1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCCState.h" 18 #include "PPCCallingConv.h" 19 #include "PPCFrameLowering.h" 20 #include "PPCInstrInfo.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCPerfectShuffle.h" 23 #include "PPCRegisterInfo.h" 24 #include "PPCSubtarget.h" 25 #include "PPCTargetMachine.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/None.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/StringSwitch.h" 38 #include "llvm/CodeGen/CallingConvLower.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineLoopInfo.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/ValueTypes.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/AtomicOrdering.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CodeGen.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/Format.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <list> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 100 #define DEBUG_TYPE "ppc-lowering" 101 102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 104 105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisableSCO("disable-ppc-sco", 112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 113 114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 115 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 116 117 STATISTIC(NumTailCalls, "Number of tail calls"); 118 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 119 120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 121 122 // FIXME: Remove this once the bug has been fixed! 123 extern cl::opt<bool> ANDIGlueBug; 124 125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 126 const PPCSubtarget &STI) 127 : TargetLowering(TM), Subtarget(STI) { 128 // Use _setjmp/_longjmp instead of setjmp/longjmp. 129 setUseUnderscoreSetJmp(true); 130 setUseUnderscoreLongJmp(true); 131 132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 133 // arguments are at least 4/8 bytes aligned. 134 bool isPPC64 = Subtarget.isPPC64(); 135 setMinStackArgumentAlignment(isPPC64 ? 8:4); 136 137 // Set up the register classes. 138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 139 if (!useSoftFloat()) { 140 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 141 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 142 } 143 144 // Match BITREVERSE to customized fast code sequence in the td file. 145 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 146 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 147 148 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 149 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 150 151 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 152 for (MVT VT : MVT::integer_valuetypes()) { 153 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 154 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 155 } 156 157 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 158 159 // PowerPC has pre-inc load and store's. 160 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 161 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 162 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 163 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 164 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 165 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 166 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 167 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 168 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 169 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 170 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 171 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 172 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 173 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 174 175 if (Subtarget.useCRBits()) { 176 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 177 178 if (isPPC64 || Subtarget.hasFPCVT()) { 179 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 180 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 181 isPPC64 ? MVT::i64 : MVT::i32); 182 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 183 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 184 isPPC64 ? MVT::i64 : MVT::i32); 185 } else { 186 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 187 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 188 } 189 190 // PowerPC does not support direct load/store of condition registers. 191 setOperationAction(ISD::LOAD, MVT::i1, Custom); 192 setOperationAction(ISD::STORE, MVT::i1, Custom); 193 194 // FIXME: Remove this once the ANDI glue bug is fixed: 195 if (ANDIGlueBug) 196 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 197 198 for (MVT VT : MVT::integer_valuetypes()) { 199 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 200 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 201 setTruncStoreAction(VT, MVT::i1, Expand); 202 } 203 204 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 205 } 206 207 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 208 // PPC (the libcall is not available). 209 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 210 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 211 212 // We do not currently implement these libm ops for PowerPC. 213 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 214 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 215 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 216 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 217 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 218 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 219 220 // PowerPC has no SREM/UREM instructions unless we are on P9 221 // On P9 we may use a hardware instruction to compute the remainder. 222 // The instructions are not legalized directly because in the cases where the 223 // result of both the remainder and the division is required it is more 224 // efficient to compute the remainder from the result of the division rather 225 // than use the remainder instruction. 226 if (Subtarget.isISA3_0()) { 227 setOperationAction(ISD::SREM, MVT::i32, Custom); 228 setOperationAction(ISD::UREM, MVT::i32, Custom); 229 setOperationAction(ISD::SREM, MVT::i64, Custom); 230 setOperationAction(ISD::UREM, MVT::i64, Custom); 231 } else { 232 setOperationAction(ISD::SREM, MVT::i32, Expand); 233 setOperationAction(ISD::UREM, MVT::i32, Expand); 234 setOperationAction(ISD::SREM, MVT::i64, Expand); 235 setOperationAction(ISD::UREM, MVT::i64, Expand); 236 } 237 238 if (Subtarget.hasP9Vector()) { 239 setOperationAction(ISD::ABS, MVT::v4i32, Legal); 240 setOperationAction(ISD::ABS, MVT::v8i16, Legal); 241 setOperationAction(ISD::ABS, MVT::v16i8, Legal); 242 } 243 244 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 245 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 246 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 247 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 248 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 249 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 250 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 251 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 252 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 253 254 // We don't support sin/cos/sqrt/fmod/pow 255 setOperationAction(ISD::FSIN , MVT::f64, Expand); 256 setOperationAction(ISD::FCOS , MVT::f64, Expand); 257 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 258 setOperationAction(ISD::FREM , MVT::f64, Expand); 259 setOperationAction(ISD::FPOW , MVT::f64, Expand); 260 setOperationAction(ISD::FMA , MVT::f64, Legal); 261 setOperationAction(ISD::FSIN , MVT::f32, Expand); 262 setOperationAction(ISD::FCOS , MVT::f32, Expand); 263 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 264 setOperationAction(ISD::FREM , MVT::f32, Expand); 265 setOperationAction(ISD::FPOW , MVT::f32, Expand); 266 setOperationAction(ISD::FMA , MVT::f32, Legal); 267 268 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 269 270 // If we're enabling GP optimizations, use hardware square root 271 if (!Subtarget.hasFSQRT() && 272 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 273 Subtarget.hasFRE())) 274 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 275 276 if (!Subtarget.hasFSQRT() && 277 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 278 Subtarget.hasFRES())) 279 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 280 281 if (Subtarget.hasFCPSGN()) { 282 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 284 } else { 285 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 286 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 287 } 288 289 if (Subtarget.hasFPRND()) { 290 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 291 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 292 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 293 setOperationAction(ISD::FROUND, MVT::f64, Legal); 294 295 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 296 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 297 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 298 setOperationAction(ISD::FROUND, MVT::f32, Legal); 299 } 300 301 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 302 // to speed up scalar BSWAP64. 303 // CTPOP or CTTZ were introduced in P8/P9 respectivelly 304 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 305 if (Subtarget.isISA3_0()) { 306 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 307 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 308 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 309 } else { 310 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 311 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 312 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 313 } 314 315 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 316 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 317 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 318 } else { 319 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 320 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 321 } 322 323 // PowerPC does not have ROTR 324 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 325 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 326 327 if (!Subtarget.useCRBits()) { 328 // PowerPC does not have Select 329 setOperationAction(ISD::SELECT, MVT::i32, Expand); 330 setOperationAction(ISD::SELECT, MVT::i64, Expand); 331 setOperationAction(ISD::SELECT, MVT::f32, Expand); 332 setOperationAction(ISD::SELECT, MVT::f64, Expand); 333 } 334 335 // PowerPC wants to turn select_cc of FP into fsel when possible. 336 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 337 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 338 339 // PowerPC wants to optimize integer setcc a bit 340 if (!Subtarget.useCRBits()) 341 setOperationAction(ISD::SETCC, MVT::i32, Custom); 342 343 // PowerPC does not have BRCOND which requires SetCC 344 if (!Subtarget.useCRBits()) 345 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 346 347 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 348 349 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 350 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 351 352 // PowerPC does not have [U|S]INT_TO_FP 353 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 354 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 355 356 if (Subtarget.hasDirectMove() && isPPC64) { 357 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 358 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 359 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 360 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 361 } else { 362 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 363 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 364 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 365 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 366 } 367 368 // We cannot sextinreg(i1). Expand to shifts. 369 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 370 371 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 372 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 373 // support continuation, user-level threading, and etc.. As a result, no 374 // other SjLj exception interfaces are implemented and please don't build 375 // your own exception handling based on them. 376 // LLVM/Clang supports zero-cost DWARF exception handling. 377 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 378 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 379 380 // We want to legalize GlobalAddress and ConstantPool nodes into the 381 // appropriate instructions to materialize the address. 382 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 383 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 384 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 385 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 386 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 387 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 388 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 389 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 390 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 391 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 392 393 // TRAP is legal. 394 setOperationAction(ISD::TRAP, MVT::Other, Legal); 395 396 // TRAMPOLINE is custom lowered. 397 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 398 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 399 400 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 401 setOperationAction(ISD::VASTART , MVT::Other, Custom); 402 403 if (Subtarget.isSVR4ABI()) { 404 if (isPPC64) { 405 // VAARG always uses double-word chunks, so promote anything smaller. 406 setOperationAction(ISD::VAARG, MVT::i1, Promote); 407 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 408 setOperationAction(ISD::VAARG, MVT::i8, Promote); 409 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 410 setOperationAction(ISD::VAARG, MVT::i16, Promote); 411 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 412 setOperationAction(ISD::VAARG, MVT::i32, Promote); 413 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 414 setOperationAction(ISD::VAARG, MVT::Other, Expand); 415 } else { 416 // VAARG is custom lowered with the 32-bit SVR4 ABI. 417 setOperationAction(ISD::VAARG, MVT::Other, Custom); 418 setOperationAction(ISD::VAARG, MVT::i64, Custom); 419 } 420 } else 421 setOperationAction(ISD::VAARG, MVT::Other, Expand); 422 423 if (Subtarget.isSVR4ABI() && !isPPC64) 424 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 425 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 426 else 427 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 428 429 // Use the default implementation. 430 setOperationAction(ISD::VAEND , MVT::Other, Expand); 431 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 432 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 433 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 434 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 435 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 436 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 437 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 438 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 439 440 // We want to custom lower some of our intrinsics. 441 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 442 443 // To handle counter-based loop conditions. 444 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 445 446 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 447 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 448 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 449 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 450 451 // Comparisons that require checking two conditions. 452 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 453 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 454 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 455 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 456 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 457 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 458 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 459 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 460 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 461 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 462 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 463 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 464 465 if (Subtarget.has64BitSupport()) { 466 // They also have instructions for converting between i64 and fp. 467 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 468 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 469 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 470 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 471 // This is just the low 32 bits of a (signed) fp->i64 conversion. 472 // We cannot do this with Promote because i64 is not a legal type. 473 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 474 475 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 476 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 477 } else { 478 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 479 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 480 } 481 482 // With the instructions enabled under FPCVT, we can do everything. 483 if (Subtarget.hasFPCVT()) { 484 if (Subtarget.has64BitSupport()) { 485 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 486 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 487 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 488 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 489 } 490 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 492 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 493 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 494 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 495 } 496 497 if (Subtarget.use64BitRegs()) { 498 // 64-bit PowerPC implementations can support i64 types directly 499 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 500 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 501 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 502 // 64-bit PowerPC wants to expand i128 shifts itself. 503 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 504 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 505 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 506 } else { 507 // 32-bit PowerPC wants to expand i64 shifts itself. 508 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 509 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 510 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 511 } 512 513 if (Subtarget.hasAltivec()) { 514 // First set operation action for all vector types to expand. Then we 515 // will selectively turn on ones that can be effectively codegen'd. 516 for (MVT VT : MVT::vector_valuetypes()) { 517 // add/sub are legal for all supported vector VT's. 518 setOperationAction(ISD::ADD, VT, Legal); 519 setOperationAction(ISD::SUB, VT, Legal); 520 521 // Vector instructions introduced in P8 522 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 523 setOperationAction(ISD::CTPOP, VT, Legal); 524 setOperationAction(ISD::CTLZ, VT, Legal); 525 } 526 else { 527 setOperationAction(ISD::CTPOP, VT, Expand); 528 setOperationAction(ISD::CTLZ, VT, Expand); 529 } 530 531 // Vector instructions introduced in P9 532 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 533 setOperationAction(ISD::CTTZ, VT, Legal); 534 else 535 setOperationAction(ISD::CTTZ, VT, Expand); 536 537 // We promote all shuffles to v16i8. 538 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 539 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 540 541 // We promote all non-typed operations to v4i32. 542 setOperationAction(ISD::AND , VT, Promote); 543 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 544 setOperationAction(ISD::OR , VT, Promote); 545 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 546 setOperationAction(ISD::XOR , VT, Promote); 547 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 548 setOperationAction(ISD::LOAD , VT, Promote); 549 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 550 setOperationAction(ISD::SELECT, VT, Promote); 551 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 552 setOperationAction(ISD::SELECT_CC, VT, Promote); 553 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 554 setOperationAction(ISD::STORE, VT, Promote); 555 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 556 557 // No other operations are legal. 558 setOperationAction(ISD::MUL , VT, Expand); 559 setOperationAction(ISD::SDIV, VT, Expand); 560 setOperationAction(ISD::SREM, VT, Expand); 561 setOperationAction(ISD::UDIV, VT, Expand); 562 setOperationAction(ISD::UREM, VT, Expand); 563 setOperationAction(ISD::FDIV, VT, Expand); 564 setOperationAction(ISD::FREM, VT, Expand); 565 setOperationAction(ISD::FNEG, VT, Expand); 566 setOperationAction(ISD::FSQRT, VT, Expand); 567 setOperationAction(ISD::FLOG, VT, Expand); 568 setOperationAction(ISD::FLOG10, VT, Expand); 569 setOperationAction(ISD::FLOG2, VT, Expand); 570 setOperationAction(ISD::FEXP, VT, Expand); 571 setOperationAction(ISD::FEXP2, VT, Expand); 572 setOperationAction(ISD::FSIN, VT, Expand); 573 setOperationAction(ISD::FCOS, VT, Expand); 574 setOperationAction(ISD::FABS, VT, Expand); 575 setOperationAction(ISD::FFLOOR, VT, Expand); 576 setOperationAction(ISD::FCEIL, VT, Expand); 577 setOperationAction(ISD::FTRUNC, VT, Expand); 578 setOperationAction(ISD::FRINT, VT, Expand); 579 setOperationAction(ISD::FNEARBYINT, VT, Expand); 580 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 581 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 582 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 583 setOperationAction(ISD::MULHU, VT, Expand); 584 setOperationAction(ISD::MULHS, VT, Expand); 585 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 586 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 587 setOperationAction(ISD::UDIVREM, VT, Expand); 588 setOperationAction(ISD::SDIVREM, VT, Expand); 589 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 590 setOperationAction(ISD::FPOW, VT, Expand); 591 setOperationAction(ISD::BSWAP, VT, Expand); 592 setOperationAction(ISD::VSELECT, VT, Expand); 593 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 594 setOperationAction(ISD::ROTL, VT, Expand); 595 setOperationAction(ISD::ROTR, VT, Expand); 596 597 for (MVT InnerVT : MVT::vector_valuetypes()) { 598 setTruncStoreAction(VT, InnerVT, Expand); 599 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 600 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 601 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 602 } 603 } 604 605 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 606 // with merges, splats, etc. 607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 608 609 setOperationAction(ISD::AND , MVT::v4i32, Legal); 610 setOperationAction(ISD::OR , MVT::v4i32, Legal); 611 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 612 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 613 setOperationAction(ISD::SELECT, MVT::v4i32, 614 Subtarget.useCRBits() ? Legal : Expand); 615 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 616 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 617 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 618 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 619 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 620 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 621 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 622 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 623 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 624 625 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 626 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 627 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 628 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 629 630 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 631 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 632 633 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 634 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 635 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 636 } 637 638 if (Subtarget.hasP8Altivec()) 639 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 640 else 641 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 642 643 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 644 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 645 646 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 647 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 648 649 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 650 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 651 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 652 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 653 654 // Altivec does not contain unordered floating-point compare instructions 655 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 656 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 657 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 659 660 if (Subtarget.hasVSX()) { 661 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 663 if (Subtarget.hasP8Vector()) { 664 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 665 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 666 } 667 if (Subtarget.hasDirectMove() && isPPC64) { 668 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 669 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 670 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 671 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 672 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 673 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 674 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 675 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 676 } 677 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 678 679 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 680 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 681 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 682 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 683 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 684 685 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 686 687 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 688 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 689 690 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 691 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 692 693 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 694 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 695 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 696 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 697 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 698 699 // Share the Altivec comparison restrictions. 700 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 701 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 702 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 703 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 704 705 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 706 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 707 708 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 709 710 if (Subtarget.hasP8Vector()) 711 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 712 713 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 714 715 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 716 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 717 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 718 719 if (Subtarget.hasP8Altivec()) { 720 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 721 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 722 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 723 724 // 128 bit shifts can be accomplished via 3 instructions for SHL and 725 // SRL, but not for SRA because of the instructions available: 726 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 727 // doing 728 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 729 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 730 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 731 732 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 733 } 734 else { 735 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 736 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 737 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 738 739 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 740 741 // VSX v2i64 only supports non-arithmetic operations. 742 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 743 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 744 } 745 746 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 747 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 748 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 749 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 750 751 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 752 753 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 754 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 755 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 756 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 757 758 // Vector operation legalization checks the result type of 759 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 760 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 761 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 762 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 763 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 764 765 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 766 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 767 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 768 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 769 770 if (Subtarget.hasDirectMove()) 771 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 772 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 773 774 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 775 } 776 777 if (Subtarget.hasP8Altivec()) { 778 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 779 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 780 } 781 782 if (Subtarget.hasP9Vector()) { 783 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 784 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 785 786 // 128 bit shifts can be accomplished via 3 instructions for SHL and 787 // SRL, but not for SRA because of the instructions available: 788 // VS{RL} and VS{RL}O. 789 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 790 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 791 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 792 793 if (EnableQuadPrecision) { 794 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 795 setOperationAction(ISD::FADD, MVT::f128, Legal); 796 setOperationAction(ISD::FSUB, MVT::f128, Legal); 797 setOperationAction(ISD::FDIV, MVT::f128, Legal); 798 setOperationAction(ISD::FMUL, MVT::f128, Legal); 799 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 800 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 801 setOperationAction(ISD::FMA, MVT::f128, Legal); 802 } 803 804 } 805 806 if (Subtarget.hasP9Altivec()) { 807 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 808 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 809 } 810 } 811 812 if (Subtarget.hasQPX()) { 813 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 814 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 815 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 816 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 817 818 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 819 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 820 821 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 822 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 823 824 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 825 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 826 827 if (!Subtarget.useCRBits()) 828 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 829 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 830 831 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 832 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 833 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 834 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 835 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 836 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 837 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 838 839 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 840 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 841 842 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 843 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 844 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 845 846 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 847 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 848 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 849 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 850 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 851 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 852 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 853 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 854 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 855 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 856 857 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 858 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 859 860 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 861 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 862 863 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 864 865 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 866 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 867 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 868 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 869 870 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 871 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 872 873 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 874 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 875 876 if (!Subtarget.useCRBits()) 877 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 878 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 879 880 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 881 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 882 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 883 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 884 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 885 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 886 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 887 888 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 889 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 890 891 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 892 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 893 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 894 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 895 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 896 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 897 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 898 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 899 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 900 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 901 902 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 903 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 904 905 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 906 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 907 908 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 909 910 setOperationAction(ISD::AND , MVT::v4i1, Legal); 911 setOperationAction(ISD::OR , MVT::v4i1, Legal); 912 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 913 914 if (!Subtarget.useCRBits()) 915 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 916 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 917 918 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 919 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 920 921 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 922 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 923 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 924 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 925 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 926 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 927 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 928 929 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 930 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 931 932 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 933 934 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 935 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 936 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 937 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 938 939 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 940 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 941 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 942 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 943 944 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 945 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 946 947 // These need to set FE_INEXACT, and so cannot be vectorized here. 948 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 949 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 950 951 if (TM.Options.UnsafeFPMath) { 952 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 953 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 954 955 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 956 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 957 } else { 958 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 959 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 960 961 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 962 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 963 } 964 } 965 966 if (Subtarget.has64BitSupport()) 967 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 968 969 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 970 971 if (!isPPC64) { 972 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 973 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 974 } 975 976 setBooleanContents(ZeroOrOneBooleanContent); 977 978 if (Subtarget.hasAltivec()) { 979 // Altivec instructions set fields to all zeros or all ones. 980 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 981 } 982 983 if (!isPPC64) { 984 // These libcalls are not available in 32-bit. 985 setLibcallName(RTLIB::SHL_I128, nullptr); 986 setLibcallName(RTLIB::SRL_I128, nullptr); 987 setLibcallName(RTLIB::SRA_I128, nullptr); 988 } 989 990 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 991 992 // We have target-specific dag combine patterns for the following nodes: 993 setTargetDAGCombine(ISD::SHL); 994 setTargetDAGCombine(ISD::SRA); 995 setTargetDAGCombine(ISD::SRL); 996 setTargetDAGCombine(ISD::SINT_TO_FP); 997 setTargetDAGCombine(ISD::BUILD_VECTOR); 998 if (Subtarget.hasFPCVT()) 999 setTargetDAGCombine(ISD::UINT_TO_FP); 1000 setTargetDAGCombine(ISD::LOAD); 1001 setTargetDAGCombine(ISD::STORE); 1002 setTargetDAGCombine(ISD::BR_CC); 1003 if (Subtarget.useCRBits()) 1004 setTargetDAGCombine(ISD::BRCOND); 1005 setTargetDAGCombine(ISD::BSWAP); 1006 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1007 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1008 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1009 1010 setTargetDAGCombine(ISD::SIGN_EXTEND); 1011 setTargetDAGCombine(ISD::ZERO_EXTEND); 1012 setTargetDAGCombine(ISD::ANY_EXTEND); 1013 1014 if (Subtarget.useCRBits()) { 1015 setTargetDAGCombine(ISD::TRUNCATE); 1016 setTargetDAGCombine(ISD::SETCC); 1017 setTargetDAGCombine(ISD::SELECT_CC); 1018 } 1019 1020 // Use reciprocal estimates. 1021 if (TM.Options.UnsafeFPMath) { 1022 setTargetDAGCombine(ISD::FDIV); 1023 setTargetDAGCombine(ISD::FSQRT); 1024 } 1025 1026 // Darwin long double math library functions have $LDBL128 appended. 1027 if (Subtarget.isDarwin()) { 1028 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1029 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1030 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1031 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1032 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1033 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1034 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1035 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1036 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1037 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1038 } 1039 1040 // With 32 condition bits, we don't need to sink (and duplicate) compares 1041 // aggressively in CodeGenPrep. 1042 if (Subtarget.useCRBits()) { 1043 setHasMultipleConditionRegisters(); 1044 setJumpIsExpensive(); 1045 } 1046 1047 setMinFunctionAlignment(2); 1048 if (Subtarget.isDarwin()) 1049 setPrefFunctionAlignment(4); 1050 1051 switch (Subtarget.getDarwinDirective()) { 1052 default: break; 1053 case PPC::DIR_970: 1054 case PPC::DIR_A2: 1055 case PPC::DIR_E500mc: 1056 case PPC::DIR_E5500: 1057 case PPC::DIR_PWR4: 1058 case PPC::DIR_PWR5: 1059 case PPC::DIR_PWR5X: 1060 case PPC::DIR_PWR6: 1061 case PPC::DIR_PWR6X: 1062 case PPC::DIR_PWR7: 1063 case PPC::DIR_PWR8: 1064 case PPC::DIR_PWR9: 1065 setPrefFunctionAlignment(4); 1066 setPrefLoopAlignment(4); 1067 break; 1068 } 1069 1070 if (Subtarget.enableMachineScheduler()) 1071 setSchedulingPreference(Sched::Source); 1072 else 1073 setSchedulingPreference(Sched::Hybrid); 1074 1075 computeRegisterProperties(STI.getRegisterInfo()); 1076 1077 // The Freescale cores do better with aggressive inlining of memcpy and 1078 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1079 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 1080 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 1081 MaxStoresPerMemset = 32; 1082 MaxStoresPerMemsetOptSize = 16; 1083 MaxStoresPerMemcpy = 32; 1084 MaxStoresPerMemcpyOptSize = 8; 1085 MaxStoresPerMemmove = 32; 1086 MaxStoresPerMemmoveOptSize = 8; 1087 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 1088 // The A2 also benefits from (very) aggressive inlining of memcpy and 1089 // friends. The overhead of a the function call, even when warm, can be 1090 // over one hundred cycles. 1091 MaxStoresPerMemset = 128; 1092 MaxStoresPerMemcpy = 128; 1093 MaxStoresPerMemmove = 128; 1094 MaxLoadsPerMemcmp = 128; 1095 } else { 1096 MaxLoadsPerMemcmp = 8; 1097 MaxLoadsPerMemcmpOptSize = 4; 1098 } 1099 } 1100 1101 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1102 /// the desired ByVal argument alignment. 1103 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1104 unsigned MaxMaxAlign) { 1105 if (MaxAlign == MaxMaxAlign) 1106 return; 1107 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1108 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1109 MaxAlign = 32; 1110 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1111 MaxAlign = 16; 1112 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1113 unsigned EltAlign = 0; 1114 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1115 if (EltAlign > MaxAlign) 1116 MaxAlign = EltAlign; 1117 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1118 for (auto *EltTy : STy->elements()) { 1119 unsigned EltAlign = 0; 1120 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1121 if (EltAlign > MaxAlign) 1122 MaxAlign = EltAlign; 1123 if (MaxAlign == MaxMaxAlign) 1124 break; 1125 } 1126 } 1127 } 1128 1129 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1130 /// function arguments in the caller parameter area. 1131 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1132 const DataLayout &DL) const { 1133 // Darwin passes everything on 4 byte boundary. 1134 if (Subtarget.isDarwin()) 1135 return 4; 1136 1137 // 16byte and wider vectors are passed on 16byte boundary. 1138 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1139 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1140 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1141 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1142 return Align; 1143 } 1144 1145 bool PPCTargetLowering::useSoftFloat() const { 1146 return Subtarget.useSoftFloat(); 1147 } 1148 1149 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1150 switch ((PPCISD::NodeType)Opcode) { 1151 case PPCISD::FIRST_NUMBER: break; 1152 case PPCISD::FSEL: return "PPCISD::FSEL"; 1153 case PPCISD::FCFID: return "PPCISD::FCFID"; 1154 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1155 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1156 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1157 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1158 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1159 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1160 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1161 case PPCISD::FP_TO_UINT_IN_VSR: 1162 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1163 case PPCISD::FP_TO_SINT_IN_VSR: 1164 return "PPCISD::FP_TO_SINT_IN_VSR"; 1165 case PPCISD::FRE: return "PPCISD::FRE"; 1166 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1167 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1168 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1169 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1170 case PPCISD::VPERM: return "PPCISD::VPERM"; 1171 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1172 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1173 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE"; 1174 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1175 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1176 case PPCISD::CMPB: return "PPCISD::CMPB"; 1177 case PPCISD::Hi: return "PPCISD::Hi"; 1178 case PPCISD::Lo: return "PPCISD::Lo"; 1179 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1180 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1181 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1182 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1183 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1184 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1185 case PPCISD::SRL: return "PPCISD::SRL"; 1186 case PPCISD::SRA: return "PPCISD::SRA"; 1187 case PPCISD::SHL: return "PPCISD::SHL"; 1188 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1189 case PPCISD::CALL: return "PPCISD::CALL"; 1190 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1191 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1192 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1193 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1194 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1195 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1196 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1197 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1198 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1199 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1200 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1201 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1202 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1203 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1204 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1205 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1206 case PPCISD::VCMP: return "PPCISD::VCMP"; 1207 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1208 case PPCISD::LBRX: return "PPCISD::LBRX"; 1209 case PPCISD::STBRX: return "PPCISD::STBRX"; 1210 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1211 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1212 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1213 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1214 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1215 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1216 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1217 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1218 case PPCISD::ST_VSR_SCAL_INT: 1219 return "PPCISD::ST_VSR_SCAL_INT"; 1220 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1221 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1222 case PPCISD::BDZ: return "PPCISD::BDZ"; 1223 case PPCISD::MFFS: return "PPCISD::MFFS"; 1224 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1225 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1226 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1227 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1228 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1229 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1230 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1231 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1232 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1233 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1234 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1235 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1236 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1237 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1238 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1239 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1240 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1241 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1242 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1243 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1244 case PPCISD::SC: return "PPCISD::SC"; 1245 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1246 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1247 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1248 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1249 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1250 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1251 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1252 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1253 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1254 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1255 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1256 } 1257 return nullptr; 1258 } 1259 1260 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1261 EVT VT) const { 1262 if (!VT.isVector()) 1263 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1264 1265 if (Subtarget.hasQPX()) 1266 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1267 1268 return VT.changeVectorElementTypeToInteger(); 1269 } 1270 1271 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1272 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1273 return true; 1274 } 1275 1276 //===----------------------------------------------------------------------===// 1277 // Node matching predicates, for use by the tblgen matching code. 1278 //===----------------------------------------------------------------------===// 1279 1280 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1281 static bool isFloatingPointZero(SDValue Op) { 1282 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1283 return CFP->getValueAPF().isZero(); 1284 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1285 // Maybe this has already been legalized into the constant pool? 1286 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1287 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1288 return CFP->getValueAPF().isZero(); 1289 } 1290 return false; 1291 } 1292 1293 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1294 /// true if Op is undef or if it matches the specified value. 1295 static bool isConstantOrUndef(int Op, int Val) { 1296 return Op < 0 || Op == Val; 1297 } 1298 1299 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1300 /// VPKUHUM instruction. 1301 /// The ShuffleKind distinguishes between big-endian operations with 1302 /// two different inputs (0), either-endian operations with two identical 1303 /// inputs (1), and little-endian operations with two different inputs (2). 1304 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1305 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1306 SelectionDAG &DAG) { 1307 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1308 if (ShuffleKind == 0) { 1309 if (IsLE) 1310 return false; 1311 for (unsigned i = 0; i != 16; ++i) 1312 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1313 return false; 1314 } else if (ShuffleKind == 2) { 1315 if (!IsLE) 1316 return false; 1317 for (unsigned i = 0; i != 16; ++i) 1318 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1319 return false; 1320 } else if (ShuffleKind == 1) { 1321 unsigned j = IsLE ? 0 : 1; 1322 for (unsigned i = 0; i != 8; ++i) 1323 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1324 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1325 return false; 1326 } 1327 return true; 1328 } 1329 1330 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1331 /// VPKUWUM instruction. 1332 /// The ShuffleKind distinguishes between big-endian operations with 1333 /// two different inputs (0), either-endian operations with two identical 1334 /// inputs (1), and little-endian operations with two different inputs (2). 1335 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1336 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1337 SelectionDAG &DAG) { 1338 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1339 if (ShuffleKind == 0) { 1340 if (IsLE) 1341 return false; 1342 for (unsigned i = 0; i != 16; i += 2) 1343 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1344 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1345 return false; 1346 } else if (ShuffleKind == 2) { 1347 if (!IsLE) 1348 return false; 1349 for (unsigned i = 0; i != 16; i += 2) 1350 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1351 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1352 return false; 1353 } else if (ShuffleKind == 1) { 1354 unsigned j = IsLE ? 0 : 2; 1355 for (unsigned i = 0; i != 8; i += 2) 1356 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1357 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1358 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1359 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1366 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1367 /// current subtarget. 1368 /// 1369 /// The ShuffleKind distinguishes between big-endian operations with 1370 /// two different inputs (0), either-endian operations with two identical 1371 /// inputs (1), and little-endian operations with two different inputs (2). 1372 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1373 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1374 SelectionDAG &DAG) { 1375 const PPCSubtarget& Subtarget = 1376 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1377 if (!Subtarget.hasP8Vector()) 1378 return false; 1379 1380 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1381 if (ShuffleKind == 0) { 1382 if (IsLE) 1383 return false; 1384 for (unsigned i = 0; i != 16; i += 4) 1385 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1386 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1387 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1388 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1389 return false; 1390 } else if (ShuffleKind == 2) { 1391 if (!IsLE) 1392 return false; 1393 for (unsigned i = 0; i != 16; i += 4) 1394 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1395 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1396 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1397 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1398 return false; 1399 } else if (ShuffleKind == 1) { 1400 unsigned j = IsLE ? 0 : 4; 1401 for (unsigned i = 0; i != 8; i += 4) 1402 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1403 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1404 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1405 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1406 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1407 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1408 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1409 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1410 return false; 1411 } 1412 return true; 1413 } 1414 1415 /// isVMerge - Common function, used to match vmrg* shuffles. 1416 /// 1417 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1418 unsigned LHSStart, unsigned RHSStart) { 1419 if (N->getValueType(0) != MVT::v16i8) 1420 return false; 1421 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1422 "Unsupported merge size!"); 1423 1424 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1425 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1426 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1427 LHSStart+j+i*UnitSize) || 1428 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1429 RHSStart+j+i*UnitSize)) 1430 return false; 1431 } 1432 return true; 1433 } 1434 1435 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1436 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1437 /// The ShuffleKind distinguishes between big-endian merges with two 1438 /// different inputs (0), either-endian merges with two identical inputs (1), 1439 /// and little-endian merges with two different inputs (2). For the latter, 1440 /// the input operands are swapped (see PPCInstrAltivec.td). 1441 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1442 unsigned ShuffleKind, SelectionDAG &DAG) { 1443 if (DAG.getDataLayout().isLittleEndian()) { 1444 if (ShuffleKind == 1) // unary 1445 return isVMerge(N, UnitSize, 0, 0); 1446 else if (ShuffleKind == 2) // swapped 1447 return isVMerge(N, UnitSize, 0, 16); 1448 else 1449 return false; 1450 } else { 1451 if (ShuffleKind == 1) // unary 1452 return isVMerge(N, UnitSize, 8, 8); 1453 else if (ShuffleKind == 0) // normal 1454 return isVMerge(N, UnitSize, 8, 24); 1455 else 1456 return false; 1457 } 1458 } 1459 1460 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1461 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1462 /// The ShuffleKind distinguishes between big-endian merges with two 1463 /// different inputs (0), either-endian merges with two identical inputs (1), 1464 /// and little-endian merges with two different inputs (2). For the latter, 1465 /// the input operands are swapped (see PPCInstrAltivec.td). 1466 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1467 unsigned ShuffleKind, SelectionDAG &DAG) { 1468 if (DAG.getDataLayout().isLittleEndian()) { 1469 if (ShuffleKind == 1) // unary 1470 return isVMerge(N, UnitSize, 8, 8); 1471 else if (ShuffleKind == 2) // swapped 1472 return isVMerge(N, UnitSize, 8, 24); 1473 else 1474 return false; 1475 } else { 1476 if (ShuffleKind == 1) // unary 1477 return isVMerge(N, UnitSize, 0, 0); 1478 else if (ShuffleKind == 0) // normal 1479 return isVMerge(N, UnitSize, 0, 16); 1480 else 1481 return false; 1482 } 1483 } 1484 1485 /** 1486 * Common function used to match vmrgew and vmrgow shuffles 1487 * 1488 * The indexOffset determines whether to look for even or odd words in 1489 * the shuffle mask. This is based on the of the endianness of the target 1490 * machine. 1491 * - Little Endian: 1492 * - Use offset of 0 to check for odd elements 1493 * - Use offset of 4 to check for even elements 1494 * - Big Endian: 1495 * - Use offset of 0 to check for even elements 1496 * - Use offset of 4 to check for odd elements 1497 * A detailed description of the vector element ordering for little endian and 1498 * big endian can be found at 1499 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1500 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1501 * compiler differences mean to you 1502 * 1503 * The mask to the shuffle vector instruction specifies the indices of the 1504 * elements from the two input vectors to place in the result. The elements are 1505 * numbered in array-access order, starting with the first vector. These vectors 1506 * are always of type v16i8, thus each vector will contain 16 elements of size 1507 * 8. More info on the shuffle vector can be found in the 1508 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1509 * Language Reference. 1510 * 1511 * The RHSStartValue indicates whether the same input vectors are used (unary) 1512 * or two different input vectors are used, based on the following: 1513 * - If the instruction uses the same vector for both inputs, the range of the 1514 * indices will be 0 to 15. In this case, the RHSStart value passed should 1515 * be 0. 1516 * - If the instruction has two different vectors then the range of the 1517 * indices will be 0 to 31. In this case, the RHSStart value passed should 1518 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1519 * to 31 specify elements in the second vector). 1520 * 1521 * \param[in] N The shuffle vector SD Node to analyze 1522 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1523 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1524 * vector to the shuffle_vector instruction 1525 * \return true iff this shuffle vector represents an even or odd word merge 1526 */ 1527 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1528 unsigned RHSStartValue) { 1529 if (N->getValueType(0) != MVT::v16i8) 1530 return false; 1531 1532 for (unsigned i = 0; i < 2; ++i) 1533 for (unsigned j = 0; j < 4; ++j) 1534 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1535 i*RHSStartValue+j+IndexOffset) || 1536 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1537 i*RHSStartValue+j+IndexOffset+8)) 1538 return false; 1539 return true; 1540 } 1541 1542 /** 1543 * Determine if the specified shuffle mask is suitable for the vmrgew or 1544 * vmrgow instructions. 1545 * 1546 * \param[in] N The shuffle vector SD Node to analyze 1547 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1548 * \param[in] ShuffleKind Identify the type of merge: 1549 * - 0 = big-endian merge with two different inputs; 1550 * - 1 = either-endian merge with two identical inputs; 1551 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1552 * little-endian merges). 1553 * \param[in] DAG The current SelectionDAG 1554 * \return true iff this shuffle mask 1555 */ 1556 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1557 unsigned ShuffleKind, SelectionDAG &DAG) { 1558 if (DAG.getDataLayout().isLittleEndian()) { 1559 unsigned indexOffset = CheckEven ? 4 : 0; 1560 if (ShuffleKind == 1) // Unary 1561 return isVMerge(N, indexOffset, 0); 1562 else if (ShuffleKind == 2) // swapped 1563 return isVMerge(N, indexOffset, 16); 1564 else 1565 return false; 1566 } 1567 else { 1568 unsigned indexOffset = CheckEven ? 0 : 4; 1569 if (ShuffleKind == 1) // Unary 1570 return isVMerge(N, indexOffset, 0); 1571 else if (ShuffleKind == 0) // Normal 1572 return isVMerge(N, indexOffset, 16); 1573 else 1574 return false; 1575 } 1576 return false; 1577 } 1578 1579 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1580 /// amount, otherwise return -1. 1581 /// The ShuffleKind distinguishes between big-endian operations with two 1582 /// different inputs (0), either-endian operations with two identical inputs 1583 /// (1), and little-endian operations with two different inputs (2). For the 1584 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1585 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1586 SelectionDAG &DAG) { 1587 if (N->getValueType(0) != MVT::v16i8) 1588 return -1; 1589 1590 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1591 1592 // Find the first non-undef value in the shuffle mask. 1593 unsigned i; 1594 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1595 /*search*/; 1596 1597 if (i == 16) return -1; // all undef. 1598 1599 // Otherwise, check to see if the rest of the elements are consecutively 1600 // numbered from this value. 1601 unsigned ShiftAmt = SVOp->getMaskElt(i); 1602 if (ShiftAmt < i) return -1; 1603 1604 ShiftAmt -= i; 1605 bool isLE = DAG.getDataLayout().isLittleEndian(); 1606 1607 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1608 // Check the rest of the elements to see if they are consecutive. 1609 for (++i; i != 16; ++i) 1610 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1611 return -1; 1612 } else if (ShuffleKind == 1) { 1613 // Check the rest of the elements to see if they are consecutive. 1614 for (++i; i != 16; ++i) 1615 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1616 return -1; 1617 } else 1618 return -1; 1619 1620 if (isLE) 1621 ShiftAmt = 16 - ShiftAmt; 1622 1623 return ShiftAmt; 1624 } 1625 1626 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1627 /// specifies a splat of a single element that is suitable for input to 1628 /// VSPLTB/VSPLTH/VSPLTW. 1629 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1630 assert(N->getValueType(0) == MVT::v16i8 && 1631 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1632 1633 // The consecutive indices need to specify an element, not part of two 1634 // different elements. So abandon ship early if this isn't the case. 1635 if (N->getMaskElt(0) % EltSize != 0) 1636 return false; 1637 1638 // This is a splat operation if each element of the permute is the same, and 1639 // if the value doesn't reference the second vector. 1640 unsigned ElementBase = N->getMaskElt(0); 1641 1642 // FIXME: Handle UNDEF elements too! 1643 if (ElementBase >= 16) 1644 return false; 1645 1646 // Check that the indices are consecutive, in the case of a multi-byte element 1647 // splatted with a v16i8 mask. 1648 for (unsigned i = 1; i != EltSize; ++i) 1649 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1650 return false; 1651 1652 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1653 if (N->getMaskElt(i) < 0) continue; 1654 for (unsigned j = 0; j != EltSize; ++j) 1655 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1656 return false; 1657 } 1658 return true; 1659 } 1660 1661 /// Check that the mask is shuffling N byte elements. Within each N byte 1662 /// element of the mask, the indices could be either in increasing or 1663 /// decreasing order as long as they are consecutive. 