1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCPerfectShuffle.h"
19 #include "PPCTargetMachine.h"
20 #include "PPCTargetObjectFile.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 // FIXME: Remove this once soft-float is supported.
46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
48 
49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
51 
52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
54 
55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
57 
58 // FIXME: Remove this once the bug has been fixed!
59 extern cl::opt<bool> ANDIGlueBug;
60 
61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
62                                      const PPCSubtarget &STI)
63     : TargetLowering(TM), Subtarget(STI) {
64   // Use _setjmp/_longjmp instead of setjmp/longjmp.
65   setUseUnderscoreSetJmp(true);
66   setUseUnderscoreLongJmp(true);
67 
68   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
69   // arguments are at least 4/8 bytes aligned.
70   bool isPPC64 = Subtarget.isPPC64();
71   setMinStackArgumentAlignment(isPPC64 ? 8:4);
72 
73   // Set up the register classes.
74   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
75   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
76   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
77 
78   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
79   for (MVT VT : MVT::integer_valuetypes()) {
80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
81     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
82   }
83 
84   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
85 
86   // PowerPC has pre-inc load and store's.
87   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
88   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
89   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
90   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
92   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
94   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
100   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
101 
102   if (Subtarget.useCRBits()) {
103     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
104 
105     if (isPPC64 || Subtarget.hasFPCVT()) {
106       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
107       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
108                          isPPC64 ? MVT::i64 : MVT::i32);
109       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
110       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
111                         isPPC64 ? MVT::i64 : MVT::i32);
112     } else {
113       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
114       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
115     }
116 
117     // PowerPC does not support direct load / store of condition registers
118     setOperationAction(ISD::LOAD, MVT::i1, Custom);
119     setOperationAction(ISD::STORE, MVT::i1, Custom);
120 
121     // FIXME: Remove this once the ANDI glue bug is fixed:
122     if (ANDIGlueBug)
123       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
124 
125     for (MVT VT : MVT::integer_valuetypes()) {
126       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
128       setTruncStoreAction(VT, MVT::i1, Expand);
129     }
130 
131     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
132   }
133 
134   // This is used in the ppcf128->int sequence.  Note it has different semantics
135   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
136   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
137 
138   // We do not currently implement these libm ops for PowerPC.
139   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
140   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
141   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
142   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
143   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
144   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
145 
146   // PowerPC has no SREM/UREM instructions
147   setOperationAction(ISD::SREM, MVT::i32, Expand);
148   setOperationAction(ISD::UREM, MVT::i32, Expand);
149   setOperationAction(ISD::SREM, MVT::i64, Expand);
150   setOperationAction(ISD::UREM, MVT::i64, Expand);
151 
152   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
153   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
154   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
155   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
156   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
157   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
158   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
159   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
160   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
161 
162   // We don't support sin/cos/sqrt/fmod/pow
163   setOperationAction(ISD::FSIN , MVT::f64, Expand);
164   setOperationAction(ISD::FCOS , MVT::f64, Expand);
165   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
166   setOperationAction(ISD::FREM , MVT::f64, Expand);
167   setOperationAction(ISD::FPOW , MVT::f64, Expand);
168   setOperationAction(ISD::FMA  , MVT::f64, Legal);
169   setOperationAction(ISD::FSIN , MVT::f32, Expand);
170   setOperationAction(ISD::FCOS , MVT::f32, Expand);
171   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
172   setOperationAction(ISD::FREM , MVT::f32, Expand);
173   setOperationAction(ISD::FPOW , MVT::f32, Expand);
174   setOperationAction(ISD::FMA  , MVT::f32, Legal);
175 
176   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
177 
178   // If we're enabling GP optimizations, use hardware square root
179   if (!Subtarget.hasFSQRT() &&
180       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
181         Subtarget.hasFRE()))
182     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
183 
184   if (!Subtarget.hasFSQRT() &&
185       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
186         Subtarget.hasFRES()))
187     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
188 
189   if (Subtarget.hasFCPSGN()) {
190     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
191     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
192   } else {
193     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
194     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
195   }
196 
197   if (Subtarget.hasFPRND()) {
198     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
199     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
200     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
201     setOperationAction(ISD::FROUND, MVT::f64, Legal);
202 
203     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
204     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
205     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
206     setOperationAction(ISD::FROUND, MVT::f32, Legal);
207   }
208 
209   // PowerPC does not have BSWAP, CTPOP or CTTZ
210   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
211   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
212   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
213   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
214   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
215   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
216   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
217   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
218 
219   if (Subtarget.hasPOPCNTD()) {
220     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
221     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
222   } else {
223     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
224     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
225   }
226 
227   // PowerPC does not have ROTR
228   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
229   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
230 
231   if (!Subtarget.useCRBits()) {
232     // PowerPC does not have Select
233     setOperationAction(ISD::SELECT, MVT::i32, Expand);
234     setOperationAction(ISD::SELECT, MVT::i64, Expand);
235     setOperationAction(ISD::SELECT, MVT::f32, Expand);
236     setOperationAction(ISD::SELECT, MVT::f64, Expand);
237   }
238 
239   // PowerPC wants to turn select_cc of FP into fsel when possible.
240   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
241   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
242 
243   // PowerPC wants to optimize integer setcc a bit
244   if (!Subtarget.useCRBits())
245     setOperationAction(ISD::SETCC, MVT::i32, Custom);
246 
247   // PowerPC does not have BRCOND which requires SetCC
248   if (!Subtarget.useCRBits())
249     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
250 
251   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
252 
253   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
254   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
255 
256   // PowerPC does not have [U|S]INT_TO_FP
257   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
258   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
259 
260   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
261   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
262   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
263   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
264 
265   // We cannot sextinreg(i1).  Expand to shifts.
266   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
267 
268   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
269   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
270   // support continuation, user-level threading, and etc.. As a result, no
271   // other SjLj exception interfaces are implemented and please don't build
272   // your own exception handling based on them.
273   // LLVM/Clang supports zero-cost DWARF exception handling.
274   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
275   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
276 
277   // We want to legalize GlobalAddress and ConstantPool nodes into the
278   // appropriate instructions to materialize the address.
279   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
280   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
281   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
282   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
283   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
284   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
285   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
287   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
288   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
289 
290   // TRAP is legal.
291   setOperationAction(ISD::TRAP, MVT::Other, Legal);
292 
293   // TRAMPOLINE is custom lowered.
294   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
295   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
296 
297   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
299 
300   if (Subtarget.isSVR4ABI()) {
301     if (isPPC64) {
302       // VAARG always uses double-word chunks, so promote anything smaller.
303       setOperationAction(ISD::VAARG, MVT::i1, Promote);
304       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
305       setOperationAction(ISD::VAARG, MVT::i8, Promote);
306       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
307       setOperationAction(ISD::VAARG, MVT::i16, Promote);
308       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
309       setOperationAction(ISD::VAARG, MVT::i32, Promote);
310       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
311       setOperationAction(ISD::VAARG, MVT::Other, Expand);
312     } else {
313       // VAARG is custom lowered with the 32-bit SVR4 ABI.
314       setOperationAction(ISD::VAARG, MVT::Other, Custom);
315       setOperationAction(ISD::VAARG, MVT::i64, Custom);
316     }
317   } else
318     setOperationAction(ISD::VAARG, MVT::Other, Expand);
319 
320   if (Subtarget.isSVR4ABI() && !isPPC64)
321     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
322     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
323   else
324     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
325 
326   // Use the default implementation.
327   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
328   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
329   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
331   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
332 
333   // We want to custom lower some of our intrinsics.
334   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
335 
336   // To handle counter-based loop conditions.
337   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
338 
339   // Comparisons that require checking two conditions.
340   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
341   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
342   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
343   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
344   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
345   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
346   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
347   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
348   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
349   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
350   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
351   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
352 
353   if (Subtarget.has64BitSupport()) {
354     // They also have instructions for converting between i64 and fp.
355     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
356     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
357     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
358     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
359     // This is just the low 32 bits of a (signed) fp->i64 conversion.
360     // We cannot do this with Promote because i64 is not a legal type.
361     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
362 
363     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
364       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
365   } else {
366     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
367     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
368   }
369 
370   // With the instructions enabled under FPCVT, we can do everything.
371   if (Subtarget.hasFPCVT()) {
372     if (Subtarget.has64BitSupport()) {
373       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
374       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
375       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
376       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
377     }
378 
379     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
380     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
383   }
384 
385   if (Subtarget.use64BitRegs()) {
386     // 64-bit PowerPC implementations can support i64 types directly
387     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
388     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
389     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
390     // 64-bit PowerPC wants to expand i128 shifts itself.
391     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
392     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
393     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
394   } else {
395     // 32-bit PowerPC wants to expand i64 shifts itself.
396     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
397     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
398     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
399   }
400 
401   if (Subtarget.hasAltivec()) {
402     // First set operation action for all vector types to expand. Then we
403     // will selectively turn on ones that can be effectively codegen'd.
404     for (MVT VT : MVT::vector_valuetypes()) {
405       // add/sub are legal for all supported vector VT's.
406       setOperationAction(ISD::ADD, VT, Legal);
407       setOperationAction(ISD::SUB, VT, Legal);
408 
409       // Vector instructions introduced in P8
410       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
411         setOperationAction(ISD::CTPOP, VT, Legal);
412         setOperationAction(ISD::CTLZ, VT, Legal);
413       }
414       else {
415         setOperationAction(ISD::CTPOP, VT, Expand);
416         setOperationAction(ISD::CTLZ, VT, Expand);
417       }
418 
419       // We promote all shuffles to v16i8.
420       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
421       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
422 
423       // We promote all non-typed operations to v4i32.
424       setOperationAction(ISD::AND   , VT, Promote);
425       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
426       setOperationAction(ISD::OR    , VT, Promote);
427       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
428       setOperationAction(ISD::XOR   , VT, Promote);
429       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
430       setOperationAction(ISD::LOAD  , VT, Promote);
431       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
432       setOperationAction(ISD::SELECT, VT, Promote);
433       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
434       setOperationAction(ISD::SELECT_CC, VT, Promote);
435       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
436       setOperationAction(ISD::STORE, VT, Promote);
437       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
438 
439       // No other operations are legal.
440       setOperationAction(ISD::MUL , VT, Expand);
441       setOperationAction(ISD::SDIV, VT, Expand);
442       setOperationAction(ISD::SREM, VT, Expand);
443       setOperationAction(ISD::UDIV, VT, Expand);
444       setOperationAction(ISD::UREM, VT, Expand);
445       setOperationAction(ISD::FDIV, VT, Expand);
446       setOperationAction(ISD::FREM, VT, Expand);
447       setOperationAction(ISD::FNEG, VT, Expand);
448       setOperationAction(ISD::FSQRT, VT, Expand);
449       setOperationAction(ISD::FLOG, VT, Expand);
450       setOperationAction(ISD::FLOG10, VT, Expand);
451       setOperationAction(ISD::FLOG2, VT, Expand);
452       setOperationAction(ISD::FEXP, VT, Expand);
453       setOperationAction(ISD::FEXP2, VT, Expand);
454       setOperationAction(ISD::FSIN, VT, Expand);
455       setOperationAction(ISD::FCOS, VT, Expand);
456       setOperationAction(ISD::FABS, VT, Expand);
457       setOperationAction(ISD::FPOWI, VT, Expand);
458       setOperationAction(ISD::FFLOOR, VT, Expand);
459       setOperationAction(ISD::FCEIL,  VT, Expand);
460       setOperationAction(ISD::FTRUNC, VT, Expand);
461       setOperationAction(ISD::FRINT,  VT, Expand);
462       setOperationAction(ISD::FNEARBYINT, VT, Expand);
463       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
464       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
465       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
466       setOperationAction(ISD::MULHU, VT, Expand);
467       setOperationAction(ISD::MULHS, VT, Expand);
468       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
469       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
470       setOperationAction(ISD::UDIVREM, VT, Expand);
471       setOperationAction(ISD::SDIVREM, VT, Expand);
472       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
473       setOperationAction(ISD::FPOW, VT, Expand);
474       setOperationAction(ISD::BSWAP, VT, Expand);
475       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
476       setOperationAction(ISD::CTTZ, VT, Expand);
477       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
478       setOperationAction(ISD::VSELECT, VT, Expand);
479       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
480 
481       for (MVT InnerVT : MVT::vector_valuetypes()) {
482         setTruncStoreAction(VT, InnerVT, Expand);
483         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
484         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
485         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
486       }
487     }
488 
489     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
490     // with merges, splats, etc.
491     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
492 
493     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
494     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
495     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
496     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
497     setOperationAction(ISD::SELECT, MVT::v4i32,
498                        Subtarget.useCRBits() ? Legal : Expand);
499     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
500     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
501     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
502     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
503     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
504     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
505     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
506     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
507     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
508 
509     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
510     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
511     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
512     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
513 
514     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
515     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
516 
517     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
518       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
519       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
520     }
521 
522     if (Subtarget.hasP8Altivec())
523       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
524     else
525       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
526 
527     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
528     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
529 
530     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
531     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
532 
533     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
534     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
535     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
536     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
537 
538     // Altivec does not contain unordered floating-point compare instructions
539     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
540     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
541     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
542     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
543 
544     if (Subtarget.hasVSX()) {
545       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
546       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
547       if (Subtarget.hasP8Vector()) {
548         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
549         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
550       }
551       if (Subtarget.hasDirectMove()) {
552         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
553         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
554         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
555         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
556         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
557         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
559         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
560       }
561       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
562 
563       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
564       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
565       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
566       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
567       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
568 
569       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
570 
571       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
572       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
573 
574       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
575       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
576 
577       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
578       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
579       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
580       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
581       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
582 
583       // Share the Altivec comparison restrictions.
584       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
585       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
586       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
587       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
588 
589       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
590       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
591 
592       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
593 
594       if (Subtarget.hasP8Vector())
595         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
596 
597       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
598 
599       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
600       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
601       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
602 
603       if (Subtarget.hasP8Altivec()) {
604         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
605         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
606         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
607 
608         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
609       }
610       else {
611         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
612         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
613         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
614 
615         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
616 
617         // VSX v2i64 only supports non-arithmetic operations.
618         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
619         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
620       }
621 
622       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
623       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
624       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
625       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
626 
627       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
628 
629       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
630       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
631       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
632       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
633 
634       // Vector operation legalization checks the result type of
635       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
636       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
637       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
638       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
639       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
640 
641       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
642     }
643 
644     if (Subtarget.hasP8Altivec()) {
645       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
646       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
647     }
648   }
649 
650   if (Subtarget.hasQPX()) {
651     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
652     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
653     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
654     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
655 
656     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
657     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
658 
659     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
660     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
661 
662     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
663     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
664 
665     if (!Subtarget.useCRBits())
666       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
667     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
668 
669     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
670     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
671     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
672     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
673     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
674     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
675     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
676 
677     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
678     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
679 
680     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
681     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
682     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
683 
684     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
685     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
686     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
687     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
688     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
689     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
690     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
691     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
692     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
693     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
694     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
695 
696     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
697     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
698 
699     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
700     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
701 
702     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
703 
704     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
705     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
706     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
707     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
708 
709     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
710     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
711 
712     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
713     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
714 
715     if (!Subtarget.useCRBits())
716       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
717     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
718 
719     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
720     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
721     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
722     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
723     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
724     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
725     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
726 
727     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
728     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
729 
730     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
731     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
732     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
733     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
734     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
735     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
736     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
737     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
738     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
739     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
740     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
741 
742     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
743     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
744 
745     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
746     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
747 
748     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
749 
750     setOperationAction(ISD::AND , MVT::v4i1, Legal);
751     setOperationAction(ISD::OR , MVT::v4i1, Legal);
752     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
753 
754     if (!Subtarget.useCRBits())
755       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
756     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
757 
758     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
759     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
760 
761     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
762     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
763     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
764     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
765     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
766     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
767     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
768 
769     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
770     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
771 
772     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
773 
774     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
775     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
776     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
777     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
778 
779     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
780     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
781     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
782     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
783 
784     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
785     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
786 
787     // These need to set FE_INEXACT, and so cannot be vectorized here.
788     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
789     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
790 
791     if (TM.Options.UnsafeFPMath) {
792       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
793       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
794 
795       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
796       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
797     } else {
798       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
799       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
800 
801       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
802       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
803     }
804   }
805 
806   if (Subtarget.has64BitSupport())
807     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
808 
809   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
810 
811   if (!isPPC64) {
812     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
813     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
814   }
815 
816   setBooleanContents(ZeroOrOneBooleanContent);
817 
818   if (Subtarget.hasAltivec()) {
819     // Altivec instructions set fields to all zeros or all ones.
820     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
821   }
822 
823   if (!isPPC64) {
824     // These libcalls are not available in 32-bit.
825     setLibcallName(RTLIB::SHL_I128, nullptr);
826     setLibcallName(RTLIB::SRL_I128, nullptr);
827     setLibcallName(RTLIB::SRA_I128, nullptr);
828   }
829 
830   if (isPPC64) {
831     setStackPointerRegisterToSaveRestore(PPC::X1);
832     setExceptionPointerRegister(PPC::X3);
833     setExceptionSelectorRegister(PPC::X4);
834   } else {
835     setStackPointerRegisterToSaveRestore(PPC::R1);
836     setExceptionPointerRegister(PPC::R3);
837     setExceptionSelectorRegister(PPC::R4);
838   }
839 
840   // We have target-specific dag combine patterns for the following nodes:
841   setTargetDAGCombine(ISD::SINT_TO_FP);
842   if (Subtarget.hasFPCVT())
843     setTargetDAGCombine(ISD::UINT_TO_FP);
844   setTargetDAGCombine(ISD::LOAD);
845   setTargetDAGCombine(ISD::STORE);
846   setTargetDAGCombine(ISD::BR_CC);
847   if (Subtarget.useCRBits())
848     setTargetDAGCombine(ISD::BRCOND);
849   setTargetDAGCombine(ISD::BSWAP);
850   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
851   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
852   setTargetDAGCombine(ISD::INTRINSIC_VOID);
853 
854   setTargetDAGCombine(ISD::SIGN_EXTEND);
855   setTargetDAGCombine(ISD::ZERO_EXTEND);
856   setTargetDAGCombine(ISD::ANY_EXTEND);
857 
858   if (Subtarget.useCRBits()) {
859     setTargetDAGCombine(ISD::TRUNCATE);
860     setTargetDAGCombine(ISD::SETCC);
861     setTargetDAGCombine(ISD::SELECT_CC);
862   }
863 
864   // Use reciprocal estimates.
865   if (TM.Options.UnsafeFPMath) {
866     setTargetDAGCombine(ISD::FDIV);
867     setTargetDAGCombine(ISD::FSQRT);
868   }
869 
870   // Darwin long double math library functions have $LDBL128 appended.
871   if (Subtarget.isDarwin()) {
872     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
873     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
874     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
875     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
876     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
877     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
878     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
879     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
880     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
881     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
882   }
883 
884   // With 32 condition bits, we don't need to sink (and duplicate) compares
885   // aggressively in CodeGenPrep.
886   if (Subtarget.useCRBits()) {
887     setHasMultipleConditionRegisters();
888     setJumpIsExpensive();
889   }
890 
891   setMinFunctionAlignment(2);
892   if (Subtarget.isDarwin())
893     setPrefFunctionAlignment(4);
894 
895   switch (Subtarget.getDarwinDirective()) {
896   default: break;
897   case PPC::DIR_970:
898   case PPC::DIR_A2:
899   case PPC::DIR_E500mc:
900   case PPC::DIR_E5500:
901   case PPC::DIR_PWR4:
902   case PPC::DIR_PWR5:
903   case PPC::DIR_PWR5X:
904   case PPC::DIR_PWR6:
905   case PPC::DIR_PWR6X:
906   case PPC::DIR_PWR7:
907   case PPC::DIR_PWR8:
908     setPrefFunctionAlignment(4);
909     setPrefLoopAlignment(4);
910     break;
911   }
912 
913   setInsertFencesForAtomic(true);
914 
915   if (Subtarget.enableMachineScheduler())
916     setSchedulingPreference(Sched::Source);
917   else
918     setSchedulingPreference(Sched::Hybrid);
919 
920   computeRegisterProperties(STI.getRegisterInfo());
921 
922   // The Freescale cores do better with aggressive inlining of memcpy and
923   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
924   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
925       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
926     MaxStoresPerMemset = 32;
927     MaxStoresPerMemsetOptSize = 16;
928     MaxStoresPerMemcpy = 32;
929     MaxStoresPerMemcpyOptSize = 8;
930     MaxStoresPerMemmove = 32;
931     MaxStoresPerMemmoveOptSize = 8;
932   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
933     // The A2 also benefits from (very) aggressive inlining of memcpy and
934     // friends. The overhead of a the function call, even when warm, can be
935     // over one hundred cycles.
936     MaxStoresPerMemset = 128;
937     MaxStoresPerMemcpy = 128;
938     MaxStoresPerMemmove = 128;
939   }
940 }
941 
942 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
943 /// the desired ByVal argument alignment.
944 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
945                              unsigned MaxMaxAlign) {
946   if (MaxAlign == MaxMaxAlign)
947     return;
948   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
949     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
950       MaxAlign = 32;
951     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
952       MaxAlign = 16;
953   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
954     unsigned EltAlign = 0;
955     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
956     if (EltAlign > MaxAlign)
957       MaxAlign = EltAlign;
958   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
959     for (auto *EltTy : STy->elements()) {
960       unsigned EltAlign = 0;
961       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
962       if (EltAlign > MaxAlign)
963         MaxAlign = EltAlign;
964       if (MaxAlign == MaxMaxAlign)
965         break;
966     }
967   }
968 }
969 
970 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
971 /// function arguments in the caller parameter area.
972 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
973                                                   const DataLayout &DL) const {
974   // Darwin passes everything on 4 byte boundary.
975   if (Subtarget.isDarwin())
976     return 4;
977 
978   // 16byte and wider vectors are passed on 16byte boundary.
979   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
980   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
981   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
982     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
983   return Align;
984 }
985 
986 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
987   switch ((PPCISD::NodeType)Opcode) {
988   case PPCISD::FIRST_NUMBER:    break;
989   case PPCISD::FSEL:            return "PPCISD::FSEL";
990   case PPCISD::FCFID:           return "PPCISD::FCFID";
991   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
992   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
993   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
994   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
995   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
996   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
997   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
998   case PPCISD::FRE:             return "PPCISD::FRE";
999   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1000   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1001   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1002   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1003   case PPCISD::VPERM:           return "PPCISD::VPERM";
1004   case PPCISD::CMPB:            return "PPCISD::CMPB";
1005   case PPCISD::Hi:              return "PPCISD::Hi";
1006   case PPCISD::Lo:              return "PPCISD::Lo";
1007   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1008   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1009   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1010   case PPCISD::SRL:             return "PPCISD::SRL";
1011   case PPCISD::SRA:             return "PPCISD::SRA";
1012   case PPCISD::SHL:             return "PPCISD::SHL";
1013   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1014   case PPCISD::CALL:            return "PPCISD::CALL";
1015   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1016   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1017   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1018   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1019   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1020   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1021   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1022   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1023   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1024   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1025   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1026   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1027   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1028   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1029   case PPCISD::VCMP:            return "PPCISD::VCMP";
1030   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1031   case PPCISD::LBRX:            return "PPCISD::LBRX";
1032   case PPCISD::STBRX:           return "PPCISD::STBRX";
1033   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1034   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1035   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1036   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1037   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1038   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1039   case PPCISD::BDZ:             return "PPCISD::BDZ";
1040   case PPCISD::MFFS:            return "PPCISD::MFFS";
1041   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1042   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1043   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1044   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1045   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1046   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1047   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1048   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1049   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1050   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1051   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1052   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1053   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1054   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1055   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1056   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1057   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1058   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1059   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1060   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1061   case PPCISD::SC:              return "PPCISD::SC";
1062   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1063   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1064   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1065   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1066   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1067   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1068   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1069   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1070   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1071   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1072   }
1073   return nullptr;
1074 }
1075 
1076 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1077                                           EVT VT) const {
1078   if (!VT.isVector())
1079     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1080 
1081   if (Subtarget.hasQPX())
1082     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1083 
1084   return VT.changeVectorElementTypeToInteger();
1085 }
1086 
1087 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1088   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1089   return true;
1090 }
1091 
1092 //===----------------------------------------------------------------------===//
1093 // Node matching predicates, for use by the tblgen matching code.
1094 //===----------------------------------------------------------------------===//
1095 
1096 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1097 static bool isFloatingPointZero(SDValue Op) {
1098   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1099     return CFP->getValueAPF().isZero();
1100   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1101     // Maybe this has already been legalized into the constant pool?
1102     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1103       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1104         return CFP->getValueAPF().isZero();
1105   }
1106   return false;
1107 }
1108 
1109 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1110 /// true if Op is undef or if it matches the specified value.
1111 static bool isConstantOrUndef(int Op, int Val) {
1112   return Op < 0 || Op == Val;
1113 }
1114 
1115 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1116 /// VPKUHUM instruction.
1117 /// The ShuffleKind distinguishes between big-endian operations with
1118 /// two different inputs (0), either-endian operations with two identical
1119 /// inputs (1), and little-endian operations with two different inputs (2).
1120 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1121 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1122                                SelectionDAG &DAG) {
1123   bool IsLE = DAG.getDataLayout().isLittleEndian();
1124   if (ShuffleKind == 0) {
1125     if (IsLE)
1126       return false;
1127     for (unsigned i = 0; i != 16; ++i)
1128       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1129         return false;
1130   } else if (ShuffleKind == 2) {
1131     if (!IsLE)
1132       return false;
1133     for (unsigned i = 0; i != 16; ++i)
1134       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1135         return false;
1136   } else if (ShuffleKind == 1) {
1137     unsigned j = IsLE ? 0 : 1;
1138     for (unsigned i = 0; i != 8; ++i)
1139       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1140           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1141         return false;
1142   }
1143   return true;
1144 }
1145 
1146 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1147 /// VPKUWUM instruction.
1148 /// The ShuffleKind distinguishes between big-endian operations with
1149 /// two different inputs (0), either-endian operations with two identical
1150 /// inputs (1), and little-endian operations with two different inputs (2).
1151 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1152 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1153                                SelectionDAG &DAG) {
1154   bool IsLE = DAG.getDataLayout().isLittleEndian();
1155   if (ShuffleKind == 0) {
1156     if (IsLE)
1157       return false;
1158     for (unsigned i = 0; i != 16; i += 2)
1159       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1160           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1161         return false;
1162   } else if (ShuffleKind == 2) {
1163     if (!IsLE)
1164       return false;
1165     for (unsigned i = 0; i != 16; i += 2)
1166       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1167           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1168         return false;
1169   } else if (ShuffleKind == 1) {
1170     unsigned j = IsLE ? 0 : 2;
1171     for (unsigned i = 0; i != 8; i += 2)
1172       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1173           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1174           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1175           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1176         return false;
1177   }
1178   return true;
1179 }
1180 
1181 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1182 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1183 /// current subtarget.
1184 ///
1185 /// The ShuffleKind distinguishes between big-endian operations with
1186 /// two different inputs (0), either-endian operations with two identical
1187 /// inputs (1), and little-endian operations with two different inputs (2).
1188 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1189 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1190                                SelectionDAG &DAG) {
1191   const PPCSubtarget& Subtarget =
1192     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1193   if (!Subtarget.hasP8Vector())
1194     return false;
1195 
1196   bool IsLE = DAG.getDataLayout().isLittleEndian();
1197   if (ShuffleKind == 0) {
1198     if (IsLE)
1199       return false;
1200     for (unsigned i = 0; i != 16; i += 4)
1201       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1202           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1203           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1204           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1205         return false;
1206   } else if (ShuffleKind == 2) {
1207     if (!IsLE)
1208       return false;
1209     for (unsigned i = 0; i != 16; i += 4)
1210       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1211           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1212           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1213           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1214         return false;
1215   } else if (ShuffleKind == 1) {
1216     unsigned j = IsLE ? 0 : 4;
1217     for (unsigned i = 0; i != 8; i += 4)
1218       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1219           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1220           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1221           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1222           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1223           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1224           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1225           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1226         return false;
1227   }
1228   return true;
1229 }
1230 
1231 /// isVMerge - Common function, used to match vmrg* shuffles.
1232 ///
1233 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1234                      unsigned LHSStart, unsigned RHSStart) {
1235   if (N->getValueType(0) != MVT::v16i8)
1236     return false;
1237   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1238          "Unsupported merge size!");
1239 
1240   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1241     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1242       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1243                              LHSStart+j+i*UnitSize) ||
1244           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1245                              RHSStart+j+i*UnitSize))
1246         return false;
1247     }
1248   return true;
1249 }
1250 
1251 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1252 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1253 /// The ShuffleKind distinguishes between big-endian merges with two
1254 /// different inputs (0), either-endian merges with two identical inputs (1),
1255 /// and little-endian merges with two different inputs (2).  For the latter,
1256 /// the input operands are swapped (see PPCInstrAltivec.td).
1257 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1258                              unsigned ShuffleKind, SelectionDAG &DAG) {
1259   if (DAG.getDataLayout().isLittleEndian()) {
1260     if (ShuffleKind == 1) // unary
1261       return isVMerge(N, UnitSize, 0, 0);
1262     else if (ShuffleKind == 2) // swapped
1263       return isVMerge(N, UnitSize, 0, 16);
1264     else
1265       return false;
1266   } else {
1267     if (ShuffleKind == 1) // unary
1268       return isVMerge(N, UnitSize, 8, 8);
1269     else if (ShuffleKind == 0) // normal
1270       return isVMerge(N, UnitSize, 8, 24);
1271     else
1272       return false;
1273   }
1274 }
1275 
1276 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1277 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1278 /// The ShuffleKind distinguishes between big-endian merges with two
1279 /// different inputs (0), either-endian merges with two identical inputs (1),
1280 /// and little-endian merges with two different inputs (2).  For the latter,
1281 /// the input operands are swapped (see PPCInstrAltivec.td).
