
2990   }
2991 }
2992 
2993 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
2994     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2995     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2996     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2997 
2998   // 32-bit SVR4 ABI Stack Frame Layout:
2999   //              +-----------------------------------+
3000   //        +-->  |            Back chain             |
3001   //        |     +-----------------------------------+
3002   //        |     | Floating-point register save area |
3003   //        |     +-----------------------------------+
3004   //        |     |    General register save area     |
3005   //        |     +-----------------------------------+
3006   //        |     |          CR save word             |
3007   //        |     +-----------------------------------+
3008   //        |     |         VRSAVE save word          |
3009   //        |     +-----------------------------------+
3010   //        |     |         Alignment padding         |
3011   //        |     +-----------------------------------+
3012   //        |     |     Vector register save area     |
3013   //        |     +-----------------------------------+
3014   //        |     |       Local variable space        |
3015   //        |     +-----------------------------------+
3016   //        |     |        Parameter list area        |
3017   //        |     +-----------------------------------+
3018   //        |     |           LR save word            |
3019   //        |     +-----------------------------------+
3020   // SP-->  +---  |            Back chain             |
3021   //              +-----------------------------------+
3022   //
3023   // Specifications:
3024   //   System V Application Binary Interface PowerPC Processor Supplement
3025   //   AltiVec Technology Programming Interface Manual
3026 
3027   MachineFunction &MF = DAG.getMachineFunction();
3028   MachineFrameInfo &MFI = MF.getFrameInfo();
3029   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3030 
3031   EVT PtrVT = getPointerTy(MF.getDataLayout());
3032   // Potential tail calls could cause overwriting of argument stack slots.
3033   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3034                        (CallConv == CallingConv::Fast));
3035   unsigned PtrByteSize = 4;
3036 
3037   // Assign locations to all of the incoming arguments.
3038   SmallVector<CCValAssign, 16> ArgLocs;
3039   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3040                  *DAG.getContext());
3041 
3042   // Reserve space for the linkage area on the stack.
3043   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3044   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3045   if (useSoftFloat())
3046     CCInfo.PreAnalyzeFormalArguments(Ins);
3047 
3048   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3049   CCInfo.clearWasPPCF128();
3050 
3051   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3052     CCValAssign &VA = ArgLocs[i];
3053 
3054     // Arguments stored in registers.
3055     if (VA.isRegLoc()) {
3056       const TargetRegisterClass *RC;
3057       EVT ValVT = VA.getValVT();
3058 
3059       switch (ValVT.getSimpleVT().SimpleTy) {
3060         default:
3061           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3062         case MVT::i1:
3063         case MVT::i32:
3064           RC = &PPC::GPRCRegClass;
3065           break;
3066         case MVT::f32:
3067           if (Subtarget.hasP8Vector())
3068             RC = &PPC::VSSRCRegClass;
3069           else
3070             RC = &PPC::F4RCRegClass;
3071           break;
3072         case MVT::f64:
3073           if (Subtarget.hasVSX())
3074             RC = &PPC::VSFRCRegClass;
3075           else
3076             RC = &PPC::F8RCRegClass;
3077           break;
3078         case MVT::v16i8:
3079         case MVT::v8i16:
3080         case MVT::v4i32:
3081           RC = &PPC::VRRCRegClass;
3082           break;
3083         case MVT::v4f32:
3084           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3085           break;
3086         case MVT::v2f64:
3087         case MVT::v2i64:
3088           RC = &PPC::VRRCRegClass;
3089           break;
3090         case MVT::v4f64:
3091           RC = &PPC::QFRCRegClass;
3092           break;
3093         case MVT::v4i1:
3094           RC = &PPC::QBRCRegClass;
3095           break;
3096       }
3097 
3098       // Transform the arguments stored in physical registers into virtual ones.
3099       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3100       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3101                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3102 
3103       if (ValVT == MVT::i1)
3104         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3105 
3106       InVals.push_back(ArgValue);
3107     } else {
3108       // Argument stored in memory.
3109       assert(VA.isMemLoc());
3110 
3111       unsigned ArgSize = VA.getLocVT().getStoreSize();
3112       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3113                                      isImmutable);
3114 
3115       // Create load nodes to retrieve arguments from the stack.
3116       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3117       InVals.push_back(
3118           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3119     }
3120   }
3121 
3122   // Assign locations to all of the incoming aggregate by value arguments.
3123   // Aggregates passed by value are stored in the local variable space of the
3124   // caller's stack frame, right above the parameter list area.
3125   SmallVector<CCValAssign, 16> ByValArgLocs;
3126   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3127                       ByValArgLocs, *DAG.getContext());
3128 
3129   // Reserve stack space for the allocations in CCInfo.
3130   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3131 
3132   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3133 
3134   // Area that is at least reserved in the caller of this function.
3135   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3136   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3137 
3138   // Set the size that is at least reserved in caller of this function.  Tail
3139   // call optimized function's reserved stack space needs to be aligned so that
3140   // taking the difference between two stack areas will result in an aligned
3141   // stack.
3142   MinReservedArea =
3143       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3144   FuncInfo->setMinReservedArea(MinReservedArea);
3145 
3146   SmallVector<SDValue, 8> MemOps;
3147 
3148   // If the function takes variable number of arguments, make a frame index for
3149   // the start of the first vararg value... for expansion of llvm.va_start.
3150   if (isVarArg) {
3151     static const MCPhysReg GPArgRegs[] = {
3152       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3153       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3154     };
3155     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3156 
3157     static const MCPhysReg FPArgRegs[] = {
3158       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3159       PPC::F8
3160     };
3161     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3162 
3163     if (useSoftFloat())
3164        NumFPArgRegs = 0;
3165 
3166     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3167     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3168 
3169     // Make room for NumGPArgRegs and NumFPArgRegs.
3170     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3171                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3172 
3173     FuncInfo->setVarArgsStackOffset(
3174       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3175                             CCInfo.getNextStackOffset(), true));
3176 
3177     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3178     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3179 
3180     // The fixed integer arguments of a variadic function are stored to the
3181     // VarArgsFrameIndex on the stack so that they may be loaded by
3182     // dereferencing the result of va_next.
3183     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3184       // Get an existing live-in vreg, or add a new one.
3185       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3186       if (!VReg)
3187         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3188 
3189       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3190       SDValue Store =
3191           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3192       MemOps.push_back(Store);
3193       // Increment the address by four for the next argument to store
3194       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3195       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3196     }
3197 
3198     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3199     // is set.
3200     // The double arguments are stored to the VarArgsFrameIndex
3201     // on the stack.
3202     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3203       // Get an existing live-in vreg, or add a new one.
3204       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3205       if (!VReg)
3206         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3207 
3208       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3209       SDValue Store =
3210           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3211       MemOps.push_back(Store);
3212       // Increment the address by eight for the next argument to store
3213       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3214                                          PtrVT);
3215       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3216     }
3217   }
3218 
3219   if (!MemOps.empty())
3220     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3221 
3222   return Chain;
3223 }
3224 
3225 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3226 // value to MVT::i64 and then truncate to the correct register size.
3227 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3228                                              EVT ObjectVT, SelectionDAG &DAG,
3229                                              SDValue ArgVal,
3230                                              const SDLoc &dl) const {
3231   if (Flags.isSExt())
3232     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3233                          DAG.getValueType(ObjectVT));
3234   else if (Flags.isZExt())
3235     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3236                          DAG.getValueType(ObjectVT));
3237 
3238   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3239 }
3240 
3241 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3242     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3243     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3244     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3245   // TODO: add description of PPC stack frame format, or at least some docs.
3246   //
3247   bool isELFv2ABI = Subtarget.isELFv2ABI();
3248   bool isLittleEndian = Subtarget.isLittleEndian();
3249   MachineFunction &MF = DAG.getMachineFunction();
3250   MachineFrameInfo &MFI = MF.getFrameInfo();
3251   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3252 
3253   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3254          "fastcc not supported on varargs functions");
3255 
3256   EVT PtrVT = getPointerTy(MF.getDataLayout());
3257   // Potential tail calls could cause overwriting of argument stack slots.
3258   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3259                        (CallConv == CallingConv::Fast));
3260   unsigned PtrByteSize = 8;
3261   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3262 
3263   static const MCPhysReg GPR[] = {
3264     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3265     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3266   };
3267   static const MCPhysReg VR[] = {
3268     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3269     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3270   };
3271 
3272   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3273   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3274   const unsigned Num_VR_Regs  = array_lengthof(VR);
3275   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3276 
3277   // Do a first pass over the arguments to determine whether the ABI
3278   // guarantees that our caller has allocated the parameter save area
3279   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3280   // in the ELFv2 ABI, it is true if this is a vararg function or if
3281   // any parameter is located in a stack slot.
3282 
3283   bool HasParameterArea = !isELFv2ABI || isVarArg;
3284   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3285   unsigned NumBytes = LinkageSize;
3286   unsigned AvailableFPRs = Num_FPR_Regs;
3287   unsigned AvailableVRs = Num_VR_Regs;
3288   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3289     if (Ins[i].Flags.isNest())
3290       continue;
3291 
3292     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3293                                PtrByteSize, LinkageSize, ParamAreaSize,
3294                                NumBytes, AvailableFPRs, AvailableVRs,
3295                                Subtarget.hasQPX()))
3296       HasParameterArea = true;
3297   }
3298 
3299   // Add DAG nodes to load the arguments or copy them out of registers.  On
3300   // entry to a function on PPC, the arguments start after the linkage area,
3301   // although the first ones are often in registers.
3302 
3303   unsigned ArgOffset = LinkageSize;
3304   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3305   unsigned &QFPR_idx = FPR_idx;
3306   SmallVector<SDValue, 8> MemOps;
3307   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3308   unsigned CurArgIdx = 0;
3309   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3310     SDValue ArgVal;
3311     bool needsLoad = false;
3312     EVT ObjectVT = Ins[ArgNo].VT;
3313     EVT OrigVT = Ins[ArgNo].ArgVT;
3314     unsigned ObjSize = ObjectVT.getStoreSize();
3315     unsigned ArgSize = ObjSize;
3316     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3317     if (Ins[ArgNo].isOrigArg()) {
3318       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3319       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3320     }
3321     // We re-align the argument offset for each argument, except when using the
3322     // fast calling convention, when we need to make sure we do that only when
3323     // we'll actually use a stack slot.
3324     unsigned CurArgOffset, Align;
3325     auto ComputeArgOffset = [&]() {
3326       /* Respect alignment of argument on the stack.  */
3327       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3328       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3329       CurArgOffset = ArgOffset;
3330     };
3331 
3332     if (CallConv != CallingConv::Fast) {
3333       ComputeArgOffset();
3334 
3335       /* Compute GPR index associated with argument offset.  */
3336       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3337       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3338     }
3339 
3340     // FIXME the codegen can be much improved in some cases.
3341     // We do not have to keep everything in memory.
3342     if (Flags.isByVal()) {
3343       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3344 
3345       if (CallConv == CallingConv::Fast)
3346         ComputeArgOffset();
3347 
3348       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3349       ObjSize = Flags.getByValSize();
3350       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3351       // Empty aggregate parameters do not take up registers.  Examples:
3352       //   struct { } a;
3353       //   union  { } b;
3354       //   int c[0];
3355       // etc.  However, we have to provide a place-holder in InVals, so
3356       // pretend we have an 8-byte item at the current address for that
3357       // purpose.
3358       if (!ObjSize) {
3359         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3360         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3361         InVals.push_back(FIN);
3362         continue;
3363       }
3364 
3365       // Create a stack object covering all stack doublewords occupied
3366       // by the argument.  If the argument is (fully or partially) on
3367       // the stack, or if the argument is fully in registers but the
3368       // caller has allocated the parameter save anyway, we can refer
3369       // directly to the caller's stack frame.  Otherwise, create a
3370       // local copy in our own frame.
3371       int FI;
3372       if (HasParameterArea ||
3373           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3374         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3375       else
3376         FI = MFI.CreateStackObject(ArgSize, Align, false);
3377       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3378 
3379       // Handle aggregates smaller than 8 bytes.
3380       if (ObjSize < PtrByteSize) {
3381         // The value of the object is its address, which differs from the
3382         // address of the enclosing doubleword on big-endian systems.
3383         SDValue Arg = FIN;
3384         if (!isLittleEndian) {
3385           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3386           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3387         }
3388         InVals.push_back(Arg);
3389 
3390         if (GPR_idx != Num_GPR_Regs) {
3391           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3392           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3393           SDValue Store;
3394 
3395           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3396             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3397                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3398             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3399                                       MachinePointerInfo(&*FuncArg), ObjType);
3400           } else {
3401             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3402             // store the whole register as-is to the parameter save area
3403             // slot.
3404             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3405                                  MachinePointerInfo(&*FuncArg));
3406           }
3407 
3408           MemOps.push_back(Store);
3409         }
3410         // Whether we copied from a register or not, advance the offset
3411         // into the parameter save area by a full doubleword.
3412         ArgOffset += PtrByteSize;
3413         continue;
3414       }
3415 
3416       // The value of the object is its address, which is the address of
3417       // its first stack doubleword.
3418       InVals.push_back(FIN);
3419 
3420       // Store whatever pieces of the object are in registers to memory.
3421       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3422         if (GPR_idx == Num_GPR_Regs)
3423           break;
3424 
3425         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3426         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3427         SDValue Addr = FIN;
3428         if (j) {
3429           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3430           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3431         }
3432         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3433                                      MachinePointerInfo(&*FuncArg, j));
3434         MemOps.push_back(Store);
3435         ++GPR_idx;
3436       }
3437       ArgOffset += ArgSize;
3438       continue;
3439     }
3440 
3441     switch (ObjectVT.getSimpleVT().SimpleTy) {
3442     default: llvm_unreachable("Unhandled argument type!");
3443     case MVT::i1:
3444     case MVT::i32:
3445     case MVT::i64:
3446       if (Flags.isNest()) {
3447         // The 'nest' parameter, if any, is passed in R11.
3448         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3449         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3450 
3451         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3452           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3453 
3454         break;
3455       }
3456 
3457       // These can be scalar arguments or elements of an integer array type
3458       // passed directly.  Clang may use those instead of "byval" aggregate
3459       // types to avoid forcing arguments to memory unnecessarily.
3460       if (GPR_idx != Num_GPR_Regs) {
3461         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3462         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3463 
3464         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3465           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3466           // value to MVT::i64 and then truncate to the correct register size.
3467           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3468       } else {
3469         if (CallConv == CallingConv::Fast)
3470           ComputeArgOffset();
3471 
3472         needsLoad = true;
3473         ArgSize = PtrByteSize;
3474       }
3475       if (CallConv != CallingConv::Fast || needsLoad)
3476         ArgOffset += 8;
3477       break;
3478 
3479     case MVT::f32:
3480     case MVT::f64:
3481       // These can be scalar arguments or elements of a float array type
3482       // passed directly.  The latter are used to implement ELFv2 homogenous
3483       // float aggregates.
3484       if (FPR_idx != Num_FPR_Regs) {
3485         unsigned VReg;
3486 
3487         if (ObjectVT == MVT::f32)
3488           VReg = MF.addLiveIn(FPR[FPR_idx],
3489                               Subtarget.hasP8Vector()
3490                                   ? &PPC::VSSRCRegClass
3491                                   : &PPC::F4RCRegClass);
3492         else
3493           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3494                                                 ? &PPC::VSFRCRegClass
3495                                                 : &PPC::F8RCRegClass);
3496 
3497         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3498         ++FPR_idx;
3499       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3500         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3501         // once we support fp <-> gpr moves.
3502 
3503         // This can only ever happen in the presence of f32 array types,
3504         // since otherwise we never run out of FPRs before running out
3505         // of GPRs.
3506         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3507         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3508 
3509         if (ObjectVT == MVT::f32) {
3510           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3511             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3512                                  DAG.getConstant(32, dl, MVT::i32));
3513           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3514         }
3515 
3516         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3517       } else {
3518         if (CallConv == CallingConv::Fast)
3519           ComputeArgOffset();
3520 
3521         needsLoad = true;
3522       }
3523 
3524       // When passing an array of floats, the array occupies consecutive
3525       // space in the argument area; only round up to the next doubleword
3526       // at the end of the array.  Otherwise, each float takes 8 bytes.
3527       if (CallConv != CallingConv::Fast || needsLoad) {
3528         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3529         ArgOffset += ArgSize;
3530         if (Flags.isInConsecutiveRegsLast())
3531           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3532       }
3533       break;
3534     case MVT::v4f32:
3535     case MVT::v4i32:
3536     case MVT::v8i16:
3537     case MVT::v16i8:
3538     case MVT::v2f64:
3539     case MVT::v2i64:
3540     case MVT::v1i128:
3541       if (!Subtarget.hasQPX()) {
3542       // These can be scalar arguments or elements of a vector array type
3543       // passed directly.  The latter are used to implement ELFv2 homogenous
3544       // vector aggregates.
3545       if (VR_idx != Num_VR_Regs) {
3546         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3547         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3548         ++VR_idx;
3549       } else {
3550         if (CallConv == CallingConv::Fast)
3551           ComputeArgOffset();
3552 
3553         needsLoad = true;
3554       }
3555       if (CallConv != CallingConv::Fast || needsLoad)
3556         ArgOffset += 16;
3557       break;
3558       } // not QPX
3559 
3560       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3561              "Invalid QPX parameter type");
3562       /* fall through */
3563 
3564     case MVT::v4f64:
3565     case MVT::v4i1:
3566       // QPX vectors are treated like their scalar floating-point subregisters
3567       // (except that they're larger).
3568       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3569       if (QFPR_idx != Num_QFPR_Regs) {
3570         const TargetRegisterClass *RC;
3571         switch (ObjectVT.getSimpleVT().SimpleTy) {
3572         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3573         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3574         default:         RC = &PPC::QBRCRegClass; break;
3575         }
3576 
3577         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3578         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3579         ++QFPR_idx;
3580       } else {
3581         if (CallConv == CallingConv::Fast)
3582           ComputeArgOffset();
3583         needsLoad = true;
3584       }
3585       if (CallConv != CallingConv::Fast || needsLoad)
3586         ArgOffset += Sz;
3587       break;
3588     }
3589 
3590     // We need to load the argument to a virtual register if we determined
3591     // above that we ran out of physical registers of the appropriate type.
3592     if (needsLoad) {
3593       if (ObjSize < ArgSize && !isLittleEndian)
3594         CurArgOffset += ArgSize - ObjSize;
3595       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3596       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3597       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3598     }
3599 
3600     InVals.push_back(ArgVal);
3601   }
3602 
3603   // Area that is at least reserved in the caller of this function.
3604   unsigned MinReservedArea;
3605   if (HasParameterArea)
3606     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3607   else
3608     MinReservedArea = LinkageSize;
3609 
3610   // Set the size that is at least reserved in caller of this function.  Tail
3611   // call optimized functions' reserved stack space needs to be aligned so that
3612   // taking the difference between two stack areas will result in an aligned
3613   // stack.
3614   MinReservedArea =
3615       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3616   FuncInfo->setMinReservedArea(MinReservedArea);
3617 
3618   // If the function takes variable number of arguments, make a frame index for
3619   // the start of the first vararg value... for expansion of llvm.va_start.
3620   if (isVarArg) {
3621     int Depth = ArgOffset;
3622 
3623     FuncInfo->setVarArgsFrameIndex(
3624       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3625     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3626 
3627     // If this function is vararg, store any remaining integer argument regs
3628     // to their spots on the stack so that they may be loaded by dereferencing
3629     // the result of va_next.
3630     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3631          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3632       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3633       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3634       SDValue Store =
3635           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3636       MemOps.push_back(Store);
3637       // Increment the address by four for the next argument to store
3638       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3639       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3640     }
3641   }
3642 
3643   if (!MemOps.empty())
3644     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3645 
3646   return Chain;
3647 }
3648 
3649 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3650     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3651     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3652     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3653   // TODO: add description of PPC stack frame format, or at least some docs.
3654   //
3655   MachineFunction &MF = DAG.getMachineFunction();
3656   MachineFrameInfo &MFI = MF.getFrameInfo();
3657   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3658 
3659   EVT PtrVT = getPointerTy(MF.getDataLayout());
3660   bool isPPC64 = PtrVT == MVT::i64;
3661   // Potential tail calls could cause overwriting of argument stack slots.
3662   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3663                        (CallConv == CallingConv::Fast));
3664   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3665   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3666   unsigned ArgOffset = LinkageSize;
3667   // Area that is at least reserved in caller of this function.
3668   unsigned MinReservedArea = ArgOffset;
3669 
3670   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3671     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3672     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3673   };
3674   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3675     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3676     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3677   };
3678   static const MCPhysReg VR[] = {
3679     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3680     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3681   };
3682 
3683   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3684   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3685   const unsigned Num_VR_Regs  = array_lengthof( VR);
3686 
3687   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3688 
3689   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3690 
3691   // In 32-bit non-varargs functions, the stack space for vectors is after the
3692   // stack space for non-vectors.  We do not use this space unless we have
3693   // too many vectors to fit in registers, something that only occurs in
3694   // constructed examples:), but we have to walk the arglist to figure
3695   // that out...for the pathological case, compute VecArgOffset as the
3696   // start of the vector parameter area.  Computing VecArgOffset is the
3697   // entire point of the following loop.
3698   unsigned VecArgOffset = ArgOffset;
3699   if (!isVarArg && !isPPC64) {
3700     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3701          ++ArgNo) {
3702       EVT ObjectVT = Ins[ArgNo].VT;
3703       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3704 
3705       if (Flags.isByVal()) {
3706         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3707         unsigned ObjSize = Flags.getByValSize();
3708         unsigned ArgSize =
3709                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3710         VecArgOffset += ArgSize;
3711         continue;
3712       }
3713 
3714       switch(ObjectVT.getSimpleVT().SimpleTy) {
3715       default: llvm_unreachable("Unhandled argument type!");
3716       case MVT::i1:
3717       case MVT::i32:
3718       case MVT::f32:
3719         VecArgOffset += 4;
3720         break;
3721       case MVT::i64:  // PPC64
3722       case MVT::f64:
3723         // FIXME: We are guaranteed to be !isPPC64 at this point.
3724         // Does MVT::i64 apply?
3725         VecArgOffset += 8;
3726         break;
3727       case MVT::v4f32:
3728       case MVT::v4i32:
3729       case MVT::v8i16:
3730       case MVT::v16i8:
3731         // Nothing to do, we're only looking at Nonvector args here.
3732         break;
3733       }
3734     }
3735   }
3736   // We've found where the vector parameter area in memory is.  Skip the
3737   // first 12 parameters; these don't use that memory.
3738   VecArgOffset = ((VecArgOffset+15)/16)*16;
3739   VecArgOffset += 12*16;
3740 
3741   // Add DAG nodes to load the arguments or copy them out of registers.  On
3742   // entry to a function on PPC, the arguments start after the linkage area,
3743   // although the first ones are often in registers.
3744 
3745   SmallVector<SDValue, 8> MemOps;
3746   unsigned nAltivecParamsAtEnd = 0;
3747   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3748   unsigned CurArgIdx = 0;
3749   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3750     SDValue ArgVal;
3751     bool needsLoad = false;
3752     EVT ObjectVT = Ins[ArgNo].VT;
3753     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3754     unsigned ArgSize = ObjSize;
3755     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3756     if (Ins[ArgNo].isOrigArg()) {
3757       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3758       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3759     }
3760     unsigned CurArgOffset = ArgOffset;
3761 
3762     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3763     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3764         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3765       if (isVarArg || isPPC64) {
3766         MinReservedArea = ((MinReservedArea+15)/16)*16;
3767         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3768                                                   Flags,
3769                                                   PtrByteSize);
3770       } else  nAltivecParamsAtEnd++;
3771     } else
3772       // Calculate min reserved area.
3773       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3774                                                 Flags,
3775                                                 PtrByteSize);
3776 
3777     // FIXME the codegen can be much improved in some cases.
3778     // We do not have to keep everything in memory.
3779     if (Flags.isByVal()) {
3780       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3781 
3782       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3783       ObjSize = Flags.getByValSize();
3784       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3785       // Objects of size 1 and 2 are right justified, everything else is
3786       // left justified.  This means the memory address is adjusted forwards.
3787       if (ObjSize==1 || ObjSize==2) {
3788         CurArgOffset = CurArgOffset + (4 - ObjSize);
3789       }
3790       // The value of the object is its address.
3791       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
3792       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3793       InVals.push_back(FIN);
3794       if (ObjSize==1 || ObjSize==2) {
3795         if (GPR_idx != Num_GPR_Regs) {
3796           unsigned VReg;
3797           if (isPPC64)
3798             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3799           else
3800             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3801           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3802           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3803           SDValue Store =
3804               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3805                                 MachinePointerInfo(&*FuncArg), ObjType);
3806           MemOps.push_back(Store);
3807           ++GPR_idx;
3808         }
3809 
3810         ArgOffset += PtrByteSize;
3811 
3812         continue;
3813       }
3814       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3815         // Store whatever pieces of the object are in registers
3816         // to memory.  ArgOffset will be the address of the beginning
3817         // of the object.
3818         if (GPR_idx != Num_GPR_Regs) {
3819           unsigned VReg;
3820           if (isPPC64)
3821             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3822           else
3823             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3824           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3825           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3826           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3827           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3828                                        MachinePointerInfo(&*FuncArg, j));
3829           MemOps.push_back(Store);
3830           ++GPR_idx;
3831           ArgOffset += PtrByteSize;
3832         } else {
3833           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3834           break;
3835         }
3836       }
3837       continue;
3838     }
3839 
3840     switch (ObjectVT.getSimpleVT().SimpleTy) {
3841     default: llvm_unreachable("Unhandled argument type!");
3842     case MVT::i1:
3843     case MVT::i32:
3844       if (!isPPC64) {
3845         if (GPR_idx != Num_GPR_Regs) {
3846           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3847           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3848 
3849           if (ObjectVT == MVT::i1)
3850             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3851 
3852           ++GPR_idx;
3853         } else {
3854           needsLoad = true;
3855           ArgSize = PtrByteSize;
3856         }
3857         // All int arguments reserve stack space in the Darwin ABI.
3858         ArgOffset += PtrByteSize;
3859         break;
3860       }
3861       LLVM_FALLTHROUGH;
3862     case MVT::i64:  // PPC64
3863       if (GPR_idx != Num_GPR_Regs) {
3864         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3865         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3866 
3867         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3868           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3869           // value to MVT::i64 and then truncate to the correct register size.
3870           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3871 
3872         ++GPR_idx;
3873       } else {
3874         needsLoad = true;
3875         ArgSize = PtrByteSize;
3876       }
3877       // All int arguments reserve stack space in the Darwin ABI.
3878       ArgOffset += 8;
3879       break;
3880 
3881     case MVT::f32:
3882     case MVT::f64:
3883       // Every 4 bytes of argument space consumes one of the GPRs available for
3884       // argument passing.
3885       if (GPR_idx != Num_GPR_Regs) {
3886         ++GPR_idx;
3887         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3888           ++GPR_idx;
3889       }
3890       if (FPR_idx != Num_FPR_Regs) {
3891         unsigned VReg;
3892 
3893         if (ObjectVT == MVT::f32)
3894           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3895         else
3896           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3897 
3898         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3899         ++FPR_idx;
3900       } else {
3901         needsLoad = true;
3902       }
3903 
3904       // All FP arguments reserve stack space in the Darwin ABI.
3905       ArgOffset += isPPC64 ? 8 : ObjSize;
3906       break;
3907     case MVT::v4f32:
3908     case MVT::v4i32:
3909     case MVT::v8i16:
3910     case MVT::v16i8:
3911       // Note that vector arguments in registers don't reserve stack space,
3912       // except in varargs functions.
3913       if (VR_idx != Num_VR_Regs) {
3914         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3915         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3916         if (isVarArg) {
3917           while ((ArgOffset % 16) != 0) {
3918             ArgOffset += PtrByteSize;
3919             if (GPR_idx != Num_GPR_Regs)
3920               GPR_idx++;
3921           }
3922           ArgOffset += 16;
3923           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3924         }
3925         ++VR_idx;
3926       } else {
3927         if (!isVarArg && !isPPC64) {
3928           // Vectors go after all the nonvectors.
3929           CurArgOffset = VecArgOffset;
3930           VecArgOffset += 16;
3931         } else {
3932           // Vectors are aligned.
3933           ArgOffset = ((ArgOffset+15)/16)*16;
3934           CurArgOffset = ArgOffset;
3935           ArgOffset += 16;
3936         }
3937         needsLoad = true;
3938       }
3939       break;
3940     }
3941 
3942     // We need to load the argument to a virtual register if we determined above
3943     // that we ran out of physical registers of the appropriate type.
3944     if (needsLoad) {
3945       int FI = MFI.CreateFixedObject(ObjSize,
3946                                      CurArgOffset + (ArgSize - ObjSize),
3947                                      isImmutable);
3948       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3949       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3950     }
3951 
3952     InVals.push_back(ArgVal);
3953   }
3954 
3955   // Allow for Altivec parameters at the end, if needed.
3956   if (nAltivecParamsAtEnd) {
3957     MinReservedArea = ((MinReservedArea+15)/16)*16;
3958     MinReservedArea += 16*nAltivecParamsAtEnd;
3959   }
3960 
3961   // Area that is at least reserved in the caller of this function.
3962   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3963 
3964   // Set the size that is at least reserved in caller of this function.  Tail
3965   // call optimized functions' reserved stack space needs to be aligned so that
3966   // taking the difference between two stack areas will result in an aligned
3967   // stack.
3968   MinReservedArea =
3969       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3970   FuncInfo->setMinReservedArea(MinReservedArea);
3971 
3972   // If the function takes variable number of arguments, make a frame index for
3973   // the start of the first vararg value... for expansion of llvm.va_start.
3974   if (isVarArg) {
3975     int Depth = ArgOffset;
3976 
3977     FuncInfo->setVarArgsFrameIndex(
3978       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3979                             Depth, true));
3980     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3981 
3982     // If this function is vararg, store any remaining integer argument regs
3983     // to their spots on the stack so that they may be loaded by dereferencing
3984     // the result of va_next.
3985     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3986       unsigned VReg;
3987 
3988       if (isPPC64)
3989         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3990       else
3991         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3992 
3993       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3994       SDValue Store =
3995           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3996       MemOps.push_back(Store);
3997       // Increment the address by four for the next argument to store
3998       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3999       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4000     }
4001   }
4002 
4003   if (!MemOps.empty())
4004     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4005 
4006   return Chain;
4007 }
4008 
4009 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4010 /// adjusted to accommodate the arguments for the tailcall.
4011 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4012                                    unsigned ParamSize) {
4013 
4014   if (!isTailCall) return 0;
4015 
4016   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4017   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4018   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4019   // Remember only if the new adjustement is bigger.
4020   if (SPDiff < FI->getTailCallSPDelta())
4021     FI->setTailCallSPDelta(SPDiff);
4022 
4023   return SPDiff;
4024 }
4025 
4026 static bool isFunctionGlobalAddress(SDValue Callee);
4027 
4028 static bool
4029 resideInSameSection(const Function *Caller, SDValue Callee,
4030                     const TargetMachine &TM) {
4031   // If !G, Callee can be an external symbol.
4032   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4033   if (!G)
4034     return false;
4035 
4036   const GlobalValue *GV = G->getGlobal();
4037   if (!GV->isStrongDefinitionForLinker())
4038     return false;
4039 
4040   // Any explicitly-specified sections and section prefixes must also match.
4041   // Also, if we're using -ffunction-sections, then each function is always in
4042   // a different section (the same is true for COMDAT functions).
4043   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4044       GV->getSection() != Caller->getSection())
4045     return false;
4046   if (const auto *F = dyn_cast<Function>(GV)) {
4047     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4048       return false;
4049   }
4050 
4051   // If the callee might be interposed, then we can't assume the ultimate call
4052   // target will be in the same section. Even in cases where we can assume that
4053   // interposition won't happen, in any case where the linker might insert a
4054   // stub to allow for interposition, we must generate code as though
4055   // interposition might occur. To understand why this matters, consider a
4056   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4057   // in the same section, but a is in a different module (i.e. has a different
4058   // TOC base pointer). If the linker allows for interposition between b and c,
4059   // then it will generate a stub for the call edge between b and c which will
4060   // save the TOC pointer into the designated stack slot allocated by b. If we
4061   // return true here, and therefore allow a tail call between b and c, that
4062   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4063   // pointer into the stack slot allocated by a (where the a -> b stub saved
4064   // a's TOC base pointer). If we're not considering a tail call, but rather,
4065   // whether a nop is needed after the call instruction in b, because the linker
4066   // will insert a stub, it might complain about a missing nop if we omit it
4067   // (although many don't complain in this case).
4068   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4069     return false;
4070 
4071   return true;
4072 }
4073 
4074 static bool
4075 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4076                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4077   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4078 
4079   const unsigned PtrByteSize = 8;
4080   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4081 
4082   static const MCPhysReg GPR[] = {
4083     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4084     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4085   };
4086   static const MCPhysReg VR[] = {
4087     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4088     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4089   };
4090 
4091   const unsigned NumGPRs = array_lengthof(GPR);
4092   const unsigned NumFPRs = 13;
4093   const unsigned NumVRs = array_lengthof(VR);
4094   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4095 
4096   unsigned NumBytes = LinkageSize;
4097   unsigned AvailableFPRs = NumFPRs;
4098   unsigned AvailableVRs = NumVRs;
4099 
4100   for (const ISD::OutputArg& Param : Outs) {
4101     if (Param.Flags.isNest()) continue;
4102 
4103     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4104                                PtrByteSize, LinkageSize, ParamAreaSize,
4105                                NumBytes, AvailableFPRs, AvailableVRs,
4106                                Subtarget.hasQPX()))
4107       return true;
4108   }
4109   return false;
4110 }
4111 
4112 static bool
4113 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
4114   if (CS->arg_size() != CallerFn->getArgumentList().size())
4115     return false;
4116 
4117   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
4118   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
4119   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4120 
4121   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4122     const Value* CalleeArg = *CalleeArgIter;
4123     const Value* CallerArg = &(*CallerArgIter);
4124     if (CalleeArg == CallerArg)
4125       continue;
4126 
4127     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4128     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4129     //      }
4130     // 1st argument of callee is undef and has the same type as caller.
4131     if (CalleeArg->getType() == CallerArg->getType() &&
4132         isa<UndefValue>(CalleeArg))
4133       continue;
4134 
4135     return false;
4136   }
4137 
4138   return true;
4139 }
4140 
4141 bool
4142 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4143                                     SDValue Callee,
4144                                     CallingConv::ID CalleeCC,
4145                                     ImmutableCallSite *CS,
4146                                     bool isVarArg,
4147                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4148                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4149                                     SelectionDAG& DAG) const {
4150   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4151 
4152   if (DisableSCO && !TailCallOpt) return false;
4153 
4154   // Variadic argument functions are not supported.
4155   if (isVarArg) return false;
4156 
4157   MachineFunction &MF = DAG.getMachineFunction();
4158   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4159 
4160   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4161   // the same calling convention
4162   if (CallerCC != CalleeCC) return false;
4163 
4164   // SCO support C calling convention
4165   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4166     return false;
4167 
4168   // Caller contains any byval parameter is not supported.
4169   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4170     return false;
4171 
4172   // Callee contains any byval parameter is not supported, too.
4173   // Note: This is a quick work around, because in some cases, e.g.
4174   // caller's stack size > callee's stack size, we are still able to apply
4175   // sibling call optimization. See: https://reviews.llvm.org/D23441#513574
4176   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4177     return false;
4178 
4179   // No TCO/SCO on indirect call because Caller have to restore its TOC
4180   if (!isFunctionGlobalAddress(Callee) &&
4181       !isa<ExternalSymbolSDNode>(Callee))
4182     return false;
4183 
4184   // Check if Callee resides in the same section, because for now, PPC64 SVR4
4185   // ABI (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
4186   // section.
4187   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4188   if (!resideInSameSection(MF.getFunction(), Callee, getTargetMachine()))
4189     return false;
4190 
4191   // TCO allows altering callee ABI, so we don't have to check further.
4192   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4193     return true;
4194 
4195   if (DisableSCO) return false;
4196 
4197   // If callee use the same argument list that caller is using, then we can
4198   // apply SCO on this case. If it is not, then we need to check if callee needs
4199   // stack for passing arguments.
4200   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4201       needStackSlotPassParameters(Subtarget, Outs)) {
4202     return false;
4203   }
4204 
4205   return true;
4206 }
4207 
4208 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4209 /// for tail call optimization. Targets which want to do tail call
4210 /// optimization should implement this function.
4211 bool
4212 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4213                                                      CallingConv::ID CalleeCC,
4214                                                      bool isVarArg,
4215                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4216                                                      SelectionDAG& DAG) const {
4217   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4218     return false;
4219 
4220   // Variable argument functions are not supported.
4221   if (isVarArg)
4222     return false;
4223 
4224   MachineFunction &MF = DAG.getMachineFunction();
4225   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4226   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4227     // Functions containing by val parameters are not supported.
4228     for (unsigned i = 0; i != Ins.size(); i++) {
4229        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4230        if (Flags.isByVal()) return false;
4231     }
4232 
4233     // Non-PIC/GOT tail calls are supported.
4234     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4235       return true;
4236 
4237     // At the moment we can only do local tail calls (in same module, hidden
4238     // or protected) if we are generating PIC.
4239     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4240       return G->getGlobal()->hasHiddenVisibility()
4241           || G->getGlobal()->hasProtectedVisibility();
4242   }
4243 
4244   return false;
4245 }
4246 
4247 /// isCallCompatibleAddress - Return the immediate to use if the specified
4248 /// 32-bit value is representable in the immediate field of a BxA instruction.
4249 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4250   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4251   if (!C) return nullptr;
4252 
4253   int Addr = C->getZExtValue();
4254   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4255       SignExtend32<26>(Addr) != Addr)
4256     return nullptr;  // Top 6 bits have to be sext of immediate.
4257 
4258   return DAG
4259       .getConstant(
4260           (int)C->getZExtValue() >> 2, SDLoc(Op),
4261           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4262       .getNode();
4263 }
4264 
4265 namespace {
4266 
4267 struct TailCallArgumentInfo {
4268   SDValue Arg;
4269   SDValue FrameIdxOp;
4270   int FrameIdx = 0;
4271 
4272   TailCallArgumentInfo() = default;
4273 };
4274 
4275 } // end anonymous namespace
4276 
4277 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4278 static void StoreTailCallArgumentsToStackSlot(
4279     SelectionDAG &DAG, SDValue Chain,
4280     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4281     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4282   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4283     SDValue Arg = TailCallArgs[i].Arg;
4284     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4285     int FI = TailCallArgs[i].FrameIdx;
4286     // Store relative to framepointer.