1664 /// \param[in] N the shuffle vector SD Node to analyze 1665 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1666 /// Word/DoubleWord/QuadWord). 1667 /// \param[in] StepLen the delta indices number among the N byte element, if 1668 /// the mask is in increasing/decreasing order then it is 1/-1. 1669 /// \return true iff the mask is shuffling N byte elements. 1670 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1671 int StepLen) { 1672 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1673 "Unexpected element width."); 1674 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1675 1676 unsigned NumOfElem = 16 / Width; 1677 unsigned MaskVal[16]; // Width is never greater than 16 1678 for (unsigned i = 0; i < NumOfElem; ++i) { 1679 MaskVal[0] = N->getMaskElt(i * Width); 1680 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1681 return false; 1682 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1683 return false; 1684 } 1685 1686 for (unsigned int j = 1; j < Width; ++j) { 1687 MaskVal[j] = N->getMaskElt(i * Width + j); 1688 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1689 return false; 1690 } 1691 } 1692 } 1693 1694 return true; 1695 } 1696 1697 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1698 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1699 if (!isNByteElemShuffleMask(N, 4, 1)) 1700 return false; 1701 1702 // Now we look at mask elements 0,4,8,12 1703 unsigned M0 = N->getMaskElt(0) / 4; 1704 unsigned M1 = N->getMaskElt(4) / 4; 1705 unsigned M2 = N->getMaskElt(8) / 4; 1706 unsigned M3 = N->getMaskElt(12) / 4; 1707 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1708 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1709 1710 // Below, let H and L be arbitrary elements of the shuffle mask 1711 // where H is in the range [4,7] and L is in the range [0,3]. 1712 // H, 1, 2, 3 or L, 5, 6, 7 1713 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1714 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1715 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1716 InsertAtByte = IsLE ? 12 : 0; 1717 Swap = M0 < 4; 1718 return true; 1719 } 1720 // 0, H, 2, 3 or 4, L, 6, 7 1721 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1722 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1723 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1724 InsertAtByte = IsLE ? 8 : 4; 1725 Swap = M1 < 4; 1726 return true; 1727 } 1728 // 0, 1, H, 3 or 4, 5, L, 7 1729 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1730 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1731 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1732 InsertAtByte = IsLE ? 4 : 8; 1733 Swap = M2 < 4; 1734 return true; 1735 } 1736 // 0, 1, 2, H or 4, 5, 6, L 1737 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1738 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1739 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1740 InsertAtByte = IsLE ? 0 : 12; 1741 Swap = M3 < 4; 1742 return true; 1743 } 1744 1745 // If both vector operands for the shuffle are the same vector, the mask will 1746 // contain only elements from the first one and the second one will be undef. 1747 if (N->getOperand(1).isUndef()) { 1748 ShiftElts = 0; 1749 Swap = true; 1750 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1751 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1752 InsertAtByte = IsLE ? 12 : 0; 1753 return true; 1754 } 1755 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1756 InsertAtByte = IsLE ? 8 : 4; 1757 return true; 1758 } 1759 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1760 InsertAtByte = IsLE ? 4 : 8; 1761 return true; 1762 } 1763 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1764 InsertAtByte = IsLE ? 0 : 12; 1765 return true; 1766 } 1767 } 1768 1769 return false; 1770 } 1771 1772 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1773 bool &Swap, bool IsLE) { 1774 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1775 // Ensure each byte index of the word is consecutive. 1776 if (!isNByteElemShuffleMask(N, 4, 1)) 1777 return false; 1778 1779 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 1780 unsigned M0 = N->getMaskElt(0) / 4; 1781 unsigned M1 = N->getMaskElt(4) / 4; 1782 unsigned M2 = N->getMaskElt(8) / 4; 1783 unsigned M3 = N->getMaskElt(12) / 4; 1784 1785 // If both vector operands for the shuffle are the same vector, the mask will 1786 // contain only elements from the first one and the second one will be undef. 1787 if (N->getOperand(1).isUndef()) { 1788 assert(M0 < 4 && "Indexing into an undef vector?"); 1789 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 1790 return false; 1791 1792 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 1793 Swap = false; 1794 return true; 1795 } 1796 1797 // Ensure each word index of the ShuffleVector Mask is consecutive. 1798 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 1799 return false; 1800 1801 if (IsLE) { 1802 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 1803 // Input vectors don't need to be swapped if the leading element 1804 // of the result is one of the 3 left elements of the second vector 1805 // (or if there is no shift to be done at all). 1806 Swap = false; 1807 ShiftElts = (8 - M0) % 8; 1808 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 1809 // Input vectors need to be swapped if the leading element 1810 // of the result is one of the 3 left elements of the first vector 1811 // (or if we're shifting by 4 - thereby simply swapping the vectors). 1812 Swap = true; 1813 ShiftElts = (4 - M0) % 4; 1814 } 1815 1816 return true; 1817 } else { // BE 1818 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 1819 // Input vectors don't need to be swapped if the leading element 1820 // of the result is one of the 4 elements of the first vector. 1821 Swap = false; 1822 ShiftElts = M0; 1823 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 1824 // Input vectors need to be swapped if the leading element 1825 // of the result is one of the 4 elements of the right vector. 1826 Swap = true; 1827 ShiftElts = M0 - 4; 1828 } 1829 1830 return true; 1831 } 1832 } 1833 1834 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 1835 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1836 1837 if (!isNByteElemShuffleMask(N, Width, -1)) 1838 return false; 1839 1840 for (int i = 0; i < 16; i += Width) 1841 if (N->getMaskElt(i) != i + Width - 1) 1842 return false; 1843 1844 return true; 1845 } 1846 1847 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 1848 return isXXBRShuffleMaskHelper(N, 2); 1849 } 1850 1851 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 1852 return isXXBRShuffleMaskHelper(N, 4); 1853 } 1854 1855 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 1856 return isXXBRShuffleMaskHelper(N, 8); 1857 } 1858 1859 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 1860 return isXXBRShuffleMaskHelper(N, 16); 1861 } 1862 1863 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 1864 /// if the inputs to the instruction should be swapped and set \p DM to the 1865 /// value for the immediate. 1866 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 1867 /// AND element 0 of the result comes from the first input (LE) or second input 1868 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 1869 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 1870 /// mask. 1871 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 1872 bool &Swap, bool IsLE) { 1873 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 1874 1875 // Ensure each byte index of the double word is consecutive. 1876 if (!isNByteElemShuffleMask(N, 8, 1)) 1877 return false; 1878 1879 unsigned M0 = N->getMaskElt(0) / 8; 1880 unsigned M1 = N->getMaskElt(8) / 8; 1881 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 1882 1883 // If both vector operands for the shuffle are the same vector, the mask will 1884 // contain only elements from the first one and the second one will be undef. 1885 if (N->getOperand(1).isUndef()) { 1886 if ((M0 | M1) < 2) { 1887 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 1888 Swap = false; 1889 return true; 1890 } else 1891 return false; 1892 } 1893 1894 if (IsLE) { 1895 if (M0 > 1 && M1 < 2) { 1896 Swap = false; 1897 } else if (M0 < 2 && M1 > 1) { 1898 M0 = (M0 + 2) % 4; 1899 M1 = (M1 + 2) % 4; 1900 Swap = true; 1901 } else 1902 return false; 1903 1904 // Note: if control flow comes here that means Swap is already set above 1905 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 1906 return true; 1907 } else { // BE 1908 if (M0 < 2 && M1 > 1) { 1909 Swap = false; 1910 } else if (M0 > 1 && M1 < 2) { 1911 M0 = (M0 + 2) % 4; 1912 M1 = (M1 + 2) % 4; 1913 Swap = true; 1914 } else 1915 return false; 1916 1917 // Note: if control flow comes here that means Swap is already set above 1918 DM = (M0 << 1) + (M1 & 1); 1919 return true; 1920 } 1921 } 1922 1923 1924 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1925 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1926 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1927 SelectionDAG &DAG) { 1928 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1929 assert(isSplatShuffleMask(SVOp, EltSize)); 1930 if (DAG.getDataLayout().isLittleEndian()) 1931 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1932 else 1933 return SVOp->getMaskElt(0) / EltSize; 1934 } 1935 1936 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1937 /// by using a vspltis[bhw] instruction of the specified element size, return 1938 /// the constant being splatted. The ByteSize field indicates the number of 1939 /// bytes of each element [124] -> [bhw]. 1940 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1941 SDValue OpVal(nullptr, 0); 1942 1943 // If ByteSize of the splat is bigger than the element size of the 1944 // build_vector, then we have a case where we are checking for a splat where 1945 // multiple elements of the buildvector are folded together into a single 1946 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1947 unsigned EltSize = 16/N->getNumOperands(); 1948 if (EltSize < ByteSize) { 1949 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1950 SDValue UniquedVals[4]; 1951 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1952 1953 // See if all of the elements in the buildvector agree across. 1954 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1955 if (N->getOperand(i).isUndef()) continue; 1956 // If the element isn't a constant, bail fully out. 1957 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1958 1959 if (!UniquedVals[i&(Multiple-1)].getNode()) 1960 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1961 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1962 return SDValue(); // no match. 1963 } 1964 1965 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1966 // either constant or undef values that are identical for each chunk. See 1967 // if these chunks can form into a larger vspltis*. 1968 1969 // Check to see if all of the leading entries are either 0 or -1. If 1970 // neither, then this won't fit into the immediate field. 1971 bool LeadingZero = true; 1972 bool LeadingOnes = true; 1973 for (unsigned i = 0; i != Multiple-1; ++i) { 1974 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1975 1976 LeadingZero &= isNullConstant(UniquedVals[i]); 1977 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1978 } 1979 // Finally, check the least significant entry. 1980 if (LeadingZero) { 1981 if (!UniquedVals[Multiple-1].getNode()) 1982 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1983 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1984 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1985 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1986 } 1987 if (LeadingOnes) { 1988 if (!UniquedVals[Multiple-1].getNode()) 1989 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1990 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1991 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1992 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1993 } 1994 1995 return SDValue(); 1996 } 1997 1998 // Check to see if this buildvec has a single non-undef value in its elements. 1999 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2000 if (N->getOperand(i).isUndef()) continue; 2001 if (!OpVal.getNode()) 2002 OpVal = N->getOperand(i); 2003 else if (OpVal != N->getOperand(i)) 2004 return SDValue(); 2005 } 2006 2007 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2008 2009 unsigned ValSizeInBytes = EltSize; 2010 uint64_t Value = 0; 2011 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2012 Value = CN->getZExtValue(); 2013 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2014 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2015 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2016 } 2017 2018 // If the splat value is larger than the element value, then we can never do 2019 // this splat. The only case that we could fit the replicated bits into our 2020 // immediate field for would be zero, and we prefer to use vxor for it. 2021 if (ValSizeInBytes < ByteSize) return SDValue(); 2022 2023 // If the element value is larger than the splat value, check if it consists 2024 // of a repeated bit pattern of size ByteSize. 2025 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2026 return SDValue(); 2027 2028 // Properly sign extend the value. 2029 int MaskVal = SignExtend32(Value, ByteSize * 8); 2030 2031 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2032 if (MaskVal == 0) return SDValue(); 2033 2034 // Finally, if this value fits in a 5 bit sext field, return it 2035 if (SignExtend32<5>(MaskVal) == MaskVal) 2036 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2037 return SDValue(); 2038 } 2039 2040 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2041 /// amount, otherwise return -1. 2042 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2043 EVT VT = N->getValueType(0); 2044 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2045 return -1; 2046 2047 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2048 2049 // Find the first non-undef value in the shuffle mask. 2050 unsigned i; 2051 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2052 /*search*/; 2053 2054 if (i == 4) return -1; // all undef. 2055 2056 // Otherwise, check to see if the rest of the elements are consecutively 2057 // numbered from this value. 2058 unsigned ShiftAmt = SVOp->getMaskElt(i); 2059 if (ShiftAmt < i) return -1; 2060 ShiftAmt -= i; 2061 2062 // Check the rest of the elements to see if they are consecutive. 2063 for (++i; i != 4; ++i) 2064 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2065 return -1; 2066 2067 return ShiftAmt; 2068 } 2069 2070 //===----------------------------------------------------------------------===// 2071 // Addressing Mode Selection 2072 //===----------------------------------------------------------------------===// 2073 2074 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2075 /// or 64-bit immediate, and if the value can be accurately represented as a 2076 /// sign extension from a 16-bit value. If so, this returns true and the 2077 /// immediate. 2078 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2079 if (!isa<ConstantSDNode>(N)) 2080 return false; 2081 2082 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2083 if (N->getValueType(0) == MVT::i32) 2084 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2085 else 2086 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2087 } 2088 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2089 return isIntS16Immediate(Op.getNode(), Imm); 2090 } 2091 2092 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2093 /// can be represented as an indexed [r+r] operation. Returns false if it 2094 /// can be more efficiently represented with [r+imm]. 2095 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2096 SDValue &Index, 2097 SelectionDAG &DAG) const { 2098 int16_t imm = 0; 2099 if (N.getOpcode() == ISD::ADD) { 2100 if (isIntS16Immediate(N.getOperand(1), imm)) 2101 return false; // r+i 2102 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2103 return false; // r+i 2104 2105 Base = N.getOperand(0); 2106 Index = N.getOperand(1); 2107 return true; 2108 } else if (N.getOpcode() == ISD::OR) { 2109 if (isIntS16Immediate(N.getOperand(1), imm)) 2110 return false; // r+i can fold it if we can. 2111 2112 // If this is an or of disjoint bitfields, we can codegen this as an add 2113 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2114 // disjoint. 2115 KnownBits LHSKnown, RHSKnown; 2116 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2117 2118 if (LHSKnown.Zero.getBoolValue()) { 2119 DAG.computeKnownBits(N.getOperand(1), RHSKnown); 2120 // If all of the bits are known zero on the LHS or RHS, the add won't 2121 // carry. 2122 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2123 Base = N.getOperand(0); 2124 Index = N.getOperand(1); 2125 return true; 2126 } 2127 } 2128 } 2129 2130 return false; 2131 } 2132 2133 // If we happen to be doing an i64 load or store into a stack slot that has 2134 // less than a 4-byte alignment, then the frame-index elimination may need to 2135 // use an indexed load or store instruction (because the offset may not be a 2136 // multiple of 4). The extra register needed to hold the offset comes from the 2137 // register scavenger, and it is possible that the scavenger will need to use 2138 // an emergency spill slot. As a result, we need to make sure that a spill slot 2139 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2140 // stack slot. 2141 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2142 // FIXME: This does not handle the LWA case. 2143 if (VT != MVT::i64) 2144 return; 2145 2146 // NOTE: We'll exclude negative FIs here, which come from argument 2147 // lowering, because there are no known test cases triggering this problem 2148 // using packed structures (or similar). We can remove this exclusion if 2149 // we find such a test case. The reason why this is so test-case driven is 2150 // because this entire 'fixup' is only to prevent crashes (from the 2151 // register scavenger) on not-really-valid inputs. For example, if we have: 2152 // %a = alloca i1 2153 // %b = bitcast i1* %a to i64* 2154 // store i64* a, i64 b 2155 // then the store should really be marked as 'align 1', but is not. If it 2156 // were marked as 'align 1' then the indexed form would have been 2157 // instruction-selected initially, and the problem this 'fixup' is preventing 2158 // won't happen regardless. 2159 if (FrameIdx < 0) 2160 return; 2161 2162 MachineFunction &MF = DAG.getMachineFunction(); 2163 MachineFrameInfo &MFI = MF.getFrameInfo(); 2164 2165 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2166 if (Align >= 4) 2167 return; 2168 2169 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2170 FuncInfo->setHasNonRISpills(); 2171 } 2172 2173 /// Returns true if the address N can be represented by a base register plus 2174 /// a signed 16-bit displacement [r+imm], and if it is not better 2175 /// represented as reg+reg. If \p Alignment is non-zero, only accept 2176 /// displacements that are multiples of that value. 2177 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2178 SDValue &Base, 2179 SelectionDAG &DAG, 2180 unsigned Alignment) const { 2181 // FIXME dl should come from parent load or store, not from address 2182 SDLoc dl(N); 2183 // If this can be more profitably realized as r+r, fail. 2184 if (SelectAddressRegReg(N, Disp, Base, DAG)) 2185 return false; 2186 2187 if (N.getOpcode() == ISD::ADD) { 2188 int16_t imm = 0; 2189 if (isIntS16Immediate(N.getOperand(1), imm) && 2190 (!Alignment || (imm % Alignment) == 0)) { 2191 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2192 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2193 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2194 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2195 } else { 2196 Base = N.getOperand(0); 2197 } 2198 return true; // [r+i] 2199 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2200 // Match LOAD (ADD (X, Lo(G))). 2201 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2202 && "Cannot handle constant offsets yet!"); 2203 Disp = N.getOperand(1).getOperand(0); // The global address. 2204 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2205 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2206 Disp.getOpcode() == ISD::TargetConstantPool || 2207 Disp.getOpcode() == ISD::TargetJumpTable); 2208 Base = N.getOperand(0); 2209 return true; // [&g+r] 2210 } 2211 } else if (N.getOpcode() == ISD::OR) { 2212 int16_t imm = 0; 2213 if (isIntS16Immediate(N.getOperand(1), imm) && 2214 (!Alignment || (imm % Alignment) == 0)) { 2215 // If this is an or of disjoint bitfields, we can codegen this as an add 2216 // (for better address arithmetic) if the LHS and RHS of the OR are 2217 // provably disjoint. 2218 KnownBits LHSKnown; 2219 DAG.computeKnownBits(N.getOperand(0), LHSKnown); 2220 2221 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2222 // If all of the bits are known zero on the LHS or RHS, the add won't 2223 // carry. 2224 if (FrameIndexSDNode *FI = 2225 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2226 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2227 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2228 } else { 2229 Base = N.getOperand(0); 2230 } 2231 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2232 return true; 2233 } 2234 } 2235 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2236 // Loading from a constant address. 2237 2238 // If this address fits entirely in a 16-bit sext immediate field, codegen 2239 // this as "d, 0" 2240 int16_t Imm; 2241 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) { 2242 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2243 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2244 CN->getValueType(0)); 2245 return true; 2246 } 2247 2248 // Handle 32-bit sext immediates with LIS + addr mode. 2249 if ((CN->getValueType(0) == MVT::i32 || 2250 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2251 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) { 2252 int Addr = (int)CN->getZExtValue(); 2253 2254 // Otherwise, break this down into an LIS + disp. 2255 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2256 2257 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2258 MVT::i32); 2259 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2260 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2261 return true; 2262 } 2263 } 2264 2265 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2266 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2267 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2268 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2269 } else 2270 Base = N; 2271 return true; // [r+0] 2272 } 2273 2274 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2275 /// represented as an indexed [r+r] operation. 2276 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2277 SDValue &Index, 2278 SelectionDAG &DAG) const { 2279 // Check to see if we can easily represent this as an [r+r] address. This 2280 // will fail if it thinks that the address is more profitably represented as 2281 // reg+imm, e.g. where imm = 0. 2282 if (SelectAddressRegReg(N, Base, Index, DAG)) 2283 return true; 2284 2285 // If the address is the result of an add, we will utilize the fact that the 2286 // address calculation includes an implicit add. However, we can reduce 2287 // register pressure if we do not materialize a constant just for use as the 2288 // index register. We only get rid of the add if it is not an add of a 2289 // value and a 16-bit signed constant and both have a single use. 2290 int16_t imm = 0; 2291 if (N.getOpcode() == ISD::ADD && 2292 (!isIntS16Immediate(N.getOperand(1), imm) || 2293 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2294 Base = N.getOperand(0); 2295 Index = N.getOperand(1); 2296 return true; 2297 } 2298 2299 // Otherwise, do it the hard way, using R0 as the base register. 2300 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2301 N.getValueType()); 2302 Index = N; 2303 return true; 2304 } 2305 2306 /// getPreIndexedAddressParts - returns true by value, base pointer and 2307 /// offset pointer and addressing mode by reference if the node's address 2308 /// can be legally represented as pre-indexed load / store address. 2309 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2310 SDValue &Offset, 2311 ISD::MemIndexedMode &AM, 2312 SelectionDAG &DAG) const { 2313 if (DisablePPCPreinc) return false; 2314 2315 bool isLoad = true; 2316 SDValue Ptr; 2317 EVT VT; 2318 unsigned Alignment; 2319 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2320 Ptr = LD->getBasePtr(); 2321 VT = LD->getMemoryVT(); 2322 Alignment = LD->getAlignment(); 2323 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2324 Ptr = ST->getBasePtr(); 2325 VT = ST->getMemoryVT(); 2326 Alignment = ST->getAlignment(); 2327 isLoad = false; 2328 } else 2329 return false; 2330 2331 // PowerPC doesn't have preinc load/store instructions for vectors (except 2332 // for QPX, which does have preinc r+r forms). 2333 if (VT.isVector()) { 2334 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2335 return false; 2336 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2337 AM = ISD::PRE_INC; 2338 return true; 2339 } 2340 } 2341 2342 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2343 // Common code will reject creating a pre-inc form if the base pointer 2344 // is a frame index, or if N is a store and the base pointer is either 2345 // the same as or a predecessor of the value being stored. Check for 2346 // those situations here, and try with swapped Base/Offset instead. 2347 bool Swap = false; 2348 2349 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2350 Swap = true; 2351 else if (!isLoad) { 2352 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2353 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2354 Swap = true; 2355 } 2356 2357 if (Swap) 2358 std::swap(Base, Offset); 2359 2360 AM = ISD::PRE_INC; 2361 return true; 2362 } 2363 2364 // LDU/STU can only handle immediates that are a multiple of 4. 2365 if (VT != MVT::i64) { 2366 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2367 return false; 2368 } else { 2369 // LDU/STU need an address with at least 4-byte alignment. 2370 if (Alignment < 4) 2371 return false; 2372 2373 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2374 return false; 2375 } 2376 2377 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2378 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2379 // sext i32 to i64 when addr mode is r+i. 2380 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2381 LD->getExtensionType() == ISD::SEXTLOAD && 2382 isa<ConstantSDNode>(Offset)) 2383 return false; 2384 } 2385 2386 AM = ISD::PRE_INC; 2387 return true; 2388 } 2389 2390 //===----------------------------------------------------------------------===// 2391 // LowerOperation implementation 2392 //===----------------------------------------------------------------------===// 2393 2394 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2395 /// and LoOpFlags to the target MO flags. 2396 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2397 unsigned &HiOpFlags, unsigned &LoOpFlags, 2398 const GlobalValue *GV = nullptr) { 2399 HiOpFlags = PPCII::MO_HA; 2400 LoOpFlags = PPCII::MO_LO; 2401 2402 // Don't use the pic base if not in PIC relocation model. 2403 if (IsPIC) { 2404 HiOpFlags |= PPCII::MO_PIC_FLAG; 2405 LoOpFlags |= PPCII::MO_PIC_FLAG; 2406 } 2407 2408 // If this is a reference to a global value that requires a non-lazy-ptr, make 2409 // sure that instruction lowering adds it. 2410 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2411 HiOpFlags |= PPCII::MO_NLP_FLAG; 2412 LoOpFlags |= PPCII::MO_NLP_FLAG; 2413 2414 if (GV->hasHiddenVisibility()) { 2415 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2416 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2417 } 2418 } 2419 } 2420 2421 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2422 SelectionDAG &DAG) { 2423 SDLoc DL(HiPart); 2424 EVT PtrVT = HiPart.getValueType(); 2425 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2426 2427 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2428 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2429 2430 // With PIC, the first instruction is actually "GR+hi(&G)". 2431 if (isPIC) 2432 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2433 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2434 2435 // Generate non-pic code that has direct accesses to the constant pool. 2436 // The address of the global is just (hi(&g)+lo(&g)). 2437 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2438 } 2439 2440 static void setUsesTOCBasePtr(MachineFunction &MF) { 2441 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2442 FuncInfo->setUsesTOCBasePtr(); 2443 } 2444 2445 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2446 setUsesTOCBasePtr(DAG.getMachineFunction()); 2447 } 2448 2449 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2450 SDValue GA) { 2451 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2452 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2453 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2454 2455 SDValue Ops[] = { GA, Reg }; 2456 return DAG.getMemIntrinsicNode( 2457 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2458 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2459 MachineMemOperand::MOLoad); 2460 } 2461 2462 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2463 SelectionDAG &DAG) const { 2464 EVT PtrVT = Op.getValueType(); 2465 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2466 const Constant *C = CP->getConstVal(); 2467 2468 // 64-bit SVR4 ABI code is always position-independent. 2469 // The actual address of the GlobalValue is stored in the TOC. 2470 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2471 setUsesTOCBasePtr(DAG); 2472 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2473 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2474 } 2475 2476 unsigned MOHiFlag, MOLoFlag; 2477 bool IsPIC = isPositionIndependent(); 2478 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2479 2480 if (IsPIC && Subtarget.isSVR4ABI()) { 2481 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2482 PPCII::MO_PIC_FLAG); 2483 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2484 } 2485 2486 SDValue CPIHi = 2487 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2488 SDValue CPILo = 2489 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2490 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2491 } 2492 2493 // For 64-bit PowerPC, prefer the more compact relative encodings. 2494 // This trades 32 bits per jump table entry for one or two instructions 2495 // on the jump site. 2496 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2497 if (isJumpTableRelative()) 2498 return MachineJumpTableInfo::EK_LabelDifference32; 2499 2500 return TargetLowering::getJumpTableEncoding(); 2501 } 2502 2503 bool PPCTargetLowering::isJumpTableRelative() const { 2504 if (Subtarget.isPPC64()) 2505 return true; 2506 return TargetLowering::isJumpTableRelative(); 2507 } 2508 2509 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2510 SelectionDAG &DAG) const { 2511 if (!Subtarget.isPPC64()) 2512 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2513 2514 switch (getTargetMachine().getCodeModel()) { 2515 case CodeModel::Small: 2516 case CodeModel::Medium: 2517 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2518 default: 2519 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2520 getPointerTy(DAG.getDataLayout())); 2521 } 2522 } 2523 2524 const MCExpr * 2525 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2526 unsigned JTI, 2527 MCContext &Ctx) const { 2528 if (!Subtarget.isPPC64()) 2529 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2530 2531 switch (getTargetMachine().getCodeModel()) { 2532 case CodeModel::Small: 2533 case CodeModel::Medium: 2534 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2535 default: 2536 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2537 } 2538 } 2539 2540 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2541 EVT PtrVT = Op.getValueType(); 2542 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2543 2544 // 64-bit SVR4 ABI code is always position-independent. 2545 // The actual address of the GlobalValue is stored in the TOC. 2546 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2547 setUsesTOCBasePtr(DAG); 2548 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2549 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2550 } 2551 2552 unsigned MOHiFlag, MOLoFlag; 2553 bool IsPIC = isPositionIndependent(); 2554 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2555 2556 if (IsPIC && Subtarget.isSVR4ABI()) { 2557 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2558 PPCII::MO_PIC_FLAG); 2559 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2560 } 2561 2562 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2563 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2564 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2565 } 2566 2567 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2568 SelectionDAG &DAG) const { 2569 EVT PtrVT = Op.getValueType(); 2570 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2571 const BlockAddress *BA = BASDN->getBlockAddress(); 2572 2573 // 64-bit SVR4 ABI code is always position-independent. 2574 // The actual BlockAddress is stored in the TOC. 2575 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2576 setUsesTOCBasePtr(DAG); 2577 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2578 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2579 } 2580 2581 unsigned MOHiFlag, MOLoFlag; 2582 bool IsPIC = isPositionIndependent(); 2583 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2584 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2585 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2586 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2587 } 2588 2589 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2590 SelectionDAG &DAG) const { 2591 // FIXME: TLS addresses currently use medium model code sequences, 2592 // which is the most useful form. Eventually support for small and 2593 // large models could be added if users need it, at the cost of 2594 // additional complexity. 2595 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2596 if (DAG.getTarget().useEmulatedTLS()) 2597 return LowerToTLSEmulatedModel(GA, DAG); 2598 2599 SDLoc dl(GA); 2600 const GlobalValue *GV = GA->getGlobal(); 2601 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2602 bool is64bit = Subtarget.isPPC64(); 2603 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2604 PICLevel::Level picLevel = M->getPICLevel(); 2605 2606 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2607 2608 if (Model == TLSModel::LocalExec) { 2609 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2610 PPCII::MO_TPREL_HA); 2611 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2612 PPCII::MO_TPREL_LO); 2613 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2614 : DAG.getRegister(PPC::R2, MVT::i32); 2615 2616 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2617 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2618 } 2619 2620 if (Model == TLSModel::InitialExec) { 2621 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2622 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2623 PPCII::MO_TLS); 2624 SDValue GOTPtr; 2625 if (is64bit) { 2626 setUsesTOCBasePtr(DAG); 2627 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2628 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2629 PtrVT, GOTReg, TGA); 2630 } else 2631 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2632 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2633 PtrVT, TGA, GOTPtr); 2634 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2635 } 2636 2637 if (Model == TLSModel::GeneralDynamic) { 2638 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2639 SDValue GOTPtr; 2640 if (is64bit) { 2641 setUsesTOCBasePtr(DAG); 2642 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2643 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2644 GOTReg, TGA); 2645 } else { 2646 if (picLevel == PICLevel::SmallPIC) 2647 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2648 else 2649 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2650 } 2651 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2652 GOTPtr, TGA, TGA); 2653 } 2654 2655 if (Model == TLSModel::LocalDynamic) { 2656 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2657 SDValue GOTPtr; 2658 if (is64bit) { 2659 setUsesTOCBasePtr(DAG); 2660 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2661 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2662 GOTReg, TGA); 2663 } else { 2664 if (picLevel == PICLevel::SmallPIC) 2665 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2666 else 2667 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2668 } 2669 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2670 PtrVT, GOTPtr, TGA, TGA); 2671 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2672 PtrVT, TLSAddr, TGA); 2673 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2674 } 2675 2676 llvm_unreachable("Unknown TLS model!"); 2677 } 2678 2679 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2680 SelectionDAG &DAG) const { 2681 EVT PtrVT = Op.getValueType(); 2682 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2683 SDLoc DL(GSDN); 2684 const GlobalValue *GV = GSDN->getGlobal(); 2685 2686 // 64-bit SVR4 ABI code is always position-independent. 2687 // The actual address of the GlobalValue is stored in the TOC. 2688 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2689 setUsesTOCBasePtr(DAG); 2690 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2691 return getTOCEntry(DAG, DL, true, GA); 2692 } 2693 2694 unsigned MOHiFlag, MOLoFlag; 2695 bool IsPIC = isPositionIndependent(); 2696 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 2697 2698 if (IsPIC && Subtarget.isSVR4ABI()) { 2699 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2700 GSDN->getOffset(), 2701 PPCII::MO_PIC_FLAG); 2702 return getTOCEntry(DAG, DL, false, GA); 2703 } 2704 2705 SDValue GAHi = 2706 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2707 SDValue GALo = 2708 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2709 2710 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 2711 2712 // If the global reference is actually to a non-lazy-pointer, we have to do an 2713 // extra load to get the address of the global. 2714 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2715 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2716 return Ptr; 2717 } 2718 2719 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2720 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2721 SDLoc dl(Op); 2722 2723 if (Op.getValueType() == MVT::v2i64) { 2724 // When the operands themselves are v2i64 values, we need to do something 2725 // special because VSX has no underlying comparison operations for these. 2726 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2727 // Equality can be handled by casting to the legal type for Altivec 2728 // comparisons, everything else needs to be expanded. 2729 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2730 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2731 DAG.getSetCC(dl, MVT::v4i32, 2732 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2733 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2734 CC)); 2735 } 2736 2737 return SDValue(); 2738 } 2739 2740 // We handle most of these in the usual way. 2741 return Op; 2742 } 2743 2744 // If we're comparing for equality to zero, expose the fact that this is 2745 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 2746 // fold the new nodes. 2747 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 2748 return V; 2749 2750 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2751 // Leave comparisons against 0 and -1 alone for now, since they're usually 2752 // optimized. FIXME: revisit this when we can custom lower all setcc 2753 // optimizations. 2754 if (C->isAllOnesValue() || C->isNullValue()) 2755 return SDValue(); 2756 } 2757 2758 // If we have an integer seteq/setne, turn it into a compare against zero 2759 // by xor'ing the rhs with the lhs, which is faster than setting a 2760 // condition register, reading it back out, and masking the correct bit. The 2761 // normal approach here uses sub to do this instead of xor. Using xor exposes 2762 // the result to other bit-twiddling opportunities. 2763 EVT LHSVT = Op.getOperand(0).getValueType(); 2764 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2765 EVT VT = Op.getValueType(); 2766 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2767 Op.getOperand(1)); 2768 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2769 } 2770 return SDValue(); 2771 } 2772 2773 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 2774 SDNode *Node = Op.getNode(); 2775 EVT VT = Node->getValueType(0); 2776 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2777 SDValue InChain = Node->getOperand(0); 2778 SDValue VAListPtr = Node->getOperand(1); 2779 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2780 SDLoc dl(Node); 2781 2782 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2783 2784 // gpr_index 2785 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2786 VAListPtr, MachinePointerInfo(SV), MVT::i8); 2787 InChain = GprIndex.getValue(1); 2788 2789 if (VT == MVT::i64) { 2790 // Check if GprIndex is even 2791 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2792 DAG.getConstant(1, dl, MVT::i32)); 2793 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2794 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2795 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2796 DAG.getConstant(1, dl, MVT::i32)); 2797 // Align GprIndex to be even if it isn't 2798 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2799 GprIndex); 2800 } 2801 2802 // fpr index is 1 byte after gpr 2803 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2804 DAG.getConstant(1, dl, MVT::i32)); 2805 2806 // fpr 2807 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2808 FprPtr, MachinePointerInfo(SV), MVT::i8); 2809 InChain = FprIndex.getValue(1); 2810 2811 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2812 DAG.getConstant(8, dl, MVT::i32)); 2813 2814 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2815 DAG.getConstant(4, dl, MVT::i32)); 2816 2817 // areas 2818 SDValue OverflowArea = 2819 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 2820 InChain = OverflowArea.getValue(1); 2821 2822 SDValue RegSaveArea = 2823 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 2824 InChain = RegSaveArea.getValue(1); 2825 2826 // select overflow_area if index > 8 2827 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2828 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2829 2830 // adjustment constant gpr_index * 4/8 2831 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2832 VT.isInteger() ? GprIndex : FprIndex, 2833 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2834 MVT::i32)); 2835 2836 // OurReg = RegSaveArea + RegConstant 2837 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2838 RegConstant); 2839 2840 // Floating types are 32 bytes into RegSaveArea 2841 if (VT.isFloatingPoint()) 2842 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2843 DAG.getConstant(32, dl, MVT::i32)); 2844 2845 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2846 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2847 VT.isInteger() ? GprIndex : FprIndex, 2848 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2849 MVT::i32)); 2850 2851 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2852 VT.isInteger() ? VAListPtr : FprPtr, 2853 MachinePointerInfo(SV), MVT::i8); 2854 2855 // determine if we should load from reg_save_area or overflow_area 2856 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2857 2858 // increase overflow_area by 4/8 if gpr/fpr > 8 2859 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2860 DAG.getConstant(VT.isInteger() ? 4 : 8, 2861 dl, MVT::i32)); 2862 2863 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2864 OverflowAreaPlusN); 2865 2866 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 2867 MachinePointerInfo(), MVT::i32); 2868 2869 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 2870 } 2871 2872 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 2873 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2874 2875 // We have to copy the entire va_list struct: 2876 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2877 return DAG.getMemcpy(Op.getOperand(0), Op, 2878 Op.getOperand(1), Op.getOperand(2), 2879 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2880 false, MachinePointerInfo(), MachinePointerInfo()); 2881 } 2882 2883 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2884 SelectionDAG &DAG) const { 2885 return Op.getOperand(0); 2886 } 2887 2888 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2889 SelectionDAG &DAG) const { 2890 SDValue Chain = Op.getOperand(0); 2891 SDValue Trmp = Op.getOperand(1); // trampoline 2892 SDValue FPtr = Op.getOperand(2); // nested function 2893 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2894 SDLoc dl(Op); 2895 2896 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2897 bool isPPC64 = (PtrVT == MVT::i64); 2898 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2899 2900 TargetLowering::ArgListTy Args; 2901 TargetLowering::ArgListEntry Entry; 2902 2903 Entry.Ty = IntPtrTy; 2904 Entry.Node = Trmp; Args.push_back(Entry); 2905 2906 // TrampSize == (isPPC64 ? 48 : 40); 2907 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2908 isPPC64 ? MVT::i64 : MVT::i32); 2909 Args.push_back(Entry); 2910 2911 Entry.Node = FPtr; Args.push_back(Entry); 2912 Entry.Node = Nest; Args.push_back(Entry); 2913 2914 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2915 TargetLowering::CallLoweringInfo CLI(DAG); 2916 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 2917 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2918 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 2919 2920 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2921 return CallResult.second; 2922 } 2923 2924 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2925 MachineFunction &MF = DAG.getMachineFunction(); 2926 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2927 EVT PtrVT = getPointerTy(MF.getDataLayout()); 2928 2929 SDLoc dl(Op); 2930 2931 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2932 // vastart just stores the address of the VarArgsFrameIndex slot into the 2933 // memory location argument. 2934 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2935 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2936 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2937 MachinePointerInfo(SV)); 2938 } 2939 2940 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2941 // We suppose the given va_list is already allocated. 2942 // 2943 // typedef struct { 2944 // char gpr; /* index into the array of 8 GPRs 2945 // * stored in the register save area 2946 // * gpr=0 corresponds to r3, 2947 // * gpr=1 to r4, etc. 2948 // */ 2949 // char fpr; /* index into the array of 8 FPRs 2950 // * stored in the register save area 2951 // * fpr=0 corresponds to f1, 2952 // * fpr=1 to f2, etc. 2953 // */ 2954 // char *overflow_arg_area; 2955 // /* location on stack that holds 2956 // * the next overflow argument 2957 // */ 2958 // char *reg_save_area; 2959 // /* where r3:r10 and f1:f8 (if saved) 2960 // * are stored 2961 // */ 2962 // } va_list[1]; 2963 2964 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2965 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2966 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2967 PtrVT); 2968 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2969 PtrVT); 2970 2971 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2972 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2973 2974 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2975 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2976 2977 uint64_t FPROffset = 1; 2978 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2979 2980 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2981 2982 // Store first byte : number of int regs 2983 SDValue firstStore = 2984 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 2985 MachinePointerInfo(SV), MVT::i8); 2986 uint64_t nextOffset = FPROffset; 2987 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2988 ConstFPROffset); 2989 2990 // Store second byte : number of float regs 2991 SDValue secondStore = 2992 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2993 MachinePointerInfo(SV, nextOffset), MVT::i8); 2994 nextOffset += StackOffset; 2995 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2996 2997 // Store second word : arguments given on stack 2998 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2999 MachinePointerInfo(SV, nextOffset)); 3000 nextOffset += FrameOffset; 3001 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3002 3003 // Store third word : arguments given in registers 3004 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3005 MachinePointerInfo(SV, nextOffset)); 3006 } 3007 3008 #include "PPCGenCallingConv.inc" 3009 3010 // Function whose sole purpose is to kill compiler warnings 3011 // stemming from unused functions included from PPCGenCallingConv.inc. 3012 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 3013 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 3014 } 3015 3016 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 3017 CCValAssign::LocInfo &LocInfo, 3018 ISD::ArgFlagsTy &ArgFlags, 3019 CCState &State) { 3020 return true; 3021 } 3022 3023 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 3024 MVT &LocVT, 3025 CCValAssign::LocInfo &LocInfo, 3026 ISD::ArgFlagsTy &ArgFlags, 3027 CCState &State) { 3028 static const MCPhysReg ArgRegs[] = { 3029 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3030 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3031 }; 3032 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3033 3034 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3035 3036 // Skip one register if the first unallocated register has an even register 3037 // number and there are still argument registers available which have not been 3038 // allocated yet. RegNum is actually an index into ArgRegs, which means we 3039 // need to skip a register if RegNum is odd. 3040 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 3041 State.AllocateReg(ArgRegs[RegNum]); 3042 } 3043 3044 // Always return false here, as this function only makes sure that the first 3045 // unallocated register has an odd register number and does not actually 3046 // allocate a register for the current argument. 3047 return false; 3048 } 3049 3050 bool 3051 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, 3052 MVT &LocVT, 3053 CCValAssign::LocInfo &LocInfo, 3054 ISD::ArgFlagsTy &ArgFlags, 3055 CCState &State) { 3056 static const MCPhysReg ArgRegs[] = { 3057 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3058 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3059 }; 3060 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3061 3062 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3063 int RegsLeft = NumArgRegs - RegNum; 3064 3065 // Skip if there is not enough registers left for long double type (4 gpr regs 3066 // in soft float mode) and put long double argument on the stack. 3067 if (RegNum != NumArgRegs && RegsLeft < 4) { 3068 for (int i = 0; i < RegsLeft; i++) { 3069 State.AllocateReg(ArgRegs[RegNum + i]); 3070 } 3071 } 3072 3073 return false; 3074 } 3075 3076 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 3077 MVT &LocVT, 3078 CCValAssign::LocInfo &LocInfo, 3079 ISD::ArgFlagsTy &ArgFlags, 3080 CCState &State) { 3081 static const MCPhysReg ArgRegs[] = { 3082 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3083 PPC::F8 3084 }; 3085 3086 const unsigned NumArgRegs = array_lengthof(ArgRegs); 3087 3088 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 3089 3090 // If there is only one Floating-point register left we need to put both f64 3091 // values of a split ppc_fp128 value on the stack. 3092 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 3093 State.AllocateReg(ArgRegs[RegNum]); 3094 } 3095 3096 // Always return false here, as this function only makes sure that the two f64 3097 // values a ppc_fp128 value is split into are both passed in registers or both 3098 // passed on the stack and does not actually allocate a register for the 3099 // current argument. 3100 return false; 3101 } 3102 3103 /// FPR - The set of FP registers that should be allocated for arguments, 3104 /// on Darwin. 3105 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3106 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3107 PPC::F11, PPC::F12, PPC::F13}; 3108 3109 /// QFPR - The set of QPX registers that should be allocated for arguments. 3110 static const MCPhysReg QFPR[] = { 3111 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3112 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3113 3114 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3115 /// the stack. 3116 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3117 unsigned PtrByteSize) { 3118 unsigned ArgSize = ArgVT.getStoreSize(); 3119 if (Flags.isByVal()) 3120 ArgSize = Flags.getByValSize(); 3121 3122 // Round up to multiples of the pointer size, except for array members, 3123 // which are always packed. 3124 if (!Flags.isInConsecutiveRegs()) 3125 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3126 3127 return ArgSize; 3128 } 3129 3130 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3131 /// on the stack. 3132 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3133 ISD::ArgFlagsTy Flags, 3134 unsigned PtrByteSize) { 3135 unsigned Align = PtrByteSize; 3136 3137 // Altivec parameters are padded to a 16 byte boundary. 3138 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3139 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3140 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3141 ArgVT == MVT::v1i128) 3142 Align = 16; 3143 // QPX vector types stored in double-precision are padded to a 32 byte 3144 // boundary. 3145 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3146 Align = 32; 3147 3148 // ByVal parameters are aligned as requested. 3149 if (Flags.isByVal()) { 3150 unsigned BVAlign = Flags.getByValAlign(); 3151 if (BVAlign > PtrByteSize) { 3152 if (BVAlign % PtrByteSize != 0) 3153 llvm_unreachable( 3154 "ByVal alignment is not a multiple of the pointer size"); 3155 3156 Align = BVAlign; 3157 } 3158 } 3159 3160 // Array members are always packed to their original alignment. 3161 if (Flags.isInConsecutiveRegs()) { 3162 // If the array member was split into multiple registers, the first 3163 // needs to be aligned to the size of the full type. (Except for 3164 // ppcf128, which is only aligned as its f64 components.) 3165 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3166 Align = OrigVT.getStoreSize(); 3167 else 3168 Align = ArgVT.getStoreSize(); 3169 } 3170 3171 return Align; 3172 } 3173 3174 /// CalculateStackSlotUsed - Return whether this argument will use its 3175 /// stack slot (instead of being passed in registers). ArgOffset, 3176 /// AvailableFPRs, and AvailableVRs must hold the current argument 3177 /// position, and will be updated to account for this argument. 3178 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3179 ISD::ArgFlagsTy Flags, 3180 unsigned PtrByteSize, 3181 unsigned LinkageSize, 3182 unsigned ParamAreaSize, 3183 unsigned &ArgOffset, 3184 unsigned &AvailableFPRs, 3185 unsigned &AvailableVRs, bool HasQPX) { 3186 bool UseMemory = false; 3187 3188 // Respect alignment of argument on the stack. 3189 unsigned Align = 3190 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3191 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3192 // If there's no space left in the argument save area, we must 3193 // use memory (this check also catches zero-sized arguments). 3194 if (ArgOffset >= LinkageSize + ParamAreaSize) 3195 UseMemory = true; 3196 3197 // Allocate argument on the stack. 3198 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3199 if (Flags.isInConsecutiveRegsLast()) 3200 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3201 // If we overran the argument save area, we must use memory 3202 // (this check catches arguments passed partially in memory) 3203 if (ArgOffset > LinkageSize + ParamAreaSize) 3204 UseMemory = true; 3205 3206 // However, if the argument is actually passed in an FPR or a VR, 3207 // we don't use memory after all. 3208 if (!Flags.isByVal()) { 3209 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3210 // QPX registers overlap with the scalar FP registers. 3211 (HasQPX && (ArgVT == MVT::v4f32 || 3212 ArgVT == MVT::v4f64 || 3213 ArgVT == MVT::v4i1))) 3214 if (AvailableFPRs > 0) { 3215 --AvailableFPRs; 3216 return false; 3217 } 3218 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3219 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3220 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3221 ArgVT == MVT::v1i128) 3222 if (AvailableVRs > 0) { 3223 --AvailableVRs; 3224 return false; 3225 } 3226 } 3227 3228 return UseMemory; 3229 } 3230 3231 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3232 /// ensure minimum alignment required for target. 3233 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3234 unsigned NumBytes) { 3235 unsigned TargetAlign = Lowering->getStackAlignment(); 3236 unsigned AlignMask = TargetAlign - 1; 3237 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3238 return NumBytes; 3239 } 3240 3241 SDValue PPCTargetLowering::LowerFormalArguments( 3242 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3243 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3244 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3245 if (Subtarget.isSVR4ABI()) { 3246 if (Subtarget.isPPC64()) 3247 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 3248 dl, DAG, InVals); 3249 else 3250 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 3251 dl, DAG, InVals); 3252 } else { 3253 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 3254 dl, DAG, InVals); 3255 } 3256 } 3257 3258 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3259 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3260 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3261 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3262 3263 // 32-bit SVR4 ABI Stack Frame Layout: 3264 // +-----------------------------------+ 3265 // +--> | Back chain | 3266 // | +-----------------------------------+ 3267 // | | Floating-point register save area | 3268 // | +-----------------------------------+ 3269 // | | General register save area | 3270 // | +-----------------------------------+ 3271 // | | CR save word | 3272 // | +-----------------------------------+ 3273 // | | VRSAVE save word | 3274 // | +-----------------------------------+ 3275 // | | Alignment padding | 3276 // | +-----------------------------------+ 3277 // | | Vector register save area | 3278 // | +-----------------------------------+ 3279 // | | Local variable space | 3280 // | +-----------------------------------+ 3281 // | | Parameter list area | 3282 // | +-----------------------------------+ 3283 // | | LR save word | 3284 // | +-----------------------------------+ 3285 // SP--> +--- | Back chain | 3286 // +-----------------------------------+ 3287 // 3288 // Specifications: 3289 // System V Application Binary Interface PowerPC Processor Supplement 3290 // AltiVec Technology Programming Interface Manual 3291 3292 MachineFunction &MF = DAG.getMachineFunction(); 3293 MachineFrameInfo &MFI = MF.getFrameInfo(); 3294 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3295 3296 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3297 // Potential tail calls could cause overwriting of argument stack slots. 3298 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3299 (CallConv == CallingConv::Fast)); 3300 unsigned PtrByteSize = 4; 3301 3302 // Assign locations to all of the incoming arguments. 3303 SmallVector<CCValAssign, 16> ArgLocs; 3304 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3305 *DAG.getContext()); 3306 3307 // Reserve space for the linkage area on the stack. 3308 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3309 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3310 if (useSoftFloat()) 3311 CCInfo.PreAnalyzeFormalArguments(Ins); 3312 3313 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3314 CCInfo.clearWasPPCF128(); 3315 3316 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3317 CCValAssign &VA = ArgLocs[i]; 3318 3319 // Arguments stored in registers. 3320 if (VA.isRegLoc()) { 3321 const TargetRegisterClass *RC; 3322 EVT ValVT = VA.getValVT(); 3323 3324 switch (ValVT.getSimpleVT().SimpleTy) { 3325 default: 3326 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3327 case MVT::i1: 3328 case MVT::i32: 3329 RC = &PPC::GPRCRegClass; 3330 break; 3331 case MVT::f32: 3332 if (Subtarget.hasP8Vector()) 3333 RC = &PPC::VSSRCRegClass; 3334 else 3335 RC = &PPC::F4RCRegClass; 3336 break; 3337 case MVT::f64: 3338 if (Subtarget.hasVSX()) 3339 RC = &PPC::VSFRCRegClass; 3340 else 3341 RC = &PPC::F8RCRegClass; 3342 break; 3343 case MVT::v16i8: 3344 case MVT::v8i16: 3345 case MVT::v4i32: 3346 RC = &PPC::VRRCRegClass; 3347 break; 3348 case MVT::v4f32: 3349 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3350 break; 3351 case MVT::v2f64: 3352 case MVT::v2i64: 3353 RC = &PPC::VRRCRegClass; 3354 break; 3355 case MVT::v4f64: 3356 RC = &PPC::QFRCRegClass; 3357 break; 3358 case MVT::v4i1: 3359 RC = &PPC::QBRCRegClass; 3360 break; 3361 } 3362 3363 // Transform the arguments stored in physical registers into virtual ones. 3364 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3365 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3366 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3367 3368 if (ValVT == MVT::i1) 3369 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3370 3371 InVals.push_back(ArgValue); 3372 } else { 3373 // Argument stored in memory. 3374 assert(VA.isMemLoc()); 3375 3376 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3377 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(), 3378 isImmutable); 3379 3380 // Create load nodes to retrieve arguments from the stack. 3381 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3382 InVals.push_back( 3383 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3384 } 3385 } 3386 3387 // Assign locations to all of the incoming aggregate by value arguments. 3388 // Aggregates passed by value are stored in the local variable space of the 3389 // caller's stack frame, right above the parameter list area. 3390 SmallVector<CCValAssign, 16> ByValArgLocs; 3391 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3392 ByValArgLocs, *DAG.getContext()); 3393 3394 // Reserve stack space for the allocations in CCInfo. 3395 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3396 3397 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3398 3399 // Area that is at least reserved in the caller of this function. 3400 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3401 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3402 3403 // Set the size that is at least reserved in caller of this function. Tail 3404 // call optimized function's reserved stack space needs to be aligned so that 3405 // taking the difference between two stack areas will result in an aligned 3406 // stack. 3407 MinReservedArea = 3408 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3409 FuncInfo->setMinReservedArea(MinReservedArea); 3410 3411 SmallVector<SDValue, 8> MemOps; 3412 3413 // If the function takes variable number of arguments, make a frame index for 3414 // the start of the first vararg value... for expansion of llvm.va_start. 3415 if (isVarArg) { 3416 static const MCPhysReg GPArgRegs[] = { 3417 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3418 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3419 }; 3420 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3421 3422 static const MCPhysReg FPArgRegs[] = { 3423 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3424 PPC::F8 3425 }; 3426 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3427 3428 if (useSoftFloat()) 3429 NumFPArgRegs = 0; 3430 3431 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3432 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3433 3434 // Make room for NumGPArgRegs and NumFPArgRegs. 3435 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3436 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3437 3438 FuncInfo->setVarArgsStackOffset( 3439 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3440 CCInfo.getNextStackOffset(), true)); 3441 3442 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3443 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3444 3445 // The fixed integer arguments of a variadic function are stored to the 3446 // VarArgsFrameIndex on the stack so that they may be loaded by 3447 // dereferencing the result of va_next. 3448 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3449 // Get an existing live-in vreg, or add a new one. 3450 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3451 if (!VReg) 3452 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3453 3454 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3455 SDValue Store = 3456 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3457 MemOps.push_back(Store); 3458 // Increment the address by four for the next argument to store 3459 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3460 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3461 } 3462 3463 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3464 // is set. 3465 // The double arguments are stored to the VarArgsFrameIndex 3466 // on the stack. 