1282 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1283                              unsigned ShuffleKind, SelectionDAG &DAG) {
1284   if (DAG.getDataLayout().isLittleEndian()) {
1285     if (ShuffleKind == 1) // unary
1286       return isVMerge(N, UnitSize, 8, 8);
1287     else if (ShuffleKind == 2) // swapped
1288       return isVMerge(N, UnitSize, 8, 24);
1289     else
1290       return false;
1291   } else {
1292     if (ShuffleKind == 1) // unary
1293       return isVMerge(N, UnitSize, 0, 0);
1294     else if (ShuffleKind == 0) // normal
1295       return isVMerge(N, UnitSize, 0, 16);
1296     else
1297       return false;
1298   }
1299 }
1300 
1301 /**
1302  * \brief Common function used to match vmrgew and vmrgow shuffles
1303  *
1304  * The indexOffset determines whether to look for even or odd words in
1305  * the shuffle mask. This is based on the of the endianness of the target
1306  * machine.
1307  *   - Little Endian:
1308  *     - Use offset of 0 to check for odd elements
1309  *     - Use offset of 4 to check for even elements
1310  *   - Big Endian:
1311  *     - Use offset of 0 to check for even elements
1312  *     - Use offset of 4 to check for odd elements
1313  * A detailed description of the vector element ordering for little endian and
1314  * big endian can be found at
1315  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1316  * Targeting your applications - what little endian and big endian IBM XL C/C++
1317  * compiler differences mean to you
1318  *
1319  * The mask to the shuffle vector instruction specifies the indices of the
1320  * elements from the two input vectors to place in the result. The elements are
1321  * numbered in array-access order, starting with the first vector. These vectors
1322  * are always of type v16i8, thus each vector will contain 16 elements of size
1323  * 8. More info on the shuffle vector can be found in the
1324  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1325  * Language Reference.
1326  *
1327  * The RHSStartValue indicates whether the same input vectors are used (unary)
1328  * or two different input vectors are used, based on the following:
1329  *   - If the instruction uses the same vector for both inputs, the range of the
1330  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1331  *     be 0.
1332  *   - If the instruction has two different vectors then the range of the
1333  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1334  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1335  *     to 31 specify elements in the second vector).
1336  *
1337  * \param[in] N The shuffle vector SD Node to analyze
1338  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1339  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1340  * vector to the shuffle_vector instruction
1341  * \return true iff this shuffle vector represents an even or odd word merge
1342  */
1343 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1344                      unsigned RHSStartValue) {
1345   if (N->getValueType(0) != MVT::v16i8)
1346     return false;
1347 
1348   for (unsigned i = 0; i < 2; ++i)
1349     for (unsigned j = 0; j < 4; ++j)
1350       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1351                              i*RHSStartValue+j+IndexOffset) ||
1352           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1353                              i*RHSStartValue+j+IndexOffset+8))
1354         return false;
1355   return true;
1356 }
1357 
1358 /**
1359  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1360  * vmrgow instructions.
1361  *
1362  * \param[in] N The shuffle vector SD Node to analyze
1363  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1364  * \param[in] ShuffleKind Identify the type of merge:
1365  *   - 0 = big-endian merge with two different inputs;
1366  *   - 1 = either-endian merge with two identical inputs;
1367  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1368  *     little-endian merges).
1369  * \param[in] DAG The current SelectionDAG
1370  * \return true iff this shuffle mask
1371  */
1372 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1373                               unsigned ShuffleKind, SelectionDAG &DAG) {
1374   if (DAG.getDataLayout().isLittleEndian()) {
1375     unsigned indexOffset = CheckEven ? 4 : 0;
1376     if (ShuffleKind == 1) // Unary
1377       return isVMerge(N, indexOffset, 0);
1378     else if (ShuffleKind == 2) // swapped
1379       return isVMerge(N, indexOffset, 16);
1380     else
1381       return false;
1382   }
1383   else {
1384     unsigned indexOffset = CheckEven ? 0 : 4;
1385     if (ShuffleKind == 1) // Unary
1386       return isVMerge(N, indexOffset, 0);
1387     else if (ShuffleKind == 0) // Normal
1388       return isVMerge(N, indexOffset, 16);
1389     else
1390       return false;
1391   }
1392   return false;
1393 }
1394 
1395 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1396 /// amount, otherwise return -1.
1397 /// The ShuffleKind distinguishes between big-endian operations with two
1398 /// different inputs (0), either-endian operations with two identical inputs
1399 /// (1), and little-endian operations with two different inputs (2).  For the
1400 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1401 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1402                              SelectionDAG &DAG) {
1403   if (N->getValueType(0) != MVT::v16i8)
1404     return -1;
1405 
1406   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1407 
1408   // Find the first non-undef value in the shuffle mask.
1409   unsigned i;
1410   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1411     /*search*/;
1412 
1413   if (i == 16) return -1;  // all undef.
1414 
1415   // Otherwise, check to see if the rest of the elements are consecutively
1416   // numbered from this value.
1417   unsigned ShiftAmt = SVOp->getMaskElt(i);
1418   if (ShiftAmt < i) return -1;
1419 
1420   ShiftAmt -= i;
1421   bool isLE = DAG.getDataLayout().isLittleEndian();
1422 
1423   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1424     // Check the rest of the elements to see if they are consecutive.
1425     for (++i; i != 16; ++i)
1426       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1427         return -1;
1428   } else if (ShuffleKind == 1) {
1429     // Check the rest of the elements to see if they are consecutive.
1430     for (++i; i != 16; ++i)
1431       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1432         return -1;
1433   } else
1434     return -1;
1435 
1436   if (isLE)
1437     ShiftAmt = 16 - ShiftAmt;
1438 
1439   return ShiftAmt;
1440 }
1441 
1442 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1443 /// specifies a splat of a single element that is suitable for input to
1444 /// VSPLTB/VSPLTH/VSPLTW.
1445 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1446   assert(N->getValueType(0) == MVT::v16i8 &&
1447          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1448 
1449   // The consecutive indices need to specify an element, not part of two
1450   // different elements.  So abandon ship early if this isn't the case.
1451   if (N->getMaskElt(0) % EltSize != 0)
1452     return false;
1453 
1454   // This is a splat operation if each element of the permute is the same, and
1455   // if the value doesn't reference the second vector.
1456   unsigned ElementBase = N->getMaskElt(0);
1457 
1458   // FIXME: Handle UNDEF elements too!
1459   if (ElementBase >= 16)
1460     return false;
1461 
1462   // Check that the indices are consecutive, in the case of a multi-byte element
1463   // splatted with a v16i8 mask.
1464   for (unsigned i = 1; i != EltSize; ++i)
1465     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1466       return false;
1467 
1468   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1469     if (N->getMaskElt(i) < 0) continue;
1470     for (unsigned j = 0; j != EltSize; ++j)
1471       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1472         return false;
1473   }
1474   return true;
1475 }
1476 
1477 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1478 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1479 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1480                                 SelectionDAG &DAG) {
1481   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1482   assert(isSplatShuffleMask(SVOp, EltSize));
1483   if (DAG.getDataLayout().isLittleEndian())
1484     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1485   else
1486     return SVOp->getMaskElt(0) / EltSize;
1487 }
1488 
1489 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1490 /// by using a vspltis[bhw] instruction of the specified element size, return
1491 /// the constant being splatted.  The ByteSize field indicates the number of
1492 /// bytes of each element [124] -> [bhw].
1493 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1494   SDValue OpVal(nullptr, 0);
1495 
1496   // If ByteSize of the splat is bigger than the element size of the
1497   // build_vector, then we have a case where we are checking for a splat where
1498   // multiple elements of the buildvector are folded together into a single
1499   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1500   unsigned EltSize = 16/N->getNumOperands();
1501   if (EltSize < ByteSize) {
1502     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1503     SDValue UniquedVals[4];
1504     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1505 
1506     // See if all of the elements in the buildvector agree across.
1507     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1508       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1509       // If the element isn't a constant, bail fully out.
1510       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1511 
1512 
1513       if (!UniquedVals[i&(Multiple-1)].getNode())
1514         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1515       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1516         return SDValue();  // no match.
1517     }
1518 
1519     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1520     // either constant or undef values that are identical for each chunk.  See
1521     // if these chunks can form into a larger vspltis*.
1522 
1523     // Check to see if all of the leading entries are either 0 or -1.  If
1524     // neither, then this won't fit into the immediate field.
1525     bool LeadingZero = true;
1526     bool LeadingOnes = true;
1527     for (unsigned i = 0; i != Multiple-1; ++i) {
1528       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1529 
1530       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1531       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1532     }
1533     // Finally, check the least significant entry.
1534     if (LeadingZero) {
1535       if (!UniquedVals[Multiple-1].getNode())
1536         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1537       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1538       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1539         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1540     }
1541     if (LeadingOnes) {
1542       if (!UniquedVals[Multiple-1].getNode())
1543         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1544       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1545       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1546         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1547     }
1548 
1549     return SDValue();
1550   }
1551 
1552   // Check to see if this buildvec has a single non-undef value in its elements.
1553   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1554     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1555     if (!OpVal.getNode())
1556       OpVal = N->getOperand(i);
1557     else if (OpVal != N->getOperand(i))
1558       return SDValue();
1559   }
1560 
1561   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1562 
1563   unsigned ValSizeInBytes = EltSize;
1564   uint64_t Value = 0;
1565   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1566     Value = CN->getZExtValue();
1567   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1568     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1569     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1570   }
1571 
1572   // If the splat value is larger than the element value, then we can never do
1573   // this splat.  The only case that we could fit the replicated bits into our
1574   // immediate field for would be zero, and we prefer to use vxor for it.
1575   if (ValSizeInBytes < ByteSize) return SDValue();
1576 
1577   // If the element value is larger than the splat value, check if it consists
1578   // of a repeated bit pattern of size ByteSize.
1579   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1580     return SDValue();
1581 
1582   // Properly sign extend the value.
1583   int MaskVal = SignExtend32(Value, ByteSize * 8);
1584 
1585   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1586   if (MaskVal == 0) return SDValue();
1587 
1588   // Finally, if this value fits in a 5 bit sext field, return it
1589   if (SignExtend32<5>(MaskVal) == MaskVal)
1590     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1591   return SDValue();
1592 }
1593 
1594 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1595 /// amount, otherwise return -1.
1596 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1597   EVT VT = N->getValueType(0);
1598   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1599     return -1;
1600 
1601   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1602 
1603   // Find the first non-undef value in the shuffle mask.
1604   unsigned i;
1605   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1606     /*search*/;
1607 
1608   if (i == 4) return -1;  // all undef.
1609 
1610   // Otherwise, check to see if the rest of the elements are consecutively
1611   // numbered from this value.
1612   unsigned ShiftAmt = SVOp->getMaskElt(i);
1613   if (ShiftAmt < i) return -1;
1614   ShiftAmt -= i;
1615 
1616   // Check the rest of the elements to see if they are consecutive.
1617   for (++i; i != 4; ++i)
1618     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1619       return -1;
1620 
1621   return ShiftAmt;
1622 }
1623 
1624 //===----------------------------------------------------------------------===//
1625 //  Addressing Mode Selection
1626 //===----------------------------------------------------------------------===//
1627 
1628 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1629 /// or 64-bit immediate, and if the value can be accurately represented as a
1630 /// sign extension from a 16-bit value.  If so, this returns true and the
1631 /// immediate.
1632 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1633   if (!isa<ConstantSDNode>(N))
1634     return false;
1635 
1636   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1637   if (N->getValueType(0) == MVT::i32)
1638     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1639   else
1640     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1641 }
1642 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1643   return isIntS16Immediate(Op.getNode(), Imm);
1644 }
1645 
1646 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1647 /// can be represented as an indexed [r+r] operation.  Returns false if it
1648 /// can be more efficiently represented with [r+imm].
1649 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1650                                             SDValue &Index,
1651                                             SelectionDAG &DAG) const {
1652   short imm = 0;
1653   if (N.getOpcode() == ISD::ADD) {
1654     if (isIntS16Immediate(N.getOperand(1), imm))
1655       return false;    // r+i
1656     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1657       return false;    // r+i
1658 
1659     Base = N.getOperand(0);
1660     Index = N.getOperand(1);
1661     return true;
1662   } else if (N.getOpcode() == ISD::OR) {
1663     if (isIntS16Immediate(N.getOperand(1), imm))
1664       return false;    // r+i can fold it if we can.
1665 
1666     // If this is an or of disjoint bitfields, we can codegen this as an add
1667     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1668     // disjoint.
1669     APInt LHSKnownZero, LHSKnownOne;
1670     APInt RHSKnownZero, RHSKnownOne;
1671     DAG.computeKnownBits(N.getOperand(0),
1672                          LHSKnownZero, LHSKnownOne);
1673 
1674     if (LHSKnownZero.getBoolValue()) {
1675       DAG.computeKnownBits(N.getOperand(1),
1676                            RHSKnownZero, RHSKnownOne);
1677       // If all of the bits are known zero on the LHS or RHS, the add won't
1678       // carry.
1679       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1680         Base = N.getOperand(0);
1681         Index = N.getOperand(1);
1682         return true;
1683       }
1684     }
1685   }
1686 
1687   return false;
1688 }
1689 
1690 // If we happen to be doing an i64 load or store into a stack slot that has
1691 // less than a 4-byte alignment, then the frame-index elimination may need to
1692 // use an indexed load or store instruction (because the offset may not be a
1693 // multiple of 4). The extra register needed to hold the offset comes from the
1694 // register scavenger, and it is possible that the scavenger will need to use
1695 // an emergency spill slot. As a result, we need to make sure that a spill slot
1696 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1697 // stack slot.
1698 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1699   // FIXME: This does not handle the LWA case.
1700   if (VT != MVT::i64)
1701     return;
1702 
1703   // NOTE: We'll exclude negative FIs here, which come from argument
1704   // lowering, because there are no known test cases triggering this problem
1705   // using packed structures (or similar). We can remove this exclusion if
1706   // we find such a test case. The reason why this is so test-case driven is
1707   // because this entire 'fixup' is only to prevent crashes (from the
1708   // register scavenger) on not-really-valid inputs. For example, if we have:
1709   //   %a = alloca i1
1710   //   %b = bitcast i1* %a to i64*
1711   //   store i64* a, i64 b
1712   // then the store should really be marked as 'align 1', but is not. If it
1713   // were marked as 'align 1' then the indexed form would have been
1714   // instruction-selected initially, and the problem this 'fixup' is preventing
1715   // won't happen regardless.
1716   if (FrameIdx < 0)
1717     return;
1718 
1719   MachineFunction &MF = DAG.getMachineFunction();
1720   MachineFrameInfo *MFI = MF.getFrameInfo();
1721 
1722   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1723   if (Align >= 4)
1724     return;
1725 
1726   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1727   FuncInfo->setHasNonRISpills();
1728 }
1729 
1730 /// Returns true if the address N can be represented by a base register plus
1731 /// a signed 16-bit displacement [r+imm], and if it is not better
1732 /// represented as reg+reg.  If Aligned is true, only accept displacements
1733 /// suitable for STD and friends, i.e. multiples of 4.
1734 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1735                                             SDValue &Base,
1736                                             SelectionDAG &DAG,
1737                                             bool Aligned) const {
1738   // FIXME dl should come from parent load or store, not from address
1739   SDLoc dl(N);
1740   // If this can be more profitably realized as r+r, fail.
1741   if (SelectAddressRegReg(N, Disp, Base, DAG))
1742     return false;
1743 
1744   if (N.getOpcode() == ISD::ADD) {
1745     short imm = 0;
1746     if (isIntS16Immediate(N.getOperand(1), imm) &&
1747         (!Aligned || (imm & 3) == 0)) {
1748       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1749       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1750         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1751         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1752       } else {
1753         Base = N.getOperand(0);
1754       }
1755       return true; // [r+i]
1756     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1757       // Match LOAD (ADD (X, Lo(G))).
1758       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1759              && "Cannot handle constant offsets yet!");
1760       Disp = N.getOperand(1).getOperand(0);  // The global address.
1761       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1762              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1763              Disp.getOpcode() == ISD::TargetConstantPool ||
1764              Disp.getOpcode() == ISD::TargetJumpTable);
1765       Base = N.getOperand(0);
1766       return true;  // [&g+r]
1767     }
1768   } else if (N.getOpcode() == ISD::OR) {
1769     short imm = 0;
1770     if (isIntS16Immediate(N.getOperand(1), imm) &&
1771         (!Aligned || (imm & 3) == 0)) {
1772       // If this is an or of disjoint bitfields, we can codegen this as an add
1773       // (for better address arithmetic) if the LHS and RHS of the OR are
1774       // provably disjoint.
1775       APInt LHSKnownZero, LHSKnownOne;
1776       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1777 
1778       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1779         // If all of the bits are known zero on the LHS or RHS, the add won't
1780         // carry.
1781         if (FrameIndexSDNode *FI =
1782               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1783           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1784           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1785         } else {
1786           Base = N.getOperand(0);
1787         }
1788         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1789         return true;
1790       }
1791     }
1792   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1793     // Loading from a constant address.
1794 
1795     // If this address fits entirely in a 16-bit sext immediate field, codegen
1796     // this as "d, 0"
1797     short Imm;
1798     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1799       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1800       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1801                              CN->getValueType(0));
1802       return true;
1803     }
1804 
1805     // Handle 32-bit sext immediates with LIS + addr mode.
1806     if ((CN->getValueType(0) == MVT::i32 ||
1807          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1808         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1809       int Addr = (int)CN->getZExtValue();
1810 
1811       // Otherwise, break this down into an LIS + disp.
1812       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1813 
1814       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1815                                    MVT::i32);
1816       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1817       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1818       return true;
1819     }
1820   }
1821 
1822   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1823   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1824     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1825     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1826   } else
1827     Base = N;
1828   return true;      // [r+0]
1829 }
1830 
1831 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1832 /// represented as an indexed [r+r] operation.
1833 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1834                                                 SDValue &Index,
1835                                                 SelectionDAG &DAG) const {
1836   // Check to see if we can easily represent this as an [r+r] address.  This
1837   // will fail if it thinks that the address is more profitably represented as
1838   // reg+imm, e.g. where imm = 0.
1839   if (SelectAddressRegReg(N, Base, Index, DAG))
1840     return true;
1841 
1842   // If the operand is an addition, always emit this as [r+r], since this is
1843   // better (for code size, and execution, as the memop does the add for free)
1844   // than emitting an explicit add.
1845   if (N.getOpcode() == ISD::ADD) {
1846     Base = N.getOperand(0);
1847     Index = N.getOperand(1);
1848     return true;
1849   }
1850 
1851   // Otherwise, do it the hard way, using R0 as the base register.
1852   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1853                          N.getValueType());
1854   Index = N;
1855   return true;
1856 }
1857 
1858 /// getPreIndexedAddressParts - returns true by value, base pointer and
1859 /// offset pointer and addressing mode by reference if the node's address
1860 /// can be legally represented as pre-indexed load / store address.
1861 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1862                                                   SDValue &Offset,
1863                                                   ISD::MemIndexedMode &AM,
1864                                                   SelectionDAG &DAG) const {
1865   if (DisablePPCPreinc) return false;
1866 
1867   bool isLoad = true;
1868   SDValue Ptr;
1869   EVT VT;
1870   unsigned Alignment;
1871   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1872     Ptr = LD->getBasePtr();
1873     VT = LD->getMemoryVT();
1874     Alignment = LD->getAlignment();
1875   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1876     Ptr = ST->getBasePtr();
1877     VT  = ST->getMemoryVT();
1878     Alignment = ST->getAlignment();
1879     isLoad = false;
1880   } else
1881     return false;
1882 
1883   // PowerPC doesn't have preinc load/store instructions for vectors (except
1884   // for QPX, which does have preinc r+r forms).
1885   if (VT.isVector()) {
1886     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1887       return false;
1888     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1889       AM = ISD::PRE_INC;
1890       return true;
1891     }
1892   }
1893 
1894   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1895 
1896     // Common code will reject creating a pre-inc form if the base pointer
1897     // is a frame index, or if N is a store and the base pointer is either
1898     // the same as or a predecessor of the value being stored.  Check for
1899     // those situations here, and try with swapped Base/Offset instead.
1900     bool Swap = false;
1901 
1902     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1903       Swap = true;
1904     else if (!isLoad) {
1905       SDValue Val = cast<StoreSDNode>(N)->getValue();
1906       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1907         Swap = true;
1908     }
1909 
1910     if (Swap)
1911       std::swap(Base, Offset);
1912 
1913     AM = ISD::PRE_INC;
1914     return true;
1915   }
1916 
1917   // LDU/STU can only handle immediates that are a multiple of 4.
1918   if (VT != MVT::i64) {
1919     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1920       return false;
1921   } else {
1922     // LDU/STU need an address with at least 4-byte alignment.
1923     if (Alignment < 4)
1924       return false;
1925 
1926     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1927       return false;
1928   }
1929 
1930   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1931     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1932     // sext i32 to i64 when addr mode is r+i.
1933     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1934         LD->getExtensionType() == ISD::SEXTLOAD &&
1935         isa<ConstantSDNode>(Offset))
1936       return false;
1937   }
1938 
1939   AM = ISD::PRE_INC;
1940   return true;
1941 }
1942 
1943 //===----------------------------------------------------------------------===//
1944 //  LowerOperation implementation
1945 //===----------------------------------------------------------------------===//
1946 
1947 /// GetLabelAccessInfo - Return true if we should reference labels using a
1948 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1949 static bool GetLabelAccessInfo(const TargetMachine &TM,
1950                                const PPCSubtarget &Subtarget,
1951                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1952                                const GlobalValue *GV = nullptr) {
1953   HiOpFlags = PPCII::MO_HA;
1954   LoOpFlags = PPCII::MO_LO;
1955 
1956   // Don't use the pic base if not in PIC relocation model.
1957   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1958 
1959   if (isPIC) {
1960     HiOpFlags |= PPCII::MO_PIC_FLAG;
1961     LoOpFlags |= PPCII::MO_PIC_FLAG;
1962   }
1963 
1964   // If this is a reference to a global value that requires a non-lazy-ptr, make
1965   // sure that instruction lowering adds it.
1966   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1967     HiOpFlags |= PPCII::MO_NLP_FLAG;
1968     LoOpFlags |= PPCII::MO_NLP_FLAG;
1969 
1970     if (GV->hasHiddenVisibility()) {
1971       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1972       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1973     }
1974   }
1975 
1976   return isPIC;
1977 }
1978 
1979 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1980                              SelectionDAG &DAG) {
1981   SDLoc DL(HiPart);
1982   EVT PtrVT = HiPart.getValueType();
1983   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1984 
1985   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1986   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1987 
1988   // With PIC, the first instruction is actually "GR+hi(&G)".
1989   if (isPIC)
1990     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1991                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1992 
1993   // Generate non-pic code that has direct accesses to the constant pool.
1994   // The address of the global is just (hi(&g)+lo(&g)).
1995   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1996 }
1997 
1998 static void setUsesTOCBasePtr(MachineFunction &MF) {
1999   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2000   FuncInfo->setUsesTOCBasePtr();
2001 }
2002 
2003 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2004   setUsesTOCBasePtr(DAG.getMachineFunction());
2005 }
2006 
2007 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
2008                            SDValue GA) {
2009   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2010   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2011                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2012 
2013   SDValue Ops[] = { GA, Reg };
2014   return DAG.getMemIntrinsicNode(
2015       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2016       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2017       false, 0);
2018 }
2019 
2020 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2021                                              SelectionDAG &DAG) const {
2022   EVT PtrVT = Op.getValueType();
2023   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2024   const Constant *C = CP->getConstVal();
2025 
2026   // 64-bit SVR4 ABI code is always position-independent.
2027   // The actual address of the GlobalValue is stored in the TOC.
2028   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2029     setUsesTOCBasePtr(DAG);
2030     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2031     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2032   }
2033 
2034   unsigned MOHiFlag, MOLoFlag;
2035   bool isPIC =
2036       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2037 
2038   if (isPIC && Subtarget.isSVR4ABI()) {
2039     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2040                                            PPCII::MO_PIC_FLAG);
2041     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2042   }
2043 
2044   SDValue CPIHi =
2045     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2046   SDValue CPILo =
2047     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2048   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
2049 }
2050 
2051 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2052   EVT PtrVT = Op.getValueType();
2053   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2054 
2055   // 64-bit SVR4 ABI code is always position-independent.
2056   // The actual address of the GlobalValue is stored in the TOC.
2057   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2058     setUsesTOCBasePtr(DAG);
2059     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2060     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2061   }
2062 
2063   unsigned MOHiFlag, MOLoFlag;
2064   bool isPIC =
2065       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2066 
2067   if (isPIC && Subtarget.isSVR4ABI()) {
2068     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2069                                         PPCII::MO_PIC_FLAG);
2070     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2071   }
2072 
2073   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2074   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2075   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
2076 }
2077 
2078 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2079                                              SelectionDAG &DAG) const {
2080   EVT PtrVT = Op.getValueType();
2081   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2082   const BlockAddress *BA = BASDN->getBlockAddress();
2083 
2084   // 64-bit SVR4 ABI code is always position-independent.
2085   // The actual BlockAddress is stored in the TOC.
2086   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2087     setUsesTOCBasePtr(DAG);
2088     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2089     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2090   }
2091 
2092   unsigned MOHiFlag, MOLoFlag;
2093   bool isPIC =
2094       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2095   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2096   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2097   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
2098 }
2099 
2100 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2101                                               SelectionDAG &DAG) const {
2102 
2103   // FIXME: TLS addresses currently use medium model code sequences,
2104   // which is the most useful form.  Eventually support for small and
2105   // large models could be added if users need it, at the cost of
2106   // additional complexity.
2107   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2108   if (DAG.getTarget().Options.EmulatedTLS)
2109     return LowerToTLSEmulatedModel(GA, DAG);
2110 
2111   SDLoc dl(GA);
2112   const GlobalValue *GV = GA->getGlobal();
2113   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2114   bool is64bit = Subtarget.isPPC64();
2115   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2116   PICLevel::Level picLevel = M->getPICLevel();
2117 
2118   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2119 
2120   if (Model == TLSModel::LocalExec) {
2121     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2122                                                PPCII::MO_TPREL_HA);
2123     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2124                                                PPCII::MO_TPREL_LO);
2125     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2126                                      is64bit ? MVT::i64 : MVT::i32);
2127     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2128     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2129   }
2130 
2131   if (Model == TLSModel::InitialExec) {
2132     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2133     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2134                                                 PPCII::MO_TLS);
2135     SDValue GOTPtr;
2136     if (is64bit) {
2137       setUsesTOCBasePtr(DAG);
2138       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2139       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2140                            PtrVT, GOTReg, TGA);
2141     } else
2142       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2143     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2144                                    PtrVT, TGA, GOTPtr);
2145     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2146   }
2147 
2148   if (Model == TLSModel::GeneralDynamic) {
2149     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2150     SDValue GOTPtr;
2151     if (is64bit) {
2152       setUsesTOCBasePtr(DAG);
2153       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2154       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2155                                    GOTReg, TGA);
2156     } else {
2157       if (picLevel == PICLevel::Small)
2158         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2159       else
2160         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2161     }
2162     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2163                        GOTPtr, TGA, TGA);
2164   }
2165 
2166   if (Model == TLSModel::LocalDynamic) {
2167     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2168     SDValue GOTPtr;
2169     if (is64bit) {
2170       setUsesTOCBasePtr(DAG);
2171       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2172       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2173                            GOTReg, TGA);
2174     } else {
2175       if (picLevel == PICLevel::Small)
2176         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2177       else
2178         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2179     }
2180     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2181                                   PtrVT, GOTPtr, TGA, TGA);
2182     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2183                                       PtrVT, TLSAddr, TGA);
2184     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2185   }
2186 
2187   llvm_unreachable("Unknown TLS model!");
2188 }
2189 
2190 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2191                                               SelectionDAG &DAG) const {
2192   EVT PtrVT = Op.getValueType();
2193   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2194   SDLoc DL(GSDN);
2195   const GlobalValue *GV = GSDN->getGlobal();
2196 
2197   // 64-bit SVR4 ABI code is always position-independent.
2198   // The actual address of the GlobalValue is stored in the TOC.
2199   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2200     setUsesTOCBasePtr(DAG);
2201     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2202     return getTOCEntry(DAG, DL, true, GA);
2203   }
2204 
2205   unsigned MOHiFlag, MOLoFlag;
2206   bool isPIC =
2207       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2208 
2209   if (isPIC && Subtarget.isSVR4ABI()) {
2210     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2211                                             GSDN->getOffset(),
2212                                             PPCII::MO_PIC_FLAG);
2213     return getTOCEntry(DAG, DL, false, GA);
2214   }
2215 
2216   SDValue GAHi =
2217     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2218   SDValue GALo =
2219     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2220 
2221   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2222 
2223   // If the global reference is actually to a non-lazy-pointer, we have to do an
2224   // extra load to get the address of the global.
2225   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2226     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2227                       false, false, false, 0);
2228   return Ptr;
2229 }
2230 
2231 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2232   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2233   SDLoc dl(Op);
2234 
2235   if (Op.getValueType() == MVT::v2i64) {
2236     // When the operands themselves are v2i64 values, we need to do something
2237     // special because VSX has no underlying comparison operations for these.
2238     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2239       // Equality can be handled by casting to the legal type for Altivec
2240       // comparisons, everything else needs to be expanded.
2241       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2242         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2243                  DAG.getSetCC(dl, MVT::v4i32,
2244                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2245                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2246                    CC));
2247       }
2248 
2249       return SDValue();
2250     }
2251 
2252     // We handle most of these in the usual way.
2253     return Op;
2254   }
2255 
2256   // If we're comparing for equality to zero, expose the fact that this is
2257   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2258   // fold the new nodes.
2259   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2260     if (C->isNullValue() && CC == ISD::SETEQ) {
2261       EVT VT = Op.getOperand(0).getValueType();
2262       SDValue Zext = Op.getOperand(0);
2263       if (VT.bitsLT(MVT::i32)) {
2264         VT = MVT::i32;
2265         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2266       }
2267       unsigned Log2b = Log2_32(VT.getSizeInBits());
2268       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2269       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2270                                 DAG.getConstant(Log2b, dl, MVT::i32));
2271       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2272     }
2273     // Leave comparisons against 0 and -1 alone for now, since they're usually
2274     // optimized.  FIXME: revisit this when we can custom lower all setcc
2275     // optimizations.