4287     MemOpChains.push_back(DAG.getStore(
4288         Chain, dl, Arg, FIN,
4289         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4290   }
4291 }
4292 
4293 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4294 /// the appropriate stack slot for the tail call optimized function call.
4295 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4296                                              SDValue OldRetAddr, SDValue OldFP,
4297                                              int SPDiff, const SDLoc &dl) {
4298   if (SPDiff) {
4299     // Calculate the new stack slot for the return address.
4300     MachineFunction &MF = DAG.getMachineFunction();
4301     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4302     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4303     bool isPPC64 = Subtarget.isPPC64();
4304     int SlotSize = isPPC64 ? 8 : 4;
4305     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4306     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4307                                                          NewRetAddrLoc, true);
4308     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4309     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4310     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4311                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4312 
4313     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4314     // slot as the FP is never overwritten.
4315     if (Subtarget.isDarwinABI()) {
4316       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4317       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4318                                                          true);
4319       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4320       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4321                            MachinePointerInfo::getFixedStack(
4322                                DAG.getMachineFunction(), NewFPIdx));
4323     }
4324   }
4325   return Chain;
4326 }
4327 
4328 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4329 /// the position of the argument.
4330 static void
4331 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4332                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4333                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4334   int Offset = ArgOffset + SPDiff;
4335   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4336   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4337   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4338   SDValue FIN = DAG.getFrameIndex(FI, VT);
4339   TailCallArgumentInfo Info;
4340   Info.Arg = Arg;
4341   Info.FrameIdxOp = FIN;
4342   Info.FrameIdx = FI;
4343   TailCallArguments.push_back(Info);
4344 }
4345 
4346 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4347 /// stack slot. Returns the chain as result and the loaded frame pointers in
4348 /// LROpOut/FPOpout. Used when tail calling.
4349 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4350     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4351     SDValue &FPOpOut, const SDLoc &dl) const {
4352   if (SPDiff) {
4353     // Load the LR and FP stack slot for later adjusting.
4354     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4355     LROpOut = getReturnAddrFrameIndex(DAG);
4356     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4357     Chain = SDValue(LROpOut.getNode(), 1);
4358 
4359     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4360     // slot as the FP is never overwritten.
4361     if (Subtarget.isDarwinABI()) {
4362       FPOpOut = getFramePointerFrameIndex(DAG);
4363       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4364       Chain = SDValue(FPOpOut.getNode(), 1);
4365     }
4366   }
4367   return Chain;
4368 }
4369 
4370 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4371 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4372 /// specified by the specific parameter attribute. The copy will be passed as
4373 /// a byval function parameter.
4374 /// Sometimes what we are copying is the end of a larger object, the part that
4375 /// does not fit in registers.
4376 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4377                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4378                                          SelectionDAG &DAG, const SDLoc &dl) {
4379   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4380   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4381                        false, false, false, MachinePointerInfo(),
4382                        MachinePointerInfo());
4383 }
4384 
4385 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4386 /// tail calls.
4387 static void LowerMemOpCallTo(
4388     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4389     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4390     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4391     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4392   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4393   if (!isTailCall) {
4394     if (isVector) {
4395       SDValue StackPtr;
4396       if (isPPC64)
4397         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4398       else
4399         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4400       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4401                            DAG.getConstant(ArgOffset, dl, PtrVT));
4402     }
4403     MemOpChains.push_back(
4404         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4405     // Calculate and remember argument location.
4406   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4407                                   TailCallArguments);
4408 }
4409 
4410 static void
4411 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4412                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4413                 SDValue FPOp,
4414                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4415   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4416   // might overwrite each other in case of tail call optimization.
4417   SmallVector<SDValue, 8> MemOpChains2;
4418   // Do not flag preceding copytoreg stuff together with the following stuff.
4419   InFlag = SDValue();
4420   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4421                                     MemOpChains2, dl);
4422   if (!MemOpChains2.empty())
4423     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4424 
4425   // Store the return address to the appropriate stack slot.
4426   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4427 
4428   // Emit callseq_end just before tailcall node.
4429   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4430                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4431   InFlag = Chain.getValue(1);
4432 }
4433 
4434 // Is this global address that of a function that can be called by name? (as
4435 // opposed to something that must hold a descriptor for an indirect call).
4436 static bool isFunctionGlobalAddress(SDValue Callee) {
4437   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4438     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4439         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4440       return false;
4441 
4442     return G->getGlobal()->getValueType()->isFunctionTy();
4443   }
4444 
4445   return false;
4446 }
4447 
4448 static unsigned
4449 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4450             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4451             bool isPatchPoint, bool hasNest,
4452             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4453             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4454             ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4455   bool isPPC64 = Subtarget.isPPC64();
4456   bool isSVR4ABI = Subtarget.isSVR4ABI();
4457   bool isELFv2ABI = Subtarget.isELFv2ABI();
4458 
4459   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4460   NodeTys.push_back(MVT::Other);   // Returns a chain
4461   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4462 
4463   unsigned CallOpc = PPCISD::CALL;
4464 
4465   bool needIndirectCall = true;
4466   if (!isSVR4ABI || !isPPC64)
4467     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4468       // If this is an absolute destination address, use the munged value.
4469       Callee = SDValue(Dest, 0);
4470       needIndirectCall = false;
4471     }
4472 
4473   // PC-relative references to external symbols should go through $stub, unless
4474   // we're building with the leopard linker or later, which automatically
4475   // synthesizes these stubs.
4476   const TargetMachine &TM = DAG.getTarget();
4477   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4478   const GlobalValue *GV = nullptr;
4479   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4480     GV = G->getGlobal();
4481   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4482   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4483 
4484   if (isFunctionGlobalAddress(Callee)) {
4485     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4486     // A call to a TLS address is actually an indirect call to a
4487     // thread-specific pointer.
4488     unsigned OpFlags = 0;
4489     if (UsePlt)
4490       OpFlags = PPCII::MO_PLT;
4491 
4492     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4493     // every direct call is) turn it into a TargetGlobalAddress /
4494     // TargetExternalSymbol node so that legalize doesn't hack it.
4495     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4496                                         Callee.getValueType(), 0, OpFlags);
4497     needIndirectCall = false;
4498   }
4499 
4500   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4501     unsigned char OpFlags = 0;
4502 
4503     if (UsePlt)
4504       OpFlags = PPCII::MO_PLT;
4505 
4506     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4507                                          OpFlags);
4508     needIndirectCall = false;
4509   }
4510 
4511   if (isPatchPoint) {
4512     // We'll form an invalid direct call when lowering a patchpoint; the full
4513     // sequence for an indirect call is complicated, and many of the
4514     // instructions introduced might have side effects (and, thus, can't be
4515     // removed later). The call itself will be removed as soon as the
4516     // argument/return lowering is complete, so the fact that it has the wrong
4517     // kind of operands should not really matter.
4518     needIndirectCall = false;
4519   }
4520 
4521   if (needIndirectCall) {
4522     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4523     // to do the call, we can't use PPCISD::CALL.
4524     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4525 
4526     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4527       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4528       // entry point, but to the function descriptor (the function entry point
4529       // address is part of the function descriptor though).
4530       // The function descriptor is a three doubleword structure with the
4531       // following fields: function entry point, TOC base address and
4532       // environment pointer.
4533       // Thus for a call through a function pointer, the following actions need
4534       // to be performed:
4535       //   1. Save the TOC of the caller in the TOC save area of its stack
4536       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4537       //   2. Load the address of the function entry point from the function
4538       //      descriptor.
4539       //   3. Load the TOC of the callee from the function descriptor into r2.
4540       //   4. Load the environment pointer from the function descriptor into
4541       //      r11.
4542       //   5. Branch to the function entry point address.
4543       //   6. On return of the callee, the TOC of the caller needs to be
4544       //      restored (this is done in FinishCall()).
4545       //
4546       // The loads are scheduled at the beginning of the call sequence, and the
4547       // register copies are flagged together to ensure that no other
4548       // operations can be scheduled in between. E.g. without flagging the
4549       // copies together, a TOC access in the caller could be scheduled between
4550       // the assignment of the callee TOC and the branch to the callee, which
4551       // results in the TOC access going through the TOC of the callee instead
4552       // of going through the TOC of the caller, which leads to incorrect code.
4553 
4554       // Load the address of the function entry point from the function
4555       // descriptor.
4556       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4557       if (LDChain.getValueType() == MVT::Glue)
4558         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4559 
4560       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4561                           ? (MachineMemOperand::MODereferenceable |
4562                              MachineMemOperand::MOInvariant)
4563                           : MachineMemOperand::MONone;
4564 
4565       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4566       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4567                                         /* Alignment = */ 8, MMOFlags);
4568 
4569       // Load environment pointer into r11.
4570       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4571       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4572       SDValue LoadEnvPtr =
4573           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4574                       /* Alignment = */ 8, MMOFlags);
4575 
4576       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4577       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4578       SDValue TOCPtr =
4579           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4580                       /* Alignment = */ 8, MMOFlags);
4581 
4582       setUsesTOCBasePtr(DAG);
4583       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4584                                         InFlag);
4585       Chain = TOCVal.getValue(0);
4586       InFlag = TOCVal.getValue(1);
4587 
4588       // If the function call has an explicit 'nest' parameter, it takes the
4589       // place of the environment pointer.
4590       if (!hasNest) {
4591         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4592                                           InFlag);
4593 
4594         Chain = EnvVal.getValue(0);
4595         InFlag = EnvVal.getValue(1);
4596       }
4597 
4598       MTCTROps[0] = Chain;
4599       MTCTROps[1] = LoadFuncPtr;
4600       MTCTROps[2] = InFlag;
4601     }
4602 
4603     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4604                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4605     InFlag = Chain.getValue(1);
4606 
4607     NodeTys.clear();
4608     NodeTys.push_back(MVT::Other);
4609     NodeTys.push_back(MVT::Glue);
4610     Ops.push_back(Chain);
4611     CallOpc = PPCISD::BCTRL;
4612     Callee.setNode(nullptr);
4613     // Add use of X11 (holding environment pointer)
4614     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4615       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4616     // Add CTR register as callee so a bctr can be emitted later.
4617     if (isTailCall)
4618       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4619   }
4620 
4621   // If this is a direct call, pass the chain and the callee.
4622   if (Callee.getNode()) {
4623     Ops.push_back(Chain);
4624     Ops.push_back(Callee);
4625   }
4626   // If this is a tail call add stack pointer delta.
4627   if (isTailCall)
4628     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4629 
4630   // Add argument registers to the end of the list so that they are known live
4631   // into the call.
4632   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4633     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4634                                   RegsToPass[i].second.getValueType()));
4635 
4636   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4637   // into the call.
4638   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4639     setUsesTOCBasePtr(DAG);
4640     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4641   }
4642 
4643   return CallOpc;
4644 }
4645 
4646 SDValue PPCTargetLowering::LowerCallResult(
4647     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4648     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4649     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4650   SmallVector<CCValAssign, 16> RVLocs;
4651   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4652                     *DAG.getContext());
4653   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4654 
4655   // Copy all of the result registers out of their specified physreg.
4656   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4657     CCValAssign &VA = RVLocs[i];
4658     assert(VA.isRegLoc() && "Can only return in registers!");
4659 
4660     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4661                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4662     Chain = Val.getValue(1);
4663     InFlag = Val.getValue(2);
4664 
4665     switch (VA.getLocInfo()) {
4666     default: llvm_unreachable("Unknown loc info!");
4667     case CCValAssign::Full: break;
4668     case CCValAssign::AExt:
4669       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4670       break;
4671     case CCValAssign::ZExt:
4672       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4673                         DAG.getValueType(VA.getValVT()));
4674       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4675       break;
4676     case CCValAssign::SExt:
4677       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4678                         DAG.getValueType(VA.getValVT()));
4679       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4680       break;
4681     }
4682 
4683     InVals.push_back(Val);
4684   }
4685 
4686   return Chain;
4687 }
4688 
4689 SDValue PPCTargetLowering::FinishCall(
4690     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4691     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4692     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4693     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4694     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4695     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
4696   std::vector<EVT> NodeTys;
4697   SmallVector<SDValue, 8> Ops;
4698   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4699                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4700                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4701 
4702   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4703   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4704     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4705 
4706   // When performing tail call optimization the callee pops its arguments off
4707   // the stack. Account for this here so these bytes can be pushed back on in
4708   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4709   int BytesCalleePops =
4710     (CallConv == CallingConv::Fast &&
4711      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4712 
4713   // Add a register mask operand representing the call-preserved registers.
4714   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4715   const uint32_t *Mask =
4716       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4717   assert(Mask && "Missing call preserved mask for calling convention");
4718   Ops.push_back(DAG.getRegisterMask(Mask));
4719 
4720   if (InFlag.getNode())
4721     Ops.push_back(InFlag);
4722 
4723   // Emit tail call.
4724   if (isTailCall) {
4725     assert(((Callee.getOpcode() == ISD::Register &&
4726              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4727             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4728             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4729             isa<ConstantSDNode>(Callee)) &&
4730     "Expecting an global address, external symbol, absolute value or register");
4731 
4732     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
4733     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4734   }
4735 
4736   // Add a NOP immediately after the branch instruction when using the 64-bit
4737   // SVR4 ABI. At link time, if caller and callee are in a different module and
4738   // thus have a different TOC, the call will be replaced with a call to a stub
4739   // function which saves the current TOC, loads the TOC of the callee and
4740   // branches to the callee. The NOP will be replaced with a load instruction
4741   // which restores the TOC of the caller from the TOC save slot of the current
4742   // stack frame. If caller and callee belong to the same module (and have the
4743   // same TOC), the NOP will remain unchanged.
4744 
4745   MachineFunction &MF = DAG.getMachineFunction();
4746   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4747       !isPatchPoint) {
4748     if (CallOpc == PPCISD::BCTRL) {
4749       // This is a call through a function pointer.
4750       // Restore the caller TOC from the save area into R2.
4751       // See PrepareCall() for more information about calls through function
4752       // pointers in the 64-bit SVR4 ABI.
4753       // We are using a target-specific load with r2 hard coded, because the
4754       // result of a target-independent load would never go directly into r2,
4755       // since r2 is a reserved register (which prevents the register allocator
4756       // from allocating it), resulting in an additional register being
4757       // allocated and an unnecessary move instruction being generated.
4758       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4759 
4760       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4761       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4762       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4763       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4764       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4765 
4766       // The address needs to go after the chain input but before the flag (or
4767       // any other variadic arguments).
4768       Ops.insert(std::next(Ops.begin()), AddTOC);
4769     } else if (CallOpc == PPCISD::CALL &&
4770       !resideInSameSection(MF.getFunction(), Callee, DAG.getTarget())) {
4771       // Otherwise insert NOP for non-local calls.
4772       CallOpc = PPCISD::CALL_NOP;
4773     }
4774   }
4775 
4776   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4777   InFlag = Chain.getValue(1);
4778 
4779   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4780                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4781                              InFlag, dl);
4782   if (!Ins.empty())
4783     InFlag = Chain.getValue(1);
4784 
4785   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4786                          Ins, dl, DAG, InVals);
4787 }
4788 
4789 SDValue
4790 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4791                              SmallVectorImpl<SDValue> &InVals) const {
4792   SelectionDAG &DAG                     = CLI.DAG;
4793   SDLoc &dl                             = CLI.DL;
4794   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4795   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4796   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4797   SDValue Chain                         = CLI.Chain;
4798   SDValue Callee                        = CLI.Callee;
4799   bool &isTailCall                      = CLI.IsTailCall;
4800   CallingConv::ID CallConv              = CLI.CallConv;
4801   bool isVarArg                         = CLI.IsVarArg;
4802   bool isPatchPoint                     = CLI.IsPatchPoint;
4803   ImmutableCallSite *CS                 = CLI.CS;
4804 
4805   if (isTailCall) {
4806     if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall()))
4807       isTailCall = false;
4808     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4809       isTailCall =
4810         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4811                                                  isVarArg, Outs, Ins, DAG);
4812     else
4813       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4814                                                      Ins, DAG);
4815     if (isTailCall) {
4816       ++NumTailCalls;
4817       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4818         ++NumSiblingCalls;
4819 
4820       assert(isa<GlobalAddressSDNode>(Callee) &&
4821              "Callee should be an llvm::Function object.");
4822       DEBUG(
4823         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4824         const unsigned Width = 80 - strlen("TCO caller: ")
4825                                   - strlen(", callee linkage: 0, 0");
4826         dbgs() << "TCO caller: "
4827                << left_justify(DAG.getMachineFunction().getName(), Width)
4828                << ", callee linkage: "
4829                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4830       );
4831     }
4832   }
4833 
4834   if (!isTailCall && CS && CS->isMustTailCall())
4835     report_fatal_error("failed to perform tail call elimination on a call "
4836                        "site marked musttail");
4837 
4838   // When long calls (i.e. indirect calls) are always used, calls are always
4839   // made via function pointer. If we have a function name, first translate it
4840   // into a pointer.
4841   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
4842       !isTailCall)
4843     Callee = LowerGlobalAddress(Callee, DAG);
4844 
4845   if (Subtarget.isSVR4ABI()) {
4846     if (Subtarget.isPPC64())
4847       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4848                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4849                               dl, DAG, InVals, CS);
4850     else
4851       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4852                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4853                               dl, DAG, InVals, CS);
4854   }
4855 
4856   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4857                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
4858                           dl, DAG, InVals, CS);
4859 }
4860 
4861 SDValue PPCTargetLowering::LowerCall_32SVR4(
4862     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4863     bool isTailCall, bool isPatchPoint,
4864     const SmallVectorImpl<ISD::OutputArg> &Outs,
4865     const SmallVectorImpl<SDValue> &OutVals,
4866     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4867     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4868     ImmutableCallSite *CS) const {
4869   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4870   // of the 32-bit SVR4 ABI stack frame layout.
4871 
4872   assert((CallConv == CallingConv::C ||
4873           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4874 
4875   unsigned PtrByteSize = 4;
4876 
4877   MachineFunction &MF = DAG.getMachineFunction();
4878 
4879   // Mark this function as potentially containing a function that contains a
4880   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4881   // and restoring the callers stack pointer in this functions epilog. This is
4882   // done because by tail calling the called function might overwrite the value
4883   // in this function's (MF) stack pointer stack slot 0(SP).
4884   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4885       CallConv == CallingConv::Fast)
4886     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4887 
4888   // Count how many bytes are to be pushed on the stack, including the linkage
4889   // area, parameter list area and the part of the local variable space which
4890   // contains copies of aggregates which are passed by value.
4891 
4892   // Assign locations to all of the outgoing arguments.
4893   SmallVector<CCValAssign, 16> ArgLocs;
4894   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
4895 
4896   // Reserve space for the linkage area on the stack.
4897   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4898                        PtrByteSize);
4899   if (useSoftFloat())
4900     CCInfo.PreAnalyzeCallOperands(Outs);
4901 
4902   if (isVarArg) {
4903     // Handle fixed and variable vector arguments differently.
4904     // Fixed vector arguments go into registers as long as registers are
4905     // available. Variable vector arguments always go into memory.
4906     unsigned NumArgs = Outs.size();
4907 
4908     for (unsigned i = 0; i != NumArgs; ++i) {
4909       MVT ArgVT = Outs[i].VT;
4910       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4911       bool Result;
4912 
4913       if (Outs[i].IsFixed) {
4914         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4915                                CCInfo);
4916       } else {
4917         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4918                                       ArgFlags, CCInfo);
4919       }
4920 
4921       if (Result) {
4922 #ifndef NDEBUG
4923         errs() << "Call operand #" << i << " has unhandled type "
4924              << EVT(ArgVT).getEVTString() << "\n";
4925 #endif
4926         llvm_unreachable(nullptr);
4927       }
4928     }
4929   } else {
4930     // All arguments are treated the same.
4931     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4932   }
4933   CCInfo.clearWasPPCF128();
4934 
4935   // Assign locations to all of the outgoing aggregate by value arguments.
4936   SmallVector<CCValAssign, 16> ByValArgLocs;
4937   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
4938 
4939   // Reserve stack space for the allocations in CCInfo.
4940   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4941 
4942   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4943 
4944   // Size of the linkage area, parameter list area and the part of the local
4945   // space variable where copies of aggregates which are passed by value are
4946   // stored.
4947   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4948 
4949   // Calculate by how many bytes the stack has to be adjusted in case of tail
4950   // call optimization.
4951   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4952 
4953   // Adjust the stack pointer for the new arguments...
4954   // These operations are automatically eliminated by the prolog/epilog pass
4955   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4956                                dl);
4957   SDValue CallSeqStart = Chain;
4958 
4959   // Load the return address and frame pointer so it can be moved somewhere else
4960   // later.
4961   SDValue LROp, FPOp;
4962   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
4963 
4964   // Set up a copy of the stack pointer for use loading and storing any
4965   // arguments that may not fit in the registers available for argument
4966   // passing.
4967   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4968 
4969   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4970   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4971   SmallVector<SDValue, 8> MemOpChains;
4972 
4973   bool seenFloatArg = false;
4974   // Walk the register/memloc assignments, inserting copies/loads.
4975   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4976        i != e;
4977        ++i) {
4978     CCValAssign &VA = ArgLocs[i];
4979     SDValue Arg = OutVals[i];
4980     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4981 
4982     if (Flags.isByVal()) {
4983       // Argument is an aggregate which is passed by value, thus we need to
4984       // create a copy of it in the local variable space of the current stack
4985       // frame (which is the stack frame of the caller) and pass the address of
4986       // this copy to the callee.
4987       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4988       CCValAssign &ByValVA = ByValArgLocs[j++];
4989       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4990 
4991       // Memory reserved in the local variable space of the callers stack frame.
4992       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4993 
4994       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4995       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4996                            StackPtr, PtrOff);
4997 
4998       // Create a copy of the argument in the local area of the current
4999       // stack frame.
5000       SDValue MemcpyCall =
5001         CreateCopyOfByValArgument(Arg, PtrOff,
5002                                   CallSeqStart.getNode()->getOperand(0),
5003                                   Flags, DAG, dl);
5004 
5005       // This must go outside the CALLSEQ_START..END.
5006       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
5007                            CallSeqStart.getNode()->getOperand(1),
5008                            SDLoc(MemcpyCall));
5009       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5010                              NewCallSeqStart.getNode());
5011       Chain = CallSeqStart = NewCallSeqStart;
5012 
5013       // Pass the address of the aggregate copy on the stack either in a
5014       // physical register or in the parameter list area of the current stack
5015       // frame to the callee.
5016       Arg = PtrOff;
5017     }
5018 
5019     if (VA.isRegLoc()) {
5020       if (Arg.getValueType() == MVT::i1)
5021         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5022 
5023       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5024       // Put argument in a physical register.
5025       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5026     } else {
5027       // Put argument in the parameter list area of the current stack frame.
5028       assert(VA.isMemLoc());
5029       unsigned LocMemOffset = VA.getLocMemOffset();
5030 
5031       if (!isTailCall) {
5032         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5033         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5034                              StackPtr, PtrOff);
5035 
5036         MemOpChains.push_back(
5037             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5038       } else {
5039         // Calculate and remember argument location.
5040         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5041                                  TailCallArguments);
5042       }
5043     }
5044   }
5045 
5046   if (!MemOpChains.empty())
5047     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5048 
5049   // Build a sequence of copy-to-reg nodes chained together with token chain
5050   // and flag operands which copy the outgoing args into the appropriate regs.
5051   SDValue InFlag;
5052   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5053     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5054                              RegsToPass[i].second, InFlag);
5055     InFlag = Chain.getValue(1);
5056   }
5057 
5058   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5059   // registers.
5060   if (isVarArg) {
5061     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5062     SDValue Ops[] = { Chain, InFlag };
5063 
5064     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5065                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5066 
5067     InFlag = Chain.getValue(1);
5068   }
5069 
5070   if (isTailCall)
5071     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5072                     TailCallArguments);
5073 
5074   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5075                     /* unused except on PPC64 ELFv1 */ false, DAG,
5076                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5077                     NumBytes, Ins, InVals, CS);
5078 }
5079 
5080 // Copy an argument into memory, being careful to do this outside the
5081 // call sequence for the call to which the argument belongs.
5082 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5083     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5084     SelectionDAG &DAG, const SDLoc &dl) const {
5085   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5086                         CallSeqStart.getNode()->getOperand(0),
5087                         Flags, DAG, dl);
5088   // The MEMCPY must go outside the CALLSEQ_START..END.
5089   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
5090                              CallSeqStart.getNode()->getOperand(1),
5091                              SDLoc(MemcpyCall));
5092   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5093                          NewCallSeqStart.getNode());
5094   return NewCallSeqStart;
5095 }
5096 
5097 SDValue PPCTargetLowering::LowerCall_64SVR4(
5098     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5099     bool isTailCall, bool isPatchPoint,
5100     const SmallVectorImpl<ISD::OutputArg> &Outs,
5101     const SmallVectorImpl<SDValue> &OutVals,
5102     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5103     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5104     ImmutableCallSite *CS) const {
5105   bool isELFv2ABI = Subtarget.isELFv2ABI();
5106   bool isLittleEndian = Subtarget.isLittleEndian();
5107   unsigned NumOps = Outs.size();
5108   bool hasNest = false;
5109   bool IsSibCall = false;
5110 
5111   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5112   unsigned PtrByteSize = 8;
5113 
5114   MachineFunction &MF = DAG.getMachineFunction();
5115 
5116   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5117     IsSibCall = true;
5118 
5119   // Mark this function as potentially containing a function that contains a
5120   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5121   // and restoring the callers stack pointer in this functions epilog. This is
5122   // done because by tail calling the called function might overwrite the value
5123   // in this function's (MF) stack pointer stack slot 0(SP).
5124   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5125       CallConv == CallingConv::Fast)
5126     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5127 
5128   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5129          "fastcc not supported on varargs functions");
5130 
5131   // Count how many bytes are to be pushed on the stack, including the linkage
5132   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5133   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5134   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5135   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5136   unsigned NumBytes = LinkageSize;
5137   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5138   unsigned &QFPR_idx = FPR_idx;
5139 
5140   static const MCPhysReg GPR[] = {
5141     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5142     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5143   };
5144   static const MCPhysReg VR[] = {
5145     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5146     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5147   };
5148 
5149   const unsigned NumGPRs = array_lengthof(GPR);
5150   const unsigned NumFPRs = 13;
5151   const unsigned NumVRs  = array_lengthof(VR);
5152   const unsigned NumQFPRs = NumFPRs;
5153 
5154   // When using the fast calling convention, we don't provide backing for
5155   // arguments that will be in registers.
5156   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5157 
5158   // Add up all the space actually used.
5159   for (unsigned i = 0; i != NumOps; ++i) {
5160     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5161     EVT ArgVT = Outs[i].VT;
5162     EVT OrigVT = Outs[i].ArgVT;
5163 
5164     if (Flags.isNest())
5165       continue;
5166 
5167     if (CallConv == CallingConv::Fast) {
5168       if (Flags.isByVal())
5169         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5170       else
5171         switch (ArgVT.getSimpleVT().SimpleTy) {
5172         default: llvm_unreachable("Unexpected ValueType for argument!");
5173         case MVT::i1:
5174         case MVT::i32:
5175         case MVT::i64:
5176           if (++NumGPRsUsed <= NumGPRs)
5177             continue;
5178           break;
5179         case MVT::v4i32:
5180         case MVT::v8i16:
5181         case MVT::v16i8:
5182         case MVT::v2f64:
5183         case MVT::v2i64:
5184         case MVT::v1i128:
5185           if (++NumVRsUsed <= NumVRs)
5186             continue;
5187           break;
5188         case MVT::v4f32:
5189           // When using QPX, this is handled like a FP register, otherwise, it
5190           // is an Altivec register.
5191           if (Subtarget.hasQPX()) {
5192             if (++NumFPRsUsed <= NumFPRs)
5193               continue;
5194           } else {
5195             if (++NumVRsUsed <= NumVRs)
5196               continue;
5197           }
5198           break;
5199         case MVT::f32:
5200         case MVT::f64:
5201         case MVT::v4f64: // QPX
5202         case MVT::v4i1:  // QPX
5203           if (++NumFPRsUsed <= NumFPRs)
5204             continue;
5205           break;
5206         }
5207     }
5208 
5209     /* Respect alignment of argument on the stack.  */
5210     unsigned Align =
5211       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5212     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5213 
5214     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5215     if (Flags.isInConsecutiveRegsLast())
5216       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5217   }
5218 
5219   unsigned NumBytesActuallyUsed = NumBytes;
5220 
5221   // The prolog code of the callee may store up to 8 GPR argument registers to
5222   // the stack, allowing va_start to index over them in memory if its varargs.
5223   // Because we cannot tell if this is needed on the caller side, we have to
5224   // conservatively assume that it is needed.  As such, make sure we have at
5225   // least enough stack space for the caller to store the 8 GPRs.
5226   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5227   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5228 
5229   // Tail call needs the stack to be aligned.
5230   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5231       CallConv == CallingConv::Fast)
5232     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5233 
5234   int SPDiff = 0;
5235 
5236   // Calculate by how many bytes the stack has to be adjusted in case of tail
5237   // call optimization.
5238   if (!IsSibCall)
5239     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5240 
5241   // To protect arguments on the stack from being clobbered in a tail call,
5242   // force all the loads to happen before doing any other lowering.
5243   if (isTailCall)
5244     Chain = DAG.getStackArgumentTokenFactor(Chain);
5245 
5246   // Adjust the stack pointer for the new arguments...
5247   // These operations are automatically eliminated by the prolog/epilog pass
5248   if (!IsSibCall)
5249     Chain = DAG.getCALLSEQ_START(Chain,
5250                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5251   SDValue CallSeqStart = Chain;
5252 
5253   // Load the return address and frame pointer so it can be move somewhere else
5254   // later.
5255   SDValue LROp, FPOp;
5256   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5257 
5258   // Set up a copy of the stack pointer for use loading and storing any
5259   // arguments that may not fit in the registers available for argument
5260   // passing.
5261   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5262 
5263   // Figure out which arguments are going to go in registers, and which in
5264   // memory.  Also, if this is a vararg function, floating point operations
5265   // must be stored to our stack, and loaded into integer regs as well, if
5266   // any integer regs are available for argument passing.
5267   unsigned ArgOffset = LinkageSize;
5268 
5269   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5270   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5271 
5272   SmallVector<SDValue, 8> MemOpChains;
5273   for (unsigned i = 0; i != NumOps; ++i) {
5274     SDValue Arg = OutVals[i];
5275     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5276     EVT ArgVT = Outs[i].VT;
5277     EVT OrigVT = Outs[i].ArgVT;
5278 
5279     // PtrOff will be used to store the current argument to the stack if a
5280     // register cannot be found for it.
5281     SDValue PtrOff;
5282 
5283     // We re-align the argument offset for each argument, except when using the
5284     // fast calling convention, when we need to make sure we do that only when
5285     // we'll actually use a stack slot.
5286     auto ComputePtrOff = [&]() {
5287       /* Respect alignment of argument on the stack.  */
5288       unsigned Align =
5289         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5290       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5291 
5292       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5293 
5294       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5295     };
5296 
5297     if (CallConv != CallingConv::Fast) {
5298       ComputePtrOff();
5299 
5300       /* Compute GPR index associated with argument offset.  */
5301       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5302       GPR_idx = std::min(GPR_idx, NumGPRs);
5303     }
5304 
5305     // Promote integers to 64-bit values.
5306     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5307       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5308       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5309       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5310     }
5311 
5312     // FIXME memcpy is used way more than necessary.  Correctness first.
5313     // Note: "by value" is code for passing a structure by value, not
5314     // basic types.
5315     if (Flags.isByVal()) {
5316       // Note: Size includes alignment padding, so
5317       //   struct x { short a; char b; }
5318       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5319       // These are the proper values we need for right-justifying the
5320       // aggregate in a parameter register.
5321       unsigned Size = Flags.getByValSize();
5322 
5323       // An empty aggregate parameter takes up no storage and no
5324       // registers.
5325       if (Size == 0)
5326         continue;
5327 
5328       if (CallConv == CallingConv::Fast)
5329         ComputePtrOff();
5330 
5331       // All aggregates smaller than 8 bytes must be passed right-justified.
5332       if (Size==1 || Size==2 || Size==4) {
5333         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5334         if (GPR_idx != NumGPRs) {
5335           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5336                                         MachinePointerInfo(), VT);
5337           MemOpChains.push_back(Load.getValue(1));
5338           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5339 
5340           ArgOffset += PtrByteSize;
5341           continue;
5342         }
5343       }
5344 
5345       if (GPR_idx == NumGPRs && Size < 8) {
5346         SDValue AddPtr = PtrOff;
5347         if (!isLittleEndian) {
5348           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5349                                           PtrOff.getValueType());
5350           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5351         }
5352         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5353                                                           CallSeqStart,
5354                                                           Flags, DAG, dl);
5355         ArgOffset += PtrByteSize;
5356         continue;
5357       }
5358       // Copy entire object into memory.  There are cases where gcc-generated
5359       // code assumes it is there, even if it could be put entirely into
5360       // registers.  (This is not what the doc says.)
5361 
5362       // FIXME: The above statement is likely due to a misunderstanding of the
5363       // documents.  All arguments must be copied into the parameter area BY
5364       // THE CALLEE in the event that the callee takes the address of any
5365       // formal argument.  That has not yet been implemented.  However, it is
5366       // reasonable to use the stack area as a staging area for the register
5367       // load.
5368 
5369       // Skip this for small aggregates, as we will use the same slot for a
5370       // right-justified copy, below.
5371       if (Size >= 8)
5372         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5373                                                           CallSeqStart,
5374                                                           Flags, DAG, dl);
5375 
5376       // When a register is available, pass a small aggregate right-justified.
5377       if (Size < 8 && GPR_idx != NumGPRs) {
5378         // The easiest way to get this right-justified in a register
5379         // is to copy the structure into the rightmost portion of a
5380         // local variable slot, then load the whole slot into the
5381         // register.
5382         // FIXME: The memcpy seems to produce pretty awful code for
5383         // small aggregates, particularly for packed ones.
5384         // FIXME: It would be preferable to use the slot in the
5385         // parameter save area instead of a new local variable.
5386         SDValue AddPtr = PtrOff;
5387         if (!isLittleEndian) {
5388           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5389           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5390         }
5391         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5392                                                           CallSeqStart,
5393                                                           Flags, DAG, dl);
5394 
5395         // Load the slot into the register.
5396         SDValue Load =
5397             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5398         MemOpChains.push_back(Load.getValue(1));
5399         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5400 
5401         // Done with this argument.
5402         ArgOffset += PtrByteSize;
5403         continue;
5404       }
5405 
5406       // For aggregates larger than PtrByteSize, copy the pieces of the
5407       // object that fit into registers from the parameter save area.
5408       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5409         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5410         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5411         if (GPR_idx != NumGPRs) {
5412           SDValue Load =
5413               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5414           MemOpChains.push_back(Load.getValue(1));
5415           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5416           ArgOffset += PtrByteSize;
5417         } else {
5418           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5419           break;
5420         }
5421       }
5422       continue;
5423     }
5424 
5425     switch (Arg.getSimpleValueType().SimpleTy) {
5426     default: llvm_unreachable("Unexpected ValueType for argument!");
5427     case MVT::i1:
5428     case MVT::i32:
5429     case MVT::i64:
5430       if (Flags.isNest()) {
5431         // The 'nest' parameter, if any, is passed in R11.
5432         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5433         hasNest = true;
5434         break;
5435       }
5436 
5437       // These can be scalar arguments or elements of an integer array type
5438       // passed directly.  Clang may use those instead of "byval" aggregate
5439       // types to avoid forcing arguments to memory unnecessarily.
5440       if (GPR_idx != NumGPRs) {
5441         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5442       } else {
5443         if (CallConv == CallingConv::Fast)
5444           ComputePtrOff();
5445 
5446         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5447                          true, isTailCall, false, MemOpChains,
5448                          TailCallArguments, dl);
5449         if (CallConv == CallingConv::Fast)
5450           ArgOffset += PtrByteSize;
5451       }
5452       if (CallConv != CallingConv::Fast)
5453         ArgOffset += PtrByteSize;
5454       break;
5455     case MVT::f32:
5456     case MVT::f64: {
5457       // These can be scalar arguments or elements of a float array type
5458       // passed directly.  The latter are used to implement ELFv2 homogenous
5459       // float aggregates.
5460 
5461       // Named arguments go into FPRs first, and once they overflow, the
5462       // remaining arguments go into GPRs and then the parameter save area.
5463       // Unnamed arguments for vararg functions always go to GPRs and
5464       // then the parameter save area.  For now, put all arguments to vararg
5465       // routines always in both locations (FPR *and* GPR or stack slot).
5466       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5467       bool NeededLoad = false;
5468 
5469       // First load the argument into the next available FPR.
5470       if (FPR_idx != NumFPRs)
5471         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5472 
5473       // Next, load the argument into GPR or stack slot if needed.
5474       if (!NeedGPROrStack)
5475         ;
5476       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5477         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5478         // once we support fp <-> gpr moves.
5479 
5480         // In the non-vararg case, this can only ever happen in the
5481         // presence of f32 array types, since otherwise we never run
5482         // out of FPRs before running out of GPRs.
5483         SDValue ArgVal;
5484 
5485         // Double values are always passed in a single GPR.
5486         if (Arg.getValueType() != MVT::f32) {
5487           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5488 
5489         // Non-array float values are extended and passed in a GPR.
5490         } else if (!Flags.isInConsecutiveRegs()) {
5491           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5492           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5493 
5494         // If we have an array of floats, we collect every odd element
5495         // together with its predecessor into one GPR.
5496         } else if (ArgOffset % PtrByteSize != 0) {
5497           SDValue Lo, Hi;
5498           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5499           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5500           if (!isLittleEndian)
5501             std::swap(Lo, Hi);
5502           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5503 
5504         // The final element, if even, goes into the first half of a GPR.
5505         } else if (Flags.isInConsecutiveRegsLast()) {
5506           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5507           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5508           if (!isLittleEndian)
5509             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5510                                  DAG.getConstant(32, dl, MVT::i32));
5511 
5512         // Non-final even elements are skipped; they will be handled
5513         // together the with subsequent argument on the next go-around.
5514         } else
5515           ArgVal = SDValue();
5516 
5517         if (ArgVal.getNode())
5518           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5519       } else {
5520         if (CallConv == CallingConv::Fast)
5521           ComputePtrOff();
5522 
5523         // Single-precision floating-point values are mapped to the
5524         // second (rightmost) word of the stack doubleword.