3467 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3468 // Get an existing live-in vreg, or add a new one. 3469 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3470 if (!VReg) 3471 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3472 3473 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3474 SDValue Store = 3475 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3476 MemOps.push_back(Store); 3477 // Increment the address by eight for the next argument to store 3478 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3479 PtrVT); 3480 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3481 } 3482 } 3483 3484 if (!MemOps.empty()) 3485 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3486 3487 return Chain; 3488 } 3489 3490 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3491 // value to MVT::i64 and then truncate to the correct register size. 3492 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3493 EVT ObjectVT, SelectionDAG &DAG, 3494 SDValue ArgVal, 3495 const SDLoc &dl) const { 3496 if (Flags.isSExt()) 3497 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3498 DAG.getValueType(ObjectVT)); 3499 else if (Flags.isZExt()) 3500 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3501 DAG.getValueType(ObjectVT)); 3502 3503 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3504 } 3505 3506 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3507 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3508 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3509 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3510 // TODO: add description of PPC stack frame format, or at least some docs. 3511 // 3512 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3513 bool isLittleEndian = Subtarget.isLittleEndian(); 3514 MachineFunction &MF = DAG.getMachineFunction(); 3515 MachineFrameInfo &MFI = MF.getFrameInfo(); 3516 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3517 3518 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3519 "fastcc not supported on varargs functions"); 3520 3521 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3522 // Potential tail calls could cause overwriting of argument stack slots. 3523 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3524 (CallConv == CallingConv::Fast)); 3525 unsigned PtrByteSize = 8; 3526 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3527 3528 static const MCPhysReg GPR[] = { 3529 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3530 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3531 }; 3532 static const MCPhysReg VR[] = { 3533 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3534 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3535 }; 3536 3537 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3538 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3539 const unsigned Num_VR_Regs = array_lengthof(VR); 3540 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3541 3542 // Do a first pass over the arguments to determine whether the ABI 3543 // guarantees that our caller has allocated the parameter save area 3544 // on its stack frame. In the ELFv1 ABI, this is always the case; 3545 // in the ELFv2 ABI, it is true if this is a vararg function or if 3546 // any parameter is located in a stack slot. 3547 3548 bool HasParameterArea = !isELFv2ABI || isVarArg; 3549 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3550 unsigned NumBytes = LinkageSize; 3551 unsigned AvailableFPRs = Num_FPR_Regs; 3552 unsigned AvailableVRs = Num_VR_Regs; 3553 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3554 if (Ins[i].Flags.isNest()) 3555 continue; 3556 3557 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3558 PtrByteSize, LinkageSize, ParamAreaSize, 3559 NumBytes, AvailableFPRs, AvailableVRs, 3560 Subtarget.hasQPX())) 3561 HasParameterArea = true; 3562 } 3563 3564 // Add DAG nodes to load the arguments or copy them out of registers. On 3565 // entry to a function on PPC, the arguments start after the linkage area, 3566 // although the first ones are often in registers. 3567 3568 unsigned ArgOffset = LinkageSize; 3569 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3570 unsigned &QFPR_idx = FPR_idx; 3571 SmallVector<SDValue, 8> MemOps; 3572 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3573 unsigned CurArgIdx = 0; 3574 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3575 SDValue ArgVal; 3576 bool needsLoad = false; 3577 EVT ObjectVT = Ins[ArgNo].VT; 3578 EVT OrigVT = Ins[ArgNo].ArgVT; 3579 unsigned ObjSize = ObjectVT.getStoreSize(); 3580 unsigned ArgSize = ObjSize; 3581 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3582 if (Ins[ArgNo].isOrigArg()) { 3583 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3584 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3585 } 3586 // We re-align the argument offset for each argument, except when using the 3587 // fast calling convention, when we need to make sure we do that only when 3588 // we'll actually use a stack slot. 3589 unsigned CurArgOffset, Align; 3590 auto ComputeArgOffset = [&]() { 3591 /* Respect alignment of argument on the stack. */ 3592 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3593 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3594 CurArgOffset = ArgOffset; 3595 }; 3596 3597 if (CallConv != CallingConv::Fast) { 3598 ComputeArgOffset(); 3599 3600 /* Compute GPR index associated with argument offset. */ 3601 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3602 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3603 } 3604 3605 // FIXME the codegen can be much improved in some cases. 3606 // We do not have to keep everything in memory. 3607 if (Flags.isByVal()) { 3608 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3609 3610 if (CallConv == CallingConv::Fast) 3611 ComputeArgOffset(); 3612 3613 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3614 ObjSize = Flags.getByValSize(); 3615 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3616 // Empty aggregate parameters do not take up registers. Examples: 3617 // struct { } a; 3618 // union { } b; 3619 // int c[0]; 3620 // etc. However, we have to provide a place-holder in InVals, so 3621 // pretend we have an 8-byte item at the current address for that 3622 // purpose. 3623 if (!ObjSize) { 3624 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3625 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3626 InVals.push_back(FIN); 3627 continue; 3628 } 3629 3630 // Create a stack object covering all stack doublewords occupied 3631 // by the argument. If the argument is (fully or partially) on 3632 // the stack, or if the argument is fully in registers but the 3633 // caller has allocated the parameter save anyway, we can refer 3634 // directly to the caller's stack frame. Otherwise, create a 3635 // local copy in our own frame. 3636 int FI; 3637 if (HasParameterArea || 3638 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3639 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3640 else 3641 FI = MFI.CreateStackObject(ArgSize, Align, false); 3642 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3643 3644 // Handle aggregates smaller than 8 bytes. 3645 if (ObjSize < PtrByteSize) { 3646 // The value of the object is its address, which differs from the 3647 // address of the enclosing doubleword on big-endian systems. 3648 SDValue Arg = FIN; 3649 if (!isLittleEndian) { 3650 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3651 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3652 } 3653 InVals.push_back(Arg); 3654 3655 if (GPR_idx != Num_GPR_Regs) { 3656 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3657 FuncInfo->addLiveInAttr(VReg, Flags); 3658 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3659 SDValue Store; 3660 3661 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3662 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3663 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3664 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3665 MachinePointerInfo(&*FuncArg), ObjType); 3666 } else { 3667 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3668 // store the whole register as-is to the parameter save area 3669 // slot. 3670 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3671 MachinePointerInfo(&*FuncArg)); 3672 } 3673 3674 MemOps.push_back(Store); 3675 } 3676 // Whether we copied from a register or not, advance the offset 3677 // into the parameter save area by a full doubleword. 3678 ArgOffset += PtrByteSize; 3679 continue; 3680 } 3681 3682 // The value of the object is its address, which is the address of 3683 // its first stack doubleword. 3684 InVals.push_back(FIN); 3685 3686 // Store whatever pieces of the object are in registers to memory. 3687 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3688 if (GPR_idx == Num_GPR_Regs) 3689 break; 3690 3691 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3692 FuncInfo->addLiveInAttr(VReg, Flags); 3693 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3694 SDValue Addr = FIN; 3695 if (j) { 3696 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3697 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3698 } 3699 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3700 MachinePointerInfo(&*FuncArg, j)); 3701 MemOps.push_back(Store); 3702 ++GPR_idx; 3703 } 3704 ArgOffset += ArgSize; 3705 continue; 3706 } 3707 3708 switch (ObjectVT.getSimpleVT().SimpleTy) { 3709 default: llvm_unreachable("Unhandled argument type!"); 3710 case MVT::i1: 3711 case MVT::i32: 3712 case MVT::i64: 3713 if (Flags.isNest()) { 3714 // The 'nest' parameter, if any, is passed in R11. 3715 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3716 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3717 3718 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3719 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3720 3721 break; 3722 } 3723 3724 // These can be scalar arguments or elements of an integer array type 3725 // passed directly. Clang may use those instead of "byval" aggregate 3726 // types to avoid forcing arguments to memory unnecessarily. 3727 if (GPR_idx != Num_GPR_Regs) { 3728 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3729 FuncInfo->addLiveInAttr(VReg, Flags); 3730 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3731 3732 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3733 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3734 // value to MVT::i64 and then truncate to the correct register size. 3735 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3736 } else { 3737 if (CallConv == CallingConv::Fast) 3738 ComputeArgOffset(); 3739 3740 needsLoad = true; 3741 ArgSize = PtrByteSize; 3742 } 3743 if (CallConv != CallingConv::Fast || needsLoad) 3744 ArgOffset += 8; 3745 break; 3746 3747 case MVT::f32: 3748 case MVT::f64: 3749 // These can be scalar arguments or elements of a float array type 3750 // passed directly. The latter are used to implement ELFv2 homogenous 3751 // float aggregates. 3752 if (FPR_idx != Num_FPR_Regs) { 3753 unsigned VReg; 3754 3755 if (ObjectVT == MVT::f32) 3756 VReg = MF.addLiveIn(FPR[FPR_idx], 3757 Subtarget.hasP8Vector() 3758 ? &PPC::VSSRCRegClass 3759 : &PPC::F4RCRegClass); 3760 else 3761 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3762 ? &PPC::VSFRCRegClass 3763 : &PPC::F8RCRegClass); 3764 3765 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3766 ++FPR_idx; 3767 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3768 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3769 // once we support fp <-> gpr moves. 3770 3771 // This can only ever happen in the presence of f32 array types, 3772 // since otherwise we never run out of FPRs before running out 3773 // of GPRs. 3774 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3775 FuncInfo->addLiveInAttr(VReg, Flags); 3776 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3777 3778 if (ObjectVT == MVT::f32) { 3779 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3780 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3781 DAG.getConstant(32, dl, MVT::i32)); 3782 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3783 } 3784 3785 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3786 } else { 3787 if (CallConv == CallingConv::Fast) 3788 ComputeArgOffset(); 3789 3790 needsLoad = true; 3791 } 3792 3793 // When passing an array of floats, the array occupies consecutive 3794 // space in the argument area; only round up to the next doubleword 3795 // at the end of the array. Otherwise, each float takes 8 bytes. 3796 if (CallConv != CallingConv::Fast || needsLoad) { 3797 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3798 ArgOffset += ArgSize; 3799 if (Flags.isInConsecutiveRegsLast()) 3800 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3801 } 3802 break; 3803 case MVT::v4f32: 3804 case MVT::v4i32: 3805 case MVT::v8i16: 3806 case MVT::v16i8: 3807 case MVT::v2f64: 3808 case MVT::v2i64: 3809 case MVT::v1i128: 3810 if (!Subtarget.hasQPX()) { 3811 // These can be scalar arguments or elements of a vector array type 3812 // passed directly. The latter are used to implement ELFv2 homogenous 3813 // vector aggregates. 3814 if (VR_idx != Num_VR_Regs) { 3815 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3816 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3817 ++VR_idx; 3818 } else { 3819 if (CallConv == CallingConv::Fast) 3820 ComputeArgOffset(); 3821 needsLoad = true; 3822 } 3823 if (CallConv != CallingConv::Fast || needsLoad) 3824 ArgOffset += 16; 3825 break; 3826 } // not QPX 3827 3828 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3829 "Invalid QPX parameter type"); 3830 /* fall through */ 3831 3832 case MVT::v4f64: 3833 case MVT::v4i1: 3834 // QPX vectors are treated like their scalar floating-point subregisters 3835 // (except that they're larger). 3836 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3837 if (QFPR_idx != Num_QFPR_Regs) { 3838 const TargetRegisterClass *RC; 3839 switch (ObjectVT.getSimpleVT().SimpleTy) { 3840 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3841 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3842 default: RC = &PPC::QBRCRegClass; break; 3843 } 3844 3845 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3846 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3847 ++QFPR_idx; 3848 } else { 3849 if (CallConv == CallingConv::Fast) 3850 ComputeArgOffset(); 3851 needsLoad = true; 3852 } 3853 if (CallConv != CallingConv::Fast || needsLoad) 3854 ArgOffset += Sz; 3855 break; 3856 } 3857 3858 // We need to load the argument to a virtual register if we determined 3859 // above that we ran out of physical registers of the appropriate type. 3860 if (needsLoad) { 3861 if (ObjSize < ArgSize && !isLittleEndian) 3862 CurArgOffset += ArgSize - ObjSize; 3863 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3864 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3865 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 3866 } 3867 3868 InVals.push_back(ArgVal); 3869 } 3870 3871 // Area that is at least reserved in the caller of this function. 3872 unsigned MinReservedArea; 3873 if (HasParameterArea) 3874 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3875 else 3876 MinReservedArea = LinkageSize; 3877 3878 // Set the size that is at least reserved in caller of this function. Tail 3879 // call optimized functions' reserved stack space needs to be aligned so that 3880 // taking the difference between two stack areas will result in an aligned 3881 // stack. 3882 MinReservedArea = 3883 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3884 FuncInfo->setMinReservedArea(MinReservedArea); 3885 3886 // If the function takes variable number of arguments, make a frame index for 3887 // the start of the first vararg value... for expansion of llvm.va_start. 3888 if (isVarArg) { 3889 int Depth = ArgOffset; 3890 3891 FuncInfo->setVarArgsFrameIndex( 3892 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 3893 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3894 3895 // If this function is vararg, store any remaining integer argument regs 3896 // to their spots on the stack so that they may be loaded by dereferencing 3897 // the result of va_next. 3898 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3899 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3900 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3901 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3902 SDValue Store = 3903 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3904 MemOps.push_back(Store); 3905 // Increment the address by four for the next argument to store 3906 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3907 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3908 } 3909 } 3910 3911 if (!MemOps.empty()) 3912 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3913 3914 return Chain; 3915 } 3916 3917 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3918 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3919 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3920 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3921 // TODO: add description of PPC stack frame format, or at least some docs. 3922 // 3923 MachineFunction &MF = DAG.getMachineFunction(); 3924 MachineFrameInfo &MFI = MF.getFrameInfo(); 3925 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3926 3927 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3928 bool isPPC64 = PtrVT == MVT::i64; 3929 // Potential tail calls could cause overwriting of argument stack slots. 3930 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3931 (CallConv == CallingConv::Fast)); 3932 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3933 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3934 unsigned ArgOffset = LinkageSize; 3935 // Area that is at least reserved in caller of this function. 3936 unsigned MinReservedArea = ArgOffset; 3937 3938 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3939 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3940 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3941 }; 3942 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3943 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3944 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3945 }; 3946 static const MCPhysReg VR[] = { 3947 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3948 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3949 }; 3950 3951 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3952 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3953 const unsigned Num_VR_Regs = array_lengthof( VR); 3954 3955 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3956 3957 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3958 3959 // In 32-bit non-varargs functions, the stack space for vectors is after the 3960 // stack space for non-vectors. We do not use this space unless we have 3961 // too many vectors to fit in registers, something that only occurs in 3962 // constructed examples:), but we have to walk the arglist to figure 3963 // that out...for the pathological case, compute VecArgOffset as the 3964 // start of the vector parameter area. Computing VecArgOffset is the 3965 // entire point of the following loop. 3966 unsigned VecArgOffset = ArgOffset; 3967 if (!isVarArg && !isPPC64) { 3968 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3969 ++ArgNo) { 3970 EVT ObjectVT = Ins[ArgNo].VT; 3971 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3972 3973 if (Flags.isByVal()) { 3974 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3975 unsigned ObjSize = Flags.getByValSize(); 3976 unsigned ArgSize = 3977 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3978 VecArgOffset += ArgSize; 3979 continue; 3980 } 3981 3982 switch(ObjectVT.getSimpleVT().SimpleTy) { 3983 default: llvm_unreachable("Unhandled argument type!"); 3984 case MVT::i1: 3985 case MVT::i32: 3986 case MVT::f32: 3987 VecArgOffset += 4; 3988 break; 3989 case MVT::i64: // PPC64 3990 case MVT::f64: 3991 // FIXME: We are guaranteed to be !isPPC64 at this point. 3992 // Does MVT::i64 apply? 3993 VecArgOffset += 8; 3994 break; 3995 case MVT::v4f32: 3996 case MVT::v4i32: 3997 case MVT::v8i16: 3998 case MVT::v16i8: 3999 // Nothing to do, we're only looking at Nonvector args here. 4000 break; 4001 } 4002 } 4003 } 4004 // We've found where the vector parameter area in memory is. Skip the 4005 // first 12 parameters; these don't use that memory. 4006 VecArgOffset = ((VecArgOffset+15)/16)*16; 4007 VecArgOffset += 12*16; 4008 4009 // Add DAG nodes to load the arguments or copy them out of registers. On 4010 // entry to a function on PPC, the arguments start after the linkage area, 4011 // although the first ones are often in registers. 4012 4013 SmallVector<SDValue, 8> MemOps; 4014 unsigned nAltivecParamsAtEnd = 0; 4015 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4016 unsigned CurArgIdx = 0; 4017 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4018 SDValue ArgVal; 4019 bool needsLoad = false; 4020 EVT ObjectVT = Ins[ArgNo].VT; 4021 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4022 unsigned ArgSize = ObjSize; 4023 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4024 if (Ins[ArgNo].isOrigArg()) { 4025 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4026 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4027 } 4028 unsigned CurArgOffset = ArgOffset; 4029 4030 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4031 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4032 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4033 if (isVarArg || isPPC64) { 4034 MinReservedArea = ((MinReservedArea+15)/16)*16; 4035 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4036 Flags, 4037 PtrByteSize); 4038 } else nAltivecParamsAtEnd++; 4039 } else 4040 // Calculate min reserved area. 4041 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4042 Flags, 4043 PtrByteSize); 4044 4045 // FIXME the codegen can be much improved in some cases. 4046 // We do not have to keep everything in memory. 4047 if (Flags.isByVal()) { 4048 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4049 4050 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4051 ObjSize = Flags.getByValSize(); 4052 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4053 // Objects of size 1 and 2 are right justified, everything else is 4054 // left justified. This means the memory address is adjusted forwards. 4055 if (ObjSize==1 || ObjSize==2) { 4056 CurArgOffset = CurArgOffset + (4 - ObjSize); 4057 } 4058 // The value of the object is its address. 4059 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4060 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4061 InVals.push_back(FIN); 4062 if (ObjSize==1 || ObjSize==2) { 4063 if (GPR_idx != Num_GPR_Regs) { 4064 unsigned VReg; 4065 if (isPPC64) 4066 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4067 else 4068 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4069 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4070 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4071 SDValue Store = 4072 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4073 MachinePointerInfo(&*FuncArg), ObjType); 4074 MemOps.push_back(Store); 4075 ++GPR_idx; 4076 } 4077 4078 ArgOffset += PtrByteSize; 4079 4080 continue; 4081 } 4082 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4083 // Store whatever pieces of the object are in registers 4084 // to memory. ArgOffset will be the address of the beginning 4085 // of the object. 4086 if (GPR_idx != Num_GPR_Regs) { 4087 unsigned VReg; 4088 if (isPPC64) 4089 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4090 else 4091 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4092 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4093 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4094 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4095 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4096 MachinePointerInfo(&*FuncArg, j)); 4097 MemOps.push_back(Store); 4098 ++GPR_idx; 4099 ArgOffset += PtrByteSize; 4100 } else { 4101 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4102 break; 4103 } 4104 } 4105 continue; 4106 } 4107 4108 switch (ObjectVT.getSimpleVT().SimpleTy) { 4109 default: llvm_unreachable("Unhandled argument type!"); 4110 case MVT::i1: 4111 case MVT::i32: 4112 if (!isPPC64) { 4113 if (GPR_idx != Num_GPR_Regs) { 4114 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4115 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4116 4117 if (ObjectVT == MVT::i1) 4118 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4119 4120 ++GPR_idx; 4121 } else { 4122 needsLoad = true; 4123 ArgSize = PtrByteSize; 4124 } 4125 // All int arguments reserve stack space in the Darwin ABI. 4126 ArgOffset += PtrByteSize; 4127 break; 4128 } 4129 LLVM_FALLTHROUGH; 4130 case MVT::i64: // PPC64 4131 if (GPR_idx != Num_GPR_Regs) { 4132 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4133 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4134 4135 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4136 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4137 // value to MVT::i64 and then truncate to the correct register size. 4138 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4139 4140 ++GPR_idx; 4141 } else { 4142 needsLoad = true; 4143 ArgSize = PtrByteSize; 4144 } 4145 // All int arguments reserve stack space in the Darwin ABI. 4146 ArgOffset += 8; 4147 break; 4148 4149 case MVT::f32: 4150 case MVT::f64: 4151 // Every 4 bytes of argument space consumes one of the GPRs available for 4152 // argument passing. 4153 if (GPR_idx != Num_GPR_Regs) { 4154 ++GPR_idx; 4155 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4156 ++GPR_idx; 4157 } 4158 if (FPR_idx != Num_FPR_Regs) { 4159 unsigned VReg; 4160 4161 if (ObjectVT == MVT::f32) 4162 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4163 else 4164 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4165 4166 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4167 ++FPR_idx; 4168 } else { 4169 needsLoad = true; 4170 } 4171 4172 // All FP arguments reserve stack space in the Darwin ABI. 4173 ArgOffset += isPPC64 ? 8 : ObjSize; 4174 break; 4175 case MVT::v4f32: 4176 case MVT::v4i32: 4177 case MVT::v8i16: 4178 case MVT::v16i8: 4179 // Note that vector arguments in registers don't reserve stack space, 4180 // except in varargs functions. 4181 if (VR_idx != Num_VR_Regs) { 4182 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4183 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4184 if (isVarArg) { 4185 while ((ArgOffset % 16) != 0) { 4186 ArgOffset += PtrByteSize; 4187 if (GPR_idx != Num_GPR_Regs) 4188 GPR_idx++; 4189 } 4190 ArgOffset += 16; 4191 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4192 } 4193 ++VR_idx; 4194 } else { 4195 if (!isVarArg && !isPPC64) { 4196 // Vectors go after all the nonvectors. 4197 CurArgOffset = VecArgOffset; 4198 VecArgOffset += 16; 4199 } else { 4200 // Vectors are aligned. 4201 ArgOffset = ((ArgOffset+15)/16)*16; 4202 CurArgOffset = ArgOffset; 4203 ArgOffset += 16; 4204 } 4205 needsLoad = true; 4206 } 4207 break; 4208 } 4209 4210 // We need to load the argument to a virtual register if we determined above 4211 // that we ran out of physical registers of the appropriate type. 4212 if (needsLoad) { 4213 int FI = MFI.CreateFixedObject(ObjSize, 4214 CurArgOffset + (ArgSize - ObjSize), 4215 isImmutable); 4216 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4217 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4218 } 4219 4220 InVals.push_back(ArgVal); 4221 } 4222 4223 // Allow for Altivec parameters at the end, if needed. 4224 if (nAltivecParamsAtEnd) { 4225 MinReservedArea = ((MinReservedArea+15)/16)*16; 4226 MinReservedArea += 16*nAltivecParamsAtEnd; 4227 } 4228 4229 // Area that is at least reserved in the caller of this function. 4230 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4231 4232 // Set the size that is at least reserved in caller of this function. Tail 4233 // call optimized functions' reserved stack space needs to be aligned so that 4234 // taking the difference between two stack areas will result in an aligned 4235 // stack. 4236 MinReservedArea = 4237 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4238 FuncInfo->setMinReservedArea(MinReservedArea); 4239 4240 // If the function takes variable number of arguments, make a frame index for 4241 // the start of the first vararg value... for expansion of llvm.va_start. 4242 if (isVarArg) { 4243 int Depth = ArgOffset; 4244 4245 FuncInfo->setVarArgsFrameIndex( 4246 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4247 Depth, true)); 4248 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4249 4250 // If this function is vararg, store any remaining integer argument regs 4251 // to their spots on the stack so that they may be loaded by dereferencing 4252 // the result of va_next. 4253 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4254 unsigned VReg; 4255 4256 if (isPPC64) 4257 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4258 else 4259 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4260 4261 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4262 SDValue Store = 4263 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4264 MemOps.push_back(Store); 4265 // Increment the address by four for the next argument to store 4266 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4267 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4268 } 4269 } 4270 4271 if (!MemOps.empty()) 4272 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4273 4274 return Chain; 4275 } 4276 4277 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4278 /// adjusted to accommodate the arguments for the tailcall. 4279 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4280 unsigned ParamSize) { 4281 4282 if (!isTailCall) return 0; 4283 4284 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4285 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4286 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4287 // Remember only if the new adjustement is bigger. 4288 if (SPDiff < FI->getTailCallSPDelta()) 4289 FI->setTailCallSPDelta(SPDiff); 4290 4291 return SPDiff; 4292 } 4293 4294 static bool isFunctionGlobalAddress(SDValue Callee); 4295 4296 static bool 4297 callsShareTOCBase(const Function *Caller, SDValue Callee, 4298 const TargetMachine &TM) { 4299 // If !G, Callee can be an external symbol. 4300 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4301 if (!G) 4302 return false; 4303 4304 // The medium and large code models are expected to provide a sufficiently 4305 // large TOC to provide all data addressing needs of a module with a 4306 // single TOC. Since each module will be addressed with a single TOC then we 4307 // only need to check that caller and callee don't cross dso boundaries. 4308 if (CodeModel::Medium == TM.getCodeModel() || 4309 CodeModel::Large == TM.getCodeModel()) 4310 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal()); 4311 4312 // Otherwise we need to ensure callee and caller are in the same section, 4313 // since the linker may allocate multiple TOCs, and we don't know which 4314 // sections will belong to the same TOC base. 4315 4316 const GlobalValue *GV = G->getGlobal(); 4317 if (!GV->isStrongDefinitionForLinker()) 4318 return false; 4319 4320 // Any explicitly-specified sections and section prefixes must also match. 4321 // Also, if we're using -ffunction-sections, then each function is always in 4322 // a different section (the same is true for COMDAT functions). 4323 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4324 GV->getSection() != Caller->getSection()) 4325 return false; 4326 if (const auto *F = dyn_cast<Function>(GV)) { 4327 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4328 return false; 4329 } 4330 4331 // If the callee might be interposed, then we can't assume the ultimate call 4332 // target will be in the same section. Even in cases where we can assume that 4333 // interposition won't happen, in any case where the linker might insert a 4334 // stub to allow for interposition, we must generate code as though 4335 // interposition might occur. To understand why this matters, consider a 4336 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4337 // in the same section, but a is in a different module (i.e. has a different 4338 // TOC base pointer). If the linker allows for interposition between b and c, 4339 // then it will generate a stub for the call edge between b and c which will 4340 // save the TOC pointer into the designated stack slot allocated by b. If we 4341 // return true here, and therefore allow a tail call between b and c, that 4342 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4343 // pointer into the stack slot allocated by a (where the a -> b stub saved 4344 // a's TOC base pointer). If we're not considering a tail call, but rather, 4345 // whether a nop is needed after the call instruction in b, because the linker 4346 // will insert a stub, it might complain about a missing nop if we omit it 4347 // (although many don't complain in this case). 4348 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4349 return false; 4350 4351 return true; 4352 } 4353 4354 static bool 4355 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4356 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4357 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 4358 4359 const unsigned PtrByteSize = 8; 4360 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4361 4362 static const MCPhysReg GPR[] = { 4363 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4364 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4365 }; 4366 static const MCPhysReg VR[] = { 4367 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4368 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4369 }; 4370 4371 const unsigned NumGPRs = array_lengthof(GPR); 4372 const unsigned NumFPRs = 13; 4373 const unsigned NumVRs = array_lengthof(VR); 4374 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4375 4376 unsigned NumBytes = LinkageSize; 4377 unsigned AvailableFPRs = NumFPRs; 4378 unsigned AvailableVRs = NumVRs; 4379 4380 for (const ISD::OutputArg& Param : Outs) { 4381 if (Param.Flags.isNest()) continue; 4382 4383 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4384 PtrByteSize, LinkageSize, ParamAreaSize, 4385 NumBytes, AvailableFPRs, AvailableVRs, 4386 Subtarget.hasQPX())) 4387 return true; 4388 } 4389 return false; 4390 } 4391 4392 static bool 4393 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4394 if (CS.arg_size() != CallerFn->arg_size()) 4395 return false; 4396 4397 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4398 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4399 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4400 4401 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4402 const Value* CalleeArg = *CalleeArgIter; 4403 const Value* CallerArg = &(*CallerArgIter); 4404 if (CalleeArg == CallerArg) 4405 continue; 4406 4407 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4408 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4409 // } 4410 // 1st argument of callee is undef and has the same type as caller. 4411 if (CalleeArg->getType() == CallerArg->getType() && 4412 isa<UndefValue>(CalleeArg)) 4413 continue; 4414 4415 return false; 4416 } 4417 4418 return true; 4419 } 4420 4421 // Returns true if TCO is possible between the callers and callees 4422 // calling conventions. 4423 static bool 4424 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4425 CallingConv::ID CalleeCC) { 4426 // Tail calls are possible with fastcc and ccc. 4427 auto isTailCallableCC = [] (CallingConv::ID CC){ 4428 return CC == CallingConv::C || CC == CallingConv::Fast; 4429 }; 4430 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4431 return false; 4432 4433 // We can safely tail call both fastcc and ccc callees from a c calling 4434 // convention caller. If the caller is fastcc, we may have less stack space 4435 // than a non-fastcc caller with the same signature so disable tail-calls in 4436 // that case. 4437 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4438 } 4439 4440 bool 4441 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4442 SDValue Callee, 4443 CallingConv::ID CalleeCC, 4444 ImmutableCallSite CS, 4445 bool isVarArg, 4446 const SmallVectorImpl<ISD::OutputArg> &Outs, 4447 const SmallVectorImpl<ISD::InputArg> &Ins, 4448 SelectionDAG& DAG) const { 4449 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4450 4451 if (DisableSCO && !TailCallOpt) return false; 4452 4453 // Variadic argument functions are not supported. 4454 if (isVarArg) return false; 4455 4456 auto &Caller = DAG.getMachineFunction().getFunction(); 4457 // Check that the calling conventions are compatible for tco. 4458 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4459 return false; 4460 4461 // Caller contains any byval parameter is not supported. 4462 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4463 return false; 4464 4465 // Callee contains any byval parameter is not supported, too. 4466 // Note: This is a quick work around, because in some cases, e.g. 4467 // caller's stack size > callee's stack size, we are still able to apply 4468 // sibling call optimization. For example, gcc is able to do SCO for caller1 4469 // in the following example, but not for caller2. 4470 // struct test { 4471 // long int a; 4472 // char ary[56]; 4473 // } gTest; 4474 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4475 // b->a = v.a; 4476 // return 0; 4477 // } 4478 // void caller1(struct test a, struct test c, struct test *b) { 4479 // callee(gTest, b); } 4480 // void caller2(struct test *b) { callee(gTest, b); } 4481 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4482 return false; 4483 4484 // If callee and caller use different calling conventions, we cannot pass 4485 // parameters on stack since offsets for the parameter area may be different. 4486 if (Caller.getCallingConv() != CalleeCC && 4487 needStackSlotPassParameters(Subtarget, Outs)) 4488 return false; 4489 4490 // No TCO/SCO on indirect call because Caller have to restore its TOC 4491 if (!isFunctionGlobalAddress(Callee) && 4492 !isa<ExternalSymbolSDNode>(Callee)) 4493 return false; 4494 4495 // If the caller and callee potentially have different TOC bases then we 4496 // cannot tail call since we need to restore the TOC pointer after the call. 4497 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4498 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4499 return false; 4500 4501 // TCO allows altering callee ABI, so we don't have to check further. 4502 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4503 return true; 4504 4505 if (DisableSCO) return false; 4506 4507 // If callee use the same argument list that caller is using, then we can 4508 // apply SCO on this case. If it is not, then we need to check if callee needs 4509 // stack for passing arguments. 4510 if (!hasSameArgumentList(&Caller, CS) && 4511 needStackSlotPassParameters(Subtarget, Outs)) { 4512 return false; 4513 } 4514 4515 return true; 4516 } 4517 4518 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4519 /// for tail call optimization. Targets which want to do tail call 4520 /// optimization should implement this function. 4521 bool 4522 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4523 CallingConv::ID CalleeCC, 4524 bool isVarArg, 4525 const SmallVectorImpl<ISD::InputArg> &Ins, 4526 SelectionDAG& DAG) const { 4527 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4528 return false; 4529 4530 // Variable argument functions are not supported. 4531 if (isVarArg) 4532 return false; 4533 4534 MachineFunction &MF = DAG.getMachineFunction(); 4535 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4536 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4537 // Functions containing by val parameters are not supported. 4538 for (unsigned i = 0; i != Ins.size(); i++) { 4539 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4540 if (Flags.isByVal()) return false; 4541 } 4542 4543 // Non-PIC/GOT tail calls are supported. 4544 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4545 return true; 4546 4547 // At the moment we can only do local tail calls (in same module, hidden 4548 // or protected) if we are generating PIC. 4549 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4550 return G->getGlobal()->hasHiddenVisibility() 4551 || G->getGlobal()->hasProtectedVisibility(); 4552 } 4553 4554 return false; 4555 } 4556 4557 /// isCallCompatibleAddress - Return the immediate to use if the specified 4558 /// 32-bit value is representable in the immediate field of a BxA instruction. 4559 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4560 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4561 if (!C) return nullptr; 4562 4563 int Addr = C->getZExtValue(); 4564 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4565 SignExtend32<26>(Addr) != Addr) 4566 return nullptr; // Top 6 bits have to be sext of immediate. 4567 4568 return DAG 4569 .getConstant( 4570 (int)C->getZExtValue() >> 2, SDLoc(Op), 4571 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4572 .getNode(); 4573 } 4574 4575 namespace { 4576 4577 struct TailCallArgumentInfo { 4578 SDValue Arg; 4579 SDValue FrameIdxOp; 4580 int FrameIdx = 0; 4581 4582 TailCallArgumentInfo() = default; 4583 }; 4584 4585 } // end anonymous namespace 4586 4587 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4588 static void StoreTailCallArgumentsToStackSlot( 4589 SelectionDAG &DAG, SDValue Chain, 4590 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4591 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4592 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4593 SDValue Arg = TailCallArgs[i].Arg; 4594 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4595 int FI = TailCallArgs[i].FrameIdx; 4596 // Store relative to framepointer. 4597 MemOpChains.push_back(DAG.getStore( 4598 Chain, dl, Arg, FIN, 4599 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4600 } 4601 } 4602 4603 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4604 /// the appropriate stack slot for the tail call optimized function call. 4605 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4606 SDValue OldRetAddr, SDValue OldFP, 4607 int SPDiff, const SDLoc &dl) { 4608 if (SPDiff) { 4609 // Calculate the new stack slot for the return address. 4610 MachineFunction &MF = DAG.getMachineFunction(); 4611 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4612 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4613 bool isPPC64 = Subtarget.isPPC64(); 4614 int SlotSize = isPPC64 ? 8 : 4; 4615 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4616 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4617 NewRetAddrLoc, true); 4618 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4619 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4620 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4621 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4622 4623 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4624 // slot as the FP is never overwritten. 4625 if (Subtarget.isDarwinABI()) { 4626 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4627 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4628 true); 4629 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4630 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4631 MachinePointerInfo::getFixedStack( 4632 DAG.getMachineFunction(), NewFPIdx)); 4633 } 4634 } 4635 return Chain; 4636 } 4637 4638 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4639 /// the position of the argument. 4640 static void 4641 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4642 SDValue Arg, int SPDiff, unsigned ArgOffset, 4643 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4644 int Offset = ArgOffset + SPDiff; 4645 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4646 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4647 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4648 SDValue FIN = DAG.getFrameIndex(FI, VT); 4649 TailCallArgumentInfo Info; 4650 Info.Arg = Arg; 4651 Info.FrameIdxOp = FIN; 4652 Info.FrameIdx = FI; 4653 TailCallArguments.push_back(Info); 4654 } 4655 4656 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4657 /// stack slot. Returns the chain as result and the loaded frame pointers in 4658 /// LROpOut/FPOpout. Used when tail calling. 4659 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4660 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4661 SDValue &FPOpOut, const SDLoc &dl) const { 4662 if (SPDiff) { 4663 // Load the LR and FP stack slot for later adjusting. 4664 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4665 LROpOut = getReturnAddrFrameIndex(DAG); 4666 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4667 Chain = SDValue(LROpOut.getNode(), 1); 4668 4669 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4670 // slot as the FP is never overwritten. 4671 if (Subtarget.isDarwinABI()) { 4672 FPOpOut = getFramePointerFrameIndex(DAG); 4673 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4674 Chain = SDValue(FPOpOut.getNode(), 1); 4675 } 4676 } 4677 return Chain; 4678 } 4679 4680 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4681 /// by "Src" to address "Dst" of size "Size". Alignment information is 4682 /// specified by the specific parameter attribute. The copy will be passed as 4683 /// a byval function parameter. 4684 /// Sometimes what we are copying is the end of a larger object, the part that 4685 /// does not fit in registers. 4686 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4687 SDValue Chain, ISD::ArgFlagsTy Flags, 4688 SelectionDAG &DAG, const SDLoc &dl) { 4689 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4690 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4691 false, false, false, MachinePointerInfo(), 4692 MachinePointerInfo()); 4693 } 4694 4695 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4696 /// tail calls. 4697 static void LowerMemOpCallTo( 4698 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4699 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4700 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4701 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4702 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4703 if (!isTailCall) { 4704 if (isVector) { 4705 SDValue StackPtr; 4706 if (isPPC64) 4707 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4708 else 4709 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4710 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4711 DAG.getConstant(ArgOffset, dl, PtrVT)); 4712 } 4713 MemOpChains.push_back( 4714 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4715 // Calculate and remember argument location. 4716 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4717 TailCallArguments); 4718 } 4719 4720 static void 4721 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4722 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4723 SDValue FPOp, 4724 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4725 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4726 // might overwrite each other in case of tail call optimization. 4727 SmallVector<SDValue, 8> MemOpChains2; 4728 // Do not flag preceding copytoreg stuff together with the following stuff. 4729 InFlag = SDValue(); 4730 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4731 MemOpChains2, dl); 4732 if (!MemOpChains2.empty()) 4733 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4734 4735 // Store the return address to the appropriate stack slot. 4736 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4737 4738 // Emit callseq_end just before tailcall node. 4739 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4740 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4741 InFlag = Chain.getValue(1); 4742 } 4743 4744 // Is this global address that of a function that can be called by name? (as 4745 // opposed to something that must hold a descriptor for an indirect call). 4746 static bool isFunctionGlobalAddress(SDValue Callee) { 4747 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4748 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4749 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4750 return false; 4751 4752 return G->getGlobal()->getValueType()->isFunctionTy(); 4753 } 4754 4755 return false; 4756 } 4757 4758 static unsigned 4759 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4760 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4761 bool isPatchPoint, bool hasNest, 4762 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4763 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4764 ImmutableCallSite CS, const PPCSubtarget &Subtarget) { 4765 bool isPPC64 = Subtarget.isPPC64(); 4766 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4767 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4768 4769 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4770 NodeTys.push_back(MVT::Other); // Returns a chain 4771 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4772 4773 unsigned CallOpc = PPCISD::CALL; 4774 4775 bool needIndirectCall = true; 4776 if (!isSVR4ABI || !isPPC64) 4777 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4778 // If this is an absolute destination address, use the munged value. 4779 Callee = SDValue(Dest, 0); 4780 needIndirectCall = false; 4781 } 4782 4783 // PC-relative references to external symbols should go through $stub, unless 4784 // we're building with the leopard linker or later, which automatically 4785 // synthesizes these stubs. 4786 const TargetMachine &TM = DAG.getTarget(); 4787 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 4788 const GlobalValue *GV = nullptr; 4789 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4790 GV = G->getGlobal(); 4791 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 4792 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64; 4793 4794 if (isFunctionGlobalAddress(Callee)) { 4795 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4796 // A call to a TLS address is actually an indirect call to a 4797 // thread-specific pointer. 4798 unsigned OpFlags = 0; 4799 if (UsePlt) 4800 OpFlags = PPCII::MO_PLT; 4801 4802 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4803 // every direct call is) turn it into a TargetGlobalAddress / 4804 // TargetExternalSymbol node so that legalize doesn't hack it. 4805 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4806 Callee.getValueType(), 0, OpFlags); 4807 needIndirectCall = false; 4808 } 4809 4810 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4811 unsigned char OpFlags = 0; 4812 4813 if (UsePlt) 4814 OpFlags = PPCII::MO_PLT; 4815 4816 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4817 OpFlags); 4818 needIndirectCall = false; 4819 } 4820 4821 if (isPatchPoint) { 4822 // We'll form an invalid direct call when lowering a patchpoint; the full 4823 // sequence for an indirect call is complicated, and many of the 4824 // instructions introduced might have side effects (and, thus, can't be 4825 // removed later). The call itself will be removed as soon as the 4826 // argument/return lowering is complete, so the fact that it has the wrong 4827 // kind of operands should not really matter. 4828 needIndirectCall = false; 4829 } 4830 4831 if (needIndirectCall) { 4832 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4833 // to do the call, we can't use PPCISD::CALL. 4834 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4835 4836 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4837 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4838 // entry point, but to the function descriptor (the function entry point 4839 // address is part of the function descriptor though). 4840 // The function descriptor is a three doubleword structure with the 4841 // following fields: function entry point, TOC base address and 4842 // environment pointer. 4843 // Thus for a call through a function pointer, the following actions need 4844 // to be performed: 4845 // 1. Save the TOC of the caller in the TOC save area of its stack 4846 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4847 // 2. Load the address of the function entry point from the function 4848 // descriptor. 4849 // 3. Load the TOC of the callee from the function descriptor into r2. 4850 // 4. Load the environment pointer from the function descriptor into 4851 // r11. 4852 // 5. Branch to the function entry point address. 4853 // 6. On return of the callee, the TOC of the caller needs to be 4854 // restored (this is done in FinishCall()). 4855 // 4856 // The loads are scheduled at the beginning of the call sequence, and the 4857 // register copies are flagged together to ensure that no other 4858 // operations can be scheduled in between. E.g. without flagging the 4859 // copies together, a TOC access in the caller could be scheduled between 4860 // the assignment of the callee TOC and the branch to the callee, which 4861 // results in the TOC access going through the TOC of the callee instead 4862 // of going through the TOC of the caller, which leads to incorrect code. 4863 4864 // Load the address of the function entry point from the function 4865 // descriptor. 4866 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4867 if (LDChain.getValueType() == MVT::Glue) 4868 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4869 4870 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 4871 ? (MachineMemOperand::MODereferenceable | 4872 MachineMemOperand::MOInvariant) 4873 : MachineMemOperand::MONone; 4874 4875 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 4876 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4877 /* Alignment = */ 8, MMOFlags); 4878 4879 // Load environment pointer into r11. 4880 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4881 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4882 SDValue LoadEnvPtr = 4883 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16), 4884 /* Alignment = */ 8, MMOFlags); 4885 4886 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4887 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4888 SDValue TOCPtr = 4889 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8), 4890 /* Alignment = */ 8, MMOFlags); 4891 4892 setUsesTOCBasePtr(DAG); 4893 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4894 InFlag); 4895 Chain = TOCVal.getValue(0); 4896 InFlag = TOCVal.getValue(1); 4897 4898 // If the function call has an explicit 'nest' parameter, it takes the 4899 // place of the environment pointer. 4900 if (!hasNest) { 4901 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4902 InFlag); 4903 4904 Chain = EnvVal.getValue(0); 4905 InFlag = EnvVal.getValue(1); 4906 } 4907 4908 MTCTROps[0] = Chain; 4909 MTCTROps[1] = LoadFuncPtr; 4910 MTCTROps[2] = InFlag; 4911 } 4912 4913 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4914 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4915 InFlag = Chain.getValue(1); 4916 4917 NodeTys.clear(); 4918 NodeTys.push_back(MVT::Other); 4919 NodeTys.push_back(MVT::Glue); 4920 Ops.push_back(Chain); 4921 CallOpc = PPCISD::BCTRL; 4922 Callee.setNode(nullptr); 4923 // Add use of X11 (holding environment pointer) 4924 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4925 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4926 // Add CTR register as callee so a bctr can be emitted later. 4927 if (isTailCall) 4928 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4929 } 4930 4931 // If this is a direct call, pass the chain and the callee. 4932 if (Callee.getNode()) { 4933 Ops.push_back(Chain); 4934 Ops.push_back(Callee); 4935 } 4936 // If this is a tail call add stack pointer delta. 4937 if (isTailCall) 4938 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4939 4940 // Add argument registers to the end of the list so that they are known live 4941 // into the call. 4942 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4943 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4944 RegsToPass[i].second.getValueType())); 4945 4946 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4947 // into the call. 4948 if (isSVR4ABI && isPPC64 && !isPatchPoint) { 4949 setUsesTOCBasePtr(DAG); 4950 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4951 } 4952 4953 return CallOpc; 4954 } 4955 4956 SDValue PPCTargetLowering::LowerCallResult( 4957 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4958 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4959 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4960 SmallVector<CCValAssign, 16> RVLocs; 4961 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4962 *DAG.getContext()); 4963 4964 CCRetInfo.AnalyzeCallResult( 4965 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4966 ? RetCC_PPC_Cold 4967 : RetCC_PPC); 4968 4969 // Copy all of the result registers out of their specified physreg. 4970 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4971 CCValAssign &VA = RVLocs[i]; 4972 assert(VA.isRegLoc() && "Can only return in registers!"); 4973 4974 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4975 VA.getLocReg(), VA.getLocVT(), InFlag); 4976 Chain = Val.getValue(1); 4977 InFlag = Val.getValue(2); 4978 4979 switch (VA.getLocInfo()) { 4980 default: llvm_unreachable("Unknown loc info!"); 4981 case CCValAssign::Full: break; 4982 case CCValAssign::AExt: 4983 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4984 break; 4985 case CCValAssign::ZExt: 4986 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4987 DAG.getValueType(VA.getValVT())); 4988 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4989 break; 4990 case CCValAssign::SExt: 4991 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4992 DAG.getValueType(VA.getValVT())); 4993 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4994 break; 4995 } 4996 4997 InVals.push_back(Val); 4998 } 4999 5000 return Chain; 5001 } 5002 5003 SDValue PPCTargetLowering::FinishCall( 5004 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5005 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5006 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 5007 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5008 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5009 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5010 std::vector<EVT> NodeTys; 5011 SmallVector<SDValue, 8> Ops; 5012 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 5013 SPDiff, isTailCall, isPatchPoint, hasNest, 5014 RegsToPass, Ops, NodeTys, CS, Subtarget); 5015 5016 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5017 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 5018 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5019 5020 // When performing tail call optimization the callee pops its arguments off 5021 // the stack. Account for this here so these bytes can be pushed back on in 5022 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5023 int BytesCalleePops = 5024 (CallConv == CallingConv::Fast && 5025 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 5026 5027 // Add a register mask operand representing the call-preserved registers. 5028 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5029 const uint32_t *Mask = 5030 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5031 assert(Mask && "Missing call preserved mask for calling convention"); 5032 Ops.push_back(DAG.getRegisterMask(Mask)); 5033 5034 if (InFlag.getNode()) 5035 Ops.push_back(InFlag); 5036 5037 // Emit tail call. 5038 if (isTailCall) { 5039 assert(((Callee.getOpcode() == ISD::Register && 5040 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5041 Callee.getOpcode() == ISD::TargetExternalSymbol || 5042 Callee.getOpcode() == ISD::TargetGlobalAddress || 5043 isa<ConstantSDNode>(Callee)) && 5044 "Expecting an global address, external symbol, absolute value or register"); 5045 5046 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5047 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 5048 } 5049 5050 // Add a NOP immediately after the branch instruction when using the 64-bit 5051 // SVR4 ABI. At link time, if caller and callee are in a different module and 5052 // thus have a different TOC, the call will be replaced with a call to a stub 5053 // function which saves the current TOC, loads the TOC of the callee and 5054 // branches to the callee. The NOP will be replaced with a load instruction 5055 // which restores the TOC of the caller from the TOC save slot of the current 5056 // stack frame. If caller and callee belong to the same module (and have the 5057 // same TOC), the NOP will remain unchanged. 5058 5059 MachineFunction &MF = DAG.getMachineFunction(); 5060 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 5061 !isPatchPoint) { 5062 if (CallOpc == PPCISD::BCTRL) { 5063 // This is a call through a function pointer. 5064 // Restore the caller TOC from the save area into R2. 5065 // See PrepareCall() for more information about calls through function 5066 // pointers in the 64-bit SVR4 ABI. 5067 // We are using a target-specific load with r2 hard coded, because the 5068 // result of a target-independent load would never go directly into r2, 5069 // since r2 is a reserved register (which prevents the register allocator 5070 // from allocating it), resulting in an additional register being 5071 // allocated and an unnecessary move instruction being generated. 5072 CallOpc = PPCISD::BCTRL_LOAD_TOC; 5073 5074 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5075 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 5076 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5077 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5078 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 5079 5080 // The address needs to go after the chain input but before the flag (or 5081 // any other variadic arguments). 5082 Ops.insert(std::next(Ops.begin()), AddTOC); 5083 } else if (CallOpc == PPCISD::CALL && 5084 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) { 5085 // Otherwise insert NOP for non-local calls. 5086 CallOpc = PPCISD::CALL_NOP; 5087 } 5088 } 5089 5090 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 5091 InFlag = Chain.getValue(1); 5092 5093 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5094 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5095 InFlag, dl); 5096 if (!Ins.empty()) 5097 InFlag = Chain.getValue(1); 5098 5099 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 5100 Ins, dl, DAG, InVals); 5101 } 5102 5103 SDValue 5104 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5105 SmallVectorImpl<SDValue> &InVals) const { 5106 SelectionDAG &DAG = CLI.DAG; 5107 SDLoc &dl = CLI.DL; 5108 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5109 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5110 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5111 SDValue Chain = CLI.Chain; 5112 SDValue Callee = CLI.Callee; 5113 bool &isTailCall = CLI.IsTailCall; 5114 CallingConv::ID CallConv = CLI.CallConv; 5115 bool isVarArg = CLI.IsVarArg; 5116 bool isPatchPoint = CLI.IsPatchPoint; 5117 ImmutableCallSite CS = CLI.CS; 5118 5119 if (isTailCall) { 5120 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5121 isTailCall = false; 5122 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5123 isTailCall = 5124 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5125 isVarArg, Outs, Ins, DAG); 5126 else 5127 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5128 Ins, DAG); 5129 if (isTailCall) { 5130 ++NumTailCalls; 5131 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5132 ++NumSiblingCalls; 5133 5134 assert(isa<GlobalAddressSDNode>(Callee) && 5135 "Callee should be an llvm::Function object."); 5136 LLVM_DEBUG( 5137 const GlobalValue *GV = 5138 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5139 const unsigned Width = 5140 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5141 dbgs() << "TCO caller: " 5142 << left_justify(DAG.getMachineFunction().getName(), Width) 5143 << ", callee linkage: " << GV->getVisibility() << ", " 5144 << GV->getLinkage() << "\n"); 5145 } 5146 } 5147 5148 if (!isTailCall && CS && CS.isMustTailCall()) 5149 report_fatal_error("failed to perform tail call elimination on a call " 5150 "site marked musttail"); 5151 5152 // When long calls (i.e. indirect calls) are always used, calls are always 5153 // made via function pointer. If we have a function name, first translate it 5154 // into a pointer. 5155 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5156 !isTailCall) 5157 Callee = LowerGlobalAddress(Callee, DAG); 5158 5159 if (Subtarget.isSVR4ABI()) { 5160 if (Subtarget.isPPC64()) 5161 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5162 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5163 dl, DAG, InVals, CS); 5164 else 5165 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5166 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5167 dl, DAG, InVals, CS); 5168 } 5169 5170 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5171 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5172 dl, DAG, InVals, CS); 5173 } 5174 5175 SDValue PPCTargetLowering::LowerCall_32SVR4( 5176 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5177 bool isTailCall, bool isPatchPoint, 5178 const SmallVectorImpl<ISD::OutputArg> &Outs, 5179 const SmallVectorImpl<SDValue> &OutVals, 5180 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5181 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5182 ImmutableCallSite CS) const { 5183 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5184 // of the 32-bit SVR4 ABI stack frame layout. 5185 5186 assert((CallConv == CallingConv::C || 5187 CallConv == CallingConv::Cold || 5188 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5189 5190 unsigned PtrByteSize = 4; 5191 5192 MachineFunction &MF = DAG.getMachineFunction(); 5193 5194 // Mark this function as potentially containing a function that contains a 5195 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5196 // and restoring the callers stack pointer in this functions epilog. This is 5197 // done because by tail calling the called function might overwrite the value 5198 // in this function's (MF) stack pointer stack slot 0(SP). 