2276     if (C->isAllOnesValue() || C->isNullValue())
2277       return SDValue();
2278   }
2279 
2280   // If we have an integer seteq/setne, turn it into a compare against zero
2281   // by xor'ing the rhs with the lhs, which is faster than setting a
2282   // condition register, reading it back out, and masking the correct bit.  The
2283   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2284   // the result to other bit-twiddling opportunities.
2285   EVT LHSVT = Op.getOperand(0).getValueType();
2286   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2287     EVT VT = Op.getValueType();
2288     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2289                                 Op.getOperand(1));
2290     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2291   }
2292   return SDValue();
2293 }
2294 
2295 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2296                                       const PPCSubtarget &Subtarget) const {
2297   SDNode *Node = Op.getNode();
2298   EVT VT = Node->getValueType(0);
2299   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2300   SDValue InChain = Node->getOperand(0);
2301   SDValue VAListPtr = Node->getOperand(1);
2302   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2303   SDLoc dl(Node);
2304 
2305   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2306 
2307   // gpr_index
2308   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2309                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2310                                     false, false, false, 0);
2311   InChain = GprIndex.getValue(1);
2312 
2313   if (VT == MVT::i64) {
2314     // Check if GprIndex is even
2315     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2316                                  DAG.getConstant(1, dl, MVT::i32));
2317     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2318                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2319     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2320                                           DAG.getConstant(1, dl, MVT::i32));
2321     // Align GprIndex to be even if it isn't
2322     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2323                            GprIndex);
2324   }
2325 
2326   // fpr index is 1 byte after gpr
2327   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2328                                DAG.getConstant(1, dl, MVT::i32));
2329 
2330   // fpr
2331   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2332                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2333                                     false, false, false, 0);
2334   InChain = FprIndex.getValue(1);
2335 
2336   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2337                                        DAG.getConstant(8, dl, MVT::i32));
2338 
2339   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2340                                         DAG.getConstant(4, dl, MVT::i32));
2341 
2342   // areas
2343   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2344                                      MachinePointerInfo(), false, false,
2345                                      false, 0);
2346   InChain = OverflowArea.getValue(1);
2347 
2348   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2349                                     MachinePointerInfo(), false, false,
2350                                     false, 0);
2351   InChain = RegSaveArea.getValue(1);
2352 
2353   // select overflow_area if index > 8
2354   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2355                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2356 
2357   // adjustment constant gpr_index * 4/8
2358   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2359                                     VT.isInteger() ? GprIndex : FprIndex,
2360                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2361                                                     MVT::i32));
2362 
2363   // OurReg = RegSaveArea + RegConstant
2364   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2365                                RegConstant);
2366 
2367   // Floating types are 32 bytes into RegSaveArea
2368   if (VT.isFloatingPoint())
2369     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2370                          DAG.getConstant(32, dl, MVT::i32));
2371 
2372   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2373   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2374                                    VT.isInteger() ? GprIndex : FprIndex,
2375                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2376                                                    MVT::i32));
2377 
2378   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2379                               VT.isInteger() ? VAListPtr : FprPtr,
2380                               MachinePointerInfo(SV),
2381                               MVT::i8, false, false, 0);
2382 
2383   // determine if we should load from reg_save_area or overflow_area
2384   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2385 
2386   // increase overflow_area by 4/8 if gpr/fpr > 8
2387   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2388                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2389                                           dl, MVT::i32));
2390 
2391   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2392                              OverflowAreaPlusN);
2393 
2394   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2395                               OverflowAreaPtr,
2396                               MachinePointerInfo(),
2397                               MVT::i32, false, false, 0);
2398 
2399   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2400                      false, false, false, 0);
2401 }
2402 
2403 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2404                                        const PPCSubtarget &Subtarget) const {
2405   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2406 
2407   // We have to copy the entire va_list struct:
2408   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2409   return DAG.getMemcpy(Op.getOperand(0), Op,
2410                        Op.getOperand(1), Op.getOperand(2),
2411                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2412                        false, MachinePointerInfo(), MachinePointerInfo());
2413 }
2414 
2415 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2416                                                   SelectionDAG &DAG) const {
2417   return Op.getOperand(0);
2418 }
2419 
2420 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2421                                                 SelectionDAG &DAG) const {
2422   SDValue Chain = Op.getOperand(0);
2423   SDValue Trmp = Op.getOperand(1); // trampoline
2424   SDValue FPtr = Op.getOperand(2); // nested function
2425   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2426   SDLoc dl(Op);
2427 
2428   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2429   bool isPPC64 = (PtrVT == MVT::i64);
2430   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2431 
2432   TargetLowering::ArgListTy Args;
2433   TargetLowering::ArgListEntry Entry;
2434 
2435   Entry.Ty = IntPtrTy;
2436   Entry.Node = Trmp; Args.push_back(Entry);
2437 
2438   // TrampSize == (isPPC64 ? 48 : 40);
2439   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2440                                isPPC64 ? MVT::i64 : MVT::i32);
2441   Args.push_back(Entry);
2442 
2443   Entry.Node = FPtr; Args.push_back(Entry);
2444   Entry.Node = Nest; Args.push_back(Entry);
2445 
2446   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2447   TargetLowering::CallLoweringInfo CLI(DAG);
2448   CLI.setDebugLoc(dl).setChain(Chain)
2449     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2450                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2451                std::move(Args), 0);
2452 
2453   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2454   return CallResult.second;
2455 }
2456 
2457 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2458                                         const PPCSubtarget &Subtarget) const {
2459   MachineFunction &MF = DAG.getMachineFunction();
2460   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2461 
2462   SDLoc dl(Op);
2463 
2464   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2465     // vastart just stores the address of the VarArgsFrameIndex slot into the
2466     // memory location argument.
2467     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2468     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2469     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2470     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2471                         MachinePointerInfo(SV),
2472                         false, false, 0);
2473   }
2474 
2475   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2476   // We suppose the given va_list is already allocated.
2477   //
2478   // typedef struct {
2479   //  char gpr;     /* index into the array of 8 GPRs
2480   //                 * stored in the register save area
2481   //                 * gpr=0 corresponds to r3,
2482   //                 * gpr=1 to r4, etc.
2483   //                 */
2484   //  char fpr;     /* index into the array of 8 FPRs
2485   //                 * stored in the register save area
2486   //                 * fpr=0 corresponds to f1,
2487   //                 * fpr=1 to f2, etc.
2488   //                 */
2489   //  char *overflow_arg_area;
2490   //                /* location on stack that holds
2491   //                 * the next overflow argument
2492   //                 */
2493   //  char *reg_save_area;
2494   //               /* where r3:r10 and f1:f8 (if saved)
2495   //                * are stored
2496   //                */
2497   // } va_list[1];
2498 
2499   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2500   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2501 
2502   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2503 
2504   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2505                                             PtrVT);
2506   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2507                                  PtrVT);
2508 
2509   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2510   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2511 
2512   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2513   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2514 
2515   uint64_t FPROffset = 1;
2516   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2517 
2518   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2519 
2520   // Store first byte : number of int regs
2521   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2522                                          Op.getOperand(1),
2523                                          MachinePointerInfo(SV),
2524                                          MVT::i8, false, false, 0);
2525   uint64_t nextOffset = FPROffset;
2526   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2527                                   ConstFPROffset);
2528 
2529   // Store second byte : number of float regs
2530   SDValue secondStore =
2531     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2532                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2533                       false, false, 0);
2534   nextOffset += StackOffset;
2535   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2536 
2537   // Store second word : arguments given on stack
2538   SDValue thirdStore =
2539     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2540                  MachinePointerInfo(SV, nextOffset),
2541                  false, false, 0);
2542   nextOffset += FrameOffset;
2543   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2544 
2545   // Store third word : arguments given in registers
2546   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2547                       MachinePointerInfo(SV, nextOffset),
2548                       false, false, 0);
2549 
2550 }
2551 
2552 #include "PPCGenCallingConv.inc"
2553 
2554 // Function whose sole purpose is to kill compiler warnings
2555 // stemming from unused functions included from PPCGenCallingConv.inc.
2556 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2557   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2558 }
2559 
2560 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2561                                       CCValAssign::LocInfo &LocInfo,
2562                                       ISD::ArgFlagsTy &ArgFlags,
2563                                       CCState &State) {
2564   return true;
2565 }
2566 
2567 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2568                                              MVT &LocVT,
2569                                              CCValAssign::LocInfo &LocInfo,
2570                                              ISD::ArgFlagsTy &ArgFlags,
2571                                              CCState &State) {
2572   static const MCPhysReg ArgRegs[] = {
2573     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2574     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2575   };
2576   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2577 
2578   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2579 
2580   // Skip one register if the first unallocated register has an even register
2581   // number and there are still argument registers available which have not been
2582   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2583   // need to skip a register if RegNum is odd.
2584   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2585     State.AllocateReg(ArgRegs[RegNum]);
2586   }
2587 
2588   // Always return false here, as this function only makes sure that the first
2589   // unallocated register has an odd register number and does not actually
2590   // allocate a register for the current argument.
2591   return false;
2592 }
2593 
2594 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2595                                                MVT &LocVT,
2596                                                CCValAssign::LocInfo &LocInfo,
2597                                                ISD::ArgFlagsTy &ArgFlags,
2598                                                CCState &State) {
2599   static const MCPhysReg ArgRegs[] = {
2600     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2601     PPC::F8
2602   };
2603 
2604   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2605 
2606   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2607 
2608   // If there is only one Floating-point register left we need to put both f64
2609   // values of a split ppc_fp128 value on the stack.
2610   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2611     State.AllocateReg(ArgRegs[RegNum]);
2612   }
2613 
2614   // Always return false here, as this function only makes sure that the two f64
2615   // values a ppc_fp128 value is split into are both passed in registers or both
2616   // passed on the stack and does not actually allocate a register for the
2617   // current argument.
2618   return false;
2619 }
2620 
2621 /// FPR - The set of FP registers that should be allocated for arguments,
2622 /// on Darwin.
2623 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2624                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2625                                 PPC::F11, PPC::F12, PPC::F13};
2626 
2627 /// QFPR - The set of QPX registers that should be allocated for arguments.
2628 static const MCPhysReg QFPR[] = {
2629     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2630     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2631 
2632 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2633 /// the stack.
2634 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2635                                        unsigned PtrByteSize) {
2636   unsigned ArgSize = ArgVT.getStoreSize();
2637   if (Flags.isByVal())
2638     ArgSize = Flags.getByValSize();
2639 
2640   // Round up to multiples of the pointer size, except for array members,
2641   // which are always packed.
2642   if (!Flags.isInConsecutiveRegs())
2643     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2644 
2645   return ArgSize;
2646 }
2647 
2648 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2649 /// on the stack.
2650 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2651                                             ISD::ArgFlagsTy Flags,
2652                                             unsigned PtrByteSize) {
2653   unsigned Align = PtrByteSize;
2654 
2655   // Altivec parameters are padded to a 16 byte boundary.
2656   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2657       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2658       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2659       ArgVT == MVT::v1i128)
2660     Align = 16;
2661   // QPX vector types stored in double-precision are padded to a 32 byte
2662   // boundary.
2663   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2664     Align = 32;
2665 
2666   // ByVal parameters are aligned as requested.
2667   if (Flags.isByVal()) {
2668     unsigned BVAlign = Flags.getByValAlign();
2669     if (BVAlign > PtrByteSize) {
2670       if (BVAlign % PtrByteSize != 0)
2671           llvm_unreachable(
2672             "ByVal alignment is not a multiple of the pointer size");
2673 
2674       Align = BVAlign;
2675     }
2676   }
2677 
2678   // Array members are always packed to their original alignment.
2679   if (Flags.isInConsecutiveRegs()) {
2680     // If the array member was split into multiple registers, the first
2681     // needs to be aligned to the size of the full type.  (Except for
2682     // ppcf128, which is only aligned as its f64 components.)
2683     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2684       Align = OrigVT.getStoreSize();
2685     else
2686       Align = ArgVT.getStoreSize();
2687   }
2688 
2689   return Align;
2690 }
2691 
2692 /// CalculateStackSlotUsed - Return whether this argument will use its
2693 /// stack slot (instead of being passed in registers).  ArgOffset,
2694 /// AvailableFPRs, and AvailableVRs must hold the current argument
2695 /// position, and will be updated to account for this argument.
2696 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2697                                    ISD::ArgFlagsTy Flags,
2698                                    unsigned PtrByteSize,
2699                                    unsigned LinkageSize,
2700                                    unsigned ParamAreaSize,
2701                                    unsigned &ArgOffset,
2702                                    unsigned &AvailableFPRs,
2703                                    unsigned &AvailableVRs, bool HasQPX) {
2704   bool UseMemory = false;
2705 
2706   // Respect alignment of argument on the stack.
2707   unsigned Align =
2708     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2709   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2710   // If there's no space left in the argument save area, we must
2711   // use memory (this check also catches zero-sized arguments).
2712   if (ArgOffset >= LinkageSize + ParamAreaSize)
2713     UseMemory = true;
2714 
2715   // Allocate argument on the stack.
2716   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2717   if (Flags.isInConsecutiveRegsLast())
2718     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2719   // If we overran the argument save area, we must use memory
2720   // (this check catches arguments passed partially in memory)
2721   if (ArgOffset > LinkageSize + ParamAreaSize)
2722     UseMemory = true;
2723 
2724   // However, if the argument is actually passed in an FPR or a VR,
2725   // we don't use memory after all.
2726   if (!Flags.isByVal()) {
2727     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2728         // QPX registers overlap with the scalar FP registers.
2729         (HasQPX && (ArgVT == MVT::v4f32 ||
2730                     ArgVT == MVT::v4f64 ||
2731                     ArgVT == MVT::v4i1)))
2732       if (AvailableFPRs > 0) {
2733         --AvailableFPRs;
2734         return false;
2735       }
2736     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2737         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2738         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2739         ArgVT == MVT::v1i128)
2740       if (AvailableVRs > 0) {
2741         --AvailableVRs;
2742         return false;
2743       }
2744   }
2745 
2746   return UseMemory;
2747 }
2748 
2749 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2750 /// ensure minimum alignment required for target.
2751 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2752                                      unsigned NumBytes) {
2753   unsigned TargetAlign = Lowering->getStackAlignment();
2754   unsigned AlignMask = TargetAlign - 1;
2755   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2756   return NumBytes;
2757 }
2758 
2759 SDValue
2760 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2761                                         CallingConv::ID CallConv, bool isVarArg,
2762                                         const SmallVectorImpl<ISD::InputArg>
2763                                           &Ins,
2764                                         SDLoc dl, SelectionDAG &DAG,
2765                                         SmallVectorImpl<SDValue> &InVals)
2766                                           const {
2767   if (Subtarget.isSVR4ABI()) {
2768     if (Subtarget.isPPC64())
2769       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2770                                          dl, DAG, InVals);
2771     else
2772       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2773                                          dl, DAG, InVals);
2774   } else {
2775     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2776                                        dl, DAG, InVals);
2777   }
2778 }
2779 
2780 SDValue
2781 PPCTargetLowering::LowerFormalArguments_32SVR4(
2782                                       SDValue Chain,
2783                                       CallingConv::ID CallConv, bool isVarArg,
2784                                       const SmallVectorImpl<ISD::InputArg>
2785                                         &Ins,
2786                                       SDLoc dl, SelectionDAG &DAG,
2787                                       SmallVectorImpl<SDValue> &InVals) const {
2788 
2789   // 32-bit SVR4 ABI Stack Frame Layout:
2790   //              +-----------------------------------+
2791   //        +-->  |            Back chain             |
2792   //        |     +-----------------------------------+
2793   //        |     | Floating-point register save area |
2794   //        |     +-----------------------------------+
2795   //        |     |    General register save area     |
2796   //        |     +-----------------------------------+
2797   //        |     |          CR save word             |
2798   //        |     +-----------------------------------+
2799   //        |     |         VRSAVE save word          |
2800   //        |     +-----------------------------------+
2801   //        |     |         Alignment padding         |
2802   //        |     +-----------------------------------+
2803   //        |     |     Vector register save area     |
2804   //        |     +-----------------------------------+
2805   //        |     |       Local variable space        |
2806   //        |     +-----------------------------------+
2807   //        |     |        Parameter list area        |
2808   //        |     +-----------------------------------+
2809   //        |     |           LR save word            |
2810   //        |     +-----------------------------------+
2811   // SP-->  +---  |            Back chain             |
2812   //              +-----------------------------------+
2813   //
2814   // Specifications:
2815   //   System V Application Binary Interface PowerPC Processor Supplement
2816   //   AltiVec Technology Programming Interface Manual
2817 
2818   MachineFunction &MF = DAG.getMachineFunction();
2819   MachineFrameInfo *MFI = MF.getFrameInfo();
2820   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2821 
2822   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2823   // Potential tail calls could cause overwriting of argument stack slots.
2824   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2825                        (CallConv == CallingConv::Fast));
2826   unsigned PtrByteSize = 4;
2827 
2828   // Assign locations to all of the incoming arguments.
2829   SmallVector<CCValAssign, 16> ArgLocs;
2830   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2831                  *DAG.getContext());
2832 
2833   // Reserve space for the linkage area on the stack.
2834   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2835   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2836 
2837   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2838 
2839   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2840     CCValAssign &VA = ArgLocs[i];
2841 
2842     // Arguments stored in registers.
2843     if (VA.isRegLoc()) {
2844       const TargetRegisterClass *RC;
2845       EVT ValVT = VA.getValVT();
2846 
2847       switch (ValVT.getSimpleVT().SimpleTy) {
2848         default:
2849           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2850         case MVT::i1:
2851         case MVT::i32:
2852           RC = &PPC::GPRCRegClass;
2853           break;
2854         case MVT::f32:
2855           if (Subtarget.hasP8Vector())
2856             RC = &PPC::VSSRCRegClass;
2857           else
2858             RC = &PPC::F4RCRegClass;
2859           break;
2860         case MVT::f64:
2861           if (Subtarget.hasVSX())
2862             RC = &PPC::VSFRCRegClass;
2863           else
2864             RC = &PPC::F8RCRegClass;
2865           break;
2866         case MVT::v16i8:
2867         case MVT::v8i16:
2868         case MVT::v4i32:
2869           RC = &PPC::VRRCRegClass;
2870           break;
2871         case MVT::v4f32:
2872           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2873           break;
2874         case MVT::v2f64:
2875         case MVT::v2i64:
2876           RC = &PPC::VSHRCRegClass;
2877           break;
2878         case MVT::v4f64:
2879           RC = &PPC::QFRCRegClass;
2880           break;
2881         case MVT::v4i1:
2882           RC = &PPC::QBRCRegClass;
2883           break;
2884       }
2885 
2886       // Transform the arguments stored in physical registers into virtual ones.
2887       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2888       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2889                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2890 
2891       if (ValVT == MVT::i1)
2892         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2893 
2894       InVals.push_back(ArgValue);
2895     } else {
2896       // Argument stored in memory.
2897       assert(VA.isMemLoc());
2898 
2899       unsigned ArgSize = VA.getLocVT().getStoreSize();
2900       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2901                                       isImmutable);
2902 
2903       // Create load nodes to retrieve arguments from the stack.
2904       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2905       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2906                                    MachinePointerInfo(),
2907                                    false, false, false, 0));
2908     }
2909   }
2910 
2911   // Assign locations to all of the incoming aggregate by value arguments.
2912   // Aggregates passed by value are stored in the local variable space of the
2913   // caller's stack frame, right above the parameter list area.
2914   SmallVector<CCValAssign, 16> ByValArgLocs;
2915   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2916                       ByValArgLocs, *DAG.getContext());
2917 
2918   // Reserve stack space for the allocations in CCInfo.
2919   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2920 
2921   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2922 
2923   // Area that is at least reserved in the caller of this function.
2924   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2925   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2926 
2927   // Set the size that is at least reserved in caller of this function.  Tail
2928   // call optimized function's reserved stack space needs to be aligned so that
2929   // taking the difference between two stack areas will result in an aligned
2930   // stack.
2931   MinReservedArea =
2932       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2933   FuncInfo->setMinReservedArea(MinReservedArea);
2934 
2935   SmallVector<SDValue, 8> MemOps;
2936 
2937   // If the function takes variable number of arguments, make a frame index for
2938   // the start of the first vararg value... for expansion of llvm.va_start.
2939   if (isVarArg) {
2940     static const MCPhysReg GPArgRegs[] = {
2941       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2942       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2943     };
2944     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2945 
2946     static const MCPhysReg FPArgRegs[] = {
2947       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2948       PPC::F8
2949     };
2950     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2951     if (DisablePPCFloatInVariadic)
2952       NumFPArgRegs = 0;
2953 
2954     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2955     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2956 
2957     // Make room for NumGPArgRegs and NumFPArgRegs.
2958     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2959                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2960 
2961     FuncInfo->setVarArgsStackOffset(
2962       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2963                              CCInfo.getNextStackOffset(), true));
2964 
2965     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2966     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2967 
2968     // The fixed integer arguments of a variadic function are stored to the
2969     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2970     // the result of va_next.
2971     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2972       // Get an existing live-in vreg, or add a new one.
2973       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2974       if (!VReg)
2975         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2976 
2977       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2978       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2979                                    MachinePointerInfo(), false, false, 0);
2980       MemOps.push_back(Store);
2981       // Increment the address by four for the next argument to store
2982       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
2983       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2984     }
2985 
2986     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2987     // is set.
2988     // The double arguments are stored to the VarArgsFrameIndex
2989     // on the stack.
2990     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2991       // Get an existing live-in vreg, or add a new one.
2992       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2993       if (!VReg)
2994         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2995 
2996       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2997       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2998                                    MachinePointerInfo(), false, false, 0);
2999       MemOps.push_back(Store);
3000       // Increment the address by eight for the next argument to store
3001       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3002                                          PtrVT);
3003       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3004     }
3005   }
3006 
3007   if (!MemOps.empty())
3008     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3009 
3010   return Chain;
3011 }
3012 
3013 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3014 // value to MVT::i64 and then truncate to the correct register size.
3015 SDValue
3016 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
3017                                      SelectionDAG &DAG, SDValue ArgVal,
3018                                      SDLoc dl) const {
3019   if (Flags.isSExt())
3020     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3021                          DAG.getValueType(ObjectVT));
3022   else if (Flags.isZExt())
3023     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3024                          DAG.getValueType(ObjectVT));
3025 
3026   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3027 }
3028 
3029 SDValue
3030 PPCTargetLowering::LowerFormalArguments_64SVR4(
3031                                       SDValue Chain,
3032                                       CallingConv::ID CallConv, bool isVarArg,
3033                                       const SmallVectorImpl<ISD::InputArg>
3034                                         &Ins,
3035                                       SDLoc dl, SelectionDAG &DAG,
3036                                       SmallVectorImpl<SDValue> &InVals) const {
3037   // TODO: add description of PPC stack frame format, or at least some docs.
3038   //
3039   bool isELFv2ABI = Subtarget.isELFv2ABI();
3040   bool isLittleEndian = Subtarget.isLittleEndian();
3041   MachineFunction &MF = DAG.getMachineFunction();
3042   MachineFrameInfo *MFI = MF.getFrameInfo();
3043   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3044 
3045   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3046          "fastcc not supported on varargs functions");
3047 
3048   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3049   // Potential tail calls could cause overwriting of argument stack slots.
3050   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3051                        (CallConv == CallingConv::Fast));
3052   unsigned PtrByteSize = 8;
3053   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3054 
3055   static const MCPhysReg GPR[] = {
3056     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3057     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3058   };
3059   static const MCPhysReg VR[] = {
3060     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3061     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3062   };
3063   static const MCPhysReg VSRH[] = {
3064     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3065     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3066   };
3067 
3068   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3069   const unsigned Num_FPR_Regs = 13;
3070   const unsigned Num_VR_Regs  = array_lengthof(VR);
3071   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3072 
3073   // Do a first pass over the arguments to determine whether the ABI
3074   // guarantees that our caller has allocated the parameter save area
3075   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3076   // in the ELFv2 ABI, it is true if this is a vararg function or if
3077   // any parameter is located in a stack slot.
3078 
3079   bool HasParameterArea = !isELFv2ABI || isVarArg;
3080   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3081   unsigned NumBytes = LinkageSize;
3082   unsigned AvailableFPRs = Num_FPR_Regs;
3083   unsigned AvailableVRs = Num_VR_Regs;
3084   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3085     if (Ins[i].Flags.isNest())
3086       continue;
3087 
3088     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3089                                PtrByteSize, LinkageSize, ParamAreaSize,
3090                                NumBytes, AvailableFPRs, AvailableVRs,
3091                                Subtarget.hasQPX()))
3092       HasParameterArea = true;
3093   }
3094 
3095   // Add DAG nodes to load the arguments or copy them out of registers.  On
3096   // entry to a function on PPC, the arguments start after the linkage area,
3097   // although the first ones are often in registers.
3098 
3099   unsigned ArgOffset = LinkageSize;
3100   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3101   unsigned &QFPR_idx = FPR_idx;
3102   SmallVector<SDValue, 8> MemOps;
3103   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3104   unsigned CurArgIdx = 0;
3105   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3106     SDValue ArgVal;
3107     bool needsLoad = false;
3108     EVT ObjectVT = Ins[ArgNo].VT;
3109     EVT OrigVT = Ins[ArgNo].ArgVT;
3110     unsigned ObjSize = ObjectVT.getStoreSize();
3111     unsigned ArgSize = ObjSize;
3112     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3113     if (Ins[ArgNo].isOrigArg()) {
3114       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3115       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3116     }
3117     // We re-align the argument offset for each argument, except when using the
3118     // fast calling convention, when we need to make sure we do that only when
3119     // we'll actually use a stack slot.
3120     unsigned CurArgOffset, Align;
3121     auto ComputeArgOffset = [&]() {
3122       /* Respect alignment of argument on the stack.  */
3123       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3124       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3125       CurArgOffset = ArgOffset;
3126     };
3127 
3128     if (CallConv != CallingConv::Fast) {
3129       ComputeArgOffset();
3130 
3131       /* Compute GPR index associated with argument offset.  */
3132       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3133       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3134     }
3135 
3136     // FIXME the codegen can be much improved in some cases.
3137     // We do not have to keep everything in memory.
3138     if (Flags.isByVal()) {
3139       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3140 
3141       if (CallConv == CallingConv::Fast)
3142         ComputeArgOffset();
3143 
3144       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3145       ObjSize = Flags.getByValSize();
3146       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3147       // Empty aggregate parameters do not take up registers.  Examples:
3148       //   struct { } a;
3149       //   union  { } b;
3150       //   int c[0];
3151       // etc.  However, we have to provide a place-holder in InVals, so
3152       // pretend we have an 8-byte item at the current address for that
3153       // purpose.
3154       if (!ObjSize) {
3155         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3156         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3157         InVals.push_back(FIN);
3158         continue;
3159       }
3160 
3161       // Create a stack object covering all stack doublewords occupied
3162       // by the argument.  If the argument is (fully or partially) on
3163       // the stack, or if the argument is fully in registers but the
3164       // caller has allocated the parameter save anyway, we can refer
3165       // directly to the caller's stack frame.  Otherwise, create a
3166       // local copy in our own frame.
3167       int FI;
3168       if (HasParameterArea ||
3169           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3170         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3171       else
3172         FI = MFI->CreateStackObject(ArgSize, Align, false);
3173       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3174 
3175       // Handle aggregates smaller than 8 bytes.
3176       if (ObjSize < PtrByteSize) {
3177         // The value of the object is its address, which differs from the
3178         // address of the enclosing doubleword on big-endian systems.
3179         SDValue Arg = FIN;
3180         if (!isLittleEndian) {
3181           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3182           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3183         }
3184         InVals.push_back(Arg);
3185 
3186         if (GPR_idx != Num_GPR_Regs) {
3187           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3188           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3189           SDValue Store;
3190 
3191           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3192             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3193                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3194             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3195                                       MachinePointerInfo(&*FuncArg), ObjType,
3196                                       false, false, 0);
3197           } else {
3198             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3199             // store the whole register as-is to the parameter save area
3200             // slot.
3201             Store =
3202                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3203                              MachinePointerInfo(&*FuncArg), false, false, 0);
3204           }
3205 
3206           MemOps.push_back(Store);
3207         }
3208         // Whether we copied from a register or not, advance the offset
3209         // into the parameter save area by a full doubleword.
3210         ArgOffset += PtrByteSize;
3211         continue;
3212       }
3213 
3214       // The value of the object is its address, which is the address of
3215       // its first stack doubleword.
3216       InVals.push_back(FIN);
3217 
3218       // Store whatever pieces of the object are in registers to memory.
3219       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3220         if (GPR_idx == Num_GPR_Regs)
3221           break;
3222 
3223         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3224         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3225         SDValue Addr = FIN;
3226         if (j) {
3227           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3228           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3229         }
3230         SDValue Store =
3231             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3232                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3233         MemOps.push_back(Store);
3234         ++GPR_idx;
3235       }
3236       ArgOffset += ArgSize;
3237       continue;
3238     }
3239 
3240     switch (ObjectVT.getSimpleVT().SimpleTy) {
3241     default: llvm_unreachable("Unhandled argument type!");
3242     case MVT::i1:
3243     case MVT::i32:
3244     case MVT::i64:
3245       if (Flags.isNest()) {
3246         // The 'nest' parameter, if any, is passed in R11.
3247         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3248         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3249 
3250         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3251           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3252 
3253         break;
3254       }
3255 
3256       // These can be scalar arguments or elements of an integer array type
3257       // passed directly.  Clang may use those instead of "byval" aggregate
3258       // types to avoid forcing arguments to memory unnecessarily.
3259       if (GPR_idx != Num_GPR_Regs) {
3260         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3261         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3262 
3263         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3264           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3265           // value to MVT::i64 and then truncate to the correct register size.
3266           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3267       } else {
3268         if (CallConv == CallingConv::Fast)
3269           ComputeArgOffset();
3270 
3271         needsLoad = true;
3272         ArgSize = PtrByteSize;
3273       }
3274       if (CallConv != CallingConv::Fast || needsLoad)
3275         ArgOffset += 8;
3276       break;
3277 
3278     case MVT::f32:
3279     case MVT::f64:
3280       // These can be scalar arguments or elements of a float array type
3281       // passed directly.  The latter are used to implement ELFv2 homogenous
3282       // float aggregates.