5525         if (Arg.getValueType() == MVT::f32 &&
5526             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5527           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5528           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5529         }
5530 
5531         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5532                          true, isTailCall, false, MemOpChains,
5533                          TailCallArguments, dl);
5534 
5535         NeededLoad = true;
5536       }
5537       // When passing an array of floats, the array occupies consecutive
5538       // space in the argument area; only round up to the next doubleword
5539       // at the end of the array.  Otherwise, each float takes 8 bytes.
5540       if (CallConv != CallingConv::Fast || NeededLoad) {
5541         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5542                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5543         if (Flags.isInConsecutiveRegsLast())
5544           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5545       }
5546       break;
5547     }
5548     case MVT::v4f32:
5549     case MVT::v4i32:
5550     case MVT::v8i16:
5551     case MVT::v16i8:
5552     case MVT::v2f64:
5553     case MVT::v2i64:
5554     case MVT::v1i128:
5555       if (!Subtarget.hasQPX()) {
5556       // These can be scalar arguments or elements of a vector array type
5557       // passed directly.  The latter are used to implement ELFv2 homogenous
5558       // vector aggregates.
5559 
5560       // For a varargs call, named arguments go into VRs or on the stack as
5561       // usual; unnamed arguments always go to the stack or the corresponding
5562       // GPRs when within range.  For now, we always put the value in both
5563       // locations (or even all three).
5564       if (isVarArg) {
5565         // We could elide this store in the case where the object fits
5566         // entirely in R registers.  Maybe later.
5567         SDValue Store =
5568             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5569         MemOpChains.push_back(Store);
5570         if (VR_idx != NumVRs) {
5571           SDValue Load =
5572               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5573           MemOpChains.push_back(Load.getValue(1));
5574           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5575         }
5576         ArgOffset += 16;
5577         for (unsigned i=0; i<16; i+=PtrByteSize) {
5578           if (GPR_idx == NumGPRs)
5579             break;
5580           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5581                                    DAG.getConstant(i, dl, PtrVT));
5582           SDValue Load =
5583               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5584           MemOpChains.push_back(Load.getValue(1));
5585           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5586         }
5587         break;
5588       }
5589 
5590       // Non-varargs Altivec params go into VRs or on the stack.
5591       if (VR_idx != NumVRs) {
5592         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5593       } else {
5594         if (CallConv == CallingConv::Fast)
5595           ComputePtrOff();
5596 
5597         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5598                          true, isTailCall, true, MemOpChains,
5599                          TailCallArguments, dl);
5600         if (CallConv == CallingConv::Fast)
5601           ArgOffset += 16;
5602       }
5603 
5604       if (CallConv != CallingConv::Fast)
5605         ArgOffset += 16;
5606       break;
5607       } // not QPX
5608 
5609       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5610              "Invalid QPX parameter type");
5611 
5612       /* fall through */
5613     case MVT::v4f64:
5614     case MVT::v4i1: {
5615       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5616       if (isVarArg) {
5617         // We could elide this store in the case where the object fits
5618         // entirely in R registers.  Maybe later.
5619         SDValue Store =
5620             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5621         MemOpChains.push_back(Store);
5622         if (QFPR_idx != NumQFPRs) {
5623           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5624                                      PtrOff, MachinePointerInfo());
5625           MemOpChains.push_back(Load.getValue(1));
5626           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5627         }
5628         ArgOffset += (IsF32 ? 16 : 32);
5629         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5630           if (GPR_idx == NumGPRs)
5631             break;
5632           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5633                                    DAG.getConstant(i, dl, PtrVT));
5634           SDValue Load =
5635               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5636           MemOpChains.push_back(Load.getValue(1));
5637           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5638         }
5639         break;
5640       }
5641 
5642       // Non-varargs QPX params go into registers or on the stack.
5643       if (QFPR_idx != NumQFPRs) {
5644         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5645       } else {
5646         if (CallConv == CallingConv::Fast)
5647           ComputePtrOff();
5648 
5649         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5650                          true, isTailCall, true, MemOpChains,
5651                          TailCallArguments, dl);
5652         if (CallConv == CallingConv::Fast)
5653           ArgOffset += (IsF32 ? 16 : 32);
5654       }
5655 
5656       if (CallConv != CallingConv::Fast)
5657         ArgOffset += (IsF32 ? 16 : 32);
5658       break;
5659       }
5660     }
5661   }
5662 
5663   assert(NumBytesActuallyUsed == ArgOffset);
5664   (void)NumBytesActuallyUsed;
5665 
5666   if (!MemOpChains.empty())
5667     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5668 
5669   // Check if this is an indirect call (MTCTR/BCTRL).
5670   // See PrepareCall() for more information about calls through function
5671   // pointers in the 64-bit SVR4 ABI.
5672   if (!isTailCall && !isPatchPoint &&
5673       !isFunctionGlobalAddress(Callee) &&
5674       !isa<ExternalSymbolSDNode>(Callee)) {
5675     // Load r2 into a virtual register and store it to the TOC save area.
5676     setUsesTOCBasePtr(DAG);
5677     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5678     // TOC save area offset.
5679     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5680     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5681     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5682     Chain = DAG.getStore(
5683         Val.getValue(1), dl, Val, AddPtr,
5684         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
5685     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5686     // This does not mean the MTCTR instruction must use R12; it's easier
5687     // to model this as an extra parameter, so do that.
5688     if (isELFv2ABI && !isPatchPoint)
5689       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5690   }
5691 
5692   // Build a sequence of copy-to-reg nodes chained together with token chain
5693   // and flag operands which copy the outgoing args into the appropriate regs.
5694   SDValue InFlag;
5695   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5696     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5697                              RegsToPass[i].second, InFlag);
5698     InFlag = Chain.getValue(1);
5699   }
5700 
5701   if (isTailCall && !IsSibCall)
5702     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5703                     TailCallArguments);
5704 
5705   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5706                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5707                     SPDiff, NumBytes, Ins, InVals, CS);
5708 }
5709 
5710 SDValue PPCTargetLowering::LowerCall_Darwin(
5711     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5712     bool isTailCall, bool isPatchPoint,
5713     const SmallVectorImpl<ISD::OutputArg> &Outs,
5714     const SmallVectorImpl<SDValue> &OutVals,
5715     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5716     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5717     ImmutableCallSite *CS) const {
5718   unsigned NumOps = Outs.size();
5719 
5720   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5721   bool isPPC64 = PtrVT == MVT::i64;
5722   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5723 
5724   MachineFunction &MF = DAG.getMachineFunction();
5725 
5726   // Mark this function as potentially containing a function that contains a
5727   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5728   // and restoring the callers stack pointer in this functions epilog. This is
5729   // done because by tail calling the called function might overwrite the value
5730   // in this function's (MF) stack pointer stack slot 0(SP).
5731   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5732       CallConv == CallingConv::Fast)
5733     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5734 
5735   // Count how many bytes are to be pushed on the stack, including the linkage
5736   // area, and parameter passing area.  We start with 24/48 bytes, which is
5737   // prereserved space for [SP][CR][LR][3 x unused].
5738   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5739   unsigned NumBytes = LinkageSize;
5740 
5741   // Add up all the space actually used.
5742   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5743   // they all go in registers, but we must reserve stack space for them for
5744   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5745   // assigned stack space in order, with padding so Altivec parameters are
5746   // 16-byte aligned.
5747   unsigned nAltivecParamsAtEnd = 0;
5748   for (unsigned i = 0; i != NumOps; ++i) {
5749     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5750     EVT ArgVT = Outs[i].VT;
5751     // Varargs Altivec parameters are padded to a 16 byte boundary.
5752     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5753         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5754         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5755       if (!isVarArg && !isPPC64) {
5756         // Non-varargs Altivec parameters go after all the non-Altivec
5757         // parameters; handle those later so we know how much padding we need.
5758         nAltivecParamsAtEnd++;
5759         continue;
5760       }
5761       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5762       NumBytes = ((NumBytes+15)/16)*16;
5763     }
5764     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5765   }
5766 
5767   // Allow for Altivec parameters at the end, if needed.
5768   if (nAltivecParamsAtEnd) {
5769     NumBytes = ((NumBytes+15)/16)*16;
5770     NumBytes += 16*nAltivecParamsAtEnd;
5771   }
5772 
5773   // The prolog code of the callee may store up to 8 GPR argument registers to
5774   // the stack, allowing va_start to index over them in memory if its varargs.
5775   // Because we cannot tell if this is needed on the caller side, we have to
5776   // conservatively assume that it is needed.  As such, make sure we have at
5777   // least enough stack space for the caller to store the 8 GPRs.
5778   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5779 
5780   // Tail call needs the stack to be aligned.
5781   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5782       CallConv == CallingConv::Fast)
5783     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5784 
5785   // Calculate by how many bytes the stack has to be adjusted in case of tail
5786   // call optimization.
5787   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5788 
5789   // To protect arguments on the stack from being clobbered in a tail call,
5790   // force all the loads to happen before doing any other lowering.
5791   if (isTailCall)
5792     Chain = DAG.getStackArgumentTokenFactor(Chain);
5793 
5794   // Adjust the stack pointer for the new arguments...
5795   // These operations are automatically eliminated by the prolog/epilog pass
5796   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5797                                dl);
5798   SDValue CallSeqStart = Chain;
5799 
5800   // Load the return address and frame pointer so it can be move somewhere else
5801   // later.
5802   SDValue LROp, FPOp;
5803   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5804 
5805   // Set up a copy of the stack pointer for use loading and storing any
5806   // arguments that may not fit in the registers available for argument
5807   // passing.
5808   SDValue StackPtr;
5809   if (isPPC64)
5810     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5811   else
5812     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5813 
5814   // Figure out which arguments are going to go in registers, and which in
5815   // memory.  Also, if this is a vararg function, floating point operations
5816   // must be stored to our stack, and loaded into integer regs as well, if
5817   // any integer regs are available for argument passing.
5818   unsigned ArgOffset = LinkageSize;
5819   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5820 
5821   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5822     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5823     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5824   };
5825   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5826     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5827     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5828   };
5829   static const MCPhysReg VR[] = {
5830     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5831     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5832   };
5833   const unsigned NumGPRs = array_lengthof(GPR_32);
5834   const unsigned NumFPRs = 13;
5835   const unsigned NumVRs  = array_lengthof(VR);
5836 
5837   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5838 
5839   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5840   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5841 
5842   SmallVector<SDValue, 8> MemOpChains;
5843   for (unsigned i = 0; i != NumOps; ++i) {
5844     SDValue Arg = OutVals[i];
5845     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5846 
5847     // PtrOff will be used to store the current argument to the stack if a
5848     // register cannot be found for it.
5849     SDValue PtrOff;
5850 
5851     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5852 
5853     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5854 
5855     // On PPC64, promote integers to 64-bit values.
5856     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5857       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5858       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5859       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5860     }
5861 
5862     // FIXME memcpy is used way more than necessary.  Correctness first.
5863     // Note: "by value" is code for passing a structure by value, not
5864     // basic types.
5865     if (Flags.isByVal()) {
5866       unsigned Size = Flags.getByValSize();
5867       // Very small objects are passed right-justified.  Everything else is
5868       // passed left-justified.
5869       if (Size==1 || Size==2) {
5870         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5871         if (GPR_idx != NumGPRs) {
5872           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5873                                         MachinePointerInfo(), VT);
5874           MemOpChains.push_back(Load.getValue(1));
5875           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5876 
5877           ArgOffset += PtrByteSize;
5878         } else {
5879           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5880                                           PtrOff.getValueType());
5881           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5882           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5883                                                             CallSeqStart,
5884                                                             Flags, DAG, dl);
5885           ArgOffset += PtrByteSize;
5886         }
5887         continue;
5888       }
5889       // Copy entire object into memory.  There are cases where gcc-generated
5890       // code assumes it is there, even if it could be put entirely into
5891       // registers.  (This is not what the doc says.)
5892       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5893                                                         CallSeqStart,
5894                                                         Flags, DAG, dl);
5895 
5896       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5897       // copy the pieces of the object that fit into registers from the
5898       // parameter save area.
5899       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5900         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5901         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5902         if (GPR_idx != NumGPRs) {
5903           SDValue Load =
5904               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5905           MemOpChains.push_back(Load.getValue(1));
5906           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5907           ArgOffset += PtrByteSize;
5908         } else {
5909           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5910           break;
5911         }
5912       }
5913       continue;
5914     }
5915 
5916     switch (Arg.getSimpleValueType().SimpleTy) {
5917     default: llvm_unreachable("Unexpected ValueType for argument!");
5918     case MVT::i1:
5919     case MVT::i32:
5920     case MVT::i64:
5921       if (GPR_idx != NumGPRs) {
5922         if (Arg.getValueType() == MVT::i1)
5923           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5924 
5925         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5926       } else {
5927         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5928                          isPPC64, isTailCall, false, MemOpChains,
5929                          TailCallArguments, dl);
5930       }
5931       ArgOffset += PtrByteSize;
5932       break;
5933     case MVT::f32:
5934     case MVT::f64:
5935       if (FPR_idx != NumFPRs) {
5936         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5937 
5938         if (isVarArg) {
5939           SDValue Store =
5940               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5941           MemOpChains.push_back(Store);
5942 
5943           // Float varargs are always shadowed in available integer registers
5944           if (GPR_idx != NumGPRs) {
5945             SDValue Load =
5946                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
5947             MemOpChains.push_back(Load.getValue(1));
5948             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5949           }
5950           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5951             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5952             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5953             SDValue Load =
5954                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
5955             MemOpChains.push_back(Load.getValue(1));
5956             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5957           }
5958         } else {
5959           // If we have any FPRs remaining, we may also have GPRs remaining.
5960           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5961           // GPRs.
5962           if (GPR_idx != NumGPRs)
5963             ++GPR_idx;
5964           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5965               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5966             ++GPR_idx;
5967         }
5968       } else
5969         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5970                          isPPC64, isTailCall, false, MemOpChains,
5971                          TailCallArguments, dl);
5972       if (isPPC64)
5973         ArgOffset += 8;
5974       else
5975         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5976       break;
5977     case MVT::v4f32:
5978     case MVT::v4i32:
5979     case MVT::v8i16:
5980     case MVT::v16i8:
5981       if (isVarArg) {
5982         // These go aligned on the stack, or in the corresponding R registers
5983         // when within range.  The Darwin PPC ABI doc claims they also go in
5984         // V registers; in fact gcc does this only for arguments that are
5985         // prototyped, not for those that match the ...  We do it for all
5986         // arguments, seems to work.
5987         while (ArgOffset % 16 !=0) {
5988           ArgOffset += PtrByteSize;
5989           if (GPR_idx != NumGPRs)
5990             GPR_idx++;
5991         }
5992         // We could elide this store in the case where the object fits
5993         // entirely in R registers.  Maybe later.
5994         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5995                              DAG.getConstant(ArgOffset, dl, PtrVT));
5996         SDValue Store =
5997             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5998         MemOpChains.push_back(Store);
5999         if (VR_idx != NumVRs) {
6000           SDValue Load =
6001               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6002           MemOpChains.push_back(Load.getValue(1));
6003           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6004         }
6005         ArgOffset += 16;
6006         for (unsigned i=0; i<16; i+=PtrByteSize) {
6007           if (GPR_idx == NumGPRs)
6008             break;
6009           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6010                                    DAG.getConstant(i, dl, PtrVT));
6011           SDValue Load =
6012               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6013           MemOpChains.push_back(Load.getValue(1));
6014           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6015         }
6016         break;
6017       }
6018 
6019       // Non-varargs Altivec params generally go in registers, but have
6020       // stack space allocated at the end.
6021       if (VR_idx != NumVRs) {
6022         // Doesn't have GPR space allocated.
6023         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6024       } else if (nAltivecParamsAtEnd==0) {
6025         // We are emitting Altivec params in order.
6026         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6027                          isPPC64, isTailCall, true, MemOpChains,
6028                          TailCallArguments, dl);
6029         ArgOffset += 16;
6030       }
6031       break;
6032     }
6033   }
6034   // If all Altivec parameters fit in registers, as they usually do,
6035   // they get stack space following the non-Altivec parameters.  We
6036   // don't track this here because nobody below needs it.
6037   // If there are more Altivec parameters than fit in registers emit
6038   // the stores here.
6039   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6040     unsigned j = 0;
6041     // Offset is aligned; skip 1st 12 params which go in V registers.
6042     ArgOffset = ((ArgOffset+15)/16)*16;
6043     ArgOffset += 12*16;
6044     for (unsigned i = 0; i != NumOps; ++i) {
6045       SDValue Arg = OutVals[i];
6046       EVT ArgType = Outs[i].VT;
6047       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6048           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6049         if (++j > NumVRs) {
6050           SDValue PtrOff;
6051           // We are emitting Altivec params in order.
6052           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6053                            isPPC64, isTailCall, true, MemOpChains,
6054                            TailCallArguments, dl);
6055           ArgOffset += 16;
6056         }
6057       }
6058     }
6059   }
6060 
6061   if (!MemOpChains.empty())
6062     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6063 
6064   // On Darwin, R12 must contain the address of an indirect callee.  This does
6065   // not mean the MTCTR instruction must use R12; it's easier to model this as
6066   // an extra parameter, so do that.
6067   if (!isTailCall &&
6068       !isFunctionGlobalAddress(Callee) &&
6069       !isa<ExternalSymbolSDNode>(Callee) &&
6070       !isBLACompatibleAddress(Callee, DAG))
6071     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6072                                                    PPC::R12), Callee));
6073 
6074   // Build a sequence of copy-to-reg nodes chained together with token chain
6075   // and flag operands which copy the outgoing args into the appropriate regs.
6076   SDValue InFlag;
6077   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6078     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6079                              RegsToPass[i].second, InFlag);
6080     InFlag = Chain.getValue(1);
6081   }
6082 
6083   if (isTailCall)
6084     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6085                     TailCallArguments);
6086 
6087   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6088                     /* unused except on PPC64 ELFv1 */ false, DAG,
6089                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6090                     NumBytes, Ins, InVals, CS);
6091 }
6092 
6093 bool
6094 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6095                                   MachineFunction &MF, bool isVarArg,
6096                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6097                                   LLVMContext &Context) const {
6098   SmallVector<CCValAssign, 16> RVLocs;
6099   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6100   return CCInfo.CheckReturn(Outs, RetCC_PPC);
6101 }
6102 
6103 SDValue
6104 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6105                                bool isVarArg,
6106                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6107                                const SmallVectorImpl<SDValue> &OutVals,
6108                                const SDLoc &dl, SelectionDAG &DAG) const {
6109   SmallVector<CCValAssign, 16> RVLocs;
6110   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6111                  *DAG.getContext());
6112   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6113 
6114   SDValue Flag;
6115   SmallVector<SDValue, 4> RetOps(1, Chain);
6116 
6117   // Copy the result values into the output registers.
6118   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6119     CCValAssign &VA = RVLocs[i];
6120     assert(VA.isRegLoc() && "Can only return in registers!");
6121 
6122     SDValue Arg = OutVals[i];
6123 
6124     switch (VA.getLocInfo()) {
6125     default: llvm_unreachable("Unknown loc info!");
6126     case CCValAssign::Full: break;
6127     case CCValAssign::AExt:
6128       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6129       break;
6130     case CCValAssign::ZExt:
6131       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6132       break;
6133     case CCValAssign::SExt:
6134       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6135       break;
6136     }
6137 
6138     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6139     Flag = Chain.getValue(1);
6140     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6141   }
6142 
6143   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6144   const MCPhysReg *I =
6145     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6146   if (I) {
6147     for (; *I; ++I) {
6148 
6149       if (PPC::G8RCRegClass.contains(*I))
6150         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6151       else if (PPC::F8RCRegClass.contains(*I))
6152         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6153       else if (PPC::CRRCRegClass.contains(*I))
6154         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6155       else if (PPC::VRRCRegClass.contains(*I))
6156         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6157       else
6158         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6159     }
6160   }
6161 
6162   RetOps[0] = Chain;  // Update chain.
6163 
6164   // Add the flag if we have it.
6165   if (Flag.getNode())
6166     RetOps.push_back(Flag);
6167 
6168   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6169 }
6170 
6171 SDValue
6172 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6173                                                 SelectionDAG &DAG) const {
6174   SDLoc dl(Op);
6175 
6176   // Get the corect type for integers.
6177   EVT IntVT = Op.getValueType();
6178 
6179   // Get the inputs.
6180   SDValue Chain = Op.getOperand(0);
6181   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6182   // Build a DYNAREAOFFSET node.
6183   SDValue Ops[2] = {Chain, FPSIdx};
6184   SDVTList VTs = DAG.getVTList(IntVT);
6185   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6186 }
6187 
6188 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6189                                              SelectionDAG &DAG) const {
6190   // When we pop the dynamic allocation we need to restore the SP link.
6191   SDLoc dl(Op);
6192 
6193   // Get the corect type for pointers.
6194   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6195 
6196   // Construct the stack pointer operand.
6197   bool isPPC64 = Subtarget.isPPC64();
6198   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6199   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6200 
6201   // Get the operands for the STACKRESTORE.
6202   SDValue Chain = Op.getOperand(0);
6203   SDValue SaveSP = Op.getOperand(1);
6204 
6205   // Load the old link SP.
6206   SDValue LoadLinkSP =
6207       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6208 
6209   // Restore the stack pointer.
6210   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6211 
6212   // Store the old link SP.
6213   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6214 }
6215 
6216 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6217   MachineFunction &MF = DAG.getMachineFunction();
6218   bool isPPC64 = Subtarget.isPPC64();
6219   EVT PtrVT = getPointerTy(MF.getDataLayout());
6220 
6221   // Get current frame pointer save index.  The users of this index will be
6222   // primarily DYNALLOC instructions.
6223   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6224   int RASI = FI->getReturnAddrSaveIndex();
6225 
6226   // If the frame pointer save index hasn't been defined yet.
6227   if (!RASI) {
6228     // Find out what the fix offset of the frame pointer save area.
6229     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6230     // Allocate the frame index for frame pointer save area.
6231     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6232     // Save the result.
6233     FI->setReturnAddrSaveIndex(RASI);
6234   }
6235   return DAG.getFrameIndex(RASI, PtrVT);
6236 }
6237 
6238 SDValue
6239 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6240   MachineFunction &MF = DAG.getMachineFunction();
6241   bool isPPC64 = Subtarget.isPPC64();
6242   EVT PtrVT = getPointerTy(MF.getDataLayout());
6243 
6244   // Get current frame pointer save index.  The users of this index will be
6245   // primarily DYNALLOC instructions.
6246   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6247   int FPSI = FI->getFramePointerSaveIndex();
6248 
6249   // If the frame pointer save index hasn't been defined yet.
6250   if (!FPSI) {
6251     // Find out what the fix offset of the frame pointer save area.
6252     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6253     // Allocate the frame index for frame pointer save area.
6254     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6255     // Save the result.
6256     FI->setFramePointerSaveIndex(FPSI);
6257   }
6258   return DAG.getFrameIndex(FPSI, PtrVT);
6259 }
6260 
6261 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6262                                                    SelectionDAG &DAG) const {
6263   // Get the inputs.
6264   SDValue Chain = Op.getOperand(0);
6265   SDValue Size  = Op.getOperand(1);
6266   SDLoc dl(Op);
6267 
6268   // Get the corect type for pointers.
6269   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6270   // Negate the size.
6271   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6272                                 DAG.getConstant(0, dl, PtrVT), Size);
6273   // Construct a node for the frame pointer save index.
6274   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6275   // Build a DYNALLOC node.
6276   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6277   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6278   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6279 }
6280 
6281 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6282                                                      SelectionDAG &DAG) const {
6283   MachineFunction &MF = DAG.getMachineFunction();
6284 
6285   bool isPPC64 = Subtarget.isPPC64();
6286   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6287 
6288   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6289   return DAG.getFrameIndex(FI, PtrVT);
6290 }
6291 
6292 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6293                                                SelectionDAG &DAG) const {
6294   SDLoc DL(Op);
6295   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6296                      DAG.getVTList(MVT::i32, MVT::Other),
6297                      Op.getOperand(0), Op.getOperand(1));
6298 }
6299 
6300 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6301                                                 SelectionDAG &DAG) const {
6302   SDLoc DL(Op);
6303   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6304                      Op.getOperand(0), Op.getOperand(1));
6305 }
6306 
6307 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6308   if (Op.getValueType().isVector())
6309     return LowerVectorLoad(Op, DAG);
6310 
6311   assert(Op.getValueType() == MVT::i1 &&
6312          "Custom lowering only for i1 loads");
6313 
6314   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6315 
6316   SDLoc dl(Op);
6317   LoadSDNode *LD = cast<LoadSDNode>(Op);
6318 
6319   SDValue Chain = LD->getChain();
6320   SDValue BasePtr = LD->getBasePtr();
6321   MachineMemOperand *MMO = LD->getMemOperand();
6322 
6323   SDValue NewLD =
6324       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6325                      BasePtr, MVT::i8, MMO);
6326   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6327 
6328   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6329   return DAG.getMergeValues(Ops, dl);
6330 }
6331 
6332 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6333   if (Op.getOperand(1).getValueType().isVector())
6334     return LowerVectorStore(Op, DAG);
6335 
6336   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6337          "Custom lowering only for i1 stores");
6338 
6339   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6340 
6341   SDLoc dl(Op);
6342   StoreSDNode *ST = cast<StoreSDNode>(Op);
6343 
6344   SDValue Chain = ST->getChain();
6345   SDValue BasePtr = ST->getBasePtr();
6346   SDValue Value = ST->getValue();
6347   MachineMemOperand *MMO = ST->getMemOperand();
6348 
6349   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6350                       Value);
6351   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6352 }
6353 
6354 // FIXME: Remove this once the ANDI glue bug is fixed:
6355 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6356   assert(Op.getValueType() == MVT::i1 &&
6357          "Custom lowering only for i1 results");
6358 
6359   SDLoc DL(Op);
6360   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6361                      Op.getOperand(0));
6362 }
6363 
6364 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6365 /// possible.
6366 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6367   // Not FP? Not a fsel.
6368   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6369       !Op.getOperand(2).getValueType().isFloatingPoint())
6370     return Op;
6371 
6372   // We might be able to do better than this under some circumstances, but in
6373   // general, fsel-based lowering of select is a finite-math-only optimization.
6374   // For more information, see section F.3 of the 2.06 ISA specification.
6375   if (!DAG.getTarget().Options.NoInfsFPMath ||
6376       !DAG.getTarget().Options.NoNaNsFPMath)
6377     return Op;
6378   // TODO: Propagate flags from the select rather than global settings.
6379   SDNodeFlags Flags;
6380   Flags.setNoInfs(true);
6381   Flags.setNoNaNs(true);
6382 
6383   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6384 
6385   EVT ResVT = Op.getValueType();
6386   EVT CmpVT = Op.getOperand(0).getValueType();
6387   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6388   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6389   SDLoc dl(Op);
6390 
6391   // If the RHS of the comparison is a 0.0, we don't need to do the
6392   // subtraction at all.
6393   SDValue Sel1;
6394   if (isFloatingPointZero(RHS))
6395     switch (CC) {
6396     default: break;       // SETUO etc aren't handled by fsel.
6397     case ISD::SETNE:
6398       std::swap(TV, FV);
6399     case ISD::SETEQ:
6400       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6401         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6402       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6403       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6404         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6405       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6406                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6407     case ISD::SETULT:
6408     case ISD::SETLT:
6409       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6410     case ISD::SETOGE:
6411     case ISD::SETGE:
6412       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6413         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6414       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6415     case ISD::SETUGT:
6416     case ISD::SETGT:
6417       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6418     case ISD::SETOLE:
6419     case ISD::SETLE:
6420       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6421         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6422       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6423                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6424     }
6425 
6426   SDValue Cmp;
6427   switch (CC) {
6428   default: break;       // SETUO etc aren't handled by fsel.
6429   case ISD::SETNE:
6430     std::swap(TV, FV);
6431   case ISD::SETEQ:
6432     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6433     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6434       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6435     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6436     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6437       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6438     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6439                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6440   case ISD::SETULT:
6441   case ISD::SETLT:
6442     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6443     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6444       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6445     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6446   case ISD::SETOGE:
6447   case ISD::SETGE:
6448     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6449     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6450       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6451     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6452   case ISD::SETUGT:
6453   case ISD::SETGT:
6454     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6455     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6456       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6457     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6458   case ISD::SETOLE:
6459   case ISD::SETLE:
6460     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6461     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6462       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6463     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6464   }
6465   return Op;
6466 }
6467 
6468 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6469                                                SelectionDAG &DAG,
6470                                                const SDLoc &dl) const {
6471   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6472   SDValue Src = Op.getOperand(0);
6473   if (Src.getValueType() == MVT::f32)
6474     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6475 
6476   SDValue Tmp;
6477   switch (Op.getSimpleValueType().SimpleTy) {
6478   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6479   case MVT::i32:
6480     Tmp = DAG.getNode(
6481         Op.getOpcode() == ISD::FP_TO_SINT
6482             ? PPCISD::FCTIWZ
6483             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6484         dl, MVT::f64, Src);
6485     break;
6486   case MVT::i64:
6487     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6488            "i64 FP_TO_UINT is supported only with FPCVT");
6489     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6490                                                         PPCISD::FCTIDUZ,
6491                       dl, MVT::f64, Src);
6492     break;
6493   }
6494 
6495   // Convert the FP value to an int value through memory.
6496   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6497     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6498   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6499   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6500   MachinePointerInfo MPI =
6501       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6502 
6503   // Emit a store to the stack slot.
6504   SDValue Chain;
6505   if (i32Stack) {
6506     MachineFunction &MF = DAG.getMachineFunction();
6507     MachineMemOperand *MMO =
6508       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6509     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6510     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6511               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6512   } else
6513     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6514 
6515   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6516   // add in a bias on big endian.
6517   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6518     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6519                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6520     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6521   }
6522 
6523   RLI.Chain = Chain;
6524   RLI.Ptr = FIPtr;
6525   RLI.MPI = MPI;
6526 }
6527 
6528 /// \brief Custom lowers floating point to integer conversions to use
6529 /// the direct move instructions available in ISA 2.07 to avoid the
6530 /// need for load/store combinations.
6531 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6532                                                     SelectionDAG &DAG,
6533                                                     const SDLoc &dl) const {
6534   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6535   SDValue Src = Op.getOperand(0);
6536 
6537   if (Src.getValueType() == MVT::f32)
6538     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6539 
6540   SDValue Tmp;
6541   switch (Op.getSimpleValueType().SimpleTy) {
6542   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6543   case MVT::i32:
6544     Tmp = DAG.getNode(
6545         Op.getOpcode() == ISD::FP_TO_SINT
6546             ? PPCISD::FCTIWZ
6547             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6548         dl, MVT::f64, Src);
6549     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6550     break;
6551   case MVT::i64:
6552     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6553            "i64 FP_TO_UINT is supported only with FPCVT");
6554     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6555                                                         PPCISD::FCTIDUZ,
6556                       dl, MVT::f64, Src);
6557     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6558     break;
6559   }
6560   return Tmp;
6561 }
6562 
6563 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6564                                           const SDLoc &dl) const {
6565   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6566     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6567 
6568   ReuseLoadInfo RLI;
6569   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6570 
6571   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6572                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6573 }
6574 
6575 // We're trying to insert a regular store, S, and then a load, L. If the
6576 // incoming value, O, is a load, we might just be able to have our load use the
6577 // address used by O. However, we don't know if anything else will store to
6578 // that address before we can load from it. To prevent this situation, we need
6579 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6580 // the same chain operand as O, we create a token factor from the chain results
6581 // of O and L, and we replace all uses of O's chain result with that token
6582 // factor (see spliceIntoChain below for this last part).
6583 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6584                                             ReuseLoadInfo &RLI,
6585                                             SelectionDAG &DAG,
6586                                             ISD::LoadExtType ET) const {
6587   SDLoc dl(Op);
6588   if (ET == ISD::NON_EXTLOAD &&
6589       (Op.getOpcode() == ISD::FP_TO_UINT ||
6590        Op.getOpcode() == ISD::FP_TO_SINT) &&
6591       isOperationLegalOrCustom(Op.getOpcode(),
6592                                Op.getOperand(0).getValueType())) {
6593 
6594     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6595     return true;
6596   }
6597 
6598   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6599   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6600       LD->isNonTemporal())
6601     return false;
6602   if (LD->getMemoryVT() != MemVT)
6603     return false;
6604 
6605   RLI.Ptr = LD->getBasePtr();
6606   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6607     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6608            "Non-pre-inc AM on PPC?");
6609     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6610                           LD->getOffset());
6611   }
6612 
6613   RLI.Chain = LD->getChain();
6614   RLI.MPI = LD->getPointerInfo();
6615   RLI.IsDereferenceable = LD->isDereferenceable();
6616   RLI.IsInvariant = LD->isInvariant();
6617   RLI.Alignment = LD->getAlignment();
6618   RLI.AAInfo = LD->getAAInfo();
6619   RLI.Ranges = LD->getRanges();
6620 
6621   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6622   return true;
6623 }
6624 
6625 // Given the head of the old chain, ResChain, insert a token factor containing
6626 // it and NewResChain, and make users of ResChain now be users of that token
6627 // factor.
6628 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6629                                         SDValue NewResChain,
6630                                         SelectionDAG &DAG) const {
6631   if (!ResChain)
6632     return;
6633 
6634   SDLoc dl(NewResChain);
6635 
6636   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6637                            NewResChain, DAG.getUNDEF(MVT::Other));
6638   assert(TF.getNode() != NewResChain.getNode() &&
6639          "A new TF really is required here");
6640 
6641   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6642   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6643 }
6644 
6645 /// \brief Analyze profitability of direct move
6646 /// prefer float load to int load plus direct move
6647 /// when there is no integer use of int load
6648 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
6649   SDNode *Origin = Op.getOperand(0).getNode();
6650   if (Origin->getOpcode() != ISD::LOAD)
6651     return true;
6652 
6653   // If there is no LXSIBZX/LXSIHZX, like Power8,
6654   // prefer direct move if the memory size is 1 or 2 bytes.
6655   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
6656   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
6657     return true;
6658 
6659   for (SDNode::use_iterator UI = Origin->use_begin(),
6660                             UE = Origin->use_end();
6661        UI != UE; ++UI) {
6662 
6663     // Only look at the users of the loaded value.
6664     if (UI.getUse().get().getResNo() != 0)
6665       continue;
6666 
6667     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6668         UI->getOpcode() != ISD::UINT_TO_FP)
6669       return true;
6670   }
6671 
6672   return false;
6673 }
6674 
6675 /// \brief Custom lowers integer to floating point conversions to use
6676 /// the direct move instructions available in ISA 2.07 to avoid the
6677 /// need for load/store combinations.
6678 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6679                                                     SelectionDAG &DAG,
6680                                                     const SDLoc &dl) const {
6681   assert((Op.getValueType() == MVT::f32 ||
6682           Op.getValueType() == MVT::f64) &&
6683          "Invalid floating point type as target of conversion");
6684   assert(Subtarget.hasFPCVT() &&
6685          "Int to FP conversions with direct moves require FPCVT");
6686   SDValue FP;
6687   SDValue Src = Op.getOperand(0);
6688   bool SinglePrec = Op.getValueType() == MVT::f32;
6689   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6690   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6691   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6692                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6693 
6694   if (WordInt) {
6695     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6696                      dl, MVT::f64, Src);
6697     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6698   }
6699   else {
6700     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6701     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6702   }
6703 
6704   return FP;
6705 }
6706 
6707 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6708                                           SelectionDAG &DAG) const {
6709   SDLoc dl(Op);
6710 
6711   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6712     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6713       return SDValue();
6714 
6715     SDValue Value = Op.getOperand(0);
6716     // The values are now known to be -1 (false) or 1 (true). To convert this
6717     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6718     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6719     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6720 
6721     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6722 
6723     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6724 
6725     if (Op.getValueType() != MVT::v4f64)
6726       Value = DAG.getNode(ISD::FP_ROUND, dl,
6727                           Op.getValueType(), Value,
6728                           DAG.getIntPtrConstant(1, dl));
6729     return Value;
6730   }
6731 
6732   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6733   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6734     return SDValue();
6735 
6736   if (Op.getOperand(0).getValueType() == MVT::i1)
6737     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6738                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6739                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6740 
6741   // If we have direct moves, we can do all the conversion, skip the store/load
6742   // however, without FPCVT we can't do most conversions.
6743   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6744       Subtarget.isPPC64() && Subtarget.hasFPCVT())
6745     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6746 
6747   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6748          "UINT_TO_FP is supported only with FPCVT");
6749 
6750   // If we have FCFIDS, then use it when converting to single-precision.
6751   // Otherwise, convert to double-precision and then round.
6752   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6753                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6754                                                             : PPCISD::FCFIDS)
6755                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6756                                                             : PPCISD::FCFID);
6757   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6758                   ? MVT::f32
6759                   : MVT::f64;
6760 
6761   if (Op.getOperand(0).getValueType() == MVT::i64) {
6762     SDValue SINT = Op.getOperand(0);
6763     // When converting to single-precision, we actually need to convert
6764     // to double-precision first and then round to single-precision.
6765     // To avoid double-rounding effects during that operation, we have
6766     // to prepare the input operand.  Bits that might be truncated when
6767     // converting to double-precision are replaced by a bit that won't
6768     // be lost at this stage, but is below the single-precision rounding
6769     // position.
6770     //
6771     // However, if -enable-unsafe-fp-math is in effect, accept double
6772     // rounding to avoid the extra overhead.
6773     if (Op.getValueType() == MVT::f32 &&
6774         !Subtarget.hasFPCVT() &&
6775         !DAG.getTarget().Options.UnsafeFPMath) {
6776 
6777       // Twiddle input to make sure the low 11 bits are zero.  (If this
6778       // is the case, we are guaranteed the value will fit into the 53 bit
6779       // mantissa of an IEEE double-precision value without rounding.)
6780       // If any of those low 11 bits were not zero originally, make sure
6781       // bit 12 (value 2048) is set instead, so that the final rounding
6782       // to single-precision gets the correct result.
6783       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6784                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6785       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6786                           Round, DAG.getConstant(2047, dl, MVT::i64));
6787       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6788       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6789                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6790 
6791       // However, we cannot use that value unconditionally: if the magnitude
6792       // of the input value is small, the bit-twiddling we did above might
6793       // end up visibly changing the output.  Fortunately, in that case, we
6794       // don't need to twiddle bits since the original input will convert
6795       // exactly to double-precision floating-point already.  Therefore,
6796       // construct a conditional to use the original value if the top 11
6797       // bits are all sign-bit copies, and use the rounded value computed
6798       // above otherwise.