5199 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5200 CallConv == CallingConv::Fast) 5201 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5202 5203 // Count how many bytes are to be pushed on the stack, including the linkage 5204 // area, parameter list area and the part of the local variable space which 5205 // contains copies of aggregates which are passed by value. 5206 5207 // Assign locations to all of the outgoing arguments. 5208 SmallVector<CCValAssign, 16> ArgLocs; 5209 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5210 5211 // Reserve space for the linkage area on the stack. 5212 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5213 PtrByteSize); 5214 if (useSoftFloat()) 5215 CCInfo.PreAnalyzeCallOperands(Outs); 5216 5217 if (isVarArg) { 5218 // Handle fixed and variable vector arguments differently. 5219 // Fixed vector arguments go into registers as long as registers are 5220 // available. Variable vector arguments always go into memory. 5221 unsigned NumArgs = Outs.size(); 5222 5223 for (unsigned i = 0; i != NumArgs; ++i) { 5224 MVT ArgVT = Outs[i].VT; 5225 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5226 bool Result; 5227 5228 if (Outs[i].IsFixed) { 5229 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5230 CCInfo); 5231 } else { 5232 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5233 ArgFlags, CCInfo); 5234 } 5235 5236 if (Result) { 5237 #ifndef NDEBUG 5238 errs() << "Call operand #" << i << " has unhandled type " 5239 << EVT(ArgVT).getEVTString() << "\n"; 5240 #endif 5241 llvm_unreachable(nullptr); 5242 } 5243 } 5244 } else { 5245 // All arguments are treated the same. 5246 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5247 } 5248 CCInfo.clearWasPPCF128(); 5249 5250 // Assign locations to all of the outgoing aggregate by value arguments. 5251 SmallVector<CCValAssign, 16> ByValArgLocs; 5252 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5253 5254 // Reserve stack space for the allocations in CCInfo. 5255 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5256 5257 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5258 5259 // Size of the linkage area, parameter list area and the part of the local 5260 // space variable where copies of aggregates which are passed by value are 5261 // stored. 5262 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5263 5264 // Calculate by how many bytes the stack has to be adjusted in case of tail 5265 // call optimization. 5266 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5267 5268 // Adjust the stack pointer for the new arguments... 5269 // These operations are automatically eliminated by the prolog/epilog pass 5270 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5271 SDValue CallSeqStart = Chain; 5272 5273 // Load the return address and frame pointer so it can be moved somewhere else 5274 // later. 5275 SDValue LROp, FPOp; 5276 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5277 5278 // Set up a copy of the stack pointer for use loading and storing any 5279 // arguments that may not fit in the registers available for argument 5280 // passing. 5281 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5282 5283 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5284 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5285 SmallVector<SDValue, 8> MemOpChains; 5286 5287 bool seenFloatArg = false; 5288 // Walk the register/memloc assignments, inserting copies/loads. 5289 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 5290 i != e; 5291 ++i) { 5292 CCValAssign &VA = ArgLocs[i]; 5293 SDValue Arg = OutVals[i]; 5294 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5295 5296 if (Flags.isByVal()) { 5297 // Argument is an aggregate which is passed by value, thus we need to 5298 // create a copy of it in the local variable space of the current stack 5299 // frame (which is the stack frame of the caller) and pass the address of 5300 // this copy to the callee. 5301 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5302 CCValAssign &ByValVA = ByValArgLocs[j++]; 5303 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5304 5305 // Memory reserved in the local variable space of the callers stack frame. 5306 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5307 5308 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5309 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5310 StackPtr, PtrOff); 5311 5312 // Create a copy of the argument in the local area of the current 5313 // stack frame. 5314 SDValue MemcpyCall = 5315 CreateCopyOfByValArgument(Arg, PtrOff, 5316 CallSeqStart.getNode()->getOperand(0), 5317 Flags, DAG, dl); 5318 5319 // This must go outside the CALLSEQ_START..END. 5320 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5321 SDLoc(MemcpyCall)); 5322 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5323 NewCallSeqStart.getNode()); 5324 Chain = CallSeqStart = NewCallSeqStart; 5325 5326 // Pass the address of the aggregate copy on the stack either in a 5327 // physical register or in the parameter list area of the current stack 5328 // frame to the callee. 5329 Arg = PtrOff; 5330 } 5331 5332 if (VA.isRegLoc()) { 5333 if (Arg.getValueType() == MVT::i1) 5334 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 5335 5336 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5337 // Put argument in a physical register. 5338 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5339 } else { 5340 // Put argument in the parameter list area of the current stack frame. 5341 assert(VA.isMemLoc()); 5342 unsigned LocMemOffset = VA.getLocMemOffset(); 5343 5344 if (!isTailCall) { 5345 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5346 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5347 StackPtr, PtrOff); 5348 5349 MemOpChains.push_back( 5350 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5351 } else { 5352 // Calculate and remember argument location. 5353 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5354 TailCallArguments); 5355 } 5356 } 5357 } 5358 5359 if (!MemOpChains.empty()) 5360 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5361 5362 // Build a sequence of copy-to-reg nodes chained together with token chain 5363 // and flag operands which copy the outgoing args into the appropriate regs. 5364 SDValue InFlag; 5365 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5366 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5367 RegsToPass[i].second, InFlag); 5368 InFlag = Chain.getValue(1); 5369 } 5370 5371 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5372 // registers. 5373 if (isVarArg) { 5374 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5375 SDValue Ops[] = { Chain, InFlag }; 5376 5377 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5378 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5379 5380 InFlag = Chain.getValue(1); 5381 } 5382 5383 if (isTailCall) 5384 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5385 TailCallArguments); 5386 5387 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5388 /* unused except on PPC64 ELFv1 */ false, DAG, 5389 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5390 NumBytes, Ins, InVals, CS); 5391 } 5392 5393 // Copy an argument into memory, being careful to do this outside the 5394 // call sequence for the call to which the argument belongs. 5395 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5396 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5397 SelectionDAG &DAG, const SDLoc &dl) const { 5398 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5399 CallSeqStart.getNode()->getOperand(0), 5400 Flags, DAG, dl); 5401 // The MEMCPY must go outside the CALLSEQ_START..END. 5402 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5403 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5404 SDLoc(MemcpyCall)); 5405 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5406 NewCallSeqStart.getNode()); 5407 return NewCallSeqStart; 5408 } 5409 5410 SDValue PPCTargetLowering::LowerCall_64SVR4( 5411 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5412 bool isTailCall, bool isPatchPoint, 5413 const SmallVectorImpl<ISD::OutputArg> &Outs, 5414 const SmallVectorImpl<SDValue> &OutVals, 5415 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5416 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5417 ImmutableCallSite CS) const { 5418 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5419 bool isLittleEndian = Subtarget.isLittleEndian(); 5420 unsigned NumOps = Outs.size(); 5421 bool hasNest = false; 5422 bool IsSibCall = false; 5423 5424 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5425 unsigned PtrByteSize = 8; 5426 5427 MachineFunction &MF = DAG.getMachineFunction(); 5428 5429 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5430 IsSibCall = true; 5431 5432 // Mark this function as potentially containing a function that contains a 5433 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5434 // and restoring the callers stack pointer in this functions epilog. This is 5435 // done because by tail calling the called function might overwrite the value 5436 // in this function's (MF) stack pointer stack slot 0(SP). 5437 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5438 CallConv == CallingConv::Fast) 5439 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5440 5441 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5442 "fastcc not supported on varargs functions"); 5443 5444 // Count how many bytes are to be pushed on the stack, including the linkage 5445 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5446 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5447 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5448 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5449 unsigned NumBytes = LinkageSize; 5450 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5451 unsigned &QFPR_idx = FPR_idx; 5452 5453 static const MCPhysReg GPR[] = { 5454 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5455 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5456 }; 5457 static const MCPhysReg VR[] = { 5458 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5459 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5460 }; 5461 5462 const unsigned NumGPRs = array_lengthof(GPR); 5463 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5464 const unsigned NumVRs = array_lengthof(VR); 5465 const unsigned NumQFPRs = NumFPRs; 5466 5467 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5468 // can be passed to the callee in registers. 5469 // For the fast calling convention, there is another check below. 5470 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5471 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5472 if (!HasParameterArea) { 5473 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5474 unsigned AvailableFPRs = NumFPRs; 5475 unsigned AvailableVRs = NumVRs; 5476 unsigned NumBytesTmp = NumBytes; 5477 for (unsigned i = 0; i != NumOps; ++i) { 5478 if (Outs[i].Flags.isNest()) continue; 5479 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5480 PtrByteSize, LinkageSize, ParamAreaSize, 5481 NumBytesTmp, AvailableFPRs, AvailableVRs, 5482 Subtarget.hasQPX())) 5483 HasParameterArea = true; 5484 } 5485 } 5486 5487 // When using the fast calling convention, we don't provide backing for 5488 // arguments that will be in registers. 5489 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5490 5491 // Avoid allocating parameter area for fastcc functions if all the arguments 5492 // can be passed in the registers. 5493 if (CallConv == CallingConv::Fast) 5494 HasParameterArea = false; 5495 5496 // Add up all the space actually used. 5497 for (unsigned i = 0; i != NumOps; ++i) { 5498 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5499 EVT ArgVT = Outs[i].VT; 5500 EVT OrigVT = Outs[i].ArgVT; 5501 5502 if (Flags.isNest()) 5503 continue; 5504 5505 if (CallConv == CallingConv::Fast) { 5506 if (Flags.isByVal()) { 5507 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5508 if (NumGPRsUsed > NumGPRs) 5509 HasParameterArea = true; 5510 } else { 5511 switch (ArgVT.getSimpleVT().SimpleTy) { 5512 default: llvm_unreachable("Unexpected ValueType for argument!"); 5513 case MVT::i1: 5514 case MVT::i32: 5515 case MVT::i64: 5516 if (++NumGPRsUsed <= NumGPRs) 5517 continue; 5518 break; 5519 case MVT::v4i32: 5520 case MVT::v8i16: 5521 case MVT::v16i8: 5522 case MVT::v2f64: 5523 case MVT::v2i64: 5524 case MVT::v1i128: 5525 if (++NumVRsUsed <= NumVRs) 5526 continue; 5527 break; 5528 case MVT::v4f32: 5529 // When using QPX, this is handled like a FP register, otherwise, it 5530 // is an Altivec register. 5531 if (Subtarget.hasQPX()) { 5532 if (++NumFPRsUsed <= NumFPRs) 5533 continue; 5534 } else { 5535 if (++NumVRsUsed <= NumVRs) 5536 continue; 5537 } 5538 break; 5539 case MVT::f32: 5540 case MVT::f64: 5541 case MVT::v4f64: // QPX 5542 case MVT::v4i1: // QPX 5543 if (++NumFPRsUsed <= NumFPRs) 5544 continue; 5545 break; 5546 } 5547 HasParameterArea = true; 5548 } 5549 } 5550 5551 /* Respect alignment of argument on the stack. */ 5552 unsigned Align = 5553 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5554 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5555 5556 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5557 if (Flags.isInConsecutiveRegsLast()) 5558 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5559 } 5560 5561 unsigned NumBytesActuallyUsed = NumBytes; 5562 5563 // In the old ELFv1 ABI, 5564 // the prolog code of the callee may store up to 8 GPR argument registers to 5565 // the stack, allowing va_start to index over them in memory if its varargs. 5566 // Because we cannot tell if this is needed on the caller side, we have to 5567 // conservatively assume that it is needed. As such, make sure we have at 5568 // least enough stack space for the caller to store the 8 GPRs. 5569 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5570 // really requires memory operands, e.g. a vararg function. 5571 if (HasParameterArea) 5572 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5573 else 5574 NumBytes = LinkageSize; 5575 5576 // Tail call needs the stack to be aligned. 5577 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5578 CallConv == CallingConv::Fast) 5579 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5580 5581 int SPDiff = 0; 5582 5583 // Calculate by how many bytes the stack has to be adjusted in case of tail 5584 // call optimization. 5585 if (!IsSibCall) 5586 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5587 5588 // To protect arguments on the stack from being clobbered in a tail call, 5589 // force all the loads to happen before doing any other lowering. 5590 if (isTailCall) 5591 Chain = DAG.getStackArgumentTokenFactor(Chain); 5592 5593 // Adjust the stack pointer for the new arguments... 5594 // These operations are automatically eliminated by the prolog/epilog pass 5595 if (!IsSibCall) 5596 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5597 SDValue CallSeqStart = Chain; 5598 5599 // Load the return address and frame pointer so it can be move somewhere else 5600 // later. 5601 SDValue LROp, FPOp; 5602 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5603 5604 // Set up a copy of the stack pointer for use loading and storing any 5605 // arguments that may not fit in the registers available for argument 5606 // passing. 5607 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5608 5609 // Figure out which arguments are going to go in registers, and which in 5610 // memory. Also, if this is a vararg function, floating point operations 5611 // must be stored to our stack, and loaded into integer regs as well, if 5612 // any integer regs are available for argument passing. 5613 unsigned ArgOffset = LinkageSize; 5614 5615 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5616 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5617 5618 SmallVector<SDValue, 8> MemOpChains; 5619 for (unsigned i = 0; i != NumOps; ++i) { 5620 SDValue Arg = OutVals[i]; 5621 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5622 EVT ArgVT = Outs[i].VT; 5623 EVT OrigVT = Outs[i].ArgVT; 5624 5625 // PtrOff will be used to store the current argument to the stack if a 5626 // register cannot be found for it. 5627 SDValue PtrOff; 5628 5629 // We re-align the argument offset for each argument, except when using the 5630 // fast calling convention, when we need to make sure we do that only when 5631 // we'll actually use a stack slot. 5632 auto ComputePtrOff = [&]() { 5633 /* Respect alignment of argument on the stack. */ 5634 unsigned Align = 5635 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5636 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5637 5638 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5639 5640 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5641 }; 5642 5643 if (CallConv != CallingConv::Fast) { 5644 ComputePtrOff(); 5645 5646 /* Compute GPR index associated with argument offset. */ 5647 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5648 GPR_idx = std::min(GPR_idx, NumGPRs); 5649 } 5650 5651 // Promote integers to 64-bit values. 5652 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5653 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5654 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5655 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5656 } 5657 5658 // FIXME memcpy is used way more than necessary. Correctness first. 5659 // Note: "by value" is code for passing a structure by value, not 5660 // basic types. 5661 if (Flags.isByVal()) { 5662 // Note: Size includes alignment padding, so 5663 // struct x { short a; char b; } 5664 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5665 // These are the proper values we need for right-justifying the 5666 // aggregate in a parameter register. 5667 unsigned Size = Flags.getByValSize(); 5668 5669 // An empty aggregate parameter takes up no storage and no 5670 // registers. 5671 if (Size == 0) 5672 continue; 5673 5674 if (CallConv == CallingConv::Fast) 5675 ComputePtrOff(); 5676 5677 // All aggregates smaller than 8 bytes must be passed right-justified. 5678 if (Size==1 || Size==2 || Size==4) { 5679 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5680 if (GPR_idx != NumGPRs) { 5681 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5682 MachinePointerInfo(), VT); 5683 MemOpChains.push_back(Load.getValue(1)); 5684 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5685 5686 ArgOffset += PtrByteSize; 5687 continue; 5688 } 5689 } 5690 5691 if (GPR_idx == NumGPRs && Size < 8) { 5692 SDValue AddPtr = PtrOff; 5693 if (!isLittleEndian) { 5694 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5695 PtrOff.getValueType()); 5696 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5697 } 5698 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5699 CallSeqStart, 5700 Flags, DAG, dl); 5701 ArgOffset += PtrByteSize; 5702 continue; 5703 } 5704 // Copy entire object into memory. There are cases where gcc-generated 5705 // code assumes it is there, even if it could be put entirely into 5706 // registers. (This is not what the doc says.) 5707 5708 // FIXME: The above statement is likely due to a misunderstanding of the 5709 // documents. All arguments must be copied into the parameter area BY 5710 // THE CALLEE in the event that the callee takes the address of any 5711 // formal argument. That has not yet been implemented. However, it is 5712 // reasonable to use the stack area as a staging area for the register 5713 // load. 5714 5715 // Skip this for small aggregates, as we will use the same slot for a 5716 // right-justified copy, below. 5717 if (Size >= 8) 5718 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5719 CallSeqStart, 5720 Flags, DAG, dl); 5721 5722 // When a register is available, pass a small aggregate right-justified. 5723 if (Size < 8 && GPR_idx != NumGPRs) { 5724 // The easiest way to get this right-justified in a register 5725 // is to copy the structure into the rightmost portion of a 5726 // local variable slot, then load the whole slot into the 5727 // register. 5728 // FIXME: The memcpy seems to produce pretty awful code for 5729 // small aggregates, particularly for packed ones. 5730 // FIXME: It would be preferable to use the slot in the 5731 // parameter save area instead of a new local variable. 5732 SDValue AddPtr = PtrOff; 5733 if (!isLittleEndian) { 5734 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5735 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5736 } 5737 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5738 CallSeqStart, 5739 Flags, DAG, dl); 5740 5741 // Load the slot into the register. 5742 SDValue Load = 5743 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5744 MemOpChains.push_back(Load.getValue(1)); 5745 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5746 5747 // Done with this argument. 5748 ArgOffset += PtrByteSize; 5749 continue; 5750 } 5751 5752 // For aggregates larger than PtrByteSize, copy the pieces of the 5753 // object that fit into registers from the parameter save area. 5754 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5755 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5756 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5757 if (GPR_idx != NumGPRs) { 5758 SDValue Load = 5759 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 5760 MemOpChains.push_back(Load.getValue(1)); 5761 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5762 ArgOffset += PtrByteSize; 5763 } else { 5764 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5765 break; 5766 } 5767 } 5768 continue; 5769 } 5770 5771 switch (Arg.getSimpleValueType().SimpleTy) { 5772 default: llvm_unreachable("Unexpected ValueType for argument!"); 5773 case MVT::i1: 5774 case MVT::i32: 5775 case MVT::i64: 5776 if (Flags.isNest()) { 5777 // The 'nest' parameter, if any, is passed in R11. 5778 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5779 hasNest = true; 5780 break; 5781 } 5782 5783 // These can be scalar arguments or elements of an integer array type 5784 // passed directly. Clang may use those instead of "byval" aggregate 5785 // types to avoid forcing arguments to memory unnecessarily. 5786 if (GPR_idx != NumGPRs) { 5787 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5788 } else { 5789 if (CallConv == CallingConv::Fast) 5790 ComputePtrOff(); 5791 5792 assert(HasParameterArea && 5793 "Parameter area must exist to pass an argument in memory."); 5794 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5795 true, isTailCall, false, MemOpChains, 5796 TailCallArguments, dl); 5797 if (CallConv == CallingConv::Fast) 5798 ArgOffset += PtrByteSize; 5799 } 5800 if (CallConv != CallingConv::Fast) 5801 ArgOffset += PtrByteSize; 5802 break; 5803 case MVT::f32: 5804 case MVT::f64: { 5805 // These can be scalar arguments or elements of a float array type 5806 // passed directly. The latter are used to implement ELFv2 homogenous 5807 // float aggregates. 5808 5809 // Named arguments go into FPRs first, and once they overflow, the 5810 // remaining arguments go into GPRs and then the parameter save area. 5811 // Unnamed arguments for vararg functions always go to GPRs and 5812 // then the parameter save area. For now, put all arguments to vararg 5813 // routines always in both locations (FPR *and* GPR or stack slot). 5814 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5815 bool NeededLoad = false; 5816 5817 // First load the argument into the next available FPR. 5818 if (FPR_idx != NumFPRs) 5819 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5820 5821 // Next, load the argument into GPR or stack slot if needed. 5822 if (!NeedGPROrStack) 5823 ; 5824 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5825 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5826 // once we support fp <-> gpr moves. 5827 5828 // In the non-vararg case, this can only ever happen in the 5829 // presence of f32 array types, since otherwise we never run 5830 // out of FPRs before running out of GPRs. 5831 SDValue ArgVal; 5832 5833 // Double values are always passed in a single GPR. 5834 if (Arg.getValueType() != MVT::f32) { 5835 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5836 5837 // Non-array float values are extended and passed in a GPR. 5838 } else if (!Flags.isInConsecutiveRegs()) { 5839 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5840 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5841 5842 // If we have an array of floats, we collect every odd element 5843 // together with its predecessor into one GPR. 5844 } else if (ArgOffset % PtrByteSize != 0) { 5845 SDValue Lo, Hi; 5846 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5847 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5848 if (!isLittleEndian) 5849 std::swap(Lo, Hi); 5850 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5851 5852 // The final element, if even, goes into the first half of a GPR. 5853 } else if (Flags.isInConsecutiveRegsLast()) { 5854 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5855 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5856 if (!isLittleEndian) 5857 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5858 DAG.getConstant(32, dl, MVT::i32)); 5859 5860 // Non-final even elements are skipped; they will be handled 5861 // together the with subsequent argument on the next go-around. 5862 } else 5863 ArgVal = SDValue(); 5864 5865 if (ArgVal.getNode()) 5866 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5867 } else { 5868 if (CallConv == CallingConv::Fast) 5869 ComputePtrOff(); 5870 5871 // Single-precision floating-point values are mapped to the 5872 // second (rightmost) word of the stack doubleword. 5873 if (Arg.getValueType() == MVT::f32 && 5874 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5875 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5876 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5877 } 5878 5879 assert(HasParameterArea && 5880 "Parameter area must exist to pass an argument in memory."); 5881 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5882 true, isTailCall, false, MemOpChains, 5883 TailCallArguments, dl); 5884 5885 NeededLoad = true; 5886 } 5887 // When passing an array of floats, the array occupies consecutive 5888 // space in the argument area; only round up to the next doubleword 5889 // at the end of the array. Otherwise, each float takes 8 bytes. 5890 if (CallConv != CallingConv::Fast || NeededLoad) { 5891 ArgOffset += (Arg.getValueType() == MVT::f32 && 5892 Flags.isInConsecutiveRegs()) ? 4 : 8; 5893 if (Flags.isInConsecutiveRegsLast()) 5894 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5895 } 5896 break; 5897 } 5898 case MVT::v4f32: 5899 case MVT::v4i32: 5900 case MVT::v8i16: 5901 case MVT::v16i8: 5902 case MVT::v2f64: 5903 case MVT::v2i64: 5904 case MVT::v1i128: 5905 if (!Subtarget.hasQPX()) { 5906 // These can be scalar arguments or elements of a vector array type 5907 // passed directly. The latter are used to implement ELFv2 homogenous 5908 // vector aggregates. 5909 5910 // For a varargs call, named arguments go into VRs or on the stack as 5911 // usual; unnamed arguments always go to the stack or the corresponding 5912 // GPRs when within range. For now, we always put the value in both 5913 // locations (or even all three). 5914 if (isVarArg) { 5915 assert(HasParameterArea && 5916 "Parameter area must exist if we have a varargs call."); 5917 // We could elide this store in the case where the object fits 5918 // entirely in R registers. Maybe later. 5919 SDValue Store = 5920 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5921 MemOpChains.push_back(Store); 5922 if (VR_idx != NumVRs) { 5923 SDValue Load = 5924 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 5925 MemOpChains.push_back(Load.getValue(1)); 5926 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5927 } 5928 ArgOffset += 16; 5929 for (unsigned i=0; i<16; i+=PtrByteSize) { 5930 if (GPR_idx == NumGPRs) 5931 break; 5932 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5933 DAG.getConstant(i, dl, PtrVT)); 5934 SDValue Load = 5935 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5936 MemOpChains.push_back(Load.getValue(1)); 5937 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5938 } 5939 break; 5940 } 5941 5942 // Non-varargs Altivec params go into VRs or on the stack. 5943 if (VR_idx != NumVRs) { 5944 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5945 } else { 5946 if (CallConv == CallingConv::Fast) 5947 ComputePtrOff(); 5948 5949 assert(HasParameterArea && 5950 "Parameter area must exist to pass an argument in memory."); 5951 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5952 true, isTailCall, true, MemOpChains, 5953 TailCallArguments, dl); 5954 if (CallConv == CallingConv::Fast) 5955 ArgOffset += 16; 5956 } 5957 5958 if (CallConv != CallingConv::Fast) 5959 ArgOffset += 16; 5960 break; 5961 } // not QPX 5962 5963 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5964 "Invalid QPX parameter type"); 5965 5966 /* fall through */ 5967 case MVT::v4f64: 5968 case MVT::v4i1: { 5969 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5970 if (isVarArg) { 5971 assert(HasParameterArea && 5972 "Parameter area must exist if we have a varargs call."); 5973 // We could elide this store in the case where the object fits 5974 // entirely in R registers. Maybe later. 5975 SDValue Store = 5976 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 5977 MemOpChains.push_back(Store); 5978 if (QFPR_idx != NumQFPRs) { 5979 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 5980 PtrOff, MachinePointerInfo()); 5981 MemOpChains.push_back(Load.getValue(1)); 5982 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5983 } 5984 ArgOffset += (IsF32 ? 16 : 32); 5985 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5986 if (GPR_idx == NumGPRs) 5987 break; 5988 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5989 DAG.getConstant(i, dl, PtrVT)); 5990 SDValue Load = 5991 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 5992 MemOpChains.push_back(Load.getValue(1)); 5993 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5994 } 5995 break; 5996 } 5997 5998 // Non-varargs QPX params go into registers or on the stack. 5999 if (QFPR_idx != NumQFPRs) { 6000 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6001 } else { 6002 if (CallConv == CallingConv::Fast) 6003 ComputePtrOff(); 6004 6005 assert(HasParameterArea && 6006 "Parameter area must exist to pass an argument in memory."); 6007 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6008 true, isTailCall, true, MemOpChains, 6009 TailCallArguments, dl); 6010 if (CallConv == CallingConv::Fast) 6011 ArgOffset += (IsF32 ? 16 : 32); 6012 } 6013 6014 if (CallConv != CallingConv::Fast) 6015 ArgOffset += (IsF32 ? 16 : 32); 6016 break; 6017 } 6018 } 6019 } 6020 6021 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6022 "mismatch in size of parameter area"); 6023 (void)NumBytesActuallyUsed; 6024 6025 if (!MemOpChains.empty()) 6026 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6027 6028 // Check if this is an indirect call (MTCTR/BCTRL). 6029 // See PrepareCall() for more information about calls through function 6030 // pointers in the 64-bit SVR4 ABI. 6031 if (!isTailCall && !isPatchPoint && 6032 !isFunctionGlobalAddress(Callee) && 6033 !isa<ExternalSymbolSDNode>(Callee)) { 6034 // Load r2 into a virtual register and store it to the TOC save area. 6035 setUsesTOCBasePtr(DAG); 6036 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6037 // TOC save area offset. 6038 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6039 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6040 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6041 Chain = DAG.getStore( 6042 Val.getValue(1), dl, Val, AddPtr, 6043 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6044 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6045 // This does not mean the MTCTR instruction must use R12; it's easier 6046 // to model this as an extra parameter, so do that. 6047 if (isELFv2ABI && !isPatchPoint) 6048 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6049 } 6050 6051 // Build a sequence of copy-to-reg nodes chained together with token chain 6052 // and flag operands which copy the outgoing args into the appropriate regs. 6053 SDValue InFlag; 6054 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6055 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6056 RegsToPass[i].second, InFlag); 6057 InFlag = Chain.getValue(1); 6058 } 6059 6060 if (isTailCall && !IsSibCall) 6061 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6062 TailCallArguments); 6063 6064 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6065 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6066 SPDiff, NumBytes, Ins, InVals, CS); 6067 } 6068 6069 SDValue PPCTargetLowering::LowerCall_Darwin( 6070 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6071 bool isTailCall, bool isPatchPoint, 6072 const SmallVectorImpl<ISD::OutputArg> &Outs, 6073 const SmallVectorImpl<SDValue> &OutVals, 6074 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6075 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6076 ImmutableCallSite CS) const { 6077 unsigned NumOps = Outs.size(); 6078 6079 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6080 bool isPPC64 = PtrVT == MVT::i64; 6081 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6082 6083 MachineFunction &MF = DAG.getMachineFunction(); 6084 6085 // Mark this function as potentially containing a function that contains a 6086 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6087 // and restoring the callers stack pointer in this functions epilog. This is 6088 // done because by tail calling the called function might overwrite the value 6089 // in this function's (MF) stack pointer stack slot 0(SP). 6090 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6091 CallConv == CallingConv::Fast) 6092 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6093 6094 // Count how many bytes are to be pushed on the stack, including the linkage 6095 // area, and parameter passing area. We start with 24/48 bytes, which is 6096 // prereserved space for [SP][CR][LR][3 x unused]. 6097 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6098 unsigned NumBytes = LinkageSize; 6099 6100 // Add up all the space actually used. 6101 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6102 // they all go in registers, but we must reserve stack space for them for 6103 // possible use by the caller. In varargs or 64-bit calls, parameters are 6104 // assigned stack space in order, with padding so Altivec parameters are 6105 // 16-byte aligned. 6106 unsigned nAltivecParamsAtEnd = 0; 6107 for (unsigned i = 0; i != NumOps; ++i) { 6108 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6109 EVT ArgVT = Outs[i].VT; 6110 // Varargs Altivec parameters are padded to a 16 byte boundary. 6111 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6112 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6113 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6114 if (!isVarArg && !isPPC64) { 6115 // Non-varargs Altivec parameters go after all the non-Altivec 6116 // parameters; handle those later so we know how much padding we need. 6117 nAltivecParamsAtEnd++; 6118 continue; 6119 } 6120 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6121 NumBytes = ((NumBytes+15)/16)*16; 6122 } 6123 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6124 } 6125 6126 // Allow for Altivec parameters at the end, if needed. 6127 if (nAltivecParamsAtEnd) { 6128 NumBytes = ((NumBytes+15)/16)*16; 6129 NumBytes += 16*nAltivecParamsAtEnd; 6130 } 6131 6132 // The prolog code of the callee may store up to 8 GPR argument registers to 6133 // the stack, allowing va_start to index over them in memory if its varargs. 6134 // Because we cannot tell if this is needed on the caller side, we have to 6135 // conservatively assume that it is needed. As such, make sure we have at 6136 // least enough stack space for the caller to store the 8 GPRs. 6137 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6138 6139 // Tail call needs the stack to be aligned. 6140 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6141 CallConv == CallingConv::Fast) 6142 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6143 6144 // Calculate by how many bytes the stack has to be adjusted in case of tail 6145 // call optimization. 6146 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6147 6148 // To protect arguments on the stack from being clobbered in a tail call, 6149 // force all the loads to happen before doing any other lowering. 6150 if (isTailCall) 6151 Chain = DAG.getStackArgumentTokenFactor(Chain); 6152 6153 // Adjust the stack pointer for the new arguments... 6154 // These operations are automatically eliminated by the prolog/epilog pass 6155 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6156 SDValue CallSeqStart = Chain; 6157 6158 // Load the return address and frame pointer so it can be move somewhere else 6159 // later. 6160 SDValue LROp, FPOp; 6161 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6162 6163 // Set up a copy of the stack pointer for use loading and storing any 6164 // arguments that may not fit in the registers available for argument 6165 // passing. 6166 SDValue StackPtr; 6167 if (isPPC64) 6168 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6169 else 6170 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6171 6172 // Figure out which arguments are going to go in registers, and which in 6173 // memory. Also, if this is a vararg function, floating point operations 6174 // must be stored to our stack, and loaded into integer regs as well, if 6175 // any integer regs are available for argument passing. 6176 unsigned ArgOffset = LinkageSize; 6177 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6178 6179 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6180 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6181 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6182 }; 6183 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6184 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6185 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6186 }; 6187 static const MCPhysReg VR[] = { 6188 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6189 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6190 }; 6191 const unsigned NumGPRs = array_lengthof(GPR_32); 6192 const unsigned NumFPRs = 13; 6193 const unsigned NumVRs = array_lengthof(VR); 6194 6195 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6196 6197 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6198 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6199 6200 SmallVector<SDValue, 8> MemOpChains; 6201 for (unsigned i = 0; i != NumOps; ++i) { 6202 SDValue Arg = OutVals[i]; 6203 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6204 6205 // PtrOff will be used to store the current argument to the stack if a 6206 // register cannot be found for it. 6207 SDValue PtrOff; 6208 6209 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6210 6211 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6212 6213 // On PPC64, promote integers to 64-bit values. 6214 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6215 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6216 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6217 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6218 } 6219 6220 // FIXME memcpy is used way more than necessary. Correctness first. 6221 // Note: "by value" is code for passing a structure by value, not 6222 // basic types. 6223 if (Flags.isByVal()) { 6224 unsigned Size = Flags.getByValSize(); 6225 // Very small objects are passed right-justified. Everything else is 6226 // passed left-justified. 6227 if (Size==1 || Size==2) { 6228 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6229 if (GPR_idx != NumGPRs) { 6230 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6231 MachinePointerInfo(), VT); 6232 MemOpChains.push_back(Load.getValue(1)); 6233 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6234 6235 ArgOffset += PtrByteSize; 6236 } else { 6237 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6238 PtrOff.getValueType()); 6239 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6240 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6241 CallSeqStart, 6242 Flags, DAG, dl); 6243 ArgOffset += PtrByteSize; 6244 } 6245 continue; 6246 } 6247 // Copy entire object into memory. There are cases where gcc-generated 6248 // code assumes it is there, even if it could be put entirely into 6249 // registers. (This is not what the doc says.) 6250 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6251 CallSeqStart, 6252 Flags, DAG, dl); 6253 6254 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6255 // copy the pieces of the object that fit into registers from the 6256 // parameter save area. 6257 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6258 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6259 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6260 if (GPR_idx != NumGPRs) { 6261 SDValue Load = 6262 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6263 MemOpChains.push_back(Load.getValue(1)); 6264 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6265 ArgOffset += PtrByteSize; 6266 } else { 6267 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6268 break; 6269 } 6270 } 6271 continue; 6272 } 6273 6274 switch (Arg.getSimpleValueType().SimpleTy) { 6275 default: llvm_unreachable("Unexpected ValueType for argument!"); 6276 case MVT::i1: 6277 case MVT::i32: 6278 case MVT::i64: 6279 if (GPR_idx != NumGPRs) { 6280 if (Arg.getValueType() == MVT::i1) 6281 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6282 6283 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6284 } else { 6285 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6286 isPPC64, isTailCall, false, MemOpChains, 6287 TailCallArguments, dl); 6288 } 6289 ArgOffset += PtrByteSize; 6290 break; 6291 case MVT::f32: 6292 case MVT::f64: 6293 if (FPR_idx != NumFPRs) { 6294 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6295 6296 if (isVarArg) { 6297 SDValue Store = 6298 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6299 MemOpChains.push_back(Store); 6300 6301 // Float varargs are always shadowed in available integer registers 6302 if (GPR_idx != NumGPRs) { 6303 SDValue Load = 6304 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6305 MemOpChains.push_back(Load.getValue(1)); 6306 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6307 } 6308 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6309 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6310 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6311 SDValue Load = 6312 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6313 MemOpChains.push_back(Load.getValue(1)); 6314 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6315 } 6316 } else { 6317 // If we have any FPRs remaining, we may also have GPRs remaining. 6318 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6319 // GPRs. 6320 if (GPR_idx != NumGPRs) 6321 ++GPR_idx; 6322 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6323 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6324 ++GPR_idx; 6325 } 6326 } else 6327 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6328 isPPC64, isTailCall, false, MemOpChains, 6329 TailCallArguments, dl); 6330 if (isPPC64) 6331 ArgOffset += 8; 6332 else 6333 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6334 break; 6335 case MVT::v4f32: 6336 case MVT::v4i32: 6337 case MVT::v8i16: 6338 case MVT::v16i8: 6339 if (isVarArg) { 6340 // These go aligned on the stack, or in the corresponding R registers 6341 // when within range. The Darwin PPC ABI doc claims they also go in 6342 // V registers; in fact gcc does this only for arguments that are 6343 // prototyped, not for those that match the ... We do it for all 6344 // arguments, seems to work. 6345 while (ArgOffset % 16 !=0) { 6346 ArgOffset += PtrByteSize; 6347 if (GPR_idx != NumGPRs) 6348 GPR_idx++; 6349 } 6350 // We could elide this store in the case where the object fits 6351 // entirely in R registers. Maybe later. 6352 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6353 DAG.getConstant(ArgOffset, dl, PtrVT)); 6354 SDValue Store = 6355 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6356 MemOpChains.push_back(Store); 6357 if (VR_idx != NumVRs) { 6358 SDValue Load = 6359 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6360 MemOpChains.push_back(Load.getValue(1)); 6361 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6362 } 6363 ArgOffset += 16; 6364 for (unsigned i=0; i<16; i+=PtrByteSize) { 6365 if (GPR_idx == NumGPRs) 6366 break; 6367 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6368 DAG.getConstant(i, dl, PtrVT)); 6369 SDValue Load = 6370 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6371 MemOpChains.push_back(Load.getValue(1)); 6372 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6373 } 6374 break; 6375 } 6376 6377 // Non-varargs Altivec params generally go in registers, but have 6378 // stack space allocated at the end. 6379 if (VR_idx != NumVRs) { 6380 // Doesn't have GPR space allocated. 6381 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6382 } else if (nAltivecParamsAtEnd==0) { 6383 // We are emitting Altivec params in order. 6384 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6385 isPPC64, isTailCall, true, MemOpChains, 6386 TailCallArguments, dl); 6387 ArgOffset += 16; 6388 } 6389 break; 6390 } 6391 } 6392 // If all Altivec parameters fit in registers, as they usually do, 6393 // they get stack space following the non-Altivec parameters. We 6394 // don't track this here because nobody below needs it. 6395 // If there are more Altivec parameters than fit in registers emit 6396 // the stores here. 6397 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6398 unsigned j = 0; 6399 // Offset is aligned; skip 1st 12 params which go in V registers. 6400 ArgOffset = ((ArgOffset+15)/16)*16; 6401 ArgOffset += 12*16; 6402 for (unsigned i = 0; i != NumOps; ++i) { 6403 SDValue Arg = OutVals[i]; 6404 EVT ArgType = Outs[i].VT; 6405 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6406 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6407 if (++j > NumVRs) { 6408 SDValue PtrOff; 6409 // We are emitting Altivec params in order. 6410 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6411 isPPC64, isTailCall, true, MemOpChains, 6412 TailCallArguments, dl); 6413 ArgOffset += 16; 6414 } 6415 } 6416 } 6417 } 6418 6419 if (!MemOpChains.empty()) 6420 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6421 6422 // On Darwin, R12 must contain the address of an indirect callee. This does 6423 // not mean the MTCTR instruction must use R12; it's easier to model this as 6424 // an extra parameter, so do that. 6425 if (!isTailCall && 6426 !isFunctionGlobalAddress(Callee) && 6427 !isa<ExternalSymbolSDNode>(Callee) && 6428 !isBLACompatibleAddress(Callee, DAG)) 6429 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6430 PPC::R12), Callee)); 6431 6432 // Build a sequence of copy-to-reg nodes chained together with token chain 6433 // and flag operands which copy the outgoing args into the appropriate regs. 6434 SDValue InFlag; 6435 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6436 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6437 RegsToPass[i].second, InFlag); 6438 InFlag = Chain.getValue(1); 6439 } 6440 6441 if (isTailCall) 6442 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6443 TailCallArguments); 6444 6445 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6446 /* unused except on PPC64 ELFv1 */ false, DAG, 6447 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6448 NumBytes, Ins, InVals, CS); 6449 } 6450 6451 bool 6452 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 6453 MachineFunction &MF, bool isVarArg, 6454 const SmallVectorImpl<ISD::OutputArg> &Outs, 6455 LLVMContext &Context) const { 6456 SmallVector<CCValAssign, 16> RVLocs; 6457 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 6458 return CCInfo.CheckReturn( 6459 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6460 ? RetCC_PPC_Cold 6461 : RetCC_PPC); 6462 } 6463 6464 SDValue 6465 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6466 bool isVarArg, 6467 const SmallVectorImpl<ISD::OutputArg> &Outs, 6468 const SmallVectorImpl<SDValue> &OutVals, 6469 const SDLoc &dl, SelectionDAG &DAG) const { 6470 SmallVector<CCValAssign, 16> RVLocs; 6471 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6472 *DAG.getContext()); 6473 CCInfo.AnalyzeReturn(Outs, 6474 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 6475 ? RetCC_PPC_Cold 6476 : RetCC_PPC); 6477 6478 SDValue Flag; 6479 SmallVector<SDValue, 4> RetOps(1, Chain); 6480 6481 // Copy the result values into the output registers. 6482 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6483 CCValAssign &VA = RVLocs[i]; 6484 assert(VA.isRegLoc() && "Can only return in registers!"); 6485 6486 SDValue Arg = OutVals[i]; 6487 6488 switch (VA.getLocInfo()) { 6489 default: llvm_unreachable("Unknown loc info!"); 6490 case CCValAssign::Full: break; 6491 case CCValAssign::AExt: 6492 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6493 break; 6494 case CCValAssign::ZExt: 6495 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6496 break; 6497 case CCValAssign::SExt: 6498 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6499 break; 6500 } 6501 6502 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6503 Flag = Chain.getValue(1); 6504 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6505 } 6506 6507 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6508 const MCPhysReg *I = 6509 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6510 if (I) { 6511 for (; *I; ++I) { 6512 6513 if (PPC::G8RCRegClass.contains(*I)) 6514 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6515 else if (PPC::F8RCRegClass.contains(*I)) 6516 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6517 else if (PPC::CRRCRegClass.contains(*I)) 6518 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6519 else if (PPC::VRRCRegClass.contains(*I)) 6520 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6521 else 6522 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6523 } 6524 } 6525 6526 RetOps[0] = Chain; // Update chain. 6527 6528 // Add the flag if we have it. 6529 if (Flag.getNode()) 6530 RetOps.push_back(Flag); 6531 6532 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6533 } 6534 6535 SDValue 6536 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 6537 SelectionDAG &DAG) const { 6538 SDLoc dl(Op); 6539 6540 // Get the correct type for integers. 6541 EVT IntVT = Op.getValueType(); 6542 6543 // Get the inputs. 6544 SDValue Chain = Op.getOperand(0); 6545 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6546 // Build a DYNAREAOFFSET node. 6547 SDValue Ops[2] = {Chain, FPSIdx}; 6548 SDVTList VTs = DAG.getVTList(IntVT); 6549 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6550 } 6551 6552 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 6553 SelectionDAG &DAG) const { 6554 // When we pop the dynamic allocation we need to restore the SP link. 6555 SDLoc dl(Op); 6556 6557 // Get the correct type for pointers. 6558 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6559 6560 // Construct the stack pointer operand. 6561 bool isPPC64 = Subtarget.isPPC64(); 6562 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6563 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6564 6565 // Get the operands for the STACKRESTORE. 6566 SDValue Chain = Op.getOperand(0); 6567 SDValue SaveSP = Op.getOperand(1); 6568 6569 // Load the old link SP. 6570 SDValue LoadLinkSP = 6571 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 6572 6573 // Restore the stack pointer. 6574 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6575 6576 // Store the old link SP. 6577 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 6578 } 6579 6580 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6581 MachineFunction &MF = DAG.getMachineFunction(); 6582 bool isPPC64 = Subtarget.isPPC64(); 6583 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6584 6585 // Get current frame pointer save index. The users of this index will be 6586 // primarily DYNALLOC instructions. 6587 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6588 int RASI = FI->getReturnAddrSaveIndex(); 6589 6590 // If the frame pointer save index hasn't been defined yet. 6591 if (!RASI) { 6592 // Find out what the fix offset of the frame pointer save area. 6593 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6594 // Allocate the frame index for frame pointer save area. 6595 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6596 // Save the result. 6597 FI->setReturnAddrSaveIndex(RASI); 6598 } 6599 return DAG.getFrameIndex(RASI, PtrVT); 6600 } 6601 6602 SDValue 6603 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6604 MachineFunction &MF = DAG.getMachineFunction(); 6605 bool isPPC64 = Subtarget.isPPC64(); 6606 EVT PtrVT = getPointerTy(MF.getDataLayout()); 6607 6608 // Get current frame pointer save index. The users of this index will be 6609 // primarily DYNALLOC instructions. 6610 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6611 int FPSI = FI->getFramePointerSaveIndex(); 6612 6613 // If the frame pointer save index hasn't been defined yet. 6614 if (!FPSI) { 6615 // Find out what the fix offset of the frame pointer save area. 6616 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6617 // Allocate the frame index for frame pointer save area. 6618 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6619 // Save the result. 6620 FI->setFramePointerSaveIndex(FPSI); 6621 } 6622 return DAG.getFrameIndex(FPSI, PtrVT); 6623 } 6624 6625 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6626 SelectionDAG &DAG) const { 6627 // Get the inputs. 6628 SDValue Chain = Op.getOperand(0); 6629 SDValue Size = Op.getOperand(1); 6630 SDLoc dl(Op); 6631 6632 // Get the correct type for pointers. 6633 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6634 // Negate the size. 6635 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6636 DAG.getConstant(0, dl, PtrVT), Size); 6637 // Construct a node for the frame pointer save index. 6638 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6639 // Build a DYNALLOC node. 6640 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6641 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6642 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6643 } 6644 6645 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 6646 SelectionDAG &DAG) const { 6647 MachineFunction &MF = DAG.getMachineFunction(); 6648 6649 bool isPPC64 = Subtarget.isPPC64(); 6650 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6651 6652 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 6653 return DAG.getFrameIndex(FI, PtrVT); 6654 } 6655 6656 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6657 SelectionDAG &DAG) const { 6658 SDLoc DL(Op); 6659 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6660 DAG.getVTList(MVT::i32, MVT::Other), 6661 Op.getOperand(0), Op.getOperand(1)); 6662 } 6663 6664 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6665 SelectionDAG &DAG) const { 6666 SDLoc DL(Op); 6667 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6668 Op.getOperand(0), Op.getOperand(1)); 6669 } 6670 6671 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6672 if (Op.getValueType().isVector()) 6673 return LowerVectorLoad(Op, DAG); 6674 6675 assert(Op.getValueType() == MVT::i1 && 6676 "Custom lowering only for i1 loads"); 6677 6678 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6679 6680 SDLoc dl(Op); 6681 LoadSDNode *LD = cast<LoadSDNode>(Op); 6682 6683 SDValue Chain = LD->getChain(); 6684 SDValue BasePtr = LD->getBasePtr(); 6685 MachineMemOperand *MMO = LD->getMemOperand(); 6686 6687 SDValue NewLD = 6688 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6689 BasePtr, MVT::i8, MMO); 6690 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6691 6692 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6693 return DAG.getMergeValues(Ops, dl); 6694 } 6695 6696 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6697 if (Op.getOperand(1).getValueType().isVector()) 6698 return LowerVectorStore(Op, DAG); 6699 6700 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6701 "Custom lowering only for i1 stores"); 6702 6703 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6704 6705 SDLoc dl(Op); 6706 StoreSDNode *ST = cast<StoreSDNode>(Op); 6707 6708 SDValue Chain = ST->getChain(); 6709 SDValue BasePtr = ST->getBasePtr(); 6710 SDValue Value = ST->getValue(); 6711 MachineMemOperand *MMO = ST->getMemOperand(); 6712 6713 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6714 Value); 6715 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6716 } 6717 6718 // FIXME: Remove this once the ANDI glue bug is fixed: 6719 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6720 assert(Op.getValueType() == MVT::i1 && 6721 "Custom lowering only for i1 results"); 6722 6723 SDLoc DL(Op); 6724 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6725 Op.getOperand(0)); 6726 } 6727 6728 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6729 /// possible. 6730 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6731 // Not FP? Not a fsel. 6732 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6733 !Op.getOperand(2).getValueType().isFloatingPoint()) 6734 return Op; 6735 6736 // We might be able to do better than this under some circumstances, but in 6737 // general, fsel-based lowering of select is a finite-math-only optimization. 6738 // For more information, see section F.3 of the 2.06 ISA specification. 6739 if (!DAG.getTarget().Options.NoInfsFPMath || 6740 !DAG.getTarget().Options.NoNaNsFPMath) 6741 return Op; 6742 // TODO: Propagate flags from the select rather than global settings. 6743 SDNodeFlags Flags; 6744 Flags.setNoInfs(true); 6745 Flags.setNoNaNs(true); 6746 6747 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6748 6749 EVT ResVT = Op.getValueType(); 6750 EVT CmpVT = Op.getOperand(0).getValueType(); 6751 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6752 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6753 SDLoc dl(Op); 6754 6755 // If the RHS of the comparison is a 0.0, we don't need to do the 6756 // subtraction at all. 6757 SDValue Sel1; 6758 if (isFloatingPointZero(RHS)) 6759 switch (CC) { 6760 default: break; // SETUO etc aren't handled by fsel. 6761 case ISD::SETNE: 6762 std::swap(TV, FV); 6763 LLVM_FALLTHROUGH; 6764 case ISD::SETEQ: 6765 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6766 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6767 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6768 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6769 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6770 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6771 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6772 case ISD::SETULT: 6773 case ISD::SETLT: 6774 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6775 LLVM_FALLTHROUGH; 6776 case ISD::SETOGE: 6777 case ISD::SETGE: 6778 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6779 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6780 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6781 case ISD::SETUGT: 6782 case ISD::SETGT: 6783 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6784 LLVM_FALLTHROUGH; 6785 case ISD::SETOLE: 6786 case ISD::SETLE: 6787 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6788 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6789 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6790 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6791 } 6792 6793 SDValue Cmp; 6794 switch (CC) { 6795 default: break; // SETUO etc aren't handled by fsel. 6796 case ISD::SETNE: 6797 std::swap(TV, FV); 6798 LLVM_FALLTHROUGH; 6799 case ISD::SETEQ: 6800 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6801 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6802 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6803 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6804 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6805 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6806 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6807 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6808 case ISD::SETULT: 6809 case ISD::SETLT: 6810 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6811 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6812 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6813 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6814 case ISD::SETOGE: 6815 case ISD::SETGE: 6816 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 6817 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6818 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6819 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6820 case ISD::SETUGT: 6821 case ISD::SETGT: 6822 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6823 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6824 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6825 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6826 case ISD::SETOLE: 6827 case ISD::SETLE: 6828 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 6829 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6830 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6831 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6832 } 6833 return Op; 6834 } 6835 6836 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6837 SelectionDAG &DAG, 6838 const SDLoc &dl) const { 6839 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6840 SDValue Src = Op.getOperand(0); 6841 if (Src.getValueType() == MVT::f32) 6842 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6843 6844 SDValue Tmp; 6845 switch (Op.getSimpleValueType().SimpleTy) { 6846 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6847 case MVT::i32: 6848 Tmp = DAG.getNode( 6849 Op.getOpcode() == ISD::FP_TO_SINT 6850 ? PPCISD::FCTIWZ 6851 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6852 dl, MVT::f64, Src); 6853 break; 6854 case MVT::i64: 6855 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6856 "i64 FP_TO_UINT is supported only with FPCVT"); 6857 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6858 PPCISD::FCTIDUZ, 6859 dl, MVT::f64, Src); 6860 break; 6861 } 6862 6863 // Convert the FP value to an int value through memory. 6864 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6865 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6866 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6867 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6868 MachinePointerInfo MPI = 6869 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6870 6871 // Emit a store to the stack slot. 6872 SDValue Chain; 6873 if (i32Stack) { 6874 MachineFunction &MF = DAG.getMachineFunction(); 6875 MachineMemOperand *MMO = 6876 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6877 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6878 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6879 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6880 } else 6881 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI); 6882 6883 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6884 // add in a bias on big endian. 6885 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6886 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6887 DAG.getConstant(4, dl, FIPtr.getValueType())); 6888 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6889 } 6890 6891 RLI.Chain = Chain; 6892 RLI.Ptr = FIPtr; 6893 RLI.MPI = MPI; 6894 } 6895 6896 /// Custom lowers floating point to integer conversions to use 6897 /// the direct move instructions available in ISA 2.07 to avoid the 6898 /// need for load/store combinations. 6899 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6900 SelectionDAG &DAG, 6901 const SDLoc &dl) const { 6902 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6903 SDValue Src = Op.getOperand(0); 6904 6905 if (Src.getValueType() == MVT::f32) 6906 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6907 6908 SDValue Tmp; 6909 switch (Op.getSimpleValueType().SimpleTy) { 6910 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6911 case MVT::i32: 6912 Tmp = DAG.getNode( 6913 Op.getOpcode() == ISD::FP_TO_SINT 6914 ? PPCISD::FCTIWZ 6915 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6916 dl, MVT::f64, Src); 6917 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6918 break; 6919 case MVT::i64: 6920 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6921 "i64 FP_TO_UINT is supported only with FPCVT"); 6922 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6923 PPCISD::FCTIDUZ, 6924 dl, MVT::f64, Src); 6925 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6926 break; 6927 } 6928 return Tmp; 6929 } 6930 6931 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6932 const SDLoc &dl) const { 6933 6934 // FP to INT conversions are legal for f128. 6935 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 6936 return Op; 6937 6938 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 6939 // PPC (the libcall is not available). 6940 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 6941 if (Op.getValueType() == MVT::i32) { 6942 if (Op.getOpcode() == ISD::FP_TO_SINT) { 6943 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6944 MVT::f64, Op.getOperand(0), 6945 DAG.getIntPtrConstant(0, dl)); 6946 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 6947 MVT::f64, Op.getOperand(0), 6948 DAG.getIntPtrConstant(1, dl)); 6949 6950 // Add the two halves of the long double in round-to-zero mode. 6951 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 6952 6953 // Now use a smaller FP_TO_SINT. 6954 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 6955 } 6956 if (Op.getOpcode() == ISD::FP_TO_UINT) { 6957 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 6958 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 6959 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 6960 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 6961 // FIXME: generated code sucks. 