3283       if (FPR_idx != Num_FPR_Regs) {
3284         unsigned VReg;
3285 
3286         if (ObjectVT == MVT::f32)
3287           VReg = MF.addLiveIn(FPR[FPR_idx],
3288                               Subtarget.hasP8Vector()
3289                                   ? &PPC::VSSRCRegClass
3290                                   : &PPC::F4RCRegClass);
3291         else
3292           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3293                                                 ? &PPC::VSFRCRegClass
3294                                                 : &PPC::F8RCRegClass);
3295 
3296         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3297         ++FPR_idx;
3298       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3299         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3300         // once we support fp <-> gpr moves.
3301 
3302         // This can only ever happen in the presence of f32 array types,
3303         // since otherwise we never run out of FPRs before running out
3304         // of GPRs.
3305         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3306         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3307 
3308         if (ObjectVT == MVT::f32) {
3309           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3310             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3311                                  DAG.getConstant(32, dl, MVT::i32));
3312           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3313         }
3314 
3315         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3316       } else {
3317         if (CallConv == CallingConv::Fast)
3318           ComputeArgOffset();
3319 
3320         needsLoad = true;
3321       }
3322 
3323       // When passing an array of floats, the array occupies consecutive
3324       // space in the argument area; only round up to the next doubleword
3325       // at the end of the array.  Otherwise, each float takes 8 bytes.
3326       if (CallConv != CallingConv::Fast || needsLoad) {
3327         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3328         ArgOffset += ArgSize;
3329         if (Flags.isInConsecutiveRegsLast())
3330           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3331       }
3332       break;
3333     case MVT::v4f32:
3334     case MVT::v4i32:
3335     case MVT::v8i16:
3336     case MVT::v16i8:
3337     case MVT::v2f64:
3338     case MVT::v2i64:
3339     case MVT::v1i128:
3340       if (!Subtarget.hasQPX()) {
3341       // These can be scalar arguments or elements of a vector array type
3342       // passed directly.  The latter are used to implement ELFv2 homogenous
3343       // vector aggregates.
3344       if (VR_idx != Num_VR_Regs) {
3345         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3346                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3347                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3348         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3349         ++VR_idx;
3350       } else {
3351         if (CallConv == CallingConv::Fast)
3352           ComputeArgOffset();
3353 
3354         needsLoad = true;
3355       }
3356       if (CallConv != CallingConv::Fast || needsLoad)
3357         ArgOffset += 16;
3358       break;
3359       } // not QPX
3360 
3361       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3362              "Invalid QPX parameter type");
3363       /* fall through */
3364 
3365     case MVT::v4f64:
3366     case MVT::v4i1:
3367       // QPX vectors are treated like their scalar floating-point subregisters
3368       // (except that they're larger).
3369       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3370       if (QFPR_idx != Num_QFPR_Regs) {
3371         const TargetRegisterClass *RC;
3372         switch (ObjectVT.getSimpleVT().SimpleTy) {
3373         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3374         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3375         default:         RC = &PPC::QBRCRegClass; break;
3376         }
3377 
3378         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3379         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3380         ++QFPR_idx;
3381       } else {
3382         if (CallConv == CallingConv::Fast)
3383           ComputeArgOffset();
3384         needsLoad = true;
3385       }
3386       if (CallConv != CallingConv::Fast || needsLoad)
3387         ArgOffset += Sz;
3388       break;
3389     }
3390 
3391     // We need to load the argument to a virtual register if we determined
3392     // above that we ran out of physical registers of the appropriate type.
3393     if (needsLoad) {
3394       if (ObjSize < ArgSize && !isLittleEndian)
3395         CurArgOffset += ArgSize - ObjSize;
3396       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3397       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3398       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3399                            false, false, false, 0);
3400     }
3401 
3402     InVals.push_back(ArgVal);
3403   }
3404 
3405   // Area that is at least reserved in the caller of this function.
3406   unsigned MinReservedArea;
3407   if (HasParameterArea)
3408     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3409   else
3410     MinReservedArea = LinkageSize;
3411 
3412   // Set the size that is at least reserved in caller of this function.  Tail
3413   // call optimized functions' reserved stack space needs to be aligned so that
3414   // taking the difference between two stack areas will result in an aligned
3415   // stack.
3416   MinReservedArea =
3417       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3418   FuncInfo->setMinReservedArea(MinReservedArea);
3419 
3420   // If the function takes variable number of arguments, make a frame index for
3421   // the start of the first vararg value... for expansion of llvm.va_start.
3422   if (isVarArg) {
3423     int Depth = ArgOffset;
3424 
3425     FuncInfo->setVarArgsFrameIndex(
3426       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3427     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3428 
3429     // If this function is vararg, store any remaining integer argument regs
3430     // to their spots on the stack so that they may be loaded by deferencing the
3431     // result of va_next.
3432     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3433          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3434       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3435       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3436       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3437                                    MachinePointerInfo(), false, false, 0);
3438       MemOps.push_back(Store);
3439       // Increment the address by four for the next argument to store
3440       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3441       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3442     }
3443   }
3444 
3445   if (!MemOps.empty())
3446     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3447 
3448   return Chain;
3449 }
3450 
3451 SDValue
3452 PPCTargetLowering::LowerFormalArguments_Darwin(
3453                                       SDValue Chain,
3454                                       CallingConv::ID CallConv, bool isVarArg,
3455                                       const SmallVectorImpl<ISD::InputArg>
3456                                         &Ins,
3457                                       SDLoc dl, SelectionDAG &DAG,
3458                                       SmallVectorImpl<SDValue> &InVals) const {
3459   // TODO: add description of PPC stack frame format, or at least some docs.
3460   //
3461   MachineFunction &MF = DAG.getMachineFunction();
3462   MachineFrameInfo *MFI = MF.getFrameInfo();
3463   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3464 
3465   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3466   bool isPPC64 = PtrVT == MVT::i64;
3467   // Potential tail calls could cause overwriting of argument stack slots.
3468   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3469                        (CallConv == CallingConv::Fast));
3470   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3471   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3472   unsigned ArgOffset = LinkageSize;
3473   // Area that is at least reserved in caller of this function.
3474   unsigned MinReservedArea = ArgOffset;
3475 
3476   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3477     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3478     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3479   };
3480   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3481     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3482     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3483   };
3484   static const MCPhysReg VR[] = {
3485     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3486     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3487   };
3488 
3489   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3490   const unsigned Num_FPR_Regs = 13;
3491   const unsigned Num_VR_Regs  = array_lengthof( VR);
3492 
3493   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3494 
3495   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3496 
3497   // In 32-bit non-varargs functions, the stack space for vectors is after the
3498   // stack space for non-vectors.  We do not use this space unless we have
3499   // too many vectors to fit in registers, something that only occurs in
3500   // constructed examples:), but we have to walk the arglist to figure
3501   // that out...for the pathological case, compute VecArgOffset as the
3502   // start of the vector parameter area.  Computing VecArgOffset is the
3503   // entire point of the following loop.
3504   unsigned VecArgOffset = ArgOffset;
3505   if (!isVarArg && !isPPC64) {
3506     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3507          ++ArgNo) {
3508       EVT ObjectVT = Ins[ArgNo].VT;
3509       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3510 
3511       if (Flags.isByVal()) {
3512         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3513         unsigned ObjSize = Flags.getByValSize();
3514         unsigned ArgSize =
3515                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3516         VecArgOffset += ArgSize;
3517         continue;
3518       }
3519 
3520       switch(ObjectVT.getSimpleVT().SimpleTy) {
3521       default: llvm_unreachable("Unhandled argument type!");
3522       case MVT::i1:
3523       case MVT::i32:
3524       case MVT::f32:
3525         VecArgOffset += 4;
3526         break;
3527       case MVT::i64:  // PPC64
3528       case MVT::f64:
3529         // FIXME: We are guaranteed to be !isPPC64 at this point.
3530         // Does MVT::i64 apply?
3531         VecArgOffset += 8;
3532         break;
3533       case MVT::v4f32:
3534       case MVT::v4i32:
3535       case MVT::v8i16:
3536       case MVT::v16i8:
3537         // Nothing to do, we're only looking at Nonvector args here.
3538         break;
3539       }
3540     }
3541   }
3542   // We've found where the vector parameter area in memory is.  Skip the
3543   // first 12 parameters; these don't use that memory.
3544   VecArgOffset = ((VecArgOffset+15)/16)*16;
3545   VecArgOffset += 12*16;
3546 
3547   // Add DAG nodes to load the arguments or copy them out of registers.  On
3548   // entry to a function on PPC, the arguments start after the linkage area,
3549   // although the first ones are often in registers.
3550 
3551   SmallVector<SDValue, 8> MemOps;
3552   unsigned nAltivecParamsAtEnd = 0;
3553   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3554   unsigned CurArgIdx = 0;
3555   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3556     SDValue ArgVal;
3557     bool needsLoad = false;
3558     EVT ObjectVT = Ins[ArgNo].VT;
3559     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3560     unsigned ArgSize = ObjSize;
3561     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3562     if (Ins[ArgNo].isOrigArg()) {
3563       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3564       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3565     }
3566     unsigned CurArgOffset = ArgOffset;
3567 
3568     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3569     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3570         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3571       if (isVarArg || isPPC64) {
3572         MinReservedArea = ((MinReservedArea+15)/16)*16;
3573         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3574                                                   Flags,
3575                                                   PtrByteSize);
3576       } else  nAltivecParamsAtEnd++;
3577     } else
3578       // Calculate min reserved area.
3579       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3580                                                 Flags,
3581                                                 PtrByteSize);
3582 
3583     // FIXME the codegen can be much improved in some cases.
3584     // We do not have to keep everything in memory.
3585     if (Flags.isByVal()) {
3586       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3587 
3588       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3589       ObjSize = Flags.getByValSize();
3590       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3591       // Objects of size 1 and 2 are right justified, everything else is
3592       // left justified.  This means the memory address is adjusted forwards.
3593       if (ObjSize==1 || ObjSize==2) {
3594         CurArgOffset = CurArgOffset + (4 - ObjSize);
3595       }
3596       // The value of the object is its address.
3597       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3598       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3599       InVals.push_back(FIN);
3600       if (ObjSize==1 || ObjSize==2) {
3601         if (GPR_idx != Num_GPR_Regs) {
3602           unsigned VReg;
3603           if (isPPC64)
3604             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3605           else
3606             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3607           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3608           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3609           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3610                                             MachinePointerInfo(&*FuncArg),
3611                                             ObjType, false, false, 0);
3612           MemOps.push_back(Store);
3613           ++GPR_idx;
3614         }
3615 
3616         ArgOffset += PtrByteSize;
3617 
3618         continue;
3619       }
3620       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3621         // Store whatever pieces of the object are in registers
3622         // to memory.  ArgOffset will be the address of the beginning
3623         // of the object.
3624         if (GPR_idx != Num_GPR_Regs) {
3625           unsigned VReg;
3626           if (isPPC64)
3627             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3628           else
3629             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3630           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3631           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3632           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3633           SDValue Store =
3634               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3635                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3636           MemOps.push_back(Store);
3637           ++GPR_idx;
3638           ArgOffset += PtrByteSize;
3639         } else {
3640           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3641           break;
3642         }
3643       }
3644       continue;
3645     }
3646 
3647     switch (ObjectVT.getSimpleVT().SimpleTy) {
3648     default: llvm_unreachable("Unhandled argument type!");
3649     case MVT::i1:
3650     case MVT::i32:
3651       if (!isPPC64) {
3652         if (GPR_idx != Num_GPR_Regs) {
3653           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3654           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3655 
3656           if (ObjectVT == MVT::i1)
3657             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3658 
3659           ++GPR_idx;
3660         } else {
3661           needsLoad = true;
3662           ArgSize = PtrByteSize;
3663         }
3664         // All int arguments reserve stack space in the Darwin ABI.
3665         ArgOffset += PtrByteSize;
3666         break;
3667       }
3668       // FALLTHROUGH
3669     case MVT::i64:  // PPC64
3670       if (GPR_idx != Num_GPR_Regs) {
3671         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3672         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3673 
3674         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3675           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3676           // value to MVT::i64 and then truncate to the correct register size.
3677           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3678 
3679         ++GPR_idx;
3680       } else {
3681         needsLoad = true;
3682         ArgSize = PtrByteSize;
3683       }
3684       // All int arguments reserve stack space in the Darwin ABI.
3685       ArgOffset += 8;
3686       break;
3687 
3688     case MVT::f32:
3689     case MVT::f64:
3690       // Every 4 bytes of argument space consumes one of the GPRs available for
3691       // argument passing.
3692       if (GPR_idx != Num_GPR_Regs) {
3693         ++GPR_idx;
3694         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3695           ++GPR_idx;
3696       }
3697       if (FPR_idx != Num_FPR_Regs) {
3698         unsigned VReg;
3699 
3700         if (ObjectVT == MVT::f32)
3701           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3702         else
3703           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3704 
3705         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3706         ++FPR_idx;
3707       } else {
3708         needsLoad = true;
3709       }
3710 
3711       // All FP arguments reserve stack space in the Darwin ABI.
3712       ArgOffset += isPPC64 ? 8 : ObjSize;
3713       break;
3714     case MVT::v4f32:
3715     case MVT::v4i32:
3716     case MVT::v8i16:
3717     case MVT::v16i8:
3718       // Note that vector arguments in registers don't reserve stack space,
3719       // except in varargs functions.
3720       if (VR_idx != Num_VR_Regs) {
3721         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3722         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3723         if (isVarArg) {
3724           while ((ArgOffset % 16) != 0) {
3725             ArgOffset += PtrByteSize;
3726             if (GPR_idx != Num_GPR_Regs)
3727               GPR_idx++;
3728           }
3729           ArgOffset += 16;
3730           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3731         }
3732         ++VR_idx;
3733       } else {
3734         if (!isVarArg && !isPPC64) {
3735           // Vectors go after all the nonvectors.
3736           CurArgOffset = VecArgOffset;
3737           VecArgOffset += 16;
3738         } else {
3739           // Vectors are aligned.
3740           ArgOffset = ((ArgOffset+15)/16)*16;
3741           CurArgOffset = ArgOffset;
3742           ArgOffset += 16;
3743         }
3744         needsLoad = true;
3745       }
3746       break;
3747     }
3748 
3749     // We need to load the argument to a virtual register if we determined above
3750     // that we ran out of physical registers of the appropriate type.
3751     if (needsLoad) {
3752       int FI = MFI->CreateFixedObject(ObjSize,
3753                                       CurArgOffset + (ArgSize - ObjSize),
3754                                       isImmutable);
3755       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3756       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3757                            false, false, false, 0);
3758     }
3759 
3760     InVals.push_back(ArgVal);
3761   }
3762 
3763   // Allow for Altivec parameters at the end, if needed.
3764   if (nAltivecParamsAtEnd) {
3765     MinReservedArea = ((MinReservedArea+15)/16)*16;
3766     MinReservedArea += 16*nAltivecParamsAtEnd;
3767   }
3768 
3769   // Area that is at least reserved in the caller of this function.
3770   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3771 
3772   // Set the size that is at least reserved in caller of this function.  Tail
3773   // call optimized functions' reserved stack space needs to be aligned so that
3774   // taking the difference between two stack areas will result in an aligned
3775   // stack.
3776   MinReservedArea =
3777       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3778   FuncInfo->setMinReservedArea(MinReservedArea);
3779 
3780   // If the function takes variable number of arguments, make a frame index for
3781   // the start of the first vararg value... for expansion of llvm.va_start.
3782   if (isVarArg) {
3783     int Depth = ArgOffset;
3784 
3785     FuncInfo->setVarArgsFrameIndex(
3786       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3787                              Depth, true));
3788     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3789 
3790     // If this function is vararg, store any remaining integer argument regs
3791     // to their spots on the stack so that they may be loaded by deferencing the
3792     // result of va_next.
3793     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3794       unsigned VReg;
3795 
3796       if (isPPC64)
3797         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3798       else
3799         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3800 
3801       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3802       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3803                                    MachinePointerInfo(), false, false, 0);
3804       MemOps.push_back(Store);
3805       // Increment the address by four for the next argument to store
3806       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3807       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3808     }
3809   }
3810 
3811   if (!MemOps.empty())
3812     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3813 
3814   return Chain;
3815 }
3816 
3817 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3818 /// adjusted to accommodate the arguments for the tailcall.
3819 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3820                                    unsigned ParamSize) {
3821 
3822   if (!isTailCall) return 0;
3823 
3824   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3825   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3826   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3827   // Remember only if the new adjustement is bigger.
3828   if (SPDiff < FI->getTailCallSPDelta())
3829     FI->setTailCallSPDelta(SPDiff);
3830 
3831   return SPDiff;
3832 }
3833 
3834 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3835 /// for tail call optimization. Targets which want to do tail call
3836 /// optimization should implement this function.
3837 bool
3838 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3839                                                      CallingConv::ID CalleeCC,
3840                                                      bool isVarArg,
3841                                       const SmallVectorImpl<ISD::InputArg> &Ins,
3842                                                      SelectionDAG& DAG) const {
3843   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3844     return false;
3845 
3846   // Variable argument functions are not supported.
3847   if (isVarArg)
3848     return false;
3849 
3850   MachineFunction &MF = DAG.getMachineFunction();
3851   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3852   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3853     // Functions containing by val parameters are not supported.
3854     for (unsigned i = 0; i != Ins.size(); i++) {
3855        ISD::ArgFlagsTy Flags = Ins[i].Flags;
3856        if (Flags.isByVal()) return false;
3857     }
3858 
3859     // Non-PIC/GOT tail calls are supported.
3860     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3861       return true;
3862 
3863     // At the moment we can only do local tail calls (in same module, hidden
3864     // or protected) if we are generating PIC.
3865     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3866       return G->getGlobal()->hasHiddenVisibility()
3867           || G->getGlobal()->hasProtectedVisibility();
3868   }
3869 
3870   return false;
3871 }
3872 
3873 /// isCallCompatibleAddress - Return the immediate to use if the specified
3874 /// 32-bit value is representable in the immediate field of a BxA instruction.
3875 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3876   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3877   if (!C) return nullptr;
3878 
3879   int Addr = C->getZExtValue();
3880   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3881       SignExtend32<26>(Addr) != Addr)
3882     return nullptr;  // Top 6 bits have to be sext of immediate.
3883 
3884   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
3885                          DAG.getTargetLoweringInfo().getPointerTy(
3886                              DAG.getDataLayout())).getNode();
3887 }
3888 
3889 namespace {
3890 
3891 struct TailCallArgumentInfo {
3892   SDValue Arg;
3893   SDValue FrameIdxOp;
3894   int       FrameIdx;
3895 
3896   TailCallArgumentInfo() : FrameIdx(0) {}
3897 };
3898 }
3899 
3900 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3901 static void
3902 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3903                                            SDValue Chain,
3904                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3905                    SmallVectorImpl<SDValue> &MemOpChains,
3906                    SDLoc dl) {
3907   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3908     SDValue Arg = TailCallArgs[i].Arg;
3909     SDValue FIN = TailCallArgs[i].FrameIdxOp;
3910     int FI = TailCallArgs[i].FrameIdx;
3911     // Store relative to framepointer.
3912     MemOpChains.push_back(DAG.getStore(
3913         Chain, dl, Arg, FIN,
3914         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3915         false, 0));
3916   }
3917 }
3918 
3919 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3920 /// the appropriate stack slot for the tail call optimized function call.
3921 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3922                                                MachineFunction &MF,
3923                                                SDValue Chain,
3924                                                SDValue OldRetAddr,
3925                                                SDValue OldFP,
3926                                                int SPDiff,
3927                                                bool isPPC64,
3928                                                bool isDarwinABI,
3929                                                SDLoc dl) {
3930   if (SPDiff) {
3931     // Calculate the new stack slot for the return address.
3932     int SlotSize = isPPC64 ? 8 : 4;
3933     const PPCFrameLowering *FL =
3934         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
3935     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
3936     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3937                                                           NewRetAddrLoc, true);
3938     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3939     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3940     Chain = DAG.getStore(
3941         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3942         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
3943         false, false, 0);
3944 
3945     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3946     // slot as the FP is never overwritten.
3947     if (isDarwinABI) {
3948       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
3949       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3950                                                           true);
3951       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3952       Chain = DAG.getStore(
3953           Chain, dl, OldFP, NewFramePtrIdx,
3954           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
3955           false, false, 0);
3956     }
3957   }
3958   return Chain;
3959 }
3960 
3961 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3962 /// the position of the argument.
3963 static void
3964 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3965                          SDValue Arg, int SPDiff, unsigned ArgOffset,
3966                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3967   int Offset = ArgOffset + SPDiff;
3968   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3969   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3970   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3971   SDValue FIN = DAG.getFrameIndex(FI, VT);
3972   TailCallArgumentInfo Info;
3973   Info.Arg = Arg;
3974   Info.FrameIdxOp = FIN;
3975   Info.FrameIdx = FI;
3976   TailCallArguments.push_back(Info);
3977 }
3978 
3979 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3980 /// stack slot. Returns the chain as result and the loaded frame pointers in
3981 /// LROpOut/FPOpout. Used when tail calling.
3982 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3983                                                         int SPDiff,
3984                                                         SDValue Chain,
3985                                                         SDValue &LROpOut,
3986                                                         SDValue &FPOpOut,
3987                                                         bool isDarwinABI,
3988                                                         SDLoc dl) const {
3989   if (SPDiff) {
3990     // Load the LR and FP stack slot for later adjusting.
3991     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3992     LROpOut = getReturnAddrFrameIndex(DAG);
3993     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3994                           false, false, false, 0);
3995     Chain = SDValue(LROpOut.getNode(), 1);
3996 
3997     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3998     // slot as the FP is never overwritten.
3999     if (isDarwinABI) {
4000       FPOpOut = getFramePointerFrameIndex(DAG);
4001       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4002                             false, false, false, 0);
4003       Chain = SDValue(FPOpOut.getNode(), 1);
4004     }
4005   }
4006   return Chain;
4007 }
4008 
4009 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4010 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4011 /// specified by the specific parameter attribute. The copy will be passed as
4012 /// a byval function parameter.
4013 /// Sometimes what we are copying is the end of a larger object, the part that
4014 /// does not fit in registers.
4015 static SDValue
4016 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
4017                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
4018                           SDLoc dl) {
4019   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4020   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4021                        false, false, false, MachinePointerInfo(),
4022                        MachinePointerInfo());
4023 }
4024 
4025 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4026 /// tail calls.
4027 static void
4028 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
4029                  SDValue Arg, SDValue PtrOff, int SPDiff,
4030                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
4031                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4032                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
4033                  SDLoc dl) {
4034   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4035   if (!isTailCall) {
4036     if (isVector) {
4037       SDValue StackPtr;
4038       if (isPPC64)
4039         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4040       else
4041         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4042       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4043                            DAG.getConstant(ArgOffset, dl, PtrVT));
4044     }
4045     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4046                                        MachinePointerInfo(), false, false, 0));
4047   // Calculate and remember argument location.
4048   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4049                                   TailCallArguments);
4050 }
4051 
4052 static
4053 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4054                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4055                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
4056                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4057   MachineFunction &MF = DAG.getMachineFunction();
4058 
4059   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4060   // might overwrite each other in case of tail call optimization.
4061   SmallVector<SDValue, 8> MemOpChains2;
4062   // Do not flag preceding copytoreg stuff together with the following stuff.
4063   InFlag = SDValue();
4064   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4065                                     MemOpChains2, dl);
4066   if (!MemOpChains2.empty())
4067     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4068 
4069   // Store the return address to the appropriate stack slot.
4070   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4071                                         isPPC64, isDarwinABI, dl);
4072 
4073   // Emit callseq_end just before tailcall node.
4074   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4075                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4076   InFlag = Chain.getValue(1);
4077 }
4078 
4079 // Is this global address that of a function that can be called by name? (as
4080 // opposed to something that must hold a descriptor for an indirect call).
4081 static bool isFunctionGlobalAddress(SDValue Callee) {
4082   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4083     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4084         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4085       return false;
4086 
4087     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
4088   }
4089 
4090   return false;
4091 }
4092 
4093 static
4094 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
4095                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
4096                      bool isTailCall, bool IsPatchPoint, bool hasNest,
4097                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
4098                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4099                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4100 
4101   bool isPPC64 = Subtarget.isPPC64();
4102   bool isSVR4ABI = Subtarget.isSVR4ABI();
4103   bool isELFv2ABI = Subtarget.isELFv2ABI();
4104 
4105   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4106   NodeTys.push_back(MVT::Other);   // Returns a chain
4107   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4108 
4109   unsigned CallOpc = PPCISD::CALL;
4110 
4111   bool needIndirectCall = true;
4112   if (!isSVR4ABI || !isPPC64)
4113     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4114       // If this is an absolute destination address, use the munged value.
4115       Callee = SDValue(Dest, 0);
4116       needIndirectCall = false;
4117     }
4118 
4119   if (isFunctionGlobalAddress(Callee)) {
4120     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4121     // A call to a TLS address is actually an indirect call to a
4122     // thread-specific pointer.
4123     unsigned OpFlags = 0;
4124     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4125          (Subtarget.getTargetTriple().isMacOSX() &&
4126           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
4127          !G->getGlobal()->isStrongDefinitionForLinker()) ||
4128         (Subtarget.isTargetELF() && !isPPC64 &&
4129          !G->getGlobal()->hasLocalLinkage() &&
4130          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4131       // PC-relative references to external symbols should go through $stub,
4132       // unless we're building with the leopard linker or later, which
4133       // automatically synthesizes these stubs.
4134       OpFlags = PPCII::MO_PLT_OR_STUB;
4135     }
4136 
4137     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4138     // every direct call is) turn it into a TargetGlobalAddress /
4139     // TargetExternalSymbol node so that legalize doesn't hack it.
4140     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4141                                         Callee.getValueType(), 0, OpFlags);
4142     needIndirectCall = false;
4143   }
4144 
4145   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4146     unsigned char OpFlags = 0;
4147 
4148     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4149          (Subtarget.getTargetTriple().isMacOSX() &&
4150           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
4151         (Subtarget.isTargetELF() && !isPPC64 &&
4152          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4153       // PC-relative references to external symbols should go through $stub,
4154       // unless we're building with the leopard linker or later, which
4155       // automatically synthesizes these stubs.
4156       OpFlags = PPCII::MO_PLT_OR_STUB;
4157     }
4158 
4159     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4160                                          OpFlags);
4161     needIndirectCall = false;
4162   }
4163 
4164   if (IsPatchPoint) {
4165     // We'll form an invalid direct call when lowering a patchpoint; the full
4166     // sequence for an indirect call is complicated, and many of the
4167     // instructions introduced might have side effects (and, thus, can't be
4168     // removed later). The call itself will be removed as soon as the
4169     // argument/return lowering is complete, so the fact that it has the wrong
4170     // kind of operands should not really matter.
4171     needIndirectCall = false;
4172   }
4173 
4174   if (needIndirectCall) {
4175     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4176     // to do the call, we can't use PPCISD::CALL.
4177     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4178 
4179     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4180       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4181       // entry point, but to the function descriptor (the function entry point
4182       // address is part of the function descriptor though).
4183       // The function descriptor is a three doubleword structure with the
4184       // following fields: function entry point, TOC base address and
4185       // environment pointer.
4186       // Thus for a call through a function pointer, the following actions need
4187       // to be performed:
4188       //   1. Save the TOC of the caller in the TOC save area of its stack
4189       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4190       //   2. Load the address of the function entry point from the function
4191       //      descriptor.
4192       //   3. Load the TOC of the callee from the function descriptor into r2.
4193       //   4. Load the environment pointer from the function descriptor into
4194       //      r11.
4195       //   5. Branch to the function entry point address.
4196       //   6. On return of the callee, the TOC of the caller needs to be
4197       //      restored (this is done in FinishCall()).
4198       //
4199       // The loads are scheduled at the beginning of the call sequence, and the
4200       // register copies are flagged together to ensure that no other
4201       // operations can be scheduled in between. E.g. without flagging the
4202       // copies together, a TOC access in the caller could be scheduled between
4203       // the assignment of the callee TOC and the branch to the callee, which
4204       // results in the TOC access going through the TOC of the callee instead
4205       // of going through the TOC of the caller, which leads to incorrect code.
4206 
4207       // Load the address of the function entry point from the function
4208       // descriptor.
4209       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4210       if (LDChain.getValueType() == MVT::Glue)
4211         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4212 
4213       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4214 
4215       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4216       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4217                                         false, false, LoadsInv, 8);
4218 
4219       // Load environment pointer into r11.
4220       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4221       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4222       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4223                                        MPI.getWithOffset(16), false, false,
4224                                        LoadsInv, 8);
4225 
4226       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4227       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4228       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4229                                    MPI.getWithOffset(8), false, false,
4230                                    LoadsInv, 8);
4231 
4232       setUsesTOCBasePtr(DAG);
4233       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4234                                         InFlag);
4235       Chain = TOCVal.getValue(0);
4236       InFlag = TOCVal.getValue(1);
4237 
4238       // If the function call has an explicit 'nest' parameter, it takes the
4239       // place of the environment pointer.
4240       if (!hasNest) {
4241         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4242                                           InFlag);
4243 
4244         Chain = EnvVal.getValue(0);
4245         InFlag = EnvVal.getValue(1);
4246       }
4247 
4248       MTCTROps[0] = Chain;
4249       MTCTROps[1] = LoadFuncPtr;
4250       MTCTROps[2] = InFlag;
4251     }
4252 
4253     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4254                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4255     InFlag = Chain.getValue(1);
4256 
4257     NodeTys.clear();
4258     NodeTys.push_back(MVT::Other);
4259     NodeTys.push_back(MVT::Glue);
4260     Ops.push_back(Chain);
4261     CallOpc = PPCISD::BCTRL;
4262     Callee.setNode(nullptr);
4263     // Add use of X11 (holding environment pointer)
4264     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4265       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4266     // Add CTR register as callee so a bctr can be emitted later.