6799       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6800                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6801       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6802                          Cond, DAG.getConstant(1, dl, MVT::i64));
6803       Cond = DAG.getSetCC(dl, MVT::i32,
6804                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6805 
6806       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6807     }
6808 
6809     ReuseLoadInfo RLI;
6810     SDValue Bits;
6811 
6812     MachineFunction &MF = DAG.getMachineFunction();
6813     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6814       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6815                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6816       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6817     } else if (Subtarget.hasLFIWAX() &&
6818                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6819       MachineMemOperand *MMO =
6820         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6821                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6822       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6823       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6824                                      DAG.getVTList(MVT::f64, MVT::Other),
6825                                      Ops, MVT::i32, MMO);
6826       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6827     } else if (Subtarget.hasFPCVT() &&
6828                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6829       MachineMemOperand *MMO =
6830         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6831                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6832       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6833       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6834                                      DAG.getVTList(MVT::f64, MVT::Other),
6835                                      Ops, MVT::i32, MMO);
6836       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6837     } else if (((Subtarget.hasLFIWAX() &&
6838                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6839                 (Subtarget.hasFPCVT() &&
6840                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6841                SINT.getOperand(0).getValueType() == MVT::i32) {
6842       MachineFrameInfo &MFI = MF.getFrameInfo();
6843       EVT PtrVT = getPointerTy(DAG.getDataLayout());
6844 
6845       int FrameIdx = MFI.CreateStackObject(4, 4, false);
6846       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6847 
6848       SDValue Store =
6849           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6850                        MachinePointerInfo::getFixedStack(
6851                            DAG.getMachineFunction(), FrameIdx));
6852 
6853       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6854              "Expected an i32 store");
6855 
6856       RLI.Ptr = FIdx;
6857       RLI.Chain = Store;
6858       RLI.MPI =
6859           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6860       RLI.Alignment = 4;
6861 
6862       MachineMemOperand *MMO =
6863         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6864                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6865       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6866       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6867                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6868                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6869                                      Ops, MVT::i32, MMO);
6870     } else
6871       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6872 
6873     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6874 
6875     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6876       FP = DAG.getNode(ISD::FP_ROUND, dl,
6877                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6878     return FP;
6879   }
6880 
6881   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6882          "Unhandled INT_TO_FP type in custom expander!");
6883   // Since we only generate this in 64-bit mode, we can take advantage of
6884   // 64-bit registers.  In particular, sign extend the input value into the
6885   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6886   // then lfd it and fcfid it.
6887   MachineFunction &MF = DAG.getMachineFunction();
6888   MachineFrameInfo &MFI = MF.getFrameInfo();
6889   EVT PtrVT = getPointerTy(MF.getDataLayout());
6890 
6891   SDValue Ld;
6892   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6893     ReuseLoadInfo RLI;
6894     bool ReusingLoad;
6895     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6896                                             DAG))) {
6897       int FrameIdx = MFI.CreateStackObject(4, 4, false);
6898       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6899 
6900       SDValue Store =
6901           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6902                        MachinePointerInfo::getFixedStack(
6903                            DAG.getMachineFunction(), FrameIdx));
6904 
6905       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6906              "Expected an i32 store");
6907 
6908       RLI.Ptr = FIdx;
6909       RLI.Chain = Store;
6910       RLI.MPI =
6911           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6912       RLI.Alignment = 4;
6913     }
6914 
6915     MachineMemOperand *MMO =
6916       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6917                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6918     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6919     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6920                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6921                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6922                                  Ops, MVT::i32, MMO);
6923     if (ReusingLoad)
6924       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6925   } else {
6926     assert(Subtarget.isPPC64() &&
6927            "i32->FP without LFIWAX supported only on PPC64");
6928 
6929     int FrameIdx = MFI.CreateStackObject(8, 8, false);
6930     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6931 
6932     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6933                                 Op.getOperand(0));
6934 
6935     // STD the extended value into the stack slot.
6936     SDValue Store = DAG.getStore(
6937         DAG.getEntryNode(), dl, Ext64, FIdx,
6938         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
6939 
6940     // Load the value as a double.
6941     Ld = DAG.getLoad(
6942         MVT::f64, dl, Store, FIdx,
6943         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
6944   }
6945 
6946   // FCFID it and return it.
6947   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6948   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6949     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6950                      DAG.getIntPtrConstant(0, dl));
6951   return FP;
6952 }
6953 
6954 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6955                                             SelectionDAG &DAG) const {
6956   SDLoc dl(Op);
6957   /*
6958    The rounding mode is in bits 30:31 of FPSR, and has the following
6959    settings:
6960      00 Round to nearest
6961      01 Round to 0
6962      10 Round to +inf
6963      11 Round to -inf
6964 
6965   FLT_ROUNDS, on the other hand, expects the following:
6966     -1 Undefined
6967      0 Round to 0
6968      1 Round to nearest
6969      2 Round to +inf
6970      3 Round to -inf
6971 
6972   To perform the conversion, we do:
6973     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6974   */
6975 
6976   MachineFunction &MF = DAG.getMachineFunction();
6977   EVT VT = Op.getValueType();
6978   EVT PtrVT = getPointerTy(MF.getDataLayout());
6979 
6980   // Save FP Control Word to register
6981   EVT NodeTys[] = {
6982     MVT::f64,    // return register
6983     MVT::Glue    // unused in this context
6984   };
6985   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6986 
6987   // Save FP register to stack slot
6988   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
6989   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6990   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
6991                                MachinePointerInfo());
6992 
6993   // Load FP Control Word from low 32 bits of stack slot.
6994   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6995   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6996   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
6997 
6998   // Transform as necessary
6999   SDValue CWD1 =
7000     DAG.getNode(ISD::AND, dl, MVT::i32,
7001                 CWD, DAG.getConstant(3, dl, MVT::i32));
7002   SDValue CWD2 =
7003     DAG.getNode(ISD::SRL, dl, MVT::i32,
7004                 DAG.getNode(ISD::AND, dl, MVT::i32,
7005                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7006                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7007                             DAG.getConstant(3, dl, MVT::i32)),
7008                 DAG.getConstant(1, dl, MVT::i32));
7009 
7010   SDValue RetVal =
7011     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7012 
7013   return DAG.getNode((VT.getSizeInBits() < 16 ?
7014                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7015 }
7016 
7017 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7018   EVT VT = Op.getValueType();
7019   unsigned BitWidth = VT.getSizeInBits();
7020   SDLoc dl(Op);
7021   assert(Op.getNumOperands() == 3 &&
7022          VT == Op.getOperand(1).getValueType() &&
7023          "Unexpected SHL!");
7024 
7025   // Expand into a bunch of logical ops.  Note that these ops
7026   // depend on the PPC behavior for oversized shift amounts.
7027   SDValue Lo = Op.getOperand(0);
7028   SDValue Hi = Op.getOperand(1);
7029   SDValue Amt = Op.getOperand(2);
7030   EVT AmtVT = Amt.getValueType();
7031 
7032   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7033                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7034   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7035   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7036   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7037   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7038                              DAG.getConstant(-BitWidth, dl, AmtVT));
7039   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7040   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7041   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7042   SDValue OutOps[] = { OutLo, OutHi };
7043   return DAG.getMergeValues(OutOps, dl);
7044 }
7045 
7046 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7047   EVT VT = Op.getValueType();
7048   SDLoc dl(Op);
7049   unsigned BitWidth = VT.getSizeInBits();
7050   assert(Op.getNumOperands() == 3 &&
7051          VT == Op.getOperand(1).getValueType() &&
7052          "Unexpected SRL!");
7053 
7054   // Expand into a bunch of logical ops.  Note that these ops
7055   // depend on the PPC behavior for oversized shift amounts.
7056   SDValue Lo = Op.getOperand(0);
7057   SDValue Hi = Op.getOperand(1);
7058   SDValue Amt = Op.getOperand(2);
7059   EVT AmtVT = Amt.getValueType();
7060 
7061   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7062                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7063   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7064   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7065   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7066   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7067                              DAG.getConstant(-BitWidth, dl, AmtVT));
7068   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7069   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7070   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7071   SDValue OutOps[] = { OutLo, OutHi };
7072   return DAG.getMergeValues(OutOps, dl);
7073 }
7074 
7075 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7076   SDLoc dl(Op);
7077   EVT VT = Op.getValueType();
7078   unsigned BitWidth = VT.getSizeInBits();
7079   assert(Op.getNumOperands() == 3 &&
7080          VT == Op.getOperand(1).getValueType() &&
7081          "Unexpected SRA!");
7082 
7083   // Expand into a bunch of logical ops, followed by a select_cc.
7084   SDValue Lo = Op.getOperand(0);
7085   SDValue Hi = Op.getOperand(1);
7086   SDValue Amt = Op.getOperand(2);
7087   EVT AmtVT = Amt.getValueType();
7088 
7089   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7090                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7091   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7092   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7093   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7094   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7095                              DAG.getConstant(-BitWidth, dl, AmtVT));
7096   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7097   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7098   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7099                                   Tmp4, Tmp6, ISD::SETLE);
7100   SDValue OutOps[] = { OutLo, OutHi };
7101   return DAG.getMergeValues(OutOps, dl);
7102 }
7103 
7104 //===----------------------------------------------------------------------===//
7105 // Vector related lowering.
7106 //
7107 
7108 /// BuildSplatI - Build a canonical splati of Val with an element size of
7109 /// SplatSize.  Cast the result to VT.
7110 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7111                            SelectionDAG &DAG, const SDLoc &dl) {
7112   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7113 
7114   static const MVT VTys[] = { // canonical VT to use for each size.
7115     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7116   };
7117 
7118   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7119 
7120   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7121   if (Val == -1)
7122     SplatSize = 1;
7123 
7124   EVT CanonicalVT = VTys[SplatSize-1];
7125 
7126   // Build a canonical splat for this value.
7127   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7128 }
7129 
7130 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7131 /// specified intrinsic ID.
7132 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7133                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7134   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7135   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7136                      DAG.getConstant(IID, dl, MVT::i32), Op);
7137 }
7138 
7139 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7140 /// specified intrinsic ID.
7141 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7142                                 SelectionDAG &DAG, const SDLoc &dl,
7143                                 EVT DestVT = MVT::Other) {
7144   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7145   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7146                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7147 }
7148 
7149 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7150 /// specified intrinsic ID.
7151 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7152                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7153                                 EVT DestVT = MVT::Other) {
7154   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7155   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7156                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7157 }
7158 
7159 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7160 /// amount.  The result has the specified value type.
7161 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7162                            SelectionDAG &DAG, const SDLoc &dl) {
7163   // Force LHS/RHS to be the right type.
7164   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7165   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7166 
7167   int Ops[16];
7168   for (unsigned i = 0; i != 16; ++i)
7169     Ops[i] = i + Amt;
7170   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7171   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7172 }
7173 
7174 /// Do we have an efficient pattern in a .td file for this node?
7175 ///
7176 /// \param V - pointer to the BuildVectorSDNode being matched
7177 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7178 ///
7179 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7180 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7181 /// the opposite is true (expansion is beneficial) are:
7182 /// - The node builds a vector out of integers that are not 32 or 64-bits
7183 /// - The node builds a vector out of constants
7184 /// - The node is a "load-and-splat"
7185 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7186 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7187                                             bool HasDirectMove) {
7188   EVT VecVT = V->getValueType(0);
7189   bool RightType = VecVT == MVT::v2f64 || VecVT == MVT::v4f32 ||
7190     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7191   if (!RightType)
7192     return false;
7193 
7194   bool IsSplat = true;
7195   bool IsLoad = false;
7196   SDValue Op0 = V->getOperand(0);
7197 
7198   // This function is called in a block that confirms the node is not a constant
7199   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7200   // different constants.
7201   if (V->isConstant())
7202     return false;
7203   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7204     if (V->getOperand(i).isUndef())
7205       return false;
7206     // We want to expand nodes that represent load-and-splat even if the
7207     // loaded value is a floating point truncation or conversion to int.
7208     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7209         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7210          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7211         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7212          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7213         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7214          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7215       IsLoad = true;
7216     // If the operands are different or the input is not a load and has more
7217     // uses than just this BV node, then it isn't a splat.
7218     if (V->getOperand(i) != Op0 ||
7219         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7220       IsSplat = false;
7221   }
7222   return !(IsSplat && IsLoad);
7223 }
7224 
7225 // If this is a case we can't handle, return null and let the default
7226 // expansion code take care of it.  If we CAN select this case, and if it
7227 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7228 // this case more efficiently than a constant pool load, lower it to the
7229 // sequence of ops that should be used.
7230 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7231                                              SelectionDAG &DAG) const {
7232   SDLoc dl(Op);
7233   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7234   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7235 
7236   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7237     // We first build an i32 vector, load it into a QPX register,
7238     // then convert it to a floating-point vector and compare it
7239     // to a zero vector to get the boolean result.
7240     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7241     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7242     MachinePointerInfo PtrInfo =
7243         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7244     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7245     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7246 
7247     assert(BVN->getNumOperands() == 4 &&
7248       "BUILD_VECTOR for v4i1 does not have 4 operands");
7249 
7250     bool IsConst = true;
7251     for (unsigned i = 0; i < 4; ++i) {
7252       if (BVN->getOperand(i).isUndef()) continue;
7253       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7254         IsConst = false;
7255         break;
7256       }
7257     }
7258 
7259     if (IsConst) {
7260       Constant *One =
7261         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7262       Constant *NegOne =
7263         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7264 
7265       Constant *CV[4];
7266       for (unsigned i = 0; i < 4; ++i) {
7267         if (BVN->getOperand(i).isUndef())
7268           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7269         else if (isNullConstant(BVN->getOperand(i)))
7270           CV[i] = NegOne;
7271         else
7272           CV[i] = One;
7273       }
7274 
7275       Constant *CP = ConstantVector::get(CV);
7276       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7277                                           16 /* alignment */);
7278 
7279       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7280       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7281       return DAG.getMemIntrinsicNode(
7282           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7283           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7284     }
7285 
7286     SmallVector<SDValue, 4> Stores;
7287     for (unsigned i = 0; i < 4; ++i) {
7288       if (BVN->getOperand(i).isUndef()) continue;
7289 
7290       unsigned Offset = 4*i;
7291       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7292       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7293 
7294       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7295       if (StoreSize > 4) {
7296         Stores.push_back(
7297             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7298                               PtrInfo.getWithOffset(Offset), MVT::i32));
7299       } else {
7300         SDValue StoreValue = BVN->getOperand(i);
7301         if (StoreSize < 4)
7302           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7303 
7304         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7305                                       PtrInfo.getWithOffset(Offset)));
7306       }
7307     }
7308 
7309     SDValue StoreChain;
7310     if (!Stores.empty())
7311       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7312     else
7313       StoreChain = DAG.getEntryNode();
7314 
7315     // Now load from v4i32 into the QPX register; this will extend it to
7316     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7317     // is typed as v4f64 because the QPX register integer states are not
7318     // explicitly represented.
7319 
7320     SDValue Ops[] = {StoreChain,
7321                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7322                      FIdx};
7323     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7324 
7325     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7326       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7327     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7328       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7329       LoadedVect);
7330 
7331     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7332 
7333     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7334   }
7335 
7336   // All other QPX vectors are handled by generic code.
7337   if (Subtarget.hasQPX())
7338     return SDValue();
7339 
7340   // Check if this is a splat of a constant value.
7341   APInt APSplatBits, APSplatUndef;
7342   unsigned SplatBitSize;
7343   bool HasAnyUndefs;
7344   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7345                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7346       SplatBitSize > 32) {
7347     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7348     // lowered to VSX instructions under certain conditions.
7349     // Without VSX, there is no pattern more efficient than expanding the node.
7350     if (Subtarget.hasVSX() &&
7351         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove()))
7352       return Op;
7353     return SDValue();
7354   }
7355 
7356   unsigned SplatBits = APSplatBits.getZExtValue();
7357   unsigned SplatUndef = APSplatUndef.getZExtValue();
7358   unsigned SplatSize = SplatBitSize / 8;
7359 
7360   // First, handle single instruction cases.
7361 
7362   // All zeros?
7363   if (SplatBits == 0) {
7364     // Canonicalize all zero vectors to be v4i32.
7365     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7366       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7367       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7368     }
7369     return Op;
7370   }
7371 
7372   // We have XXSPLTIB for constant splats one byte wide
7373   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7374     // This is a splat of 1-byte elements with some elements potentially undef.
7375     // Rather than trying to match undef in the SDAG patterns, ensure that all
7376     // elements are the same constant.
7377     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7378       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7379                                                        dl, MVT::i32));
7380       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7381       if (Op.getValueType() != MVT::v16i8)
7382         return DAG.getBitcast(Op.getValueType(), NewBV);
7383       return NewBV;
7384     }
7385     return Op;
7386   }
7387 
7388   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7389   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7390                     (32-SplatBitSize));
7391   if (SextVal >= -16 && SextVal <= 15)
7392     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7393 
7394   // Two instruction sequences.
7395 
7396   // If this value is in the range [-32,30] and is even, use:
7397   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7398   // If this value is in the range [17,31] and is odd, use:
7399   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7400   // If this value is in the range [-31,-17] and is odd, use:
7401   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7402   // Note the last two are three-instruction sequences.
7403   if (SextVal >= -32 && SextVal <= 31) {
7404     // To avoid having these optimizations undone by constant folding,
7405     // we convert to a pseudo that will be expanded later into one of
7406     // the above forms.
7407     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7408     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7409               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7410     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7411     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7412     if (VT == Op.getValueType())
7413       return RetVal;
7414     else
7415       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7416   }
7417 
7418   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7419   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7420   // for fneg/fabs.
7421   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7422     // Make -1 and vspltisw -1:
7423     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7424 
7425     // Make the VSLW intrinsic, computing 0x8000_0000.
7426     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7427                                    OnesV, DAG, dl);
7428 
7429     // xor by OnesV to invert it.
7430     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7431     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7432   }
7433 
7434   // Check to see if this is a wide variety of vsplti*, binop self cases.
7435   static const signed char SplatCsts[] = {
7436     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7437     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7438   };
7439 
7440   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7441     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7442     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7443     int i = SplatCsts[idx];
7444 
7445     // Figure out what shift amount will be used by altivec if shifted by i in
7446     // this splat size.
7447     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7448 
7449     // vsplti + shl self.
7450     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7451       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7452       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7453         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7454         Intrinsic::ppc_altivec_vslw
7455       };
7456       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7457       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7458     }
7459 
7460     // vsplti + srl self.
7461     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7462       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7463       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7464         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7465         Intrinsic::ppc_altivec_vsrw
7466       };
7467       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7468       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7469     }
7470 
7471     // vsplti + sra self.
7472     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7473       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7474       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7475         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7476         Intrinsic::ppc_altivec_vsraw
7477       };
7478       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7479       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7480     }
7481 
7482     // vsplti + rol self.
7483     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7484                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7485       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7486       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7487         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7488         Intrinsic::ppc_altivec_vrlw
7489       };
7490       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7491       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7492     }
7493 
7494     // t = vsplti c, result = vsldoi t, t, 1
7495     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7496       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7497       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7498       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7499     }
7500     // t = vsplti c, result = vsldoi t, t, 2
7501     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7502       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7503       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7504       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7505     }
7506     // t = vsplti c, result = vsldoi t, t, 3
7507     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7508       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7509       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7510       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7511     }
7512   }
7513 
7514   return SDValue();
7515 }
7516 
7517 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7518 /// the specified operations to build the shuffle.
7519 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7520                                       SDValue RHS, SelectionDAG &DAG,
7521                                       const SDLoc &dl) {
7522   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7523   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7524   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7525 
7526   enum {
7527     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7528     OP_VMRGHW,
7529     OP_VMRGLW,
7530     OP_VSPLTISW0,
7531     OP_VSPLTISW1,
7532     OP_VSPLTISW2,
7533     OP_VSPLTISW3,
7534     OP_VSLDOI4,
7535     OP_VSLDOI8,
7536     OP_VSLDOI12
7537   };
7538 
7539   if (OpNum == OP_COPY) {
7540     if (LHSID == (1*9+2)*9+3) return LHS;
7541     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7542     return RHS;
7543   }
7544 
7545   SDValue OpLHS, OpRHS;
7546   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7547   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7548 
7549   int ShufIdxs[16];
7550   switch (OpNum) {
7551   default: llvm_unreachable("Unknown i32 permute!");
7552   case OP_VMRGHW:
7553     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7554     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7555     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7556     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7557     break;
7558   case OP_VMRGLW:
7559     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7560     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7561     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7562     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7563     break;
7564   case OP_VSPLTISW0:
7565     for (unsigned i = 0; i != 16; ++i)
7566       ShufIdxs[i] = (i&3)+0;
7567     break;
7568   case OP_VSPLTISW1:
7569     for (unsigned i = 0; i != 16; ++i)
7570       ShufIdxs[i] = (i&3)+4;
7571     break;
7572   case OP_VSPLTISW2:
7573     for (unsigned i = 0; i != 16; ++i)
7574       ShufIdxs[i] = (i&3)+8;
7575     break;
7576   case OP_VSPLTISW3:
7577     for (unsigned i = 0; i != 16; ++i)
7578       ShufIdxs[i] = (i&3)+12;
7579     break;
7580   case OP_VSLDOI4:
7581     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7582   case OP_VSLDOI8:
7583     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7584   case OP_VSLDOI12:
7585     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7586   }
7587   EVT VT = OpLHS.getValueType();
7588   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7589   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7590   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7591   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7592 }
7593 
7594 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7595 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7596 /// return the code it can be lowered into.  Worst case, it can always be
7597 /// lowered into a vperm.
7598 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7599                                                SelectionDAG &DAG) const {
7600   SDLoc dl(Op);
7601   SDValue V1 = Op.getOperand(0);
7602   SDValue V2 = Op.getOperand(1);
7603   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7604   EVT VT = Op.getValueType();
7605   bool isLittleEndian = Subtarget.isLittleEndian();
7606 
7607   unsigned ShiftElts, InsertAtByte;
7608   bool Swap;
7609   if (Subtarget.hasP9Vector() &&
7610       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
7611                            isLittleEndian)) {
7612     if (Swap)
7613       std::swap(V1, V2);
7614     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7615     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
7616     if (ShiftElts) {
7617       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
7618                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
7619       SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl,
7620                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7621       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7622     }
7623     SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2,
7624                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
7625     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7626   }
7627 
7628   if (Subtarget.hasVSX()) {
7629     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7630       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7631 
7632       // If the source for the shuffle is a scalar_to_vector that came from a
7633       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
7634       if (Subtarget.hasP9Vector() &&
7635           ((isLittleEndian && SplatIdx == 3) ||
7636            (!isLittleEndian && SplatIdx == 0))) {
7637         SDValue Src = V1.getOperand(0);
7638         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7639             Src.getOperand(0).getOpcode() == ISD::LOAD &&
7640             Src.getOperand(0).hasOneUse())
7641           return V1;
7642       }
7643       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7644       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7645                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
7646       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7647     }
7648 
7649     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
7650     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
7651       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7652       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
7653       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
7654     }
7655   }
7656 
7657   if (Subtarget.hasQPX()) {
7658     if (VT.getVectorNumElements() != 4)
7659       return SDValue();
7660 
7661     if (V2.isUndef()) V2 = V1;
7662 
7663     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7664     if (AlignIdx != -1) {
7665       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7666                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7667     } else if (SVOp->isSplat()) {
7668       int SplatIdx = SVOp->getSplatIndex();
7669       if (SplatIdx >= 4) {
7670         std::swap(V1, V2);
7671         SplatIdx -= 4;
7672       }
7673 
7674       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7675                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7676     }
7677 
7678     // Lower this into a qvgpci/qvfperm pair.
7679 
7680     // Compute the qvgpci literal
7681     unsigned idx = 0;
7682     for (unsigned i = 0; i < 4; ++i) {
7683       int m = SVOp->getMaskElt(i);
7684       unsigned mm = m >= 0 ? (unsigned) m : i;
7685       idx |= mm << (3-i)*3;
7686     }
7687 
7688     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7689                              DAG.getConstant(idx, dl, MVT::i32));
7690     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7691   }
7692 
7693   // Cases that are handled by instructions that take permute immediates
7694   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7695   // selected by the instruction selector.
7696   if (V2.isUndef()) {
7697     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7698         PPC::isSplatShuffleMask(SVOp, 2) ||
7699         PPC::isSplatShuffleMask(SVOp, 4) ||
7700         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7701         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7702         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7703         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7704         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7705         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7706         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7707         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7708         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7709         (Subtarget.hasP8Altivec() && (
7710          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7711          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7712          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7713       return Op;
7714     }
7715   }
7716 
7717   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7718   // and produce a fixed permutation.  If any of these match, do not lower to
7719   // VPERM.
7720   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7721   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7722       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7723       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7724       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7725       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7726       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7727       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7728       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7729       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7730       (Subtarget.hasP8Altivec() && (
7731        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7732        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7733        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7734     return Op;
7735 
7736   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7737   // perfect shuffle table to emit an optimal matching sequence.
7738   ArrayRef<int> PermMask = SVOp->getMask();
7739 
7740   unsigned PFIndexes[4];
7741   bool isFourElementShuffle = true;
7742   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7743     unsigned EltNo = 8;   // Start out undef.
7744     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7745       if (PermMask[i*4+j] < 0)
7746         continue;   // Undef, ignore it.
7747 
7748       unsigned ByteSource = PermMask[i*4+j];
7749       if ((ByteSource & 3) != j) {
7750         isFourElementShuffle = false;
7751         break;
7752       }
7753 
7754       if (EltNo == 8) {
7755         EltNo = ByteSource/4;
7756       } else if (EltNo != ByteSource/4) {
7757         isFourElementShuffle = false;
7758         break;
7759       }
7760     }
7761     PFIndexes[i] = EltNo;
7762   }
7763 
7764   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7765   // perfect shuffle vector to determine if it is cost effective to do this as
7766   // discrete instructions, or whether we should use a vperm.
7767   // For now, we skip this for little endian until such time as we have a
7768   // little-endian perfect shuffle table.
7769   if (isFourElementShuffle && !isLittleEndian) {
7770     // Compute the index in the perfect shuffle table.
7771     unsigned PFTableIndex =
7772       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7773 
7774     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7775     unsigned Cost  = (PFEntry >> 30);
7776 
7777     // Determining when to avoid vperm is tricky.  Many things affect the cost
7778     // of vperm, particularly how many times the perm mask needs to be computed.
7779     // For example, if the perm mask can be hoisted out of a loop or is already
7780     // used (perhaps because there are multiple permutes with the same shuffle
7781     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7782     // the loop requires an extra register.
7783     //
7784     // As a compromise, we only emit discrete instructions if the shuffle can be
7785     // generated in 3 or fewer operations.  When we have loop information
7786     // available, if this block is within a loop, we should avoid using vperm
7787     // for 3-operation perms and use a constant pool load instead.
7788     if (Cost < 3)
7789       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7790   }
7791 
7792   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7793   // vector that will get spilled to the constant pool.
7794   if (V2.isUndef()) V2 = V1;
7795 
7796   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7797   // that it is in input element units, not in bytes.  Convert now.
7798 
7799   // For little endian, the order of the input vectors is reversed, and
7800   // the permutation mask is complemented with respect to 31.  This is
7801   // necessary to produce proper semantics with the big-endian-biased vperm
7802   // instruction.
7803   EVT EltVT = V1.getValueType().getVectorElementType();
7804   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7805 
7806   SmallVector<SDValue, 16> ResultMask;
7807   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7808     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7809 
7810     for (unsigned j = 0; j != BytesPerElement; ++j)
7811       if (isLittleEndian)
7812         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7813                                              dl, MVT::i32));
7814       else
7815         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7816                                              MVT::i32));
7817   }
7818 
7819   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
7820   if (isLittleEndian)
7821     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7822                        V2, V1, VPermMask);
7823   else
7824     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7825                        V1, V2, VPermMask);
7826 }
7827 
7828 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7829 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7830 /// information about the intrinsic.
7831 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7832                                  bool &isDot, const PPCSubtarget &Subtarget) {
7833   unsigned IntrinsicID =
7834       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7835   CompareOpc = -1;
7836   isDot = false;
7837   switch (IntrinsicID) {
7838   default:
7839     return false;
7840   // Comparison predicates.
7841   case Intrinsic::ppc_altivec_vcmpbfp_p:
7842     CompareOpc = 966;
7843     isDot = true;
7844     break;
7845   case Intrinsic::ppc_altivec_vcmpeqfp_p:
7846     CompareOpc = 198;
7847     isDot = true;
7848     break;
7849   case Intrinsic::ppc_altivec_vcmpequb_p:
7850     CompareOpc = 6;
7851     isDot = true;
7852     break;
7853   case Intrinsic::ppc_altivec_vcmpequh_p:
7854     CompareOpc = 70;
7855     isDot = true;
7856     break;
7857   case Intrinsic::ppc_altivec_vcmpequw_p:
7858     CompareOpc = 134;
7859     isDot = true;
7860     break;
7861   case Intrinsic::ppc_altivec_vcmpequd_p:
7862     if (Subtarget.hasP8Altivec()) {
7863       CompareOpc = 199;
7864       isDot = true;
7865     } else
7866       return false;
7867     break;
7868   case Intrinsic::ppc_altivec_vcmpneb_p:
7869   case Intrinsic::ppc_altivec_vcmpneh_p:
7870   case Intrinsic::ppc_altivec_vcmpnew_p:
7871   case Intrinsic::ppc_altivec_vcmpnezb_p:
7872   case Intrinsic::ppc_altivec_vcmpnezh_p:
7873   case Intrinsic::ppc_altivec_vcmpnezw_p:
7874     if (Subtarget.hasP9Altivec()) {
7875       switch (IntrinsicID) {
7876       default:
7877         llvm_unreachable("Unknown comparison intrinsic.");
7878       case Intrinsic::ppc_altivec_vcmpneb_p:
7879         CompareOpc = 7;
7880         break;
7881       case Intrinsic::ppc_altivec_vcmpneh_p:
7882         CompareOpc = 71;
7883         break;
7884       case Intrinsic::ppc_altivec_vcmpnew_p:
7885         CompareOpc = 135;
7886         break;
7887       case Intrinsic::ppc_altivec_vcmpnezb_p:
7888         CompareOpc = 263;
7889         break;
7890       case Intrinsic::ppc_altivec_vcmpnezh_p:
7891         CompareOpc = 327;
7892         break;
7893       case Intrinsic::ppc_altivec_vcmpnezw_p:
7894         CompareOpc = 391;
7895         break;
7896       }
7897       isDot = true;
7898     } else
7899       return false;
7900     break;
7901   case Intrinsic::ppc_altivec_vcmpgefp_p:
7902     CompareOpc = 454;
7903     isDot = true;
7904     break;
7905   case Intrinsic::ppc_altivec_vcmpgtfp_p:
7906     CompareOpc = 710;
7907     isDot = true;
7908     break;
7909   case Intrinsic::ppc_altivec_vcmpgtsb_p:
7910     CompareOpc = 774;
7911     isDot = true;
7912     break;
7913   case Intrinsic::ppc_altivec_vcmpgtsh_p:
7914     CompareOpc = 838;
7915     isDot = true;
7916     break;
7917   case Intrinsic::ppc_altivec_vcmpgtsw_p:
7918     CompareOpc = 902;
7919     isDot = true;
7920     break;
7921   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7922     if (Subtarget.hasP8Altivec()) {
7923       CompareOpc = 967;
7924       isDot = true;
7925     } else
7926       return false;
7927     break;
7928   case Intrinsic::ppc_altivec_vcmpgtub_p:
7929     CompareOpc = 518;
7930     isDot = true;
7931     break;
7932   case Intrinsic::ppc_altivec_vcmpgtuh_p:
7933     CompareOpc = 582;
7934     isDot = true;
7935     break;
7936   case Intrinsic::ppc_altivec_vcmpgtuw_p:
7937     CompareOpc = 646;
7938     isDot = true;
7939     break;
7940   case Intrinsic::ppc_altivec_vcmpgtud_p:
7941     if (Subtarget.hasP8Altivec()) {
7942       CompareOpc = 711;
7943       isDot = true;
7944     } else
7945       return false;
7946     break;
7947 
7948   // VSX predicate comparisons use the same infrastructure
7949   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7950   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7951   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7952   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7953   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7954   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7955     if (Subtarget.hasVSX()) {
7956       switch (IntrinsicID) {
7957       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7958         CompareOpc = 99;
7959         break;
7960       case Intrinsic::ppc_vsx_xvcmpgedp_p:
7961         CompareOpc = 115;
7962         break;
7963       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7964         CompareOpc = 107;
7965         break;
7966       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7967         CompareOpc = 67;
7968         break;
7969       case Intrinsic::ppc_vsx_xvcmpgesp_p:
7970         CompareOpc = 83;
7971         break;
7972       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7973         CompareOpc = 75;
7974         break;
7975       }
7976       isDot = true;
7977     } else
7978       return false;
7979     break;
7980 
7981   // Normal Comparisons.
7982   case Intrinsic::ppc_altivec_vcmpbfp:
7983     CompareOpc = 966;
7984     break;
7985   case Intrinsic::ppc_altivec_vcmpeqfp:
7986     CompareOpc = 198;
7987     break;
7988   case Intrinsic::ppc_altivec_vcmpequb:
7989     CompareOpc = 6;
7990     break;
7991   case Intrinsic::ppc_altivec_vcmpequh:
7992     CompareOpc = 70;
7993     break;
7994   case Intrinsic::ppc_altivec_vcmpequw:
7995     CompareOpc = 134;
7996     break;
7997   case Intrinsic::ppc_altivec_vcmpequd:
7998     if (Subtarget.hasP8Altivec())
7999       CompareOpc = 199;
8000     else
8001       return false;
8002     break;
8003   case Intrinsic::ppc_altivec_vcmpneb:
8004   case Intrinsic::ppc_altivec_vcmpneh:
8005   case Intrinsic::ppc_altivec_vcmpnew:
8006   case Intrinsic::ppc_altivec_vcmpnezb:
8007   case Intrinsic::ppc_altivec_vcmpnezh:
8008   case Intrinsic::ppc_altivec_vcmpnezw:
8009     if (Subtarget.hasP9Altivec())
8010       switch (IntrinsicID) {
8011       default:
8012         llvm_unreachable("Unknown comparison intrinsic.");
8013       case Intrinsic::ppc_altivec_vcmpneb:
8014         CompareOpc = 7;
8015         break;
8016       case Intrinsic::ppc_altivec_vcmpneh:
8017         CompareOpc = 71;
8018         break;
8019       case Intrinsic::ppc_altivec_vcmpnew:
8020         CompareOpc = 135;
8021         break;
8022       case Intrinsic::ppc_altivec_vcmpnezb:
8023         CompareOpc = 263;
8024         break;
8025       case Intrinsic::ppc_altivec_vcmpnezh:
8026         CompareOpc = 327;
8027         break;
8028       case Intrinsic::ppc_altivec_vcmpnezw:
8029         CompareOpc = 391;
8030         break;
8031       }
8032     else
8033       return false;
8034     break;
8035   case Intrinsic::ppc_altivec_vcmpgefp:
8036     CompareOpc = 454;
8037     break;
8038   case Intrinsic::ppc_altivec_vcmpgtfp:
8039     CompareOpc = 710;
8040     break;
8041   case Intrinsic::ppc_altivec_vcmpgtsb:
8042     CompareOpc = 774;
8043     break;
8044   case Intrinsic::ppc_altivec_vcmpgtsh:
8045     CompareOpc = 838;
8046     break;
8047   case Intrinsic::ppc_altivec_vcmpgtsw:
8048     CompareOpc = 902;
8049     break;
8050   case Intrinsic::ppc_altivec_vcmpgtsd:
8051     if (Subtarget.hasP8Altivec())
8052       CompareOpc = 967;
8053     else
8054       return false;
8055     break;
8056   case Intrinsic::ppc_altivec_vcmpgtub:
8057     CompareOpc = 518;
8058     break;
8059   case Intrinsic::ppc_altivec_vcmpgtuh:
8060     CompareOpc = 582;
8061     break;
8062   case Intrinsic::ppc_altivec_vcmpgtuw:
8063     CompareOpc = 646;
8064     break;
8065   case Intrinsic::ppc_altivec_vcmpgtud:
8066     if (Subtarget.hasP8Altivec())
8067       CompareOpc = 711;
8068     else
8069       return false;
8070     break;
8071   }
8072   return true;
8073 }
8074 
8075 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8076 /// lower, do it, otherwise return null.
8077 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8078                                                    SelectionDAG &DAG) const {
8079   unsigned IntrinsicID =
8080     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8081 
8082   if (IntrinsicID == Intrinsic::thread_pointer) {
8083     // Reads the thread pointer register, used for __builtin_thread_pointer.
8084     bool is64bit = Subtarget.isPPC64();
8085     return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
8086                            is64bit ? MVT::i64 : MVT::i32);
8087   }
8088 
8089   // If this is a lowered altivec predicate compare, CompareOpc is set to the
8090   // opcode number of the comparison.
8091   SDLoc dl(Op);
8092   int CompareOpc;
8093   bool isDot;
8094   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8095     return SDValue();    // Don't custom lower most intrinsics.
8096 
8097   // If this is a non-dot comparison, make the VCMP node and we are done.
8098   if (!isDot) {
8099     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8100                               Op.getOperand(1), Op.getOperand(2),
8101                               DAG.getConstant(CompareOpc, dl, MVT::i32));
8102     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8103   }
8104 
8105   // Create the PPCISD altivec 'dot' comparison node.
8106   SDValue Ops[] = {
8107     Op.getOperand(2),  // LHS
8108     Op.getOperand(3),  // RHS
8109     DAG.getConstant(CompareOpc, dl, MVT::i32)
8110   };
8111   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8112   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8113 
8114   // Now that we have the comparison, emit a copy from the CR to a GPR.
8115   // This is flagged to the above dot comparison.
8116   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8117                                 DAG.getRegister(PPC::CR6, MVT::i32),
8118                                 CompNode.getValue(1));
8119 
8120   // Unpack the result based on how the target uses it.
8121   unsigned BitNo;   // Bit # of CR6.
8122   bool InvertBit;   // Invert result?
8123   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8124   default:  // Can't happen, don't crash on invalid number though.
8125   case 0:   // Return the value of the EQ bit of CR6.
8126     BitNo = 0; InvertBit = false;
8127     break;
8128   case 1:   // Return the inverted value of the EQ bit of CR6.
8129     BitNo = 0; InvertBit = true;
8130     break;
8131   case 2:   // Return the value of the LT bit of CR6.
8132     BitNo = 2; InvertBit = false;
8133     break;
8134   case 3:   // Return the inverted value of the LT bit of CR6.