6962 // TODO: Are there fast-math-flags to propagate to this FSUB? 6963 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 6964 Op.getOperand(0), Tmp); 6965 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 6966 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 6967 DAG.getConstant(0x80000000, dl, MVT::i32)); 6968 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 6969 Op.getOperand(0)); 6970 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 6971 ISD::SETGE); 6972 } 6973 } 6974 6975 return SDValue(); 6976 } 6977 6978 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6979 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6980 6981 ReuseLoadInfo RLI; 6982 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6983 6984 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 6985 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 6986 } 6987 6988 // We're trying to insert a regular store, S, and then a load, L. If the 6989 // incoming value, O, is a load, we might just be able to have our load use the 6990 // address used by O. However, we don't know if anything else will store to 6991 // that address before we can load from it. To prevent this situation, we need 6992 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6993 // the same chain operand as O, we create a token factor from the chain results 6994 // of O and L, and we replace all uses of O's chain result with that token 6995 // factor (see spliceIntoChain below for this last part). 6996 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6997 ReuseLoadInfo &RLI, 6998 SelectionDAG &DAG, 6999 ISD::LoadExtType ET) const { 7000 SDLoc dl(Op); 7001 if (ET == ISD::NON_EXTLOAD && 7002 (Op.getOpcode() == ISD::FP_TO_UINT || 7003 Op.getOpcode() == ISD::FP_TO_SINT) && 7004 isOperationLegalOrCustom(Op.getOpcode(), 7005 Op.getOperand(0).getValueType())) { 7006 7007 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7008 return true; 7009 } 7010 7011 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7012 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7013 LD->isNonTemporal()) 7014 return false; 7015 if (LD->getMemoryVT() != MemVT) 7016 return false; 7017 7018 RLI.Ptr = LD->getBasePtr(); 7019 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7020 assert(LD->getAddressingMode() == ISD::PRE_INC && 7021 "Non-pre-inc AM on PPC?"); 7022 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7023 LD->getOffset()); 7024 } 7025 7026 RLI.Chain = LD->getChain(); 7027 RLI.MPI = LD->getPointerInfo(); 7028 RLI.IsDereferenceable = LD->isDereferenceable(); 7029 RLI.IsInvariant = LD->isInvariant(); 7030 RLI.Alignment = LD->getAlignment(); 7031 RLI.AAInfo = LD->getAAInfo(); 7032 RLI.Ranges = LD->getRanges(); 7033 7034 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7035 return true; 7036 } 7037 7038 // Given the head of the old chain, ResChain, insert a token factor containing 7039 // it and NewResChain, and make users of ResChain now be users of that token 7040 // factor. 7041 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7042 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7043 SDValue NewResChain, 7044 SelectionDAG &DAG) const { 7045 if (!ResChain) 7046 return; 7047 7048 SDLoc dl(NewResChain); 7049 7050 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7051 NewResChain, DAG.getUNDEF(MVT::Other)); 7052 assert(TF.getNode() != NewResChain.getNode() && 7053 "A new TF really is required here"); 7054 7055 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7056 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7057 } 7058 7059 /// Analyze profitability of direct move 7060 /// prefer float load to int load plus direct move 7061 /// when there is no integer use of int load 7062 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7063 SDNode *Origin = Op.getOperand(0).getNode(); 7064 if (Origin->getOpcode() != ISD::LOAD) 7065 return true; 7066 7067 // If there is no LXSIBZX/LXSIHZX, like Power8, 7068 // prefer direct move if the memory size is 1 or 2 bytes. 7069 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7070 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7071 return true; 7072 7073 for (SDNode::use_iterator UI = Origin->use_begin(), 7074 UE = Origin->use_end(); 7075 UI != UE; ++UI) { 7076 7077 // Only look at the users of the loaded value. 7078 if (UI.getUse().get().getResNo() != 0) 7079 continue; 7080 7081 if (UI->getOpcode() != ISD::SINT_TO_FP && 7082 UI->getOpcode() != ISD::UINT_TO_FP) 7083 return true; 7084 } 7085 7086 return false; 7087 } 7088 7089 /// Custom lowers integer to floating point conversions to use 7090 /// the direct move instructions available in ISA 2.07 to avoid the 7091 /// need for load/store combinations. 7092 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7093 SelectionDAG &DAG, 7094 const SDLoc &dl) const { 7095 assert((Op.getValueType() == MVT::f32 || 7096 Op.getValueType() == MVT::f64) && 7097 "Invalid floating point type as target of conversion"); 7098 assert(Subtarget.hasFPCVT() && 7099 "Int to FP conversions with direct moves require FPCVT"); 7100 SDValue FP; 7101 SDValue Src = Op.getOperand(0); 7102 bool SinglePrec = Op.getValueType() == MVT::f32; 7103 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7104 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7105 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7106 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7107 7108 if (WordInt) { 7109 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7110 dl, MVT::f64, Src); 7111 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7112 } 7113 else { 7114 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7115 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7116 } 7117 7118 return FP; 7119 } 7120 7121 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7122 SelectionDAG &DAG) const { 7123 SDLoc dl(Op); 7124 7125 // Conversions to f128 are legal. 7126 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 7127 return Op; 7128 7129 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 7130 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 7131 return SDValue(); 7132 7133 SDValue Value = Op.getOperand(0); 7134 // The values are now known to be -1 (false) or 1 (true). To convert this 7135 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7136 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7137 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7138 7139 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7140 7141 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7142 7143 if (Op.getValueType() != MVT::v4f64) 7144 Value = DAG.getNode(ISD::FP_ROUND, dl, 7145 Op.getValueType(), Value, 7146 DAG.getIntPtrConstant(1, dl)); 7147 return Value; 7148 } 7149 7150 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7151 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7152 return SDValue(); 7153 7154 if (Op.getOperand(0).getValueType() == MVT::i1) 7155 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 7156 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7157 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7158 7159 // If we have direct moves, we can do all the conversion, skip the store/load 7160 // however, without FPCVT we can't do most conversions. 7161 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 7162 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 7163 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 7164 7165 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 7166 "UINT_TO_FP is supported only with FPCVT"); 7167 7168 // If we have FCFIDS, then use it when converting to single-precision. 7169 // Otherwise, convert to double-precision and then round. 7170 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7171 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 7172 : PPCISD::FCFIDS) 7173 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 7174 : PPCISD::FCFID); 7175 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 7176 ? MVT::f32 7177 : MVT::f64; 7178 7179 if (Op.getOperand(0).getValueType() == MVT::i64) { 7180 SDValue SINT = Op.getOperand(0); 7181 // When converting to single-precision, we actually need to convert 7182 // to double-precision first and then round to single-precision. 7183 // To avoid double-rounding effects during that operation, we have 7184 // to prepare the input operand. Bits that might be truncated when 7185 // converting to double-precision are replaced by a bit that won't 7186 // be lost at this stage, but is below the single-precision rounding 7187 // position. 7188 // 7189 // However, if -enable-unsafe-fp-math is in effect, accept double 7190 // rounding to avoid the extra overhead. 7191 if (Op.getValueType() == MVT::f32 && 7192 !Subtarget.hasFPCVT() && 7193 !DAG.getTarget().Options.UnsafeFPMath) { 7194 7195 // Twiddle input to make sure the low 11 bits are zero. (If this 7196 // is the case, we are guaranteed the value will fit into the 53 bit 7197 // mantissa of an IEEE double-precision value without rounding.) 7198 // If any of those low 11 bits were not zero originally, make sure 7199 // bit 12 (value 2048) is set instead, so that the final rounding 7200 // to single-precision gets the correct result. 7201 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7202 SINT, DAG.getConstant(2047, dl, MVT::i64)); 7203 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 7204 Round, DAG.getConstant(2047, dl, MVT::i64)); 7205 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 7206 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 7207 Round, DAG.getConstant(-2048, dl, MVT::i64)); 7208 7209 // However, we cannot use that value unconditionally: if the magnitude 7210 // of the input value is small, the bit-twiddling we did above might 7211 // end up visibly changing the output. Fortunately, in that case, we 7212 // don't need to twiddle bits since the original input will convert 7213 // exactly to double-precision floating-point already. Therefore, 7214 // construct a conditional to use the original value if the top 11 7215 // bits are all sign-bit copies, and use the rounded value computed 7216 // above otherwise. 7217 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 7218 SINT, DAG.getConstant(53, dl, MVT::i32)); 7219 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 7220 Cond, DAG.getConstant(1, dl, MVT::i64)); 7221 Cond = DAG.getSetCC(dl, MVT::i32, 7222 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 7223 7224 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 7225 } 7226 7227 ReuseLoadInfo RLI; 7228 SDValue Bits; 7229 7230 MachineFunction &MF = DAG.getMachineFunction(); 7231 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 7232 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7233 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7234 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7235 } else if (Subtarget.hasLFIWAX() && 7236 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 7237 MachineMemOperand *MMO = 7238 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7239 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7240 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7241 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 7242 DAG.getVTList(MVT::f64, MVT::Other), 7243 Ops, MVT::i32, MMO); 7244 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7245 } else if (Subtarget.hasFPCVT() && 7246 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 7247 MachineMemOperand *MMO = 7248 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7249 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7250 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7251 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 7252 DAG.getVTList(MVT::f64, MVT::Other), 7253 Ops, MVT::i32, MMO); 7254 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 7255 } else if (((Subtarget.hasLFIWAX() && 7256 SINT.getOpcode() == ISD::SIGN_EXTEND) || 7257 (Subtarget.hasFPCVT() && 7258 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 7259 SINT.getOperand(0).getValueType() == MVT::i32) { 7260 MachineFrameInfo &MFI = MF.getFrameInfo(); 7261 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7262 7263 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7264 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7265 7266 SDValue Store = 7267 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 7268 MachinePointerInfo::getFixedStack( 7269 DAG.getMachineFunction(), FrameIdx)); 7270 7271 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7272 "Expected an i32 store"); 7273 7274 RLI.Ptr = FIdx; 7275 RLI.Chain = Store; 7276 RLI.MPI = 7277 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7278 RLI.Alignment = 4; 7279 7280 MachineMemOperand *MMO = 7281 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7282 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7283 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7284 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 7285 PPCISD::LFIWZX : PPCISD::LFIWAX, 7286 dl, DAG.getVTList(MVT::f64, MVT::Other), 7287 Ops, MVT::i32, MMO); 7288 } else 7289 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 7290 7291 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 7292 7293 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7294 FP = DAG.getNode(ISD::FP_ROUND, dl, 7295 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 7296 return FP; 7297 } 7298 7299 assert(Op.getOperand(0).getValueType() == MVT::i32 && 7300 "Unhandled INT_TO_FP type in custom expander!"); 7301 // Since we only generate this in 64-bit mode, we can take advantage of 7302 // 64-bit registers. In particular, sign extend the input value into the 7303 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 7304 // then lfd it and fcfid it. 7305 MachineFunction &MF = DAG.getMachineFunction(); 7306 MachineFrameInfo &MFI = MF.getFrameInfo(); 7307 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7308 7309 SDValue Ld; 7310 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 7311 ReuseLoadInfo RLI; 7312 bool ReusingLoad; 7313 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 7314 DAG))) { 7315 int FrameIdx = MFI.CreateStackObject(4, 4, false); 7316 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7317 7318 SDValue Store = 7319 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 7320 MachinePointerInfo::getFixedStack( 7321 DAG.getMachineFunction(), FrameIdx)); 7322 7323 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 7324 "Expected an i32 store"); 7325 7326 RLI.Ptr = FIdx; 7327 RLI.Chain = Store; 7328 RLI.MPI = 7329 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7330 RLI.Alignment = 4; 7331 } 7332 7333 MachineMemOperand *MMO = 7334 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 7335 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 7336 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 7337 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 7338 PPCISD::LFIWZX : PPCISD::LFIWAX, 7339 dl, DAG.getVTList(MVT::f64, MVT::Other), 7340 Ops, MVT::i32, MMO); 7341 if (ReusingLoad) 7342 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 7343 } else { 7344 assert(Subtarget.isPPC64() && 7345 "i32->FP without LFIWAX supported only on PPC64"); 7346 7347 int FrameIdx = MFI.CreateStackObject(8, 8, false); 7348 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7349 7350 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 7351 Op.getOperand(0)); 7352 7353 // STD the extended value into the stack slot. 7354 SDValue Store = DAG.getStore( 7355 DAG.getEntryNode(), dl, Ext64, FIdx, 7356 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7357 7358 // Load the value as a double. 7359 Ld = DAG.getLoad( 7360 MVT::f64, dl, Store, FIdx, 7361 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 7362 } 7363 7364 // FCFID it and return it. 7365 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 7366 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 7367 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 7368 DAG.getIntPtrConstant(0, dl)); 7369 return FP; 7370 } 7371 7372 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 7373 SelectionDAG &DAG) const { 7374 SDLoc dl(Op); 7375 /* 7376 The rounding mode is in bits 30:31 of FPSR, and has the following 7377 settings: 7378 00 Round to nearest 7379 01 Round to 0 7380 10 Round to +inf 7381 11 Round to -inf 7382 7383 FLT_ROUNDS, on the other hand, expects the following: 7384 -1 Undefined 7385 0 Round to 0 7386 1 Round to nearest 7387 2 Round to +inf 7388 3 Round to -inf 7389 7390 To perform the conversion, we do: 7391 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 7392 */ 7393 7394 MachineFunction &MF = DAG.getMachineFunction(); 7395 EVT VT = Op.getValueType(); 7396 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7397 7398 // Save FP Control Word to register 7399 EVT NodeTys[] = { 7400 MVT::f64, // return register 7401 MVT::Glue // unused in this context 7402 }; 7403 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 7404 7405 // Save FP register to stack slot 7406 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 7407 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 7408 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 7409 MachinePointerInfo()); 7410 7411 // Load FP Control Word from low 32 bits of stack slot. 7412 SDValue Four = DAG.getConstant(4, dl, PtrVT); 7413 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 7414 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 7415 7416 // Transform as necessary 7417 SDValue CWD1 = 7418 DAG.getNode(ISD::AND, dl, MVT::i32, 7419 CWD, DAG.getConstant(3, dl, MVT::i32)); 7420 SDValue CWD2 = 7421 DAG.getNode(ISD::SRL, dl, MVT::i32, 7422 DAG.getNode(ISD::AND, dl, MVT::i32, 7423 DAG.getNode(ISD::XOR, dl, MVT::i32, 7424 CWD, DAG.getConstant(3, dl, MVT::i32)), 7425 DAG.getConstant(3, dl, MVT::i32)), 7426 DAG.getConstant(1, dl, MVT::i32)); 7427 7428 SDValue RetVal = 7429 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 7430 7431 return DAG.getNode((VT.getSizeInBits() < 16 ? 7432 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 7433 } 7434 7435 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7436 EVT VT = Op.getValueType(); 7437 unsigned BitWidth = VT.getSizeInBits(); 7438 SDLoc dl(Op); 7439 assert(Op.getNumOperands() == 3 && 7440 VT == Op.getOperand(1).getValueType() && 7441 "Unexpected SHL!"); 7442 7443 // Expand into a bunch of logical ops. Note that these ops 7444 // depend on the PPC behavior for oversized shift amounts. 7445 SDValue Lo = Op.getOperand(0); 7446 SDValue Hi = Op.getOperand(1); 7447 SDValue Amt = Op.getOperand(2); 7448 EVT AmtVT = Amt.getValueType(); 7449 7450 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7451 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7452 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 7453 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 7454 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 7455 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7456 DAG.getConstant(-BitWidth, dl, AmtVT)); 7457 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 7458 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7459 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 7460 SDValue OutOps[] = { OutLo, OutHi }; 7461 return DAG.getMergeValues(OutOps, dl); 7462 } 7463 7464 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 7465 EVT VT = Op.getValueType(); 7466 SDLoc dl(Op); 7467 unsigned BitWidth = VT.getSizeInBits(); 7468 assert(Op.getNumOperands() == 3 && 7469 VT == Op.getOperand(1).getValueType() && 7470 "Unexpected SRL!"); 7471 7472 // Expand into a bunch of logical ops. Note that these ops 7473 // depend on the PPC behavior for oversized shift amounts. 7474 SDValue Lo = Op.getOperand(0); 7475 SDValue Hi = Op.getOperand(1); 7476 SDValue Amt = Op.getOperand(2); 7477 EVT AmtVT = Amt.getValueType(); 7478 7479 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7480 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7481 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7482 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7483 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7484 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7485 DAG.getConstant(-BitWidth, dl, AmtVT)); 7486 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 7487 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 7488 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 7489 SDValue OutOps[] = { OutLo, OutHi }; 7490 return DAG.getMergeValues(OutOps, dl); 7491 } 7492 7493 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 7494 SDLoc dl(Op); 7495 EVT VT = Op.getValueType(); 7496 unsigned BitWidth = VT.getSizeInBits(); 7497 assert(Op.getNumOperands() == 3 && 7498 VT == Op.getOperand(1).getValueType() && 7499 "Unexpected SRA!"); 7500 7501 // Expand into a bunch of logical ops, followed by a select_cc. 7502 SDValue Lo = Op.getOperand(0); 7503 SDValue Hi = Op.getOperand(1); 7504 SDValue Amt = Op.getOperand(2); 7505 EVT AmtVT = Amt.getValueType(); 7506 7507 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 7508 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 7509 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 7510 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 7511 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7512 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 7513 DAG.getConstant(-BitWidth, dl, AmtVT)); 7514 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 7515 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 7516 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 7517 Tmp4, Tmp6, ISD::SETLE); 7518 SDValue OutOps[] = { OutLo, OutHi }; 7519 return DAG.getMergeValues(OutOps, dl); 7520 } 7521 7522 //===----------------------------------------------------------------------===// 7523 // Vector related lowering. 7524 // 7525 7526 /// BuildSplatI - Build a canonical splati of Val with an element size of 7527 /// SplatSize. Cast the result to VT. 7528 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 7529 SelectionDAG &DAG, const SDLoc &dl) { 7530 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 7531 7532 static const MVT VTys[] = { // canonical VT to use for each size. 7533 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 7534 }; 7535 7536 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7537 7538 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7539 if (Val == -1) 7540 SplatSize = 1; 7541 7542 EVT CanonicalVT = VTys[SplatSize-1]; 7543 7544 // Build a canonical splat for this value. 7545 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7546 } 7547 7548 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7549 /// specified intrinsic ID. 7550 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 7551 const SDLoc &dl, EVT DestVT = MVT::Other) { 7552 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7553 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7554 DAG.getConstant(IID, dl, MVT::i32), Op); 7555 } 7556 7557 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7558 /// specified intrinsic ID. 7559 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7560 SelectionDAG &DAG, const SDLoc &dl, 7561 EVT DestVT = MVT::Other) { 7562 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7563 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7564 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7565 } 7566 7567 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7568 /// specified intrinsic ID. 7569 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7570 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 7571 EVT DestVT = MVT::Other) { 7572 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7573 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7574 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7575 } 7576 7577 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7578 /// amount. The result has the specified value type. 7579 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7580 SelectionDAG &DAG, const SDLoc &dl) { 7581 // Force LHS/RHS to be the right type. 7582 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7583 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7584 7585 int Ops[16]; 7586 for (unsigned i = 0; i != 16; ++i) 7587 Ops[i] = i + Amt; 7588 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7589 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7590 } 7591 7592 /// Do we have an efficient pattern in a .td file for this node? 7593 /// 7594 /// \param V - pointer to the BuildVectorSDNode being matched 7595 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 7596 /// 7597 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 7598 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 7599 /// the opposite is true (expansion is beneficial) are: 7600 /// - The node builds a vector out of integers that are not 32 or 64-bits 7601 /// - The node builds a vector out of constants 7602 /// - The node is a "load-and-splat" 7603 /// In all other cases, we will choose to keep the BUILD_VECTOR. 7604 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 7605 bool HasDirectMove, 7606 bool HasP8Vector) { 7607 EVT VecVT = V->getValueType(0); 7608 bool RightType = VecVT == MVT::v2f64 || 7609 (HasP8Vector && VecVT == MVT::v4f32) || 7610 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 7611 if (!RightType) 7612 return false; 7613 7614 bool IsSplat = true; 7615 bool IsLoad = false; 7616 SDValue Op0 = V->getOperand(0); 7617 7618 // This function is called in a block that confirms the node is not a constant 7619 // splat. So a constant BUILD_VECTOR here means the vector is built out of 7620 // different constants. 7621 if (V->isConstant()) 7622 return false; 7623 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 7624 if (V->getOperand(i).isUndef()) 7625 return false; 7626 // We want to expand nodes that represent load-and-splat even if the 7627 // loaded value is a floating point truncation or conversion to int. 7628 if (V->getOperand(i).getOpcode() == ISD::LOAD || 7629 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 7630 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7631 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 7632 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 7633 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 7634 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 7635 IsLoad = true; 7636 // If the operands are different or the input is not a load and has more 7637 // uses than just this BV node, then it isn't a splat. 7638 if (V->getOperand(i) != Op0 || 7639 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 7640 IsSplat = false; 7641 } 7642 return !(IsSplat && IsLoad); 7643 } 7644 7645 // If this is a case we can't handle, return null and let the default 7646 // expansion code take care of it. If we CAN select this case, and if it 7647 // selects to a single instruction, return Op. Otherwise, if we can codegen 7648 // this case more efficiently than a constant pool load, lower it to the 7649 // sequence of ops that should be used. 7650 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7651 SelectionDAG &DAG) const { 7652 SDLoc dl(Op); 7653 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7654 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7655 7656 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7657 // We first build an i32 vector, load it into a QPX register, 7658 // then convert it to a floating-point vector and compare it 7659 // to a zero vector to get the boolean result. 7660 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7661 int FrameIdx = MFI.CreateStackObject(16, 16, false); 7662 MachinePointerInfo PtrInfo = 7663 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7664 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7665 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7666 7667 assert(BVN->getNumOperands() == 4 && 7668 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7669 7670 bool IsConst = true; 7671 for (unsigned i = 0; i < 4; ++i) { 7672 if (BVN->getOperand(i).isUndef()) continue; 7673 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7674 IsConst = false; 7675 break; 7676 } 7677 } 7678 7679 if (IsConst) { 7680 Constant *One = 7681 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7682 Constant *NegOne = 7683 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7684 7685 Constant *CV[4]; 7686 for (unsigned i = 0; i < 4; ++i) { 7687 if (BVN->getOperand(i).isUndef()) 7688 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7689 else if (isNullConstant(BVN->getOperand(i))) 7690 CV[i] = NegOne; 7691 else 7692 CV[i] = One; 7693 } 7694 7695 Constant *CP = ConstantVector::get(CV); 7696 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7697 16 /* alignment */); 7698 7699 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7700 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7701 return DAG.getMemIntrinsicNode( 7702 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7703 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7704 } 7705 7706 SmallVector<SDValue, 4> Stores; 7707 for (unsigned i = 0; i < 4; ++i) { 7708 if (BVN->getOperand(i).isUndef()) continue; 7709 7710 unsigned Offset = 4*i; 7711 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7712 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7713 7714 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7715 if (StoreSize > 4) { 7716 Stores.push_back( 7717 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 7718 PtrInfo.getWithOffset(Offset), MVT::i32)); 7719 } else { 7720 SDValue StoreValue = BVN->getOperand(i); 7721 if (StoreSize < 4) 7722 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7723 7724 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 7725 PtrInfo.getWithOffset(Offset))); 7726 } 7727 } 7728 7729 SDValue StoreChain; 7730 if (!Stores.empty()) 7731 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7732 else 7733 StoreChain = DAG.getEntryNode(); 7734 7735 // Now load from v4i32 into the QPX register; this will extend it to 7736 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7737 // is typed as v4f64 because the QPX register integer states are not 7738 // explicitly represented. 7739 7740 SDValue Ops[] = {StoreChain, 7741 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7742 FIdx}; 7743 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7744 7745 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7746 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7747 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7748 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7749 LoadedVect); 7750 7751 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7752 7753 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7754 } 7755 7756 // All other QPX vectors are handled by generic code. 7757 if (Subtarget.hasQPX()) 7758 return SDValue(); 7759 7760 // Check if this is a splat of a constant value. 7761 APInt APSplatBits, APSplatUndef; 7762 unsigned SplatBitSize; 7763 bool HasAnyUndefs; 7764 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7765 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7766 SplatBitSize > 32) { 7767 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 7768 // lowered to VSX instructions under certain conditions. 7769 // Without VSX, there is no pattern more efficient than expanding the node. 7770 if (Subtarget.hasVSX() && 7771 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 7772 Subtarget.hasP8Vector())) 7773 return Op; 7774 return SDValue(); 7775 } 7776 7777 unsigned SplatBits = APSplatBits.getZExtValue(); 7778 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7779 unsigned SplatSize = SplatBitSize / 8; 7780 7781 // First, handle single instruction cases. 7782 7783 // All zeros? 7784 if (SplatBits == 0) { 7785 // Canonicalize all zero vectors to be v4i32. 7786 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7787 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7788 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7789 } 7790 return Op; 7791 } 7792 7793 // We have XXSPLTIB for constant splats one byte wide 7794 if (Subtarget.hasP9Vector() && SplatSize == 1) { 7795 // This is a splat of 1-byte elements with some elements potentially undef. 7796 // Rather than trying to match undef in the SDAG patterns, ensure that all 7797 // elements are the same constant. 7798 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) { 7799 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits, 7800 dl, MVT::i32)); 7801 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops); 7802 if (Op.getValueType() != MVT::v16i8) 7803 return DAG.getBitcast(Op.getValueType(), NewBV); 7804 return NewBV; 7805 } 7806 7807 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll 7808 // detect that constant splats like v8i16: 0xABAB are really just splats 7809 // of a 1-byte constant. In this case, we need to convert the node to a 7810 // splat of v16i8 and a bitcast. 7811 if (Op.getValueType() != MVT::v16i8) 7812 return DAG.getBitcast(Op.getValueType(), 7813 DAG.getConstant(SplatBits, dl, MVT::v16i8)); 7814 7815 return Op; 7816 } 7817 7818 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7819 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7820 (32-SplatBitSize)); 7821 if (SextVal >= -16 && SextVal <= 15) 7822 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7823 7824 // Two instruction sequences. 7825 7826 // If this value is in the range [-32,30] and is even, use: 7827 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7828 // If this value is in the range [17,31] and is odd, use: 7829 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7830 // If this value is in the range [-31,-17] and is odd, use: 7831 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7832 // Note the last two are three-instruction sequences. 7833 if (SextVal >= -32 && SextVal <= 31) { 7834 // To avoid having these optimizations undone by constant folding, 7835 // we convert to a pseudo that will be expanded later into one of 7836 // the above forms. 7837 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7838 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7839 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7840 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7841 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7842 if (VT == Op.getValueType()) 7843 return RetVal; 7844 else 7845 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7846 } 7847 7848 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7849 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7850 // for fneg/fabs. 7851 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7852 // Make -1 and vspltisw -1: 7853 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7854 7855 // Make the VSLW intrinsic, computing 0x8000_0000. 7856 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7857 OnesV, DAG, dl); 7858 7859 // xor by OnesV to invert it. 7860 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7861 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7862 } 7863 7864 // Check to see if this is a wide variety of vsplti*, binop self cases. 7865 static const signed char SplatCsts[] = { 7866 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7867 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7868 }; 7869 7870 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7871 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7872 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7873 int i = SplatCsts[idx]; 7874 7875 // Figure out what shift amount will be used by altivec if shifted by i in 7876 // this splat size. 7877 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7878 7879 // vsplti + shl self. 7880 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7881 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7882 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7883 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7884 Intrinsic::ppc_altivec_vslw 7885 }; 7886 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7887 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7888 } 7889 7890 // vsplti + srl self. 7891 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7892 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7893 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7894 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7895 Intrinsic::ppc_altivec_vsrw 7896 }; 7897 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7898 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7899 } 7900 7901 // vsplti + sra self. 7902 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7903 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7904 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7905 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7906 Intrinsic::ppc_altivec_vsraw 7907 }; 7908 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7909 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7910 } 7911 7912 // vsplti + rol self. 7913 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7914 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7915 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7916 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7917 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7918 Intrinsic::ppc_altivec_vrlw 7919 }; 7920 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7921 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7922 } 7923 7924 // t = vsplti c, result = vsldoi t, t, 1 7925 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7926 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7927 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7928 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7929 } 7930 // t = vsplti c, result = vsldoi t, t, 2 7931 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7932 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7933 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7934 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7935 } 7936 // t = vsplti c, result = vsldoi t, t, 3 7937 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7938 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7939 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7940 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7941 } 7942 } 7943 7944 return SDValue(); 7945 } 7946 7947 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7948 /// the specified operations to build the shuffle. 7949 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7950 SDValue RHS, SelectionDAG &DAG, 7951 const SDLoc &dl) { 7952 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7953 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7954 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7955 7956 enum { 7957 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7958 OP_VMRGHW, 7959 OP_VMRGLW, 7960 OP_VSPLTISW0, 7961 OP_VSPLTISW1, 7962 OP_VSPLTISW2, 7963 OP_VSPLTISW3, 7964 OP_VSLDOI4, 7965 OP_VSLDOI8, 7966 OP_VSLDOI12 7967 }; 7968 7969 if (OpNum == OP_COPY) { 7970 if (LHSID == (1*9+2)*9+3) return LHS; 7971 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7972 return RHS; 7973 } 7974 7975 SDValue OpLHS, OpRHS; 7976 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7977 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7978 7979 int ShufIdxs[16]; 7980 switch (OpNum) { 7981 default: llvm_unreachable("Unknown i32 permute!"); 7982 case OP_VMRGHW: 7983 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7984 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7985 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7986 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7987 break; 7988 case OP_VMRGLW: 7989 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7990 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7991 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7992 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7993 break; 7994 case OP_VSPLTISW0: 7995 for (unsigned i = 0; i != 16; ++i) 7996 ShufIdxs[i] = (i&3)+0; 7997 break; 7998 case OP_VSPLTISW1: 7999 for (unsigned i = 0; i != 16; ++i) 8000 ShufIdxs[i] = (i&3)+4; 8001 break; 8002 case OP_VSPLTISW2: 8003 for (unsigned i = 0; i != 16; ++i) 8004 ShufIdxs[i] = (i&3)+8; 8005 break; 8006 case OP_VSPLTISW3: 8007 for (unsigned i = 0; i != 16; ++i) 8008 ShufIdxs[i] = (i&3)+12; 8009 break; 8010 case OP_VSLDOI4: 8011 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8012 case OP_VSLDOI8: 8013 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8014 case OP_VSLDOI12: 8015 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8016 } 8017 EVT VT = OpLHS.getValueType(); 8018 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8019 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8020 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8021 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8022 } 8023 8024 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8025 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8026 /// SDValue. 8027 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8028 SelectionDAG &DAG) const { 8029 const unsigned BytesInVector = 16; 8030 bool IsLE = Subtarget.isLittleEndian(); 8031 SDLoc dl(N); 8032 SDValue V1 = N->getOperand(0); 8033 SDValue V2 = N->getOperand(1); 8034 unsigned ShiftElts = 0, InsertAtByte = 0; 8035 bool Swap = false; 8036 8037 // Shifts required to get the byte we want at element 7. 8038 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8039 0, 15, 14, 13, 12, 11, 10, 9}; 8040 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8041 1, 2, 3, 4, 5, 6, 7, 8}; 8042 8043 ArrayRef<int> Mask = N->getMask(); 8044 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8045 8046 // For each mask element, find out if we're just inserting something 8047 // from V2 into V1 or vice versa. 8048 // Possible permutations inserting an element from V2 into V1: 8049 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8050 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8051 // ... 8052 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8053 // Inserting from V1 into V2 will be similar, except mask range will be 8054 // [16,31]. 8055 8056 bool FoundCandidate = false; 8057 // If both vector operands for the shuffle are the same vector, the mask 8058 // will contain only elements from the first one and the second one will be 8059 // undef. 8060 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8061 // Go through the mask of half-words to find an element that's being moved 8062 // from one vector to the other. 8063 for (unsigned i = 0; i < BytesInVector; ++i) { 8064 unsigned CurrentElement = Mask[i]; 8065 // If 2nd operand is undefined, we should only look for element 7 in the 8066 // Mask. 8067 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8068 continue; 8069 8070 bool OtherElementsInOrder = true; 8071 // Examine the other elements in the Mask to see if they're in original 8072 // order. 8073 for (unsigned j = 0; j < BytesInVector; ++j) { 8074 if (j == i) 8075 continue; 8076 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8077 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8078 // in which we always assume we're always picking from the 1st operand. 8079 int MaskOffset = 8080 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8081 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8082 OtherElementsInOrder = false; 8083 break; 8084 } 8085 } 8086 // If other elements are in original order, we record the number of shifts 8087 // we need to get the element we want into element 7. Also record which byte 8088 // in the vector we should insert into. 8089 if (OtherElementsInOrder) { 8090 // If 2nd operand is undefined, we assume no shifts and no swapping. 8091 if (V2.isUndef()) { 8092 ShiftElts = 0; 8093 Swap = false; 8094 } else { 8095 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8096 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 8097 : BigEndianShifts[CurrentElement & 0xF]; 8098 Swap = CurrentElement < BytesInVector; 8099 } 8100 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 8101 FoundCandidate = true; 8102 break; 8103 } 8104 } 8105 8106 if (!FoundCandidate) 8107 return SDValue(); 8108 8109 // Candidate found, construct the proper SDAG sequence with VINSERTB, 8110 // optionally with VECSHL if shift is required. 8111 if (Swap) 8112 std::swap(V1, V2); 8113 if (V2.isUndef()) 8114 V2 = V1; 8115 if (ShiftElts) { 8116 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8117 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8118 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 8119 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8120 } 8121 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 8122 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8123 } 8124 8125 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 8126 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 8127 /// SDValue. 8128 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 8129 SelectionDAG &DAG) const { 8130 const unsigned NumHalfWords = 8; 8131 const unsigned BytesInVector = NumHalfWords * 2; 8132 // Check that the shuffle is on half-words. 8133 if (!isNByteElemShuffleMask(N, 2, 1)) 8134 return SDValue(); 8135 8136 bool IsLE = Subtarget.isLittleEndian(); 8137 SDLoc dl(N); 8138 SDValue V1 = N->getOperand(0); 8139 SDValue V2 = N->getOperand(1); 8140 unsigned ShiftElts = 0, InsertAtByte = 0; 8141 bool Swap = false; 8142 8143 // Shifts required to get the half-word we want at element 3. 8144 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 8145 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 8146 8147 uint32_t Mask = 0; 8148 uint32_t OriginalOrderLow = 0x1234567; 8149 uint32_t OriginalOrderHigh = 0x89ABCDEF; 8150 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 8151 // 32-bit space, only need 4-bit nibbles per element. 8152 for (unsigned i = 0; i < NumHalfWords; ++i) { 8153 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8154 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 8155 } 8156 8157 // For each mask element, find out if we're just inserting something 8158 // from V2 into V1 or vice versa. Possible permutations inserting an element 8159 // from V2 into V1: 8160 // X, 1, 2, 3, 4, 5, 6, 7 8161 // 0, X, 2, 3, 4, 5, 6, 7 8162 // 0, 1, X, 3, 4, 5, 6, 7 8163 // 0, 1, 2, X, 4, 5, 6, 7 8164 // 0, 1, 2, 3, X, 5, 6, 7 8165 // 0, 1, 2, 3, 4, X, 6, 7 8166 // 0, 1, 2, 3, 4, 5, X, 7 8167 // 0, 1, 2, 3, 4, 5, 6, X 8168 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 8169 8170 bool FoundCandidate = false; 8171 // Go through the mask of half-words to find an element that's being moved 8172 // from one vector to the other. 8173 for (unsigned i = 0; i < NumHalfWords; ++i) { 8174 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 8175 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 8176 uint32_t MaskOtherElts = ~(0xF << MaskShift); 8177 uint32_t TargetOrder = 0x0; 8178 8179 // If both vector operands for the shuffle are the same vector, the mask 8180 // will contain only elements from the first one and the second one will be 8181 // undef. 8182 if (V2.isUndef()) { 8183 ShiftElts = 0; 8184 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 8185 TargetOrder = OriginalOrderLow; 8186 Swap = false; 8187 // Skip if not the correct element or mask of other elements don't equal 8188 // to our expected order. 8189 if (MaskOneElt == VINSERTHSrcElem && 8190 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8191 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8192 FoundCandidate = true; 8193 break; 8194 } 8195 } else { // If both operands are defined. 8196 // Target order is [8,15] if the current mask is between [0,7]. 8197 TargetOrder = 8198 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 8199 // Skip if mask of other elements don't equal our expected order. 8200 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 8201 // We only need the last 3 bits for the number of shifts. 8202 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 8203 : BigEndianShifts[MaskOneElt & 0x7]; 8204 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 8205 Swap = MaskOneElt < NumHalfWords; 8206 FoundCandidate = true; 8207 break; 8208 } 8209 } 8210 } 8211 8212 if (!FoundCandidate) 8213 return SDValue(); 8214 8215 // Candidate found, construct the proper SDAG sequence with VINSERTH, 8216 // optionally with VECSHL if shift is required. 8217 if (Swap) 8218 std::swap(V1, V2); 8219 if (V2.isUndef()) 8220 V2 = V1; 8221 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8222 if (ShiftElts) { 8223 // Double ShiftElts because we're left shifting on v16i8 type. 8224 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 8225 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 8226 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 8227 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8228 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8229 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8230 } 8231 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 8232 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 8233 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8234 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8235 } 8236 8237 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 8238 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 8239 /// return the code it can be lowered into. Worst case, it can always be 8240 /// lowered into a vperm. 8241 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 8242 SelectionDAG &DAG) const { 8243 SDLoc dl(Op); 8244 SDValue V1 = Op.getOperand(0); 8245 SDValue V2 = Op.getOperand(1); 8246 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 8247 EVT VT = Op.getValueType(); 8248 bool isLittleEndian = Subtarget.isLittleEndian(); 8249 8250 unsigned ShiftElts, InsertAtByte; 8251 bool Swap = false; 8252 if (Subtarget.hasP9Vector() && 8253 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 8254 isLittleEndian)) { 8255 if (Swap) 8256 std::swap(V1, V2); 8257 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8258 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 8259 if (ShiftElts) { 8260 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 8261 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8262 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 8263 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8264 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8265 } 8266 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 8267 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 8268 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 8269 } 8270 8271 if (Subtarget.hasP9Altivec()) { 8272 SDValue NewISDNode; 8273 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 8274 return NewISDNode; 8275 8276 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 8277 return NewISDNode; 8278 } 8279 8280 if (Subtarget.hasVSX() && 8281 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8282 if (Swap) 8283 std::swap(V1, V2); 8284 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8285 SDValue Conv2 = 8286 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 8287 8288 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 8289 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8290 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 8291 } 8292 8293 if (Subtarget.hasVSX() && 8294 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 8295 if (Swap) 8296 std::swap(V1, V2); 8297 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8298 SDValue Conv2 = 8299 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 8300 8301 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 8302 DAG.getConstant(ShiftElts, dl, MVT::i32)); 8303 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 8304 } 8305 8306 if (Subtarget.hasP9Vector()) { 8307 if (PPC::isXXBRHShuffleMask(SVOp)) { 8308 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 8309 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv); 8310 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 8311 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 8312 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8313 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv); 8314 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 8315 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 8316 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 8317 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv); 8318 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 8319 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 8320 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 8321 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv); 8322 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 8323 } 8324 } 8325 8326 if (Subtarget.hasVSX()) { 8327 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 8328 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 8329 8330 // If the source for the shuffle is a scalar_to_vector that came from a 8331 // 32-bit load, it will have used LXVWSX so we don't need to splat again. 8332 if (Subtarget.hasP9Vector() && 8333 ((isLittleEndian && SplatIdx == 3) || 8334 (!isLittleEndian && SplatIdx == 0))) { 8335 SDValue Src = V1.getOperand(0); 8336 if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR && 8337 Src.getOperand(0).getOpcode() == ISD::LOAD && 8338 Src.getOperand(0).hasOneUse()) 8339 return V1; 8340 } 8341 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 8342 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 8343 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8344 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 8345 } 8346 8347 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 8348 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 8349 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 8350 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 8351 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 8352 } 8353 } 8354 8355 if (Subtarget.hasQPX()) { 8356 if (VT.getVectorNumElements() != 4) 8357 return SDValue(); 8358 8359 if (V2.isUndef()) V2 = V1; 8360 8361 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 8362 if (AlignIdx != -1) { 8363 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 8364 DAG.getConstant(AlignIdx, dl, MVT::i32)); 8365 } else if (SVOp->isSplat()) { 8366 int SplatIdx = SVOp->getSplatIndex(); 8367 if (SplatIdx >= 4) { 8368 std::swap(V1, V2); 8369 SplatIdx -= 4; 8370 } 8371 8372 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 8373 DAG.getConstant(SplatIdx, dl, MVT::i32)); 8374 } 8375 8376 // Lower this into a qvgpci/qvfperm pair. 8377 8378 // Compute the qvgpci literal 8379 unsigned idx = 0; 8380 for (unsigned i = 0; i < 4; ++i) { 8381 int m = SVOp->getMaskElt(i); 8382 unsigned mm = m >= 0 ? (unsigned) m : i; 8383 idx |= mm << (3-i)*3; 8384 } 8385 8386 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 8387 DAG.getConstant(idx, dl, MVT::i32)); 8388 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 8389 } 8390 8391 // Cases that are handled by instructions that take permute immediates 8392 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 8393 // selected by the instruction selector. 8394 if (V2.isUndef()) { 8395 if (PPC::isSplatShuffleMask(SVOp, 1) || 8396 PPC::isSplatShuffleMask(SVOp, 2) || 8397 PPC::isSplatShuffleMask(SVOp, 4) || 8398 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 8399 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 8400 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 8401 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 8402 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 8403 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 8404 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 8405 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 8406 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 8407 (Subtarget.hasP8Altivec() && ( 8408 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 8409 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 8410 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 8411 return Op; 8412 } 8413 } 8414 8415 // Altivec has a variety of "shuffle immediates" that take two vector inputs 8416 // and produce a fixed permutation. If any of these match, do not lower to 8417 // VPERM. 8418 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 8419 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 8420 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 8421 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 8422 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8423 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8424 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8425 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 8426 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 8427 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 8428 (Subtarget.hasP8Altivec() && ( 8429 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 8430 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 8431 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 8432 return Op; 8433 8434 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 8435 // perfect shuffle table to emit an optimal matching sequence. 8436 ArrayRef<int> PermMask = SVOp->getMask(); 8437 8438 unsigned PFIndexes[4]; 8439 bool isFourElementShuffle = true; 8440 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 8441 unsigned EltNo = 8; // Start out undef. 8442 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 8443 if (PermMask[i*4+j] < 0) 8444 continue; // Undef, ignore it. 8445 8446 unsigned ByteSource = PermMask[i*4+j]; 8447 if ((ByteSource & 3) != j) { 8448 isFourElementShuffle = false; 8449 break; 8450 } 8451 8452 if (EltNo == 8) { 8453 EltNo = ByteSource/4; 8454 } else if (EltNo != ByteSource/4) { 8455 isFourElementShuffle = false; 8456 break; 8457 } 8458 } 8459 PFIndexes[i] = EltNo; 8460 } 8461 8462 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 8463 // perfect shuffle vector to determine if it is cost effective to do this as 8464 // discrete instructions, or whether we should use a vperm. 8465 // For now, we skip this for little endian until such time as we have a 8466 // little-endian perfect shuffle table. 8467 if (isFourElementShuffle && !isLittleEndian) { 8468 // Compute the index in the perfect shuffle table. 8469 unsigned PFTableIndex = 8470 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8471 8472 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8473 unsigned Cost = (PFEntry >> 30); 8474 8475 // Determining when to avoid vperm is tricky. Many things affect the cost 8476 // of vperm, particularly how many times the perm mask needs to be computed. 8477 // For example, if the perm mask can be hoisted out of a loop or is already 8478 // used (perhaps because there are multiple permutes with the same shuffle 8479 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 8480 // the loop requires an extra register. 8481 // 8482 // As a compromise, we only emit discrete instructions if the shuffle can be 8483 // generated in 3 or fewer operations. When we have loop information 8484 // available, if this block is within a loop, we should avoid using vperm 8485 // for 3-operation perms and use a constant pool load instead. 8486 if (Cost < 3) 8487 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8488 } 8489 8490 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 8491 // vector that will get spilled to the constant pool. 8492 if (V2.isUndef()) V2 = V1; 8493 8494 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 8495 // that it is in input element units, not in bytes. Convert now. 8496 8497 // For little endian, the order of the input vectors is reversed, and 8498 // the permutation mask is complemented with respect to 31. This is 8499 // necessary to produce proper semantics with the big-endian-biased vperm 8500 // instruction. 8501 EVT EltVT = V1.getValueType().getVectorElementType(); 8502 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 8503 8504 SmallVector<SDValue, 16> ResultMask; 8505 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 8506 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 8507 8508 for (unsigned j = 0; j != BytesPerElement; ++j) 8509 if (isLittleEndian) 8510 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 8511 dl, MVT::i32)); 8512 else 8513 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 8514 MVT::i32)); 8515 } 8516 8517 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 8518 if (isLittleEndian) 8519 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8520 V2, V1, VPermMask); 8521 else 8522 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 8523 V1, V2, VPermMask); 8524 } 8525 8526 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 8527 /// vector comparison. If it is, return true and fill in Opc/isDot with 8528 /// information about the intrinsic. 8529 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 8530 bool &isDot, const PPCSubtarget &Subtarget) { 8531 unsigned IntrinsicID = 8532 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 8533 CompareOpc = -1; 8534 isDot = false; 8535 switch (IntrinsicID) { 8536 default: 8537 return false; 8538 // Comparison predicates. 8539 case Intrinsic::ppc_altivec_vcmpbfp_p: 8540 CompareOpc = 966; 8541 isDot = true; 8542 break; 8543 case Intrinsic::ppc_altivec_vcmpeqfp_p: 8544 CompareOpc = 198; 8545 isDot = true; 8546 break; 8547 case Intrinsic::ppc_altivec_vcmpequb_p: 8548 CompareOpc = 6; 8549 isDot = true; 8550 break; 8551 case Intrinsic::ppc_altivec_vcmpequh_p: 8552 CompareOpc = 70; 8553 isDot = true; 8554 break; 8555 case Intrinsic::ppc_altivec_vcmpequw_p: 8556 CompareOpc = 134; 8557 isDot = true; 8558 break; 8559 case Intrinsic::ppc_altivec_vcmpequd_p: 8560 if (Subtarget.hasP8Altivec()) { 8561 CompareOpc = 199; 8562 isDot = true; 8563 } else 8564 return false; 8565 break; 8566 case Intrinsic::ppc_altivec_vcmpneb_p: 8567 case Intrinsic::ppc_altivec_vcmpneh_p: 8568 case Intrinsic::ppc_altivec_vcmpnew_p: 8569 case Intrinsic::ppc_altivec_vcmpnezb_p: 8570 case Intrinsic::ppc_altivec_vcmpnezh_p: 8571 case Intrinsic::ppc_altivec_vcmpnezw_p: 8572 if (Subtarget.hasP9Altivec()) { 8573 switch (IntrinsicID) { 8574 default: 8575 llvm_unreachable("Unknown comparison intrinsic."); 8576 case Intrinsic::ppc_altivec_vcmpneb_p: 8577 CompareOpc = 7; 8578 break; 8579 case Intrinsic::ppc_altivec_vcmpneh_p: 8580 CompareOpc = 71; 8581 break; 8582 case Intrinsic::ppc_altivec_vcmpnew_p: 8583 CompareOpc = 135; 8584 break; 8585 case Intrinsic::ppc_altivec_vcmpnezb_p: 8586 CompareOpc = 263; 8587 break; 8588 case Intrinsic::ppc_altivec_vcmpnezh_p: 8589 CompareOpc = 327; 8590 break; 8591 case Intrinsic::ppc_altivec_vcmpnezw_p: 8592 CompareOpc = 391; 8593 break; 8594 } 8595 isDot = true; 8596 } else 8597 return false; 8598 break; 8599 case Intrinsic::ppc_altivec_vcmpgefp_p: 8600 CompareOpc = 454; 8601 isDot = true; 8602 break; 8603 case Intrinsic::ppc_altivec_vcmpgtfp_p: 8604 CompareOpc = 710; 8605 isDot = true; 8606 break; 8607 case Intrinsic::ppc_altivec_vcmpgtsb_p: 8608 CompareOpc = 774; 8609 isDot = true; 8610 break; 8611 case Intrinsic::ppc_altivec_vcmpgtsh_p: 8612 CompareOpc = 838; 8613 isDot = true; 8614 break; 8615 case Intrinsic::ppc_altivec_vcmpgtsw_p: 8616 CompareOpc = 902; 8617 isDot = true; 8618 break; 8619 case Intrinsic::ppc_altivec_vcmpgtsd_p: 8620 if (Subtarget.hasP8Altivec()) { 8621 CompareOpc = 967; 8622 isDot = true; 8623 } else 8624 return false; 8625 break; 8626 case Intrinsic::ppc_altivec_vcmpgtub_p: 8627 CompareOpc = 518; 8628 isDot = true; 8629 break; 8630 case Intrinsic::ppc_altivec_vcmpgtuh_p: 8631 CompareOpc = 582; 8632 isDot = true; 8633 break; 8634 case Intrinsic::ppc_altivec_vcmpgtuw_p: 8635 CompareOpc = 646; 8636 isDot = true; 8637 break; 8638 case Intrinsic::ppc_altivec_vcmpgtud_p: 8639 if (Subtarget.hasP8Altivec()) { 8640 CompareOpc = 711; 8641 isDot = true; 8642 } else 8643 return false; 8644 break; 8645 8646 // VSX predicate comparisons use the same infrastructure 8647 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8648 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8649 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8650 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8651 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8652 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8653 if (Subtarget.hasVSX()) { 8654 switch (IntrinsicID) { 8655 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 8656 CompareOpc = 99; 8657 break; 8658 case Intrinsic::ppc_vsx_xvcmpgedp_p: 8659 CompareOpc = 115; 8660 break; 8661 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 8662 CompareOpc = 107; 8663 break; 8664 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 8665 CompareOpc = 67; 8666 break; 8667 case Intrinsic::ppc_vsx_xvcmpgesp_p: 8668 CompareOpc = 83; 8669 break; 8670 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 8671 CompareOpc = 75; 8672 break; 8673 } 8674 isDot = true; 8675 } else 8676 return false; 8677 break; 8678 8679 // Normal Comparisons. 