4267     if (isTailCall)
4268       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4269   }
4270 
4271   // If this is a direct call, pass the chain and the callee.
4272   if (Callee.getNode()) {
4273     Ops.push_back(Chain);
4274     Ops.push_back(Callee);
4275   }
4276   // If this is a tail call add stack pointer delta.
4277   if (isTailCall)
4278     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4279 
4280   // Add argument registers to the end of the list so that they are known live
4281   // into the call.
4282   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4283     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4284                                   RegsToPass[i].second.getValueType()));
4285 
4286   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4287   // into the call.
4288   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4289     setUsesTOCBasePtr(DAG);
4290     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4291   }
4292 
4293   return CallOpc;
4294 }
4295 
4296 static
4297 bool isLocalCall(const SDValue &Callee)
4298 {
4299   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4300     return G->getGlobal()->isStrongDefinitionForLinker();
4301   return false;
4302 }
4303 
4304 SDValue
4305 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4306                                    CallingConv::ID CallConv, bool isVarArg,
4307                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4308                                    SDLoc dl, SelectionDAG &DAG,
4309                                    SmallVectorImpl<SDValue> &InVals) const {
4310 
4311   SmallVector<CCValAssign, 16> RVLocs;
4312   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4313                     *DAG.getContext());
4314   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4315 
4316   // Copy all of the result registers out of their specified physreg.
4317   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4318     CCValAssign &VA = RVLocs[i];
4319     assert(VA.isRegLoc() && "Can only return in registers!");
4320 
4321     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4322                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4323     Chain = Val.getValue(1);
4324     InFlag = Val.getValue(2);
4325 
4326     switch (VA.getLocInfo()) {
4327     default: llvm_unreachable("Unknown loc info!");
4328     case CCValAssign::Full: break;
4329     case CCValAssign::AExt:
4330       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4331       break;
4332     case CCValAssign::ZExt:
4333       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4334                         DAG.getValueType(VA.getValVT()));
4335       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4336       break;
4337     case CCValAssign::SExt:
4338       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4339                         DAG.getValueType(VA.getValVT()));
4340       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4341       break;
4342     }
4343 
4344     InVals.push_back(Val);
4345   }
4346 
4347   return Chain;
4348 }
4349 
4350 SDValue
4351 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4352                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
4353                               bool hasNest, SelectionDAG &DAG,
4354                               SmallVector<std::pair<unsigned, SDValue>, 8>
4355                                 &RegsToPass,
4356                               SDValue InFlag, SDValue Chain,
4357                               SDValue CallSeqStart, SDValue &Callee,
4358                               int SPDiff, unsigned NumBytes,
4359                               const SmallVectorImpl<ISD::InputArg> &Ins,
4360                               SmallVectorImpl<SDValue> &InVals,
4361                               ImmutableCallSite *CS) const {
4362 
4363   std::vector<EVT> NodeTys;
4364   SmallVector<SDValue, 8> Ops;
4365   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4366                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4367                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4368 
4369   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4370   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4371     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4372 
4373   // When performing tail call optimization the callee pops its arguments off
4374   // the stack. Account for this here so these bytes can be pushed back on in
4375   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4376   int BytesCalleePops =
4377     (CallConv == CallingConv::Fast &&
4378      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4379 
4380   // Add a register mask operand representing the call-preserved registers.
4381   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4382   const uint32_t *Mask =
4383       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4384   assert(Mask && "Missing call preserved mask for calling convention");
4385   Ops.push_back(DAG.getRegisterMask(Mask));
4386 
4387   if (InFlag.getNode())
4388     Ops.push_back(InFlag);
4389 
4390   // Emit tail call.
4391   if (isTailCall) {
4392     assert(((Callee.getOpcode() == ISD::Register &&
4393              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4394             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4395             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4396             isa<ConstantSDNode>(Callee)) &&
4397     "Expecting an global address, external symbol, absolute value or register");
4398 
4399     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4400     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4401   }
4402 
4403   // Add a NOP immediately after the branch instruction when using the 64-bit
4404   // SVR4 ABI. At link time, if caller and callee are in a different module and
4405   // thus have a different TOC, the call will be replaced with a call to a stub
4406   // function which saves the current TOC, loads the TOC of the callee and
4407   // branches to the callee. The NOP will be replaced with a load instruction
4408   // which restores the TOC of the caller from the TOC save slot of the current
4409   // stack frame. If caller and callee belong to the same module (and have the
4410   // same TOC), the NOP will remain unchanged.
4411 
4412   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4413       !IsPatchPoint) {
4414     if (CallOpc == PPCISD::BCTRL) {
4415       // This is a call through a function pointer.
4416       // Restore the caller TOC from the save area into R2.
4417       // See PrepareCall() for more information about calls through function
4418       // pointers in the 64-bit SVR4 ABI.
4419       // We are using a target-specific load with r2 hard coded, because the
4420       // result of a target-independent load would never go directly into r2,
4421       // since r2 is a reserved register (which prevents the register allocator
4422       // from allocating it), resulting in an additional register being
4423       // allocated and an unnecessary move instruction being generated.
4424       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4425 
4426       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4427       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4428       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4429       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4430       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4431 
4432       // The address needs to go after the chain input but before the flag (or
4433       // any other variadic arguments).
4434       Ops.insert(std::next(Ops.begin()), AddTOC);
4435     } else if ((CallOpc == PPCISD::CALL) &&
4436                (!isLocalCall(Callee) ||
4437                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4438       // Otherwise insert NOP for non-local calls.
4439       CallOpc = PPCISD::CALL_NOP;
4440   }
4441 
4442   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4443   InFlag = Chain.getValue(1);
4444 
4445   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4446                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4447                              InFlag, dl);
4448   if (!Ins.empty())
4449     InFlag = Chain.getValue(1);
4450 
4451   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4452                          Ins, dl, DAG, InVals);
4453 }
4454 
4455 SDValue
4456 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4457                              SmallVectorImpl<SDValue> &InVals) const {
4458   SelectionDAG &DAG                     = CLI.DAG;
4459   SDLoc &dl                             = CLI.DL;
4460   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4461   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4462   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4463   SDValue Chain                         = CLI.Chain;
4464   SDValue Callee                        = CLI.Callee;
4465   bool &isTailCall                      = CLI.IsTailCall;
4466   CallingConv::ID CallConv              = CLI.CallConv;
4467   bool isVarArg                         = CLI.IsVarArg;
4468   bool IsPatchPoint                     = CLI.IsPatchPoint;
4469   ImmutableCallSite *CS                 = CLI.CS;
4470 
4471   if (isTailCall)
4472     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4473                                                    Ins, DAG);
4474 
4475   if (!isTailCall && CS && CS->isMustTailCall())
4476     report_fatal_error("failed to perform tail call elimination on a call "
4477                        "site marked musttail");
4478 
4479   if (Subtarget.isSVR4ABI()) {
4480     if (Subtarget.isPPC64())
4481       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4482                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4483                               dl, DAG, InVals, CS);
4484     else
4485       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4486                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4487                               dl, DAG, InVals, CS);
4488   }
4489 
4490   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4491                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4492                           dl, DAG, InVals, CS);
4493 }
4494 
4495 SDValue
4496 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4497                                     CallingConv::ID CallConv, bool isVarArg,
4498                                     bool isTailCall, bool IsPatchPoint,
4499                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4500                                     const SmallVectorImpl<SDValue> &OutVals,
4501                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4502                                     SDLoc dl, SelectionDAG &DAG,
4503                                     SmallVectorImpl<SDValue> &InVals,
4504                                     ImmutableCallSite *CS) const {
4505   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4506   // of the 32-bit SVR4 ABI stack frame layout.
4507 
4508   assert((CallConv == CallingConv::C ||
4509           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4510 
4511   unsigned PtrByteSize = 4;
4512 
4513   MachineFunction &MF = DAG.getMachineFunction();
4514 
4515   // Mark this function as potentially containing a function that contains a
4516   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4517   // and restoring the callers stack pointer in this functions epilog. This is
4518   // done because by tail calling the called function might overwrite the value
4519   // in this function's (MF) stack pointer stack slot 0(SP).
4520   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4521       CallConv == CallingConv::Fast)
4522     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4523 
4524   // Count how many bytes are to be pushed on the stack, including the linkage
4525   // area, parameter list area and the part of the local variable space which
4526   // contains copies of aggregates which are passed by value.
4527 
4528   // Assign locations to all of the outgoing arguments.
4529   SmallVector<CCValAssign, 16> ArgLocs;
4530   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4531                  *DAG.getContext());
4532 
4533   // Reserve space for the linkage area on the stack.
4534   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4535                        PtrByteSize);
4536 
4537   if (isVarArg) {
4538     // Handle fixed and variable vector arguments differently.
4539     // Fixed vector arguments go into registers as long as registers are
4540     // available. Variable vector arguments always go into memory.
4541     unsigned NumArgs = Outs.size();
4542 
4543     for (unsigned i = 0; i != NumArgs; ++i) {
4544       MVT ArgVT = Outs[i].VT;
4545       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4546       bool Result;
4547 
4548       if (Outs[i].IsFixed) {
4549         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4550                                CCInfo);
4551       } else {
4552         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4553                                       ArgFlags, CCInfo);
4554       }
4555 
4556       if (Result) {
4557 #ifndef NDEBUG
4558         errs() << "Call operand #" << i << " has unhandled type "
4559              << EVT(ArgVT).getEVTString() << "\n";
4560 #endif
4561         llvm_unreachable(nullptr);
4562       }
4563     }
4564   } else {
4565     // All arguments are treated the same.
4566     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4567   }
4568 
4569   // Assign locations to all of the outgoing aggregate by value arguments.
4570   SmallVector<CCValAssign, 16> ByValArgLocs;
4571   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4572                       ByValArgLocs, *DAG.getContext());
4573 
4574   // Reserve stack space for the allocations in CCInfo.
4575   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4576 
4577   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4578 
4579   // Size of the linkage area, parameter list area and the part of the local
4580   // space variable where copies of aggregates which are passed by value are
4581   // stored.
4582   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4583 
4584   // Calculate by how many bytes the stack has to be adjusted in case of tail
4585   // call optimization.
4586   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4587 
4588   // Adjust the stack pointer for the new arguments...
4589   // These operations are automatically eliminated by the prolog/epilog pass
4590   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4591                                dl);
4592   SDValue CallSeqStart = Chain;
4593 
4594   // Load the return address and frame pointer so it can be moved somewhere else
4595   // later.
4596   SDValue LROp, FPOp;
4597   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4598                                        dl);
4599 
4600   // Set up a copy of the stack pointer for use loading and storing any
4601   // arguments that may not fit in the registers available for argument
4602   // passing.
4603   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4604 
4605   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4606   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4607   SmallVector<SDValue, 8> MemOpChains;
4608 
4609   bool seenFloatArg = false;
4610   // Walk the register/memloc assignments, inserting copies/loads.
4611   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4612        i != e;
4613        ++i) {
4614     CCValAssign &VA = ArgLocs[i];
4615     SDValue Arg = OutVals[i];
4616     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4617 
4618     if (Flags.isByVal()) {
4619       // Argument is an aggregate which is passed by value, thus we need to
4620       // create a copy of it in the local variable space of the current stack
4621       // frame (which is the stack frame of the caller) and pass the address of
4622       // this copy to the callee.
4623       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4624       CCValAssign &ByValVA = ByValArgLocs[j++];
4625       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4626 
4627       // Memory reserved in the local variable space of the callers stack frame.
4628       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4629 
4630       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4631       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4632                            StackPtr, PtrOff);
4633 
4634       // Create a copy of the argument in the local area of the current
4635       // stack frame.
4636       SDValue MemcpyCall =
4637         CreateCopyOfByValArgument(Arg, PtrOff,
4638                                   CallSeqStart.getNode()->getOperand(0),
4639                                   Flags, DAG, dl);
4640 
4641       // This must go outside the CALLSEQ_START..END.
4642       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4643                            CallSeqStart.getNode()->getOperand(1),
4644                            SDLoc(MemcpyCall));
4645       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4646                              NewCallSeqStart.getNode());
4647       Chain = CallSeqStart = NewCallSeqStart;
4648 
4649       // Pass the address of the aggregate copy on the stack either in a
4650       // physical register or in the parameter list area of the current stack
4651       // frame to the callee.
4652       Arg = PtrOff;
4653     }
4654 
4655     if (VA.isRegLoc()) {
4656       if (Arg.getValueType() == MVT::i1)
4657         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4658 
4659       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4660       // Put argument in a physical register.
4661       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4662     } else {
4663       // Put argument in the parameter list area of the current stack frame.
4664       assert(VA.isMemLoc());
4665       unsigned LocMemOffset = VA.getLocMemOffset();
4666 
4667       if (!isTailCall) {
4668         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4669         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4670                              StackPtr, PtrOff);
4671 
4672         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4673                                            MachinePointerInfo(),
4674                                            false, false, 0));
4675       } else {
4676         // Calculate and remember argument location.
4677         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4678                                  TailCallArguments);
4679       }
4680     }
4681   }
4682 
4683   if (!MemOpChains.empty())
4684     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4685 
4686   // Build a sequence of copy-to-reg nodes chained together with token chain
4687   // and flag operands which copy the outgoing args into the appropriate regs.
4688   SDValue InFlag;
4689   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4690     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4691                              RegsToPass[i].second, InFlag);
4692     InFlag = Chain.getValue(1);
4693   }
4694 
4695   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4696   // registers.
4697   if (isVarArg) {
4698     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4699     SDValue Ops[] = { Chain, InFlag };
4700 
4701     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4702                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4703 
4704     InFlag = Chain.getValue(1);
4705   }
4706 
4707   if (isTailCall)
4708     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4709                     false, TailCallArguments);
4710 
4711   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4712                     /* unused except on PPC64 ELFv1 */ false, DAG,
4713                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4714                     NumBytes, Ins, InVals, CS);
4715 }
4716 
4717 // Copy an argument into memory, being careful to do this outside the
4718 // call sequence for the call to which the argument belongs.
4719 SDValue
4720 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4721                                               SDValue CallSeqStart,
4722                                               ISD::ArgFlagsTy Flags,
4723                                               SelectionDAG &DAG,
4724                                               SDLoc dl) const {
4725   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4726                         CallSeqStart.getNode()->getOperand(0),
4727                         Flags, DAG, dl);
4728   // The MEMCPY must go outside the CALLSEQ_START..END.
4729   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4730                              CallSeqStart.getNode()->getOperand(1),
4731                              SDLoc(MemcpyCall));
4732   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4733                          NewCallSeqStart.getNode());
4734   return NewCallSeqStart;
4735 }
4736 
4737 SDValue
4738 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4739                                     CallingConv::ID CallConv, bool isVarArg,
4740                                     bool isTailCall, bool IsPatchPoint,
4741                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4742                                     const SmallVectorImpl<SDValue> &OutVals,
4743                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4744                                     SDLoc dl, SelectionDAG &DAG,
4745                                     SmallVectorImpl<SDValue> &InVals,
4746                                     ImmutableCallSite *CS) const {
4747 
4748   bool isELFv2ABI = Subtarget.isELFv2ABI();
4749   bool isLittleEndian = Subtarget.isLittleEndian();
4750   unsigned NumOps = Outs.size();
4751   bool hasNest = false;
4752 
4753   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4754   unsigned PtrByteSize = 8;
4755 
4756   MachineFunction &MF = DAG.getMachineFunction();
4757 
4758   // Mark this function as potentially containing a function that contains a
4759   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4760   // and restoring the callers stack pointer in this functions epilog. This is
4761   // done because by tail calling the called function might overwrite the value
4762   // in this function's (MF) stack pointer stack slot 0(SP).
4763   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4764       CallConv == CallingConv::Fast)
4765     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4766 
4767   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4768          "fastcc not supported on varargs functions");
4769 
4770   // Count how many bytes are to be pushed on the stack, including the linkage
4771   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4772   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4773   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4774   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4775   unsigned NumBytes = LinkageSize;
4776   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4777   unsigned &QFPR_idx = FPR_idx;
4778 
4779   static const MCPhysReg GPR[] = {
4780     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4781     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4782   };
4783   static const MCPhysReg VR[] = {
4784     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4785     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4786   };
4787   static const MCPhysReg VSRH[] = {
4788     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4789     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4790   };
4791 
4792   const unsigned NumGPRs = array_lengthof(GPR);
4793   const unsigned NumFPRs = 13;
4794   const unsigned NumVRs  = array_lengthof(VR);
4795   const unsigned NumQFPRs = NumFPRs;
4796 
4797   // When using the fast calling convention, we don't provide backing for
4798   // arguments that will be in registers.
4799   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4800 
4801   // Add up all the space actually used.
4802   for (unsigned i = 0; i != NumOps; ++i) {
4803     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4804     EVT ArgVT = Outs[i].VT;
4805     EVT OrigVT = Outs[i].ArgVT;
4806 
4807     if (Flags.isNest())
4808       continue;
4809 
4810     if (CallConv == CallingConv::Fast) {
4811       if (Flags.isByVal())
4812         NumGPRsUsed += (Flags.getByValSize()+7)/8;
4813       else
4814         switch (ArgVT.getSimpleVT().SimpleTy) {
4815         default: llvm_unreachable("Unexpected ValueType for argument!");
4816         case MVT::i1:
4817         case MVT::i32:
4818         case MVT::i64:
4819           if (++NumGPRsUsed <= NumGPRs)
4820             continue;
4821           break;
4822         case MVT::v4i32:
4823         case MVT::v8i16:
4824         case MVT::v16i8:
4825         case MVT::v2f64:
4826         case MVT::v2i64:
4827         case MVT::v1i128:
4828           if (++NumVRsUsed <= NumVRs)
4829             continue;
4830           break;
4831         case MVT::v4f32:
4832           // When using QPX, this is handled like a FP register, otherwise, it
4833           // is an Altivec register.
4834           if (Subtarget.hasQPX()) {
4835             if (++NumFPRsUsed <= NumFPRs)
4836               continue;
4837           } else {
4838             if (++NumVRsUsed <= NumVRs)
4839               continue;
4840           }
4841           break;
4842         case MVT::f32:
4843         case MVT::f64:
4844         case MVT::v4f64: // QPX
4845         case MVT::v4i1:  // QPX
4846           if (++NumFPRsUsed <= NumFPRs)
4847             continue;
4848           break;
4849         }
4850     }
4851 
4852     /* Respect alignment of argument on the stack.  */
4853     unsigned Align =
4854       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4855     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
4856 
4857     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4858     if (Flags.isInConsecutiveRegsLast())
4859       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4860   }
4861 
4862   unsigned NumBytesActuallyUsed = NumBytes;
4863 
4864   // The prolog code of the callee may store up to 8 GPR argument registers to
4865   // the stack, allowing va_start to index over them in memory if its varargs.
4866   // Because we cannot tell if this is needed on the caller side, we have to
4867   // conservatively assume that it is needed.  As such, make sure we have at
4868   // least enough stack space for the caller to store the 8 GPRs.
4869   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
4870   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4871 
4872   // Tail call needs the stack to be aligned.
4873   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4874       CallConv == CallingConv::Fast)
4875     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
4876 
4877   // Calculate by how many bytes the stack has to be adjusted in case of tail
4878   // call optimization.
4879   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4880 
4881   // To protect arguments on the stack from being clobbered in a tail call,
4882   // force all the loads to happen before doing any other lowering.
4883   if (isTailCall)
4884     Chain = DAG.getStackArgumentTokenFactor(Chain);
4885 
4886   // Adjust the stack pointer for the new arguments...
4887   // These operations are automatically eliminated by the prolog/epilog pass
4888   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4889                                dl);
4890   SDValue CallSeqStart = Chain;
4891 
4892   // Load the return address and frame pointer so it can be move somewhere else
4893   // later.
4894   SDValue LROp, FPOp;
4895   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4896                                        dl);
4897 
4898   // Set up a copy of the stack pointer for use loading and storing any
4899   // arguments that may not fit in the registers available for argument
4900   // passing.
4901   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4902 
4903   // Figure out which arguments are going to go in registers, and which in
4904   // memory.  Also, if this is a vararg function, floating point operations
4905   // must be stored to our stack, and loaded into integer regs as well, if
4906   // any integer regs are available for argument passing.
4907   unsigned ArgOffset = LinkageSize;
4908 
4909   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4910   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4911 
4912   SmallVector<SDValue, 8> MemOpChains;
4913   for (unsigned i = 0; i != NumOps; ++i) {
4914     SDValue Arg = OutVals[i];
4915     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4916     EVT ArgVT = Outs[i].VT;
4917     EVT OrigVT = Outs[i].ArgVT;
4918 
4919     // PtrOff will be used to store the current argument to the stack if a
4920     // register cannot be found for it.
4921     SDValue PtrOff;
4922 
4923     // We re-align the argument offset for each argument, except when using the
4924     // fast calling convention, when we need to make sure we do that only when
4925     // we'll actually use a stack slot.
4926     auto ComputePtrOff = [&]() {
4927       /* Respect alignment of argument on the stack.  */
4928       unsigned Align =
4929         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4930       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4931 
4932       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
4933 
4934       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4935     };
4936 
4937     if (CallConv != CallingConv::Fast) {
4938       ComputePtrOff();
4939 
4940       /* Compute GPR index associated with argument offset.  */
4941       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4942       GPR_idx = std::min(GPR_idx, NumGPRs);
4943     }
4944 
4945     // Promote integers to 64-bit values.
4946     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4947       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4948       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4949       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4950     }
4951 
4952     // FIXME memcpy is used way more than necessary.  Correctness first.
4953     // Note: "by value" is code for passing a structure by value, not
4954     // basic types.
4955     if (Flags.isByVal()) {
4956       // Note: Size includes alignment padding, so
4957       //   struct x { short a; char b; }
4958       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4959       // These are the proper values we need for right-justifying the
4960       // aggregate in a parameter register.
4961       unsigned Size = Flags.getByValSize();
4962 
4963       // An empty aggregate parameter takes up no storage and no
4964       // registers.
4965       if (Size == 0)
4966         continue;
4967 
4968       if (CallConv == CallingConv::Fast)
4969         ComputePtrOff();
4970 
4971       // All aggregates smaller than 8 bytes must be passed right-justified.
4972       if (Size==1 || Size==2 || Size==4) {
4973         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4974         if (GPR_idx != NumGPRs) {
4975           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4976                                         MachinePointerInfo(), VT,
4977                                         false, false, false, 0);
4978           MemOpChains.push_back(Load.getValue(1));
4979           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4980 
4981           ArgOffset += PtrByteSize;
4982           continue;
4983         }
4984       }
4985 
4986       if (GPR_idx == NumGPRs && Size < 8) {
4987         SDValue AddPtr = PtrOff;
4988         if (!isLittleEndian) {
4989           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
4990                                           PtrOff.getValueType());
4991           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4992         }
4993         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4994                                                           CallSeqStart,
4995                                                           Flags, DAG, dl);
4996         ArgOffset += PtrByteSize;
4997         continue;
4998       }
4999       // Copy entire object into memory.  There are cases where gcc-generated
5000       // code assumes it is there, even if it could be put entirely into
5001       // registers.  (This is not what the doc says.)
5002 
5003       // FIXME: The above statement is likely due to a misunderstanding of the
5004       // documents.  All arguments must be copied into the parameter area BY
5005       // THE CALLEE in the event that the callee takes the address of any
5006       // formal argument.  That has not yet been implemented.  However, it is
5007       // reasonable to use the stack area as a staging area for the register
5008       // load.
5009 
5010       // Skip this for small aggregates, as we will use the same slot for a
5011       // right-justified copy, below.
5012       if (Size >= 8)
5013         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5014                                                           CallSeqStart,
5015                                                           Flags, DAG, dl);
5016 
5017       // When a register is available, pass a small aggregate right-justified.
5018       if (Size < 8 && GPR_idx != NumGPRs) {
5019         // The easiest way to get this right-justified in a register
5020         // is to copy the structure into the rightmost portion of a
5021         // local variable slot, then load the whole slot into the
5022         // register.
5023         // FIXME: The memcpy seems to produce pretty awful code for
5024         // small aggregates, particularly for packed ones.
5025         // FIXME: It would be preferable to use the slot in the
5026         // parameter save area instead of a new local variable.
5027         SDValue AddPtr = PtrOff;
5028         if (!isLittleEndian) {
5029           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5030           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5031         }
5032         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5033                                                           CallSeqStart,
5034                                                           Flags, DAG, dl);
5035 
5036         // Load the slot into the register.
5037         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5038                                    MachinePointerInfo(),
5039                                    false, false, false, 0);
5040         MemOpChains.push_back(Load.getValue(1));
5041         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5042 
5043         // Done with this argument.
5044         ArgOffset += PtrByteSize;
5045         continue;
5046       }
5047 
5048       // For aggregates larger than PtrByteSize, copy the pieces of the
5049       // object that fit into registers from the parameter save area.
5050       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5051         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5052         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5053         if (GPR_idx != NumGPRs) {
5054           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5055                                      MachinePointerInfo(),
5056                                      false, false, false, 0);
5057           MemOpChains.push_back(Load.getValue(1));
5058           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5059           ArgOffset += PtrByteSize;
5060         } else {
5061           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5062           break;
5063         }
5064       }
5065       continue;
5066     }
5067 
5068     switch (Arg.getSimpleValueType().SimpleTy) {
5069     default: llvm_unreachable("Unexpected ValueType for argument!");
5070     case MVT::i1:
5071     case MVT::i32:
5072     case MVT::i64:
5073       if (Flags.isNest()) {
5074         // The 'nest' parameter, if any, is passed in R11.
5075         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5076         hasNest = true;
5077         break;
5078       }
5079 
5080       // These can be scalar arguments or elements of an integer array type
5081       // passed directly.  Clang may use those instead of "byval" aggregate
5082       // types to avoid forcing arguments to memory unnecessarily.
5083       if (GPR_idx != NumGPRs) {
5084         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5085       } else {
5086         if (CallConv == CallingConv::Fast)
5087           ComputePtrOff();
5088 
5089         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5090                          true, isTailCall, false, MemOpChains,
5091                          TailCallArguments, dl);
5092         if (CallConv == CallingConv::Fast)
5093           ArgOffset += PtrByteSize;
5094       }
5095       if (CallConv != CallingConv::Fast)
5096         ArgOffset += PtrByteSize;
5097       break;
5098     case MVT::f32:
5099     case MVT::f64: {
5100       // These can be scalar arguments or elements of a float array type
5101       // passed directly.  The latter are used to implement ELFv2 homogenous
5102       // float aggregates.
5103 
5104       // Named arguments go into FPRs first, and once they overflow, the
5105       // remaining arguments go into GPRs and then the parameter save area.
5106       // Unnamed arguments for vararg functions always go to GPRs and
5107       // then the parameter save area.  For now, put all arguments to vararg
5108       // routines always in both locations (FPR *and* GPR or stack slot).
5109       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5110       bool NeededLoad = false;
5111 
5112       // First load the argument into the next available FPR.
5113       if (FPR_idx != NumFPRs)
5114         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5115 
5116       // Next, load the argument into GPR or stack slot if needed.
5117       if (!NeedGPROrStack)
5118         ;
5119       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5120         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5121         // once we support fp <-> gpr moves.
5122 
5123         // In the non-vararg case, this can only ever happen in the
5124         // presence of f32 array types, since otherwise we never run
5125         // out of FPRs before running out of GPRs.
5126         SDValue ArgVal;
5127 
5128         // Double values are always passed in a single GPR.
5129         if (Arg.getValueType() != MVT::f32) {
5130           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5131 
5132         // Non-array float values are extended and passed in a GPR.
5133         } else if (!Flags.isInConsecutiveRegs()) {
5134           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5135           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5136 
5137         // If we have an array of floats, we collect every odd element
5138         // together with its predecessor into one GPR.
5139         } else if (ArgOffset % PtrByteSize != 0) {
5140           SDValue Lo, Hi;
5141           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5142           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5143           if (!isLittleEndian)
5144             std::swap(Lo, Hi);
5145           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5146 
5147         // The final element, if even, goes into the first half of a GPR.
5148         } else if (Flags.isInConsecutiveRegsLast()) {
5149           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5150           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5151           if (!isLittleEndian)
5152             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5153                                  DAG.getConstant(32, dl, MVT::i32));
5154 
5155         // Non-final even elements are skipped; they will be handled
5156         // together the with subsequent argument on the next go-around.
5157         } else
5158           ArgVal = SDValue();
5159 
5160         if (ArgVal.getNode())
5161           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5162       } else {
5163         if (CallConv == CallingConv::Fast)
5164           ComputePtrOff();
5165 
5166         // Single-precision floating-point values are mapped to the
5167         // second (rightmost) word of the stack doubleword.
5168         if (Arg.getValueType() == MVT::f32 &&
5169             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5170           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5171           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5172         }
5173 
5174         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5175                          true, isTailCall, false, MemOpChains,
5176                          TailCallArguments, dl);
5177 
5178         NeededLoad = true;
5179       }
5180       // When passing an array of floats, the array occupies consecutive
5181       // space in the argument area; only round up to the next doubleword
5182       // at the end of the array.  Otherwise, each float takes 8 bytes.
5183       if (CallConv != CallingConv::Fast || NeededLoad) {
5184         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5185                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5186         if (Flags.isInConsecutiveRegsLast())
5187           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5188       }
5189       break;
5190     }
5191     case MVT::v4f32:
5192     case MVT::v4i32:
5193     case MVT::v8i16:
5194     case MVT::v16i8:
5195     case MVT::v2f64:
5196     case MVT::v2i64:
5197     case MVT::v1i128:
5198       if (!Subtarget.hasQPX()) {
5199       // These can be scalar arguments or elements of a vector array type
5200       // passed directly.  The latter are used to implement ELFv2 homogenous
5201       // vector aggregates.
5202 
5203       // For a varargs call, named arguments go into VRs or on the stack as
5204       // usual; unnamed arguments always go to the stack or the corresponding
5205       // GPRs when within range.  For now, we always put the value in both
5206       // locations (or even all three).
5207       if (isVarArg) {
5208         // We could elide this store in the case where the object fits
5209         // entirely in R registers.  Maybe later.