8135     BitNo = 2; InvertBit = true;
8136     break;
8137   }
8138 
8139   // Shift the bit into the low position.
8140   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8141                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8142   // Isolate the bit.
8143   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8144                       DAG.getConstant(1, dl, MVT::i32));
8145 
8146   // If we are supposed to, toggle the bit.
8147   if (InvertBit)
8148     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8149                         DAG.getConstant(1, dl, MVT::i32));
8150   return Flags;
8151 }
8152 
8153 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8154                                                   SelectionDAG &DAG) const {
8155   SDLoc dl(Op);
8156   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8157   // instructions), but for smaller types, we need to first extend up to v2i32
8158   // before doing going farther.
8159   if (Op.getValueType() == MVT::v2i64) {
8160     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8161     if (ExtVT != MVT::v2i32) {
8162       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8163       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8164                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8165                                         ExtVT.getVectorElementType(), 4)));
8166       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8167       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8168                        DAG.getValueType(MVT::v2i32));
8169     }
8170 
8171     return Op;
8172   }
8173 
8174   return SDValue();
8175 }
8176 
8177 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8178                                                  SelectionDAG &DAG) const {
8179   SDLoc dl(Op);
8180   // Create a stack slot that is 16-byte aligned.
8181   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8182   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8183   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8184   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8185 
8186   // Store the input value into Value#0 of the stack slot.
8187   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8188                                MachinePointerInfo());
8189   // Load it out.
8190   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8191 }
8192 
8193 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8194                                                   SelectionDAG &DAG) const {
8195   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8196          "Should only be called for ISD::INSERT_VECTOR_ELT");
8197   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8198   // We have legal lowering for constant indices but not for variable ones.
8199   if (C)
8200     return Op;
8201   return SDValue();
8202 }
8203 
8204 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8205                                                    SelectionDAG &DAG) const {
8206   SDLoc dl(Op);
8207   SDNode *N = Op.getNode();
8208 
8209   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
8210          "Unknown extract_vector_elt type");
8211 
8212   SDValue Value = N->getOperand(0);
8213 
8214   // The first part of this is like the store lowering except that we don't
8215   // need to track the chain.
8216 
8217   // The values are now known to be -1 (false) or 1 (true). To convert this
8218   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8219   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8220   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8221 
8222   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8223   // understand how to form the extending load.
8224   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8225 
8226   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8227 
8228   // Now convert to an integer and store.
8229   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8230     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8231     Value);
8232 
8233   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8234   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8235   MachinePointerInfo PtrInfo =
8236       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8237   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8238   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8239 
8240   SDValue StoreChain = DAG.getEntryNode();
8241   SDValue Ops[] = {StoreChain,
8242                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8243                    Value, FIdx};
8244   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8245 
8246   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8247     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8248 
8249   // Extract the value requested.
8250   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8251   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8252   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8253 
8254   SDValue IntVal =
8255       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
8256 
8257   if (!Subtarget.useCRBits())
8258     return IntVal;
8259 
8260   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
8261 }
8262 
8263 /// Lowering for QPX v4i1 loads
8264 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
8265                                            SelectionDAG &DAG) const {
8266   SDLoc dl(Op);
8267   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
8268   SDValue LoadChain = LN->getChain();
8269   SDValue BasePtr = LN->getBasePtr();
8270 
8271   if (Op.getValueType() == MVT::v4f64 ||
8272       Op.getValueType() == MVT::v4f32) {
8273     EVT MemVT = LN->getMemoryVT();
8274     unsigned Alignment = LN->getAlignment();
8275 
8276     // If this load is properly aligned, then it is legal.
8277     if (Alignment >= MemVT.getStoreSize())
8278       return Op;
8279 
8280     EVT ScalarVT = Op.getValueType().getScalarType(),
8281         ScalarMemVT = MemVT.getScalarType();
8282     unsigned Stride = ScalarMemVT.getStoreSize();
8283 
8284     SDValue Vals[4], LoadChains[4];
8285     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8286       SDValue Load;
8287       if (ScalarVT != ScalarMemVT)
8288         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
8289                               BasePtr,
8290                               LN->getPointerInfo().getWithOffset(Idx * Stride),
8291                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8292                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
8293       else
8294         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
8295                            LN->getPointerInfo().getWithOffset(Idx * Stride),
8296                            MinAlign(Alignment, Idx * Stride),
8297                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
8298 
8299       if (Idx == 0 && LN->isIndexed()) {
8300         assert(LN->getAddressingMode() == ISD::PRE_INC &&
8301                "Unknown addressing mode on vector load");
8302         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
8303                                   LN->getAddressingMode());
8304       }
8305 
8306       Vals[Idx] = Load;
8307       LoadChains[Idx] = Load.getValue(1);
8308 
8309       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8310                             DAG.getConstant(Stride, dl,
8311                                             BasePtr.getValueType()));
8312     }
8313 
8314     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8315     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8316 
8317     if (LN->isIndexed()) {
8318       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8319       return DAG.getMergeValues(RetOps, dl);
8320     }
8321 
8322     SDValue RetOps[] = { Value, TF };
8323     return DAG.getMergeValues(RetOps, dl);
8324   }
8325 
8326   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8327   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8328 
8329   // To lower v4i1 from a byte array, we load the byte elements of the
8330   // vector and then reuse the BUILD_VECTOR logic.
8331 
8332   SDValue VectElmts[4], VectElmtChains[4];
8333   for (unsigned i = 0; i < 4; ++i) {
8334     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8335     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8336 
8337     VectElmts[i] = DAG.getExtLoad(
8338         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
8339         LN->getPointerInfo().getWithOffset(i), MVT::i8,
8340         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
8341     VectElmtChains[i] = VectElmts[i].getValue(1);
8342   }
8343 
8344   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
8345   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
8346 
8347   SDValue RVals[] = { Value, LoadChain };
8348   return DAG.getMergeValues(RVals, dl);
8349 }
8350 
8351 /// Lowering for QPX v4i1 stores
8352 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
8353                                             SelectionDAG &DAG) const {
8354   SDLoc dl(Op);
8355   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
8356   SDValue StoreChain = SN->getChain();
8357   SDValue BasePtr = SN->getBasePtr();
8358   SDValue Value = SN->getValue();
8359 
8360   if (Value.getValueType() == MVT::v4f64 ||
8361       Value.getValueType() == MVT::v4f32) {
8362     EVT MemVT = SN->getMemoryVT();
8363     unsigned Alignment = SN->getAlignment();
8364 
8365     // If this store is properly aligned, then it is legal.
8366     if (Alignment >= MemVT.getStoreSize())
8367       return Op;
8368 
8369     EVT ScalarVT = Value.getValueType().getScalarType(),
8370         ScalarMemVT = MemVT.getScalarType();
8371     unsigned Stride = ScalarMemVT.getStoreSize();
8372 
8373     SDValue Stores[4];
8374     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8375       SDValue Ex = DAG.getNode(
8376           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8377           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8378       SDValue Store;
8379       if (ScalarVT != ScalarMemVT)
8380         Store =
8381             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8382                               SN->getPointerInfo().getWithOffset(Idx * Stride),
8383                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8384                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
8385       else
8386         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
8387                              SN->getPointerInfo().getWithOffset(Idx * Stride),
8388                              MinAlign(Alignment, Idx * Stride),
8389                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
8390 
8391       if (Idx == 0 && SN->isIndexed()) {
8392         assert(SN->getAddressingMode() == ISD::PRE_INC &&
8393                "Unknown addressing mode on vector store");
8394         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8395                                     SN->getAddressingMode());
8396       }
8397 
8398       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8399                             DAG.getConstant(Stride, dl,
8400                                             BasePtr.getValueType()));
8401       Stores[Idx] = Store;
8402     }
8403 
8404     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8405 
8406     if (SN->isIndexed()) {
8407       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8408       return DAG.getMergeValues(RetOps, dl);
8409     }
8410 
8411     return TF;
8412   }
8413 
8414   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8415   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8416 
8417   // The values are now known to be -1 (false) or 1 (true). To convert this
8418   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8419   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8420   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8421 
8422   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8423   // understand how to form the extending load.
8424   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8425 
8426   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8427 
8428   // Now convert to an integer and store.
8429   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8430     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8431     Value);
8432 
8433   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8434   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8435   MachinePointerInfo PtrInfo =
8436       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8437   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8438   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8439 
8440   SDValue Ops[] = {StoreChain,
8441                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8442                    Value, FIdx};
8443   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8444 
8445   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8446     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8447 
8448   // Move data into the byte array.
8449   SDValue Loads[4], LoadChains[4];
8450   for (unsigned i = 0; i < 4; ++i) {
8451     unsigned Offset = 4*i;
8452     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8453     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8454 
8455     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8456                            PtrInfo.getWithOffset(Offset));
8457     LoadChains[i] = Loads[i].getValue(1);
8458   }
8459 
8460   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8461 
8462   SDValue Stores[4];
8463   for (unsigned i = 0; i < 4; ++i) {
8464     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8465     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8466 
8467     Stores[i] = DAG.getTruncStore(
8468         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8469         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
8470         SN->getAAInfo());
8471   }
8472 
8473   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8474 
8475   return StoreChain;
8476 }
8477 
8478 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8479   SDLoc dl(Op);
8480   if (Op.getValueType() == MVT::v4i32) {
8481     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8482 
8483     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8484     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8485 
8486     SDValue RHSSwap =   // = vrlw RHS, 16
8487       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8488 
8489     // Shrinkify inputs to v8i16.
8490     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8491     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8492     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8493 
8494     // Low parts multiplied together, generating 32-bit results (we ignore the
8495     // top parts).
8496     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8497                                         LHS, RHS, DAG, dl, MVT::v4i32);
8498 
8499     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8500                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8501     // Shift the high parts up 16 bits.
8502     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8503                               Neg16, DAG, dl);
8504     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8505   } else if (Op.getValueType() == MVT::v8i16) {
8506     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8507 
8508     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8509 
8510     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8511                             LHS, RHS, Zero, DAG, dl);
8512   } else if (Op.getValueType() == MVT::v16i8) {
8513     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8514     bool isLittleEndian = Subtarget.isLittleEndian();
8515 
8516     // Multiply the even 8-bit parts, producing 16-bit sums.
8517     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8518                                            LHS, RHS, DAG, dl, MVT::v8i16);
8519     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8520 
8521     // Multiply the odd 8-bit parts, producing 16-bit sums.
8522     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8523                                           LHS, RHS, DAG, dl, MVT::v8i16);
8524     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8525 
8526     // Merge the results together.  Because vmuleub and vmuloub are
8527     // instructions with a big-endian bias, we must reverse the
8528     // element numbering and reverse the meaning of "odd" and "even"
8529     // when generating little endian code.
8530     int Ops[16];
8531     for (unsigned i = 0; i != 8; ++i) {
8532       if (isLittleEndian) {
8533         Ops[i*2  ] = 2*i;
8534         Ops[i*2+1] = 2*i+16;
8535       } else {
8536         Ops[i*2  ] = 2*i+1;
8537         Ops[i*2+1] = 2*i+1+16;
8538       }
8539     }
8540     if (isLittleEndian)
8541       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8542     else
8543       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8544   } else {
8545     llvm_unreachable("Unknown mul to lower!");
8546   }
8547 }
8548 
8549 /// LowerOperation - Provide custom lowering hooks for some operations.
8550 ///
8551 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8552   switch (Op.getOpcode()) {
8553   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8554   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8555   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8556   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8557   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8558   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8559   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8560   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8561   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8562   case ISD::VASTART:
8563     return LowerVASTART(Op, DAG);
8564 
8565   case ISD::VAARG:
8566     return LowerVAARG(Op, DAG);
8567 
8568   case ISD::VACOPY:
8569     return LowerVACOPY(Op, DAG);
8570 
8571   case ISD::STACKRESTORE:
8572     return LowerSTACKRESTORE(Op, DAG);
8573 
8574   case ISD::DYNAMIC_STACKALLOC:
8575     return LowerDYNAMIC_STACKALLOC(Op, DAG);
8576 
8577   case ISD::GET_DYNAMIC_AREA_OFFSET:
8578     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
8579 
8580   case ISD::EH_DWARF_CFA:
8581     return LowerEH_DWARF_CFA(Op, DAG);
8582 
8583   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8584   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8585 
8586   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8587   case ISD::STORE:              return LowerSTORE(Op, DAG);
8588   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8589   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8590   case ISD::FP_TO_UINT:
8591   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8592                                                       SDLoc(Op));
8593   case ISD::UINT_TO_FP:
8594   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8595   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8596 
8597   // Lower 64-bit shifts.
8598   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
8599   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
8600   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
8601 
8602   // Vector-related lowering.
8603   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8604   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8605   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8606   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8607   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
8608   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8609   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8610   case ISD::MUL:                return LowerMUL(Op, DAG);
8611 
8612   // For counter-based loop handling.
8613   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8614 
8615   // Frame & Return address.
8616   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8617   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8618   }
8619 }
8620 
8621 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8622                                            SmallVectorImpl<SDValue>&Results,
8623                                            SelectionDAG &DAG) const {
8624   SDLoc dl(N);
8625   switch (N->getOpcode()) {
8626   default:
8627     llvm_unreachable("Do not know how to custom type legalize this operation!");
8628   case ISD::READCYCLECOUNTER: {
8629     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8630     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8631 
8632     Results.push_back(RTB);
8633     Results.push_back(RTB.getValue(1));
8634     Results.push_back(RTB.getValue(2));
8635     break;
8636   }
8637   case ISD::INTRINSIC_W_CHAIN: {
8638     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8639         Intrinsic::ppc_is_decremented_ctr_nonzero)
8640       break;
8641 
8642     assert(N->getValueType(0) == MVT::i1 &&
8643            "Unexpected result type for CTR decrement intrinsic");
8644     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8645                                  N->getValueType(0));
8646     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8647     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8648                                  N->getOperand(1));
8649 
8650     Results.push_back(NewInt);
8651     Results.push_back(NewInt.getValue(1));
8652     break;
8653   }
8654   case ISD::VAARG: {
8655     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8656       return;
8657 
8658     EVT VT = N->getValueType(0);
8659 
8660     if (VT == MVT::i64) {
8661       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
8662 
8663       Results.push_back(NewNode);
8664       Results.push_back(NewNode.getValue(1));
8665     }
8666     return;
8667   }
8668   case ISD::FP_ROUND_INREG: {
8669     assert(N->getValueType(0) == MVT::ppcf128);
8670     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8671     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8672                              MVT::f64, N->getOperand(0),
8673                              DAG.getIntPtrConstant(0, dl));
8674     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8675                              MVT::f64, N->getOperand(0),
8676                              DAG.getIntPtrConstant(1, dl));
8677 
8678     // Add the two halves of the long double in round-to-zero mode.
8679     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8680 
8681     // We know the low half is about to be thrown away, so just use something
8682     // convenient.
8683     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8684                                 FPreg, FPreg));
8685     return;
8686   }
8687   case ISD::FP_TO_SINT:
8688   case ISD::FP_TO_UINT:
8689     // LowerFP_TO_INT() can only handle f32 and f64.
8690     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8691       return;
8692     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8693     return;
8694   }
8695 }
8696 
8697 //===----------------------------------------------------------------------===//
8698 //  Other Lowering Code
8699 //===----------------------------------------------------------------------===//
8700 
8701 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8702   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8703   Function *Func = Intrinsic::getDeclaration(M, Id);
8704   return Builder.CreateCall(Func, {});
8705 }
8706 
8707 // The mappings for emitLeading/TrailingFence is taken from
8708 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8709 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8710                                          AtomicOrdering Ord, bool IsStore,
8711                                          bool IsLoad) const {
8712   if (Ord == AtomicOrdering::SequentiallyConsistent)
8713     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8714   if (isReleaseOrStronger(Ord))
8715     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8716   return nullptr;
8717 }
8718 
8719 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8720                                           AtomicOrdering Ord, bool IsStore,
8721                                           bool IsLoad) const {
8722   if (IsLoad && isAcquireOrStronger(Ord))
8723     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8724   // FIXME: this is too conservative, a dependent branch + isync is enough.
8725   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8726   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8727   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8728   return nullptr;
8729 }
8730 
8731 MachineBasicBlock *
8732 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
8733                                     unsigned AtomicSize,
8734                                     unsigned BinOpcode,
8735                                     unsigned CmpOpcode,
8736                                     unsigned CmpPred) const {
8737   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8738   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8739 
8740   auto LoadMnemonic = PPC::LDARX;
8741   auto StoreMnemonic = PPC::STDCX;
8742   switch (AtomicSize) {
8743   default:
8744     llvm_unreachable("Unexpected size of atomic entity");
8745   case 1:
8746     LoadMnemonic = PPC::LBARX;
8747     StoreMnemonic = PPC::STBCX;
8748     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8749     break;
8750   case 2:
8751     LoadMnemonic = PPC::LHARX;
8752     StoreMnemonic = PPC::STHCX;
8753     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8754     break;
8755   case 4:
8756     LoadMnemonic = PPC::LWARX;
8757     StoreMnemonic = PPC::STWCX;
8758     break;
8759   case 8:
8760     LoadMnemonic = PPC::LDARX;
8761     StoreMnemonic = PPC::STDCX;
8762     break;
8763   }
8764 
8765   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8766   MachineFunction *F = BB->getParent();
8767   MachineFunction::iterator It = ++BB->getIterator();
8768 
8769   unsigned dest = MI.getOperand(0).getReg();
8770   unsigned ptrA = MI.getOperand(1).getReg();
8771   unsigned ptrB = MI.getOperand(2).getReg();
8772   unsigned incr = MI.getOperand(3).getReg();
8773   DebugLoc dl = MI.getDebugLoc();
8774 
8775   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8776   MachineBasicBlock *loop2MBB =
8777     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
8778   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8779   F->insert(It, loopMBB);
8780   if (CmpOpcode)
8781     F->insert(It, loop2MBB);
8782   F->insert(It, exitMBB);
8783   exitMBB->splice(exitMBB->begin(), BB,
8784                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8785   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8786 
8787   MachineRegisterInfo &RegInfo = F->getRegInfo();
8788   unsigned TmpReg = (!BinOpcode) ? incr :
8789     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8790                                            : &PPC::GPRCRegClass);
8791 
8792   //  thisMBB:
8793   //   ...
8794   //   fallthrough --> loopMBB
8795   BB->addSuccessor(loopMBB);
8796 
8797   //  loopMBB:
8798   //   l[wd]arx dest, ptr
8799   //   add r0, dest, incr
8800   //   st[wd]cx. r0, ptr
8801   //   bne- loopMBB
8802   //   fallthrough --> exitMBB
8803 
8804   // For max/min...
8805   //  loopMBB:
8806   //   l[wd]arx dest, ptr
8807   //   cmpl?[wd] incr, dest
8808   //   bgt exitMBB
8809   //  loop2MBB:
8810   //   st[wd]cx. dest, ptr
8811   //   bne- loopMBB
8812   //   fallthrough --> exitMBB
8813 
8814   BB = loopMBB;
8815   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8816     .addReg(ptrA).addReg(ptrB);
8817   if (BinOpcode)
8818     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8819   if (CmpOpcode) {
8820     // Signed comparisons of byte or halfword values must be sign-extended.
8821     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
8822       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8823       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
8824               ExtReg).addReg(dest);
8825       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8826         .addReg(incr).addReg(ExtReg);
8827     } else
8828       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8829         .addReg(incr).addReg(dest);
8830 
8831     BuildMI(BB, dl, TII->get(PPC::BCC))
8832       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
8833     BB->addSuccessor(loop2MBB);
8834     BB->addSuccessor(exitMBB);
8835     BB = loop2MBB;
8836   }
8837   BuildMI(BB, dl, TII->get(StoreMnemonic))
8838     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8839   BuildMI(BB, dl, TII->get(PPC::BCC))
8840     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8841   BB->addSuccessor(loopMBB);
8842   BB->addSuccessor(exitMBB);
8843 
8844   //  exitMBB:
8845   //   ...
8846   BB = exitMBB;
8847   return BB;
8848 }
8849 
8850 MachineBasicBlock *
8851 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
8852                                             MachineBasicBlock *BB,
8853                                             bool is8bit, // operation
8854                                             unsigned BinOpcode,
8855                                             unsigned CmpOpcode,
8856                                             unsigned CmpPred) const {
8857   // If we support part-word atomic mnemonics, just use them
8858   if (Subtarget.hasPartwordAtomics())
8859     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
8860                             CmpOpcode, CmpPred);
8861 
8862   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8863   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8864   // In 64 bit mode we have to use 64 bits for addresses, even though the
8865   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8866   // registers without caring whether they're 32 or 64, but here we're
8867   // doing actual arithmetic on the addresses.
8868   bool is64bit = Subtarget.isPPC64();
8869   bool isLittleEndian = Subtarget.isLittleEndian();
8870   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8871 
8872   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8873   MachineFunction *F = BB->getParent();
8874   MachineFunction::iterator It = ++BB->getIterator();
8875 
8876   unsigned dest = MI.getOperand(0).getReg();
8877   unsigned ptrA = MI.getOperand(1).getReg();
8878   unsigned ptrB = MI.getOperand(2).getReg();
8879   unsigned incr = MI.getOperand(3).getReg();
8880   DebugLoc dl = MI.getDebugLoc();
8881 
8882   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8883   MachineBasicBlock *loop2MBB =
8884     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
8885   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8886   F->insert(It, loopMBB);
8887   if (CmpOpcode)
8888     F->insert(It, loop2MBB);
8889   F->insert(It, exitMBB);
8890   exitMBB->splice(exitMBB->begin(), BB,
8891                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8892   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8893 
8894   MachineRegisterInfo &RegInfo = F->getRegInfo();
8895   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8896                                           : &PPC::GPRCRegClass;
8897   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8898   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8899   unsigned ShiftReg =
8900     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
8901   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8902   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8903   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8904   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8905   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8906   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8907   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8908   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8909   unsigned Ptr1Reg;
8910   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8911 
8912   //  thisMBB:
8913   //   ...
8914   //   fallthrough --> loopMBB
8915   BB->addSuccessor(loopMBB);
8916 
8917   // The 4-byte load must be aligned, while a char or short may be
8918   // anywhere in the word.  Hence all this nasty bookkeeping code.
8919   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8920   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8921   //   xori shift, shift1, 24 [16]
8922   //   rlwinm ptr, ptr1, 0, 0, 29
8923   //   slw incr2, incr, shift
8924   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8925   //   slw mask, mask2, shift
8926   //  loopMBB:
8927   //   lwarx tmpDest, ptr
8928   //   add tmp, tmpDest, incr2
8929   //   andc tmp2, tmpDest, mask
8930   //   and tmp3, tmp, mask
8931   //   or tmp4, tmp3, tmp2
8932   //   stwcx. tmp4, ptr
8933   //   bne- loopMBB
8934   //   fallthrough --> exitMBB
8935   //   srw dest, tmpDest, shift
8936   if (ptrA != ZeroReg) {
8937     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8938     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8939       .addReg(ptrA).addReg(ptrB);
8940   } else {
8941     Ptr1Reg = ptrB;
8942   }
8943   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8944       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8945   if (!isLittleEndian)
8946     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8947         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8948   if (is64bit)
8949     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8950       .addReg(Ptr1Reg).addImm(0).addImm(61);
8951   else
8952     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8953       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8954   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8955       .addReg(incr).addReg(ShiftReg);
8956   if (is8bit)
8957     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8958   else {
8959     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8960     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8961   }
8962   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8963       .addReg(Mask2Reg).addReg(ShiftReg);
8964 
8965   BB = loopMBB;
8966   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8967     .addReg(ZeroReg).addReg(PtrReg);
8968   if (BinOpcode)
8969     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8970       .addReg(Incr2Reg).addReg(TmpDestReg);
8971   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8972     .addReg(TmpDestReg).addReg(MaskReg);
8973   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8974     .addReg(TmpReg).addReg(MaskReg);
8975   if (CmpOpcode) {
8976     // For unsigned comparisons, we can directly compare the shifted values.
8977     // For signed comparisons we shift and sign extend.
8978     unsigned SReg = RegInfo.createVirtualRegister(RC);
8979     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
8980       .addReg(TmpDestReg).addReg(MaskReg);
8981     unsigned ValueReg = SReg;
8982     unsigned CmpReg = Incr2Reg;
8983     if (CmpOpcode == PPC::CMPW) {
8984       ValueReg = RegInfo.createVirtualRegister(RC);
8985       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
8986         .addReg(SReg).addReg(ShiftReg);
8987       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
8988       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
8989         .addReg(ValueReg);
8990       ValueReg = ValueSReg;
8991       CmpReg = incr;
8992     }
8993     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8994       .addReg(CmpReg).addReg(ValueReg);
8995     BuildMI(BB, dl, TII->get(PPC::BCC))
8996       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
8997     BB->addSuccessor(loop2MBB);
8998     BB->addSuccessor(exitMBB);
8999     BB = loop2MBB;
9000   }
9001   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9002     .addReg(Tmp3Reg).addReg(Tmp2Reg);
9003   BuildMI(BB, dl, TII->get(PPC::STWCX))
9004     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9005   BuildMI(BB, dl, TII->get(PPC::BCC))
9006     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9007   BB->addSuccessor(loopMBB);
9008   BB->addSuccessor(exitMBB);
9009 
9010   //  exitMBB:
9011   //   ...
9012   BB = exitMBB;
9013   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9014     .addReg(ShiftReg);
9015   return BB;
9016 }
9017 
9018 llvm::MachineBasicBlock *
9019 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9020                                     MachineBasicBlock *MBB) const {
9021   DebugLoc DL = MI.getDebugLoc();
9022   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9023 
9024   MachineFunction *MF = MBB->getParent();
9025   MachineRegisterInfo &MRI = MF->getRegInfo();
9026 
9027   const BasicBlock *BB = MBB->getBasicBlock();
9028   MachineFunction::iterator I = ++MBB->getIterator();
9029 
9030   // Memory Reference
9031   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9032   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9033 
9034   unsigned DstReg = MI.getOperand(0).getReg();
9035   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9036   assert(RC->hasType(MVT::i32) && "Invalid destination!");
9037   unsigned mainDstReg = MRI.createVirtualRegister(RC);
9038   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9039 
9040   MVT PVT = getPointerTy(MF->getDataLayout());
9041   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9042          "Invalid Pointer Size!");
9043   // For v = setjmp(buf), we generate
9044   //
9045   // thisMBB:
9046   //  SjLjSetup mainMBB
9047   //  bl mainMBB
9048   //  v_restore = 1
9049   //  b sinkMBB
9050   //
9051   // mainMBB:
9052   //  buf[LabelOffset] = LR
9053   //  v_main = 0
9054   //
9055   // sinkMBB:
9056   //  v = phi(main, restore)
9057   //
9058 
9059   MachineBasicBlock *thisMBB = MBB;
9060   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
9061   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
9062   MF->insert(I, mainMBB);
9063   MF->insert(I, sinkMBB);
9064 
9065   MachineInstrBuilder MIB;
9066 
9067   // Transfer the remainder of BB and its successor edges to sinkMBB.
9068   sinkMBB->splice(sinkMBB->begin(), MBB,
9069                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9070   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
9071 
9072   // Note that the structure of the jmp_buf used here is not compatible
9073   // with that used by libc, and is not designed to be. Specifically, it
9074   // stores only those 'reserved' registers that LLVM does not otherwise
9075   // understand how to spill. Also, by convention, by the time this
9076   // intrinsic is called, Clang has already stored the frame address in the
9077   // first slot of the buffer and stack address in the third. Following the
9078   // X86 target code, we'll store the jump address in the second slot. We also
9079   // need to save the TOC pointer (R2) to handle jumps between shared
9080   // libraries, and that will be stored in the fourth slot. The thread
9081   // identifier (R13) is not affected.
9082 
9083   // thisMBB:
9084   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9085   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9086   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9087 
9088   // Prepare IP either in reg.
9089   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
9090   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
9091   unsigned BufReg = MI.getOperand(1).getReg();
9092 
9093   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
9094     setUsesTOCBasePtr(*MBB->getParent());
9095     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
9096             .addReg(PPC::X2)
9097             .addImm(TOCOffset)
9098             .addReg(BufReg);
9099     MIB.setMemRefs(MMOBegin, MMOEnd);
9100   }
9101 
9102   // Naked functions never have a base pointer, and so we use r1. For all
9103   // other functions, this decision must be delayed until during PEI.
9104   unsigned BaseReg;
9105   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
9106     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
9107   else
9108     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
9109 
9110   MIB = BuildMI(*thisMBB, MI, DL,
9111                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
9112             .addReg(BaseReg)
9113             .addImm(BPOffset)
9114             .addReg(BufReg);
9115   MIB.setMemRefs(MMOBegin, MMOEnd);
9116 
9117   // Setup
9118   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
9119   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9120   MIB.addRegMask(TRI->getNoPreservedMask());
9121 
9122   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
9123 
9124   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
9125           .addMBB(mainMBB);
9126   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
9127 
9128   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
9129   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9130 
9131   // mainMBB:
9132   //  mainDstReg = 0
9133   MIB =
9134       BuildMI(mainMBB, DL,
9135               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9136 
9137   // Store IP
9138   if (Subtarget.isPPC64()) {
9139     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9140             .addReg(LabelReg)
9141             .addImm(LabelOffset)
9142             .addReg(BufReg);
9143   } else {
9144     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9145             .addReg(LabelReg)
9146             .addImm(LabelOffset)
9147             .addReg(BufReg);
9148   }
9149 
9150   MIB.setMemRefs(MMOBegin, MMOEnd);
9151 
9152   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9153   mainMBB->addSuccessor(sinkMBB);
9154 
9155   // sinkMBB:
9156   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9157           TII->get(PPC::PHI), DstReg)
9158     .addReg(mainDstReg).addMBB(mainMBB)
9159     .addReg(restoreDstReg).addMBB(thisMBB);
9160 
9161   MI.eraseFromParent();
9162   return sinkMBB;
9163 }
9164 
9165 MachineBasicBlock *
9166 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9167                                      MachineBasicBlock *MBB) const {
9168   DebugLoc DL = MI.getDebugLoc();
9169   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9170 
9171   MachineFunction *MF = MBB->getParent();
9172   MachineRegisterInfo &MRI = MF->getRegInfo();
9173 
9174   // Memory Reference
9175   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9176   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9177 
9178   MVT PVT = getPointerTy(MF->getDataLayout());
9179   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9180          "Invalid Pointer Size!");
9181 
9182   const TargetRegisterClass *RC =
9183     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9184   unsigned Tmp = MRI.createVirtualRegister(RC);
9185   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9186   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9187   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9188   unsigned BP =
9189       (PVT == MVT::i64)
9190           ? PPC::X30
9191           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
9192                                                               : PPC::R30);
9193 
9194   MachineInstrBuilder MIB;
9195 
9196   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9197   const int64_t SPOffset    = 2 * PVT.getStoreSize();
9198   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9199   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9200 
9201   unsigned BufReg = MI.getOperand(0).getReg();
9202 
9203   // Reload FP (the jumped-to function may not have had a
9204   // frame pointer, and if so, then its r31 will be restored
9205   // as necessary).
9206   if (PVT == MVT::i64) {
9207     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
9208             .addImm(0)
9209             .addReg(BufReg);
9210   } else {
9211     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
9212             .addImm(0)
9213             .addReg(BufReg);
9214   }
9215   MIB.setMemRefs(MMOBegin, MMOEnd);
9216 
9217   // Reload IP
9218   if (PVT == MVT::i64) {
9219     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
9220             .addImm(LabelOffset)
9221             .addReg(BufReg);
9222   } else {
9223     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
9224             .addImm(LabelOffset)
9225             .addReg(BufReg);
9226   }
9227   MIB.setMemRefs(MMOBegin, MMOEnd);
9228 
9229   // Reload SP
9230   if (PVT == MVT::i64) {
9231     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
9232             .addImm(SPOffset)
9233             .addReg(BufReg);
9234   } else {
9235     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
9236             .addImm(SPOffset)
9237             .addReg(BufReg);
9238   }
9239   MIB.setMemRefs(MMOBegin, MMOEnd);
9240 
9241   // Reload BP
9242   if (PVT == MVT::i64) {
9243     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
9244             .addImm(BPOffset)
9245             .addReg(BufReg);
9246   } else {
9247     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
9248             .addImm(BPOffset)
9249             .addReg(BufReg);
9250   }
9251   MIB.setMemRefs(MMOBegin, MMOEnd);
9252 
9253   // Reload TOC
9254   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
9255     setUsesTOCBasePtr(*MBB->getParent());
9256     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
9257             .addImm(TOCOffset)
9258             .addReg(BufReg);
9259 
9260     MIB.setMemRefs(MMOBegin, MMOEnd);
9261   }
9262 
9263   // Jump
9264   BuildMI(*MBB, MI, DL,
9265           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
9266   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
9267 
9268   MI.eraseFromParent();
9269   return MBB;
9270 }
9271 
9272 MachineBasicBlock *
9273 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9274                                                MachineBasicBlock *BB) const {
9275   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
9276       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9277     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
9278         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9279       // Call lowering should have added an r2 operand to indicate a dependence
9280       // on the TOC base pointer value. It can't however, because there is no
9281       // way to mark the dependence as implicit there, and so the stackmap code
9282       // will confuse it with a regular operand. Instead, add the dependence
9283       // here.
9284       setUsesTOCBasePtr(*BB->getParent());
9285       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
9286     }
9287 
9288     return emitPatchPoint(MI, BB);
9289   }
9290 
9291   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
9292       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
9293     return emitEHSjLjSetJmp(MI, BB);
9294   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
9295              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
9296     return emitEHSjLjLongJmp(MI, BB);
9297   }
9298 
9299   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9300 
9301   // To "insert" these instructions we actually have to insert their
9302   // control-flow patterns.
9303   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9304   MachineFunction::iterator It = ++BB->getIterator();
9305 
9306   MachineFunction *F = BB->getParent();
9307 
9308   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9309        MI.getOpcode() == PPC::SELECT_CC_I8 ||
9310        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
9311     SmallVector<MachineOperand, 2> Cond;
9312     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9313         MI.getOpcode() == PPC::SELECT_CC_I8)
9314       Cond.push_back(MI.getOperand(4));
9315     else
9316       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
9317     Cond.push_back(MI.getOperand(1));
9318 
9319     DebugLoc dl = MI.getDebugLoc();
9320     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
9321                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
9322   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9323              MI.getOpcode() == PPC::SELECT_CC_I8 ||
9324              MI.getOpcode() == PPC::SELECT_CC_F4 ||
9325              MI.getOpcode() == PPC::SELECT_CC_F8 ||
9326              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
9327              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
9328              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
9329              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
9330              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
9331              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
9332              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
9333              MI.getOpcode() == PPC::SELECT_I4 ||
9334              MI.getOpcode() == PPC::SELECT_I8 ||
9335              MI.getOpcode() == PPC::SELECT_F4 ||
9336              MI.getOpcode() == PPC::SELECT_F8 ||
9337              MI.getOpcode() == PPC::SELECT_QFRC ||
9338              MI.getOpcode() == PPC::SELECT_QSRC ||
9339              MI.getOpcode() == PPC::SELECT_QBRC ||
9340              MI.getOpcode() == PPC::SELECT_VRRC ||
9341              MI.getOpcode() == PPC::SELECT_VSFRC ||
9342              MI.getOpcode() == PPC::SELECT_VSSRC ||
9343              MI.getOpcode() == PPC::SELECT_VSRC) {
9344     // The incoming instruction knows the destination vreg to set, the
9345     // condition code register to branch on, the true/false values to
9346     // select between, and a branch opcode to use.
9347 
9348     //  thisMBB:
9349     //  ...
9350     //   TrueVal = ...
9351     //   cmpTY ccX, r1, r2
9352     //   bCC copy1MBB
9353     //   fallthrough --> copy0MBB
9354     MachineBasicBlock *thisMBB = BB;
9355     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9356     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9357     DebugLoc dl = MI.getDebugLoc();
9358     F->insert(It, copy0MBB);
9359     F->insert(It, sinkMBB);
9360 
9361     // Transfer the remainder of BB and its successor edges to sinkMBB.
9362     sinkMBB->splice(sinkMBB->begin(), BB,
9363                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9364     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9365 
9366     // Next, add the true and fallthrough blocks as its successors.
9367     BB->addSuccessor(copy0MBB);
9368     BB->addSuccessor(sinkMBB);
9369 
9370     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
9371         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
9372         MI.getOpcode() == PPC::SELECT_QFRC ||
9373         MI.getOpcode() == PPC::SELECT_QSRC ||
9374         MI.getOpcode() == PPC::SELECT_QBRC ||
9375         MI.getOpcode() == PPC::SELECT_VRRC ||
9376         MI.getOpcode() == PPC::SELECT_VSFRC ||
9377         MI.getOpcode() == PPC::SELECT_VSSRC ||
9378         MI.getOpcode() == PPC::SELECT_VSRC) {
9379       BuildMI(BB, dl, TII->get(PPC::BC))
9380           .addReg(MI.getOperand(1).getReg())
9381           .addMBB(sinkMBB);
9382     } else {
9383       unsigned SelectPred = MI.getOperand(4).getImm();
9384       BuildMI(BB, dl, TII->get(PPC::BCC))
9385           .addImm(SelectPred)
9386           .addReg(MI.getOperand(1).getReg())
9387           .addMBB(sinkMBB);
9388     }
9389 
9390     //  copy0MBB:
9391     //   %FalseValue = ...
9392     //   # fallthrough to sinkMBB
9393     BB = copy0MBB;
9394 
9395     // Update machine-CFG edges
9396     BB->addSuccessor(sinkMBB);
9397 
9398     //  sinkMBB:
9399     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9400     //  ...
9401     BB = sinkMBB;
9402     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
9403         .addReg(MI.getOperand(3).getReg())
9404         .addMBB(copy0MBB)
9405         .addReg(MI.getOperand(2).getReg())
9406         .addMBB(thisMBB);
9407   } else if (MI.getOpcode() == PPC::ReadTB) {
9408     // To read the 64-bit time-base register on a 32-bit target, we read the
9409     // two halves. Should the counter have wrapped while it was being read, we
9410     // need to try again.
9411     // ...
9412     // readLoop:
9413     // mfspr Rx,TBU # load from TBU
9414     // mfspr Ry,TB  # load from TB
9415     // mfspr Rz,TBU # load from TBU
9416     // cmpw crX,Rx,Rz # check if 'old'='new'
9417     // bne readLoop   # branch if they're not equal
9418     // ...