8680 case Intrinsic::ppc_altivec_vcmpbfp: 8681 CompareOpc = 966; 8682 break; 8683 case Intrinsic::ppc_altivec_vcmpeqfp: 8684 CompareOpc = 198; 8685 break; 8686 case Intrinsic::ppc_altivec_vcmpequb: 8687 CompareOpc = 6; 8688 break; 8689 case Intrinsic::ppc_altivec_vcmpequh: 8690 CompareOpc = 70; 8691 break; 8692 case Intrinsic::ppc_altivec_vcmpequw: 8693 CompareOpc = 134; 8694 break; 8695 case Intrinsic::ppc_altivec_vcmpequd: 8696 if (Subtarget.hasP8Altivec()) 8697 CompareOpc = 199; 8698 else 8699 return false; 8700 break; 8701 case Intrinsic::ppc_altivec_vcmpneb: 8702 case Intrinsic::ppc_altivec_vcmpneh: 8703 case Intrinsic::ppc_altivec_vcmpnew: 8704 case Intrinsic::ppc_altivec_vcmpnezb: 8705 case Intrinsic::ppc_altivec_vcmpnezh: 8706 case Intrinsic::ppc_altivec_vcmpnezw: 8707 if (Subtarget.hasP9Altivec()) 8708 switch (IntrinsicID) { 8709 default: 8710 llvm_unreachable("Unknown comparison intrinsic."); 8711 case Intrinsic::ppc_altivec_vcmpneb: 8712 CompareOpc = 7; 8713 break; 8714 case Intrinsic::ppc_altivec_vcmpneh: 8715 CompareOpc = 71; 8716 break; 8717 case Intrinsic::ppc_altivec_vcmpnew: 8718 CompareOpc = 135; 8719 break; 8720 case Intrinsic::ppc_altivec_vcmpnezb: 8721 CompareOpc = 263; 8722 break; 8723 case Intrinsic::ppc_altivec_vcmpnezh: 8724 CompareOpc = 327; 8725 break; 8726 case Intrinsic::ppc_altivec_vcmpnezw: 8727 CompareOpc = 391; 8728 break; 8729 } 8730 else 8731 return false; 8732 break; 8733 case Intrinsic::ppc_altivec_vcmpgefp: 8734 CompareOpc = 454; 8735 break; 8736 case Intrinsic::ppc_altivec_vcmpgtfp: 8737 CompareOpc = 710; 8738 break; 8739 case Intrinsic::ppc_altivec_vcmpgtsb: 8740 CompareOpc = 774; 8741 break; 8742 case Intrinsic::ppc_altivec_vcmpgtsh: 8743 CompareOpc = 838; 8744 break; 8745 case Intrinsic::ppc_altivec_vcmpgtsw: 8746 CompareOpc = 902; 8747 break; 8748 case Intrinsic::ppc_altivec_vcmpgtsd: 8749 if (Subtarget.hasP8Altivec()) 8750 CompareOpc = 967; 8751 else 8752 return false; 8753 break; 8754 case Intrinsic::ppc_altivec_vcmpgtub: 8755 CompareOpc = 518; 8756 break; 8757 case Intrinsic::ppc_altivec_vcmpgtuh: 8758 CompareOpc = 582; 8759 break; 8760 case Intrinsic::ppc_altivec_vcmpgtuw: 8761 CompareOpc = 646; 8762 break; 8763 case Intrinsic::ppc_altivec_vcmpgtud: 8764 if (Subtarget.hasP8Altivec()) 8765 CompareOpc = 711; 8766 else 8767 return false; 8768 break; 8769 } 8770 return true; 8771 } 8772 8773 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 8774 /// lower, do it, otherwise return null. 8775 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 8776 SelectionDAG &DAG) const { 8777 unsigned IntrinsicID = 8778 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8779 8780 SDLoc dl(Op); 8781 8782 if (IntrinsicID == Intrinsic::thread_pointer) { 8783 // Reads the thread pointer register, used for __builtin_thread_pointer. 8784 if (Subtarget.isPPC64()) 8785 return DAG.getRegister(PPC::X13, MVT::i64); 8786 return DAG.getRegister(PPC::R2, MVT::i32); 8787 } 8788 8789 // We are looking for absolute values here. 8790 // The idea is to try to fit one of two patterns: 8791 // max (a, (0-a)) OR max ((0-a), a) 8792 if (Subtarget.hasP9Vector() && 8793 (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw || 8794 IntrinsicID == Intrinsic::ppc_altivec_vmaxsh || 8795 IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) { 8796 SDValue V1 = Op.getOperand(1); 8797 SDValue V2 = Op.getOperand(2); 8798 if (V1.getSimpleValueType() == V2.getSimpleValueType() && 8799 (V1.getSimpleValueType() == MVT::v4i32 || 8800 V1.getSimpleValueType() == MVT::v8i16 || 8801 V1.getSimpleValueType() == MVT::v16i8)) { 8802 if ( V1.getOpcode() == ISD::SUB && 8803 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 8804 V1.getOperand(1) == V2 ) { 8805 // Generate the abs instruction with the operands 8806 return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2); 8807 } 8808 8809 if ( V2.getOpcode() == ISD::SUB && 8810 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 8811 V2.getOperand(1) == V1 ) { 8812 // Generate the abs instruction with the operands 8813 return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1); 8814 } 8815 } 8816 } 8817 8818 // If this is a lowered altivec predicate compare, CompareOpc is set to the 8819 // opcode number of the comparison. 8820 int CompareOpc; 8821 bool isDot; 8822 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 8823 return SDValue(); // Don't custom lower most intrinsics. 8824 8825 // If this is a non-dot comparison, make the VCMP node and we are done. 8826 if (!isDot) { 8827 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 8828 Op.getOperand(1), Op.getOperand(2), 8829 DAG.getConstant(CompareOpc, dl, MVT::i32)); 8830 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 8831 } 8832 8833 // Create the PPCISD altivec 'dot' comparison node. 8834 SDValue Ops[] = { 8835 Op.getOperand(2), // LHS 8836 Op.getOperand(3), // RHS 8837 DAG.getConstant(CompareOpc, dl, MVT::i32) 8838 }; 8839 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 8840 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 8841 8842 // Now that we have the comparison, emit a copy from the CR to a GPR. 8843 // This is flagged to the above dot comparison. 8844 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 8845 DAG.getRegister(PPC::CR6, MVT::i32), 8846 CompNode.getValue(1)); 8847 8848 // Unpack the result based on how the target uses it. 8849 unsigned BitNo; // Bit # of CR6. 8850 bool InvertBit; // Invert result? 8851 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 8852 default: // Can't happen, don't crash on invalid number though. 8853 case 0: // Return the value of the EQ bit of CR6. 8854 BitNo = 0; InvertBit = false; 8855 break; 8856 case 1: // Return the inverted value of the EQ bit of CR6. 8857 BitNo = 0; InvertBit = true; 8858 break; 8859 case 2: // Return the value of the LT bit of CR6. 8860 BitNo = 2; InvertBit = false; 8861 break; 8862 case 3: // Return the inverted value of the LT bit of CR6. 8863 BitNo = 2; InvertBit = true; 8864 break; 8865 } 8866 8867 // Shift the bit into the low position. 8868 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 8869 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 8870 // Isolate the bit. 8871 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 8872 DAG.getConstant(1, dl, MVT::i32)); 8873 8874 // If we are supposed to, toggle the bit. 8875 if (InvertBit) 8876 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 8877 DAG.getConstant(1, dl, MVT::i32)); 8878 return Flags; 8879 } 8880 8881 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 8882 SelectionDAG &DAG) const { 8883 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 8884 // the beginning of the argument list. 8885 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 8886 SDLoc DL(Op); 8887 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 8888 case Intrinsic::ppc_cfence: { 8889 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 8890 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 8891 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 8892 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 8893 Op.getOperand(ArgStart + 1)), 8894 Op.getOperand(0)), 8895 0); 8896 } 8897 default: 8898 break; 8899 } 8900 return SDValue(); 8901 } 8902 8903 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 8904 // Check for a DIV with the same operands as this REM. 8905 for (auto UI : Op.getOperand(1)->uses()) { 8906 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 8907 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 8908 if (UI->getOperand(0) == Op.getOperand(0) && 8909 UI->getOperand(1) == Op.getOperand(1)) 8910 return SDValue(); 8911 } 8912 return Op; 8913 } 8914 8915 // Lower scalar BSWAP64 to xxbrd. 8916 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 8917 SDLoc dl(Op); 8918 // MTVSRDD 8919 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 8920 Op.getOperand(0)); 8921 // XXBRD 8922 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op); 8923 // MFVSRD 8924 int VectorIndex = 0; 8925 if (Subtarget.isLittleEndian()) 8926 VectorIndex = 1; 8927 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 8928 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 8929 return Op; 8930 } 8931 8932 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 8933 // compared to a value that is atomically loaded (atomic loads zero-extend). 8934 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 8935 SelectionDAG &DAG) const { 8936 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 8937 "Expecting an atomic compare-and-swap here."); 8938 SDLoc dl(Op); 8939 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 8940 EVT MemVT = AtomicNode->getMemoryVT(); 8941 if (MemVT.getSizeInBits() >= 32) 8942 return Op; 8943 8944 SDValue CmpOp = Op.getOperand(2); 8945 // If this is already correctly zero-extended, leave it alone. 8946 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 8947 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 8948 return Op; 8949 8950 // Clear the high bits of the compare operand. 8951 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 8952 SDValue NewCmpOp = 8953 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 8954 DAG.getConstant(MaskVal, dl, MVT::i32)); 8955 8956 // Replace the existing compare operand with the properly zero-extended one. 8957 SmallVector<SDValue, 4> Ops; 8958 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 8959 Ops.push_back(AtomicNode->getOperand(i)); 8960 Ops[2] = NewCmpOp; 8961 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 8962 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 8963 auto NodeTy = 8964 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 8965 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 8966 } 8967 8968 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 8969 SelectionDAG &DAG) const { 8970 SDLoc dl(Op); 8971 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 8972 // instructions), but for smaller types, we need to first extend up to v2i32 8973 // before doing going farther. 8974 if (Op.getValueType() == MVT::v2i64) { 8975 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 8976 if (ExtVT != MVT::v2i32) { 8977 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 8978 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 8979 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 8980 ExtVT.getVectorElementType(), 4))); 8981 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 8982 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 8983 DAG.getValueType(MVT::v2i32)); 8984 } 8985 8986 return Op; 8987 } 8988 8989 return SDValue(); 8990 } 8991 8992 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 8993 SelectionDAG &DAG) const { 8994 SDLoc dl(Op); 8995 // Create a stack slot that is 16-byte aligned. 8996 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8997 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8998 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8999 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9000 9001 // Store the input value into Value#0 of the stack slot. 9002 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9003 MachinePointerInfo()); 9004 // Load it out. 9005 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9006 } 9007 9008 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9009 SelectionDAG &DAG) const { 9010 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9011 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9012 9013 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9014 // We have legal lowering for constant indices but not for variable ones. 9015 if (!C) 9016 return SDValue(); 9017 9018 EVT VT = Op.getValueType(); 9019 SDLoc dl(Op); 9020 SDValue V1 = Op.getOperand(0); 9021 SDValue V2 = Op.getOperand(1); 9022 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9023 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9024 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9025 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9026 unsigned InsertAtElement = C->getZExtValue(); 9027 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9028 if (Subtarget.isLittleEndian()) { 9029 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9030 } 9031 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9032 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9033 } 9034 return Op; 9035 } 9036 9037 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9038 SelectionDAG &DAG) const { 9039 SDLoc dl(Op); 9040 SDNode *N = Op.getNode(); 9041 9042 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 9043 "Unknown extract_vector_elt type"); 9044 9045 SDValue Value = N->getOperand(0); 9046 9047 // The first part of this is like the store lowering except that we don't 9048 // need to track the chain. 9049 9050 // The values are now known to be -1 (false) or 1 (true). To convert this 9051 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9052 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9053 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9054 9055 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9056 // understand how to form the extending load. 9057 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9058 9059 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9060 9061 // Now convert to an integer and store. 9062 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9063 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9064 Value); 9065 9066 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9067 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9068 MachinePointerInfo PtrInfo = 9069 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9070 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9071 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9072 9073 SDValue StoreChain = DAG.getEntryNode(); 9074 SDValue Ops[] = {StoreChain, 9075 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9076 Value, FIdx}; 9077 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9078 9079 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9080 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9081 9082 // Extract the value requested. 9083 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9084 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9085 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9086 9087 SDValue IntVal = 9088 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 9089 9090 if (!Subtarget.useCRBits()) 9091 return IntVal; 9092 9093 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 9094 } 9095 9096 /// Lowering for QPX v4i1 loads 9097 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 9098 SelectionDAG &DAG) const { 9099 SDLoc dl(Op); 9100 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 9101 SDValue LoadChain = LN->getChain(); 9102 SDValue BasePtr = LN->getBasePtr(); 9103 9104 if (Op.getValueType() == MVT::v4f64 || 9105 Op.getValueType() == MVT::v4f32) { 9106 EVT MemVT = LN->getMemoryVT(); 9107 unsigned Alignment = LN->getAlignment(); 9108 9109 // If this load is properly aligned, then it is legal. 9110 if (Alignment >= MemVT.getStoreSize()) 9111 return Op; 9112 9113 EVT ScalarVT = Op.getValueType().getScalarType(), 9114 ScalarMemVT = MemVT.getScalarType(); 9115 unsigned Stride = ScalarMemVT.getStoreSize(); 9116 9117 SDValue Vals[4], LoadChains[4]; 9118 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9119 SDValue Load; 9120 if (ScalarVT != ScalarMemVT) 9121 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 9122 BasePtr, 9123 LN->getPointerInfo().getWithOffset(Idx * Stride), 9124 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9125 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9126 else 9127 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 9128 LN->getPointerInfo().getWithOffset(Idx * Stride), 9129 MinAlign(Alignment, Idx * Stride), 9130 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9131 9132 if (Idx == 0 && LN->isIndexed()) { 9133 assert(LN->getAddressingMode() == ISD::PRE_INC && 9134 "Unknown addressing mode on vector load"); 9135 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 9136 LN->getAddressingMode()); 9137 } 9138 9139 Vals[Idx] = Load; 9140 LoadChains[Idx] = Load.getValue(1); 9141 9142 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9143 DAG.getConstant(Stride, dl, 9144 BasePtr.getValueType())); 9145 } 9146 9147 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9148 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 9149 9150 if (LN->isIndexed()) { 9151 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 9152 return DAG.getMergeValues(RetOps, dl); 9153 } 9154 9155 SDValue RetOps[] = { Value, TF }; 9156 return DAG.getMergeValues(RetOps, dl); 9157 } 9158 9159 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 9160 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 9161 9162 // To lower v4i1 from a byte array, we load the byte elements of the 9163 // vector and then reuse the BUILD_VECTOR logic. 9164 9165 SDValue VectElmts[4], VectElmtChains[4]; 9166 for (unsigned i = 0; i < 4; ++i) { 9167 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9168 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9169 9170 VectElmts[i] = DAG.getExtLoad( 9171 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 9172 LN->getPointerInfo().getWithOffset(i), MVT::i8, 9173 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 9174 VectElmtChains[i] = VectElmts[i].getValue(1); 9175 } 9176 9177 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 9178 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 9179 9180 SDValue RVals[] = { Value, LoadChain }; 9181 return DAG.getMergeValues(RVals, dl); 9182 } 9183 9184 /// Lowering for QPX v4i1 stores 9185 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 9186 SelectionDAG &DAG) const { 9187 SDLoc dl(Op); 9188 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 9189 SDValue StoreChain = SN->getChain(); 9190 SDValue BasePtr = SN->getBasePtr(); 9191 SDValue Value = SN->getValue(); 9192 9193 if (Value.getValueType() == MVT::v4f64 || 9194 Value.getValueType() == MVT::v4f32) { 9195 EVT MemVT = SN->getMemoryVT(); 9196 unsigned Alignment = SN->getAlignment(); 9197 9198 // If this store is properly aligned, then it is legal. 9199 if (Alignment >= MemVT.getStoreSize()) 9200 return Op; 9201 9202 EVT ScalarVT = Value.getValueType().getScalarType(), 9203 ScalarMemVT = MemVT.getScalarType(); 9204 unsigned Stride = ScalarMemVT.getStoreSize(); 9205 9206 SDValue Stores[4]; 9207 for (unsigned Idx = 0; Idx < 4; ++Idx) { 9208 SDValue Ex = DAG.getNode( 9209 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 9210 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 9211 SDValue Store; 9212 if (ScalarVT != ScalarMemVT) 9213 Store = 9214 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 9215 SN->getPointerInfo().getWithOffset(Idx * Stride), 9216 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 9217 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9218 else 9219 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 9220 SN->getPointerInfo().getWithOffset(Idx * Stride), 9221 MinAlign(Alignment, Idx * Stride), 9222 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 9223 9224 if (Idx == 0 && SN->isIndexed()) { 9225 assert(SN->getAddressingMode() == ISD::PRE_INC && 9226 "Unknown addressing mode on vector store"); 9227 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 9228 SN->getAddressingMode()); 9229 } 9230 9231 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 9232 DAG.getConstant(Stride, dl, 9233 BasePtr.getValueType())); 9234 Stores[Idx] = Store; 9235 } 9236 9237 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9238 9239 if (SN->isIndexed()) { 9240 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 9241 return DAG.getMergeValues(RetOps, dl); 9242 } 9243 9244 return TF; 9245 } 9246 9247 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 9248 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 9249 9250 // The values are now known to be -1 (false) or 1 (true). To convert this 9251 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 9252 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 9253 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 9254 9255 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 9256 // understand how to form the extending load. 9257 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 9258 9259 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 9260 9261 // Now convert to an integer and store. 9262 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9263 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 9264 Value); 9265 9266 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9267 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9268 MachinePointerInfo PtrInfo = 9269 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9270 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9271 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9272 9273 SDValue Ops[] = {StoreChain, 9274 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 9275 Value, FIdx}; 9276 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 9277 9278 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 9279 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9280 9281 // Move data into the byte array. 9282 SDValue Loads[4], LoadChains[4]; 9283 for (unsigned i = 0; i < 4; ++i) { 9284 unsigned Offset = 4*i; 9285 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9286 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9287 9288 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 9289 PtrInfo.getWithOffset(Offset)); 9290 LoadChains[i] = Loads[i].getValue(1); 9291 } 9292 9293 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 9294 9295 SDValue Stores[4]; 9296 for (unsigned i = 0; i < 4; ++i) { 9297 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 9298 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 9299 9300 Stores[i] = DAG.getTruncStore( 9301 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 9302 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 9303 SN->getAAInfo()); 9304 } 9305 9306 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9307 9308 return StoreChain; 9309 } 9310 9311 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 9312 SDLoc dl(Op); 9313 if (Op.getValueType() == MVT::v4i32) { 9314 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9315 9316 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 9317 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 9318 9319 SDValue RHSSwap = // = vrlw RHS, 16 9320 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 9321 9322 // Shrinkify inputs to v8i16. 9323 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 9324 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 9325 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 9326 9327 // Low parts multiplied together, generating 32-bit results (we ignore the 9328 // top parts). 9329 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 9330 LHS, RHS, DAG, dl, MVT::v4i32); 9331 9332 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 9333 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 9334 // Shift the high parts up 16 bits. 9335 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 9336 Neg16, DAG, dl); 9337 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 9338 } else if (Op.getValueType() == MVT::v8i16) { 9339 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9340 9341 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 9342 9343 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 9344 LHS, RHS, Zero, DAG, dl); 9345 } else if (Op.getValueType() == MVT::v16i8) { 9346 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 9347 bool isLittleEndian = Subtarget.isLittleEndian(); 9348 9349 // Multiply the even 8-bit parts, producing 16-bit sums. 9350 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 9351 LHS, RHS, DAG, dl, MVT::v8i16); 9352 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 9353 9354 // Multiply the odd 8-bit parts, producing 16-bit sums. 9355 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 9356 LHS, RHS, DAG, dl, MVT::v8i16); 9357 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 9358 9359 // Merge the results together. Because vmuleub and vmuloub are 9360 // instructions with a big-endian bias, we must reverse the 9361 // element numbering and reverse the meaning of "odd" and "even" 9362 // when generating little endian code. 9363 int Ops[16]; 9364 for (unsigned i = 0; i != 8; ++i) { 9365 if (isLittleEndian) { 9366 Ops[i*2 ] = 2*i; 9367 Ops[i*2+1] = 2*i+16; 9368 } else { 9369 Ops[i*2 ] = 2*i+1; 9370 Ops[i*2+1] = 2*i+1+16; 9371 } 9372 } 9373 if (isLittleEndian) 9374 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 9375 else 9376 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 9377 } else { 9378 llvm_unreachable("Unknown mul to lower!"); 9379 } 9380 } 9381 9382 /// LowerOperation - Provide custom lowering hooks for some operations. 9383 /// 9384 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9385 switch (Op.getOpcode()) { 9386 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 9387 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 9388 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 9389 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 9390 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 9391 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 9392 case ISD::SETCC: return LowerSETCC(Op, DAG); 9393 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 9394 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 9395 9396 // Variable argument lowering. 9397 case ISD::VASTART: return LowerVASTART(Op, DAG); 9398 case ISD::VAARG: return LowerVAARG(Op, DAG); 9399 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 9400 9401 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 9402 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 9403 case ISD::GET_DYNAMIC_AREA_OFFSET: 9404 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 9405 9406 // Exception handling lowering. 9407 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 9408 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 9409 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 9410 9411 case ISD::LOAD: return LowerLOAD(Op, DAG); 9412 case ISD::STORE: return LowerSTORE(Op, DAG); 9413 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 9414 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 9415 case ISD::FP_TO_UINT: 9416 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 9417 case ISD::UINT_TO_FP: 9418 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 9419 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 9420 9421 // Lower 64-bit shifts. 9422 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 9423 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 9424 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 9425 9426 // Vector-related lowering. 9427 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 9428 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 9429 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 9430 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 9431 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 9432 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 9433 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 9434 case ISD::MUL: return LowerMUL(Op, DAG); 9435 9436 // For counter-based loop handling. 9437 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 9438 9439 // Frame & Return address. 9440 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 9441 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 9442 9443 case ISD::INTRINSIC_VOID: 9444 return LowerINTRINSIC_VOID(Op, DAG); 9445 case ISD::SREM: 9446 case ISD::UREM: 9447 return LowerREM(Op, DAG); 9448 case ISD::BSWAP: 9449 return LowerBSWAP(Op, DAG); 9450 case ISD::ATOMIC_CMP_SWAP: 9451 return LowerATOMIC_CMP_SWAP(Op, DAG); 9452 } 9453 } 9454 9455 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 9456 SmallVectorImpl<SDValue>&Results, 9457 SelectionDAG &DAG) const { 9458 SDLoc dl(N); 9459 switch (N->getOpcode()) { 9460 default: 9461 llvm_unreachable("Do not know how to custom type legalize this operation!"); 9462 case ISD::READCYCLECOUNTER: { 9463 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 9464 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 9465 9466 Results.push_back(RTB); 9467 Results.push_back(RTB.getValue(1)); 9468 Results.push_back(RTB.getValue(2)); 9469 break; 9470 } 9471 case ISD::INTRINSIC_W_CHAIN: { 9472 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 9473 Intrinsic::ppc_is_decremented_ctr_nonzero) 9474 break; 9475 9476 assert(N->getValueType(0) == MVT::i1 && 9477 "Unexpected result type for CTR decrement intrinsic"); 9478 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 9479 N->getValueType(0)); 9480 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 9481 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 9482 N->getOperand(1)); 9483 9484 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 9485 Results.push_back(NewInt.getValue(1)); 9486 break; 9487 } 9488 case ISD::VAARG: { 9489 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 9490 return; 9491 9492 EVT VT = N->getValueType(0); 9493 9494 if (VT == MVT::i64) { 9495 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 9496 9497 Results.push_back(NewNode); 9498 Results.push_back(NewNode.getValue(1)); 9499 } 9500 return; 9501 } 9502 case ISD::FP_TO_SINT: 9503 case ISD::FP_TO_UINT: 9504 // LowerFP_TO_INT() can only handle f32 and f64. 9505 if (N->getOperand(0).getValueType() == MVT::ppcf128) 9506 return; 9507 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 9508 return; 9509 } 9510 } 9511 9512 //===----------------------------------------------------------------------===// 9513 // Other Lowering Code 9514 //===----------------------------------------------------------------------===// 9515 9516 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 9517 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 9518 Function *Func = Intrinsic::getDeclaration(M, Id); 9519 return Builder.CreateCall(Func, {}); 9520 } 9521 9522 // The mappings for emitLeading/TrailingFence is taken from 9523 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 9524 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 9525 Instruction *Inst, 9526 AtomicOrdering Ord) const { 9527 if (Ord == AtomicOrdering::SequentiallyConsistent) 9528 return callIntrinsic(Builder, Intrinsic::ppc_sync); 9529 if (isReleaseOrStronger(Ord)) 9530 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9531 return nullptr; 9532 } 9533 9534 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 9535 Instruction *Inst, 9536 AtomicOrdering Ord) const { 9537 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 9538 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 9539 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 9540 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 9541 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 9542 return Builder.CreateCall( 9543 Intrinsic::getDeclaration( 9544 Builder.GetInsertBlock()->getParent()->getParent(), 9545 Intrinsic::ppc_cfence, {Inst->getType()}), 9546 {Inst}); 9547 // FIXME: Can use isync for rmw operation. 9548 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 9549 } 9550 return nullptr; 9551 } 9552 9553 MachineBasicBlock * 9554 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 9555 unsigned AtomicSize, 9556 unsigned BinOpcode, 9557 unsigned CmpOpcode, 9558 unsigned CmpPred) const { 9559 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9560 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9561 9562 auto LoadMnemonic = PPC::LDARX; 9563 auto StoreMnemonic = PPC::STDCX; 9564 switch (AtomicSize) { 9565 default: 9566 llvm_unreachable("Unexpected size of atomic entity"); 9567 case 1: 9568 LoadMnemonic = PPC::LBARX; 9569 StoreMnemonic = PPC::STBCX; 9570 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9571 break; 9572 case 2: 9573 LoadMnemonic = PPC::LHARX; 9574 StoreMnemonic = PPC::STHCX; 9575 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 9576 break; 9577 case 4: 9578 LoadMnemonic = PPC::LWARX; 9579 StoreMnemonic = PPC::STWCX; 9580 break; 9581 case 8: 9582 LoadMnemonic = PPC::LDARX; 9583 StoreMnemonic = PPC::STDCX; 9584 break; 9585 } 9586 9587 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9588 MachineFunction *F = BB->getParent(); 9589 MachineFunction::iterator It = ++BB->getIterator(); 9590 9591 unsigned dest = MI.getOperand(0).getReg(); 9592 unsigned ptrA = MI.getOperand(1).getReg(); 9593 unsigned ptrB = MI.getOperand(2).getReg(); 9594 unsigned incr = MI.getOperand(3).getReg(); 9595 DebugLoc dl = MI.getDebugLoc(); 9596 9597 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9598 MachineBasicBlock *loop2MBB = 9599 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9600 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9601 F->insert(It, loopMBB); 9602 if (CmpOpcode) 9603 F->insert(It, loop2MBB); 9604 F->insert(It, exitMBB); 9605 exitMBB->splice(exitMBB->begin(), BB, 9606 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9607 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9608 9609 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9610 unsigned TmpReg = (!BinOpcode) ? incr : 9611 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 9612 : &PPC::GPRCRegClass); 9613 9614 // thisMBB: 9615 // ... 9616 // fallthrough --> loopMBB 9617 BB->addSuccessor(loopMBB); 9618 9619 // loopMBB: 9620 // l[wd]arx dest, ptr 9621 // add r0, dest, incr 9622 // st[wd]cx. r0, ptr 9623 // bne- loopMBB 9624 // fallthrough --> exitMBB 9625 9626 // For max/min... 9627 // loopMBB: 9628 // l[wd]arx dest, ptr 9629 // cmpl?[wd] incr, dest 9630 // bgt exitMBB 9631 // loop2MBB: 9632 // st[wd]cx. dest, ptr 9633 // bne- loopMBB 9634 // fallthrough --> exitMBB 9635 9636 BB = loopMBB; 9637 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9638 .addReg(ptrA).addReg(ptrB); 9639 if (BinOpcode) 9640 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 9641 if (CmpOpcode) { 9642 // Signed comparisons of byte or halfword values must be sign-extended. 9643 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 9644 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9645 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 9646 ExtReg).addReg(dest); 9647 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9648 .addReg(incr).addReg(ExtReg); 9649 } else 9650 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9651 .addReg(incr).addReg(dest); 9652 9653 BuildMI(BB, dl, TII->get(PPC::BCC)) 9654 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9655 BB->addSuccessor(loop2MBB); 9656 BB->addSuccessor(exitMBB); 9657 BB = loop2MBB; 9658 } 9659 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9660 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 9661 BuildMI(BB, dl, TII->get(PPC::BCC)) 9662 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9663 BB->addSuccessor(loopMBB); 9664 BB->addSuccessor(exitMBB); 9665 9666 // exitMBB: 9667 // ... 9668 BB = exitMBB; 9669 return BB; 9670 } 9671 9672 MachineBasicBlock * 9673 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI, 9674 MachineBasicBlock *BB, 9675 bool is8bit, // operation 9676 unsigned BinOpcode, 9677 unsigned CmpOpcode, 9678 unsigned CmpPred) const { 9679 // If we support part-word atomic mnemonics, just use them 9680 if (Subtarget.hasPartwordAtomics()) 9681 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, 9682 CmpOpcode, CmpPred); 9683 9684 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 9685 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9686 // In 64 bit mode we have to use 64 bits for addresses, even though the 9687 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 9688 // registers without caring whether they're 32 or 64, but here we're 9689 // doing actual arithmetic on the addresses. 9690 bool is64bit = Subtarget.isPPC64(); 9691 bool isLittleEndian = Subtarget.isLittleEndian(); 9692 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9693 9694 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9695 MachineFunction *F = BB->getParent(); 9696 MachineFunction::iterator It = ++BB->getIterator(); 9697 9698 unsigned dest = MI.getOperand(0).getReg(); 9699 unsigned ptrA = MI.getOperand(1).getReg(); 9700 unsigned ptrB = MI.getOperand(2).getReg(); 9701 unsigned incr = MI.getOperand(3).getReg(); 9702 DebugLoc dl = MI.getDebugLoc(); 9703 9704 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 9705 MachineBasicBlock *loop2MBB = 9706 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 9707 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9708 F->insert(It, loopMBB); 9709 if (CmpOpcode) 9710 F->insert(It, loop2MBB); 9711 F->insert(It, exitMBB); 9712 exitMBB->splice(exitMBB->begin(), BB, 9713 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9714 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9715 9716 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9717 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9718 : &PPC::GPRCRegClass; 9719 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9720 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9721 unsigned ShiftReg = 9722 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 9723 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 9724 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9725 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9726 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9727 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9728 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 9729 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9730 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9731 unsigned Ptr1Reg; 9732 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 9733 9734 // thisMBB: 9735 // ... 9736 // fallthrough --> loopMBB 9737 BB->addSuccessor(loopMBB); 9738 9739 // The 4-byte load must be aligned, while a char or short may be 9740 // anywhere in the word. Hence all this nasty bookkeeping code. 9741 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9742 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9743 // xori shift, shift1, 24 [16] 9744 // rlwinm ptr, ptr1, 0, 0, 29 9745 // slw incr2, incr, shift 9746 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9747 // slw mask, mask2, shift 9748 // loopMBB: 9749 // lwarx tmpDest, ptr 9750 // add tmp, tmpDest, incr2 9751 // andc tmp2, tmpDest, mask 9752 // and tmp3, tmp, mask 9753 // or tmp4, tmp3, tmp2 9754 // stwcx. tmp4, ptr 9755 // bne- loopMBB 9756 // fallthrough --> exitMBB 9757 // srw dest, tmpDest, shift 9758 if (ptrA != ZeroReg) { 9759 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9760 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9761 .addReg(ptrA).addReg(ptrB); 9762 } else { 9763 Ptr1Reg = ptrB; 9764 } 9765 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9766 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9767 if (!isLittleEndian) 9768 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9769 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9770 if (is64bit) 9771 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9772 .addReg(Ptr1Reg).addImm(0).addImm(61); 9773 else 9774 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9775 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9776 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 9777 .addReg(incr).addReg(ShiftReg); 9778 if (is8bit) 9779 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9780 else { 9781 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9782 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 9783 } 9784 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9785 .addReg(Mask2Reg).addReg(ShiftReg); 9786 9787 BB = loopMBB; 9788 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9789 .addReg(ZeroReg).addReg(PtrReg); 9790 if (BinOpcode) 9791 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 9792 .addReg(Incr2Reg).addReg(TmpDestReg); 9793 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 9794 .addReg(TmpDestReg).addReg(MaskReg); 9795 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 9796 .addReg(TmpReg).addReg(MaskReg); 9797 if (CmpOpcode) { 9798 // For unsigned comparisons, we can directly compare the shifted values. 9799 // For signed comparisons we shift and sign extend. 9800 unsigned SReg = RegInfo.createVirtualRegister(RC); 9801 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg) 9802 .addReg(TmpDestReg).addReg(MaskReg); 9803 unsigned ValueReg = SReg; 9804 unsigned CmpReg = Incr2Reg; 9805 if (CmpOpcode == PPC::CMPW) { 9806 ValueReg = RegInfo.createVirtualRegister(RC); 9807 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 9808 .addReg(SReg).addReg(ShiftReg); 9809 unsigned ValueSReg = RegInfo.createVirtualRegister(RC); 9810 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 9811 .addReg(ValueReg); 9812 ValueReg = ValueSReg; 9813 CmpReg = incr; 9814 } 9815 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 9816 .addReg(CmpReg).addReg(ValueReg); 9817 BuildMI(BB, dl, TII->get(PPC::BCC)) 9818 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 9819 BB->addSuccessor(loop2MBB); 9820 BB->addSuccessor(exitMBB); 9821 BB = loop2MBB; 9822 } 9823 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 9824 .addReg(Tmp3Reg).addReg(Tmp2Reg); 9825 BuildMI(BB, dl, TII->get(PPC::STWCX)) 9826 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 9827 BuildMI(BB, dl, TII->get(PPC::BCC)) 9828 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 9829 BB->addSuccessor(loopMBB); 9830 BB->addSuccessor(exitMBB); 9831 9832 // exitMBB: 9833 // ... 9834 BB = exitMBB; 9835 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 9836 .addReg(ShiftReg); 9837 return BB; 9838 } 9839 9840 llvm::MachineBasicBlock * 9841 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 9842 MachineBasicBlock *MBB) const { 9843 DebugLoc DL = MI.getDebugLoc(); 9844 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9845 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9846 9847 MachineFunction *MF = MBB->getParent(); 9848 MachineRegisterInfo &MRI = MF->getRegInfo(); 9849 9850 const BasicBlock *BB = MBB->getBasicBlock(); 9851 MachineFunction::iterator I = ++MBB->getIterator(); 9852 9853 // Memory Reference 9854 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9855 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9856 9857 unsigned DstReg = MI.getOperand(0).getReg(); 9858 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 9859 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 9860 unsigned mainDstReg = MRI.createVirtualRegister(RC); 9861 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 9862 9863 MVT PVT = getPointerTy(MF->getDataLayout()); 9864 assert((PVT == MVT::i64 || PVT == MVT::i32) && 9865 "Invalid Pointer Size!"); 9866 // For v = setjmp(buf), we generate 9867 // 9868 // thisMBB: 9869 // SjLjSetup mainMBB 9870 // bl mainMBB 9871 // v_restore = 1 9872 // b sinkMBB 9873 // 9874 // mainMBB: 9875 // buf[LabelOffset] = LR 9876 // v_main = 0 9877 // 9878 // sinkMBB: 9879 // v = phi(main, restore) 9880 // 9881 9882 MachineBasicBlock *thisMBB = MBB; 9883 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 9884 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 9885 MF->insert(I, mainMBB); 9886 MF->insert(I, sinkMBB); 9887 9888 MachineInstrBuilder MIB; 9889 9890 // Transfer the remainder of BB and its successor edges to sinkMBB. 9891 sinkMBB->splice(sinkMBB->begin(), MBB, 9892 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 9893 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 9894 9895 // Note that the structure of the jmp_buf used here is not compatible 9896 // with that used by libc, and is not designed to be. Specifically, it 9897 // stores only those 'reserved' registers that LLVM does not otherwise 9898 // understand how to spill. Also, by convention, by the time this 9899 // intrinsic is called, Clang has already stored the frame address in the 9900 // first slot of the buffer and stack address in the third. Following the 9901 // X86 target code, we'll store the jump address in the second slot. We also 9902 // need to save the TOC pointer (R2) to handle jumps between shared 9903 // libraries, and that will be stored in the fourth slot. The thread 9904 // identifier (R13) is not affected. 9905 9906 // thisMBB: 9907 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 9908 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 9909 const int64_t BPOffset = 4 * PVT.getStoreSize(); 9910 9911 // Prepare IP either in reg. 9912 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 9913 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 9914 unsigned BufReg = MI.getOperand(1).getReg(); 9915 9916 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 9917 setUsesTOCBasePtr(*MBB->getParent()); 9918 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 9919 .addReg(PPC::X2) 9920 .addImm(TOCOffset) 9921 .addReg(BufReg); 9922 MIB.setMemRefs(MMOBegin, MMOEnd); 9923 } 9924 9925 // Naked functions never have a base pointer, and so we use r1. For all 9926 // other functions, this decision must be delayed until during PEI. 9927 unsigned BaseReg; 9928 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 9929 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 9930 else 9931 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 9932 9933 MIB = BuildMI(*thisMBB, MI, DL, 9934 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 9935 .addReg(BaseReg) 9936 .addImm(BPOffset) 9937 .addReg(BufReg); 9938 MIB.setMemRefs(MMOBegin, MMOEnd); 9939 9940 // Setup 9941 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 9942 MIB.addRegMask(TRI->getNoPreservedMask()); 9943 9944 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 9945 9946 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 9947 .addMBB(mainMBB); 9948 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 9949 9950 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 9951 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 9952 9953 // mainMBB: 9954 // mainDstReg = 0 9955 MIB = 9956 BuildMI(mainMBB, DL, 9957 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 9958 9959 // Store IP 9960 if (Subtarget.isPPC64()) { 9961 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 9962 .addReg(LabelReg) 9963 .addImm(LabelOffset) 9964 .addReg(BufReg); 9965 } else { 9966 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 9967 .addReg(LabelReg) 9968 .addImm(LabelOffset) 9969 .addReg(BufReg); 9970 } 9971 9972 MIB.setMemRefs(MMOBegin, MMOEnd); 9973 9974 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 9975 mainMBB->addSuccessor(sinkMBB); 9976 9977 // sinkMBB: 9978 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 9979 TII->get(PPC::PHI), DstReg) 9980 .addReg(mainDstReg).addMBB(mainMBB) 9981 .addReg(restoreDstReg).addMBB(thisMBB); 9982 9983 MI.eraseFromParent(); 9984 return sinkMBB; 9985 } 9986 9987 MachineBasicBlock * 9988 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 9989 MachineBasicBlock *MBB) const { 9990 DebugLoc DL = MI.getDebugLoc(); 9991 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 9992 9993 MachineFunction *MF = MBB->getParent(); 9994 MachineRegisterInfo &MRI = MF->getRegInfo(); 9995 9996 // Memory Reference 9997 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); 9998 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); 9999 10000 MVT PVT = getPointerTy(MF->getDataLayout()); 10001 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10002 "Invalid Pointer Size!"); 10003 10004 const TargetRegisterClass *RC = 10005 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10006 unsigned Tmp = MRI.createVirtualRegister(RC); 10007 // Since FP is only updated here but NOT referenced, it's treated as GPR. 10008 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 10009 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 10010 unsigned BP = 10011 (PVT == MVT::i64) 10012 ? PPC::X30 10013 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 10014 : PPC::R30); 10015 10016 MachineInstrBuilder MIB; 10017 10018 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10019 const int64_t SPOffset = 2 * PVT.getStoreSize(); 10020 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10021 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10022 10023 unsigned BufReg = MI.getOperand(0).getReg(); 10024 10025 // Reload FP (the jumped-to function may not have had a 10026 // frame pointer, and if so, then its r31 will be restored 10027 // as necessary). 10028 if (PVT == MVT::i64) { 10029 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 10030 .addImm(0) 10031 .addReg(BufReg); 10032 } else { 10033 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 10034 .addImm(0) 10035 .addReg(BufReg); 10036 } 10037 MIB.setMemRefs(MMOBegin, MMOEnd); 10038 10039 // Reload IP 10040 if (PVT == MVT::i64) { 10041 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 10042 .addImm(LabelOffset) 10043 .addReg(BufReg); 10044 } else { 10045 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 10046 .addImm(LabelOffset) 10047 .addReg(BufReg); 10048 } 10049 MIB.setMemRefs(MMOBegin, MMOEnd); 10050 10051 // Reload SP 10052 if (PVT == MVT::i64) { 10053 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 10054 .addImm(SPOffset) 10055 .addReg(BufReg); 10056 } else { 10057 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 10058 .addImm(SPOffset) 10059 .addReg(BufReg); 10060 } 10061 MIB.setMemRefs(MMOBegin, MMOEnd); 10062 10063 // Reload BP 10064 if (PVT == MVT::i64) { 10065 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 10066 .addImm(BPOffset) 10067 .addReg(BufReg); 10068 } else { 10069 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 10070 .addImm(BPOffset) 10071 .addReg(BufReg); 10072 } 10073 MIB.setMemRefs(MMOBegin, MMOEnd); 10074 10075 // Reload TOC 10076 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 10077 setUsesTOCBasePtr(*MBB->getParent()); 10078 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 10079 .addImm(TOCOffset) 10080 .addReg(BufReg); 10081 10082 MIB.setMemRefs(MMOBegin, MMOEnd); 10083 } 10084 10085 // Jump 10086 BuildMI(*MBB, MI, DL, 10087 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 10088 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 10089 10090 MI.eraseFromParent(); 10091 return MBB; 10092 } 10093 10094 MachineBasicBlock * 10095 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 10096 MachineBasicBlock *BB) const { 10097 if (MI.getOpcode() == TargetOpcode::STACKMAP || 10098 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10099 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 10100 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 10101 // Call lowering should have added an r2 operand to indicate a dependence 10102 // on the TOC base pointer value. It can't however, because there is no 10103 // way to mark the dependence as implicit there, and so the stackmap code 10104 // will confuse it with a regular operand. Instead, add the dependence 10105 // here. 10106 setUsesTOCBasePtr(*BB->getParent()); 10107 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 10108 } 10109 10110 return emitPatchPoint(MI, BB); 10111 } 10112 10113 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 10114 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 10115 return emitEHSjLjSetJmp(MI, BB); 10116 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 10117 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 10118 return emitEHSjLjLongJmp(MI, BB); 10119 } 10120 10121 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10122 10123 // To "insert" these instructions we actually have to insert their 10124 // control-flow patterns. 10125 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10126 MachineFunction::iterator It = ++BB->getIterator(); 10127 10128 MachineFunction *F = BB->getParent(); 10129 10130 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10131 MI.getOpcode() == PPC::SELECT_CC_I8 || 10132 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) { 10133 SmallVector<MachineOperand, 2> Cond; 10134 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10135 MI.getOpcode() == PPC::SELECT_CC_I8) 10136 Cond.push_back(MI.getOperand(4)); 10137 else 10138 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 10139 Cond.push_back(MI.getOperand(1)); 10140 10141 DebugLoc dl = MI.getDebugLoc(); 10142 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 10143 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 10144 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 || 10145 MI.getOpcode() == PPC::SELECT_CC_I8 || 10146 MI.getOpcode() == PPC::SELECT_CC_F4 || 10147 MI.getOpcode() == PPC::SELECT_CC_F8 || 10148 MI.getOpcode() == PPC::SELECT_CC_QFRC || 10149 MI.getOpcode() == PPC::SELECT_CC_QSRC || 10150 MI.getOpcode() == PPC::SELECT_CC_QBRC || 10151 MI.getOpcode() == PPC::SELECT_CC_VRRC || 10152 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 10153 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 10154 MI.getOpcode() == PPC::SELECT_CC_VSRC || 10155 MI.getOpcode() == PPC::SELECT_I4 || 10156 MI.getOpcode() == PPC::SELECT_I8 || 10157 MI.getOpcode() == PPC::SELECT_F4 || 10158 MI.getOpcode() == PPC::SELECT_F8 || 10159 MI.getOpcode() == PPC::SELECT_QFRC || 10160 MI.getOpcode() == PPC::SELECT_QSRC || 10161 MI.getOpcode() == PPC::SELECT_QBRC || 10162 MI.getOpcode() == PPC::SELECT_VRRC || 10163 MI.getOpcode() == PPC::SELECT_VSFRC || 10164 MI.getOpcode() == PPC::SELECT_VSSRC || 10165 MI.getOpcode() == PPC::SELECT_VSRC) { 10166 // The incoming instruction knows the destination vreg to set, the 10167 // condition code register to branch on, the true/false values to 10168 // select between, and a branch opcode to use. 10169 10170 // thisMBB: 10171 // ... 10172 // TrueVal = ... 10173 // cmpTY ccX, r1, r2 10174 // bCC copy1MBB 10175 // fallthrough --> copy0MBB 10176 MachineBasicBlock *thisMBB = BB; 10177 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 10178 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10179 DebugLoc dl = MI.getDebugLoc(); 10180 F->insert(It, copy0MBB); 10181 F->insert(It, sinkMBB); 10182 10183 // Transfer the remainder of BB and its successor edges to sinkMBB. 10184 sinkMBB->splice(sinkMBB->begin(), BB, 10185 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10186 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10187 10188 // Next, add the true and fallthrough blocks as its successors. 10189 BB->addSuccessor(copy0MBB); 10190 BB->addSuccessor(sinkMBB); 10191 10192 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 10193 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 10194 MI.getOpcode() == PPC::SELECT_QFRC || 10195 MI.getOpcode() == PPC::SELECT_QSRC || 10196 MI.getOpcode() == PPC::SELECT_QBRC || 10197 MI.getOpcode() == PPC::SELECT_VRRC || 10198 MI.getOpcode() == PPC::SELECT_VSFRC || 10199 MI.getOpcode() == PPC::SELECT_VSSRC || 10200 MI.getOpcode() == PPC::SELECT_VSRC) { 10201 BuildMI(BB, dl, TII->get(PPC::BC)) 10202 .addReg(MI.getOperand(1).getReg()) 10203 .addMBB(sinkMBB); 10204 } else { 10205 unsigned SelectPred = MI.getOperand(4).getImm(); 10206 BuildMI(BB, dl, TII->get(PPC::BCC)) 10207 .addImm(SelectPred) 10208 .addReg(MI.getOperand(1).getReg()) 10209 .addMBB(sinkMBB); 10210 } 10211 10212 // copy0MBB: 10213 // %FalseValue = ... 10214 // # fallthrough to sinkMBB 10215 BB = copy0MBB; 10216 10217 // Update machine-CFG edges 10218 BB->addSuccessor(sinkMBB); 10219 10220 // sinkMBB: 10221 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 10222 // ... 10223 BB = sinkMBB; 10224 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 10225 .addReg(MI.getOperand(3).getReg()) 10226 .addMBB(copy0MBB) 10227 .addReg(MI.getOperand(2).getReg()) 10228 .addMBB(thisMBB); 10229 } else if (MI.getOpcode() == PPC::ReadTB) { 10230 // To read the 64-bit time-base register on a 32-bit target, we read the 10231 // two halves. Should the counter have wrapped while it was being read, we 10232 // need to try again. 10233 // ... 10234 // readLoop: 10235 // mfspr Rx,TBU # load from TBU 10236 // mfspr Ry,TB # load from TB 10237 // mfspr Rz,TBU # load from TBU 10238 // cmpw crX,Rx,Rz # check if 'old'='new' 10239 // bne readLoop # branch if they're not equal 10240 // ... 10241 10242 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 10243 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 10244 DebugLoc dl = MI.getDebugLoc(); 10245 F->insert(It, readMBB); 10246 F->insert(It, sinkMBB); 10247 10248 // Transfer the remainder of BB and its successor edges to sinkMBB. 10249 sinkMBB->splice(sinkMBB->begin(), BB, 10250 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10251 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 10252 10253 BB->addSuccessor(readMBB); 10254 BB = readMBB; 10255 10256 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10257 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10258 unsigned LoReg = MI.getOperand(0).getReg(); 10259 unsigned HiReg = MI.getOperand(1).getReg(); 10260 10261 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 10262 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 10263 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 10264 10265 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10266 10267 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 10268 .addReg(HiReg).addReg(ReadAgainReg); 10269 BuildMI(BB, dl, TII->get(PPC::BCC)) 10270 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 10271 10272 BB->addSuccessor(readMBB); 10273 BB->addSuccessor(sinkMBB); 10274 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 10275 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 10276 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 10277 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 10278 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 10279 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 10280 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 10281 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 10282 10283 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 10284 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 10285 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 10286 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 10287 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 10288 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 10289 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 10290 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 10291 10292 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 10293 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 10294 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 10295 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 10296 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 10297 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 10298 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 10299 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 10300 10301 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 10302 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 10303 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 10304 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 10305 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 10306 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 10307 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 10308 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 10309 10310 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 10311 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 10312 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 10313 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 10314 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 10315 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 10316 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 10317 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 10318 10319 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 10320 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 10321 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 10322 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 10323 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 10324 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 10325 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 10326 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 10327 10328 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 10329 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 10330 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 10331 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 10332 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 10333 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 10334 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 10335 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 10336 10337 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 10338 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 10339 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 10340 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 10341 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 10342 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 10343 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 10344 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 10345 10346 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 10347 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 10348 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 10349 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 10350 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 10351 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 10352 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 10353 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 10354 10355 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 10356 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 10357 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 10358 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 10359 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 10360 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 10361 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 10362 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 10363 10364 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 10365 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 10366 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 10367 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 10368 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 10369 BB = EmitAtomicBinary(MI, BB, 4, 0); 10370 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 10371 BB = EmitAtomicBinary(MI, BB, 8, 0); 10372 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 10373 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 10374 (Subtarget.hasPartwordAtomics() && 10375 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 10376 (Subtarget.hasPartwordAtomics() && 10377 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 10378 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 10379 10380 auto LoadMnemonic = PPC::LDARX; 10381 auto StoreMnemonic = PPC::STDCX; 10382 switch (MI.getOpcode()) { 10383 default: 10384 llvm_unreachable("Compare and swap of unknown size"); 10385 case PPC::ATOMIC_CMP_SWAP_I8: 10386 LoadMnemonic = PPC::LBARX; 10387 StoreMnemonic = PPC::STBCX; 10388 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10389 break; 10390 case PPC::ATOMIC_CMP_SWAP_I16: 10391 LoadMnemonic = PPC::LHARX; 10392 StoreMnemonic = PPC::STHCX; 10393 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 10394 break; 10395 case PPC::ATOMIC_CMP_SWAP_I32: 10396 LoadMnemonic = PPC::LWARX; 10397 StoreMnemonic = PPC::STWCX; 10398 break; 10399 case PPC::ATOMIC_CMP_SWAP_I64: 10400 LoadMnemonic = PPC::LDARX; 10401 StoreMnemonic = PPC::STDCX; 10402 break; 10403 } 10404 unsigned dest = MI.getOperand(0).getReg(); 10405 unsigned ptrA = MI.getOperand(1).getReg(); 10406 unsigned ptrB = MI.getOperand(2).getReg(); 10407 unsigned oldval = MI.getOperand(3).getReg(); 10408 unsigned newval = MI.getOperand(4).getReg(); 10409 DebugLoc dl = MI.getDebugLoc(); 10410 10411 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10412 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10413 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10414 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10415 F->insert(It, loop1MBB); 10416 F->insert(It, loop2MBB); 10417 F->insert(It, midMBB); 10418 F->insert(It, exitMBB); 10419 exitMBB->splice(exitMBB->begin(), BB, 10420 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10421 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10422 10423 // thisMBB: 10424 // ... 10425 // fallthrough --> loopMBB 10426 BB->addSuccessor(loop1MBB); 10427 10428 // loop1MBB: 10429 // l[bhwd]arx dest, ptr 10430 // cmp[wd] dest, oldval 10431 // bne- midMBB 10432 // loop2MBB: 10433 // st[bhwd]cx. newval, ptr 10434 // bne- loopMBB 10435 // b exitBB 10436 // midMBB: 10437 // st[bhwd]cx. dest, ptr 10438 // exitBB: 10439 BB = loop1MBB; 10440 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10441 .addReg(ptrA).addReg(ptrB); 10442 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 10443 .addReg(oldval).addReg(dest); 10444 BuildMI(BB, dl, TII->get(PPC::BCC)) 10445 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10446 BB->addSuccessor(loop2MBB); 10447 BB->addSuccessor(midMBB); 10448 10449 BB = loop2MBB; 10450 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10451 .addReg(newval).addReg(ptrA).addReg(ptrB); 10452 BuildMI(BB, dl, TII->get(PPC::BCC)) 10453 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10454 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10455 BB->addSuccessor(loop1MBB); 10456 BB->addSuccessor(exitMBB); 10457 10458 BB = midMBB; 10459 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10460 .addReg(dest).addReg(ptrA).addReg(ptrB); 10461 BB->addSuccessor(exitMBB); 10462 10463 // exitMBB: 10464 // ... 