5210         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5211                                      MachinePointerInfo(), false, false, 0);
5212         MemOpChains.push_back(Store);
5213         if (VR_idx != NumVRs) {
5214           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5215                                      MachinePointerInfo(),
5216                                      false, false, false, 0);
5217           MemOpChains.push_back(Load.getValue(1));
5218 
5219           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5220                            Arg.getSimpleValueType() == MVT::v2i64) ?
5221                           VSRH[VR_idx] : VR[VR_idx];
5222           ++VR_idx;
5223 
5224           RegsToPass.push_back(std::make_pair(VReg, Load));
5225         }
5226         ArgOffset += 16;
5227         for (unsigned i=0; i<16; i+=PtrByteSize) {
5228           if (GPR_idx == NumGPRs)
5229             break;
5230           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5231                                    DAG.getConstant(i, dl, PtrVT));
5232           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5233                                      false, false, false, 0);
5234           MemOpChains.push_back(Load.getValue(1));
5235           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5236         }
5237         break;
5238       }
5239 
5240       // Non-varargs Altivec params go into VRs or on the stack.
5241       if (VR_idx != NumVRs) {
5242         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5243                          Arg.getSimpleValueType() == MVT::v2i64) ?
5244                         VSRH[VR_idx] : VR[VR_idx];
5245         ++VR_idx;
5246 
5247         RegsToPass.push_back(std::make_pair(VReg, Arg));
5248       } else {
5249         if (CallConv == CallingConv::Fast)
5250           ComputePtrOff();
5251 
5252         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5253                          true, isTailCall, true, MemOpChains,
5254                          TailCallArguments, dl);
5255         if (CallConv == CallingConv::Fast)
5256           ArgOffset += 16;
5257       }
5258 
5259       if (CallConv != CallingConv::Fast)
5260         ArgOffset += 16;
5261       break;
5262       } // not QPX
5263 
5264       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5265              "Invalid QPX parameter type");
5266 
5267       /* fall through */
5268     case MVT::v4f64:
5269     case MVT::v4i1: {
5270       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5271       if (isVarArg) {
5272         // We could elide this store in the case where the object fits
5273         // entirely in R registers.  Maybe later.
5274         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5275                                      MachinePointerInfo(), false, false, 0);
5276         MemOpChains.push_back(Store);
5277         if (QFPR_idx != NumQFPRs) {
5278           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5279                                      Store, PtrOff, MachinePointerInfo(),
5280                                      false, false, false, 0);
5281           MemOpChains.push_back(Load.getValue(1));
5282           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5283         }
5284         ArgOffset += (IsF32 ? 16 : 32);
5285         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5286           if (GPR_idx == NumGPRs)
5287             break;
5288           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5289                                    DAG.getConstant(i, dl, PtrVT));
5290           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5291                                      false, false, false, 0);
5292           MemOpChains.push_back(Load.getValue(1));
5293           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5294         }
5295         break;
5296       }
5297 
5298       // Non-varargs QPX params go into registers or on the stack.
5299       if (QFPR_idx != NumQFPRs) {
5300         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5301       } else {
5302         if (CallConv == CallingConv::Fast)
5303           ComputePtrOff();
5304 
5305         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5306                          true, isTailCall, true, MemOpChains,
5307                          TailCallArguments, dl);
5308         if (CallConv == CallingConv::Fast)
5309           ArgOffset += (IsF32 ? 16 : 32);
5310       }
5311 
5312       if (CallConv != CallingConv::Fast)
5313         ArgOffset += (IsF32 ? 16 : 32);
5314       break;
5315       }
5316     }
5317   }
5318 
5319   assert(NumBytesActuallyUsed == ArgOffset);
5320   (void)NumBytesActuallyUsed;
5321 
5322   if (!MemOpChains.empty())
5323     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5324 
5325   // Check if this is an indirect call (MTCTR/BCTRL).
5326   // See PrepareCall() for more information about calls through function
5327   // pointers in the 64-bit SVR4 ABI.
5328   if (!isTailCall && !IsPatchPoint &&
5329       !isFunctionGlobalAddress(Callee) &&
5330       !isa<ExternalSymbolSDNode>(Callee)) {
5331     // Load r2 into a virtual register and store it to the TOC save area.
5332     setUsesTOCBasePtr(DAG);
5333     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5334     // TOC save area offset.
5335     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5336     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5337     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5338     Chain = DAG.getStore(
5339         Val.getValue(1), dl, Val, AddPtr,
5340         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5341         false, false, 0);
5342     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5343     // This does not mean the MTCTR instruction must use R12; it's easier
5344     // to model this as an extra parameter, so do that.
5345     if (isELFv2ABI && !IsPatchPoint)
5346       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5347   }
5348 
5349   // Build a sequence of copy-to-reg nodes chained together with token chain
5350   // and flag operands which copy the outgoing args into the appropriate regs.
5351   SDValue InFlag;
5352   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5353     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5354                              RegsToPass[i].second, InFlag);
5355     InFlag = Chain.getValue(1);
5356   }
5357 
5358   if (isTailCall)
5359     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5360                     FPOp, true, TailCallArguments);
5361 
5362   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
5363                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5364                     SPDiff, NumBytes, Ins, InVals, CS);
5365 }
5366 
5367 SDValue
5368 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5369                                     CallingConv::ID CallConv, bool isVarArg,
5370                                     bool isTailCall, bool IsPatchPoint,
5371                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
5372                                     const SmallVectorImpl<SDValue> &OutVals,
5373                                     const SmallVectorImpl<ISD::InputArg> &Ins,
5374                                     SDLoc dl, SelectionDAG &DAG,
5375                                     SmallVectorImpl<SDValue> &InVals,
5376                                     ImmutableCallSite *CS) const {
5377 
5378   unsigned NumOps = Outs.size();
5379 
5380   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5381   bool isPPC64 = PtrVT == MVT::i64;
5382   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5383 
5384   MachineFunction &MF = DAG.getMachineFunction();
5385 
5386   // Mark this function as potentially containing a function that contains a
5387   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5388   // and restoring the callers stack pointer in this functions epilog. This is
5389   // done because by tail calling the called function might overwrite the value
5390   // in this function's (MF) stack pointer stack slot 0(SP).
5391   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5392       CallConv == CallingConv::Fast)
5393     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5394 
5395   // Count how many bytes are to be pushed on the stack, including the linkage
5396   // area, and parameter passing area.  We start with 24/48 bytes, which is
5397   // prereserved space for [SP][CR][LR][3 x unused].
5398   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5399   unsigned NumBytes = LinkageSize;
5400 
5401   // Add up all the space actually used.
5402   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5403   // they all go in registers, but we must reserve stack space for them for
5404   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5405   // assigned stack space in order, with padding so Altivec parameters are
5406   // 16-byte aligned.
5407   unsigned nAltivecParamsAtEnd = 0;
5408   for (unsigned i = 0; i != NumOps; ++i) {
5409     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5410     EVT ArgVT = Outs[i].VT;
5411     // Varargs Altivec parameters are padded to a 16 byte boundary.
5412     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5413         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5414         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5415       if (!isVarArg && !isPPC64) {
5416         // Non-varargs Altivec parameters go after all the non-Altivec
5417         // parameters; handle those later so we know how much padding we need.
5418         nAltivecParamsAtEnd++;
5419         continue;
5420       }
5421       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5422       NumBytes = ((NumBytes+15)/16)*16;
5423     }
5424     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5425   }
5426 
5427   // Allow for Altivec parameters at the end, if needed.
5428   if (nAltivecParamsAtEnd) {
5429     NumBytes = ((NumBytes+15)/16)*16;
5430     NumBytes += 16*nAltivecParamsAtEnd;
5431   }
5432 
5433   // The prolog code of the callee may store up to 8 GPR argument registers to
5434   // the stack, allowing va_start to index over them in memory if its varargs.
5435   // Because we cannot tell if this is needed on the caller side, we have to
5436   // conservatively assume that it is needed.  As such, make sure we have at
5437   // least enough stack space for the caller to store the 8 GPRs.
5438   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5439 
5440   // Tail call needs the stack to be aligned.
5441   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5442       CallConv == CallingConv::Fast)
5443     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5444 
5445   // Calculate by how many bytes the stack has to be adjusted in case of tail
5446   // call optimization.
5447   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5448 
5449   // To protect arguments on the stack from being clobbered in a tail call,
5450   // force all the loads to happen before doing any other lowering.
5451   if (isTailCall)
5452     Chain = DAG.getStackArgumentTokenFactor(Chain);
5453 
5454   // Adjust the stack pointer for the new arguments...
5455   // These operations are automatically eliminated by the prolog/epilog pass
5456   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5457                                dl);
5458   SDValue CallSeqStart = Chain;
5459 
5460   // Load the return address and frame pointer so it can be move somewhere else
5461   // later.
5462   SDValue LROp, FPOp;
5463   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5464                                        dl);
5465 
5466   // Set up a copy of the stack pointer for use loading and storing any
5467   // arguments that may not fit in the registers available for argument
5468   // passing.
5469   SDValue StackPtr;
5470   if (isPPC64)
5471     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5472   else
5473     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5474 
5475   // Figure out which arguments are going to go in registers, and which in
5476   // memory.  Also, if this is a vararg function, floating point operations
5477   // must be stored to our stack, and loaded into integer regs as well, if
5478   // any integer regs are available for argument passing.
5479   unsigned ArgOffset = LinkageSize;
5480   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5481 
5482   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5483     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5484     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5485   };
5486   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5487     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5488     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5489   };
5490   static const MCPhysReg VR[] = {
5491     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5492     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5493   };
5494   const unsigned NumGPRs = array_lengthof(GPR_32);
5495   const unsigned NumFPRs = 13;
5496   const unsigned NumVRs  = array_lengthof(VR);
5497 
5498   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5499 
5500   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5501   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5502 
5503   SmallVector<SDValue, 8> MemOpChains;
5504   for (unsigned i = 0; i != NumOps; ++i) {
5505     SDValue Arg = OutVals[i];
5506     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5507 
5508     // PtrOff will be used to store the current argument to the stack if a
5509     // register cannot be found for it.
5510     SDValue PtrOff;
5511 
5512     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5513 
5514     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5515 
5516     // On PPC64, promote integers to 64-bit values.
5517     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5518       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5519       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5520       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5521     }
5522 
5523     // FIXME memcpy is used way more than necessary.  Correctness first.
5524     // Note: "by value" is code for passing a structure by value, not
5525     // basic types.
5526     if (Flags.isByVal()) {
5527       unsigned Size = Flags.getByValSize();
5528       // Very small objects are passed right-justified.  Everything else is
5529       // passed left-justified.
5530       if (Size==1 || Size==2) {
5531         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5532         if (GPR_idx != NumGPRs) {
5533           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5534                                         MachinePointerInfo(), VT,
5535                                         false, false, false, 0);
5536           MemOpChains.push_back(Load.getValue(1));
5537           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5538 
5539           ArgOffset += PtrByteSize;
5540         } else {
5541           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5542                                           PtrOff.getValueType());
5543           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5544           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5545                                                             CallSeqStart,
5546                                                             Flags, DAG, dl);
5547           ArgOffset += PtrByteSize;
5548         }
5549         continue;
5550       }
5551       // Copy entire object into memory.  There are cases where gcc-generated
5552       // code assumes it is there, even if it could be put entirely into
5553       // registers.  (This is not what the doc says.)
5554       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5555                                                         CallSeqStart,
5556                                                         Flags, DAG, dl);
5557 
5558       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5559       // copy the pieces of the object that fit into registers from the
5560       // parameter save area.
5561       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5562         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5563         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5564         if (GPR_idx != NumGPRs) {
5565           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5566                                      MachinePointerInfo(),
5567                                      false, false, false, 0);
5568           MemOpChains.push_back(Load.getValue(1));
5569           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5570           ArgOffset += PtrByteSize;
5571         } else {
5572           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5573           break;
5574         }
5575       }
5576       continue;
5577     }
5578 
5579     switch (Arg.getSimpleValueType().SimpleTy) {
5580     default: llvm_unreachable("Unexpected ValueType for argument!");
5581     case MVT::i1:
5582     case MVT::i32:
5583     case MVT::i64:
5584       if (GPR_idx != NumGPRs) {
5585         if (Arg.getValueType() == MVT::i1)
5586           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5587 
5588         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5589       } else {
5590         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5591                          isPPC64, isTailCall, false, MemOpChains,
5592                          TailCallArguments, dl);
5593       }
5594       ArgOffset += PtrByteSize;
5595       break;
5596     case MVT::f32:
5597     case MVT::f64:
5598       if (FPR_idx != NumFPRs) {
5599         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5600 
5601         if (isVarArg) {
5602           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5603                                        MachinePointerInfo(), false, false, 0);
5604           MemOpChains.push_back(Store);
5605 
5606           // Float varargs are always shadowed in available integer registers
5607           if (GPR_idx != NumGPRs) {
5608             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5609                                        MachinePointerInfo(), false, false,
5610                                        false, 0);
5611             MemOpChains.push_back(Load.getValue(1));
5612             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5613           }
5614           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5615             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5616             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5617             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5618                                        MachinePointerInfo(),
5619                                        false, false, false, 0);
5620             MemOpChains.push_back(Load.getValue(1));
5621             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5622           }
5623         } else {
5624           // If we have any FPRs remaining, we may also have GPRs remaining.
5625           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5626           // GPRs.
5627           if (GPR_idx != NumGPRs)
5628             ++GPR_idx;
5629           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5630               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5631             ++GPR_idx;
5632         }
5633       } else
5634         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5635                          isPPC64, isTailCall, false, MemOpChains,
5636                          TailCallArguments, dl);
5637       if (isPPC64)
5638         ArgOffset += 8;
5639       else
5640         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5641       break;
5642     case MVT::v4f32:
5643     case MVT::v4i32:
5644     case MVT::v8i16:
5645     case MVT::v16i8:
5646       if (isVarArg) {
5647         // These go aligned on the stack, or in the corresponding R registers
5648         // when within range.  The Darwin PPC ABI doc claims they also go in
5649         // V registers; in fact gcc does this only for arguments that are
5650         // prototyped, not for those that match the ...  We do it for all
5651         // arguments, seems to work.
5652         while (ArgOffset % 16 !=0) {
5653           ArgOffset += PtrByteSize;
5654           if (GPR_idx != NumGPRs)
5655             GPR_idx++;
5656         }
5657         // We could elide this store in the case where the object fits
5658         // entirely in R registers.  Maybe later.
5659         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5660                              DAG.getConstant(ArgOffset, dl, PtrVT));
5661         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5662                                      MachinePointerInfo(), false, false, 0);
5663         MemOpChains.push_back(Store);
5664         if (VR_idx != NumVRs) {
5665           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5666                                      MachinePointerInfo(),
5667                                      false, false, false, 0);
5668           MemOpChains.push_back(Load.getValue(1));
5669           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5670         }
5671         ArgOffset += 16;
5672         for (unsigned i=0; i<16; i+=PtrByteSize) {
5673           if (GPR_idx == NumGPRs)
5674             break;
5675           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5676                                    DAG.getConstant(i, dl, PtrVT));
5677           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5678                                      false, false, false, 0);
5679           MemOpChains.push_back(Load.getValue(1));
5680           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5681         }
5682         break;
5683       }
5684 
5685       // Non-varargs Altivec params generally go in registers, but have
5686       // stack space allocated at the end.
5687       if (VR_idx != NumVRs) {
5688         // Doesn't have GPR space allocated.
5689         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5690       } else if (nAltivecParamsAtEnd==0) {
5691         // We are emitting Altivec params in order.
5692         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5693                          isPPC64, isTailCall, true, MemOpChains,
5694                          TailCallArguments, dl);
5695         ArgOffset += 16;
5696       }
5697       break;
5698     }
5699   }
5700   // If all Altivec parameters fit in registers, as they usually do,
5701   // they get stack space following the non-Altivec parameters.  We
5702   // don't track this here because nobody below needs it.
5703   // If there are more Altivec parameters than fit in registers emit
5704   // the stores here.
5705   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5706     unsigned j = 0;
5707     // Offset is aligned; skip 1st 12 params which go in V registers.
5708     ArgOffset = ((ArgOffset+15)/16)*16;
5709     ArgOffset += 12*16;
5710     for (unsigned i = 0; i != NumOps; ++i) {
5711       SDValue Arg = OutVals[i];
5712       EVT ArgType = Outs[i].VT;
5713       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5714           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5715         if (++j > NumVRs) {
5716           SDValue PtrOff;
5717           // We are emitting Altivec params in order.
5718           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5719                            isPPC64, isTailCall, true, MemOpChains,
5720                            TailCallArguments, dl);
5721           ArgOffset += 16;
5722         }
5723       }
5724     }
5725   }
5726 
5727   if (!MemOpChains.empty())
5728     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5729 
5730   // On Darwin, R12 must contain the address of an indirect callee.  This does
5731   // not mean the MTCTR instruction must use R12; it's easier to model this as
5732   // an extra parameter, so do that.
5733   if (!isTailCall &&
5734       !isFunctionGlobalAddress(Callee) &&
5735       !isa<ExternalSymbolSDNode>(Callee) &&
5736       !isBLACompatibleAddress(Callee, DAG))
5737     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5738                                                    PPC::R12), Callee));
5739 
5740   // Build a sequence of copy-to-reg nodes chained together with token chain
5741   // and flag operands which copy the outgoing args into the appropriate regs.
5742   SDValue InFlag;
5743   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5744     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5745                              RegsToPass[i].second, InFlag);
5746     InFlag = Chain.getValue(1);
5747   }
5748 
5749   if (isTailCall)
5750     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5751                     FPOp, true, TailCallArguments);
5752 
5753   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5754                     /* unused except on PPC64 ELFv1 */ false, DAG,
5755                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5756                     NumBytes, Ins, InVals, CS);
5757 }
5758 
5759 bool
5760 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5761                                   MachineFunction &MF, bool isVarArg,
5762                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5763                                   LLVMContext &Context) const {
5764   SmallVector<CCValAssign, 16> RVLocs;
5765   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5766   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5767 }
5768 
5769 SDValue
5770 PPCTargetLowering::LowerReturn(SDValue Chain,
5771                                CallingConv::ID CallConv, bool isVarArg,
5772                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5773                                const SmallVectorImpl<SDValue> &OutVals,
5774                                SDLoc dl, SelectionDAG &DAG) const {
5775 
5776   SmallVector<CCValAssign, 16> RVLocs;
5777   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5778                  *DAG.getContext());
5779   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5780 
5781   SDValue Flag;
5782   SmallVector<SDValue, 4> RetOps(1, Chain);
5783 
5784   // Copy the result values into the output registers.
5785   for (unsigned i = 0; i != RVLocs.size(); ++i) {
5786     CCValAssign &VA = RVLocs[i];
5787     assert(VA.isRegLoc() && "Can only return in registers!");
5788 
5789     SDValue Arg = OutVals[i];
5790 
5791     switch (VA.getLocInfo()) {
5792     default: llvm_unreachable("Unknown loc info!");
5793     case CCValAssign::Full: break;
5794     case CCValAssign::AExt:
5795       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5796       break;
5797     case CCValAssign::ZExt:
5798       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5799       break;
5800     case CCValAssign::SExt:
5801       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5802       break;
5803     }
5804 
5805     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5806     Flag = Chain.getValue(1);
5807     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5808   }
5809 
5810   RetOps[0] = Chain;  // Update chain.
5811 
5812   // Add the flag if we have it.
5813   if (Flag.getNode())
5814     RetOps.push_back(Flag);
5815 
5816   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
5817 }
5818 
5819 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
5820                                    const PPCSubtarget &Subtarget) const {
5821   // When we pop the dynamic allocation we need to restore the SP link.
5822   SDLoc dl(Op);
5823 
5824   // Get the corect type for pointers.
5825   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5826 
5827   // Construct the stack pointer operand.
5828   bool isPPC64 = Subtarget.isPPC64();
5829   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
5830   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
5831 
5832   // Get the operands for the STACKRESTORE.
5833   SDValue Chain = Op.getOperand(0);
5834   SDValue SaveSP = Op.getOperand(1);
5835 
5836   // Load the old link SP.
5837   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
5838                                    MachinePointerInfo(),
5839                                    false, false, false, 0);
5840 
5841   // Restore the stack pointer.
5842   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
5843 
5844   // Store the old link SP.
5845   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
5846                       false, false, 0);
5847 }
5848 
5849 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
5850   MachineFunction &MF = DAG.getMachineFunction();
5851   bool isPPC64 = Subtarget.isPPC64();
5852   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5853 
5854   // Get current frame pointer save index.  The users of this index will be
5855   // primarily DYNALLOC instructions.
5856   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5857   int RASI = FI->getReturnAddrSaveIndex();
5858 
5859   // If the frame pointer save index hasn't been defined yet.
5860   if (!RASI) {
5861     // Find out what the fix offset of the frame pointer save area.
5862     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
5863     // Allocate the frame index for frame pointer save area.
5864     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
5865     // Save the result.
5866     FI->setReturnAddrSaveIndex(RASI);
5867   }
5868   return DAG.getFrameIndex(RASI, PtrVT);
5869 }
5870 
5871 SDValue
5872 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
5873   MachineFunction &MF = DAG.getMachineFunction();
5874   bool isPPC64 = Subtarget.isPPC64();
5875   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5876 
5877   // Get current frame pointer save index.  The users of this index will be
5878   // primarily DYNALLOC instructions.
5879   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5880   int FPSI = FI->getFramePointerSaveIndex();
5881 
5882   // If the frame pointer save index hasn't been defined yet.
5883   if (!FPSI) {
5884     // Find out what the fix offset of the frame pointer save area.
5885     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
5886     // Allocate the frame index for frame pointer save area.
5887     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
5888     // Save the result.
5889     FI->setFramePointerSaveIndex(FPSI);
5890   }
5891   return DAG.getFrameIndex(FPSI, PtrVT);
5892 }
5893 
5894 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5895                                          SelectionDAG &DAG,
5896                                          const PPCSubtarget &Subtarget) const {
5897   // Get the inputs.
5898   SDValue Chain = Op.getOperand(0);
5899   SDValue Size  = Op.getOperand(1);
5900   SDLoc dl(Op);
5901 
5902   // Get the corect type for pointers.
5903   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5904   // Negate the size.
5905   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
5906                                 DAG.getConstant(0, dl, PtrVT), Size);
5907   // Construct a node for the frame pointer save index.
5908   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5909   // Build a DYNALLOC node.
5910   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
5911   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
5912   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
5913 }
5914 
5915 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
5916                                                SelectionDAG &DAG) const {
5917   SDLoc DL(Op);
5918   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
5919                      DAG.getVTList(MVT::i32, MVT::Other),
5920                      Op.getOperand(0), Op.getOperand(1));
5921 }
5922 
5923 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
5924                                                 SelectionDAG &DAG) const {
5925   SDLoc DL(Op);
5926   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
5927                      Op.getOperand(0), Op.getOperand(1));
5928 }
5929 
5930 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5931   if (Op.getValueType().isVector())
5932     return LowerVectorLoad(Op, DAG);
5933 
5934   assert(Op.getValueType() == MVT::i1 &&
5935          "Custom lowering only for i1 loads");
5936 
5937   // First, load 8 bits into 32 bits, then truncate to 1 bit.
5938 
5939   SDLoc dl(Op);
5940   LoadSDNode *LD = cast<LoadSDNode>(Op);
5941 
5942   SDValue Chain = LD->getChain();
5943   SDValue BasePtr = LD->getBasePtr();
5944   MachineMemOperand *MMO = LD->getMemOperand();
5945 
5946   SDValue NewLD =
5947       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
5948                      BasePtr, MVT::i8, MMO);
5949   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
5950 
5951   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
5952   return DAG.getMergeValues(Ops, dl);
5953 }
5954 
5955 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5956   if (Op.getOperand(1).getValueType().isVector())
5957     return LowerVectorStore(Op, DAG);
5958 
5959   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
5960          "Custom lowering only for i1 stores");
5961 
5962   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
5963 
5964   SDLoc dl(Op);
5965   StoreSDNode *ST = cast<StoreSDNode>(Op);
5966 
5967   SDValue Chain = ST->getChain();
5968   SDValue BasePtr = ST->getBasePtr();
5969   SDValue Value = ST->getValue();
5970   MachineMemOperand *MMO = ST->getMemOperand();
5971 
5972   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
5973                       Value);
5974   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
5975 }
5976 
5977 // FIXME: Remove this once the ANDI glue bug is fixed:
5978 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
5979   assert(Op.getValueType() == MVT::i1 &&
5980          "Custom lowering only for i1 results");
5981 
5982   SDLoc DL(Op);
5983   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
5984                      Op.getOperand(0));
5985 }
5986 
5987 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
5988 /// possible.
5989 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5990   // Not FP? Not a fsel.
5991   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
5992       !Op.getOperand(2).getValueType().isFloatingPoint())
5993     return Op;
5994 
5995   // We might be able to do better than this under some circumstances, but in
5996   // general, fsel-based lowering of select is a finite-math-only optimization.
5997   // For more information, see section F.3 of the 2.06 ISA specification.
5998   if (!DAG.getTarget().Options.NoInfsFPMath ||
5999       !DAG.getTarget().Options.NoNaNsFPMath)
6000     return Op;
6001   // TODO: Propagate flags from the select rather than global settings.
6002   SDNodeFlags Flags;
6003   Flags.setNoInfs(true);
6004   Flags.setNoNaNs(true);
6005 
6006   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6007 
6008   EVT ResVT = Op.getValueType();
6009   EVT CmpVT = Op.getOperand(0).getValueType();
6010   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6011   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6012   SDLoc dl(Op);
6013 
6014   // If the RHS of the comparison is a 0.0, we don't need to do the
6015   // subtraction at all.
6016   SDValue Sel1;
6017   if (isFloatingPointZero(RHS))
6018     switch (CC) {
6019     default: break;       // SETUO etc aren't handled by fsel.
6020     case ISD::SETNE:
6021       std::swap(TV, FV);
6022     case ISD::SETEQ:
6023       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6024         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6025       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6026       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6027         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6028       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6029                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6030     case ISD::SETULT:
6031     case ISD::SETLT:
6032       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6033     case ISD::SETOGE:
6034     case ISD::SETGE:
6035       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6036         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6037       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6038     case ISD::SETUGT:
6039     case ISD::SETGT:
6040       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6041     case ISD::SETOLE:
6042     case ISD::SETLE:
6043       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6044         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6045       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6046                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6047     }
6048 
6049   SDValue Cmp;
6050   switch (CC) {
6051   default: break;       // SETUO etc aren't handled by fsel.
6052   case ISD::SETNE:
6053     std::swap(TV, FV);
6054   case ISD::SETEQ:
6055     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6056     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6057       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6058     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6059     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6060       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6061     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6062                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6063   case ISD::SETULT:
6064   case ISD::SETLT:
6065     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6066     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6067       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6068     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6069   case ISD::SETOGE:
6070   case ISD::SETGE:
6071     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6072     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6073       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6074     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6075   case ISD::SETUGT:
6076   case ISD::SETGT:
6077     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6078     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6079       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6080     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6081   case ISD::SETOLE:
6082   case ISD::SETLE:
6083     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6084     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6085       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6086     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6087   }
6088   return Op;
6089 }
6090 
6091 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6092                                                SelectionDAG &DAG,
6093                                                SDLoc dl) const {
6094   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6095   SDValue Src = Op.getOperand(0);
6096   if (Src.getValueType() == MVT::f32)
6097     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6098 
6099   SDValue Tmp;
6100   switch (Op.getSimpleValueType().SimpleTy) {
6101   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6102   case MVT::i32:
6103     Tmp = DAG.getNode(
6104         Op.getOpcode() == ISD::FP_TO_SINT
6105             ? PPCISD::FCTIWZ
6106             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6107         dl, MVT::f64, Src);
6108     break;
6109   case MVT::i64:
6110     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6111            "i64 FP_TO_UINT is supported only with FPCVT");
6112     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6113                                                         PPCISD::FCTIDUZ,
6114                       dl, MVT::f64, Src);
6115     break;
6116   }
6117 
6118   // Convert the FP value to an int value through memory.
6119   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6120     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6121   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6122   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6123   MachinePointerInfo MPI =
6124       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6125 
6126   // Emit a store to the stack slot.
6127   SDValue Chain;
6128   if (i32Stack) {
6129     MachineFunction &MF = DAG.getMachineFunction();
6130     MachineMemOperand *MMO =
6131       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6132     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6133     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6134               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6135   } else
6136     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6137                          MPI, false, false, 0);
6138 
6139   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6140   // add in a bias.
6141   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6142     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6143                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6144     MPI = MPI.getWithOffset(4);
6145   }
6146 
6147   RLI.Chain = Chain;
6148   RLI.Ptr = FIPtr;
6149   RLI.MPI = MPI;
6150 }
6151 
6152 /// \brief Custom lowers floating point to integer conversions to use
6153 /// the direct move instructions available in ISA 2.07 to avoid the
6154 /// need for load/store combinations.
6155 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6156                                                     SelectionDAG &DAG,
6157                                                     SDLoc dl) const {
6158   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6159   SDValue Src = Op.getOperand(0);
6160 
6161   if (Src.getValueType() == MVT::f32)
6162     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6163 
6164   SDValue Tmp;
6165   switch (Op.getSimpleValueType().SimpleTy) {
6166   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6167   case MVT::i32:
6168     Tmp = DAG.getNode(
6169         Op.getOpcode() == ISD::FP_TO_SINT
6170             ? PPCISD::FCTIWZ
6171             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6172         dl, MVT::f64, Src);
6173     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6174     break;
6175   case MVT::i64:
6176     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6177            "i64 FP_TO_UINT is supported only with FPCVT");
6178     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6179                                                         PPCISD::FCTIDUZ,
6180                       dl, MVT::f64, Src);
6181     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6182     break;
6183   }
6184   return Tmp;
6185 }
6186 
6187 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6188                                           SDLoc dl) const {
6189   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6190     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6191 
6192   ReuseLoadInfo RLI;
6193   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6194 
6195   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6196                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6197                      RLI.Ranges);
6198 }
6199 
6200 // We're trying to insert a regular store, S, and then a load, L. If the
6201 // incoming value, O, is a load, we might just be able to have our load use the
6202 // address used by O. However, we don't know if anything else will store to
6203 // that address before we can load from it. To prevent this situation, we need
6204 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6205 // the same chain operand as O, we create a token factor from the chain results
6206 // of O and L, and we replace all uses of O's chain result with that token
6207 // factor (see spliceIntoChain below for this last part).