9419 
9420     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
9421     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9422     DebugLoc dl = MI.getDebugLoc();
9423     F->insert(It, readMBB);
9424     F->insert(It, sinkMBB);
9425 
9426     // Transfer the remainder of BB and its successor edges to sinkMBB.
9427     sinkMBB->splice(sinkMBB->begin(), BB,
9428                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9429     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9430 
9431     BB->addSuccessor(readMBB);
9432     BB = readMBB;
9433 
9434     MachineRegisterInfo &RegInfo = F->getRegInfo();
9435     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9436     unsigned LoReg = MI.getOperand(0).getReg();
9437     unsigned HiReg = MI.getOperand(1).getReg();
9438 
9439     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9440     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9441     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9442 
9443     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9444 
9445     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9446       .addReg(HiReg).addReg(ReadAgainReg);
9447     BuildMI(BB, dl, TII->get(PPC::BCC))
9448       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9449 
9450     BB->addSuccessor(readMBB);
9451     BB->addSuccessor(sinkMBB);
9452   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9453     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9454   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9455     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9456   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9457     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9458   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9459     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9460 
9461   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9462     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9463   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9464     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9465   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9466     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9467   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9468     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9469 
9470   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9471     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9472   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9473     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9474   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9475     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9476   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9477     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9478 
9479   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9480     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9481   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9482     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9483   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9484     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9485   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9486     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9487 
9488   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9489     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9490   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9491     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9492   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9493     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9494   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9495     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9496 
9497   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9498     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9499   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9500     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9501   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9502     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9503   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9504     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9505 
9506   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
9507     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
9508   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
9509     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
9510   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
9511     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
9512   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
9513     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
9514 
9515   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
9516     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
9517   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
9518     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
9519   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
9520     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
9521   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
9522     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
9523 
9524   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
9525     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
9526   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
9527     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
9528   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
9529     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
9530   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
9531     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
9532 
9533   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
9534     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
9535   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
9536     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
9537   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
9538     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
9539   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
9540     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
9541 
9542   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
9543     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9544   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
9545     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9546   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
9547     BB = EmitAtomicBinary(MI, BB, 4, 0);
9548   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
9549     BB = EmitAtomicBinary(MI, BB, 8, 0);
9550   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9551            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9552            (Subtarget.hasPartwordAtomics() &&
9553             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9554            (Subtarget.hasPartwordAtomics() &&
9555             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9556     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9557 
9558     auto LoadMnemonic = PPC::LDARX;
9559     auto StoreMnemonic = PPC::STDCX;
9560     switch (MI.getOpcode()) {
9561     default:
9562       llvm_unreachable("Compare and swap of unknown size");
9563     case PPC::ATOMIC_CMP_SWAP_I8:
9564       LoadMnemonic = PPC::LBARX;
9565       StoreMnemonic = PPC::STBCX;
9566       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9567       break;
9568     case PPC::ATOMIC_CMP_SWAP_I16:
9569       LoadMnemonic = PPC::LHARX;
9570       StoreMnemonic = PPC::STHCX;
9571       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9572       break;
9573     case PPC::ATOMIC_CMP_SWAP_I32:
9574       LoadMnemonic = PPC::LWARX;
9575       StoreMnemonic = PPC::STWCX;
9576       break;
9577     case PPC::ATOMIC_CMP_SWAP_I64:
9578       LoadMnemonic = PPC::LDARX;
9579       StoreMnemonic = PPC::STDCX;
9580       break;
9581     }
9582     unsigned dest = MI.getOperand(0).getReg();
9583     unsigned ptrA = MI.getOperand(1).getReg();
9584     unsigned ptrB = MI.getOperand(2).getReg();
9585     unsigned oldval = MI.getOperand(3).getReg();
9586     unsigned newval = MI.getOperand(4).getReg();
9587     DebugLoc dl = MI.getDebugLoc();
9588 
9589     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9590     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9591     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9592     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9593     F->insert(It, loop1MBB);
9594     F->insert(It, loop2MBB);
9595     F->insert(It, midMBB);
9596     F->insert(It, exitMBB);
9597     exitMBB->splice(exitMBB->begin(), BB,
9598                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9599     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9600 
9601     //  thisMBB:
9602     //   ...
9603     //   fallthrough --> loopMBB
9604     BB->addSuccessor(loop1MBB);
9605 
9606     // loop1MBB:
9607     //   l[bhwd]arx dest, ptr
9608     //   cmp[wd] dest, oldval
9609     //   bne- midMBB
9610     // loop2MBB:
9611     //   st[bhwd]cx. newval, ptr
9612     //   bne- loopMBB
9613     //   b exitBB
9614     // midMBB:
9615     //   st[bhwd]cx. dest, ptr
9616     // exitBB:
9617     BB = loop1MBB;
9618     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9619       .addReg(ptrA).addReg(ptrB);
9620     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9621       .addReg(oldval).addReg(dest);
9622     BuildMI(BB, dl, TII->get(PPC::BCC))
9623       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9624     BB->addSuccessor(loop2MBB);
9625     BB->addSuccessor(midMBB);
9626 
9627     BB = loop2MBB;
9628     BuildMI(BB, dl, TII->get(StoreMnemonic))
9629       .addReg(newval).addReg(ptrA).addReg(ptrB);
9630     BuildMI(BB, dl, TII->get(PPC::BCC))
9631       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9632     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9633     BB->addSuccessor(loop1MBB);
9634     BB->addSuccessor(exitMBB);
9635 
9636     BB = midMBB;
9637     BuildMI(BB, dl, TII->get(StoreMnemonic))
9638       .addReg(dest).addReg(ptrA).addReg(ptrB);
9639     BB->addSuccessor(exitMBB);
9640 
9641     //  exitMBB:
9642     //   ...
9643     BB = exitMBB;
9644   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9645              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9646     // We must use 64-bit registers for addresses when targeting 64-bit,
9647     // since we're actually doing arithmetic on them.  Other registers
9648     // can be 32-bit.
9649     bool is64bit = Subtarget.isPPC64();
9650     bool isLittleEndian = Subtarget.isLittleEndian();
9651     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9652 
9653     unsigned dest = MI.getOperand(0).getReg();
9654     unsigned ptrA = MI.getOperand(1).getReg();
9655     unsigned ptrB = MI.getOperand(2).getReg();
9656     unsigned oldval = MI.getOperand(3).getReg();
9657     unsigned newval = MI.getOperand(4).getReg();
9658     DebugLoc dl = MI.getDebugLoc();
9659 
9660     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9661     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9662     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9663     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9664     F->insert(It, loop1MBB);
9665     F->insert(It, loop2MBB);
9666     F->insert(It, midMBB);
9667     F->insert(It, exitMBB);
9668     exitMBB->splice(exitMBB->begin(), BB,
9669                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9670     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9671 
9672     MachineRegisterInfo &RegInfo = F->getRegInfo();
9673     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9674                                             : &PPC::GPRCRegClass;
9675     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9676     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9677     unsigned ShiftReg =
9678       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9679     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9680     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9681     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9682     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9683     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9684     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9685     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9686     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9687     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9688     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9689     unsigned Ptr1Reg;
9690     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9691     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9692     //  thisMBB:
9693     //   ...
9694     //   fallthrough --> loopMBB
9695     BB->addSuccessor(loop1MBB);
9696 
9697     // The 4-byte load must be aligned, while a char or short may be
9698     // anywhere in the word.  Hence all this nasty bookkeeping code.
9699     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9700     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9701     //   xori shift, shift1, 24 [16]
9702     //   rlwinm ptr, ptr1, 0, 0, 29
9703     //   slw newval2, newval, shift
9704     //   slw oldval2, oldval,shift
9705     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9706     //   slw mask, mask2, shift
9707     //   and newval3, newval2, mask
9708     //   and oldval3, oldval2, mask
9709     // loop1MBB:
9710     //   lwarx tmpDest, ptr
9711     //   and tmp, tmpDest, mask
9712     //   cmpw tmp, oldval3
9713     //   bne- midMBB
9714     // loop2MBB:
9715     //   andc tmp2, tmpDest, mask
9716     //   or tmp4, tmp2, newval3
9717     //   stwcx. tmp4, ptr
9718     //   bne- loop1MBB
9719     //   b exitBB
9720     // midMBB:
9721     //   stwcx. tmpDest, ptr
9722     // exitBB:
9723     //   srw dest, tmpDest, shift
9724     if (ptrA != ZeroReg) {
9725       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9726       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9727         .addReg(ptrA).addReg(ptrB);
9728     } else {
9729       Ptr1Reg = ptrB;
9730     }
9731     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9732         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9733     if (!isLittleEndian)
9734       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9735           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9736     if (is64bit)
9737       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9738         .addReg(Ptr1Reg).addImm(0).addImm(61);
9739     else
9740       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9741         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9742     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9743         .addReg(newval).addReg(ShiftReg);
9744     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9745         .addReg(oldval).addReg(ShiftReg);
9746     if (is8bit)
9747       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9748     else {
9749       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9750       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9751         .addReg(Mask3Reg).addImm(65535);
9752     }
9753     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9754         .addReg(Mask2Reg).addReg(ShiftReg);
9755     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9756         .addReg(NewVal2Reg).addReg(MaskReg);
9757     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9758         .addReg(OldVal2Reg).addReg(MaskReg);
9759 
9760     BB = loop1MBB;
9761     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9762         .addReg(ZeroReg).addReg(PtrReg);
9763     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9764         .addReg(TmpDestReg).addReg(MaskReg);
9765     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9766         .addReg(TmpReg).addReg(OldVal3Reg);
9767     BuildMI(BB, dl, TII->get(PPC::BCC))
9768         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9769     BB->addSuccessor(loop2MBB);
9770     BB->addSuccessor(midMBB);
9771 
9772     BB = loop2MBB;
9773     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9774         .addReg(TmpDestReg).addReg(MaskReg);
9775     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9776         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9777     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9778         .addReg(ZeroReg).addReg(PtrReg);
9779     BuildMI(BB, dl, TII->get(PPC::BCC))
9780       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9781     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9782     BB->addSuccessor(loop1MBB);
9783     BB->addSuccessor(exitMBB);
9784 
9785     BB = midMBB;
9786     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9787       .addReg(ZeroReg).addReg(PtrReg);
9788     BB->addSuccessor(exitMBB);
9789 
9790     //  exitMBB:
9791     //   ...
9792     BB = exitMBB;
9793     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9794       .addReg(ShiftReg);
9795   } else if (MI.getOpcode() == PPC::FADDrtz) {
9796     // This pseudo performs an FADD with rounding mode temporarily forced
9797     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9798     // is not modeled at the SelectionDAG level.
9799     unsigned Dest = MI.getOperand(0).getReg();
9800     unsigned Src1 = MI.getOperand(1).getReg();
9801     unsigned Src2 = MI.getOperand(2).getReg();
9802     DebugLoc dl = MI.getDebugLoc();
9803 
9804     MachineRegisterInfo &RegInfo = F->getRegInfo();
9805     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9806 
9807     // Save FPSCR value.
9808     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9809 
9810     // Set rounding mode to round-to-zero.
9811     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9812     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9813 
9814     // Perform addition.
9815     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9816 
9817     // Restore FPSCR value.
9818     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9819   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9820              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
9821              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9822              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9823     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9824                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
9825                           ? PPC::ANDIo8
9826                           : PPC::ANDIo;
9827     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9828                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9829 
9830     MachineRegisterInfo &RegInfo = F->getRegInfo();
9831     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9832                                                   &PPC::GPRCRegClass :
9833                                                   &PPC::G8RCRegClass);
9834 
9835     DebugLoc dl = MI.getDebugLoc();
9836     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9837         .addReg(MI.getOperand(1).getReg())
9838         .addImm(1);
9839     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9840             MI.getOperand(0).getReg())
9841         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9842   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
9843     DebugLoc Dl = MI.getDebugLoc();
9844     MachineRegisterInfo &RegInfo = F->getRegInfo();
9845     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9846     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9847     return BB;
9848   } else {
9849     llvm_unreachable("Unexpected instr type to insert");
9850   }
9851 
9852   MI.eraseFromParent(); // The pseudo instruction is gone now.
9853   return BB;
9854 }
9855 
9856 //===----------------------------------------------------------------------===//
9857 // Target Optimization Hooks
9858 //===----------------------------------------------------------------------===//
9859 
9860 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
9861   // For the estimates, convergence is quadratic, so we essentially double the
9862   // number of digits correct after every iteration. For both FRE and FRSQRTE,
9863   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
9864   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
9865   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
9866   if (VT.getScalarType() == MVT::f64)
9867     RefinementSteps++;
9868   return RefinementSteps;
9869 }
9870 
9871 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
9872                                            int Enabled, int &RefinementSteps,
9873                                            bool &UseOneConstNR,
9874                                            bool Reciprocal) const {
9875   EVT VT = Operand.getValueType();
9876   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9877       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9878       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9879       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9880       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9881       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9882     if (RefinementSteps == ReciprocalEstimate::Unspecified)
9883       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
9884 
9885     UseOneConstNR = true;
9886     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9887   }
9888   return SDValue();
9889 }
9890 
9891 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
9892                                             int Enabled,
9893                                             int &RefinementSteps) const {
9894   EVT VT = Operand.getValueType();
9895   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9896       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9897       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9898       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9899       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9900       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9901     if (RefinementSteps == ReciprocalEstimate::Unspecified)
9902       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
9903     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9904   }
9905   return SDValue();
9906 }
9907 
9908 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9909   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9910   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9911   // enabled for division), this functionality is redundant with the default
9912   // combiner logic (once the division -> reciprocal/multiply transformation
9913   // has taken place). As a result, this matters more for older cores than for
9914   // newer ones.
9915 
9916   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9917   // reciprocal if there are two or more FDIVs (for embedded cores with only
9918   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9919   switch (Subtarget.getDarwinDirective()) {
9920   default:
9921     return 3;
9922   case PPC::DIR_440:
9923   case PPC::DIR_A2:
9924   case PPC::DIR_E500mc:
9925   case PPC::DIR_E5500:
9926     return 2;
9927   }
9928 }
9929 
9930 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9931 // collapsed, and so we need to look through chains of them.
9932 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9933                                      int64_t& Offset, SelectionDAG &DAG) {
9934   if (DAG.isBaseWithConstantOffset(Loc)) {
9935     Base = Loc.getOperand(0);
9936     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9937 
9938     // The base might itself be a base plus an offset, and if so, accumulate
9939     // that as well.
9940     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9941   }
9942 }
9943 
9944 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9945                             unsigned Bytes, int Dist,
9946                             SelectionDAG &DAG) {
9947   if (VT.getSizeInBits() / 8 != Bytes)
9948     return false;
9949 
9950   SDValue BaseLoc = Base->getBasePtr();
9951   if (Loc.getOpcode() == ISD::FrameIndex) {
9952     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9953       return false;
9954     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9955     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9956     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9957     int FS  = MFI.getObjectSize(FI);
9958     int BFS = MFI.getObjectSize(BFI);
9959     if (FS != BFS || FS != (int)Bytes) return false;
9960     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
9961   }
9962 
9963   SDValue Base1 = Loc, Base2 = BaseLoc;
9964   int64_t Offset1 = 0, Offset2 = 0;
9965   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9966   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9967   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9968     return true;
9969 
9970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9971   const GlobalValue *GV1 = nullptr;
9972   const GlobalValue *GV2 = nullptr;
9973   Offset1 = 0;
9974   Offset2 = 0;
9975   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9976   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9977   if (isGA1 && isGA2 && GV1 == GV2)
9978     return Offset1 == (Offset2 + Dist*Bytes);
9979   return false;
9980 }
9981 
9982 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9983 // not enforce equality of the chain operands.
9984 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9985                             unsigned Bytes, int Dist,
9986                             SelectionDAG &DAG) {
9987   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9988     EVT VT = LS->getMemoryVT();
9989     SDValue Loc = LS->getBasePtr();
9990     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9991   }
9992 
9993   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9994     EVT VT;
9995     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9996     default: return false;
9997     case Intrinsic::ppc_qpx_qvlfd:
9998     case Intrinsic::ppc_qpx_qvlfda:
9999       VT = MVT::v4f64;
10000       break;
10001     case Intrinsic::ppc_qpx_qvlfs:
10002     case Intrinsic::ppc_qpx_qvlfsa:
10003       VT = MVT::v4f32;
10004       break;
10005     case Intrinsic::ppc_qpx_qvlfcd:
10006     case Intrinsic::ppc_qpx_qvlfcda:
10007       VT = MVT::v2f64;
10008       break;
10009     case Intrinsic::ppc_qpx_qvlfcs:
10010     case Intrinsic::ppc_qpx_qvlfcsa:
10011       VT = MVT::v2f32;
10012       break;
10013     case Intrinsic::ppc_qpx_qvlfiwa:
10014     case Intrinsic::ppc_qpx_qvlfiwz:
10015     case Intrinsic::ppc_altivec_lvx:
10016     case Intrinsic::ppc_altivec_lvxl:
10017     case Intrinsic::ppc_vsx_lxvw4x:
10018     case Intrinsic::ppc_vsx_lxvw4x_be:
10019       VT = MVT::v4i32;
10020       break;
10021     case Intrinsic::ppc_vsx_lxvd2x:
10022     case Intrinsic::ppc_vsx_lxvd2x_be:
10023       VT = MVT::v2f64;
10024       break;
10025     case Intrinsic::ppc_altivec_lvebx:
10026       VT = MVT::i8;
10027       break;
10028     case Intrinsic::ppc_altivec_lvehx:
10029       VT = MVT::i16;
10030       break;
10031     case Intrinsic::ppc_altivec_lvewx:
10032       VT = MVT::i32;
10033       break;
10034     }
10035 
10036     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10037   }
10038 
10039   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10040     EVT VT;
10041     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10042     default: return false;
10043     case Intrinsic::ppc_qpx_qvstfd:
10044     case Intrinsic::ppc_qpx_qvstfda:
10045       VT = MVT::v4f64;
10046       break;
10047     case Intrinsic::ppc_qpx_qvstfs:
10048     case Intrinsic::ppc_qpx_qvstfsa:
10049       VT = MVT::v4f32;
10050       break;
10051     case Intrinsic::ppc_qpx_qvstfcd:
10052     case Intrinsic::ppc_qpx_qvstfcda:
10053       VT = MVT::v2f64;
10054       break;
10055     case Intrinsic::ppc_qpx_qvstfcs:
10056     case Intrinsic::ppc_qpx_qvstfcsa:
10057       VT = MVT::v2f32;
10058       break;
10059     case Intrinsic::ppc_qpx_qvstfiw:
10060     case Intrinsic::ppc_qpx_qvstfiwa:
10061     case Intrinsic::ppc_altivec_stvx:
10062     case Intrinsic::ppc_altivec_stvxl:
10063     case Intrinsic::ppc_vsx_stxvw4x:
10064       VT = MVT::v4i32;
10065       break;
10066     case Intrinsic::ppc_vsx_stxvd2x:
10067       VT = MVT::v2f64;
10068       break;
10069     case Intrinsic::ppc_vsx_stxvw4x_be:
10070       VT = MVT::v4i32;
10071       break;
10072     case Intrinsic::ppc_vsx_stxvd2x_be:
10073       VT = MVT::v2f64;
10074       break;
10075     case Intrinsic::ppc_altivec_stvebx:
10076       VT = MVT::i8;
10077       break;
10078     case Intrinsic::ppc_altivec_stvehx:
10079       VT = MVT::i16;
10080       break;
10081     case Intrinsic::ppc_altivec_stvewx:
10082       VT = MVT::i32;
10083       break;
10084     }
10085 
10086     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
10087   }
10088 
10089   return false;
10090 }
10091 
10092 // Return true is there is a nearyby consecutive load to the one provided
10093 // (regardless of alignment). We search up and down the chain, looking though
10094 // token factors and other loads (but nothing else). As a result, a true result
10095 // indicates that it is safe to create a new consecutive load adjacent to the
10096 // load provided.
10097 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
10098   SDValue Chain = LD->getChain();
10099   EVT VT = LD->getMemoryVT();
10100 
10101   SmallSet<SDNode *, 16> LoadRoots;
10102   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
10103   SmallSet<SDNode *, 16> Visited;
10104 
10105   // First, search up the chain, branching to follow all token-factor operands.
10106   // If we find a consecutive load, then we're done, otherwise, record all
10107   // nodes just above the top-level loads and token factors.
10108   while (!Queue.empty()) {
10109     SDNode *ChainNext = Queue.pop_back_val();
10110     if (!Visited.insert(ChainNext).second)
10111       continue;
10112 
10113     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
10114       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10115         return true;
10116 
10117       if (!Visited.count(ChainLD->getChain().getNode()))
10118         Queue.push_back(ChainLD->getChain().getNode());
10119     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
10120       for (const SDUse &O : ChainNext->ops())
10121         if (!Visited.count(O.getNode()))
10122           Queue.push_back(O.getNode());
10123     } else
10124       LoadRoots.insert(ChainNext);
10125   }
10126 
10127   // Second, search down the chain, starting from the top-level nodes recorded
10128   // in the first phase. These top-level nodes are the nodes just above all
10129   // loads and token factors. Starting with their uses, recursively look though
10130   // all loads (just the chain uses) and token factors to find a consecutive
10131   // load.
10132   Visited.clear();
10133   Queue.clear();
10134 
10135   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10136        IE = LoadRoots.end(); I != IE; ++I) {
10137     Queue.push_back(*I);
10138 
10139     while (!Queue.empty()) {
10140       SDNode *LoadRoot = Queue.pop_back_val();
10141       if (!Visited.insert(LoadRoot).second)
10142         continue;
10143 
10144       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10145         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10146           return true;
10147 
10148       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10149            UE = LoadRoot->use_end(); UI != UE; ++UI)
10150         if (((isa<MemSDNode>(*UI) &&
10151             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10152             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10153           Queue.push_back(*UI);
10154     }
10155   }
10156 
10157   return false;
10158 }
10159 
10160 /// This function is called when we have proved that a SETCC node can be replaced
10161 /// by subtraction (and other supporting instructions) so that the result of
10162 /// comparison is kept in a GPR instead of CR. This function is purely for
10163 /// codegen purposes and has some flags to guide the codegen process.
10164 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10165                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10166   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10167 
10168   // Zero extend the operands to the largest legal integer. Originally, they
10169   // must be of a strictly smaller size.
10170   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10171                          DAG.getConstant(Size, DL, MVT::i32));
10172   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10173                          DAG.getConstant(Size, DL, MVT::i32));
10174 
10175   // Swap if needed. Depends on the condition code.
10176   if (Swap)
10177     std::swap(Op0, Op1);
10178 
10179   // Subtract extended integers.
10180   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10181 
10182   // Move the sign bit to the least significant position and zero out the rest.
10183   // Now the least significant bit carries the result of original comparison.
10184   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10185                              DAG.getConstant(Size - 1, DL, MVT::i32));
10186   auto Final = Shifted;
10187 
10188   // Complement the result if needed. Based on the condition code.
10189   if (Complement)
10190     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10191                         DAG.getConstant(1, DL, MVT::i64));
10192 
10193   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
10194 }
10195 
10196 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
10197                                                   DAGCombinerInfo &DCI) const {
10198   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10199 
10200   SelectionDAG &DAG = DCI.DAG;
10201   SDLoc DL(N);
10202 
10203   // Size of integers being compared has a critical role in the following
10204   // analysis, so we prefer to do this when all types are legal.
10205   if (!DCI.isAfterLegalizeVectorOps())
10206     return SDValue();
10207 
10208   // If all users of SETCC extend its value to a legal integer type
10209   // then we replace SETCC with a subtraction
10210   for (SDNode::use_iterator UI = N->use_begin(),
10211        UE = N->use_end(); UI != UE; ++UI) {
10212     if (UI->getOpcode() != ISD::ZERO_EXTEND)
10213       return SDValue();
10214   }
10215 
10216   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10217   auto OpSize = N->getOperand(0).getValueSizeInBits();
10218 
10219   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
10220 
10221   if (OpSize < Size) {
10222     switch (CC) {
10223     default: break;
10224     case ISD::SETULT:
10225       return generateEquivalentSub(N, Size, false, false, DL, DAG);
10226     case ISD::SETULE:
10227       return generateEquivalentSub(N, Size, true, true, DL, DAG);
10228     case ISD::SETUGT:
10229       return generateEquivalentSub(N, Size, false, true, DL, DAG);
10230     case ISD::SETUGE:
10231       return generateEquivalentSub(N, Size, true, false, DL, DAG);
10232     }
10233   }
10234 
10235   return SDValue();
10236 }
10237 
10238 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
10239                                                   DAGCombinerInfo &DCI) const {
10240   SelectionDAG &DAG = DCI.DAG;
10241   SDLoc dl(N);
10242 
10243   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
10244   // If we're tracking CR bits, we need to be careful that we don't have:
10245   //   trunc(binary-ops(zext(x), zext(y)))
10246   // or
10247   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
10248   // such that we're unnecessarily moving things into GPRs when it would be
10249   // better to keep them in CR bits.
10250 
10251   // Note that trunc here can be an actual i1 trunc, or can be the effective
10252   // truncation that comes from a setcc or select_cc.
10253   if (N->getOpcode() == ISD::TRUNCATE &&
10254       N->getValueType(0) != MVT::i1)
10255     return SDValue();
10256 
10257   if (N->getOperand(0).getValueType() != MVT::i32 &&
10258       N->getOperand(0).getValueType() != MVT::i64)
10259     return SDValue();
10260 
10261   if (N->getOpcode() == ISD::SETCC ||
10262       N->getOpcode() == ISD::SELECT_CC) {
10263     // If we're looking at a comparison, then we need to make sure that the
10264     // high bits (all except for the first) don't matter the result.
10265     ISD::CondCode CC =
10266       cast<CondCodeSDNode>(N->getOperand(
10267         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
10268     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
10269 
10270     if (ISD::isSignedIntSetCC(CC)) {
10271       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
10272           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
10273         return SDValue();
10274     } else if (ISD::isUnsignedIntSetCC(CC)) {
10275       if (!DAG.MaskedValueIsZero(N->getOperand(0),
10276                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
10277           !DAG.MaskedValueIsZero(N->getOperand(1),
10278                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
10279         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
10280                                              : SDValue());
10281     } else {
10282       // This is neither a signed nor an unsigned comparison, just make sure
10283       // that the high bits are equal.
10284       APInt Op1Zero, Op1One;
10285       APInt Op2Zero, Op2One;
10286       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
10287       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
10288 
10289       // We don't really care about what is known about the first bit (if
10290       // anything), so clear it in all masks prior to comparing them.
10291       Op1Zero.clearBit(0); Op1One.clearBit(0);
10292       Op2Zero.clearBit(0); Op2One.clearBit(0);
10293 
10294       if (Op1Zero != Op2Zero || Op1One != Op2One)
10295         return SDValue();
10296     }
10297   }
10298 
10299   // We now know that the higher-order bits are irrelevant, we just need to
10300   // make sure that all of the intermediate operations are bit operations, and
10301   // all inputs are extensions.
10302   if (N->getOperand(0).getOpcode() != ISD::AND &&
10303       N->getOperand(0).getOpcode() != ISD::OR  &&
10304       N->getOperand(0).getOpcode() != ISD::XOR &&
10305       N->getOperand(0).getOpcode() != ISD::SELECT &&
10306       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
10307       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
10308       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
10309       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
10310       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
10311     return SDValue();
10312 
10313   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
10314       N->getOperand(1).getOpcode() != ISD::AND &&
10315       N->getOperand(1).getOpcode() != ISD::OR  &&
10316       N->getOperand(1).getOpcode() != ISD::XOR &&
10317       N->getOperand(1).getOpcode() != ISD::SELECT &&
10318       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
10319       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
10320       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
10321       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
10322       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
10323     return SDValue();
10324 
10325   SmallVector<SDValue, 4> Inputs;
10326   SmallVector<SDValue, 8> BinOps, PromOps;
10327   SmallPtrSet<SDNode *, 16> Visited;
10328 
10329   for (unsigned i = 0; i < 2; ++i) {
10330     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10331           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10332           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10333           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10334         isa<ConstantSDNode>(N->getOperand(i)))
10335       Inputs.push_back(N->getOperand(i));
10336     else
10337       BinOps.push_back(N->getOperand(i));
10338 
10339     if (N->getOpcode() == ISD::TRUNCATE)
10340       break;
10341   }
10342 
10343   // Visit all inputs, collect all binary operations (and, or, xor and
10344   // select) that are all fed by extensions.
10345   while (!BinOps.empty()) {
10346     SDValue BinOp = BinOps.back();
10347     BinOps.pop_back();
10348 
10349     if (!Visited.insert(BinOp.getNode()).second)
10350       continue;
10351 
10352     PromOps.push_back(BinOp);
10353 
10354     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10355       // The condition of the select is not promoted.
10356       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10357         continue;
10358       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10359         continue;
10360 
10361       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10362             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10363             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10364            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10365           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10366         Inputs.push_back(BinOp.getOperand(i));
10367       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10368                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10369                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10370                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10371                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
10372                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10373                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10374                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10375                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
10376         BinOps.push_back(BinOp.getOperand(i));
10377       } else {
10378         // We have an input that is not an extension or another binary
10379         // operation; we'll abort this transformation.
10380         return SDValue();
10381       }
10382     }
10383   }
10384 
10385   // Make sure that this is a self-contained cluster of operations (which
10386   // is not quite the same thing as saying that everything has only one
10387   // use).
10388   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10389     if (isa<ConstantSDNode>(Inputs[i]))
10390       continue;
10391 
10392     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10393                               UE = Inputs[i].getNode()->use_end();
10394          UI != UE; ++UI) {
10395       SDNode *User = *UI;
10396       if (User != N && !Visited.count(User))
10397         return SDValue();
10398 
10399       // Make sure that we're not going to promote the non-output-value
10400       // operand(s) or SELECT or SELECT_CC.
10401       // FIXME: Although we could sometimes handle this, and it does occur in
10402       // practice that one of the condition inputs to the select is also one of
10403       // the outputs, we currently can't deal with this.
10404       if (User->getOpcode() == ISD::SELECT) {
10405         if (User->getOperand(0) == Inputs[i])
10406           return SDValue();
10407       } else if (User->getOpcode() == ISD::SELECT_CC) {
10408         if (User->getOperand(0) == Inputs[i] ||
10409             User->getOperand(1) == Inputs[i])
10410           return SDValue();
10411       }
10412     }
10413   }
10414 
10415   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10416     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10417                               UE = PromOps[i].getNode()->use_end();
10418          UI != UE; ++UI) {
10419       SDNode *User = *UI;
10420       if (User != N && !Visited.count(User))
10421         return SDValue();
10422 
10423       // Make sure that we're not going to promote the non-output-value
10424       // operand(s) or SELECT or SELECT_CC.
10425       // FIXME: Although we could sometimes handle this, and it does occur in
10426       // practice that one of the condition inputs to the select is also one of
10427       // the outputs, we currently can't deal with this.
10428       if (User->getOpcode() == ISD::SELECT) {
10429         if (User->getOperand(0) == PromOps[i])
10430           return SDValue();
10431       } else if (User->getOpcode() == ISD::SELECT_CC) {
10432         if (User->getOperand(0) == PromOps[i] ||
10433             User->getOperand(1) == PromOps[i])
10434           return SDValue();
10435       }
10436     }
10437   }
10438 
10439   // Replace all inputs with the extension operand.
10440   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10441     // Constants may have users outside the cluster of to-be-promoted nodes,
10442     // and so we need to replace those as we do the promotions.
10443     if (isa<ConstantSDNode>(Inputs[i]))
10444       continue;
10445     else
10446       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
10447   }
10448 
10449   std::list<HandleSDNode> PromOpHandles;
10450   for (auto &PromOp : PromOps)
10451     PromOpHandles.emplace_back(PromOp);
10452 
10453   // Replace all operations (these are all the same, but have a different
10454   // (i1) return type). DAG.getNode will validate that the types of
10455   // a binary operator match, so go through the list in reverse so that
10456   // we've likely promoted both operands first. Any intermediate truncations or
10457   // extensions disappear.
10458   while (!PromOpHandles.empty()) {
10459     SDValue PromOp = PromOpHandles.back().getValue();
10460     PromOpHandles.pop_back();
10461 
10462     if (PromOp.getOpcode() == ISD::TRUNCATE ||
10463         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
10464         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
10465         PromOp.getOpcode() == ISD::ANY_EXTEND) {
10466       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
10467           PromOp.getOperand(0).getValueType() != MVT::i1) {
10468         // The operand is not yet ready (see comment below).
10469         PromOpHandles.emplace_front(PromOp);
10470         continue;
10471       }
10472 
10473       SDValue RepValue = PromOp.getOperand(0);
10474       if (isa<ConstantSDNode>(RepValue))
10475         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
10476 
10477       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
10478       continue;
10479     }
10480 
10481     unsigned C;
10482     switch (PromOp.getOpcode()) {
10483     default:             C = 0; break;
10484     case ISD::SELECT:    C = 1; break;
10485     case ISD::SELECT_CC: C = 2; break;
10486     }
10487 
10488     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10489          PromOp.getOperand(C).getValueType() != MVT::i1) ||
10490         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10491          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
10492       // The to-be-promoted operands of this node have not yet been
10493       // promoted (this should be rare because we're going through the
10494       // list backward, but if one of the operands has several users in
10495       // this cluster of to-be-promoted nodes, it is possible).
10496       PromOpHandles.emplace_front(PromOp);
10497       continue;
10498     }
10499 
10500     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10501                                 PromOp.getNode()->op_end());
10502 
10503     // If there are any constant inputs, make sure they're replaced now.
10504     for (unsigned i = 0; i < 2; ++i)
10505       if (isa<ConstantSDNode>(Ops[C+i]))
10506         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
10507 
10508     DAG.ReplaceAllUsesOfValueWith(PromOp,
10509       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
10510   }
10511 
10512   // Now we're left with the initial truncation itself.
10513   if (N->getOpcode() == ISD::TRUNCATE)
10514     return N->getOperand(0);
10515 
10516   // Otherwise, this is a comparison. The operands to be compared have just
10517   // changed type (to i1), but everything else is the same.
10518   return SDValue(N, 0);
10519 }
10520 
10521 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
10522                                                   DAGCombinerInfo &DCI) const {
10523   SelectionDAG &DAG = DCI.DAG;
10524   SDLoc dl(N);
10525 
10526   // If we're tracking CR bits, we need to be careful that we don't have:
10527   //   zext(binary-ops(trunc(x), trunc(y)))
10528   // or
10529   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
10530   // such that we're unnecessarily moving things into CR bits that can more
10531   // efficiently stay in GPRs. Note that if we're not certain that the high
10532   // bits are set as required by the final extension, we still may need to do
10533   // some masking to get the proper behavior.
10534 
10535   // This same functionality is important on PPC64 when dealing with
10536   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
10537   // the return values of functions. Because it is so similar, it is handled
10538   // here as well.
10539 
10540   if (N->getValueType(0) != MVT::i32 &&
10541       N->getValueType(0) != MVT::i64)
10542     return SDValue();
10543 
10544   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
10545         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
10546     return SDValue();
10547 
10548   if (N->getOperand(0).getOpcode() != ISD::AND &&
10549       N->getOperand(0).getOpcode() != ISD::OR  &&
10550       N->getOperand(0).getOpcode() != ISD::XOR &&
10551       N->getOperand(0).getOpcode() != ISD::SELECT &&
10552       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
10553     return SDValue();
10554 
10555   SmallVector<SDValue, 4> Inputs;
10556   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10557   SmallPtrSet<SDNode *, 16> Visited;
10558 
10559   // Visit all inputs, collect all binary operations (and, or, xor and
10560   // select) that are all fed by truncations.
10561   while (!BinOps.empty()) {
10562     SDValue BinOp = BinOps.back();
10563     BinOps.pop_back();
10564 
10565     if (!Visited.insert(BinOp.getNode()).second)
10566       continue;
10567 
10568     PromOps.push_back(BinOp);
10569 
10570     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10571       // The condition of the select is not promoted.
10572       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10573         continue;
10574       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10575         continue;
10576 
10577       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10578           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10579         Inputs.push_back(BinOp.getOperand(i));
10580       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10581                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10582                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10583                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10584                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10585         BinOps.push_back(BinOp.getOperand(i));
10586       } else {
10587         // We have an input that is not a truncation or another binary
10588         // operation; we'll abort this transformation.
10589         return SDValue();
10590       }
10591     }
10592   }
10593 
10594   // The operands of a select that must be truncated when the select is
10595   // promoted because the operand is actually part of the to-be-promoted set.
10596   DenseMap<SDNode *, EVT> SelectTruncOp[2];
10597 
10598   // Make sure that this is a self-contained cluster of operations (which
10599   // is not quite the same thing as saying that everything has only one
10600   // use).
10601   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10602     if (isa<ConstantSDNode>(Inputs[i]))
10603       continue;
10604 
10605     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10606                               UE = Inputs[i].getNode()->use_end();
10607          UI != UE; ++UI) {
10608       SDNode *User = *UI;
10609       if (User != N && !Visited.count(User))
10610         return SDValue();
10611 
10612       // If we're going to promote the non-output-value operand(s) or SELECT or
10613       // SELECT_CC, record them for truncation.
10614       if (User->getOpcode() == ISD::SELECT) {
10615         if (User->getOperand(0) == Inputs[i])
10616           SelectTruncOp[0].insert(std::make_pair(User,
10617                                     User->getOperand(0).getValueType()));
10618       } else if (User->getOpcode() == ISD::SELECT_CC) {
10619         if (User->getOperand(0) == Inputs[i])
10620           SelectTruncOp[0].insert(std::make_pair(User,
10621                                     User->getOperand(0).getValueType()));
10622         if (User->getOperand(1) == Inputs[i])
10623           SelectTruncOp[1].insert(std::make_pair(User,
10624                                     User->getOperand(1).getValueType()));
10625       }
10626     }
10627   }
10628 
10629   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10630     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10631                               UE = PromOps[i].getNode()->use_end();
10632          UI != UE; ++UI) {
10633       SDNode *User = *UI;
10634       if (User != N && !Visited.count(User))
10635         return SDValue();
10636 
10637       // If we're going to promote the non-output-value operand(s) or SELECT or
10638       // SELECT_CC, record them for truncation.
10639       if (User->getOpcode() == ISD::SELECT) {
10640         if (User->getOperand(0) == PromOps[i])
10641           SelectTruncOp[0].insert(std::make_pair(User,
10642                                     User->getOperand(0).getValueType()));
10643       } else if (User->getOpcode() == ISD::SELECT_CC) {
10644         if (User->getOperand(0) == PromOps[i])
10645           SelectTruncOp[0].insert(std::make_pair(User,
10646                                     User->getOperand(0).getValueType()));
10647         if (User->getOperand(1) == PromOps[i])
10648           SelectTruncOp[1].insert(std::make_pair(User,
10649                                     User->getOperand(1).getValueType()));
10650       }
10651     }
10652   }
10653 
10654   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10655   bool ReallyNeedsExt = false;
10656   if (N->getOpcode() != ISD::ANY_EXTEND) {
10657     // If all of the inputs are not already sign/zero extended, then
10658     // we'll still need to do that at the end.