10465 BB = exitMBB; 10466 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 10467 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 10468 // We must use 64-bit registers for addresses when targeting 64-bit, 10469 // since we're actually doing arithmetic on them. Other registers 10470 // can be 32-bit. 10471 bool is64bit = Subtarget.isPPC64(); 10472 bool isLittleEndian = Subtarget.isLittleEndian(); 10473 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 10474 10475 unsigned dest = MI.getOperand(0).getReg(); 10476 unsigned ptrA = MI.getOperand(1).getReg(); 10477 unsigned ptrB = MI.getOperand(2).getReg(); 10478 unsigned oldval = MI.getOperand(3).getReg(); 10479 unsigned newval = MI.getOperand(4).getReg(); 10480 DebugLoc dl = MI.getDebugLoc(); 10481 10482 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 10483 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 10484 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 10485 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10486 F->insert(It, loop1MBB); 10487 F->insert(It, loop2MBB); 10488 F->insert(It, midMBB); 10489 F->insert(It, exitMBB); 10490 exitMBB->splice(exitMBB->begin(), BB, 10491 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10492 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10493 10494 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10495 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 10496 : &PPC::GPRCRegClass; 10497 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 10498 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 10499 unsigned ShiftReg = 10500 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC); 10501 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 10502 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 10503 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 10504 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 10505 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 10506 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 10507 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 10508 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 10509 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 10510 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 10511 unsigned Ptr1Reg; 10512 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 10513 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10514 // thisMBB: 10515 // ... 10516 // fallthrough --> loopMBB 10517 BB->addSuccessor(loop1MBB); 10518 10519 // The 4-byte load must be aligned, while a char or short may be 10520 // anywhere in the word. Hence all this nasty bookkeeping code. 10521 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10522 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10523 // xori shift, shift1, 24 [16] 10524 // rlwinm ptr, ptr1, 0, 0, 29 10525 // slw newval2, newval, shift 10526 // slw oldval2, oldval,shift 10527 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10528 // slw mask, mask2, shift 10529 // and newval3, newval2, mask 10530 // and oldval3, oldval2, mask 10531 // loop1MBB: 10532 // lwarx tmpDest, ptr 10533 // and tmp, tmpDest, mask 10534 // cmpw tmp, oldval3 10535 // bne- midMBB 10536 // loop2MBB: 10537 // andc tmp2, tmpDest, mask 10538 // or tmp4, tmp2, newval3 10539 // stwcx. tmp4, ptr 10540 // bne- loop1MBB 10541 // b exitBB 10542 // midMBB: 10543 // stwcx. tmpDest, ptr 10544 // exitBB: 10545 // srw dest, tmpDest, shift 10546 if (ptrA != ZeroReg) { 10547 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10548 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10549 .addReg(ptrA).addReg(ptrB); 10550 } else { 10551 Ptr1Reg = ptrB; 10552 } 10553 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 10554 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 10555 if (!isLittleEndian) 10556 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 10557 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 10558 if (is64bit) 10559 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10560 .addReg(Ptr1Reg).addImm(0).addImm(61); 10561 else 10562 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10563 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 10564 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 10565 .addReg(newval).addReg(ShiftReg); 10566 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 10567 .addReg(oldval).addReg(ShiftReg); 10568 if (is8bit) 10569 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10570 else { 10571 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10572 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10573 .addReg(Mask3Reg).addImm(65535); 10574 } 10575 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10576 .addReg(Mask2Reg).addReg(ShiftReg); 10577 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 10578 .addReg(NewVal2Reg).addReg(MaskReg); 10579 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 10580 .addReg(OldVal2Reg).addReg(MaskReg); 10581 10582 BB = loop1MBB; 10583 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10584 .addReg(ZeroReg).addReg(PtrReg); 10585 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 10586 .addReg(TmpDestReg).addReg(MaskReg); 10587 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 10588 .addReg(TmpReg).addReg(OldVal3Reg); 10589 BuildMI(BB, dl, TII->get(PPC::BCC)) 10590 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 10591 BB->addSuccessor(loop2MBB); 10592 BB->addSuccessor(midMBB); 10593 10594 BB = loop2MBB; 10595 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 10596 .addReg(TmpDestReg).addReg(MaskReg); 10597 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 10598 .addReg(Tmp2Reg).addReg(NewVal3Reg); 10599 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 10600 .addReg(ZeroReg).addReg(PtrReg); 10601 BuildMI(BB, dl, TII->get(PPC::BCC)) 10602 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 10603 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 10604 BB->addSuccessor(loop1MBB); 10605 BB->addSuccessor(exitMBB); 10606 10607 BB = midMBB; 10608 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 10609 .addReg(ZeroReg).addReg(PtrReg); 10610 BB->addSuccessor(exitMBB); 10611 10612 // exitMBB: 10613 // ... 10614 BB = exitMBB; 10615 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 10616 .addReg(ShiftReg); 10617 } else if (MI.getOpcode() == PPC::FADDrtz) { 10618 // This pseudo performs an FADD with rounding mode temporarily forced 10619 // to round-to-zero. We emit this via custom inserter since the FPSCR 10620 // is not modeled at the SelectionDAG level. 10621 unsigned Dest = MI.getOperand(0).getReg(); 10622 unsigned Src1 = MI.getOperand(1).getReg(); 10623 unsigned Src2 = MI.getOperand(2).getReg(); 10624 DebugLoc dl = MI.getDebugLoc(); 10625 10626 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10627 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 10628 10629 // Save FPSCR value. 10630 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 10631 10632 // Set rounding mode to round-to-zero. 10633 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 10634 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 10635 10636 // Perform addition. 10637 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 10638 10639 // Restore FPSCR value. 10640 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 10641 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10642 MI.getOpcode() == PPC::ANDIo_1_GT_BIT || 10643 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10644 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) { 10645 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 10646 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) 10647 ? PPC::ANDIo8 10648 : PPC::ANDIo; 10649 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT || 10650 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8); 10651 10652 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10653 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 10654 &PPC::GPRCRegClass : 10655 &PPC::G8RCRegClass); 10656 10657 DebugLoc dl = MI.getDebugLoc(); 10658 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 10659 .addReg(MI.getOperand(1).getReg()) 10660 .addImm(1); 10661 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 10662 MI.getOperand(0).getReg()) 10663 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 10664 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 10665 DebugLoc Dl = MI.getDebugLoc(); 10666 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10667 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 10668 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 10669 return BB; 10670 } else { 10671 llvm_unreachable("Unexpected instr type to insert"); 10672 } 10673 10674 MI.eraseFromParent(); // The pseudo instruction is gone now. 10675 return BB; 10676 } 10677 10678 //===----------------------------------------------------------------------===// 10679 // Target Optimization Hooks 10680 //===----------------------------------------------------------------------===// 10681 10682 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 10683 // For the estimates, convergence is quadratic, so we essentially double the 10684 // number of digits correct after every iteration. For both FRE and FRSQRTE, 10685 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 10686 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 10687 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 10688 if (VT.getScalarType() == MVT::f64) 10689 RefinementSteps++; 10690 return RefinementSteps; 10691 } 10692 10693 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 10694 int Enabled, int &RefinementSteps, 10695 bool &UseOneConstNR, 10696 bool Reciprocal) const { 10697 EVT VT = Operand.getValueType(); 10698 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 10699 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 10700 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10701 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10702 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10703 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10704 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10705 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10706 10707 UseOneConstNR = true; 10708 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 10709 } 10710 return SDValue(); 10711 } 10712 10713 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 10714 int Enabled, 10715 int &RefinementSteps) const { 10716 EVT VT = Operand.getValueType(); 10717 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 10718 (VT == MVT::f64 && Subtarget.hasFRE()) || 10719 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 10720 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 10721 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 10722 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 10723 if (RefinementSteps == ReciprocalEstimate::Unspecified) 10724 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 10725 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 10726 } 10727 return SDValue(); 10728 } 10729 10730 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 10731 // Note: This functionality is used only when unsafe-fp-math is enabled, and 10732 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 10733 // enabled for division), this functionality is redundant with the default 10734 // combiner logic (once the division -> reciprocal/multiply transformation 10735 // has taken place). As a result, this matters more for older cores than for 10736 // newer ones. 10737 10738 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 10739 // reciprocal if there are two or more FDIVs (for embedded cores with only 10740 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 10741 switch (Subtarget.getDarwinDirective()) { 10742 default: 10743 return 3; 10744 case PPC::DIR_440: 10745 case PPC::DIR_A2: 10746 case PPC::DIR_E500mc: 10747 case PPC::DIR_E5500: 10748 return 2; 10749 } 10750 } 10751 10752 // isConsecutiveLSLoc needs to work even if all adds have not yet been 10753 // collapsed, and so we need to look through chains of them. 10754 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 10755 int64_t& Offset, SelectionDAG &DAG) { 10756 if (DAG.isBaseWithConstantOffset(Loc)) { 10757 Base = Loc.getOperand(0); 10758 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 10759 10760 // The base might itself be a base plus an offset, and if so, accumulate 10761 // that as well. 10762 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 10763 } 10764 } 10765 10766 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 10767 unsigned Bytes, int Dist, 10768 SelectionDAG &DAG) { 10769 if (VT.getSizeInBits() / 8 != Bytes) 10770 return false; 10771 10772 SDValue BaseLoc = Base->getBasePtr(); 10773 if (Loc.getOpcode() == ISD::FrameIndex) { 10774 if (BaseLoc.getOpcode() != ISD::FrameIndex) 10775 return false; 10776 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10777 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 10778 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 10779 int FS = MFI.getObjectSize(FI); 10780 int BFS = MFI.getObjectSize(BFI); 10781 if (FS != BFS || FS != (int)Bytes) return false; 10782 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 10783 } 10784 10785 SDValue Base1 = Loc, Base2 = BaseLoc; 10786 int64_t Offset1 = 0, Offset2 = 0; 10787 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 10788 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 10789 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 10790 return true; 10791 10792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10793 const GlobalValue *GV1 = nullptr; 10794 const GlobalValue *GV2 = nullptr; 10795 Offset1 = 0; 10796 Offset2 = 0; 10797 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 10798 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 10799 if (isGA1 && isGA2 && GV1 == GV2) 10800 return Offset1 == (Offset2 + Dist*Bytes); 10801 return false; 10802 } 10803 10804 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 10805 // not enforce equality of the chain operands. 10806 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 10807 unsigned Bytes, int Dist, 10808 SelectionDAG &DAG) { 10809 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 10810 EVT VT = LS->getMemoryVT(); 10811 SDValue Loc = LS->getBasePtr(); 10812 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 10813 } 10814 10815 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 10816 EVT VT; 10817 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10818 default: return false; 10819 case Intrinsic::ppc_qpx_qvlfd: 10820 case Intrinsic::ppc_qpx_qvlfda: 10821 VT = MVT::v4f64; 10822 break; 10823 case Intrinsic::ppc_qpx_qvlfs: 10824 case Intrinsic::ppc_qpx_qvlfsa: 10825 VT = MVT::v4f32; 10826 break; 10827 case Intrinsic::ppc_qpx_qvlfcd: 10828 case Intrinsic::ppc_qpx_qvlfcda: 10829 VT = MVT::v2f64; 10830 break; 10831 case Intrinsic::ppc_qpx_qvlfcs: 10832 case Intrinsic::ppc_qpx_qvlfcsa: 10833 VT = MVT::v2f32; 10834 break; 10835 case Intrinsic::ppc_qpx_qvlfiwa: 10836 case Intrinsic::ppc_qpx_qvlfiwz: 10837 case Intrinsic::ppc_altivec_lvx: 10838 case Intrinsic::ppc_altivec_lvxl: 10839 case Intrinsic::ppc_vsx_lxvw4x: 10840 case Intrinsic::ppc_vsx_lxvw4x_be: 10841 VT = MVT::v4i32; 10842 break; 10843 case Intrinsic::ppc_vsx_lxvd2x: 10844 case Intrinsic::ppc_vsx_lxvd2x_be: 10845 VT = MVT::v2f64; 10846 break; 10847 case Intrinsic::ppc_altivec_lvebx: 10848 VT = MVT::i8; 10849 break; 10850 case Intrinsic::ppc_altivec_lvehx: 10851 VT = MVT::i16; 10852 break; 10853 case Intrinsic::ppc_altivec_lvewx: 10854 VT = MVT::i32; 10855 break; 10856 } 10857 10858 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 10859 } 10860 10861 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 10862 EVT VT; 10863 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10864 default: return false; 10865 case Intrinsic::ppc_qpx_qvstfd: 10866 case Intrinsic::ppc_qpx_qvstfda: 10867 VT = MVT::v4f64; 10868 break; 10869 case Intrinsic::ppc_qpx_qvstfs: 10870 case Intrinsic::ppc_qpx_qvstfsa: 10871 VT = MVT::v4f32; 10872 break; 10873 case Intrinsic::ppc_qpx_qvstfcd: 10874 case Intrinsic::ppc_qpx_qvstfcda: 10875 VT = MVT::v2f64; 10876 break; 10877 case Intrinsic::ppc_qpx_qvstfcs: 10878 case Intrinsic::ppc_qpx_qvstfcsa: 10879 VT = MVT::v2f32; 10880 break; 10881 case Intrinsic::ppc_qpx_qvstfiw: 10882 case Intrinsic::ppc_qpx_qvstfiwa: 10883 case Intrinsic::ppc_altivec_stvx: 10884 case Intrinsic::ppc_altivec_stvxl: 10885 case Intrinsic::ppc_vsx_stxvw4x: 10886 VT = MVT::v4i32; 10887 break; 10888 case Intrinsic::ppc_vsx_stxvd2x: 10889 VT = MVT::v2f64; 10890 break; 10891 case Intrinsic::ppc_vsx_stxvw4x_be: 10892 VT = MVT::v4i32; 10893 break; 10894 case Intrinsic::ppc_vsx_stxvd2x_be: 10895 VT = MVT::v2f64; 10896 break; 10897 case Intrinsic::ppc_altivec_stvebx: 10898 VT = MVT::i8; 10899 break; 10900 case Intrinsic::ppc_altivec_stvehx: 10901 VT = MVT::i16; 10902 break; 10903 case Intrinsic::ppc_altivec_stvewx: 10904 VT = MVT::i32; 10905 break; 10906 } 10907 10908 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 10909 } 10910 10911 return false; 10912 } 10913 10914 // Return true is there is a nearyby consecutive load to the one provided 10915 // (regardless of alignment). We search up and down the chain, looking though 10916 // token factors and other loads (but nothing else). As a result, a true result 10917 // indicates that it is safe to create a new consecutive load adjacent to the 10918 // load provided. 10919 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 10920 SDValue Chain = LD->getChain(); 10921 EVT VT = LD->getMemoryVT(); 10922 10923 SmallSet<SDNode *, 16> LoadRoots; 10924 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 10925 SmallSet<SDNode *, 16> Visited; 10926 10927 // First, search up the chain, branching to follow all token-factor operands. 10928 // If we find a consecutive load, then we're done, otherwise, record all 10929 // nodes just above the top-level loads and token factors. 10930 while (!Queue.empty()) { 10931 SDNode *ChainNext = Queue.pop_back_val(); 10932 if (!Visited.insert(ChainNext).second) 10933 continue; 10934 10935 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 10936 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10937 return true; 10938 10939 if (!Visited.count(ChainLD->getChain().getNode())) 10940 Queue.push_back(ChainLD->getChain().getNode()); 10941 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 10942 for (const SDUse &O : ChainNext->ops()) 10943 if (!Visited.count(O.getNode())) 10944 Queue.push_back(O.getNode()); 10945 } else 10946 LoadRoots.insert(ChainNext); 10947 } 10948 10949 // Second, search down the chain, starting from the top-level nodes recorded 10950 // in the first phase. These top-level nodes are the nodes just above all 10951 // loads and token factors. Starting with their uses, recursively look though 10952 // all loads (just the chain uses) and token factors to find a consecutive 10953 // load. 10954 Visited.clear(); 10955 Queue.clear(); 10956 10957 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 10958 IE = LoadRoots.end(); I != IE; ++I) { 10959 Queue.push_back(*I); 10960 10961 while (!Queue.empty()) { 10962 SDNode *LoadRoot = Queue.pop_back_val(); 10963 if (!Visited.insert(LoadRoot).second) 10964 continue; 10965 10966 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 10967 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 10968 return true; 10969 10970 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 10971 UE = LoadRoot->use_end(); UI != UE; ++UI) 10972 if (((isa<MemSDNode>(*UI) && 10973 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 10974 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 10975 Queue.push_back(*UI); 10976 } 10977 } 10978 10979 return false; 10980 } 10981 10982 /// This function is called when we have proved that a SETCC node can be replaced 10983 /// by subtraction (and other supporting instructions) so that the result of 10984 /// comparison is kept in a GPR instead of CR. This function is purely for 10985 /// codegen purposes and has some flags to guide the codegen process. 10986 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 10987 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 10988 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 10989 10990 // Zero extend the operands to the largest legal integer. Originally, they 10991 // must be of a strictly smaller size. 10992 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 10993 DAG.getConstant(Size, DL, MVT::i32)); 10994 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 10995 DAG.getConstant(Size, DL, MVT::i32)); 10996 10997 // Swap if needed. Depends on the condition code. 10998 if (Swap) 10999 std::swap(Op0, Op1); 11000 11001 // Subtract extended integers. 11002 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 11003 11004 // Move the sign bit to the least significant position and zero out the rest. 11005 // Now the least significant bit carries the result of original comparison. 11006 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 11007 DAG.getConstant(Size - 1, DL, MVT::i32)); 11008 auto Final = Shifted; 11009 11010 // Complement the result if needed. Based on the condition code. 11011 if (Complement) 11012 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 11013 DAG.getConstant(1, DL, MVT::i64)); 11014 11015 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 11016 } 11017 11018 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 11019 DAGCombinerInfo &DCI) const { 11020 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 11021 11022 SelectionDAG &DAG = DCI.DAG; 11023 SDLoc DL(N); 11024 11025 // Size of integers being compared has a critical role in the following 11026 // analysis, so we prefer to do this when all types are legal. 11027 if (!DCI.isAfterLegalizeDAG()) 11028 return SDValue(); 11029 11030 // If all users of SETCC extend its value to a legal integer type 11031 // then we replace SETCC with a subtraction 11032 for (SDNode::use_iterator UI = N->use_begin(), 11033 UE = N->use_end(); UI != UE; ++UI) { 11034 if (UI->getOpcode() != ISD::ZERO_EXTEND) 11035 return SDValue(); 11036 } 11037 11038 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 11039 auto OpSize = N->getOperand(0).getValueSizeInBits(); 11040 11041 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 11042 11043 if (OpSize < Size) { 11044 switch (CC) { 11045 default: break; 11046 case ISD::SETULT: 11047 return generateEquivalentSub(N, Size, false, false, DL, DAG); 11048 case ISD::SETULE: 11049 return generateEquivalentSub(N, Size, true, true, DL, DAG); 11050 case ISD::SETUGT: 11051 return generateEquivalentSub(N, Size, false, true, DL, DAG); 11052 case ISD::SETUGE: 11053 return generateEquivalentSub(N, Size, true, false, DL, DAG); 11054 } 11055 } 11056 11057 return SDValue(); 11058 } 11059 11060 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 11061 DAGCombinerInfo &DCI) const { 11062 SelectionDAG &DAG = DCI.DAG; 11063 SDLoc dl(N); 11064 11065 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 11066 // If we're tracking CR bits, we need to be careful that we don't have: 11067 // trunc(binary-ops(zext(x), zext(y))) 11068 // or 11069 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 11070 // such that we're unnecessarily moving things into GPRs when it would be 11071 // better to keep them in CR bits. 11072 11073 // Note that trunc here can be an actual i1 trunc, or can be the effective 11074 // truncation that comes from a setcc or select_cc. 11075 if (N->getOpcode() == ISD::TRUNCATE && 11076 N->getValueType(0) != MVT::i1) 11077 return SDValue(); 11078 11079 if (N->getOperand(0).getValueType() != MVT::i32 && 11080 N->getOperand(0).getValueType() != MVT::i64) 11081 return SDValue(); 11082 11083 if (N->getOpcode() == ISD::SETCC || 11084 N->getOpcode() == ISD::SELECT_CC) { 11085 // If we're looking at a comparison, then we need to make sure that the 11086 // high bits (all except for the first) don't matter the result. 11087 ISD::CondCode CC = 11088 cast<CondCodeSDNode>(N->getOperand( 11089 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 11090 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 11091 11092 if (ISD::isSignedIntSetCC(CC)) { 11093 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 11094 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 11095 return SDValue(); 11096 } else if (ISD::isUnsignedIntSetCC(CC)) { 11097 if (!DAG.MaskedValueIsZero(N->getOperand(0), 11098 APInt::getHighBitsSet(OpBits, OpBits-1)) || 11099 !DAG.MaskedValueIsZero(N->getOperand(1), 11100 APInt::getHighBitsSet(OpBits, OpBits-1))) 11101 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 11102 : SDValue()); 11103 } else { 11104 // This is neither a signed nor an unsigned comparison, just make sure 11105 // that the high bits are equal. 11106 KnownBits Op1Known, Op2Known; 11107 DAG.computeKnownBits(N->getOperand(0), Op1Known); 11108 DAG.computeKnownBits(N->getOperand(1), Op2Known); 11109 11110 // We don't really care about what is known about the first bit (if 11111 // anything), so clear it in all masks prior to comparing them. 11112 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 11113 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 11114 11115 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 11116 return SDValue(); 11117 } 11118 } 11119 11120 // We now know that the higher-order bits are irrelevant, we just need to 11121 // make sure that all of the intermediate operations are bit operations, and 11122 // all inputs are extensions. 11123 if (N->getOperand(0).getOpcode() != ISD::AND && 11124 N->getOperand(0).getOpcode() != ISD::OR && 11125 N->getOperand(0).getOpcode() != ISD::XOR && 11126 N->getOperand(0).getOpcode() != ISD::SELECT && 11127 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 11128 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 11129 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 11130 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 11131 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 11132 return SDValue(); 11133 11134 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 11135 N->getOperand(1).getOpcode() != ISD::AND && 11136 N->getOperand(1).getOpcode() != ISD::OR && 11137 N->getOperand(1).getOpcode() != ISD::XOR && 11138 N->getOperand(1).getOpcode() != ISD::SELECT && 11139 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 11140 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 11141 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 11142 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 11143 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 11144 return SDValue(); 11145 11146 SmallVector<SDValue, 4> Inputs; 11147 SmallVector<SDValue, 8> BinOps, PromOps; 11148 SmallPtrSet<SDNode *, 16> Visited; 11149 11150 for (unsigned i = 0; i < 2; ++i) { 11151 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11152 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11153 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11154 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11155 isa<ConstantSDNode>(N->getOperand(i))) 11156 Inputs.push_back(N->getOperand(i)); 11157 else 11158 BinOps.push_back(N->getOperand(i)); 11159 11160 if (N->getOpcode() == ISD::TRUNCATE) 11161 break; 11162 } 11163 11164 // Visit all inputs, collect all binary operations (and, or, xor and 11165 // select) that are all fed by extensions. 11166 while (!BinOps.empty()) { 11167 SDValue BinOp = BinOps.back(); 11168 BinOps.pop_back(); 11169 11170 if (!Visited.insert(BinOp.getNode()).second) 11171 continue; 11172 11173 PromOps.push_back(BinOp); 11174 11175 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11176 // The condition of the select is not promoted. 11177 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11178 continue; 11179 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11180 continue; 11181 11182 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11183 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11184 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 11185 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 11186 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11187 Inputs.push_back(BinOp.getOperand(i)); 11188 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11189 BinOp.getOperand(i).getOpcode() == ISD::OR || 11190 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11191 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11192 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 11193 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11194 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 11195 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 11196 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 11197 BinOps.push_back(BinOp.getOperand(i)); 11198 } else { 11199 // We have an input that is not an extension or another binary 11200 // operation; we'll abort this transformation. 11201 return SDValue(); 11202 } 11203 } 11204 } 11205 11206 // Make sure that this is a self-contained cluster of operations (which 11207 // is not quite the same thing as saying that everything has only one 11208 // use). 11209 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11210 if (isa<ConstantSDNode>(Inputs[i])) 11211 continue; 11212 11213 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11214 UE = Inputs[i].getNode()->use_end(); 11215 UI != UE; ++UI) { 11216 SDNode *User = *UI; 11217 if (User != N && !Visited.count(User)) 11218 return SDValue(); 11219 11220 // Make sure that we're not going to promote the non-output-value 11221 // operand(s) or SELECT or SELECT_CC. 11222 // FIXME: Although we could sometimes handle this, and it does occur in 11223 // practice that one of the condition inputs to the select is also one of 11224 // the outputs, we currently can't deal with this. 11225 if (User->getOpcode() == ISD::SELECT) { 11226 if (User->getOperand(0) == Inputs[i]) 11227 return SDValue(); 11228 } else if (User->getOpcode() == ISD::SELECT_CC) { 11229 if (User->getOperand(0) == Inputs[i] || 11230 User->getOperand(1) == Inputs[i]) 11231 return SDValue(); 11232 } 11233 } 11234 } 11235 11236 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11237 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11238 UE = PromOps[i].getNode()->use_end(); 11239 UI != UE; ++UI) { 11240 SDNode *User = *UI; 11241 if (User != N && !Visited.count(User)) 11242 return SDValue(); 11243 11244 // Make sure that we're not going to promote the non-output-value 11245 // operand(s) or SELECT or SELECT_CC. 11246 // FIXME: Although we could sometimes handle this, and it does occur in 11247 // practice that one of the condition inputs to the select is also one of 11248 // the outputs, we currently can't deal with this. 11249 if (User->getOpcode() == ISD::SELECT) { 11250 if (User->getOperand(0) == PromOps[i]) 11251 return SDValue(); 11252 } else if (User->getOpcode() == ISD::SELECT_CC) { 11253 if (User->getOperand(0) == PromOps[i] || 11254 User->getOperand(1) == PromOps[i]) 11255 return SDValue(); 11256 } 11257 } 11258 } 11259 11260 // Replace all inputs with the extension operand. 11261 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11262 // Constants may have users outside the cluster of to-be-promoted nodes, 11263 // and so we need to replace those as we do the promotions. 11264 if (isa<ConstantSDNode>(Inputs[i])) 11265 continue; 11266 else 11267 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 11268 } 11269 11270 std::list<HandleSDNode> PromOpHandles; 11271 for (auto &PromOp : PromOps) 11272 PromOpHandles.emplace_back(PromOp); 11273 11274 // Replace all operations (these are all the same, but have a different 11275 // (i1) return type). DAG.getNode will validate that the types of 11276 // a binary operator match, so go through the list in reverse so that 11277 // we've likely promoted both operands first. Any intermediate truncations or 11278 // extensions disappear. 11279 while (!PromOpHandles.empty()) { 11280 SDValue PromOp = PromOpHandles.back().getValue(); 11281 PromOpHandles.pop_back(); 11282 11283 if (PromOp.getOpcode() == ISD::TRUNCATE || 11284 PromOp.getOpcode() == ISD::SIGN_EXTEND || 11285 PromOp.getOpcode() == ISD::ZERO_EXTEND || 11286 PromOp.getOpcode() == ISD::ANY_EXTEND) { 11287 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 11288 PromOp.getOperand(0).getValueType() != MVT::i1) { 11289 // The operand is not yet ready (see comment below). 11290 PromOpHandles.emplace_front(PromOp); 11291 continue; 11292 } 11293 11294 SDValue RepValue = PromOp.getOperand(0); 11295 if (isa<ConstantSDNode>(RepValue)) 11296 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 11297 11298 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 11299 continue; 11300 } 11301 11302 unsigned C; 11303 switch (PromOp.getOpcode()) { 11304 default: C = 0; break; 11305 case ISD::SELECT: C = 1; break; 11306 case ISD::SELECT_CC: C = 2; break; 11307 } 11308 11309 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11310 PromOp.getOperand(C).getValueType() != MVT::i1) || 11311 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11312 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 11313 // The to-be-promoted operands of this node have not yet been 11314 // promoted (this should be rare because we're going through the 11315 // list backward, but if one of the operands has several users in 11316 // this cluster of to-be-promoted nodes, it is possible). 11317 PromOpHandles.emplace_front(PromOp); 11318 continue; 11319 } 11320 11321 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11322 PromOp.getNode()->op_end()); 11323 11324 // If there are any constant inputs, make sure they're replaced now. 11325 for (unsigned i = 0; i < 2; ++i) 11326 if (isa<ConstantSDNode>(Ops[C+i])) 11327 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 11328 11329 DAG.ReplaceAllUsesOfValueWith(PromOp, 11330 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 11331 } 11332 11333 // Now we're left with the initial truncation itself. 11334 if (N->getOpcode() == ISD::TRUNCATE) 11335 return N->getOperand(0); 11336 11337 // Otherwise, this is a comparison. The operands to be compared have just 11338 // changed type (to i1), but everything else is the same. 11339 return SDValue(N, 0); 11340 } 11341 11342 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 11343 DAGCombinerInfo &DCI) const { 11344 SelectionDAG &DAG = DCI.DAG; 11345 SDLoc dl(N); 11346 11347 // If we're tracking CR bits, we need to be careful that we don't have: 11348 // zext(binary-ops(trunc(x), trunc(y))) 11349 // or 11350 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 11351 // such that we're unnecessarily moving things into CR bits that can more 11352 // efficiently stay in GPRs. Note that if we're not certain that the high 11353 // bits are set as required by the final extension, we still may need to do 11354 // some masking to get the proper behavior. 11355 11356 // This same functionality is important on PPC64 when dealing with 11357 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 11358 // the return values of functions. Because it is so similar, it is handled 11359 // here as well. 11360 11361 if (N->getValueType(0) != MVT::i32 && 11362 N->getValueType(0) != MVT::i64) 11363 return SDValue(); 11364 11365 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 11366 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 11367 return SDValue(); 11368 11369 if (N->getOperand(0).getOpcode() != ISD::AND && 11370 N->getOperand(0).getOpcode() != ISD::OR && 11371 N->getOperand(0).getOpcode() != ISD::XOR && 11372 N->getOperand(0).getOpcode() != ISD::SELECT && 11373 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 11374 return SDValue(); 11375 11376 SmallVector<SDValue, 4> Inputs; 11377 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 11378 SmallPtrSet<SDNode *, 16> Visited; 11379 11380 // Visit all inputs, collect all binary operations (and, or, xor and 11381 // select) that are all fed by truncations. 11382 while (!BinOps.empty()) { 11383 SDValue BinOp = BinOps.back(); 11384 BinOps.pop_back(); 11385 11386 if (!Visited.insert(BinOp.getNode()).second) 11387 continue; 11388 11389 PromOps.push_back(BinOp); 11390 11391 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 11392 // The condition of the select is not promoted. 11393 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 11394 continue; 11395 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 11396 continue; 11397 11398 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 11399 isa<ConstantSDNode>(BinOp.getOperand(i))) { 11400 Inputs.push_back(BinOp.getOperand(i)); 11401 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 11402 BinOp.getOperand(i).getOpcode() == ISD::OR || 11403 BinOp.getOperand(i).getOpcode() == ISD::XOR || 11404 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 11405 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 11406 BinOps.push_back(BinOp.getOperand(i)); 11407 } else { 11408 // We have an input that is not a truncation or another binary 11409 // operation; we'll abort this transformation. 11410 return SDValue(); 11411 } 11412 } 11413 } 11414 11415 // The operands of a select that must be truncated when the select is 11416 // promoted because the operand is actually part of the to-be-promoted set. 11417 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 11418 11419 // Make sure that this is a self-contained cluster of operations (which 11420 // is not quite the same thing as saying that everything has only one 11421 // use). 11422 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11423 if (isa<ConstantSDNode>(Inputs[i])) 11424 continue; 11425 11426 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 11427 UE = Inputs[i].getNode()->use_end(); 11428 UI != UE; ++UI) { 11429 SDNode *User = *UI; 11430 if (User != N && !Visited.count(User)) 11431 return SDValue(); 11432 11433 // If we're going to promote the non-output-value operand(s) or SELECT or 11434 // SELECT_CC, record them for truncation. 11435 if (User->getOpcode() == ISD::SELECT) { 11436 if (User->getOperand(0) == Inputs[i]) 11437 SelectTruncOp[0].insert(std::make_pair(User, 11438 User->getOperand(0).getValueType())); 11439 } else if (User->getOpcode() == ISD::SELECT_CC) { 11440 if (User->getOperand(0) == Inputs[i]) 11441 SelectTruncOp[0].insert(std::make_pair(User, 11442 User->getOperand(0).getValueType())); 11443 if (User->getOperand(1) == Inputs[i]) 11444 SelectTruncOp[1].insert(std::make_pair(User, 11445 User->getOperand(1).getValueType())); 11446 } 11447 } 11448 } 11449 11450 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 11451 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 11452 UE = PromOps[i].getNode()->use_end(); 11453 UI != UE; ++UI) { 11454 SDNode *User = *UI; 11455 if (User != N && !Visited.count(User)) 11456 return SDValue(); 11457 11458 // If we're going to promote the non-output-value operand(s) or SELECT or 11459 // SELECT_CC, record them for truncation. 11460 if (User->getOpcode() == ISD::SELECT) { 11461 if (User->getOperand(0) == PromOps[i]) 11462 SelectTruncOp[0].insert(std::make_pair(User, 11463 User->getOperand(0).getValueType())); 11464 } else if (User->getOpcode() == ISD::SELECT_CC) { 11465 if (User->getOperand(0) == PromOps[i]) 11466 SelectTruncOp[0].insert(std::make_pair(User, 11467 User->getOperand(0).getValueType())); 11468 if (User->getOperand(1) == PromOps[i]) 11469 SelectTruncOp[1].insert(std::make_pair(User, 11470 User->getOperand(1).getValueType())); 11471 } 11472 } 11473 } 11474 11475 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 11476 bool ReallyNeedsExt = false; 11477 if (N->getOpcode() != ISD::ANY_EXTEND) { 11478 // If all of the inputs are not already sign/zero extended, then 11479 // we'll still need to do that at the end. 11480 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11481 if (isa<ConstantSDNode>(Inputs[i])) 11482 continue; 11483 11484 unsigned OpBits = 11485 Inputs[i].getOperand(0).getValueSizeInBits(); 11486 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 11487 11488 if ((N->getOpcode() == ISD::ZERO_EXTEND && 11489 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 11490 APInt::getHighBitsSet(OpBits, 11491 OpBits-PromBits))) || 11492 (N->getOpcode() == ISD::SIGN_EXTEND && 11493 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 11494 (OpBits-(PromBits-1)))) { 11495 ReallyNeedsExt = true; 11496 break; 11497 } 11498 } 11499 } 11500 11501 // Replace all inputs, either with the truncation operand, or a 11502 // truncation or extension to the final output type. 11503 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 11504 // Constant inputs need to be replaced with the to-be-promoted nodes that 11505 // use them because they might have users outside of the cluster of 11506 // promoted nodes. 11507 if (isa<ConstantSDNode>(Inputs[i])) 11508 continue; 11509 11510 SDValue InSrc = Inputs[i].getOperand(0); 11511 if (Inputs[i].getValueType() == N->getValueType(0)) 11512 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 11513 else if (N->getOpcode() == ISD::SIGN_EXTEND) 11514 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11515 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 11516 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11517 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11518 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 11519 else 11520 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 11521 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 11522 } 11523 11524 std::list<HandleSDNode> PromOpHandles; 11525 for (auto &PromOp : PromOps) 11526 PromOpHandles.emplace_back(PromOp); 11527 11528 // Replace all operations (these are all the same, but have a different 11529 // (promoted) return type). DAG.getNode will validate that the types of 11530 // a binary operator match, so go through the list in reverse so that 11531 // we've likely promoted both operands first. 11532 while (!PromOpHandles.empty()) { 11533 SDValue PromOp = PromOpHandles.back().getValue(); 11534 PromOpHandles.pop_back(); 11535 11536 unsigned C; 11537 switch (PromOp.getOpcode()) { 11538 default: C = 0; break; 11539 case ISD::SELECT: C = 1; break; 11540 case ISD::SELECT_CC: C = 2; break; 11541 } 11542 11543 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 11544 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 11545 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 11546 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 11547 // The to-be-promoted operands of this node have not yet been 11548 // promoted (this should be rare because we're going through the 11549 // list backward, but if one of the operands has several users in 11550 // this cluster of to-be-promoted nodes, it is possible). 11551 PromOpHandles.emplace_front(PromOp); 11552 continue; 11553 } 11554 11555 // For SELECT and SELECT_CC nodes, we do a similar check for any 11556 // to-be-promoted comparison inputs. 11557 if (PromOp.getOpcode() == ISD::SELECT || 11558 PromOp.getOpcode() == ISD::SELECT_CC) { 11559 if ((SelectTruncOp[0].count(PromOp.getNode()) && 11560 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 11561 (SelectTruncOp[1].count(PromOp.getNode()) && 11562 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 11563 PromOpHandles.emplace_front(PromOp); 11564 continue; 11565 } 11566 } 11567 11568 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 11569 PromOp.getNode()->op_end()); 11570 11571 // If this node has constant inputs, then they'll need to be promoted here. 11572 for (unsigned i = 0; i < 2; ++i) { 11573 if (!isa<ConstantSDNode>(Ops[C+i])) 11574 continue; 11575 if (Ops[C+i].getValueType() == N->getValueType(0)) 11576 continue; 11577 11578 if (N->getOpcode() == ISD::SIGN_EXTEND) 11579 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11580 else if (N->getOpcode() == ISD::ZERO_EXTEND) 11581 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11582 else 11583 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 11584 } 11585 11586 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 11587 // truncate them again to the original value type. 11588 if (PromOp.getOpcode() == ISD::SELECT || 11589 PromOp.getOpcode() == ISD::SELECT_CC) { 11590 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 11591 if (SI0 != SelectTruncOp[0].end()) 11592 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 11593 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 11594 if (SI1 != SelectTruncOp[1].end()) 11595 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 11596 } 11597 11598 DAG.ReplaceAllUsesOfValueWith(PromOp, 11599 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 11600 } 11601 11602 // Now we're left with the initial extension itself. 11603 if (!ReallyNeedsExt) 11604 return N->getOperand(0); 11605 11606 // To zero extend, just mask off everything except for the first bit (in the 11607 // i1 case). 11608 if (N->getOpcode() == ISD::ZERO_EXTEND) 11609 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 11610 DAG.getConstant(APInt::getLowBitsSet( 11611 N->getValueSizeInBits(0), PromBits), 11612 dl, N->getValueType(0))); 11613 11614 assert(N->getOpcode() == ISD::SIGN_EXTEND && 11615 "Invalid extension type"); 11616 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 11617 SDValue ShiftCst = 11618 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 11619 return DAG.getNode( 11620 ISD::SRA, dl, N->getValueType(0), 11621 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 11622 ShiftCst); 11623 } 11624 11625 /// Reduces the number of fp-to-int conversion when building a vector. 11626 /// 11627 /// If this vector is built out of floating to integer conversions, 11628 /// transform it to a vector built out of floating point values followed by a 11629 /// single floating to integer conversion of the vector. 11630 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 11631 /// becomes (fptosi (build_vector ($A, $B, ...))) 11632 SDValue PPCTargetLowering:: 11633 combineElementTruncationToVectorTruncation(SDNode *N, 11634 DAGCombinerInfo &DCI) const { 11635 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11636 "Should be called with a BUILD_VECTOR node"); 11637 11638 SelectionDAG &DAG = DCI.DAG; 11639 SDLoc dl(N); 11640 11641 SDValue FirstInput = N->getOperand(0); 11642 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 11643 "The input operand must be an fp-to-int conversion."); 11644 11645 // This combine happens after legalization so the fp_to_[su]i nodes are 11646 // already converted to PPCSISD nodes. 11647 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 11648 if (FirstConversion == PPCISD::FCTIDZ || 11649 FirstConversion == PPCISD::FCTIDUZ || 11650 FirstConversion == PPCISD::FCTIWZ || 11651 FirstConversion == PPCISD::FCTIWUZ) { 11652 bool IsSplat = true; 11653 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 11654 FirstConversion == PPCISD::FCTIWUZ; 11655 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 11656 SmallVector<SDValue, 4> Ops; 11657 EVT TargetVT = N->getValueType(0); 11658 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11659 if (N->getOperand(i).getOpcode() != PPCISD::MFVSR) 11660 return SDValue(); 11661 unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode(); 11662 if (NextConversion != FirstConversion) 11663 return SDValue(); 11664 if (N->getOperand(i) != FirstInput) 11665 IsSplat = false; 11666 } 11667 11668 // If this is a splat, we leave it as-is since there will be only a single 11669 // fp-to-int conversion followed by a splat of the integer. This is better 11670 // for 32-bit and smaller ints and neutral for 64-bit ints. 11671 if (IsSplat) 11672 return SDValue(); 11673 11674 // Now that we know we have the right type of node, get its operands 11675 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 11676 SDValue In = N->getOperand(i).getOperand(0); 11677 // For 32-bit values, we need to add an FP_ROUND node. 11678 if (Is32Bit) { 11679 if (In.isUndef()) 11680 Ops.push_back(DAG.getUNDEF(SrcVT)); 11681 else { 11682 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 11683 MVT::f32, In.getOperand(0), 11684 DAG.getIntPtrConstant(1, dl)); 11685 Ops.push_back(Trunc); 11686 } 11687 } else 11688 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 11689 } 11690 11691 unsigned Opcode; 11692 if (FirstConversion == PPCISD::FCTIDZ || 11693 FirstConversion == PPCISD::FCTIWZ) 11694 Opcode = ISD::FP_TO_SINT; 11695 else 11696 Opcode = ISD::FP_TO_UINT; 11697 11698 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 11699 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 11700 return DAG.getNode(Opcode, dl, TargetVT, BV); 11701 } 11702 return SDValue(); 11703 } 11704 11705 /// Reduce the number of loads when building a vector. 11706 /// 11707 /// Building a vector out of multiple loads can be converted to a load 11708 /// of the vector type if the loads are consecutive. If the loads are 11709 /// consecutive but in descending order, a shuffle is added at the end 11710 /// to reorder the vector. 11711 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 11712 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11713 "Should be called with a BUILD_VECTOR node"); 11714 11715 SDLoc dl(N); 11716 bool InputsAreConsecutiveLoads = true; 11717 bool InputsAreReverseConsecutive = true; 11718 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8; 11719 SDValue FirstInput = N->getOperand(0); 11720 bool IsRoundOfExtLoad = false; 11721 11722 if (FirstInput.getOpcode() == ISD::FP_ROUND && 11723 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 11724 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 11725 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 11726 } 11727 // Not a build vector of (possibly fp_rounded) loads. 11728 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) 11729 return SDValue(); 11730 11731 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 11732 // If any inputs are fp_round(extload), they all must be. 11733 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 11734 return SDValue(); 11735 11736 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 11737 N->getOperand(i); 11738 if (NextInput.getOpcode() != ISD::LOAD) 11739 return SDValue(); 11740 11741 SDValue PreviousInput = 11742 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 11743 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 11744 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 11745 11746 // If any inputs are fp_round(extload), they all must be. 11747 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 11748 return SDValue(); 11749 11750 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 11751 InputsAreConsecutiveLoads = false; 11752 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 11753 InputsAreReverseConsecutive = false; 11754 11755 // Exit early if the loads are neither consecutive nor reverse consecutive. 11756 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 11757 return SDValue(); 11758 } 11759 11760 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 11761 "The loads cannot be both consecutive and reverse consecutive."); 11762 11763 SDValue FirstLoadOp = 11764 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 11765 SDValue LastLoadOp = 11766 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 11767 N->getOperand(N->getNumOperands()-1); 11768 11769 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 11770 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 11771 if (InputsAreConsecutiveLoads) { 11772 assert(LD1 && "Input needs to be a LoadSDNode."); 11773 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 11774 LD1->getBasePtr(), LD1->getPointerInfo(), 11775 LD1->getAlignment()); 11776 } 11777 if (InputsAreReverseConsecutive) { 11778 assert(LDL && "Input needs to be a LoadSDNode."); 11779 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 11780 LDL->getBasePtr(), LDL->getPointerInfo(), 11781 LDL->getAlignment()); 11782 SmallVector<int, 16> Ops; 11783 for (int i = N->getNumOperands() - 1; i >= 0; i--) 11784 Ops.push_back(i); 11785 11786 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 11787 DAG.getUNDEF(N->getValueType(0)), Ops); 11788 } 11789 return SDValue(); 11790 } 11791 11792 // This function adds the required vector_shuffle needed to get 11793 // the elements of the vector extract in the correct position 11794 // as specified by the CorrectElems encoding. 11795 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 11796 SDValue Input, uint64_t Elems, 11797 uint64_t CorrectElems) { 11798 SDLoc dl(N); 11799 11800 unsigned NumElems = Input.getValueType().getVectorNumElements(); 11801 SmallVector<int, 16> ShuffleMask(NumElems, -1); 11802 11803 // Knowing the element indices being extracted from the original 11804 // vector and the order in which they're being inserted, just put 11805 // them at element indices required for the instruction. 11806 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11807 if (DAG.getDataLayout().isLittleEndian()) 11808 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 11809 else 11810 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 11811 CorrectElems = CorrectElems >> 8; 11812 Elems = Elems >> 8; 11813 } 11814 11815 SDValue Shuffle = 11816 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 11817 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 11818 11819 EVT Ty = N->getValueType(0); 11820 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 11821 return BV; 11822 } 11823 11824 // Look for build vector patterns where input operands come from sign 11825 // extended vector_extract elements of specific indices. If the correct indices 11826 // aren't used, add a vector shuffle to fix up the indices and create a new 11827 // PPCISD:SExtVElems node which selects the vector sign extend instructions 11828 // during instruction selection. 11829 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 11830 // This array encodes the indices that the vector sign extend instructions 11831 // extract from when extending from one type to another for both BE and LE. 11832 // The right nibble of each byte corresponds to the LE incides. 11833 // and the left nibble of each byte corresponds to the BE incides. 11834 // For example: 0x3074B8FC byte->word 11835 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 11836 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 11837 // For example: 0x000070F8 byte->double word 11838 // For LE: the allowed indices are: 0x0,0x8 11839 // For BE: the allowed indices are: 0x7,0xF 11840 uint64_t TargetElems[] = { 11841 0x3074B8FC, // b->w 11842 0x000070F8, // b->d 11843 0x10325476, // h->w 11844 0x00003074, // h->d 11845 0x00001032, // w->d 11846 }; 11847 11848 uint64_t Elems = 0; 11849 int Index; 11850 SDValue Input; 11851 11852 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 11853 if (!Op) 11854 return false; 11855 if (Op.getOpcode() != ISD::SIGN_EXTEND) 11856 return false; 11857 11858 SDValue Extract = Op.getOperand(0); 11859 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11860 return false; 11861 11862 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 11863 if (!ExtOp) 11864 return false; 11865 11866 Index = ExtOp->getZExtValue(); 11867 if (Input && Input != Extract.getOperand(0)) 11868 return false; 11869 11870 if (!Input) 11871 Input = Extract.getOperand(0); 11872 11873 Elems = Elems << 8; 11874 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 11875 Elems |= Index; 11876 11877 return true; 11878 }; 11879 11880 // If the build vector operands aren't sign extended vector extracts, 11881 // of the same input vector, then return. 11882 for (unsigned i = 0; i < N->getNumOperands(); i++) { 11883 if (!isSExtOfVecExtract(N->getOperand(i))) { 11884 return SDValue(); 11885 } 11886 } 11887 11888 // If the vector extract indicies are not correct, add the appropriate 11889 // vector_shuffle. 11890 int TgtElemArrayIdx; 11891 int InputSize = Input.getValueType().getScalarSizeInBits(); 11892 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 11893 if (InputSize + OutputSize == 40) 11894 TgtElemArrayIdx = 0; 11895 else if (InputSize + OutputSize == 72) 11896 TgtElemArrayIdx = 1; 11897 else if (InputSize + OutputSize == 48) 11898 TgtElemArrayIdx = 2; 11899 else if (InputSize + OutputSize == 80) 11900 TgtElemArrayIdx = 3; 11901 else if (InputSize + OutputSize == 96) 11902 TgtElemArrayIdx = 4; 11903 else 11904 return SDValue(); 11905 11906 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 11907 CorrectElems = DAG.getDataLayout().isLittleEndian() 11908 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 11909 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 11910 if (Elems != CorrectElems) { 11911 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 11912 } 11913 11914 // Regular lowering will catch cases where a shuffle is not needed. 11915 return SDValue(); 11916 } 11917 11918 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 11919 DAGCombinerInfo &DCI) const { 11920 assert(N->getOpcode() == ISD::BUILD_VECTOR && 11921 "Should be called with a BUILD_VECTOR node"); 11922 11923 SelectionDAG &DAG = DCI.DAG; 11924 SDLoc dl(N); 11925 11926 if (!Subtarget.hasVSX()) 11927 return SDValue(); 11928 11929 // The target independent DAG combiner will leave a build_vector of 11930 // float-to-int conversions intact. We can generate MUCH better code for 11931 // a float-to-int conversion of a vector of floats. 11932 SDValue FirstInput = N->getOperand(0); 11933 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 11934 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 11935 if (Reduced) 11936 return Reduced; 11937 } 11938 11939 // If we're building a vector out of consecutive loads, just load that 11940 // vector type. 11941 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 11942 if (Reduced) 11943 return Reduced; 11944 11945 // If we're building a vector out of extended elements from another vector 11946 // we have P9 vector integer extend instructions. 11947 if (Subtarget.hasP9Altivec()) { 11948 Reduced = combineBVOfVecSExt(N, DAG); 11949 if (Reduced) 11950 return Reduced; 11951 } 11952 11953 11954 if (N->getValueType(0) != MVT::v2f64) 11955 return SDValue(); 11956 11957 // Looking for: 11958 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 11959 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 11960 FirstInput.getOpcode() != ISD::UINT_TO_FP) 11961 return SDValue(); 11962 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 11963 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 11964 return SDValue(); 11965 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 11966 return SDValue(); 11967 11968 SDValue Ext1 = FirstInput.getOperand(0); 11969 SDValue Ext2 = N->getOperand(1).getOperand(0); 11970 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11971 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 11972 return SDValue(); 11973 11974 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 11975 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 11976 if (!Ext1Op || !Ext2Op) 11977 return SDValue(); 11978 if (Ext1.getValueType() != MVT::i32 || 11979 Ext2.getValueType() != MVT::i32) 11980 if (Ext1.getOperand(0) != Ext2.getOperand(0)) 11981 return SDValue(); 11982 11983 int FirstElem = Ext1Op->getZExtValue(); 11984 int SecondElem = Ext2Op->getZExtValue(); 11985 int SubvecIdx; 11986 if (FirstElem == 0 && SecondElem == 1) 11987 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 11988 else if (FirstElem == 2 && SecondElem == 3) 11989 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 11990 else 11991 return SDValue(); 11992 11993 SDValue SrcVec = Ext1.getOperand(0); 11994 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 11995 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 11996 return DAG.getNode(NodeType, dl, MVT::v2f64, 11997 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 11998 } 11999 12000 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 12001 DAGCombinerInfo &DCI) const { 12002 assert((N->getOpcode() == ISD::SINT_TO_FP || 12003 N->getOpcode() == ISD::UINT_TO_FP) && 12004 "Need an int -> FP conversion node here"); 12005 12006 if (useSoftFloat() || !Subtarget.has64BitSupport()) 12007 return SDValue(); 12008 12009 SelectionDAG &DAG = DCI.DAG; 12010 SDLoc dl(N); 12011 SDValue Op(N, 0); 12012 12013 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 12014 // from the hardware. 12015 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 12016 return SDValue(); 12017 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 12018 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 12019 return SDValue(); 12020 12021 SDValue FirstOperand(Op.getOperand(0)); 12022 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 12023 (FirstOperand.getValueType() == MVT::i8 || 12024 FirstOperand.getValueType() == MVT::i16); 12025 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 12026 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 12027 bool DstDouble = Op.getValueType() == MVT::f64; 12028 unsigned ConvOp = Signed ? 12029 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 12030 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 12031 SDValue WidthConst = 12032 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 12033 dl, false); 12034 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 12035 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 12036 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 12037 DAG.getVTList(MVT::f64, MVT::Other), 12038 Ops, MVT::i8, LDN->getMemOperand()); 12039 12040 // For signed conversion, we need to sign-extend the value in the VSR 12041 if (Signed) { 12042 SDValue ExtOps[] = { Ld, WidthConst }; 12043 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 12044 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 12045 } else 12046 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 12047 } 12048 12049 12050 // For i32 intermediate values, unfortunately, the conversion functions 12051 // leave the upper 32 bits of the value are undefined. Within the set of 12052 // scalar instructions, we have no method for zero- or sign-extending the 12053 // value. Thus, we cannot handle i32 intermediate values here. 12054 if (Op.getOperand(0).getValueType() == MVT::i32) 12055 return SDValue(); 12056 12057 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 12058 "UINT_TO_FP is supported only with FPCVT"); 12059 12060 // If we have FCFIDS, then use it when converting to single-precision. 12061 // Otherwise, convert to double-precision and then round. 12062 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12063 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 12064 : PPCISD::FCFIDS) 12065 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 12066 : PPCISD::FCFID); 12067 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 12068 ? MVT::f32 12069 : MVT::f64; 12070 12071 // If we're converting from a float, to an int, and back to a float again, 12072 // then we don't need the store/load pair at all. 12073 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 12074 Subtarget.hasFPCVT()) || 12075 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 12076 SDValue Src = Op.getOperand(0).getOperand(0); 12077 if (Src.getValueType() == MVT::f32) { 12078 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 12079 DCI.AddToWorklist(Src.getNode()); 12080 } else if (Src.getValueType() != MVT::f64) { 12081 // Make sure that we don't pick up a ppc_fp128 source value. 12082 return SDValue(); 12083 } 12084 12085 unsigned FCTOp = 12086 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 12087 PPCISD::FCTIDUZ; 12088 12089 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 12090 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 12091 12092 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 12093 FP = DAG.getNode(ISD::FP_ROUND, dl, 12094 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 12095 DCI.AddToWorklist(FP.getNode()); 12096 } 12097 12098 return FP; 12099 } 12100 12101 return SDValue(); 12102 } 12103 12104 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 12105 // builtins) into loads with swaps. 12106 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 12107 DAGCombinerInfo &DCI) const { 12108 SelectionDAG &DAG = DCI.DAG; 12109 SDLoc dl(N); 12110 SDValue Chain; 12111 SDValue Base; 12112 MachineMemOperand *MMO; 12113 12114 switch (N->getOpcode()) { 12115 default: 12116 llvm_unreachable("Unexpected opcode for little endian VSX load"); 12117 case ISD::LOAD: { 12118 LoadSDNode *LD = cast<LoadSDNode>(N); 12119 Chain = LD->getChain(); 12120 Base = LD->getBasePtr(); 12121 MMO = LD->getMemOperand(); 12122 // If the MMO suggests this isn't a load of a full vector, leave 12123 // things alone. For a built-in, we have to make the change for 12124 // correctness, so if there is a size problem that will be a bug. 12125 if (MMO->getSize() < 16) 12126 return SDValue(); 12127 break; 12128 } 12129 case ISD::INTRINSIC_W_CHAIN: { 12130 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12131 Chain = Intrin->getChain(); 12132 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 12133 // us what we want. Get operand 2 instead. 12134 Base = Intrin->getOperand(2); 12135 MMO = Intrin->getMemOperand(); 12136 break; 12137 } 12138 } 12139 12140 MVT VecTy = N->getValueType(0).getSimpleVT(); 12141 12142 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 12143 // aligned and the type is a vector with elements up to 4 bytes 12144 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12145 && VecTy.getScalarSizeInBits() <= 32 ) { 12146 return SDValue(); 12147 } 12148 12149 SDValue LoadOps[] = { Chain, Base }; 12150 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 12151 DAG.getVTList(MVT::v2f64, MVT::Other), 12152 LoadOps, MVT::v2f64, MMO); 12153 12154 DCI.AddToWorklist(Load.getNode()); 12155 Chain = Load.getValue(1); 12156 SDValue Swap = DAG.getNode( 12157 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 12158 DCI.AddToWorklist(Swap.getNode()); 12159 12160 // Add a bitcast if the resulting load type doesn't match v2f64. 12161 if (VecTy != MVT::v2f64) { 12162 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 12163 DCI.AddToWorklist(N.getNode()); 12164 // Package {bitcast value, swap's chain} to match Load's shape. 12165 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 12166 N, Swap.getValue(1)); 12167 } 12168 12169 return Swap; 12170 } 12171 12172 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 12173 // builtins) into stores with swaps. 