6208 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6209                                             ReuseLoadInfo &RLI,
6210                                             SelectionDAG &DAG,
6211                                             ISD::LoadExtType ET) const {
6212   SDLoc dl(Op);
6213   if (ET == ISD::NON_EXTLOAD &&
6214       (Op.getOpcode() == ISD::FP_TO_UINT ||
6215        Op.getOpcode() == ISD::FP_TO_SINT) &&
6216       isOperationLegalOrCustom(Op.getOpcode(),
6217                                Op.getOperand(0).getValueType())) {
6218 
6219     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6220     return true;
6221   }
6222 
6223   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6224   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6225       LD->isNonTemporal())
6226     return false;
6227   if (LD->getMemoryVT() != MemVT)
6228     return false;
6229 
6230   RLI.Ptr = LD->getBasePtr();
6231   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
6232     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6233            "Non-pre-inc AM on PPC?");
6234     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6235                           LD->getOffset());
6236   }
6237 
6238   RLI.Chain = LD->getChain();
6239   RLI.MPI = LD->getPointerInfo();
6240   RLI.IsInvariant = LD->isInvariant();
6241   RLI.Alignment = LD->getAlignment();
6242   RLI.AAInfo = LD->getAAInfo();
6243   RLI.Ranges = LD->getRanges();
6244 
6245   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6246   return true;
6247 }
6248 
6249 // Given the head of the old chain, ResChain, insert a token factor containing
6250 // it and NewResChain, and make users of ResChain now be users of that token
6251 // factor.
6252 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6253                                         SDValue NewResChain,
6254                                         SelectionDAG &DAG) const {
6255   if (!ResChain)
6256     return;
6257 
6258   SDLoc dl(NewResChain);
6259 
6260   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6261                            NewResChain, DAG.getUNDEF(MVT::Other));
6262   assert(TF.getNode() != NewResChain.getNode() &&
6263          "A new TF really is required here");
6264 
6265   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6266   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6267 }
6268 
6269 /// \brief Custom lowers integer to floating point conversions to use
6270 /// the direct move instructions available in ISA 2.07 to avoid the
6271 /// need for load/store combinations.
6272 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6273                                                     SelectionDAG &DAG,
6274                                                     SDLoc dl) const {
6275   assert((Op.getValueType() == MVT::f32 ||
6276           Op.getValueType() == MVT::f64) &&
6277          "Invalid floating point type as target of conversion");
6278   assert(Subtarget.hasFPCVT() &&
6279          "Int to FP conversions with direct moves require FPCVT");
6280   SDValue FP;
6281   SDValue Src = Op.getOperand(0);
6282   bool SinglePrec = Op.getValueType() == MVT::f32;
6283   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6284   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6285   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6286                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6287 
6288   if (WordInt) {
6289     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6290                      dl, MVT::f64, Src);
6291     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6292   }
6293   else {
6294     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6295     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6296   }
6297 
6298   return FP;
6299 }
6300 
6301 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6302                                           SelectionDAG &DAG) const {
6303   SDLoc dl(Op);
6304 
6305   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6306     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6307       return SDValue();
6308 
6309     SDValue Value = Op.getOperand(0);
6310     // The values are now known to be -1 (false) or 1 (true). To convert this
6311     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6312     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6313     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6314 
6315     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
6316     FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs,
6317                           FPHalfs, FPHalfs);
6318 
6319     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6320 
6321     if (Op.getValueType() != MVT::v4f64)
6322       Value = DAG.getNode(ISD::FP_ROUND, dl,
6323                           Op.getValueType(), Value,
6324                           DAG.getIntPtrConstant(1, dl));
6325     return Value;
6326   }
6327 
6328   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6329   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6330     return SDValue();
6331 
6332   if (Op.getOperand(0).getValueType() == MVT::i1)
6333     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6334                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6335                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6336 
6337   // If we have direct moves, we can do all the conversion, skip the store/load
6338   // however, without FPCVT we can't do most conversions.
6339   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
6340     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6341 
6342   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6343          "UINT_TO_FP is supported only with FPCVT");
6344 
6345   // If we have FCFIDS, then use it when converting to single-precision.
6346   // Otherwise, convert to double-precision and then round.
6347   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6348                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6349                                                             : PPCISD::FCFIDS)
6350                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6351                                                             : PPCISD::FCFID);
6352   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6353                   ? MVT::f32
6354                   : MVT::f64;
6355 
6356   if (Op.getOperand(0).getValueType() == MVT::i64) {
6357     SDValue SINT = Op.getOperand(0);
6358     // When converting to single-precision, we actually need to convert
6359     // to double-precision first and then round to single-precision.
6360     // To avoid double-rounding effects during that operation, we have
6361     // to prepare the input operand.  Bits that might be truncated when
6362     // converting to double-precision are replaced by a bit that won't
6363     // be lost at this stage, but is below the single-precision rounding
6364     // position.
6365     //
6366     // However, if -enable-unsafe-fp-math is in effect, accept double
6367     // rounding to avoid the extra overhead.
6368     if (Op.getValueType() == MVT::f32 &&
6369         !Subtarget.hasFPCVT() &&
6370         !DAG.getTarget().Options.UnsafeFPMath) {
6371 
6372       // Twiddle input to make sure the low 11 bits are zero.  (If this
6373       // is the case, we are guaranteed the value will fit into the 53 bit
6374       // mantissa of an IEEE double-precision value without rounding.)
6375       // If any of those low 11 bits were not zero originally, make sure
6376       // bit 12 (value 2048) is set instead, so that the final rounding
6377       // to single-precision gets the correct result.
6378       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6379                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6380       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6381                           Round, DAG.getConstant(2047, dl, MVT::i64));
6382       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6383       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6384                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6385 
6386       // However, we cannot use that value unconditionally: if the magnitude
6387       // of the input value is small, the bit-twiddling we did above might
6388       // end up visibly changing the output.  Fortunately, in that case, we
6389       // don't need to twiddle bits since the original input will convert
6390       // exactly to double-precision floating-point already.  Therefore,
6391       // construct a conditional to use the original value if the top 11
6392       // bits are all sign-bit copies, and use the rounded value computed
6393       // above otherwise.
6394       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6395                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6396       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6397                          Cond, DAG.getConstant(1, dl, MVT::i64));
6398       Cond = DAG.getSetCC(dl, MVT::i32,
6399                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6400 
6401       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6402     }
6403 
6404     ReuseLoadInfo RLI;
6405     SDValue Bits;
6406 
6407     MachineFunction &MF = DAG.getMachineFunction();
6408     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6409       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6410                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6411                          RLI.Ranges);
6412       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6413     } else if (Subtarget.hasLFIWAX() &&
6414                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6415       MachineMemOperand *MMO =
6416         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6417                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6418       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6419       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6420                                      DAG.getVTList(MVT::f64, MVT::Other),
6421                                      Ops, MVT::i32, MMO);
6422       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6423     } else if (Subtarget.hasFPCVT() &&
6424                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6425       MachineMemOperand *MMO =
6426         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6427                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6428       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6429       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6430                                      DAG.getVTList(MVT::f64, MVT::Other),
6431                                      Ops, MVT::i32, MMO);
6432       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6433     } else if (((Subtarget.hasLFIWAX() &&
6434                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6435                 (Subtarget.hasFPCVT() &&
6436                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6437                SINT.getOperand(0).getValueType() == MVT::i32) {
6438       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6439       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6440 
6441       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6442       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6443 
6444       SDValue Store = DAG.getStore(
6445           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6446           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6447           false, false, 0);
6448 
6449       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6450              "Expected an i32 store");
6451 
6452       RLI.Ptr = FIdx;
6453       RLI.Chain = Store;
6454       RLI.MPI =
6455           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6456       RLI.Alignment = 4;
6457 
6458       MachineMemOperand *MMO =
6459         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6460                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6461       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6462       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6463                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6464                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6465                                      Ops, MVT::i32, MMO);
6466     } else
6467       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6468 
6469     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6470 
6471     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6472       FP = DAG.getNode(ISD::FP_ROUND, dl,
6473                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6474     return FP;
6475   }
6476 
6477   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6478          "Unhandled INT_TO_FP type in custom expander!");
6479   // Since we only generate this in 64-bit mode, we can take advantage of
6480   // 64-bit registers.  In particular, sign extend the input value into the
6481   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6482   // then lfd it and fcfid it.
6483   MachineFunction &MF = DAG.getMachineFunction();
6484   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6485   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6486 
6487   SDValue Ld;
6488   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6489     ReuseLoadInfo RLI;
6490     bool ReusingLoad;
6491     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6492                                             DAG))) {
6493       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6494       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6495 
6496       SDValue Store = DAG.getStore(
6497           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6498           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6499           false, false, 0);
6500 
6501       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6502              "Expected an i32 store");
6503 
6504       RLI.Ptr = FIdx;
6505       RLI.Chain = Store;
6506       RLI.MPI =
6507           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6508       RLI.Alignment = 4;
6509     }
6510 
6511     MachineMemOperand *MMO =
6512       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6513                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6514     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6515     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6516                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6517                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6518                                  Ops, MVT::i32, MMO);
6519     if (ReusingLoad)
6520       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6521   } else {
6522     assert(Subtarget.isPPC64() &&
6523            "i32->FP without LFIWAX supported only on PPC64");
6524 
6525     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6526     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6527 
6528     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6529                                 Op.getOperand(0));
6530 
6531     // STD the extended value into the stack slot.
6532     SDValue Store = DAG.getStore(
6533         DAG.getEntryNode(), dl, Ext64, FIdx,
6534         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6535         false, false, 0);
6536 
6537     // Load the value as a double.
6538     Ld = DAG.getLoad(
6539         MVT::f64, dl, Store, FIdx,
6540         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6541         false, false, false, 0);
6542   }
6543 
6544   // FCFID it and return it.
6545   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6546   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6547     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6548                      DAG.getIntPtrConstant(0, dl));
6549   return FP;
6550 }
6551 
6552 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6553                                             SelectionDAG &DAG) const {
6554   SDLoc dl(Op);
6555   /*
6556    The rounding mode is in bits 30:31 of FPSR, and has the following
6557    settings:
6558      00 Round to nearest
6559      01 Round to 0
6560      10 Round to +inf
6561      11 Round to -inf
6562 
6563   FLT_ROUNDS, on the other hand, expects the following:
6564     -1 Undefined
6565      0 Round to 0
6566      1 Round to nearest
6567      2 Round to +inf
6568      3 Round to -inf
6569 
6570   To perform the conversion, we do:
6571     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6572   */
6573 
6574   MachineFunction &MF = DAG.getMachineFunction();
6575   EVT VT = Op.getValueType();
6576   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6577 
6578   // Save FP Control Word to register
6579   EVT NodeTys[] = {
6580     MVT::f64,    // return register
6581     MVT::Glue    // unused in this context
6582   };
6583   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6584 
6585   // Save FP register to stack slot
6586   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6587   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6588   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6589                                StackSlot, MachinePointerInfo(), false, false,0);
6590 
6591   // Load FP Control Word from low 32 bits of stack slot.
6592   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6593   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6594   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6595                             false, false, false, 0);
6596 
6597   // Transform as necessary
6598   SDValue CWD1 =
6599     DAG.getNode(ISD::AND, dl, MVT::i32,
6600                 CWD, DAG.getConstant(3, dl, MVT::i32));
6601   SDValue CWD2 =
6602     DAG.getNode(ISD::SRL, dl, MVT::i32,
6603                 DAG.getNode(ISD::AND, dl, MVT::i32,
6604                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6605                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6606                             DAG.getConstant(3, dl, MVT::i32)),
6607                 DAG.getConstant(1, dl, MVT::i32));
6608 
6609   SDValue RetVal =
6610     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6611 
6612   return DAG.getNode((VT.getSizeInBits() < 16 ?
6613                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6614 }
6615 
6616 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6617   EVT VT = Op.getValueType();
6618   unsigned BitWidth = VT.getSizeInBits();
6619   SDLoc dl(Op);
6620   assert(Op.getNumOperands() == 3 &&
6621          VT == Op.getOperand(1).getValueType() &&
6622          "Unexpected SHL!");
6623 
6624   // Expand into a bunch of logical ops.  Note that these ops
6625   // depend on the PPC behavior for oversized shift amounts.
6626   SDValue Lo = Op.getOperand(0);
6627   SDValue Hi = Op.getOperand(1);
6628   SDValue Amt = Op.getOperand(2);
6629   EVT AmtVT = Amt.getValueType();
6630 
6631   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6632                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6633   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6634   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6635   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6636   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6637                              DAG.getConstant(-BitWidth, dl, AmtVT));
6638   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6639   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6640   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6641   SDValue OutOps[] = { OutLo, OutHi };
6642   return DAG.getMergeValues(OutOps, dl);
6643 }
6644 
6645 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6646   EVT VT = Op.getValueType();
6647   SDLoc dl(Op);
6648   unsigned BitWidth = VT.getSizeInBits();
6649   assert(Op.getNumOperands() == 3 &&
6650          VT == Op.getOperand(1).getValueType() &&
6651          "Unexpected SRL!");
6652 
6653   // Expand into a bunch of logical ops.  Note that these ops
6654   // depend on the PPC behavior for oversized shift amounts.
6655   SDValue Lo = Op.getOperand(0);
6656   SDValue Hi = Op.getOperand(1);
6657   SDValue Amt = Op.getOperand(2);
6658   EVT AmtVT = Amt.getValueType();
6659 
6660   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6661                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6662   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6663   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6664   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6665   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6666                              DAG.getConstant(-BitWidth, dl, AmtVT));
6667   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6668   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6669   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6670   SDValue OutOps[] = { OutLo, OutHi };
6671   return DAG.getMergeValues(OutOps, dl);
6672 }
6673 
6674 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6675   SDLoc dl(Op);
6676   EVT VT = Op.getValueType();
6677   unsigned BitWidth = VT.getSizeInBits();
6678   assert(Op.getNumOperands() == 3 &&
6679          VT == Op.getOperand(1).getValueType() &&
6680          "Unexpected SRA!");
6681 
6682   // Expand into a bunch of logical ops, followed by a select_cc.
6683   SDValue Lo = Op.getOperand(0);
6684   SDValue Hi = Op.getOperand(1);
6685   SDValue Amt = Op.getOperand(2);
6686   EVT AmtVT = Amt.getValueType();
6687 
6688   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6689                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6690   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6691   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6692   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6693   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6694                              DAG.getConstant(-BitWidth, dl, AmtVT));
6695   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6696   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6697   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6698                                   Tmp4, Tmp6, ISD::SETLE);
6699   SDValue OutOps[] = { OutLo, OutHi };
6700   return DAG.getMergeValues(OutOps, dl);
6701 }
6702 
6703 //===----------------------------------------------------------------------===//
6704 // Vector related lowering.
6705 //
6706 
6707 /// BuildSplatI - Build a canonical splati of Val with an element size of
6708 /// SplatSize.  Cast the result to VT.
6709 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6710                              SelectionDAG &DAG, SDLoc dl) {
6711   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6712 
6713   static const MVT VTys[] = { // canonical VT to use for each size.
6714     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6715   };
6716 
6717   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6718 
6719   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6720   if (Val == -1)
6721     SplatSize = 1;
6722 
6723   EVT CanonicalVT = VTys[SplatSize-1];
6724 
6725   // Build a canonical splat for this value.
6726   SDValue Elt = DAG.getConstant(Val, dl, MVT::i32);
6727   SmallVector<SDValue, 8> Ops;
6728   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
6729   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
6730   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
6731 }
6732 
6733 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6734 /// specified intrinsic ID.
6735 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
6736                                 SelectionDAG &DAG, SDLoc dl,
6737                                 EVT DestVT = MVT::Other) {
6738   if (DestVT == MVT::Other) DestVT = Op.getValueType();
6739   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6740                      DAG.getConstant(IID, dl, MVT::i32), Op);
6741 }
6742 
6743 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6744 /// specified intrinsic ID.
6745 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6746                                 SelectionDAG &DAG, SDLoc dl,
6747                                 EVT DestVT = MVT::Other) {
6748   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6749   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6750                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
6751 }
6752 
6753 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6754 /// specified intrinsic ID.
6755 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6756                                 SDValue Op2, SelectionDAG &DAG,
6757                                 SDLoc dl, EVT DestVT = MVT::Other) {
6758   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6759   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6760                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
6761 }
6762 
6763 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6764 /// amount.  The result has the specified value type.
6765 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
6766                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
6767   // Force LHS/RHS to be the right type.
6768   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6769   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6770 
6771   int Ops[16];
6772   for (unsigned i = 0; i != 16; ++i)
6773     Ops[i] = i + Amt;
6774   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6775   return DAG.getNode(ISD::BITCAST, dl, VT, T);
6776 }
6777 
6778 // If this is a case we can't handle, return null and let the default
6779 // expansion code take care of it.  If we CAN select this case, and if it
6780 // selects to a single instruction, return Op.  Otherwise, if we can codegen
6781 // this case more efficiently than a constant pool load, lower it to the
6782 // sequence of ops that should be used.
6783 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
6784                                              SelectionDAG &DAG) const {
6785   SDLoc dl(Op);
6786   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6787   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
6788 
6789   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
6790     // We first build an i32 vector, load it into a QPX register,
6791     // then convert it to a floating-point vector and compare it
6792     // to a zero vector to get the boolean result.
6793     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6794     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6795     MachinePointerInfo PtrInfo =
6796         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6797     EVT PtrVT = getPointerTy(DAG.getDataLayout());
6798     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6799 
6800     assert(BVN->getNumOperands() == 4 &&
6801       "BUILD_VECTOR for v4i1 does not have 4 operands");
6802 
6803     bool IsConst = true;
6804     for (unsigned i = 0; i < 4; ++i) {
6805       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6806       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
6807         IsConst = false;
6808         break;
6809       }
6810     }
6811 
6812     if (IsConst) {
6813       Constant *One =
6814         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
6815       Constant *NegOne =
6816         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
6817 
6818       SmallVector<Constant*, 4> CV(4, NegOne);
6819       for (unsigned i = 0; i < 4; ++i) {
6820         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
6821           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
6822         else if (cast<ConstantSDNode>(BVN->getOperand(i))->
6823                    getConstantIntValue()->isZero())
6824           continue;
6825         else
6826           CV[i] = One;
6827       }
6828 
6829       Constant *CP = ConstantVector::get(CV);
6830       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
6831                                           16 /* alignment */);
6832 
6833       SmallVector<SDValue, 2> Ops;
6834       Ops.push_back(DAG.getEntryNode());
6835       Ops.push_back(CPIdx);
6836 
6837       SmallVector<EVT, 2> ValueVTs;
6838       ValueVTs.push_back(MVT::v4i1);
6839       ValueVTs.push_back(MVT::Other); // chain
6840       SDVTList VTs = DAG.getVTList(ValueVTs);
6841 
6842       return DAG.getMemIntrinsicNode(
6843           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
6844           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
6845     }
6846 
6847     SmallVector<SDValue, 4> Stores;
6848     for (unsigned i = 0; i < 4; ++i) {
6849       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6850 
6851       unsigned Offset = 4*i;
6852       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
6853       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
6854 
6855       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
6856       if (StoreSize > 4) {
6857         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
6858                                            BVN->getOperand(i), Idx,
6859                                            PtrInfo.getWithOffset(Offset),
6860                                            MVT::i32, false, false, 0));
6861       } else {
6862         SDValue StoreValue = BVN->getOperand(i);
6863         if (StoreSize < 4)
6864           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
6865 
6866         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
6867                                       StoreValue, Idx,
6868                                       PtrInfo.getWithOffset(Offset),
6869                                       false, false, 0));
6870       }
6871     }
6872 
6873     SDValue StoreChain;
6874     if (!Stores.empty())
6875       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6876     else
6877       StoreChain = DAG.getEntryNode();
6878 
6879     // Now load from v4i32 into the QPX register; this will extend it to
6880     // v4i64 but not yet convert it to a floating point. Nevertheless, this
6881     // is typed as v4f64 because the QPX register integer states are not
6882     // explicitly represented.
6883 
6884     SmallVector<SDValue, 2> Ops;
6885     Ops.push_back(StoreChain);
6886     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
6887     Ops.push_back(FIdx);
6888 
6889     SmallVector<EVT, 2> ValueVTs;
6890     ValueVTs.push_back(MVT::v4f64);
6891     ValueVTs.push_back(MVT::Other); // chain
6892     SDVTList VTs = DAG.getVTList(ValueVTs);
6893 
6894     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
6895       dl, VTs, Ops, MVT::v4i32, PtrInfo);
6896     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
6897       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
6898       LoadedVect);
6899 
6900     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64);
6901     FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6902                           FPZeros, FPZeros, FPZeros, FPZeros);
6903 
6904     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
6905   }
6906 
6907   // All other QPX vectors are handled by generic code.
6908   if (Subtarget.hasQPX())
6909     return SDValue();
6910 
6911   // Check if this is a splat of a constant value.
6912   APInt APSplatBits, APSplatUndef;
6913   unsigned SplatBitSize;
6914   bool HasAnyUndefs;
6915   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
6916                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
6917       SplatBitSize > 32)
6918     return SDValue();
6919 
6920   unsigned SplatBits = APSplatBits.getZExtValue();
6921   unsigned SplatUndef = APSplatUndef.getZExtValue();
6922   unsigned SplatSize = SplatBitSize / 8;
6923 
6924   // First, handle single instruction cases.
6925 
6926   // All zeros?
6927   if (SplatBits == 0) {
6928     // Canonicalize all zero vectors to be v4i32.
6929     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
6930       SDValue Z = DAG.getConstant(0, dl, MVT::i32);
6931       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
6932       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
6933     }
6934     return Op;
6935   }
6936 
6937   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
6938   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
6939                     (32-SplatBitSize));
6940   if (SextVal >= -16 && SextVal <= 15)
6941     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
6942 
6943   // Two instruction sequences.
6944 
6945   // If this value is in the range [-32,30] and is even, use:
6946   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
6947   // If this value is in the range [17,31] and is odd, use:
6948   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
6949   // If this value is in the range [-31,-17] and is odd, use:
6950   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
6951   // Note the last two are three-instruction sequences.
6952   if (SextVal >= -32 && SextVal <= 31) {
6953     // To avoid having these optimizations undone by constant folding,
6954     // we convert to a pseudo that will be expanded later into one of
6955     // the above forms.
6956     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
6957     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
6958               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
6959     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
6960     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
6961     if (VT == Op.getValueType())
6962       return RetVal;
6963     else
6964       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
6965   }
6966 
6967   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
6968   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
6969   // for fneg/fabs.
6970   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
6971     // Make -1 and vspltisw -1:
6972     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
6973 
6974     // Make the VSLW intrinsic, computing 0x8000_0000.
6975     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
6976                                    OnesV, DAG, dl);
6977 
6978     // xor by OnesV to invert it.
6979     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
6980     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6981   }
6982 
6983   // Check to see if this is a wide variety of vsplti*, binop self cases.
6984   static const signed char SplatCsts[] = {
6985     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
6986     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
6987   };
6988 
6989   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
6990     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
6991     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
6992     int i = SplatCsts[idx];
6993 
6994     // Figure out what shift amount will be used by altivec if shifted by i in
6995     // this splat size.
6996     unsigned TypeShiftAmt = i & (SplatBitSize-1);
6997 
6998     // vsplti + shl self.
6999     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7000       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7001       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7002         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7003         Intrinsic::ppc_altivec_vslw
7004       };
7005       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7006       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7007     }
7008 
7009     // vsplti + srl self.
7010     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7011       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7012       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7013         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7014         Intrinsic::ppc_altivec_vsrw
7015       };
7016       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7017       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7018     }
7019 
7020     // vsplti + sra self.
7021     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7022       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7023       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7024         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7025         Intrinsic::ppc_altivec_vsraw
7026       };
7027       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7028       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7029     }
7030 
7031     // vsplti + rol self.
7032     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7033                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7034       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7035       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7036         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7037         Intrinsic::ppc_altivec_vrlw
7038       };
7039       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7040       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7041     }
7042 
7043     // t = vsplti c, result = vsldoi t, t, 1
7044     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7045       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7046       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7047       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7048     }
7049     // t = vsplti c, result = vsldoi t, t, 2
7050     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7051       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7052       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7053       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7054     }
7055     // t = vsplti c, result = vsldoi t, t, 3
7056     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7057       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7058       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7059       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7060     }
7061   }
7062 
7063   return SDValue();
7064 }
7065 
7066 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7067 /// the specified operations to build the shuffle.
7068 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7069                                       SDValue RHS, SelectionDAG &DAG,
7070                                       SDLoc dl) {
7071   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7072   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7073   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7074 
7075   enum {
7076     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7077     OP_VMRGHW,
7078     OP_VMRGLW,
7079     OP_VSPLTISW0,
7080     OP_VSPLTISW1,
7081     OP_VSPLTISW2,
7082     OP_VSPLTISW3,
7083     OP_VSLDOI4,
7084     OP_VSLDOI8,
7085     OP_VSLDOI12
7086   };
7087 
7088   if (OpNum == OP_COPY) {
7089     if (LHSID == (1*9+2)*9+3) return LHS;
7090     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7091     return RHS;
7092   }
7093 
7094   SDValue OpLHS, OpRHS;
7095   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7096   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7097 
7098   int ShufIdxs[16];
7099   switch (OpNum) {
7100   default: llvm_unreachable("Unknown i32 permute!");
7101   case OP_VMRGHW:
7102     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7103     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7104     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7105     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7106     break;
7107   case OP_VMRGLW:
7108     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7109     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7110     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7111     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7112     break;
7113   case OP_VSPLTISW0:
7114     for (unsigned i = 0; i != 16; ++i)
7115       ShufIdxs[i] = (i&3)+0;
7116     break;
7117   case OP_VSPLTISW1:
7118     for (unsigned i = 0; i != 16; ++i)
7119       ShufIdxs[i] = (i&3)+4;
7120     break;
7121   case OP_VSPLTISW2:
7122     for (unsigned i = 0; i != 16; ++i)
7123       ShufIdxs[i] = (i&3)+8;
7124     break;
7125   case OP_VSPLTISW3:
7126     for (unsigned i = 0; i != 16; ++i)
7127       ShufIdxs[i] = (i&3)+12;
7128     break;
7129   case OP_VSLDOI4:
7130     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7131   case OP_VSLDOI8:
7132     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7133   case OP_VSLDOI12:
7134     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7135   }
7136   EVT VT = OpLHS.getValueType();
7137   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7138   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7139   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7140   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7141 }
7142 
7143 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7144 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7145 /// return the code it can be lowered into.  Worst case, it can always be
7146 /// lowered into a vperm.
7147 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7148                                                SelectionDAG &DAG) const {
7149   SDLoc dl(Op);
7150   SDValue V1 = Op.getOperand(0);
7151   SDValue V2 = Op.getOperand(1);
7152   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7153   EVT VT = Op.getValueType();
7154   bool isLittleEndian = Subtarget.isLittleEndian();
7155 
7156   if (Subtarget.hasQPX()) {
7157     if (VT.getVectorNumElements() != 4)
7158       return SDValue();
7159 
7160     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7161 
7162     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7163     if (AlignIdx != -1) {
7164       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7165                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7166     } else if (SVOp->isSplat()) {
7167       int SplatIdx = SVOp->getSplatIndex();
7168       if (SplatIdx >= 4) {
7169         std::swap(V1, V2);
7170         SplatIdx -= 4;
7171       }
7172 
7173       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
7174       // nothing to do.
7175 
7176       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7177                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7178     }
7179 
7180     // Lower this into a qvgpci/qvfperm pair.
7181 
7182     // Compute the qvgpci literal
7183     unsigned idx = 0;
7184     for (unsigned i = 0; i < 4; ++i) {
7185       int m = SVOp->getMaskElt(i);
7186       unsigned mm = m >= 0 ? (unsigned) m : i;
7187       idx |= mm << (3-i)*3;
7188     }
7189 
7190     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7191                              DAG.getConstant(idx, dl, MVT::i32));
7192     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7193   }
7194 
7195   // Cases that are handled by instructions that take permute immediates
7196   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7197   // selected by the instruction selector.
7198   if (V2.getOpcode() == ISD::UNDEF) {
7199     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7200         PPC::isSplatShuffleMask(SVOp, 2) ||
7201         PPC::isSplatShuffleMask(SVOp, 4) ||
7202         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7203         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7204         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7205         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7206         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7207         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7208         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7209         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7210         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7211         (Subtarget.hasP8Altivec() && (
7212          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7213          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7214          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7215       return Op;
7216     }
7217   }
7218 
7219   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7220   // and produce a fixed permutation.  If any of these match, do not lower to
7221   // VPERM.
7222   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7223   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7224       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7225       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7226       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7227       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7228       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7229       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7230       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7231       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7232       (Subtarget.hasP8Altivec() && (
7233        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7234        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7235        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7236     return Op;
7237 
7238   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7239   // perfect shuffle table to emit an optimal matching sequence.
7240   ArrayRef<int> PermMask = SVOp->getMask();
7241 
7242   unsigned PFIndexes[4];
7243   bool isFourElementShuffle = true;
7244   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7245     unsigned EltNo = 8;   // Start out undef.
7246     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7247       if (PermMask[i*4+j] < 0)
7248         continue;   // Undef, ignore it.
7249 
7250       unsigned ByteSource = PermMask[i*4+j];
7251       if ((ByteSource & 3) != j) {
7252         isFourElementShuffle = false;
7253         break;
7254       }
7255 
7256       if (EltNo == 8) {
7257         EltNo = ByteSource/4;
7258       } else if (EltNo != ByteSource/4) {
7259         isFourElementShuffle = false;
7260         break;
7261       }
7262     }
7263     PFIndexes[i] = EltNo;
7264   }
7265 
7266   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7267   // perfect shuffle vector to determine if it is cost effective to do this as
7268   // discrete instructions, or whether we should use a vperm.
7269   // For now, we skip this for little endian until such time as we have a
7270   // little-endian perfect shuffle table.