10659     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10660       if (isa<ConstantSDNode>(Inputs[i]))
10661         continue;
10662 
10663       unsigned OpBits =
10664         Inputs[i].getOperand(0).getValueSizeInBits();
10665       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10666 
10667       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10668            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10669                                   APInt::getHighBitsSet(OpBits,
10670                                                         OpBits-PromBits))) ||
10671           (N->getOpcode() == ISD::SIGN_EXTEND &&
10672            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10673              (OpBits-(PromBits-1)))) {
10674         ReallyNeedsExt = true;
10675         break;
10676       }
10677     }
10678   }
10679 
10680   // Replace all inputs, either with the truncation operand, or a
10681   // truncation or extension to the final output type.
10682   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10683     // Constant inputs need to be replaced with the to-be-promoted nodes that
10684     // use them because they might have users outside of the cluster of
10685     // promoted nodes.
10686     if (isa<ConstantSDNode>(Inputs[i]))
10687       continue;
10688 
10689     SDValue InSrc = Inputs[i].getOperand(0);
10690     if (Inputs[i].getValueType() == N->getValueType(0))
10691       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10692     else if (N->getOpcode() == ISD::SIGN_EXTEND)
10693       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10694         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10695     else if (N->getOpcode() == ISD::ZERO_EXTEND)
10696       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10697         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10698     else
10699       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10700         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10701   }
10702 
10703   std::list<HandleSDNode> PromOpHandles;
10704   for (auto &PromOp : PromOps)
10705     PromOpHandles.emplace_back(PromOp);
10706 
10707   // Replace all operations (these are all the same, but have a different
10708   // (promoted) return type). DAG.getNode will validate that the types of
10709   // a binary operator match, so go through the list in reverse so that
10710   // we've likely promoted both operands first.
10711   while (!PromOpHandles.empty()) {
10712     SDValue PromOp = PromOpHandles.back().getValue();
10713     PromOpHandles.pop_back();
10714 
10715     unsigned C;
10716     switch (PromOp.getOpcode()) {
10717     default:             C = 0; break;
10718     case ISD::SELECT:    C = 1; break;
10719     case ISD::SELECT_CC: C = 2; break;
10720     }
10721 
10722     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10723          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10724         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10725          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10726       // The to-be-promoted operands of this node have not yet been
10727       // promoted (this should be rare because we're going through the
10728       // list backward, but if one of the operands has several users in
10729       // this cluster of to-be-promoted nodes, it is possible).
10730       PromOpHandles.emplace_front(PromOp);
10731       continue;
10732     }
10733 
10734     // For SELECT and SELECT_CC nodes, we do a similar check for any
10735     // to-be-promoted comparison inputs.
10736     if (PromOp.getOpcode() == ISD::SELECT ||
10737         PromOp.getOpcode() == ISD::SELECT_CC) {
10738       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10739            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10740           (SelectTruncOp[1].count(PromOp.getNode()) &&
10741            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10742         PromOpHandles.emplace_front(PromOp);
10743         continue;
10744       }
10745     }
10746 
10747     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10748                                 PromOp.getNode()->op_end());
10749 
10750     // If this node has constant inputs, then they'll need to be promoted here.
10751     for (unsigned i = 0; i < 2; ++i) {
10752       if (!isa<ConstantSDNode>(Ops[C+i]))
10753         continue;
10754       if (Ops[C+i].getValueType() == N->getValueType(0))
10755         continue;
10756 
10757       if (N->getOpcode() == ISD::SIGN_EXTEND)
10758         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10759       else if (N->getOpcode() == ISD::ZERO_EXTEND)
10760         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10761       else
10762         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10763     }
10764 
10765     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10766     // truncate them again to the original value type.
10767     if (PromOp.getOpcode() == ISD::SELECT ||
10768         PromOp.getOpcode() == ISD::SELECT_CC) {
10769       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10770       if (SI0 != SelectTruncOp[0].end())
10771         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10772       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10773       if (SI1 != SelectTruncOp[1].end())
10774         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10775     }
10776 
10777     DAG.ReplaceAllUsesOfValueWith(PromOp,
10778       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10779   }
10780 
10781   // Now we're left with the initial extension itself.
10782   if (!ReallyNeedsExt)
10783     return N->getOperand(0);
10784 
10785   // To zero extend, just mask off everything except for the first bit (in the
10786   // i1 case).
10787   if (N->getOpcode() == ISD::ZERO_EXTEND)
10788     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10789                        DAG.getConstant(APInt::getLowBitsSet(
10790                                          N->getValueSizeInBits(0), PromBits),
10791                                        dl, N->getValueType(0)));
10792 
10793   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10794          "Invalid extension type");
10795   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10796   SDValue ShiftCst =
10797       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10798   return DAG.getNode(
10799       ISD::SRA, dl, N->getValueType(0),
10800       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10801       ShiftCst);
10802 }
10803 
10804 /// \brief Reduces the number of fp-to-int conversion when building a vector.
10805 ///
10806 /// If this vector is built out of floating to integer conversions,
10807 /// transform it to a vector built out of floating point values followed by a
10808 /// single floating to integer conversion of the vector.
10809 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
10810 /// becomes (fptosi (build_vector ($A, $B, ...)))
10811 SDValue PPCTargetLowering::
10812 combineElementTruncationToVectorTruncation(SDNode *N,
10813                                            DAGCombinerInfo &DCI) const {
10814   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10815          "Should be called with a BUILD_VECTOR node");
10816 
10817   SelectionDAG &DAG = DCI.DAG;
10818   SDLoc dl(N);
10819 
10820   SDValue FirstInput = N->getOperand(0);
10821   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
10822          "The input operand must be an fp-to-int conversion.");
10823 
10824   // This combine happens after legalization so the fp_to_[su]i nodes are
10825   // already converted to PPCSISD nodes.
10826   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
10827   if (FirstConversion == PPCISD::FCTIDZ ||
10828       FirstConversion == PPCISD::FCTIDUZ ||
10829       FirstConversion == PPCISD::FCTIWZ ||
10830       FirstConversion == PPCISD::FCTIWUZ) {
10831     bool IsSplat = true;
10832     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
10833       FirstConversion == PPCISD::FCTIWUZ;
10834     EVT SrcVT = FirstInput.getOperand(0).getValueType();
10835     SmallVector<SDValue, 4> Ops;
10836     EVT TargetVT = N->getValueType(0);
10837     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
10838       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
10839         return SDValue();
10840       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
10841       if (NextConversion != FirstConversion)
10842         return SDValue();
10843       if (N->getOperand(i) != FirstInput)
10844         IsSplat = false;
10845     }
10846 
10847     // If this is a splat, we leave it as-is since there will be only a single
10848     // fp-to-int conversion followed by a splat of the integer. This is better
10849     // for 32-bit and smaller ints and neutral for 64-bit ints.
10850     if (IsSplat)
10851       return SDValue();
10852 
10853     // Now that we know we have the right type of node, get its operands
10854     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
10855       SDValue In = N->getOperand(i).getOperand(0);
10856       // For 32-bit values, we need to add an FP_ROUND node.
10857       if (Is32Bit) {
10858         if (In.isUndef())
10859           Ops.push_back(DAG.getUNDEF(SrcVT));
10860         else {
10861           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
10862                                       MVT::f32, In.getOperand(0),
10863                                       DAG.getIntPtrConstant(1, dl));
10864           Ops.push_back(Trunc);
10865         }
10866       } else
10867         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
10868     }
10869 
10870     unsigned Opcode;
10871     if (FirstConversion == PPCISD::FCTIDZ ||
10872         FirstConversion == PPCISD::FCTIWZ)
10873       Opcode = ISD::FP_TO_SINT;
10874     else
10875       Opcode = ISD::FP_TO_UINT;
10876 
10877     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
10878     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
10879     return DAG.getNode(Opcode, dl, TargetVT, BV);
10880   }
10881   return SDValue();
10882 }
10883 
10884 /// \brief Reduce the number of loads when building a vector.
10885 ///
10886 /// Building a vector out of multiple loads can be converted to a load
10887 /// of the vector type if the loads are consecutive. If the loads are
10888 /// consecutive but in descending order, a shuffle is added at the end
10889 /// to reorder the vector.
10890 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
10891   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10892          "Should be called with a BUILD_VECTOR node");
10893 
10894   SDLoc dl(N);
10895   bool InputsAreConsecutiveLoads = true;
10896   bool InputsAreReverseConsecutive = true;
10897   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
10898   SDValue FirstInput = N->getOperand(0);
10899   bool IsRoundOfExtLoad = false;
10900 
10901   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
10902       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
10903     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
10904     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
10905   }
10906   // Not a build vector of (possibly fp_rounded) loads.
10907   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
10908     return SDValue();
10909 
10910   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
10911     // If any inputs are fp_round(extload), they all must be.
10912     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
10913       return SDValue();
10914 
10915     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
10916       N->getOperand(i);
10917     if (NextInput.getOpcode() != ISD::LOAD)
10918       return SDValue();
10919 
10920     SDValue PreviousInput =
10921       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
10922     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
10923     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
10924 
10925     // If any inputs are fp_round(extload), they all must be.
10926     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
10927       return SDValue();
10928 
10929     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
10930       InputsAreConsecutiveLoads = false;
10931     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
10932       InputsAreReverseConsecutive = false;
10933 
10934     // Exit early if the loads are neither consecutive nor reverse consecutive.
10935     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
10936       return SDValue();
10937   }
10938 
10939   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
10940          "The loads cannot be both consecutive and reverse consecutive.");
10941 
10942   SDValue FirstLoadOp =
10943     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
10944   SDValue LastLoadOp =
10945     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
10946                        N->getOperand(N->getNumOperands()-1);
10947 
10948   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
10949   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
10950   if (InputsAreConsecutiveLoads) {
10951     assert(LD1 && "Input needs to be a LoadSDNode.");
10952     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
10953                        LD1->getBasePtr(), LD1->getPointerInfo(),
10954                        LD1->getAlignment());
10955   }
10956   if (InputsAreReverseConsecutive) {
10957     assert(LDL && "Input needs to be a LoadSDNode.");
10958     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
10959                                LDL->getBasePtr(), LDL->getPointerInfo(),
10960                                LDL->getAlignment());
10961     SmallVector<int, 16> Ops;
10962     for (int i = N->getNumOperands() - 1; i >= 0; i--)
10963       Ops.push_back(i);
10964 
10965     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
10966                                 DAG.getUNDEF(N->getValueType(0)), Ops);
10967   }
10968   return SDValue();
10969 }
10970 
10971 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
10972                                                  DAGCombinerInfo &DCI) const {
10973   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10974          "Should be called with a BUILD_VECTOR node");
10975 
10976   SelectionDAG &DAG = DCI.DAG;
10977   SDLoc dl(N);
10978 
10979   if (!Subtarget.hasVSX())
10980     return SDValue();
10981 
10982   // The target independent DAG combiner will leave a build_vector of
10983   // float-to-int conversions intact. We can generate MUCH better code for
10984   // a float-to-int conversion of a vector of floats.
10985   SDValue FirstInput = N->getOperand(0);
10986   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
10987     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
10988     if (Reduced)
10989       return Reduced;
10990   }
10991 
10992   // If we're building a vector out of consecutive loads, just load that
10993   // vector type.
10994   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
10995   if (Reduced)
10996     return Reduced;
10997 
10998   if (N->getValueType(0) != MVT::v2f64)
10999     return SDValue();
11000 
11001   // Looking for:
11002   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
11003   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
11004       FirstInput.getOpcode() != ISD::UINT_TO_FP)
11005     return SDValue();
11006   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
11007       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
11008     return SDValue();
11009   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
11010     return SDValue();
11011 
11012   SDValue Ext1 = FirstInput.getOperand(0);
11013   SDValue Ext2 = N->getOperand(1).getOperand(0);
11014   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11015      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11016     return SDValue();
11017 
11018   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
11019   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
11020   if (!Ext1Op || !Ext2Op)
11021     return SDValue();
11022   if (Ext1.getValueType() != MVT::i32 ||
11023       Ext2.getValueType() != MVT::i32)
11024   if (Ext1.getOperand(0) != Ext2.getOperand(0))
11025     return SDValue();
11026 
11027   int FirstElem = Ext1Op->getZExtValue();
11028   int SecondElem = Ext2Op->getZExtValue();
11029   int SubvecIdx;
11030   if (FirstElem == 0 && SecondElem == 1)
11031     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
11032   else if (FirstElem == 2 && SecondElem == 3)
11033     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
11034   else
11035     return SDValue();
11036 
11037   SDValue SrcVec = Ext1.getOperand(0);
11038   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
11039     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
11040   return DAG.getNode(NodeType, dl, MVT::v2f64,
11041                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
11042 }
11043 
11044 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
11045                                               DAGCombinerInfo &DCI) const {
11046   assert((N->getOpcode() == ISD::SINT_TO_FP ||
11047           N->getOpcode() == ISD::UINT_TO_FP) &&
11048          "Need an int -> FP conversion node here");
11049 
11050   if (useSoftFloat() || !Subtarget.has64BitSupport())
11051     return SDValue();
11052 
11053   SelectionDAG &DAG = DCI.DAG;
11054   SDLoc dl(N);
11055   SDValue Op(N, 0);
11056 
11057   SDValue FirstOperand(Op.getOperand(0));
11058   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
11059     (FirstOperand.getValueType() == MVT::i8 ||
11060      FirstOperand.getValueType() == MVT::i16);
11061   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
11062     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
11063     bool DstDouble = Op.getValueType() == MVT::f64;
11064     unsigned ConvOp = Signed ?
11065       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
11066       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
11067     SDValue WidthConst =
11068       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
11069                             dl, false);
11070     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
11071     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
11072     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
11073                                          DAG.getVTList(MVT::f64, MVT::Other),
11074                                          Ops, MVT::i8, LDN->getMemOperand());
11075 
11076     // For signed conversion, we need to sign-extend the value in the VSR
11077     if (Signed) {
11078       SDValue ExtOps[] = { Ld, WidthConst };
11079       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
11080       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
11081     } else
11082       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
11083   }
11084 
11085   // Don't handle ppc_fp128 here or i1 conversions.
11086   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
11087     return SDValue();
11088   if (Op.getOperand(0).getValueType() == MVT::i1)
11089     return SDValue();
11090 
11091   // For i32 intermediate values, unfortunately, the conversion functions
11092   // leave the upper 32 bits of the value are undefined. Within the set of
11093   // scalar instructions, we have no method for zero- or sign-extending the
11094   // value. Thus, we cannot handle i32 intermediate values here.
11095   if (Op.getOperand(0).getValueType() == MVT::i32)
11096     return SDValue();
11097 
11098   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
11099          "UINT_TO_FP is supported only with FPCVT");
11100 
11101   // If we have FCFIDS, then use it when converting to single-precision.
11102   // Otherwise, convert to double-precision and then round.
11103   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11104                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
11105                                                             : PPCISD::FCFIDS)
11106                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
11107                                                             : PPCISD::FCFID);
11108   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
11109                   ? MVT::f32
11110                   : MVT::f64;
11111 
11112   // If we're converting from a float, to an int, and back to a float again,
11113   // then we don't need the store/load pair at all.
11114   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
11115        Subtarget.hasFPCVT()) ||
11116       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
11117     SDValue Src = Op.getOperand(0).getOperand(0);
11118     if (Src.getValueType() == MVT::f32) {
11119       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
11120       DCI.AddToWorklist(Src.getNode());
11121     } else if (Src.getValueType() != MVT::f64) {
11122       // Make sure that we don't pick up a ppc_fp128 source value.
11123       return SDValue();
11124     }
11125 
11126     unsigned FCTOp =
11127       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
11128                                                         PPCISD::FCTIDUZ;
11129 
11130     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
11131     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
11132 
11133     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
11134       FP = DAG.getNode(ISD::FP_ROUND, dl,
11135                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
11136       DCI.AddToWorklist(FP.getNode());
11137     }
11138 
11139     return FP;
11140   }
11141 
11142   return SDValue();
11143 }
11144 
11145 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
11146 // builtins) into loads with swaps.
11147 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
11148                                               DAGCombinerInfo &DCI) const {
11149   SelectionDAG &DAG = DCI.DAG;
11150   SDLoc dl(N);
11151   SDValue Chain;
11152   SDValue Base;
11153   MachineMemOperand *MMO;
11154 
11155   switch (N->getOpcode()) {
11156   default:
11157     llvm_unreachable("Unexpected opcode for little endian VSX load");
11158   case ISD::LOAD: {
11159     LoadSDNode *LD = cast<LoadSDNode>(N);
11160     Chain = LD->getChain();
11161     Base = LD->getBasePtr();
11162     MMO = LD->getMemOperand();
11163     // If the MMO suggests this isn't a load of a full vector, leave
11164     // things alone.  For a built-in, we have to make the change for
11165     // correctness, so if there is a size problem that will be a bug.
11166     if (MMO->getSize() < 16)
11167       return SDValue();
11168     break;
11169   }
11170   case ISD::INTRINSIC_W_CHAIN: {
11171     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11172     Chain = Intrin->getChain();
11173     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
11174     // us what we want. Get operand 2 instead.
11175     Base = Intrin->getOperand(2);
11176     MMO = Intrin->getMemOperand();
11177     break;
11178   }
11179   }
11180 
11181   MVT VecTy = N->getValueType(0).getSimpleVT();
11182   SDValue LoadOps[] = { Chain, Base };
11183   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
11184                                          DAG.getVTList(MVT::v2f64, MVT::Other),
11185                                          LoadOps, MVT::v2f64, MMO);
11186 
11187   DCI.AddToWorklist(Load.getNode());
11188   Chain = Load.getValue(1);
11189   SDValue Swap = DAG.getNode(
11190       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
11191   DCI.AddToWorklist(Swap.getNode());
11192 
11193   // Add a bitcast if the resulting load type doesn't match v2f64.
11194   if (VecTy != MVT::v2f64) {
11195     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
11196     DCI.AddToWorklist(N.getNode());
11197     // Package {bitcast value, swap's chain} to match Load's shape.
11198     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
11199                        N, Swap.getValue(1));
11200   }
11201 
11202   return Swap;
11203 }
11204 
11205 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
11206 // builtins) into stores with swaps.
11207 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
11208                                                DAGCombinerInfo &DCI) const {
11209   SelectionDAG &DAG = DCI.DAG;
11210   SDLoc dl(N);
11211   SDValue Chain;
11212   SDValue Base;
11213   unsigned SrcOpnd;
11214   MachineMemOperand *MMO;
11215 
11216   switch (N->getOpcode()) {
11217   default:
11218     llvm_unreachable("Unexpected opcode for little endian VSX store");
11219   case ISD::STORE: {
11220     StoreSDNode *ST = cast<StoreSDNode>(N);
11221     Chain = ST->getChain();
11222     Base = ST->getBasePtr();
11223     MMO = ST->getMemOperand();
11224     SrcOpnd = 1;
11225     // If the MMO suggests this isn't a store of a full vector, leave
11226     // things alone.  For a built-in, we have to make the change for
11227     // correctness, so if there is a size problem that will be a bug.
11228     if (MMO->getSize() < 16)
11229       return SDValue();
11230     break;
11231   }
11232   case ISD::INTRINSIC_VOID: {
11233     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11234     Chain = Intrin->getChain();
11235     // Intrin->getBasePtr() oddly does not get what we want.
11236     Base = Intrin->getOperand(3);
11237     MMO = Intrin->getMemOperand();
11238     SrcOpnd = 2;
11239     break;
11240   }
11241   }
11242 
11243   SDValue Src = N->getOperand(SrcOpnd);
11244   MVT VecTy = Src.getValueType().getSimpleVT();
11245 
11246   // All stores are done as v2f64 and possible bit cast.
11247   if (VecTy != MVT::v2f64) {
11248     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
11249     DCI.AddToWorklist(Src.getNode());
11250   }
11251 
11252   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
11253                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
11254   DCI.AddToWorklist(Swap.getNode());
11255   Chain = Swap.getValue(1);
11256   SDValue StoreOps[] = { Chain, Swap, Base };
11257   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
11258                                           DAG.getVTList(MVT::Other),
11259                                           StoreOps, VecTy, MMO);
11260   DCI.AddToWorklist(Store.getNode());
11261   return Store;
11262 }
11263 
11264 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
11265                                              DAGCombinerInfo &DCI) const {
11266   SelectionDAG &DAG = DCI.DAG;
11267   SDLoc dl(N);
11268   switch (N->getOpcode()) {
11269   default: break;
11270   case PPCISD::SHL:
11271     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
11272         return N->getOperand(0);
11273     break;
11274   case PPCISD::SRL:
11275     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
11276         return N->getOperand(0);
11277     break;
11278   case PPCISD::SRA:
11279     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11280       if (C->isNullValue() ||   //  0 >>s V -> 0.
11281           C->isAllOnesValue())    // -1 >>s V -> -1.
11282         return N->getOperand(0);
11283     }
11284     break;
11285   case ISD::SIGN_EXTEND:
11286   case ISD::ZERO_EXTEND:
11287   case ISD::ANY_EXTEND:
11288     return DAGCombineExtBoolTrunc(N, DCI);
11289   case ISD::TRUNCATE:
11290   case ISD::SETCC:
11291   case ISD::SELECT_CC:
11292     return DAGCombineTruncBoolExt(N, DCI);
11293   case ISD::SINT_TO_FP:
11294   case ISD::UINT_TO_FP:
11295     return combineFPToIntToFP(N, DCI);
11296   case ISD::STORE: {
11297     EVT Op1VT = N->getOperand(1).getValueType();
11298     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
11299       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
11300 
11301     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
11302     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
11303         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
11304         ValidTypeForStoreFltAsInt &&
11305         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
11306       SDValue Val = N->getOperand(1).getOperand(0);
11307       if (Val.getValueType() == MVT::f32) {
11308         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
11309         DCI.AddToWorklist(Val.getNode());
11310       }
11311       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
11312       DCI.AddToWorklist(Val.getNode());
11313 
11314       if (Op1VT == MVT::i32) {
11315         SDValue Ops[] = {
11316           N->getOperand(0), Val, N->getOperand(2),
11317           DAG.getValueType(N->getOperand(1).getValueType())
11318         };
11319 
11320         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
11321                 DAG.getVTList(MVT::Other), Ops,
11322                 cast<StoreSDNode>(N)->getMemoryVT(),
11323                 cast<StoreSDNode>(N)->getMemOperand());
11324       } else {
11325         unsigned WidthInBytes =
11326           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
11327         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
11328 
11329         SDValue Ops[] = {
11330           N->getOperand(0), Val, N->getOperand(2), WidthConst,
11331           DAG.getValueType(N->getOperand(1).getValueType())
11332         };
11333         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
11334                                       DAG.getVTList(MVT::Other), Ops,
11335                                       cast<StoreSDNode>(N)->getMemoryVT(),
11336                                       cast<StoreSDNode>(N)->getMemOperand());
11337       }
11338 
11339       DCI.AddToWorklist(Val.getNode());
11340       return Val;
11341     }
11342 
11343     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
11344     if (cast<StoreSDNode>(N)->isUnindexed() &&
11345         N->getOperand(1).getOpcode() == ISD::BSWAP &&
11346         N->getOperand(1).getNode()->hasOneUse() &&
11347         (N->getOperand(1).getValueType() == MVT::i32 ||
11348          N->getOperand(1).getValueType() == MVT::i16 ||
11349          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
11350           N->getOperand(1).getValueType() == MVT::i64))) {
11351       SDValue BSwapOp = N->getOperand(1).getOperand(0);
11352       // Do an any-extend to 32-bits if this is a half-word input.
11353       if (BSwapOp.getValueType() == MVT::i16)
11354         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
11355 
11356       SDValue Ops[] = {
11357         N->getOperand(0), BSwapOp, N->getOperand(2),
11358         DAG.getValueType(N->getOperand(1).getValueType())
11359       };
11360       return
11361         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
11362                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
11363                                 cast<StoreSDNode>(N)->getMemOperand());
11364     }
11365 
11366     // For little endian, VSX stores require generating xxswapd/lxvd2x.
11367     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
11368     EVT VT = N->getOperand(1).getValueType();
11369     if (VT.isSimple()) {
11370       MVT StoreVT = VT.getSimpleVT();
11371       if (Subtarget.needsSwapsForVSXMemOps() &&
11372           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
11373            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
11374         return expandVSXStoreForLE(N, DCI);
11375     }
11376     break;
11377   }
11378   case ISD::LOAD: {
11379     LoadSDNode *LD = cast<LoadSDNode>(N);
11380     EVT VT = LD->getValueType(0);
11381 
11382     // For little endian, VSX loads require generating lxvd2x/xxswapd.
11383     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
11384     if (VT.isSimple()) {
11385       MVT LoadVT = VT.getSimpleVT();
11386       if (Subtarget.needsSwapsForVSXMemOps() &&
11387           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
11388            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
11389         return expandVSXLoadForLE(N, DCI);
11390     }
11391 
11392     // We sometimes end up with a 64-bit integer load, from which we extract
11393     // two single-precision floating-point numbers. This happens with
11394     // std::complex<float>, and other similar structures, because of the way we
11395     // canonicalize structure copies. However, if we lack direct moves,
11396     // then the final bitcasts from the extracted integer values to the
11397     // floating-point numbers turn into store/load pairs. Even with direct moves,
11398     // just loading the two floating-point numbers is likely better.
11399     auto ReplaceTwoFloatLoad = [&]() {
11400       if (VT != MVT::i64)
11401         return false;
11402 
11403       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
11404           LD->isVolatile())
11405         return false;
11406 
11407       //  We're looking for a sequence like this:
11408       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
11409       //      t16: i64 = srl t13, Constant:i32<32>
11410       //    t17: i32 = truncate t16
11411       //  t18: f32 = bitcast t17
11412       //    t19: i32 = truncate t13
11413       //  t20: f32 = bitcast t19
11414 
11415       if (!LD->hasNUsesOfValue(2, 0))
11416         return false;
11417 
11418       auto UI = LD->use_begin();
11419       while (UI.getUse().getResNo() != 0) ++UI;
11420       SDNode *Trunc = *UI++;
11421       while (UI.getUse().getResNo() != 0) ++UI;
11422       SDNode *RightShift = *UI;
11423       if (Trunc->getOpcode() != ISD::TRUNCATE)
11424         std::swap(Trunc, RightShift);
11425 
11426       if (Trunc->getOpcode() != ISD::TRUNCATE ||
11427           Trunc->getValueType(0) != MVT::i32 ||
11428           !Trunc->hasOneUse())
11429         return false;
11430       if (RightShift->getOpcode() != ISD::SRL ||
11431           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
11432           RightShift->getConstantOperandVal(1) != 32 ||
11433           !RightShift->hasOneUse())
11434         return false;
11435 
11436       SDNode *Trunc2 = *RightShift->use_begin();
11437       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
11438           Trunc2->getValueType(0) != MVT::i32 ||
11439           !Trunc2->hasOneUse())
11440         return false;
11441 
11442       SDNode *Bitcast = *Trunc->use_begin();
11443       SDNode *Bitcast2 = *Trunc2->use_begin();
11444 
11445       if (Bitcast->getOpcode() != ISD::BITCAST ||
11446           Bitcast->getValueType(0) != MVT::f32)
11447         return false;
11448       if (Bitcast2->getOpcode() != ISD::BITCAST ||
11449           Bitcast2->getValueType(0) != MVT::f32)
11450         return false;
11451 
11452       if (Subtarget.isLittleEndian())
11453         std::swap(Bitcast, Bitcast2);
11454 
11455       // Bitcast has the second float (in memory-layout order) and Bitcast2
11456       // has the first one.
11457 
11458       SDValue BasePtr = LD->getBasePtr();
11459       if (LD->isIndexed()) {
11460         assert(LD->getAddressingMode() == ISD::PRE_INC &&
11461                "Non-pre-inc AM on PPC?");
11462         BasePtr =
11463           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11464                       LD->getOffset());
11465       }
11466 
11467       auto MMOFlags =
11468           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
11469       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
11470                                       LD->getPointerInfo(), LD->getAlignment(),
11471                                       MMOFlags, LD->getAAInfo());
11472       SDValue AddPtr =
11473         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
11474                     BasePtr, DAG.getIntPtrConstant(4, dl));
11475       SDValue FloatLoad2 = DAG.getLoad(
11476           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
11477           LD->getPointerInfo().getWithOffset(4),
11478           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
11479 
11480       if (LD->isIndexed()) {
11481         // Note that DAGCombine should re-form any pre-increment load(s) from
11482         // what is produced here if that makes sense.
11483         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
11484       }
11485 
11486       DCI.CombineTo(Bitcast2, FloatLoad);
11487       DCI.CombineTo(Bitcast, FloatLoad2);
11488 
11489       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
11490                                     SDValue(FloatLoad2.getNode(), 1));
11491       return true;
11492     };
11493 
11494     if (ReplaceTwoFloatLoad())
11495       return SDValue(N, 0);
11496 
11497     EVT MemVT = LD->getMemoryVT();
11498     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
11499     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
11500     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
11501     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
11502     if (LD->isUnindexed() && VT.isVector() &&
11503         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
11504           // P8 and later hardware should just use LOAD.
11505           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
11506                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
11507          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
11508           LD->getAlignment() >= ScalarABIAlignment)) &&
11509         LD->getAlignment() < ABIAlignment) {
11510       // This is a type-legal unaligned Altivec or QPX load.
11511       SDValue Chain = LD->getChain();
11512       SDValue Ptr = LD->getBasePtr();
11513       bool isLittleEndian = Subtarget.isLittleEndian();
11514 
11515       // This implements the loading of unaligned vectors as described in
11516       // the venerable Apple Velocity Engine overview. Specifically:
11517       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
11518       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
11519       //
11520       // The general idea is to expand a sequence of one or more unaligned
11521       // loads into an alignment-based permutation-control instruction (lvsl
11522       // or lvsr), a series of regular vector loads (which always truncate
11523       // their input address to an aligned address), and a series of
11524       // permutations.  The results of these permutations are the requested
11525       // loaded values.  The trick is that the last "extra" load is not taken
11526       // from the address you might suspect (sizeof(vector) bytes after the
11527       // last requested load), but rather sizeof(vector) - 1 bytes after the
11528       // last requested vector. The point of this is to avoid a page fault if
11529       // the base address happened to be aligned. This works because if the
11530       // base address is aligned, then adding less than a full vector length
11531       // will cause the last vector in the sequence to be (re)loaded.
11532       // Otherwise, the next vector will be fetched as you might suspect was
11533       // necessary.
11534 
11535       // We might be able to reuse the permutation generation from
11536       // a different base address offset from this one by an aligned amount.
11537       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
11538       // optimization later.
11539       Intrinsic::ID Intr, IntrLD, IntrPerm;
11540       MVT PermCntlTy, PermTy, LDTy;
11541       if (Subtarget.hasAltivec()) {
11542         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
11543                                  Intrinsic::ppc_altivec_lvsl;
11544         IntrLD = Intrinsic::ppc_altivec_lvx;
11545         IntrPerm = Intrinsic::ppc_altivec_vperm;
11546         PermCntlTy = MVT::v16i8;
11547         PermTy = MVT::v4i32;
11548         LDTy = MVT::v4i32;
11549       } else {
11550         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
11551                                        Intrinsic::ppc_qpx_qvlpcls;
11552         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
11553                                        Intrinsic::ppc_qpx_qvlfs;
11554         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
11555         PermCntlTy = MVT::v4f64;
11556         PermTy = MVT::v4f64;
11557         LDTy = MemVT.getSimpleVT();
11558       }
11559 
11560       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
11561 
11562       // Create the new MMO for the new base load. It is like the original MMO,
11563       // but represents an area in memory almost twice the vector size centered
11564       // on the original address. If the address is unaligned, we might start
11565       // reading up to (sizeof(vector)-1) bytes below the address of the
11566       // original unaligned load.
11567       MachineFunction &MF = DAG.getMachineFunction();
11568       MachineMemOperand *BaseMMO =
11569         MF.getMachineMemOperand(LD->getMemOperand(),
11570                                 -(long)MemVT.getStoreSize()+1,
11571                                 2*MemVT.getStoreSize()-1);
11572 
11573       // Create the new base load.
11574       SDValue LDXIntID =
11575           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
11576       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
11577       SDValue BaseLoad =
11578         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
11579                                 DAG.getVTList(PermTy, MVT::Other),
11580                                 BaseLoadOps, LDTy, BaseMMO);
11581 
11582       // Note that the value of IncOffset (which is provided to the next
11583       // load's pointer info offset value, and thus used to calculate the
11584       // alignment), and the value of IncValue (which is actually used to
11585       // increment the pointer value) are different! This is because we
11586       // require the next load to appear to be aligned, even though it
11587       // is actually offset from the base pointer by a lesser amount.
11588       int IncOffset = VT.getSizeInBits() / 8;
11589       int IncValue = IncOffset;
11590 
11591       // Walk (both up and down) the chain looking for another load at the real
11592       // (aligned) offset (the alignment of the other load does not matter in
11593       // this case). If found, then do not use the offset reduction trick, as
11594       // that will prevent the loads from being later combined (as they would
11595       // otherwise be duplicates).
11596       if (!findConsecutiveLoad(LD, DAG))
11597         --IncValue;
11598 
11599       SDValue Increment =
11600           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
11601       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
11602 
11603       MachineMemOperand *ExtraMMO =
11604         MF.getMachineMemOperand(LD->getMemOperand(),
11605                                 1, 2*MemVT.getStoreSize()-1);
11606       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
11607       SDValue ExtraLoad =
11608         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
11609                                 DAG.getVTList(PermTy, MVT::Other),
11610                                 ExtraLoadOps, LDTy, ExtraMMO);
11611 
11612       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
11613         BaseLoad.getValue(1), ExtraLoad.getValue(1));
11614 
11615       // Because vperm has a big-endian bias, we must reverse the order
11616       // of the input vectors and complement the permute control vector
11617       // when generating little endian code.  We have already handled the
11618       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
11619       // and ExtraLoad here.
11620       SDValue Perm;
11621       if (isLittleEndian)
11622         Perm = BuildIntrinsicOp(IntrPerm,
11623                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
11624       else
11625         Perm = BuildIntrinsicOp(IntrPerm,
11626                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
11627 
11628       if (VT != PermTy)
11629         Perm = Subtarget.hasAltivec() ?
11630                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
11631                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
11632                                DAG.getTargetConstant(1, dl, MVT::i64));
11633                                // second argument is 1 because this rounding
11634                                // is always exact.
11635 
11636       // The output of the permutation is our loaded result, the TokenFactor is
11637       // our new chain.
11638       DCI.CombineTo(N, Perm, TF);
11639       return SDValue(N, 0);
11640     }
11641     }
11642     break;
11643     case ISD::INTRINSIC_WO_CHAIN: {
11644       bool isLittleEndian = Subtarget.isLittleEndian();
11645       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
11646       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
11647                                            : Intrinsic::ppc_altivec_lvsl);
11648       if ((IID == Intr ||
11649            IID == Intrinsic::ppc_qpx_qvlpcld  ||
11650            IID == Intrinsic::ppc_qpx_qvlpcls) &&
11651         N->getOperand(1)->getOpcode() == ISD::ADD) {
11652         SDValue Add = N->getOperand(1);
11653 
11654         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
11655                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
11656 
11657         if (DAG.MaskedValueIsZero(Add->getOperand(1),
11658                                   APInt::getAllOnesValue(Bits /* alignment */)
11659                                       .zext(Add.getScalarValueSizeInBits()))) {
11660           SDNode *BasePtr = Add->getOperand(0).getNode();
11661           for (SDNode::use_iterator UI = BasePtr->use_begin(),
11662                                     UE = BasePtr->use_end();
11663                UI != UE; ++UI) {
11664             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11665                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
11666               // We've found another LVSL/LVSR, and this address is an aligned
11667               // multiple of that one. The results will be the same, so use the
11668               // one we've just found instead.
11669 
11670               return SDValue(*UI, 0);
11671             }
11672           }
11673         }
11674 
11675         if (isa<ConstantSDNode>(Add->getOperand(1))) {
11676           SDNode *BasePtr = Add->getOperand(0).getNode();
11677           for (SDNode::use_iterator UI = BasePtr->use_begin(),
11678                UE = BasePtr->use_end(); UI != UE; ++UI) {
11679             if (UI->getOpcode() == ISD::ADD &&
11680                 isa<ConstantSDNode>(UI->getOperand(1)) &&
11681                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
11682                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
11683                 (1ULL << Bits) == 0) {
11684               SDNode *OtherAdd = *UI;
11685               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
11686                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
11687                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11688                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
11689                   return SDValue(*VI, 0);
11690                 }
11691               }
11692             }
11693           }
11694         }
11695       }
11696     }
11697 
11698     break;
11699   case ISD::INTRINSIC_W_CHAIN:
11700     // For little endian, VSX loads require generating lxvd2x/xxswapd.
11701     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
11702     if (Subtarget.needsSwapsForVSXMemOps()) {
11703       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11704       default:
11705         break;
11706       case Intrinsic::ppc_vsx_lxvw4x:
11707       case Intrinsic::ppc_vsx_lxvd2x:
11708         return expandVSXLoadForLE(N, DCI);
11709       }
11710     }
11711     break;
11712   case ISD::INTRINSIC_VOID:
11713     // For little endian, VSX stores require generating xxswapd/stxvd2x.
11714     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
11715     if (Subtarget.needsSwapsForVSXMemOps()) {
11716       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11717       default:
11718         break;
11719       case Intrinsic::ppc_vsx_stxvw4x:
11720       case Intrinsic::ppc_vsx_stxvd2x:
11721         return expandVSXStoreForLE(N, DCI);
11722       }
11723     }
11724     break;
11725   case ISD::BSWAP:
11726     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
11727     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
11728         N->getOperand(0).hasOneUse() &&
11729         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
11730          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
11731           N->getValueType(0) == MVT::i64))) {
11732       SDValue Load = N->getOperand(0);
11733       LoadSDNode *LD = cast<LoadSDNode>(Load);
11734       // Create the byte-swapping load.
11735       SDValue Ops[] = {
11736         LD->getChain(),    // Chain
11737         LD->getBasePtr(),  // Ptr
11738         DAG.getValueType(N->getValueType(0)) // VT
11739       };
11740       SDValue BSLoad =
11741         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
11742                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
11743                                               MVT::i64 : MVT::i32, MVT::Other),
11744                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
11745 
11746       // If this is an i16 load, insert the truncate.