12174 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 12175 DAGCombinerInfo &DCI) const { 12176 SelectionDAG &DAG = DCI.DAG; 12177 SDLoc dl(N); 12178 SDValue Chain; 12179 SDValue Base; 12180 unsigned SrcOpnd; 12181 MachineMemOperand *MMO; 12182 12183 switch (N->getOpcode()) { 12184 default: 12185 llvm_unreachable("Unexpected opcode for little endian VSX store"); 12186 case ISD::STORE: { 12187 StoreSDNode *ST = cast<StoreSDNode>(N); 12188 Chain = ST->getChain(); 12189 Base = ST->getBasePtr(); 12190 MMO = ST->getMemOperand(); 12191 SrcOpnd = 1; 12192 // If the MMO suggests this isn't a store of a full vector, leave 12193 // things alone. For a built-in, we have to make the change for 12194 // correctness, so if there is a size problem that will be a bug. 12195 if (MMO->getSize() < 16) 12196 return SDValue(); 12197 break; 12198 } 12199 case ISD::INTRINSIC_VOID: { 12200 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 12201 Chain = Intrin->getChain(); 12202 // Intrin->getBasePtr() oddly does not get what we want. 12203 Base = Intrin->getOperand(3); 12204 MMO = Intrin->getMemOperand(); 12205 SrcOpnd = 2; 12206 break; 12207 } 12208 } 12209 12210 SDValue Src = N->getOperand(SrcOpnd); 12211 MVT VecTy = Src.getValueType().getSimpleVT(); 12212 12213 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 12214 // aligned and the type is a vector with elements up to 4 bytes 12215 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 12216 && VecTy.getScalarSizeInBits() <= 32 ) { 12217 return SDValue(); 12218 } 12219 12220 // All stores are done as v2f64 and possible bit cast. 12221 if (VecTy != MVT::v2f64) { 12222 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 12223 DCI.AddToWorklist(Src.getNode()); 12224 } 12225 12226 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 12227 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 12228 DCI.AddToWorklist(Swap.getNode()); 12229 Chain = Swap.getValue(1); 12230 SDValue StoreOps[] = { Chain, Swap, Base }; 12231 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 12232 DAG.getVTList(MVT::Other), 12233 StoreOps, VecTy, MMO); 12234 DCI.AddToWorklist(Store.getNode()); 12235 return Store; 12236 } 12237 12238 // Handle DAG combine for STORE (FP_TO_INT F). 12239 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 12240 DAGCombinerInfo &DCI) const { 12241 12242 SelectionDAG &DAG = DCI.DAG; 12243 SDLoc dl(N); 12244 unsigned Opcode = N->getOperand(1).getOpcode(); 12245 12246 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 12247 && "Not a FP_TO_INT Instruction!"); 12248 12249 SDValue Val = N->getOperand(1).getOperand(0); 12250 EVT Op1VT = N->getOperand(1).getValueType(); 12251 EVT ResVT = Val.getValueType(); 12252 12253 // Floating point types smaller than 32 bits are not legal on Power. 12254 if (ResVT.getScalarSizeInBits() < 32) 12255 return SDValue(); 12256 12257 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 12258 bool ValidTypeForStoreFltAsInt = 12259 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 12260 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 12261 12262 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() || 12263 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 12264 return SDValue(); 12265 12266 // Extend f32 values to f64 12267 if (ResVT.getScalarSizeInBits() == 32) { 12268 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 12269 DCI.AddToWorklist(Val.getNode()); 12270 } 12271 12272 // Set signed or unsigned conversion opcode. 12273 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 12274 PPCISD::FP_TO_SINT_IN_VSR : 12275 PPCISD::FP_TO_UINT_IN_VSR; 12276 12277 Val = DAG.getNode(ConvOpcode, 12278 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 12279 DCI.AddToWorklist(Val.getNode()); 12280 12281 // Set number of bytes being converted. 12282 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 12283 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 12284 DAG.getIntPtrConstant(ByteSize, dl, false), 12285 DAG.getValueType(Op1VT) }; 12286 12287 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 12288 DAG.getVTList(MVT::Other), Ops, 12289 cast<StoreSDNode>(N)->getMemoryVT(), 12290 cast<StoreSDNode>(N)->getMemOperand()); 12291 12292 DCI.AddToWorklist(Val.getNode()); 12293 return Val; 12294 } 12295 12296 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 12297 DAGCombinerInfo &DCI) const { 12298 SelectionDAG &DAG = DCI.DAG; 12299 SDLoc dl(N); 12300 switch (N->getOpcode()) { 12301 default: break; 12302 case ISD::SHL: 12303 return combineSHL(N, DCI); 12304 case ISD::SRA: 12305 return combineSRA(N, DCI); 12306 case ISD::SRL: 12307 return combineSRL(N, DCI); 12308 case PPCISD::SHL: 12309 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 12310 return N->getOperand(0); 12311 break; 12312 case PPCISD::SRL: 12313 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 12314 return N->getOperand(0); 12315 break; 12316 case PPCISD::SRA: 12317 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 12318 if (C->isNullValue() || // 0 >>s V -> 0. 12319 C->isAllOnesValue()) // -1 >>s V -> -1. 12320 return N->getOperand(0); 12321 } 12322 break; 12323 case ISD::SIGN_EXTEND: 12324 case ISD::ZERO_EXTEND: 12325 case ISD::ANY_EXTEND: 12326 return DAGCombineExtBoolTrunc(N, DCI); 12327 case ISD::TRUNCATE: 12328 case ISD::SETCC: 12329 case ISD::SELECT_CC: 12330 return DAGCombineTruncBoolExt(N, DCI); 12331 case ISD::SINT_TO_FP: 12332 case ISD::UINT_TO_FP: 12333 return combineFPToIntToFP(N, DCI); 12334 case ISD::STORE: { 12335 12336 EVT Op1VT = N->getOperand(1).getValueType(); 12337 unsigned Opcode = N->getOperand(1).getOpcode(); 12338 12339 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 12340 SDValue Val= combineStoreFPToInt(N, DCI); 12341 if (Val) 12342 return Val; 12343 } 12344 12345 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 12346 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 12347 N->getOperand(1).getNode()->hasOneUse() && 12348 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 12349 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 12350 12351 // STBRX can only handle simple types. 12352 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 12353 if (mVT.isExtended()) 12354 break; 12355 12356 SDValue BSwapOp = N->getOperand(1).getOperand(0); 12357 // Do an any-extend to 32-bits if this is a half-word input. 12358 if (BSwapOp.getValueType() == MVT::i16) 12359 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 12360 12361 // If the type of BSWAP operand is wider than stored memory width 12362 // it need to be shifted to the right side before STBRX. 12363 if (Op1VT.bitsGT(mVT)) { 12364 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 12365 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 12366 DAG.getConstant(Shift, dl, MVT::i32)); 12367 // Need to truncate if this is a bswap of i64 stored as i32/i16. 12368 if (Op1VT == MVT::i64) 12369 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 12370 } 12371 12372 SDValue Ops[] = { 12373 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 12374 }; 12375 return 12376 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 12377 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 12378 cast<StoreSDNode>(N)->getMemOperand()); 12379 } 12380 12381 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 12382 // So it can increase the chance of CSE constant construction. 12383 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 12384 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 12385 // Need to sign-extended to 64-bits to handle negative values. 12386 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 12387 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 12388 MemVT.getSizeInBits()); 12389 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 12390 12391 // DAG.getTruncStore() can't be used here because it doesn't accept 12392 // the general (base + offset) addressing mode. 12393 // So we use UpdateNodeOperands and setTruncatingStore instead. 12394 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 12395 N->getOperand(3)); 12396 cast<StoreSDNode>(N)->setTruncatingStore(true); 12397 return SDValue(N, 0); 12398 } 12399 12400 // For little endian, VSX stores require generating xxswapd/lxvd2x. 12401 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12402 if (Op1VT.isSimple()) { 12403 MVT StoreVT = Op1VT.getSimpleVT(); 12404 if (Subtarget.needsSwapsForVSXMemOps() && 12405 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 12406 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 12407 return expandVSXStoreForLE(N, DCI); 12408 } 12409 break; 12410 } 12411 case ISD::LOAD: { 12412 LoadSDNode *LD = cast<LoadSDNode>(N); 12413 EVT VT = LD->getValueType(0); 12414 12415 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12416 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12417 if (VT.isSimple()) { 12418 MVT LoadVT = VT.getSimpleVT(); 12419 if (Subtarget.needsSwapsForVSXMemOps() && 12420 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 12421 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 12422 return expandVSXLoadForLE(N, DCI); 12423 } 12424 12425 // We sometimes end up with a 64-bit integer load, from which we extract 12426 // two single-precision floating-point numbers. This happens with 12427 // std::complex<float>, and other similar structures, because of the way we 12428 // canonicalize structure copies. However, if we lack direct moves, 12429 // then the final bitcasts from the extracted integer values to the 12430 // floating-point numbers turn into store/load pairs. Even with direct moves, 12431 // just loading the two floating-point numbers is likely better. 12432 auto ReplaceTwoFloatLoad = [&]() { 12433 if (VT != MVT::i64) 12434 return false; 12435 12436 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 12437 LD->isVolatile()) 12438 return false; 12439 12440 // We're looking for a sequence like this: 12441 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 12442 // t16: i64 = srl t13, Constant:i32<32> 12443 // t17: i32 = truncate t16 12444 // t18: f32 = bitcast t17 12445 // t19: i32 = truncate t13 12446 // t20: f32 = bitcast t19 12447 12448 if (!LD->hasNUsesOfValue(2, 0)) 12449 return false; 12450 12451 auto UI = LD->use_begin(); 12452 while (UI.getUse().getResNo() != 0) ++UI; 12453 SDNode *Trunc = *UI++; 12454 while (UI.getUse().getResNo() != 0) ++UI; 12455 SDNode *RightShift = *UI; 12456 if (Trunc->getOpcode() != ISD::TRUNCATE) 12457 std::swap(Trunc, RightShift); 12458 12459 if (Trunc->getOpcode() != ISD::TRUNCATE || 12460 Trunc->getValueType(0) != MVT::i32 || 12461 !Trunc->hasOneUse()) 12462 return false; 12463 if (RightShift->getOpcode() != ISD::SRL || 12464 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 12465 RightShift->getConstantOperandVal(1) != 32 || 12466 !RightShift->hasOneUse()) 12467 return false; 12468 12469 SDNode *Trunc2 = *RightShift->use_begin(); 12470 if (Trunc2->getOpcode() != ISD::TRUNCATE || 12471 Trunc2->getValueType(0) != MVT::i32 || 12472 !Trunc2->hasOneUse()) 12473 return false; 12474 12475 SDNode *Bitcast = *Trunc->use_begin(); 12476 SDNode *Bitcast2 = *Trunc2->use_begin(); 12477 12478 if (Bitcast->getOpcode() != ISD::BITCAST || 12479 Bitcast->getValueType(0) != MVT::f32) 12480 return false; 12481 if (Bitcast2->getOpcode() != ISD::BITCAST || 12482 Bitcast2->getValueType(0) != MVT::f32) 12483 return false; 12484 12485 if (Subtarget.isLittleEndian()) 12486 std::swap(Bitcast, Bitcast2); 12487 12488 // Bitcast has the second float (in memory-layout order) and Bitcast2 12489 // has the first one. 12490 12491 SDValue BasePtr = LD->getBasePtr(); 12492 if (LD->isIndexed()) { 12493 assert(LD->getAddressingMode() == ISD::PRE_INC && 12494 "Non-pre-inc AM on PPC?"); 12495 BasePtr = 12496 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 12497 LD->getOffset()); 12498 } 12499 12500 auto MMOFlags = 12501 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 12502 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 12503 LD->getPointerInfo(), LD->getAlignment(), 12504 MMOFlags, LD->getAAInfo()); 12505 SDValue AddPtr = 12506 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 12507 BasePtr, DAG.getIntPtrConstant(4, dl)); 12508 SDValue FloatLoad2 = DAG.getLoad( 12509 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 12510 LD->getPointerInfo().getWithOffset(4), 12511 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 12512 12513 if (LD->isIndexed()) { 12514 // Note that DAGCombine should re-form any pre-increment load(s) from 12515 // what is produced here if that makes sense. 12516 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 12517 } 12518 12519 DCI.CombineTo(Bitcast2, FloatLoad); 12520 DCI.CombineTo(Bitcast, FloatLoad2); 12521 12522 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 12523 SDValue(FloatLoad2.getNode(), 1)); 12524 return true; 12525 }; 12526 12527 if (ReplaceTwoFloatLoad()) 12528 return SDValue(N, 0); 12529 12530 EVT MemVT = LD->getMemoryVT(); 12531 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 12532 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 12533 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 12534 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 12535 if (LD->isUnindexed() && VT.isVector() && 12536 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 12537 // P8 and later hardware should just use LOAD. 12538 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 12539 VT == MVT::v4i32 || VT == MVT::v4f32)) || 12540 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 12541 LD->getAlignment() >= ScalarABIAlignment)) && 12542 LD->getAlignment() < ABIAlignment) { 12543 // This is a type-legal unaligned Altivec or QPX load. 12544 SDValue Chain = LD->getChain(); 12545 SDValue Ptr = LD->getBasePtr(); 12546 bool isLittleEndian = Subtarget.isLittleEndian(); 12547 12548 // This implements the loading of unaligned vectors as described in 12549 // the venerable Apple Velocity Engine overview. Specifically: 12550 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 12551 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 12552 // 12553 // The general idea is to expand a sequence of one or more unaligned 12554 // loads into an alignment-based permutation-control instruction (lvsl 12555 // or lvsr), a series of regular vector loads (which always truncate 12556 // their input address to an aligned address), and a series of 12557 // permutations. The results of these permutations are the requested 12558 // loaded values. The trick is that the last "extra" load is not taken 12559 // from the address you might suspect (sizeof(vector) bytes after the 12560 // last requested load), but rather sizeof(vector) - 1 bytes after the 12561 // last requested vector. The point of this is to avoid a page fault if 12562 // the base address happened to be aligned. This works because if the 12563 // base address is aligned, then adding less than a full vector length 12564 // will cause the last vector in the sequence to be (re)loaded. 12565 // Otherwise, the next vector will be fetched as you might suspect was 12566 // necessary. 12567 12568 // We might be able to reuse the permutation generation from 12569 // a different base address offset from this one by an aligned amount. 12570 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 12571 // optimization later. 12572 Intrinsic::ID Intr, IntrLD, IntrPerm; 12573 MVT PermCntlTy, PermTy, LDTy; 12574 if (Subtarget.hasAltivec()) { 12575 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 12576 Intrinsic::ppc_altivec_lvsl; 12577 IntrLD = Intrinsic::ppc_altivec_lvx; 12578 IntrPerm = Intrinsic::ppc_altivec_vperm; 12579 PermCntlTy = MVT::v16i8; 12580 PermTy = MVT::v4i32; 12581 LDTy = MVT::v4i32; 12582 } else { 12583 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 12584 Intrinsic::ppc_qpx_qvlpcls; 12585 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 12586 Intrinsic::ppc_qpx_qvlfs; 12587 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 12588 PermCntlTy = MVT::v4f64; 12589 PermTy = MVT::v4f64; 12590 LDTy = MemVT.getSimpleVT(); 12591 } 12592 12593 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 12594 12595 // Create the new MMO for the new base load. It is like the original MMO, 12596 // but represents an area in memory almost twice the vector size centered 12597 // on the original address. If the address is unaligned, we might start 12598 // reading up to (sizeof(vector)-1) bytes below the address of the 12599 // original unaligned load. 12600 MachineFunction &MF = DAG.getMachineFunction(); 12601 MachineMemOperand *BaseMMO = 12602 MF.getMachineMemOperand(LD->getMemOperand(), 12603 -(long)MemVT.getStoreSize()+1, 12604 2*MemVT.getStoreSize()-1); 12605 12606 // Create the new base load. 12607 SDValue LDXIntID = 12608 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 12609 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 12610 SDValue BaseLoad = 12611 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12612 DAG.getVTList(PermTy, MVT::Other), 12613 BaseLoadOps, LDTy, BaseMMO); 12614 12615 // Note that the value of IncOffset (which is provided to the next 12616 // load's pointer info offset value, and thus used to calculate the 12617 // alignment), and the value of IncValue (which is actually used to 12618 // increment the pointer value) are different! This is because we 12619 // require the next load to appear to be aligned, even though it 12620 // is actually offset from the base pointer by a lesser amount. 12621 int IncOffset = VT.getSizeInBits() / 8; 12622 int IncValue = IncOffset; 12623 12624 // Walk (both up and down) the chain looking for another load at the real 12625 // (aligned) offset (the alignment of the other load does not matter in 12626 // this case). If found, then do not use the offset reduction trick, as 12627 // that will prevent the loads from being later combined (as they would 12628 // otherwise be duplicates). 12629 if (!findConsecutiveLoad(LD, DAG)) 12630 --IncValue; 12631 12632 SDValue Increment = 12633 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 12634 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 12635 12636 MachineMemOperand *ExtraMMO = 12637 MF.getMachineMemOperand(LD->getMemOperand(), 12638 1, 2*MemVT.getStoreSize()-1); 12639 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 12640 SDValue ExtraLoad = 12641 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 12642 DAG.getVTList(PermTy, MVT::Other), 12643 ExtraLoadOps, LDTy, ExtraMMO); 12644 12645 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 12646 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 12647 12648 // Because vperm has a big-endian bias, we must reverse the order 12649 // of the input vectors and complement the permute control vector 12650 // when generating little endian code. We have already handled the 12651 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 12652 // and ExtraLoad here. 12653 SDValue Perm; 12654 if (isLittleEndian) 12655 Perm = BuildIntrinsicOp(IntrPerm, 12656 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 12657 else 12658 Perm = BuildIntrinsicOp(IntrPerm, 12659 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 12660 12661 if (VT != PermTy) 12662 Perm = Subtarget.hasAltivec() ? 12663 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 12664 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 12665 DAG.getTargetConstant(1, dl, MVT::i64)); 12666 // second argument is 1 because this rounding 12667 // is always exact. 12668 12669 // The output of the permutation is our loaded result, the TokenFactor is 12670 // our new chain. 12671 DCI.CombineTo(N, Perm, TF); 12672 return SDValue(N, 0); 12673 } 12674 } 12675 break; 12676 case ISD::INTRINSIC_WO_CHAIN: { 12677 bool isLittleEndian = Subtarget.isLittleEndian(); 12678 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 12679 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 12680 : Intrinsic::ppc_altivec_lvsl); 12681 if ((IID == Intr || 12682 IID == Intrinsic::ppc_qpx_qvlpcld || 12683 IID == Intrinsic::ppc_qpx_qvlpcls) && 12684 N->getOperand(1)->getOpcode() == ISD::ADD) { 12685 SDValue Add = N->getOperand(1); 12686 12687 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 12688 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 12689 12690 if (DAG.MaskedValueIsZero(Add->getOperand(1), 12691 APInt::getAllOnesValue(Bits /* alignment */) 12692 .zext(Add.getScalarValueSizeInBits()))) { 12693 SDNode *BasePtr = Add->getOperand(0).getNode(); 12694 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12695 UE = BasePtr->use_end(); 12696 UI != UE; ++UI) { 12697 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12698 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 12699 // We've found another LVSL/LVSR, and this address is an aligned 12700 // multiple of that one. The results will be the same, so use the 12701 // one we've just found instead. 12702 12703 return SDValue(*UI, 0); 12704 } 12705 } 12706 } 12707 12708 if (isa<ConstantSDNode>(Add->getOperand(1))) { 12709 SDNode *BasePtr = Add->getOperand(0).getNode(); 12710 for (SDNode::use_iterator UI = BasePtr->use_begin(), 12711 UE = BasePtr->use_end(); UI != UE; ++UI) { 12712 if (UI->getOpcode() == ISD::ADD && 12713 isa<ConstantSDNode>(UI->getOperand(1)) && 12714 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 12715 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 12716 (1ULL << Bits) == 0) { 12717 SDNode *OtherAdd = *UI; 12718 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 12719 VE = OtherAdd->use_end(); VI != VE; ++VI) { 12720 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12721 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 12722 return SDValue(*VI, 0); 12723 } 12724 } 12725 } 12726 } 12727 } 12728 } 12729 } 12730 12731 break; 12732 case ISD::INTRINSIC_W_CHAIN: 12733 // For little endian, VSX loads require generating lxvd2x/xxswapd. 12734 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 12735 if (Subtarget.needsSwapsForVSXMemOps()) { 12736 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12737 default: 12738 break; 12739 case Intrinsic::ppc_vsx_lxvw4x: 12740 case Intrinsic::ppc_vsx_lxvd2x: 12741 return expandVSXLoadForLE(N, DCI); 12742 } 12743 } 12744 break; 12745 case ISD::INTRINSIC_VOID: 12746 // For little endian, VSX stores require generating xxswapd/stxvd2x. 12747 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 12748 if (Subtarget.needsSwapsForVSXMemOps()) { 12749 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12750 default: 12751 break; 12752 case Intrinsic::ppc_vsx_stxvw4x: 12753 case Intrinsic::ppc_vsx_stxvd2x: 12754 return expandVSXStoreForLE(N, DCI); 12755 } 12756 } 12757 break; 12758 case ISD::BSWAP: 12759 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 12760 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 12761 N->getOperand(0).hasOneUse() && 12762 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 12763 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 12764 N->getValueType(0) == MVT::i64))) { 12765 SDValue Load = N->getOperand(0); 12766 LoadSDNode *LD = cast<LoadSDNode>(Load); 12767 // Create the byte-swapping load. 12768 SDValue Ops[] = { 12769 LD->getChain(), // Chain 12770 LD->getBasePtr(), // Ptr 12771 DAG.getValueType(N->getValueType(0)) // VT 12772 }; 12773 SDValue BSLoad = 12774 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 12775 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 12776 MVT::i64 : MVT::i32, MVT::Other), 12777 Ops, LD->getMemoryVT(), LD->getMemOperand()); 12778 12779 // If this is an i16 load, insert the truncate. 12780 SDValue ResVal = BSLoad; 12781 if (N->getValueType(0) == MVT::i16) 12782 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 12783 12784 // First, combine the bswap away. This makes the value produced by the 12785 // load dead. 12786 DCI.CombineTo(N, ResVal); 12787 12788 // Next, combine the load away, we give it a bogus result value but a real 12789 // chain result. The result value is dead because the bswap is dead. 12790 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 12791 12792 // Return N so it doesn't get rechecked! 12793 return SDValue(N, 0); 12794 } 12795 break; 12796 case PPCISD::VCMP: 12797 // If a VCMPo node already exists with exactly the same operands as this 12798 // node, use its result instead of this node (VCMPo computes both a CR6 and 12799 // a normal output). 12800 // 12801 if (!N->getOperand(0).hasOneUse() && 12802 !N->getOperand(1).hasOneUse() && 12803 !N->getOperand(2).hasOneUse()) { 12804 12805 // Scan all of the users of the LHS, looking for VCMPo's that match. 12806 SDNode *VCMPoNode = nullptr; 12807 12808 SDNode *LHSN = N->getOperand(0).getNode(); 12809 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 12810 UI != E; ++UI) 12811 if (UI->getOpcode() == PPCISD::VCMPo && 12812 UI->getOperand(1) == N->getOperand(1) && 12813 UI->getOperand(2) == N->getOperand(2) && 12814 UI->getOperand(0) == N->getOperand(0)) { 12815 VCMPoNode = *UI; 12816 break; 12817 } 12818 12819 // If there is no VCMPo node, or if the flag value has a single use, don't 12820 // transform this. 12821 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 12822 break; 12823 12824 // Look at the (necessarily single) use of the flag value. If it has a 12825 // chain, this transformation is more complex. Note that multiple things 12826 // could use the value result, which we should ignore. 12827 SDNode *FlagUser = nullptr; 12828 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 12829 FlagUser == nullptr; ++UI) { 12830 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 12831 SDNode *User = *UI; 12832 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 12833 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 12834 FlagUser = User; 12835 break; 12836 } 12837 } 12838 } 12839 12840 // If the user is a MFOCRF instruction, we know this is safe. 12841 // Otherwise we give up for right now. 12842 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 12843 return SDValue(VCMPoNode, 0); 12844 } 12845 break; 12846 case ISD::BRCOND: { 12847 SDValue Cond = N->getOperand(1); 12848 SDValue Target = N->getOperand(2); 12849 12850 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 12851 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 12852 Intrinsic::ppc_is_decremented_ctr_nonzero) { 12853 12854 // We now need to make the intrinsic dead (it cannot be instruction 12855 // selected). 12856 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 12857 assert(Cond.getNode()->hasOneUse() && 12858 "Counter decrement has more than one use"); 12859 12860 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 12861 N->getOperand(0), Target); 12862 } 12863 } 12864 break; 12865 case ISD::BR_CC: { 12866 // If this is a branch on an altivec predicate comparison, lower this so 12867 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 12868 // lowering is done pre-legalize, because the legalizer lowers the predicate 12869 // compare down to code that is difficult to reassemble. 12870 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 12871 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 12872 12873 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 12874 // value. If so, pass-through the AND to get to the intrinsic. 12875 if (LHS.getOpcode() == ISD::AND && 12876 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 12877 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 12878 Intrinsic::ppc_is_decremented_ctr_nonzero && 12879 isa<ConstantSDNode>(LHS.getOperand(1)) && 12880 !isNullConstant(LHS.getOperand(1))) 12881 LHS = LHS.getOperand(0); 12882 12883 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 12884 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 12885 Intrinsic::ppc_is_decremented_ctr_nonzero && 12886 isa<ConstantSDNode>(RHS)) { 12887 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 12888 "Counter decrement comparison is not EQ or NE"); 12889 12890 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 12891 bool isBDNZ = (CC == ISD::SETEQ && Val) || 12892 (CC == ISD::SETNE && !Val); 12893 12894 // We now need to make the intrinsic dead (it cannot be instruction 12895 // selected). 12896 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 12897 assert(LHS.getNode()->hasOneUse() && 12898 "Counter decrement has more than one use"); 12899 12900 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 12901 N->getOperand(0), N->getOperand(4)); 12902 } 12903 12904 int CompareOpc; 12905 bool isDot; 12906 12907 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 12908 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 12909 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 12910 assert(isDot && "Can't compare against a vector result!"); 12911 12912 // If this is a comparison against something other than 0/1, then we know 12913 // that the condition is never/always true. 12914 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 12915 if (Val != 0 && Val != 1) { 12916 if (CC == ISD::SETEQ) // Cond never true, remove branch. 12917 return N->getOperand(0); 12918 // Always !=, turn it into an unconditional branch. 12919 return DAG.getNode(ISD::BR, dl, MVT::Other, 12920 N->getOperand(0), N->getOperand(4)); 12921 } 12922 12923 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 12924 12925 // Create the PPCISD altivec 'dot' comparison node. 12926 SDValue Ops[] = { 12927 LHS.getOperand(2), // LHS of compare 12928 LHS.getOperand(3), // RHS of compare 12929 DAG.getConstant(CompareOpc, dl, MVT::i32) 12930 }; 12931 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 12932 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 12933 12934 // Unpack the result based on how the target uses it. 12935 PPC::Predicate CompOpc; 12936 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 12937 default: // Can't happen, don't crash on invalid number though. 12938 case 0: // Branch on the value of the EQ bit of CR6. 12939 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 12940 break; 12941 case 1: // Branch on the inverted value of the EQ bit of CR6. 12942 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 12943 break; 12944 case 2: // Branch on the value of the LT bit of CR6. 12945 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 12946 break; 12947 case 3: // Branch on the inverted value of the LT bit of CR6. 12948 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 12949 break; 12950 } 12951 12952 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 12953 DAG.getConstant(CompOpc, dl, MVT::i32), 12954 DAG.getRegister(PPC::CR6, MVT::i32), 12955 N->getOperand(4), CompNode.getValue(1)); 12956 } 12957 break; 12958 } 12959 case ISD::BUILD_VECTOR: 12960 return DAGCombineBuildVector(N, DCI); 12961 } 12962 12963 return SDValue(); 12964 } 12965 12966 SDValue 12967 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 12968 SelectionDAG &DAG, 12969 std::vector<SDNode *> *Created) const { 12970 // fold (sdiv X, pow2) 12971 EVT VT = N->getValueType(0); 12972 if (VT == MVT::i64 && !Subtarget.isPPC64()) 12973 return SDValue(); 12974 if ((VT != MVT::i32 && VT != MVT::i64) || 12975 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 12976 return SDValue(); 12977 12978 SDLoc DL(N); 12979 SDValue N0 = N->getOperand(0); 12980 12981 bool IsNegPow2 = (-Divisor).isPowerOf2(); 12982 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 12983 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 12984 12985 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 12986 if (Created) 12987 Created->push_back(Op.getNode()); 12988 12989 if (IsNegPow2) { 12990 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 12991 if (Created) 12992 Created->push_back(Op.getNode()); 12993 } 12994 12995 return Op; 12996 } 12997 12998 //===----------------------------------------------------------------------===// 12999 // Inline Assembly Support 13000 //===----------------------------------------------------------------------===// 13001 13002 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 13003 KnownBits &Known, 13004 const APInt &DemandedElts, 13005 const SelectionDAG &DAG, 13006 unsigned Depth) const { 13007 Known.resetAll(); 13008 switch (Op.getOpcode()) { 13009 default: break; 13010 case PPCISD::LBRX: { 13011 // lhbrx is known to have the top bits cleared out. 13012 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 13013 Known.Zero = 0xFFFF0000; 13014 break; 13015 } 13016 case ISD::INTRINSIC_WO_CHAIN: { 13017 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 13018 default: break; 13019 case Intrinsic::ppc_altivec_vcmpbfp_p: 13020 case Intrinsic::ppc_altivec_vcmpeqfp_p: 13021 case Intrinsic::ppc_altivec_vcmpequb_p: 13022 case Intrinsic::ppc_altivec_vcmpequh_p: 13023 case Intrinsic::ppc_altivec_vcmpequw_p: 13024 case Intrinsic::ppc_altivec_vcmpequd_p: 13025 case Intrinsic::ppc_altivec_vcmpgefp_p: 13026 case Intrinsic::ppc_altivec_vcmpgtfp_p: 13027 case Intrinsic::ppc_altivec_vcmpgtsb_p: 13028 case Intrinsic::ppc_altivec_vcmpgtsh_p: 13029 case Intrinsic::ppc_altivec_vcmpgtsw_p: 13030 case Intrinsic::ppc_altivec_vcmpgtsd_p: 13031 case Intrinsic::ppc_altivec_vcmpgtub_p: 13032 case Intrinsic::ppc_altivec_vcmpgtuh_p: 13033 case Intrinsic::ppc_altivec_vcmpgtuw_p: 13034 case Intrinsic::ppc_altivec_vcmpgtud_p: 13035 Known.Zero = ~1U; // All bits but the low one are known to be zero. 13036 break; 13037 } 13038 } 13039 } 13040 } 13041 13042 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 13043 switch (Subtarget.getDarwinDirective()) { 13044 default: break; 13045 case PPC::DIR_970: 13046 case PPC::DIR_PWR4: 13047 case PPC::DIR_PWR5: 13048 case PPC::DIR_PWR5X: 13049 case PPC::DIR_PWR6: 13050 case PPC::DIR_PWR6X: 13051 case PPC::DIR_PWR7: 13052 case PPC::DIR_PWR8: 13053 case PPC::DIR_PWR9: { 13054 if (!ML) 13055 break; 13056 13057 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 13058 13059 // For small loops (between 5 and 8 instructions), align to a 32-byte 13060 // boundary so that the entire loop fits in one instruction-cache line. 13061 uint64_t LoopSize = 0; 13062 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 13063 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 13064 LoopSize += TII->getInstSizeInBytes(*J); 13065 if (LoopSize > 32) 13066 break; 13067 } 13068 13069 if (LoopSize > 16 && LoopSize <= 32) 13070 return 5; 13071 13072 break; 13073 } 13074 } 13075 13076 return TargetLowering::getPrefLoopAlignment(ML); 13077 } 13078 13079 /// getConstraintType - Given a constraint, return the type of 13080 /// constraint it is for this target. 13081 PPCTargetLowering::ConstraintType 13082 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 13083 if (Constraint.size() == 1) { 13084 switch (Constraint[0]) { 13085 default: break; 13086 case 'b': 13087 case 'r': 13088 case 'f': 13089 case 'd': 13090 case 'v': 13091 case 'y': 13092 return C_RegisterClass; 13093 case 'Z': 13094 // FIXME: While Z does indicate a memory constraint, it specifically 13095 // indicates an r+r address (used in conjunction with the 'y' modifier 13096 // in the replacement string). Currently, we're forcing the base 13097 // register to be r0 in the asm printer (which is interpreted as zero) 13098 // and forming the complete address in the second register. This is 13099 // suboptimal. 13100 return C_Memory; 13101 } 13102 } else if (Constraint == "wc") { // individual CR bits. 13103 return C_RegisterClass; 13104 } else if (Constraint == "wa" || Constraint == "wd" || 13105 Constraint == "wf" || Constraint == "ws") { 13106 return C_RegisterClass; // VSX registers. 13107 } 13108 return TargetLowering::getConstraintType(Constraint); 13109 } 13110 13111 /// Examine constraint type and operand type and determine a weight value. 13112 /// This object must already have been set up with the operand type 13113 /// and the current alternative constraint selected. 13114 TargetLowering::ConstraintWeight 13115 PPCTargetLowering::getSingleConstraintMatchWeight( 13116 AsmOperandInfo &info, const char *constraint) const { 13117 ConstraintWeight weight = CW_Invalid; 13118 Value *CallOperandVal = info.CallOperandVal; 13119 // If we don't have a value, we can't do a match, 13120 // but allow it at the lowest weight. 13121 if (!CallOperandVal) 13122 return CW_Default; 13123 Type *type = CallOperandVal->getType(); 13124 13125 // Look at the constraint type. 13126 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 13127 return CW_Register; // an individual CR bit. 13128 else if ((StringRef(constraint) == "wa" || 13129 StringRef(constraint) == "wd" || 13130 StringRef(constraint) == "wf") && 13131 type->isVectorTy()) 13132 return CW_Register; 13133 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 13134 return CW_Register; 13135 13136 switch (*constraint) { 13137 default: 13138 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 13139 break; 13140 case 'b': 13141 if (type->isIntegerTy()) 13142 weight = CW_Register; 13143 break; 13144 case 'f': 13145 if (type->isFloatTy()) 13146 weight = CW_Register; 13147 break; 13148 case 'd': 13149 if (type->isDoubleTy()) 13150 weight = CW_Register; 13151 break; 13152 case 'v': 13153 if (type->isVectorTy()) 13154 weight = CW_Register; 13155 break; 13156 case 'y': 13157 weight = CW_Register; 13158 break; 13159 case 'Z': 13160 weight = CW_Memory; 13161 break; 13162 } 13163 return weight; 13164 } 13165 13166 std::pair<unsigned, const TargetRegisterClass *> 13167 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 13168 StringRef Constraint, 13169 MVT VT) const { 13170 if (Constraint.size() == 1) { 13171 // GCC RS6000 Constraint Letters 13172 switch (Constraint[0]) { 13173 case 'b': // R1-R31 13174 if (VT == MVT::i64 && Subtarget.isPPC64()) 13175 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 13176 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 13177 case 'r': // R0-R31 13178 if (VT == MVT::i64 && Subtarget.isPPC64()) 13179 return std::make_pair(0U, &PPC::G8RCRegClass); 13180 return std::make_pair(0U, &PPC::GPRCRegClass); 13181 // 'd' and 'f' constraints are both defined to be "the floating point 13182 // registers", where one is for 32-bit and the other for 64-bit. We don't 13183 // really care overly much here so just give them all the same reg classes. 13184 case 'd': 13185 case 'f': 13186 if (VT == MVT::f32 || VT == MVT::i32) 13187 return std::make_pair(0U, &PPC::F4RCRegClass); 13188 if (VT == MVT::f64 || VT == MVT::i64) 13189 return std::make_pair(0U, &PPC::F8RCRegClass); 13190 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13191 return std::make_pair(0U, &PPC::QFRCRegClass); 13192 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13193 return std::make_pair(0U, &PPC::QSRCRegClass); 13194 break; 13195 case 'v': 13196 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 13197 return std::make_pair(0U, &PPC::QFRCRegClass); 13198 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 13199 return std::make_pair(0U, &PPC::QSRCRegClass); 13200 if (Subtarget.hasAltivec()) 13201 return std::make_pair(0U, &PPC::VRRCRegClass); 13202 break; 13203 case 'y': // crrc 13204 return std::make_pair(0U, &PPC::CRRCRegClass); 13205 } 13206 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 13207 // An individual CR bit. 13208 return std::make_pair(0U, &PPC::CRBITRCRegClass); 13209 } else if ((Constraint == "wa" || Constraint == "wd" || 13210 Constraint == "wf") && Subtarget.hasVSX()) { 13211 return std::make_pair(0U, &PPC::VSRCRegClass); 13212 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 13213 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 13214 return std::make_pair(0U, &PPC::VSSRCRegClass); 13215 else 13216 return std::make_pair(0U, &PPC::VSFRCRegClass); 13217 } 13218 13219 std::pair<unsigned, const TargetRegisterClass *> R = 13220 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 13221 13222 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 13223 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 13224 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 13225 // register. 13226 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 13227 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 13228 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 13229 PPC::GPRCRegClass.contains(R.first)) 13230 return std::make_pair(TRI->getMatchingSuperReg(R.first, 13231 PPC::sub_32, &PPC::G8RCRegClass), 13232 &PPC::G8RCRegClass); 13233 13234 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 13235 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 13236 R.first = PPC::CR0; 13237 R.second = &PPC::CRRCRegClass; 13238 } 13239 13240 return R; 13241 } 13242 13243 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 13244 /// vector. If it is invalid, don't add anything to Ops. 13245 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 13246 std::string &Constraint, 13247 std::vector<SDValue>&Ops, 13248 SelectionDAG &DAG) const { 13249 SDValue Result; 13250 13251 // Only support length 1 constraints. 13252 if (Constraint.length() > 1) return; 13253 13254 char Letter = Constraint[0]; 13255 switch (Letter) { 13256 default: break; 13257 case 'I': 13258 case 'J': 13259 case 'K': 13260 case 'L': 13261 case 'M': 13262 case 'N': 13263 case 'O': 13264 case 'P': { 13265 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 13266 if (!CST) return; // Must be an immediate to match. 13267 SDLoc dl(Op); 13268 int64_t Value = CST->getSExtValue(); 13269 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 13270 // numbers are printed as such. 13271 switch (Letter) { 13272 default: llvm_unreachable("Unknown constraint letter!"); 13273 case 'I': // "I" is a signed 16-bit constant. 13274 if (isInt<16>(Value)) 13275 Result = DAG.getTargetConstant(Value, dl, TCVT); 13276 break; 13277 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 13278 if (isShiftedUInt<16, 16>(Value)) 13279 Result = DAG.getTargetConstant(Value, dl, TCVT); 13280 break; 13281 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 13282 if (isShiftedInt<16, 16>(Value)) 13283 Result = DAG.getTargetConstant(Value, dl, TCVT); 13284 break; 13285 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 13286 if (isUInt<16>(Value)) 13287 Result = DAG.getTargetConstant(Value, dl, TCVT); 13288 break; 13289 case 'M': // "M" is a constant that is greater than 31. 13290 if (Value > 31) 13291 Result = DAG.getTargetConstant(Value, dl, TCVT); 13292 break; 13293 case 'N': // "N" is a positive constant that is an exact power of two. 13294 if (Value > 0 && isPowerOf2_64(Value)) 13295 Result = DAG.getTargetConstant(Value, dl, TCVT); 13296 break; 13297 case 'O': // "O" is the constant zero. 13298 if (Value == 0) 13299 Result = DAG.getTargetConstant(Value, dl, TCVT); 13300 break; 13301 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 13302 if (isInt<16>(-Value)) 13303 Result = DAG.getTargetConstant(Value, dl, TCVT); 13304 break; 13305 } 13306 break; 13307 } 13308 } 13309 13310 if (Result.getNode()) { 13311 Ops.push_back(Result); 13312 return; 13313 } 13314 13315 // Handle standard constraint letters. 13316 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13317 } 13318 13319 // isLegalAddressingMode - Return true if the addressing mode represented 13320 // by AM is legal for this target, for a load/store of the specified type. 13321 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 13322 const AddrMode &AM, Type *Ty, 13323 unsigned AS, Instruction *I) const { 13324 // PPC does not allow r+i addressing modes for vectors! 13325 if (Ty->isVectorTy() && AM.BaseOffs != 0) 13326 return false; 13327 13328 // PPC allows a sign-extended 16-bit immediate field. 13329 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 13330 return false; 13331 13332 // No global is ever allowed as a base. 13333 if (AM.BaseGV) 13334 return false; 13335 13336 // PPC only support r+r, 13337 switch (AM.Scale) { 13338 case 0: // "r+i" or just "i", depending on HasBaseReg. 13339 break; 13340 case 1: 13341 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 13342 return false; 13343 // Otherwise we have r+r or r+i. 13344 break; 13345 case 2: 13346 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 13347 return false; 13348 // Allow 2*r as r+r. 13349 break; 13350 default: 13351 // No other scales are supported. 13352 return false; 13353 } 13354 13355 return true; 13356 } 13357 13358 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 13359 SelectionDAG &DAG) const { 13360 MachineFunction &MF = DAG.getMachineFunction(); 13361 MachineFrameInfo &MFI = MF.getFrameInfo(); 13362 MFI.setReturnAddressIsTaken(true); 13363 13364 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 13365 return SDValue(); 13366 13367 SDLoc dl(Op); 13368 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13369 13370 // Make sure the function does not optimize away the store of the RA to 13371 // the stack. 13372 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 13373 FuncInfo->setLRStoreRequired(); 13374 bool isPPC64 = Subtarget.isPPC64(); 13375 auto PtrVT = getPointerTy(MF.getDataLayout()); 13376 13377 if (Depth > 0) { 13378 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 13379 SDValue Offset = 13380 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 13381 isPPC64 ? MVT::i64 : MVT::i32); 13382 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 13383 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 13384 MachinePointerInfo()); 13385 } 13386 13387 // Just load the return address off the stack. 13388 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 13389 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 13390 MachinePointerInfo()); 13391 } 13392 13393 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 13394 SelectionDAG &DAG) const { 13395 SDLoc dl(Op); 13396 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 13397 13398 MachineFunction &MF = DAG.getMachineFunction(); 13399 MachineFrameInfo &MFI = MF.getFrameInfo(); 13400 MFI.setFrameAddressIsTaken(true); 13401 13402 EVT PtrVT = getPointerTy(MF.getDataLayout()); 13403 bool isPPC64 = PtrVT == MVT::i64; 13404 13405 // Naked functions never have a frame pointer, and so we use r1. For all 13406 // other functions, this decision must be delayed until during PEI. 13407 unsigned FrameReg; 13408 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 13409 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 13410 else 13411 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 13412 13413 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 13414 PtrVT); 13415 while (Depth--) 13416 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 13417 FrameAddr, MachinePointerInfo()); 13418 return FrameAddr; 13419 } 13420 13421 // FIXME? Maybe this could be a TableGen attribute on some registers and 13422 // this table could be generated automatically from RegInfo. 13423 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 13424 SelectionDAG &DAG) const { 13425 bool isPPC64 = Subtarget.isPPC64(); 13426 bool isDarwinABI = Subtarget.isDarwinABI(); 13427 13428 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 13429 (!isPPC64 && VT != MVT::i32)) 13430 report_fatal_error("Invalid register global variable type"); 13431 13432 bool is64Bit = isPPC64 && VT == MVT::i64; 13433 unsigned Reg = StringSwitch<unsigned>(RegName) 13434 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 13435 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 13436 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 13437 (is64Bit ? PPC::X13 : PPC::R13)) 13438 .Default(0); 13439 13440 if (Reg) 13441 return Reg; 13442 report_fatal_error("Invalid register name global variable"); 13443 } 13444 13445 bool 13446 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 13447 // The PowerPC target isn't yet aware of offsets. 13448 return false; 13449 } 13450 13451 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 13452 const CallInst &I, 13453 MachineFunction &MF, 13454 unsigned Intrinsic) const { 13455 switch (Intrinsic) { 13456 case Intrinsic::ppc_qpx_qvlfd: 13457 case Intrinsic::ppc_qpx_qvlfs: 13458 case Intrinsic::ppc_qpx_qvlfcd: 13459 case Intrinsic::ppc_qpx_qvlfcs: 13460 case Intrinsic::ppc_qpx_qvlfiwa: 13461 case Intrinsic::ppc_qpx_qvlfiwz: 13462 case Intrinsic::ppc_altivec_lvx: 13463 case Intrinsic::ppc_altivec_lvxl: 13464 case Intrinsic::ppc_altivec_lvebx: 13465 case Intrinsic::ppc_altivec_lvehx: 13466 case Intrinsic::ppc_altivec_lvewx: 13467 case Intrinsic::ppc_vsx_lxvd2x: 13468 case Intrinsic::ppc_vsx_lxvw4x: { 13469 EVT VT; 13470 switch (Intrinsic) { 13471 case Intrinsic::ppc_altivec_lvebx: 13472 VT = MVT::i8; 13473 break; 13474 case Intrinsic::ppc_altivec_lvehx: 13475 VT = MVT::i16; 13476 break; 13477 case Intrinsic::ppc_altivec_lvewx: 13478 VT = MVT::i32; 13479 break; 13480 case Intrinsic::ppc_vsx_lxvd2x: 13481 VT = MVT::v2f64; 13482 break; 13483 case Intrinsic::ppc_qpx_qvlfd: 13484 VT = MVT::v4f64; 13485 break; 13486 case Intrinsic::ppc_qpx_qvlfs: 13487 VT = MVT::v4f32; 13488 break; 13489 case Intrinsic::ppc_qpx_qvlfcd: 13490 VT = MVT::v2f64; 13491 break; 13492 case Intrinsic::ppc_qpx_qvlfcs: 13493 VT = MVT::v2f32; 13494 break; 13495 default: 13496 VT = MVT::v4i32; 13497 break; 13498 } 13499 13500 Info.opc = ISD::INTRINSIC_W_CHAIN; 13501 Info.memVT = VT; 13502 Info.ptrVal = I.getArgOperand(0); 13503 Info.offset = -VT.getStoreSize()+1; 13504 Info.size = 2*VT.getStoreSize()-1; 13505 Info.align = 1; 13506 Info.flags = MachineMemOperand::MOLoad; 13507 return true; 13508 } 13509 case Intrinsic::ppc_qpx_qvlfda: 13510 case Intrinsic::ppc_qpx_qvlfsa: 13511 case Intrinsic::ppc_qpx_qvlfcda: 13512 case Intrinsic::ppc_qpx_qvlfcsa: 13513 case Intrinsic::ppc_qpx_qvlfiwaa: 13514 case Intrinsic::ppc_qpx_qvlfiwza: { 13515 EVT VT; 13516 switch (Intrinsic) { 13517 case Intrinsic::ppc_qpx_qvlfda: 13518 VT = MVT::v4f64; 13519 break; 13520 case Intrinsic::ppc_qpx_qvlfsa: 13521 VT = MVT::v4f32; 13522 break; 13523 case Intrinsic::ppc_qpx_qvlfcda: 13524 VT = MVT::v2f64; 13525 break; 13526 case Intrinsic::ppc_qpx_qvlfcsa: 13527 VT = MVT::v2f32; 13528 break; 13529 default: 13530 VT = MVT::v4i32; 13531 break; 13532 } 13533 13534 Info.opc = ISD::INTRINSIC_W_CHAIN; 13535 Info.memVT = VT; 13536 Info.ptrVal = I.getArgOperand(0); 13537 Info.offset = 0; 13538 Info.size = VT.getStoreSize(); 13539 Info.align = 1; 13540 Info.flags = MachineMemOperand::MOLoad; 13541 return true; 13542 } 13543 case Intrinsic::ppc_qpx_qvstfd: 13544 case Intrinsic::ppc_qpx_qvstfs: 13545 case Intrinsic::ppc_qpx_qvstfcd: 13546 case Intrinsic::ppc_qpx_qvstfcs: 13547 case Intrinsic::ppc_qpx_qvstfiw: 13548 case Intrinsic::ppc_altivec_stvx: 13549 case Intrinsic::ppc_altivec_stvxl: 13550 case Intrinsic::ppc_altivec_stvebx: 13551 case Intrinsic::ppc_altivec_stvehx: 13552 case Intrinsic::ppc_altivec_stvewx: 13553 case Intrinsic::ppc_vsx_stxvd2x: 13554 case Intrinsic::ppc_vsx_stxvw4x: { 13555 EVT VT; 13556 switch (Intrinsic) { 13557 case Intrinsic::ppc_altivec_stvebx: 13558 VT = MVT::i8; 13559 break; 13560 case Intrinsic::ppc_altivec_stvehx: 13561 VT = MVT::i16; 13562 break; 13563 case Intrinsic::ppc_altivec_stvewx: 13564 VT = MVT::i32; 13565 break; 13566 case Intrinsic::ppc_vsx_stxvd2x: 13567 VT = MVT::v2f64; 13568 break; 13569 case Intrinsic::ppc_qpx_qvstfd: 13570 VT = MVT::v4f64; 13571 break; 13572 case Intrinsic::ppc_qpx_qvstfs: 13573 VT = MVT::v4f32; 13574 break; 13575 case Intrinsic::ppc_qpx_qvstfcd: 13576 VT = MVT::v2f64; 13577 break; 13578 case Intrinsic::ppc_qpx_qvstfcs: 13579 VT = MVT::v2f32; 13580 break; 13581 default: 13582 VT = MVT::v4i32; 13583 break; 13584 } 13585 13586 Info.opc = ISD::INTRINSIC_VOID; 13587 Info.memVT = VT; 13588 Info.ptrVal = I.getArgOperand(1); 13589 Info.offset = -VT.getStoreSize()+1; 13590 Info.size = 2*VT.getStoreSize()-1; 13591 Info.align = 1; 13592 Info.flags = MachineMemOperand::MOStore; 13593 return true; 13594 } 13595 case Intrinsic::ppc_qpx_qvstfda: 13596 case Intrinsic::ppc_qpx_qvstfsa: 13597 case Intrinsic::ppc_qpx_qvstfcda: 13598 case Intrinsic::ppc_qpx_qvstfcsa: 13599 case Intrinsic::ppc_qpx_qvstfiwa: { 13600 EVT VT; 13601 switch (Intrinsic) { 13602 case Intrinsic::ppc_qpx_qvstfda: 13603 VT = MVT::v4f64; 13604 break; 13605 case Intrinsic::ppc_qpx_qvstfsa: 13606 VT = MVT::v4f32; 13607 break; 13608 case Intrinsic::ppc_qpx_qvstfcda: 13609 VT = MVT::v2f64; 13610 break; 13611 case Intrinsic::ppc_qpx_qvstfcsa: 13612 VT = MVT::v2f32; 13613 break; 13614 default: 13615 VT = MVT::v4i32; 13616 break; 13617 } 13618 13619 Info.opc = ISD::INTRINSIC_VOID; 13620 Info.memVT = VT; 13621 Info.ptrVal = I.getArgOperand(1); 13622 Info.offset = 0; 13623 Info.size = VT.getStoreSize(); 13624 Info.align = 1; 13625 Info.flags = MachineMemOperand::MOStore; 13626 return true; 13627 } 13628 default: 13629 break; 13630 } 13631 13632 return false; 13633 } 13634 13635 /// getOptimalMemOpType - Returns the target specific optimal type for load 13636 /// and store operations as a result of memset, memcpy, and memmove 13637 /// lowering. If DstAlign is zero that means it's safe to destination 13638 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 13639 /// means there isn't a need to check it against alignment requirement, 13640 /// probably because the source does not need to be loaded. If 'IsMemset' is 13641 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 13642 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 13643 /// source is constant so it does not need to be loaded. 13644 /// It returns EVT::Other if the type should be determined using generic 13645 /// target-independent logic. 13646 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 13647 unsigned DstAlign, unsigned SrcAlign, 13648 bool IsMemset, bool ZeroMemset, 13649 bool MemcpyStrSrc, 13650 MachineFunction &MF) const { 13651 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 13652 const Function &F = MF.getFunction(); 13653 // When expanding a memset, require at least two QPX instructions to cover 13654 // the cost of loading the value to be stored from the constant pool. 13655 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 13656 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 13657 !F.hasFnAttribute(Attribute::NoImplicitFloat)) { 13658 return MVT::v4f64; 13659 } 13660 13661 // We should use Altivec/VSX loads and stores when available. For unaligned 13662 // addresses, unaligned VSX loads are only fast starting with the P8. 13663 if (Subtarget.hasAltivec() && Size >= 16 && 13664 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 13665 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 13666 return MVT::v4i32; 13667 } 13668 13669 if (Subtarget.isPPC64()) { 13670 return MVT::i64; 13671 } 13672 13673 return MVT::i32; 13674 } 13675 13676 /// Returns true if it is beneficial to convert a load of a constant 13677 /// to just the constant itself. 13678 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 13679 Type *Ty) const { 13680 assert(Ty->isIntegerTy()); 13681 13682 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 13683 return !(BitSize == 0 || BitSize > 64); 13684 } 13685 13686 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 13687 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 13688 return false; 13689 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 13690 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 13691 return NumBits1 == 64 && NumBits2 == 32; 13692 } 13693 13694 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 13695 if (!VT1.isInteger() || !VT2.isInteger()) 13696 return false; 13697 unsigned NumBits1 = VT1.getSizeInBits(); 13698 unsigned NumBits2 = VT2.getSizeInBits(); 13699 return NumBits1 == 64 && NumBits2 == 32; 13700 } 13701 13702 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 13703 // Generally speaking, zexts are not free, but they are free when they can be 13704 // folded with other operations. 13705 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 13706 EVT MemVT = LD->getMemoryVT(); 13707 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 13708 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 13709 (LD->getExtensionType() == ISD::NON_EXTLOAD || 13710 LD->getExtensionType() == ISD::ZEXTLOAD)) 13711 return true; 13712 } 13713 13714 // FIXME: Add other cases... 13715 // - 32-bit shifts with a zext to i64 13716 // - zext after ctlz, bswap, etc. 13717 // - zext after and by a constant mask 13718 13719 return TargetLowering::isZExtFree(Val, VT2); 13720 } 13721 13722 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 13723 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 13724 "invalid fpext types"); 13725 return true; 13726 } 13727 13728 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 13729 return isInt<16>(Imm) || isUInt<16>(Imm); 13730 } 13731 13732 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 13733 return isInt<16>(Imm) || isUInt<16>(Imm); 13734 } 13735 13736 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 13737 unsigned, 13738 unsigned, 13739 bool *Fast) const { 13740 if (DisablePPCUnaligned) 13741 return false; 13742 13743 // PowerPC supports unaligned memory access for simple non-vector types. 13744 // Although accessing unaligned addresses is not as efficient as accessing 13745 // aligned addresses, it is generally more efficient than manual expansion, 13746 // and generally only traps for software emulation when crossing page 13747 // boundaries. 13748 13749 if (!VT.isSimple()) 13750 return false; 13751 13752 if (VT.getSimpleVT().isVector()) { 13753 if (Subtarget.hasVSX()) { 13754 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 13755 VT != MVT::v4f32 && VT != MVT::v4i32) 13756 return false; 13757 } else { 13758 return false; 13759 } 13760 } 13761 13762 if (VT == MVT::ppcf128) 13763 return false; 13764 13765 if (Fast) 13766 *Fast = true; 13767 13768 return true; 13769 } 13770 13771 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 13772 VT = VT.getScalarType(); 13773 13774 if (!VT.isSimple()) 13775 return false; 13776 13777 switch (VT.getSimpleVT().SimpleTy) { 13778 case MVT::f32: 13779 case MVT::f64: 13780 return true; 13781 case MVT::f128: 13782 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 13783 default: 13784 break; 13785 } 13786 13787 return false; 13788 } 13789 13790 const MCPhysReg * 13791 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 13792 // LR is a callee-save register, but we must treat it as clobbered by any call 13793 // site. Hence we include LR in the scratch registers, which are in turn added 13794 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 13795 // to CTR, which is used by any indirect call. 13796 static const MCPhysReg ScratchRegs[] = { 13797 PPC::X12, PPC::LR8, PPC::CTR8, 0 13798 }; 13799 13800 return ScratchRegs; 13801 } 13802 13803 unsigned PPCTargetLowering::getExceptionPointerRegister( 13804 const Constant *PersonalityFn) const { 13805 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 13806 } 13807 13808 unsigned PPCTargetLowering::getExceptionSelectorRegister( 13809 const Constant *PersonalityFn) const { 13810 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 13811 } 13812 13813 bool 13814 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 13815 EVT VT , unsigned DefinedValues) const { 13816 if (VT == MVT::v2i64) 13817 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 13818 13819 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 13820 return true; 13821 13822 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 13823 } 13824 13825 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 13826 if (DisableILPPref || Subtarget.enableMachineScheduler()) 13827 return TargetLowering::getSchedulingPreference(N); 13828 13829 return Sched::ILP; 13830 } 13831 13832 // Create a fast isel object. 13833 FastISel * 13834 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 13835 const TargetLibraryInfo *LibInfo) const { 13836 return PPC::createFastISel(FuncInfo, LibInfo); 13837 } 13838 13839 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 13840 if (Subtarget.isDarwinABI()) return; 13841 if (!Subtarget.isPPC64()) return; 13842 13843 // Update IsSplitCSR in PPCFunctionInfo 13844 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 13845 PFI->setIsSplitCSR(true); 13846 } 13847 13848 void PPCTargetLowering::insertCopiesSplitCSR( 13849 MachineBasicBlock *Entry, 13850 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 13851 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 13852 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 13853 if (!IStart) 13854 return; 13855 13856 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 13857 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 13858 MachineBasicBlock::iterator MBBI = Entry->begin(); 13859 for (const MCPhysReg *I = IStart; *I; ++I) { 13860 const TargetRegisterClass *RC = nullptr; 13861 if (PPC::G8RCRegClass.contains(*I)) 13862 RC = &PPC::G8RCRegClass; 13863 else if (PPC::F8RCRegClass.contains(*I)) 13864 RC = &PPC::F8RCRegClass; 13865 else if (PPC::CRRCRegClass.contains(*I)) 13866 RC = &PPC::CRRCRegClass; 13867 else if (PPC::VRRCRegClass.contains(*I)) 13868 RC = &PPC::VRRCRegClass; 13869 else 13870 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 13871 13872 unsigned NewVR = MRI->createVirtualRegister(RC); 13873 // Create copy from CSR to a virtual register. 13874 // FIXME: this currently does not emit CFI pseudo-instructions, it works 13875 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 13876 // nounwind. If we want to generalize this later, we may need to emit 13877 // CFI pseudo-instructions. 13878 assert(Entry->getParent()->getFunction().hasFnAttribute( 13879 Attribute::NoUnwind) && 13880 "Function should be nounwind in insertCopiesSplitCSR!"); 13881 Entry->addLiveIn(*I); 13882 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 13883 .addReg(*I); 13884 13885 // Insert the copy-back instructions right before the terminator 13886 for (auto *Exit : Exits) 13887 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 13888 TII->get(TargetOpcode::COPY), *I) 13889 .addReg(NewVR); 13890 } 13891 } 13892 13893 // Override to enable LOAD_STACK_GUARD lowering on Linux. 13894 bool PPCTargetLowering::useLoadStackGuardNode() const { 13895 if (!Subtarget.isTargetLinux()) 13896 return TargetLowering::useLoadStackGuardNode(); 13897 return true; 13898 } 13899 13900 // Override to disable global variable loading on Linux. 13901 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 13902 if (!Subtarget.isTargetLinux()) 13903 return TargetLowering::insertSSPDeclarations(M); 13904 } 13905 13906 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 13907 if (!VT.isSimple() || !Subtarget.hasVSX()) 13908 return false; 13909 13910 switch(VT.getSimpleVT().SimpleTy) { 13911 default: 13912 // For FP types that are currently not supported by PPC backend, return 13913 // false. Examples: f16, f80. 13914 return false; 13915 case MVT::f32: 13916 case MVT::f64: 13917 case MVT::ppcf128: 13918 return Imm.isPosZero(); 13919 } 13920 } 13921 13922 // For vector shift operation op, fold 13923 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 13924 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 13925 SelectionDAG &DAG) { 13926 SDValue N0 = N->getOperand(0); 13927 SDValue N1 = N->getOperand(1); 13928 EVT VT = N0.getValueType(); 13929 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 13930 unsigned Opcode = N->getOpcode(); 13931 unsigned TargetOpcode; 13932 13933 switch (Opcode) { 13934 default: 13935 llvm_unreachable("Unexpected shift operation"); 13936 case ISD::SHL: 13937 TargetOpcode = PPCISD::SHL; 13938 break; 13939 case ISD::SRL: 13940 TargetOpcode = PPCISD::SRL; 13941 break; 13942 case ISD::SRA: 13943 TargetOpcode = PPCISD::SRA; 13944 break; 13945 } 13946 13947 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 13948 N1->getOpcode() == ISD::AND) 13949 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 13950 if (Mask->getZExtValue() == OpSizeInBits - 1) 13951 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 13952 13953 return SDValue(); 13954 } 13955 13956 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 13957 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13958 return Value; 13959 13960 return SDValue(); 13961 } 13962 13963 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 13964 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13965 return Value; 13966 13967 return SDValue(); 13968 } 13969 13970 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 13971 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 13972 return Value; 13973 13974 return SDValue(); 13975 } 13976 13977 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 13978 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 13979 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64()) 13980 return false; 13981 13982 // If not a tail call then no need to proceed. 13983 if (!CI->isTailCall()) 13984 return false; 13985 13986 // If tail calls are disabled for the caller then we are done. 13987 const Function *Caller = CI->getParent()->getParent(); 13988 auto Attr = Caller->getFnAttribute("disable-tail-calls"); 13989 if (Attr.getValueAsString() == "true") 13990 return false; 13991 13992 // If sibling calls have been disabled and tail-calls aren't guaranteed 13993 // there is no reason to duplicate. 13994 auto &TM = getTargetMachine(); 13995 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 13996 return false; 13997 13998 // Can't tail call a function called indirectly, or if it has variadic args. 13999 const Function *Callee = CI->getCalledFunction(); 14000 if (!Callee || Callee->isVarArg()) 14001 return false; 14002 14003 // Make sure the callee and caller calling conventions are eligible for tco. 14004 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 14005 CI->getCallingConv())) 14006 return false; 14007 14008 // If the function is local then we have a good chance at tail-calling it 14009 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 14010 } 14011 14012 bool PPCTargetLowering:: 14013 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 14014 const Value *Mask = AndI.getOperand(1); 14015 // If the mask is suitable for andi. or andis. we should sink the and. 14016 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 14017 // Can't handle constants wider than 64-bits. 14018 if (CI->getBitWidth() > 64) 14019 return false; 14020 int64_t ConstVal = CI->getZExtValue(); 14021 return isUInt<16>(ConstVal) || 14022 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 14023 } 14024 14025 // For non-constant masks, we can always use the record-form and. 14026 return true; 14027 } 14028