11747       SDValue ResVal = BSLoad;
11748       if (N->getValueType(0) == MVT::i16)
11749         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
11750 
11751       // First, combine the bswap away.  This makes the value produced by the
11752       // load dead.
11753       DCI.CombineTo(N, ResVal);
11754 
11755       // Next, combine the load away, we give it a bogus result value but a real
11756       // chain result.  The result value is dead because the bswap is dead.
11757       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
11758 
11759       // Return N so it doesn't get rechecked!
11760       return SDValue(N, 0);
11761     }
11762     break;
11763   case PPCISD::VCMP:
11764     // If a VCMPo node already exists with exactly the same operands as this
11765     // node, use its result instead of this node (VCMPo computes both a CR6 and
11766     // a normal output).
11767     //
11768     if (!N->getOperand(0).hasOneUse() &&
11769         !N->getOperand(1).hasOneUse() &&
11770         !N->getOperand(2).hasOneUse()) {
11771 
11772       // Scan all of the users of the LHS, looking for VCMPo's that match.
11773       SDNode *VCMPoNode = nullptr;
11774 
11775       SDNode *LHSN = N->getOperand(0).getNode();
11776       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
11777            UI != E; ++UI)
11778         if (UI->getOpcode() == PPCISD::VCMPo &&
11779             UI->getOperand(1) == N->getOperand(1) &&
11780             UI->getOperand(2) == N->getOperand(2) &&
11781             UI->getOperand(0) == N->getOperand(0)) {
11782           VCMPoNode = *UI;
11783           break;
11784         }
11785 
11786       // If there is no VCMPo node, or if the flag value has a single use, don't
11787       // transform this.
11788       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
11789         break;
11790 
11791       // Look at the (necessarily single) use of the flag value.  If it has a
11792       // chain, this transformation is more complex.  Note that multiple things
11793       // could use the value result, which we should ignore.
11794       SDNode *FlagUser = nullptr;
11795       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
11796            FlagUser == nullptr; ++UI) {
11797         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
11798         SDNode *User = *UI;
11799         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
11800           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
11801             FlagUser = User;
11802             break;
11803           }
11804         }
11805       }
11806 
11807       // If the user is a MFOCRF instruction, we know this is safe.
11808       // Otherwise we give up for right now.
11809       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
11810         return SDValue(VCMPoNode, 0);
11811     }
11812     break;
11813   case ISD::BRCOND: {
11814     SDValue Cond = N->getOperand(1);
11815     SDValue Target = N->getOperand(2);
11816 
11817     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11818         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
11819           Intrinsic::ppc_is_decremented_ctr_nonzero) {
11820 
11821       // We now need to make the intrinsic dead (it cannot be instruction
11822       // selected).
11823       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
11824       assert(Cond.getNode()->hasOneUse() &&
11825              "Counter decrement has more than one use");
11826 
11827       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
11828                          N->getOperand(0), Target);
11829     }
11830   }
11831   break;
11832   case ISD::BR_CC: {
11833     // If this is a branch on an altivec predicate comparison, lower this so
11834     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
11835     // lowering is done pre-legalize, because the legalizer lowers the predicate
11836     // compare down to code that is difficult to reassemble.
11837     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
11838     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
11839 
11840     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
11841     // value. If so, pass-through the AND to get to the intrinsic.
11842     if (LHS.getOpcode() == ISD::AND &&
11843         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11844         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
11845           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11846         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11847         !isNullConstant(LHS.getOperand(1)))
11848       LHS = LHS.getOperand(0);
11849 
11850     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11851         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
11852           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11853         isa<ConstantSDNode>(RHS)) {
11854       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11855              "Counter decrement comparison is not EQ or NE");
11856 
11857       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11858       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
11859                     (CC == ISD::SETNE && !Val);
11860 
11861       // We now need to make the intrinsic dead (it cannot be instruction
11862       // selected).
11863       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
11864       assert(LHS.getNode()->hasOneUse() &&
11865              "Counter decrement has more than one use");
11866 
11867       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
11868                          N->getOperand(0), N->getOperand(4));
11869     }
11870 
11871     int CompareOpc;
11872     bool isDot;
11873 
11874     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11875         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
11876         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
11877       assert(isDot && "Can't compare against a vector result!");
11878 
11879       // If this is a comparison against something other than 0/1, then we know
11880       // that the condition is never/always true.
11881       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11882       if (Val != 0 && Val != 1) {
11883         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
11884           return N->getOperand(0);
11885         // Always !=, turn it into an unconditional branch.
11886         return DAG.getNode(ISD::BR, dl, MVT::Other,
11887                            N->getOperand(0), N->getOperand(4));
11888       }
11889 
11890       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
11891 
11892       // Create the PPCISD altivec 'dot' comparison node.
11893       SDValue Ops[] = {
11894         LHS.getOperand(2),  // LHS of compare
11895         LHS.getOperand(3),  // RHS of compare
11896         DAG.getConstant(CompareOpc, dl, MVT::i32)
11897       };
11898       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
11899       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
11900 
11901       // Unpack the result based on how the target uses it.
11902       PPC::Predicate CompOpc;
11903       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11904       default:  // Can't happen, don't crash on invalid number though.
11905       case 0:   // Branch on the value of the EQ bit of CR6.
11906         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11907         break;
11908       case 1:   // Branch on the inverted value of the EQ bit of CR6.
11909         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11910         break;
11911       case 2:   // Branch on the value of the LT bit of CR6.
11912         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11913         break;
11914       case 3:   // Branch on the inverted value of the LT bit of CR6.
11915         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11916         break;
11917       }
11918 
11919       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11920                          DAG.getConstant(CompOpc, dl, MVT::i32),
11921                          DAG.getRegister(PPC::CR6, MVT::i32),
11922                          N->getOperand(4), CompNode.getValue(1));
11923     }
11924     break;
11925   }
11926   case ISD::BUILD_VECTOR:
11927     return DAGCombineBuildVector(N, DCI);
11928   }
11929 
11930   return SDValue();
11931 }
11932 
11933 SDValue
11934 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11935                                   SelectionDAG &DAG,
11936                                   std::vector<SDNode *> *Created) const {
11937   // fold (sdiv X, pow2)
11938   EVT VT = N->getValueType(0);
11939   if (VT == MVT::i64 && !Subtarget.isPPC64())
11940     return SDValue();
11941   if ((VT != MVT::i32 && VT != MVT::i64) ||
11942       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11943     return SDValue();
11944 
11945   SDLoc DL(N);
11946   SDValue N0 = N->getOperand(0);
11947 
11948   bool IsNegPow2 = (-Divisor).isPowerOf2();
11949   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11950   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11951 
11952   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11953   if (Created)
11954     Created->push_back(Op.getNode());
11955 
11956   if (IsNegPow2) {
11957     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11958     if (Created)
11959       Created->push_back(Op.getNode());
11960   }
11961 
11962   return Op;
11963 }
11964 
11965 //===----------------------------------------------------------------------===//
11966 // Inline Assembly Support
11967 //===----------------------------------------------------------------------===//
11968 
11969 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11970                                                       APInt &KnownZero,
11971                                                       APInt &KnownOne,
11972                                                       const SelectionDAG &DAG,
11973                                                       unsigned Depth) const {
11974   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11975   switch (Op.getOpcode()) {
11976   default: break;
11977   case PPCISD::LBRX: {
11978     // lhbrx is known to have the top bits cleared out.
11979     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11980       KnownZero = 0xFFFF0000;
11981     break;
11982   }
11983   case ISD::INTRINSIC_WO_CHAIN: {
11984     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11985     default: break;
11986     case Intrinsic::ppc_altivec_vcmpbfp_p:
11987     case Intrinsic::ppc_altivec_vcmpeqfp_p:
11988     case Intrinsic::ppc_altivec_vcmpequb_p:
11989     case Intrinsic::ppc_altivec_vcmpequh_p:
11990     case Intrinsic::ppc_altivec_vcmpequw_p:
11991     case Intrinsic::ppc_altivec_vcmpequd_p:
11992     case Intrinsic::ppc_altivec_vcmpgefp_p:
11993     case Intrinsic::ppc_altivec_vcmpgtfp_p:
11994     case Intrinsic::ppc_altivec_vcmpgtsb_p:
11995     case Intrinsic::ppc_altivec_vcmpgtsh_p:
11996     case Intrinsic::ppc_altivec_vcmpgtsw_p:
11997     case Intrinsic::ppc_altivec_vcmpgtsd_p:
11998     case Intrinsic::ppc_altivec_vcmpgtub_p:
11999     case Intrinsic::ppc_altivec_vcmpgtuh_p:
12000     case Intrinsic::ppc_altivec_vcmpgtuw_p:
12001     case Intrinsic::ppc_altivec_vcmpgtud_p:
12002       KnownZero = ~1U;  // All bits but the low one are known to be zero.
12003       break;
12004     }
12005   }
12006   }
12007 }
12008 
12009 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12010   switch (Subtarget.getDarwinDirective()) {
12011   default: break;
12012   case PPC::DIR_970:
12013   case PPC::DIR_PWR4:
12014   case PPC::DIR_PWR5:
12015   case PPC::DIR_PWR5X:
12016   case PPC::DIR_PWR6:
12017   case PPC::DIR_PWR6X:
12018   case PPC::DIR_PWR7:
12019   case PPC::DIR_PWR8:
12020   case PPC::DIR_PWR9: {
12021     if (!ML)
12022       break;
12023 
12024     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
12025 
12026     // For small loops (between 5 and 8 instructions), align to a 32-byte
12027     // boundary so that the entire loop fits in one instruction-cache line.
12028     uint64_t LoopSize = 0;
12029     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
12030       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
12031         LoopSize += TII->getInstSizeInBytes(*J);
12032         if (LoopSize > 32)
12033           break;
12034       }
12035 
12036     if (LoopSize > 16 && LoopSize <= 32)
12037       return 5;
12038 
12039     break;
12040   }
12041   }
12042 
12043   return TargetLowering::getPrefLoopAlignment(ML);
12044 }
12045 
12046 /// getConstraintType - Given a constraint, return the type of
12047 /// constraint it is for this target.
12048 PPCTargetLowering::ConstraintType
12049 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
12050   if (Constraint.size() == 1) {
12051     switch (Constraint[0]) {
12052     default: break;
12053     case 'b':
12054     case 'r':
12055     case 'f':
12056     case 'd':
12057     case 'v':
12058     case 'y':
12059       return C_RegisterClass;
12060     case 'Z':
12061       // FIXME: While Z does indicate a memory constraint, it specifically
12062       // indicates an r+r address (used in conjunction with the 'y' modifier
12063       // in the replacement string). Currently, we're forcing the base
12064       // register to be r0 in the asm printer (which is interpreted as zero)
12065       // and forming the complete address in the second register. This is
12066       // suboptimal.
12067       return C_Memory;
12068     }
12069   } else if (Constraint == "wc") { // individual CR bits.
12070     return C_RegisterClass;
12071   } else if (Constraint == "wa" || Constraint == "wd" ||
12072              Constraint == "wf" || Constraint == "ws") {
12073     return C_RegisterClass; // VSX registers.
12074   }
12075   return TargetLowering::getConstraintType(Constraint);
12076 }
12077 
12078 /// Examine constraint type and operand type and determine a weight value.
12079 /// This object must already have been set up with the operand type
12080 /// and the current alternative constraint selected.
12081 TargetLowering::ConstraintWeight
12082 PPCTargetLowering::getSingleConstraintMatchWeight(
12083     AsmOperandInfo &info, const char *constraint) const {
12084   ConstraintWeight weight = CW_Invalid;
12085   Value *CallOperandVal = info.CallOperandVal;
12086     // If we don't have a value, we can't do a match,
12087     // but allow it at the lowest weight.
12088   if (!CallOperandVal)
12089     return CW_Default;
12090   Type *type = CallOperandVal->getType();
12091 
12092   // Look at the constraint type.
12093   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
12094     return CW_Register; // an individual CR bit.
12095   else if ((StringRef(constraint) == "wa" ||
12096             StringRef(constraint) == "wd" ||
12097             StringRef(constraint) == "wf") &&
12098            type->isVectorTy())
12099     return CW_Register;
12100   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
12101     return CW_Register;
12102 
12103   switch (*constraint) {
12104   default:
12105     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12106     break;
12107   case 'b':
12108     if (type->isIntegerTy())
12109       weight = CW_Register;
12110     break;
12111   case 'f':
12112     if (type->isFloatTy())
12113       weight = CW_Register;
12114     break;
12115   case 'd':
12116     if (type->isDoubleTy())
12117       weight = CW_Register;
12118     break;
12119   case 'v':
12120     if (type->isVectorTy())
12121       weight = CW_Register;
12122     break;
12123   case 'y':
12124     weight = CW_Register;
12125     break;
12126   case 'Z':
12127     weight = CW_Memory;
12128     break;
12129   }
12130   return weight;
12131 }
12132 
12133 std::pair<unsigned, const TargetRegisterClass *>
12134 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
12135                                                 StringRef Constraint,
12136                                                 MVT VT) const {
12137   if (Constraint.size() == 1) {
12138     // GCC RS6000 Constraint Letters
12139     switch (Constraint[0]) {
12140     case 'b':   // R1-R31
12141       if (VT == MVT::i64 && Subtarget.isPPC64())
12142         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
12143       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
12144     case 'r':   // R0-R31
12145       if (VT == MVT::i64 && Subtarget.isPPC64())
12146         return std::make_pair(0U, &PPC::G8RCRegClass);
12147       return std::make_pair(0U, &PPC::GPRCRegClass);
12148     // 'd' and 'f' constraints are both defined to be "the floating point
12149     // registers", where one is for 32-bit and the other for 64-bit. We don't
12150     // really care overly much here so just give them all the same reg classes.
12151     case 'd':
12152     case 'f':
12153       if (VT == MVT::f32 || VT == MVT::i32)
12154         return std::make_pair(0U, &PPC::F4RCRegClass);
12155       if (VT == MVT::f64 || VT == MVT::i64)
12156         return std::make_pair(0U, &PPC::F8RCRegClass);
12157       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12158         return std::make_pair(0U, &PPC::QFRCRegClass);
12159       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12160         return std::make_pair(0U, &PPC::QSRCRegClass);
12161       break;
12162     case 'v':
12163       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12164         return std::make_pair(0U, &PPC::QFRCRegClass);
12165       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12166         return std::make_pair(0U, &PPC::QSRCRegClass);
12167       if (Subtarget.hasAltivec())
12168         return std::make_pair(0U, &PPC::VRRCRegClass);
12169     case 'y':   // crrc
12170       return std::make_pair(0U, &PPC::CRRCRegClass);
12171     }
12172   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
12173     // An individual CR bit.
12174     return std::make_pair(0U, &PPC::CRBITRCRegClass);
12175   } else if ((Constraint == "wa" || Constraint == "wd" ||
12176              Constraint == "wf") && Subtarget.hasVSX()) {
12177     return std::make_pair(0U, &PPC::VSRCRegClass);
12178   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
12179     if (VT == MVT::f32 && Subtarget.hasP8Vector())
12180       return std::make_pair(0U, &PPC::VSSRCRegClass);
12181     else
12182       return std::make_pair(0U, &PPC::VSFRCRegClass);
12183   }
12184 
12185   std::pair<unsigned, const TargetRegisterClass *> R =
12186       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12187 
12188   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
12189   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
12190   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
12191   // register.
12192   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
12193   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
12194   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
12195       PPC::GPRCRegClass.contains(R.first))
12196     return std::make_pair(TRI->getMatchingSuperReg(R.first,
12197                             PPC::sub_32, &PPC::G8RCRegClass),
12198                           &PPC::G8RCRegClass);
12199 
12200   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
12201   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
12202     R.first = PPC::CR0;
12203     R.second = &PPC::CRRCRegClass;
12204   }
12205 
12206   return R;
12207 }
12208 
12209 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12210 /// vector.  If it is invalid, don't add anything to Ops.
12211 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12212                                                      std::string &Constraint,
12213                                                      std::vector<SDValue>&Ops,
12214                                                      SelectionDAG &DAG) const {
12215   SDValue Result;
12216 
12217   // Only support length 1 constraints.
12218   if (Constraint.length() > 1) return;
12219 
12220   char Letter = Constraint[0];
12221   switch (Letter) {
12222   default: break;
12223   case 'I':
12224   case 'J':
12225   case 'K':
12226   case 'L':
12227   case 'M':
12228   case 'N':
12229   case 'O':
12230   case 'P': {
12231     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
12232     if (!CST) return; // Must be an immediate to match.
12233     SDLoc dl(Op);
12234     int64_t Value = CST->getSExtValue();
12235     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
12236                          // numbers are printed as such.
12237     switch (Letter) {
12238     default: llvm_unreachable("Unknown constraint letter!");
12239     case 'I':  // "I" is a signed 16-bit constant.
12240       if (isInt<16>(Value))
12241         Result = DAG.getTargetConstant(Value, dl, TCVT);
12242       break;
12243     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
12244       if (isShiftedUInt<16, 16>(Value))
12245         Result = DAG.getTargetConstant(Value, dl, TCVT);
12246       break;
12247     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
12248       if (isShiftedInt<16, 16>(Value))
12249         Result = DAG.getTargetConstant(Value, dl, TCVT);
12250       break;
12251     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
12252       if (isUInt<16>(Value))
12253         Result = DAG.getTargetConstant(Value, dl, TCVT);
12254       break;
12255     case 'M':  // "M" is a constant that is greater than 31.
12256       if (Value > 31)
12257         Result = DAG.getTargetConstant(Value, dl, TCVT);
12258       break;
12259     case 'N':  // "N" is a positive constant that is an exact power of two.
12260       if (Value > 0 && isPowerOf2_64(Value))
12261         Result = DAG.getTargetConstant(Value, dl, TCVT);
12262       break;
12263     case 'O':  // "O" is the constant zero.
12264       if (Value == 0)
12265         Result = DAG.getTargetConstant(Value, dl, TCVT);
12266       break;
12267     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
12268       if (isInt<16>(-Value))
12269         Result = DAG.getTargetConstant(Value, dl, TCVT);
12270       break;
12271     }
12272     break;
12273   }
12274   }
12275 
12276   if (Result.getNode()) {
12277     Ops.push_back(Result);
12278     return;
12279   }
12280 
12281   // Handle standard constraint letters.
12282   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12283 }
12284 
12285 // isLegalAddressingMode - Return true if the addressing mode represented
12286 // by AM is legal for this target, for a load/store of the specified type.
12287 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
12288                                               const AddrMode &AM, Type *Ty,
12289                                               unsigned AS) const {
12290   // PPC does not allow r+i addressing modes for vectors!
12291   if (Ty->isVectorTy() && AM.BaseOffs != 0)
12292     return false;
12293 
12294   // PPC allows a sign-extended 16-bit immediate field.
12295   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
12296     return false;
12297 
12298   // No global is ever allowed as a base.
12299   if (AM.BaseGV)
12300     return false;
12301 
12302   // PPC only support r+r,
12303   switch (AM.Scale) {
12304   case 0:  // "r+i" or just "i", depending on HasBaseReg.
12305     break;
12306   case 1:
12307     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
12308       return false;
12309     // Otherwise we have r+r or r+i.
12310     break;
12311   case 2:
12312     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
12313       return false;
12314     // Allow 2*r as r+r.
12315     break;
12316   default:
12317     // No other scales are supported.
12318     return false;
12319   }
12320 
12321   return true;
12322 }
12323 
12324 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
12325                                            SelectionDAG &DAG) const {
12326   MachineFunction &MF = DAG.getMachineFunction();
12327   MachineFrameInfo &MFI = MF.getFrameInfo();
12328   MFI.setReturnAddressIsTaken(true);
12329 
12330   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
12331     return SDValue();
12332 
12333   SDLoc dl(Op);
12334   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12335 
12336   // Make sure the function does not optimize away the store of the RA to
12337   // the stack.
12338   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
12339   FuncInfo->setLRStoreRequired();
12340   bool isPPC64 = Subtarget.isPPC64();
12341   auto PtrVT = getPointerTy(MF.getDataLayout());
12342 
12343   if (Depth > 0) {
12344     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12345     SDValue Offset =
12346         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
12347                         isPPC64 ? MVT::i64 : MVT::i32);
12348     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12349                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
12350                        MachinePointerInfo());
12351   }
12352 
12353   // Just load the return address off the stack.
12354   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
12355   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
12356                      MachinePointerInfo());
12357 }
12358 
12359 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
12360                                           SelectionDAG &DAG) const {
12361   SDLoc dl(Op);
12362   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12363 
12364   MachineFunction &MF = DAG.getMachineFunction();
12365   MachineFrameInfo &MFI = MF.getFrameInfo();
12366   MFI.setFrameAddressIsTaken(true);
12367 
12368   EVT PtrVT = getPointerTy(MF.getDataLayout());
12369   bool isPPC64 = PtrVT == MVT::i64;
12370 
12371   // Naked functions never have a frame pointer, and so we use r1. For all
12372   // other functions, this decision must be delayed until during PEI.
12373   unsigned FrameReg;
12374   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
12375     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
12376   else
12377     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
12378 
12379   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
12380                                          PtrVT);
12381   while (Depth--)
12382     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
12383                             FrameAddr, MachinePointerInfo());
12384   return FrameAddr;
12385 }
12386 
12387 // FIXME? Maybe this could be a TableGen attribute on some registers and
12388 // this table could be generated automatically from RegInfo.
12389 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
12390                                               SelectionDAG &DAG) const {
12391   bool isPPC64 = Subtarget.isPPC64();
12392   bool isDarwinABI = Subtarget.isDarwinABI();
12393 
12394   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
12395       (!isPPC64 && VT != MVT::i32))
12396     report_fatal_error("Invalid register global variable type");
12397 
12398   bool is64Bit = isPPC64 && VT == MVT::i64;
12399   unsigned Reg = StringSwitch<unsigned>(RegName)
12400                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
12401                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
12402                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
12403                                   (is64Bit ? PPC::X13 : PPC::R13))
12404                    .Default(0);
12405 
12406   if (Reg)
12407     return Reg;
12408   report_fatal_error("Invalid register name global variable");
12409 }
12410 
12411 bool
12412 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12413   // The PowerPC target isn't yet aware of offsets.
12414   return false;
12415 }
12416 
12417 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12418                                            const CallInst &I,
12419                                            unsigned Intrinsic) const {
12420   switch (Intrinsic) {
12421   case Intrinsic::ppc_qpx_qvlfd:
12422   case Intrinsic::ppc_qpx_qvlfs:
12423   case Intrinsic::ppc_qpx_qvlfcd:
12424   case Intrinsic::ppc_qpx_qvlfcs:
12425   case Intrinsic::ppc_qpx_qvlfiwa:
12426   case Intrinsic::ppc_qpx_qvlfiwz:
12427   case Intrinsic::ppc_altivec_lvx:
12428   case Intrinsic::ppc_altivec_lvxl:
12429   case Intrinsic::ppc_altivec_lvebx:
12430   case Intrinsic::ppc_altivec_lvehx:
12431   case Intrinsic::ppc_altivec_lvewx:
12432   case Intrinsic::ppc_vsx_lxvd2x:
12433   case Intrinsic::ppc_vsx_lxvw4x: {
12434     EVT VT;
12435     switch (Intrinsic) {
12436     case Intrinsic::ppc_altivec_lvebx:
12437       VT = MVT::i8;
12438       break;
12439     case Intrinsic::ppc_altivec_lvehx:
12440       VT = MVT::i16;
12441       break;
12442     case Intrinsic::ppc_altivec_lvewx:
12443       VT = MVT::i32;
12444       break;
12445     case Intrinsic::ppc_vsx_lxvd2x:
12446       VT = MVT::v2f64;
12447       break;
12448     case Intrinsic::ppc_qpx_qvlfd:
12449       VT = MVT::v4f64;
12450       break;
12451     case Intrinsic::ppc_qpx_qvlfs:
12452       VT = MVT::v4f32;
12453       break;
12454     case Intrinsic::ppc_qpx_qvlfcd:
12455       VT = MVT::v2f64;
12456       break;
12457     case Intrinsic::ppc_qpx_qvlfcs:
12458       VT = MVT::v2f32;
12459       break;
12460     default:
12461       VT = MVT::v4i32;
12462       break;
12463     }
12464 
12465     Info.opc = ISD::INTRINSIC_W_CHAIN;
12466     Info.memVT = VT;
12467     Info.ptrVal = I.getArgOperand(0);
12468     Info.offset = -VT.getStoreSize()+1;
12469     Info.size = 2*VT.getStoreSize()-1;
12470     Info.align = 1;
12471     Info.vol = false;
12472     Info.readMem = true;
12473     Info.writeMem = false;
12474     return true;
12475   }
12476   case Intrinsic::ppc_qpx_qvlfda:
12477   case Intrinsic::ppc_qpx_qvlfsa:
12478   case Intrinsic::ppc_qpx_qvlfcda:
12479   case Intrinsic::ppc_qpx_qvlfcsa:
12480   case Intrinsic::ppc_qpx_qvlfiwaa:
12481   case Intrinsic::ppc_qpx_qvlfiwza: {
12482     EVT VT;
12483     switch (Intrinsic) {
12484     case Intrinsic::ppc_qpx_qvlfda:
12485       VT = MVT::v4f64;
12486       break;
12487     case Intrinsic::ppc_qpx_qvlfsa:
12488       VT = MVT::v4f32;
12489       break;
12490     case Intrinsic::ppc_qpx_qvlfcda:
12491       VT = MVT::v2f64;
12492       break;
12493     case Intrinsic::ppc_qpx_qvlfcsa:
12494       VT = MVT::v2f32;
12495       break;
12496     default:
12497       VT = MVT::v4i32;
12498       break;
12499     }
12500 
12501     Info.opc = ISD::INTRINSIC_W_CHAIN;
12502     Info.memVT = VT;
12503     Info.ptrVal = I.getArgOperand(0);
12504     Info.offset = 0;
12505     Info.size = VT.getStoreSize();
12506     Info.align = 1;
12507     Info.vol = false;
12508     Info.readMem = true;
12509     Info.writeMem = false;
12510     return true;
12511   }
12512   case Intrinsic::ppc_qpx_qvstfd:
12513   case Intrinsic::ppc_qpx_qvstfs:
12514   case Intrinsic::ppc_qpx_qvstfcd:
12515   case Intrinsic::ppc_qpx_qvstfcs:
12516   case Intrinsic::ppc_qpx_qvstfiw:
12517   case Intrinsic::ppc_altivec_stvx:
12518   case Intrinsic::ppc_altivec_stvxl:
12519   case Intrinsic::ppc_altivec_stvebx:
12520   case Intrinsic::ppc_altivec_stvehx:
12521   case Intrinsic::ppc_altivec_stvewx:
12522   case Intrinsic::ppc_vsx_stxvd2x:
12523   case Intrinsic::ppc_vsx_stxvw4x: {
12524     EVT VT;
12525     switch (Intrinsic) {
12526     case Intrinsic::ppc_altivec_stvebx:
12527       VT = MVT::i8;
12528       break;
12529     case Intrinsic::ppc_altivec_stvehx:
12530       VT = MVT::i16;
12531       break;
12532     case Intrinsic::ppc_altivec_stvewx:
12533       VT = MVT::i32;
12534       break;
12535     case Intrinsic::ppc_vsx_stxvd2x:
12536       VT = MVT::v2f64;
12537       break;
12538     case Intrinsic::ppc_qpx_qvstfd:
12539       VT = MVT::v4f64;
12540       break;
12541     case Intrinsic::ppc_qpx_qvstfs:
12542       VT = MVT::v4f32;
12543       break;
12544     case Intrinsic::ppc_qpx_qvstfcd:
12545       VT = MVT::v2f64;
12546       break;
12547     case Intrinsic::ppc_qpx_qvstfcs:
12548       VT = MVT::v2f32;
12549       break;
12550     default:
12551       VT = MVT::v4i32;
12552       break;
12553     }
12554 
12555     Info.opc = ISD::INTRINSIC_VOID;
12556     Info.memVT = VT;
12557     Info.ptrVal = I.getArgOperand(1);
12558     Info.offset = -VT.getStoreSize()+1;
12559     Info.size = 2*VT.getStoreSize()-1;
12560     Info.align = 1;
12561     Info.vol = false;
12562     Info.readMem = false;
12563     Info.writeMem = true;
12564     return true;
12565   }
12566   case Intrinsic::ppc_qpx_qvstfda:
12567   case Intrinsic::ppc_qpx_qvstfsa:
12568   case Intrinsic::ppc_qpx_qvstfcda:
12569   case Intrinsic::ppc_qpx_qvstfcsa:
12570   case Intrinsic::ppc_qpx_qvstfiwa: {
12571     EVT VT;
12572     switch (Intrinsic) {
12573     case Intrinsic::ppc_qpx_qvstfda:
12574       VT = MVT::v4f64;
12575       break;
12576     case Intrinsic::ppc_qpx_qvstfsa:
12577       VT = MVT::v4f32;
12578       break;
12579     case Intrinsic::ppc_qpx_qvstfcda:
12580       VT = MVT::v2f64;
12581       break;
12582     case Intrinsic::ppc_qpx_qvstfcsa:
12583       VT = MVT::v2f32;
12584       break;
12585     default:
12586       VT = MVT::v4i32;
12587       break;
12588     }
12589 
12590     Info.opc = ISD::INTRINSIC_VOID;
12591     Info.memVT = VT;
12592     Info.ptrVal = I.getArgOperand(1);
12593     Info.offset = 0;
12594     Info.size = VT.getStoreSize();
12595     Info.align = 1;
12596     Info.vol = false;
12597     Info.readMem = false;
12598     Info.writeMem = true;
12599     return true;
12600   }
12601   default:
12602     break;
12603   }
12604 
12605   return false;
12606 }
12607 
12608 /// getOptimalMemOpType - Returns the target specific optimal type for load
12609 /// and store operations as a result of memset, memcpy, and memmove
12610 /// lowering. If DstAlign is zero that means it's safe to destination
12611 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
12612 /// means there isn't a need to check it against alignment requirement,
12613 /// probably because the source does not need to be loaded. If 'IsMemset' is
12614 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
12615 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
12616 /// source is constant so it does not need to be loaded.
12617 /// It returns EVT::Other if the type should be determined using generic
12618 /// target-independent logic.
12619 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
12620                                            unsigned DstAlign, unsigned SrcAlign,
12621                                            bool IsMemset, bool ZeroMemset,
12622                                            bool MemcpyStrSrc,
12623                                            MachineFunction &MF) const {
12624   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
12625     const Function *F = MF.getFunction();
12626     // When expanding a memset, require at least two QPX instructions to cover
12627     // the cost of loading the value to be stored from the constant pool.
12628     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
12629        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
12630         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
12631       return MVT::v4f64;
12632     }
12633 
12634     // We should use Altivec/VSX loads and stores when available. For unaligned
12635     // addresses, unaligned VSX loads are only fast starting with the P8.
12636     if (Subtarget.hasAltivec() && Size >= 16 &&
12637         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
12638          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
12639       return MVT::v4i32;
12640   }
12641 
12642   if (Subtarget.isPPC64()) {
12643     return MVT::i64;
12644   }
12645 
12646   return MVT::i32;
12647 }
12648 
12649 /// \brief Returns true if it is beneficial to convert a load of a constant
12650 /// to just the constant itself.
12651 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12652                                                           Type *Ty) const {
12653   assert(Ty->isIntegerTy());
12654 
12655   unsigned BitSize = Ty->getPrimitiveSizeInBits();
12656   return !(BitSize == 0 || BitSize > 64);
12657 }
12658 
12659 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12660   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12661     return false;
12662   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12663   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12664   return NumBits1 == 64 && NumBits2 == 32;
12665 }
12666 
12667 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12668   if (!VT1.isInteger() || !VT2.isInteger())
12669     return false;
12670   unsigned NumBits1 = VT1.getSizeInBits();
12671   unsigned NumBits2 = VT2.getSizeInBits();
12672   return NumBits1 == 64 && NumBits2 == 32;
12673 }
12674 
12675 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12676   // Generally speaking, zexts are not free, but they are free when they can be
12677   // folded with other operations.
12678   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
12679     EVT MemVT = LD->getMemoryVT();
12680     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
12681          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
12682         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
12683          LD->getExtensionType() == ISD::ZEXTLOAD))
12684       return true;
12685   }
12686 
12687   // FIXME: Add other cases...
12688   //  - 32-bit shifts with a zext to i64
12689   //  - zext after ctlz, bswap, etc.
12690   //  - zext after and by a constant mask
12691 
12692   return TargetLowering::isZExtFree(Val, VT2);
12693 }
12694 
12695 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
12696   assert(VT.isFloatingPoint());
12697   return true;
12698 }
12699 
12700 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12701   return isInt<16>(Imm) || isUInt<16>(Imm);
12702 }
12703 
12704 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
12705   return isInt<16>(Imm) || isUInt<16>(Imm);
12706 }
12707 
12708 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12709                                                        unsigned,
12710                                                        unsigned,
12711                                                        bool *Fast) const {
12712   if (DisablePPCUnaligned)
12713     return false;
12714 
12715   // PowerPC supports unaligned memory access for simple non-vector types.
12716   // Although accessing unaligned addresses is not as efficient as accessing
12717   // aligned addresses, it is generally more efficient than manual expansion,
12718   // and generally only traps for software emulation when crossing page
12719   // boundaries.
12720 
12721   if (!VT.isSimple())
12722     return false;
12723 
12724   if (VT.getSimpleVT().isVector()) {
12725     if (Subtarget.hasVSX()) {
12726       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
12727           VT != MVT::v4f32 && VT != MVT::v4i32)
12728         return false;
12729     } else {
12730       return false;
12731     }
12732   }
12733 
12734   if (VT == MVT::ppcf128)
12735     return false;
12736 
12737   if (Fast)
12738     *Fast = true;
12739 
12740   return true;
12741 }
12742 
12743 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
12744   VT = VT.getScalarType();
12745 
12746   if (!VT.isSimple())
12747     return false;
12748 
12749   switch (VT.getSimpleVT().SimpleTy) {
12750   case MVT::f32:
12751   case MVT::f64:
12752     return true;
12753   default:
12754     break;
12755   }
12756 
12757   return false;
12758 }
12759 
12760 const MCPhysReg *
12761 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
12762   // LR is a callee-save register, but we must treat it as clobbered by any call
12763   // site. Hence we include LR in the scratch registers, which are in turn added
12764   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
12765   // to CTR, which is used by any indirect call.
12766   static const MCPhysReg ScratchRegs[] = {
12767     PPC::X12, PPC::LR8, PPC::CTR8, 0
12768   };
12769 
12770   return ScratchRegs;
12771 }
12772 
12773 unsigned PPCTargetLowering::getExceptionPointerRegister(
12774     const Constant *PersonalityFn) const {
12775   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
12776 }
12777 
12778 unsigned PPCTargetLowering::getExceptionSelectorRegister(
12779     const Constant *PersonalityFn) const {
12780   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
12781 }
12782 
12783 bool
12784 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
12785                      EVT VT , unsigned DefinedValues) const {
12786   if (VT == MVT::v2i64)
12787     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
12788 
12789   if (Subtarget.hasVSX() || Subtarget.hasQPX())
12790     return true;
12791 
12792   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
12793 }
12794 
12795 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
12796   if (DisableILPPref || Subtarget.enableMachineScheduler())
12797     return TargetLowering::getSchedulingPreference(N);
12798 
12799   return Sched::ILP;
12800 }
12801 
12802 // Create a fast isel object.
12803 FastISel *
12804 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
12805                                   const TargetLibraryInfo *LibInfo) const {
12806   return PPC::createFastISel(FuncInfo, LibInfo);
12807 }
12808 
12809 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12810   if (Subtarget.isDarwinABI()) return;
12811   if (!Subtarget.isPPC64()) return;
12812 
12813   // Update IsSplitCSR in PPCFunctionInfo
12814   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
12815   PFI->setIsSplitCSR(true);
12816 }
12817 
12818 void PPCTargetLowering::insertCopiesSplitCSR(
12819   MachineBasicBlock *Entry,
12820   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12821   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
12822   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12823   if (!IStart)
12824     return;
12825 
12826   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12827   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12828   MachineBasicBlock::iterator MBBI = Entry->begin();
12829   for (const MCPhysReg *I = IStart; *I; ++I) {
12830     const TargetRegisterClass *RC = nullptr;
12831     if (PPC::G8RCRegClass.contains(*I))
12832       RC = &PPC::G8RCRegClass;
12833     else if (PPC::F8RCRegClass.contains(*I))
12834       RC = &PPC::F8RCRegClass;
12835     else if (PPC::CRRCRegClass.contains(*I))
12836       RC = &PPC::CRRCRegClass;
12837     else if (PPC::VRRCRegClass.contains(*I))
12838       RC = &PPC::VRRCRegClass;
12839     else
12840       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12841 
12842     unsigned NewVR = MRI->createVirtualRegister(RC);
12843     // Create copy from CSR to a virtual register.
12844     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12845     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12846     // nounwind. If we want to generalize this later, we may need to emit
12847     // CFI pseudo-instructions.
12848     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12849              Attribute::NoUnwind) &&
12850            "Function should be nounwind in insertCopiesSplitCSR!");
12851     Entry->addLiveIn(*I);
12852     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12853       .addReg(*I);
12854 
12855     // Insert the copy-back instructions right before the terminator
12856     for (auto *Exit : Exits)
12857       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12858               TII->get(TargetOpcode::COPY), *I)
12859         .addReg(NewVR);
12860   }
12861 }
12862 
12863 // Override to enable LOAD_STACK_GUARD lowering on Linux.
12864 bool PPCTargetLowering::useLoadStackGuardNode() const {
12865   if (!Subtarget.isTargetLinux())
12866     return TargetLowering::useLoadStackGuardNode();
12867   return true;
12868 }
12869 
12870 // Override to disable global variable loading on Linux.
12871 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
12872   if (!Subtarget.isTargetLinux())
12873     return TargetLowering::insertSSPDeclarations(M);
12874 }
12875 
12876 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
12877   if (!VT.isSimple() || !Subtarget.hasVSX())
12878     return false;
12879 
12880   switch(VT.getSimpleVT().SimpleTy) {
12881   default:
12882     // For FP types that are currently not supported by PPC backend, return
12883     // false. Examples: f16, f80.
12884     return false;
12885   case MVT::f32:
12886   case MVT::f64:
12887   case MVT::ppcf128:
12888     return Imm.isPosZero();
12889   }
12890 }
12891