7271   if (isFourElementShuffle && !isLittleEndian) {
7272     // Compute the index in the perfect shuffle table.
7273     unsigned PFTableIndex =
7274       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7275 
7276     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7277     unsigned Cost  = (PFEntry >> 30);
7278 
7279     // Determining when to avoid vperm is tricky.  Many things affect the cost
7280     // of vperm, particularly how many times the perm mask needs to be computed.
7281     // For example, if the perm mask can be hoisted out of a loop or is already
7282     // used (perhaps because there are multiple permutes with the same shuffle
7283     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7284     // the loop requires an extra register.
7285     //
7286     // As a compromise, we only emit discrete instructions if the shuffle can be
7287     // generated in 3 or fewer operations.  When we have loop information
7288     // available, if this block is within a loop, we should avoid using vperm
7289     // for 3-operation perms and use a constant pool load instead.
7290     if (Cost < 3)
7291       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7292   }
7293 
7294   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7295   // vector that will get spilled to the constant pool.
7296   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7297 
7298   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7299   // that it is in input element units, not in bytes.  Convert now.
7300 
7301   // For little endian, the order of the input vectors is reversed, and
7302   // the permutation mask is complemented with respect to 31.  This is
7303   // necessary to produce proper semantics with the big-endian-biased vperm
7304   // instruction.
7305   EVT EltVT = V1.getValueType().getVectorElementType();
7306   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7307 
7308   SmallVector<SDValue, 16> ResultMask;
7309   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7310     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7311 
7312     for (unsigned j = 0; j != BytesPerElement; ++j)
7313       if (isLittleEndian)
7314         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7315                                              dl, MVT::i32));
7316       else
7317         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7318                                              MVT::i32));
7319   }
7320 
7321   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7322                                   ResultMask);
7323   if (isLittleEndian)
7324     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7325                        V2, V1, VPermMask);
7326   else
7327     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7328                        V1, V2, VPermMask);
7329 }
7330 
7331 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7332 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7333 /// information about the intrinsic.
7334 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7335                                  bool &isDot, const PPCSubtarget &Subtarget) {
7336   unsigned IntrinsicID =
7337     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7338   CompareOpc = -1;
7339   isDot = false;
7340   switch (IntrinsicID) {
7341   default: return false;
7342     // Comparison predicates.
7343   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7344   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7345   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7346   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7347   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7348   case Intrinsic::ppc_altivec_vcmpequd_p:
7349     if (Subtarget.hasP8Altivec()) {
7350       CompareOpc = 199;
7351       isDot = 1;
7352     } else
7353       return false;
7354 
7355     break;
7356   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7357   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7358   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7359   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7360   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7361   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7362     if (Subtarget.hasP8Altivec()) {
7363       CompareOpc = 967;
7364       isDot = 1;
7365     } else
7366       return false;
7367 
7368     break;
7369   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7370   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7371   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7372   case Intrinsic::ppc_altivec_vcmpgtud_p:
7373     if (Subtarget.hasP8Altivec()) {
7374       CompareOpc = 711;
7375       isDot = 1;
7376     } else
7377       return false;
7378 
7379     break;
7380     // VSX predicate comparisons use the same infrastructure
7381   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7382   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7383   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7384   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7385   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7386   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7387     if (Subtarget.hasVSX()) {
7388       switch (IntrinsicID) {
7389       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7390       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7391       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7392       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7393       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7394       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7395       }
7396       isDot = 1;
7397     }
7398     else
7399       return false;
7400 
7401     break;
7402 
7403     // Normal Comparisons.
7404   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7405   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7406   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7407   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7408   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7409   case Intrinsic::ppc_altivec_vcmpequd:
7410     if (Subtarget.hasP8Altivec()) {
7411       CompareOpc = 199;
7412       isDot = 0;
7413     } else
7414       return false;
7415 
7416     break;
7417   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7418   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7419   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7420   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7421   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7422   case Intrinsic::ppc_altivec_vcmpgtsd:
7423     if (Subtarget.hasP8Altivec()) {
7424       CompareOpc = 967;
7425       isDot = 0;
7426     } else
7427       return false;
7428 
7429     break;
7430   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7431   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7432   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7433   case Intrinsic::ppc_altivec_vcmpgtud:
7434     if (Subtarget.hasP8Altivec()) {
7435       CompareOpc = 711;
7436       isDot = 0;
7437     } else
7438       return false;
7439 
7440     break;
7441   }
7442   return true;
7443 }
7444 
7445 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7446 /// lower, do it, otherwise return null.
7447 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7448                                                    SelectionDAG &DAG) const {
7449   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7450   // opcode number of the comparison.
7451   SDLoc dl(Op);
7452   int CompareOpc;
7453   bool isDot;
7454   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7455     return SDValue();    // Don't custom lower most intrinsics.
7456 
7457   // If this is a non-dot comparison, make the VCMP node and we are done.
7458   if (!isDot) {
7459     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7460                               Op.getOperand(1), Op.getOperand(2),
7461                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7462     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7463   }
7464 
7465   // Create the PPCISD altivec 'dot' comparison node.
7466   SDValue Ops[] = {
7467     Op.getOperand(2),  // LHS
7468     Op.getOperand(3),  // RHS
7469     DAG.getConstant(CompareOpc, dl, MVT::i32)
7470   };
7471   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7472   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7473 
7474   // Now that we have the comparison, emit a copy from the CR to a GPR.
7475   // This is flagged to the above dot comparison.
7476   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7477                                 DAG.getRegister(PPC::CR6, MVT::i32),
7478                                 CompNode.getValue(1));
7479 
7480   // Unpack the result based on how the target uses it.
7481   unsigned BitNo;   // Bit # of CR6.
7482   bool InvertBit;   // Invert result?
7483   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7484   default:  // Can't happen, don't crash on invalid number though.
7485   case 0:   // Return the value of the EQ bit of CR6.
7486     BitNo = 0; InvertBit = false;
7487     break;
7488   case 1:   // Return the inverted value of the EQ bit of CR6.
7489     BitNo = 0; InvertBit = true;
7490     break;
7491   case 2:   // Return the value of the LT bit of CR6.
7492     BitNo = 2; InvertBit = false;
7493     break;
7494   case 3:   // Return the inverted value of the LT bit of CR6.
7495     BitNo = 2; InvertBit = true;
7496     break;
7497   }
7498 
7499   // Shift the bit into the low position.
7500   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7501                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7502   // Isolate the bit.
7503   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7504                       DAG.getConstant(1, dl, MVT::i32));
7505 
7506   // If we are supposed to, toggle the bit.
7507   if (InvertBit)
7508     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7509                         DAG.getConstant(1, dl, MVT::i32));
7510   return Flags;
7511 }
7512 
7513 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7514                                                   SelectionDAG &DAG) const {
7515   SDLoc dl(Op);
7516   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7517   // instructions), but for smaller types, we need to first extend up to v2i32
7518   // before doing going farther.
7519   if (Op.getValueType() == MVT::v2i64) {
7520     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7521     if (ExtVT != MVT::v2i32) {
7522       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7523       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7524                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7525                                         ExtVT.getVectorElementType(), 4)));
7526       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7527       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7528                        DAG.getValueType(MVT::v2i32));
7529     }
7530 
7531     return Op;
7532   }
7533 
7534   return SDValue();
7535 }
7536 
7537 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7538                                                    SelectionDAG &DAG) const {
7539   SDLoc dl(Op);
7540   // Create a stack slot that is 16-byte aligned.
7541   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7542   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7543   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7544   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7545 
7546   // Store the input value into Value#0 of the stack slot.
7547   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7548                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7549                                false, false, 0);
7550   // Load it out.
7551   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7552                      false, false, false, 0);
7553 }
7554 
7555 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7556                                                    SelectionDAG &DAG) const {
7557   SDLoc dl(Op);
7558   SDNode *N = Op.getNode();
7559 
7560   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7561          "Unknown extract_vector_elt type");
7562 
7563   SDValue Value = N->getOperand(0);
7564 
7565   // The first part of this is like the store lowering except that we don't
7566   // need to track the chain.
7567 
7568   // The values are now known to be -1 (false) or 1 (true). To convert this
7569   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7570   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7571   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7572 
7573   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7574   // understand how to form the extending load.
7575   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7576   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7577                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7578 
7579   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7580 
7581   // Now convert to an integer and store.
7582   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7583     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7584     Value);
7585 
7586   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7587   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7588   MachinePointerInfo PtrInfo =
7589       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7590   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7591   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7592 
7593   SDValue StoreChain = DAG.getEntryNode();
7594   SmallVector<SDValue, 2> Ops;
7595   Ops.push_back(StoreChain);
7596   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7597   Ops.push_back(Value);
7598   Ops.push_back(FIdx);
7599 
7600   SmallVector<EVT, 2> ValueVTs;
7601   ValueVTs.push_back(MVT::Other); // chain
7602   SDVTList VTs = DAG.getVTList(ValueVTs);
7603 
7604   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7605     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7606 
7607   // Extract the value requested.
7608   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7609   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7610   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7611 
7612   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7613                                PtrInfo.getWithOffset(Offset),
7614                                false, false, false, 0);
7615 
7616   if (!Subtarget.useCRBits())
7617     return IntVal;
7618 
7619   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7620 }
7621 
7622 /// Lowering for QPX v4i1 loads
7623 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7624                                            SelectionDAG &DAG) const {
7625   SDLoc dl(Op);
7626   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7627   SDValue LoadChain = LN->getChain();
7628   SDValue BasePtr = LN->getBasePtr();
7629 
7630   if (Op.getValueType() == MVT::v4f64 ||
7631       Op.getValueType() == MVT::v4f32) {
7632     EVT MemVT = LN->getMemoryVT();
7633     unsigned Alignment = LN->getAlignment();
7634 
7635     // If this load is properly aligned, then it is legal.
7636     if (Alignment >= MemVT.getStoreSize())
7637       return Op;
7638 
7639     EVT ScalarVT = Op.getValueType().getScalarType(),
7640         ScalarMemVT = MemVT.getScalarType();
7641     unsigned Stride = ScalarMemVT.getStoreSize();
7642 
7643     SmallVector<SDValue, 8> Vals, LoadChains;
7644     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7645       SDValue Load;
7646       if (ScalarVT != ScalarMemVT)
7647         Load =
7648           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7649                          BasePtr,
7650                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7651                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7652                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7653                          LN->getAAInfo());
7654       else
7655         Load =
7656           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7657                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7658                        LN->isVolatile(), LN->isNonTemporal(),
7659                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7660                        LN->getAAInfo());
7661 
7662       if (Idx == 0 && LN->isIndexed()) {
7663         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7664                "Unknown addressing mode on vector load");
7665         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7666                                   LN->getAddressingMode());
7667       }
7668 
7669       Vals.push_back(Load);
7670       LoadChains.push_back(Load.getValue(1));
7671 
7672       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7673                             DAG.getConstant(Stride, dl,
7674                                             BasePtr.getValueType()));
7675     }
7676 
7677     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7678     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7679                                 Op.getValueType(), Vals);
7680 
7681     if (LN->isIndexed()) {
7682       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7683       return DAG.getMergeValues(RetOps, dl);
7684     }
7685 
7686     SDValue RetOps[] = { Value, TF };
7687     return DAG.getMergeValues(RetOps, dl);
7688   }
7689 
7690   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7691   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7692 
7693   // To lower v4i1 from a byte array, we load the byte elements of the
7694   // vector and then reuse the BUILD_VECTOR logic.
7695 
7696   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7697   for (unsigned i = 0; i < 4; ++i) {
7698     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7699     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7700 
7701     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7702                         dl, MVT::i32, LoadChain, Idx,
7703                         LN->getPointerInfo().getWithOffset(i),
7704                         MVT::i8 /* memory type */,
7705                         LN->isVolatile(), LN->isNonTemporal(),
7706                         LN->isInvariant(),
7707                         1 /* alignment */, LN->getAAInfo()));
7708     VectElmtChains.push_back(VectElmts[i].getValue(1));
7709   }
7710 
7711   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7712   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7713 
7714   SDValue RVals[] = { Value, LoadChain };
7715   return DAG.getMergeValues(RVals, dl);
7716 }
7717 
7718 /// Lowering for QPX v4i1 stores
7719 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7720                                             SelectionDAG &DAG) const {
7721   SDLoc dl(Op);
7722   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7723   SDValue StoreChain = SN->getChain();
7724   SDValue BasePtr = SN->getBasePtr();
7725   SDValue Value = SN->getValue();
7726 
7727   if (Value.getValueType() == MVT::v4f64 ||
7728       Value.getValueType() == MVT::v4f32) {
7729     EVT MemVT = SN->getMemoryVT();
7730     unsigned Alignment = SN->getAlignment();
7731 
7732     // If this store is properly aligned, then it is legal.
7733     if (Alignment >= MemVT.getStoreSize())
7734       return Op;
7735 
7736     EVT ScalarVT = Value.getValueType().getScalarType(),
7737         ScalarMemVT = MemVT.getScalarType();
7738     unsigned Stride = ScalarMemVT.getStoreSize();
7739 
7740     SmallVector<SDValue, 8> Stores;
7741     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7742       SDValue Ex = DAG.getNode(
7743           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7744           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
7745       SDValue Store;
7746       if (ScalarVT != ScalarMemVT)
7747         Store =
7748           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7749                             SN->getPointerInfo().getWithOffset(Idx*Stride),
7750                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7751                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7752       else
7753         Store =
7754           DAG.getStore(StoreChain, dl, Ex, BasePtr,
7755                        SN->getPointerInfo().getWithOffset(Idx*Stride),
7756                        SN->isVolatile(), SN->isNonTemporal(),
7757                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7758 
7759       if (Idx == 0 && SN->isIndexed()) {
7760         assert(SN->getAddressingMode() == ISD::PRE_INC &&
7761                "Unknown addressing mode on vector store");
7762         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7763                                     SN->getAddressingMode());
7764       }
7765 
7766       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7767                             DAG.getConstant(Stride, dl,
7768                                             BasePtr.getValueType()));
7769       Stores.push_back(Store);
7770     }
7771 
7772     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7773 
7774     if (SN->isIndexed()) {
7775       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7776       return DAG.getMergeValues(RetOps, dl);
7777     }
7778 
7779     return TF;
7780   }
7781 
7782   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7783   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7784 
7785   // The values are now known to be -1 (false) or 1 (true). To convert this
7786   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7787   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7788   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7789 
7790   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7791   // understand how to form the extending load.
7792   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
7793   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7794                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7795 
7796   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7797 
7798   // Now convert to an integer and store.
7799   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7800     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7801     Value);
7802 
7803   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7804   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7805   MachinePointerInfo PtrInfo =
7806       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7807   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7808   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7809 
7810   SmallVector<SDValue, 2> Ops;
7811   Ops.push_back(StoreChain);
7812   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7813   Ops.push_back(Value);
7814   Ops.push_back(FIdx);
7815 
7816   SmallVector<EVT, 2> ValueVTs;
7817   ValueVTs.push_back(MVT::Other); // chain
7818   SDVTList VTs = DAG.getVTList(ValueVTs);
7819 
7820   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7821     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7822 
7823   // Move data into the byte array.
7824   SmallVector<SDValue, 4> Loads, LoadChains;
7825   for (unsigned i = 0; i < 4; ++i) {
7826     unsigned Offset = 4*i;
7827     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7828     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7829 
7830     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7831                                    PtrInfo.getWithOffset(Offset),
7832                                    false, false, false, 0));
7833     LoadChains.push_back(Loads[i].getValue(1));
7834   }
7835 
7836   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7837 
7838   SmallVector<SDValue, 4> Stores;
7839   for (unsigned i = 0; i < 4; ++i) {
7840     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7841     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7842 
7843     Stores.push_back(DAG.getTruncStore(
7844         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
7845         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
7846         1 /* alignment */, SN->getAAInfo()));
7847   }
7848 
7849   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7850 
7851   return StoreChain;
7852 }
7853 
7854 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
7855   SDLoc dl(Op);
7856   if (Op.getValueType() == MVT::v4i32) {
7857     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7858 
7859     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
7860     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
7861 
7862     SDValue RHSSwap =   // = vrlw RHS, 16
7863       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
7864 
7865     // Shrinkify inputs to v8i16.
7866     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
7867     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
7868     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
7869 
7870     // Low parts multiplied together, generating 32-bit results (we ignore the
7871     // top parts).
7872     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
7873                                         LHS, RHS, DAG, dl, MVT::v4i32);
7874 
7875     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
7876                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
7877     // Shift the high parts up 16 bits.
7878     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
7879                               Neg16, DAG, dl);
7880     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
7881   } else if (Op.getValueType() == MVT::v8i16) {
7882     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7883 
7884     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
7885 
7886     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
7887                             LHS, RHS, Zero, DAG, dl);
7888   } else if (Op.getValueType() == MVT::v16i8) {
7889     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7890     bool isLittleEndian = Subtarget.isLittleEndian();
7891 
7892     // Multiply the even 8-bit parts, producing 16-bit sums.
7893     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
7894                                            LHS, RHS, DAG, dl, MVT::v8i16);
7895     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
7896 
7897     // Multiply the odd 8-bit parts, producing 16-bit sums.
7898     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
7899                                           LHS, RHS, DAG, dl, MVT::v8i16);
7900     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
7901 
7902     // Merge the results together.  Because vmuleub and vmuloub are
7903     // instructions with a big-endian bias, we must reverse the
7904     // element numbering and reverse the meaning of "odd" and "even"
7905     // when generating little endian code.
7906     int Ops[16];
7907     for (unsigned i = 0; i != 8; ++i) {
7908       if (isLittleEndian) {
7909         Ops[i*2  ] = 2*i;
7910         Ops[i*2+1] = 2*i+16;
7911       } else {
7912         Ops[i*2  ] = 2*i+1;
7913         Ops[i*2+1] = 2*i+1+16;
7914       }
7915     }
7916     if (isLittleEndian)
7917       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
7918     else
7919       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
7920   } else {
7921     llvm_unreachable("Unknown mul to lower!");
7922   }
7923 }
7924 
7925 /// LowerOperation - Provide custom lowering hooks for some operations.
7926 ///
7927 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7928   switch (Op.getOpcode()) {
7929   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
7930   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7931   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7932   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7933   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7934   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7935   case ISD::SETCC:              return LowerSETCC(Op, DAG);
7936   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
7937   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
7938   case ISD::VASTART:
7939     return LowerVASTART(Op, DAG, Subtarget);
7940 
7941   case ISD::VAARG:
7942     return LowerVAARG(Op, DAG, Subtarget);
7943 
7944   case ISD::VACOPY:
7945     return LowerVACOPY(Op, DAG, Subtarget);
7946 
7947   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
7948   case ISD::DYNAMIC_STACKALLOC:
7949     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
7950 
7951   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
7952   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
7953 
7954   case ISD::LOAD:               return LowerLOAD(Op, DAG);
7955   case ISD::STORE:              return LowerSTORE(Op, DAG);
7956   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
7957   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
7958   case ISD::FP_TO_UINT:
7959   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
7960                                                       SDLoc(Op));
7961   case ISD::UINT_TO_FP:
7962   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
7963   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7964 
7965   // Lower 64-bit shifts.
7966   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
7967   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
7968   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
7969 
7970   // Vector-related lowering.
7971   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7972   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7973   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7974   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7975   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
7976   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7977   case ISD::MUL:                return LowerMUL(Op, DAG);
7978 
7979   // For counter-based loop handling.
7980   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
7981 
7982   // Frame & Return address.
7983   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7984   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7985   }
7986 }
7987 
7988 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
7989                                            SmallVectorImpl<SDValue>&Results,
7990                                            SelectionDAG &DAG) const {
7991   SDLoc dl(N);
7992   switch (N->getOpcode()) {
7993   default:
7994     llvm_unreachable("Do not know how to custom type legalize this operation!");
7995   case ISD::READCYCLECOUNTER: {
7996     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7997     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
7998 
7999     Results.push_back(RTB);
8000     Results.push_back(RTB.getValue(1));
8001     Results.push_back(RTB.getValue(2));
8002     break;
8003   }
8004   case ISD::INTRINSIC_W_CHAIN: {
8005     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8006         Intrinsic::ppc_is_decremented_ctr_nonzero)
8007       break;
8008 
8009     assert(N->getValueType(0) == MVT::i1 &&
8010            "Unexpected result type for CTR decrement intrinsic");
8011     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8012                                  N->getValueType(0));
8013     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8014     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8015                                  N->getOperand(1));
8016 
8017     Results.push_back(NewInt);
8018     Results.push_back(NewInt.getValue(1));
8019     break;
8020   }
8021   case ISD::VAARG: {
8022     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8023       return;
8024 
8025     EVT VT = N->getValueType(0);
8026 
8027     if (VT == MVT::i64) {
8028       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
8029 
8030       Results.push_back(NewNode);
8031       Results.push_back(NewNode.getValue(1));
8032     }
8033     return;
8034   }
8035   case ISD::FP_ROUND_INREG: {
8036     assert(N->getValueType(0) == MVT::ppcf128);
8037     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8038     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8039                              MVT::f64, N->getOperand(0),
8040                              DAG.getIntPtrConstant(0, dl));
8041     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8042                              MVT::f64, N->getOperand(0),
8043                              DAG.getIntPtrConstant(1, dl));
8044 
8045     // Add the two halves of the long double in round-to-zero mode.
8046     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8047 
8048     // We know the low half is about to be thrown away, so just use something
8049     // convenient.
8050     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8051                                 FPreg, FPreg));
8052     return;
8053   }
8054   case ISD::FP_TO_SINT:
8055   case ISD::FP_TO_UINT:
8056     // LowerFP_TO_INT() can only handle f32 and f64.
8057     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8058       return;
8059     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8060     return;
8061   }
8062 }
8063 
8064 //===----------------------------------------------------------------------===//
8065 //  Other Lowering Code
8066 //===----------------------------------------------------------------------===//
8067 
8068 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8069   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8070   Function *Func = Intrinsic::getDeclaration(M, Id);
8071   return Builder.CreateCall(Func, {});
8072 }
8073 
8074 // The mappings for emitLeading/TrailingFence is taken from
8075 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8076 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8077                                          AtomicOrdering Ord, bool IsStore,
8078                                          bool IsLoad) const {
8079   if (Ord == SequentiallyConsistent)
8080     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8081   if (isAtLeastRelease(Ord))
8082     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8083   return nullptr;
8084 }
8085 
8086 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8087                                           AtomicOrdering Ord, bool IsStore,
8088                                           bool IsLoad) const {
8089   if (IsLoad && isAtLeastAcquire(Ord))
8090     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8091   // FIXME: this is too conservative, a dependent branch + isync is enough.
8092   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8093   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8094   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8095   return nullptr;
8096 }
8097 
8098 MachineBasicBlock *
8099 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8100                                     unsigned AtomicSize,
8101                                     unsigned BinOpcode) const {
8102   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8103   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8104 
8105   auto LoadMnemonic = PPC::LDARX;
8106   auto StoreMnemonic = PPC::STDCX;
8107   switch (AtomicSize) {
8108   default:
8109     llvm_unreachable("Unexpected size of atomic entity");
8110   case 1:
8111     LoadMnemonic = PPC::LBARX;
8112     StoreMnemonic = PPC::STBCX;
8113     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8114     break;
8115   case 2:
8116     LoadMnemonic = PPC::LHARX;
8117     StoreMnemonic = PPC::STHCX;
8118     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8119     break;
8120   case 4:
8121     LoadMnemonic = PPC::LWARX;
8122     StoreMnemonic = PPC::STWCX;
8123     break;
8124   case 8:
8125     LoadMnemonic = PPC::LDARX;
8126     StoreMnemonic = PPC::STDCX;
8127     break;
8128   }
8129 
8130   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8131   MachineFunction *F = BB->getParent();
8132   MachineFunction::iterator It = ++BB->getIterator();
8133 
8134   unsigned dest = MI->getOperand(0).getReg();
8135   unsigned ptrA = MI->getOperand(1).getReg();
8136   unsigned ptrB = MI->getOperand(2).getReg();
8137   unsigned incr = MI->getOperand(3).getReg();
8138   DebugLoc dl = MI->getDebugLoc();
8139 
8140   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8141   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8142   F->insert(It, loopMBB);
8143   F->insert(It, exitMBB);
8144   exitMBB->splice(exitMBB->begin(), BB,
8145                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8146   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8147 
8148   MachineRegisterInfo &RegInfo = F->getRegInfo();
8149   unsigned TmpReg = (!BinOpcode) ? incr :
8150     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8151                                            : &PPC::GPRCRegClass);
8152 
8153   //  thisMBB:
8154   //   ...
8155   //   fallthrough --> loopMBB
8156   BB->addSuccessor(loopMBB);
8157 
8158   //  loopMBB:
8159   //   l[wd]arx dest, ptr
8160   //   add r0, dest, incr
8161   //   st[wd]cx. r0, ptr
8162   //   bne- loopMBB
8163   //   fallthrough --> exitMBB
8164   BB = loopMBB;
8165   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8166     .addReg(ptrA).addReg(ptrB);
8167   if (BinOpcode)
8168     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8169   BuildMI(BB, dl, TII->get(StoreMnemonic))
8170     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8171   BuildMI(BB, dl, TII->get(PPC::BCC))
8172     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8173   BB->addSuccessor(loopMBB);
8174   BB->addSuccessor(exitMBB);
8175 
8176   //  exitMBB:
8177   //   ...
8178   BB = exitMBB;
8179   return BB;
8180 }
8181 
8182 MachineBasicBlock *
8183 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8184                                             MachineBasicBlock *BB,
8185                                             bool is8bit,    // operation
8186                                             unsigned BinOpcode) const {
8187   // If we support part-word atomic mnemonics, just use them
8188   if (Subtarget.hasPartwordAtomics())
8189     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8190 
8191   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8192   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8193   // In 64 bit mode we have to use 64 bits for addresses, even though the
8194   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8195   // registers without caring whether they're 32 or 64, but here we're
8196   // doing actual arithmetic on the addresses.
8197   bool is64bit = Subtarget.isPPC64();
8198   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8199 
8200   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8201   MachineFunction *F = BB->getParent();
8202   MachineFunction::iterator It = ++BB->getIterator();
8203 
8204   unsigned dest = MI->getOperand(0).getReg();
8205   unsigned ptrA = MI->getOperand(1).getReg();
8206   unsigned ptrB = MI->getOperand(2).getReg();
8207   unsigned incr = MI->getOperand(3).getReg();
8208   DebugLoc dl = MI->getDebugLoc();
8209 
8210   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8211   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8212   F->insert(It, loopMBB);
8213   F->insert(It, exitMBB);
8214   exitMBB->splice(exitMBB->begin(), BB,
8215                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8216   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8217 
8218   MachineRegisterInfo &RegInfo = F->getRegInfo();
8219   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8220                                           : &PPC::GPRCRegClass;
8221   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8222   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8223   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8224   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8225   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8226   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8227   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8228   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8229   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8230   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8231   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8232   unsigned Ptr1Reg;
8233   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8234 
8235   //  thisMBB:
8236   //   ...
8237   //   fallthrough --> loopMBB
8238   BB->addSuccessor(loopMBB);
8239 
8240   // The 4-byte load must be aligned, while a char or short may be
8241   // anywhere in the word.  Hence all this nasty bookkeeping code.
8242   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8243   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8244   //   xori shift, shift1, 24 [16]
8245   //   rlwinm ptr, ptr1, 0, 0, 29
8246   //   slw incr2, incr, shift
8247   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8248   //   slw mask, mask2, shift
8249   //  loopMBB:
8250   //   lwarx tmpDest, ptr
8251   //   add tmp, tmpDest, incr2
8252   //   andc tmp2, tmpDest, mask
8253   //   and tmp3, tmp, mask
8254   //   or tmp4, tmp3, tmp2
8255   //   stwcx. tmp4, ptr
8256   //   bne- loopMBB
8257   //   fallthrough --> exitMBB
8258   //   srw dest, tmpDest, shift
8259   if (ptrA != ZeroReg) {
8260     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8261     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8262       .addReg(ptrA).addReg(ptrB);
8263   } else {
8264     Ptr1Reg = ptrB;
8265   }
8266   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8267       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8268   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8269       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8270   if (is64bit)
8271     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8272       .addReg(Ptr1Reg).addImm(0).addImm(61);
8273   else
8274     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8275       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8276   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8277       .addReg(incr).addReg(ShiftReg);
8278   if (is8bit)
8279     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8280   else {
8281     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8282     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8283   }
8284   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8285       .addReg(Mask2Reg).addReg(ShiftReg);
8286 
8287   BB = loopMBB;
8288   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8289     .addReg(ZeroReg).addReg(PtrReg);
8290   if (BinOpcode)
8291     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8292       .addReg(Incr2Reg).addReg(TmpDestReg);
8293   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8294     .addReg(TmpDestReg).addReg(MaskReg);
8295   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8296     .addReg(TmpReg).addReg(MaskReg);
8297   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8298     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8299   BuildMI(BB, dl, TII->get(PPC::STWCX))
8300     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8301   BuildMI(BB, dl, TII->get(PPC::BCC))
8302     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8303   BB->addSuccessor(loopMBB);
8304   BB->addSuccessor(exitMBB);
8305 
8306   //  exitMBB:
8307   //   ...
8308   BB = exitMBB;
8309   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8310     .addReg(ShiftReg);
8311   return BB;
8312 }
8313 
8314 llvm::MachineBasicBlock*
8315 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8316                                     MachineBasicBlock *MBB) const {
8317   DebugLoc DL = MI->getDebugLoc();
8318   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8319 
8320   MachineFunction *MF = MBB->getParent();
8321   MachineRegisterInfo &MRI = MF->getRegInfo();
8322 
8323   const BasicBlock *BB = MBB->getBasicBlock();
8324   MachineFunction::iterator I = ++MBB->getIterator();
8325 
8326   // Memory Reference
8327   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8328   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8329 
8330   unsigned DstReg = MI->getOperand(0).getReg();
8331   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8332   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8333   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8334   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8335 
8336   MVT PVT = getPointerTy(MF->getDataLayout());
8337   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8338          "Invalid Pointer Size!");
8339   // For v = setjmp(buf), we generate
8340   //
8341   // thisMBB:
8342   //  SjLjSetup mainMBB
8343   //  bl mainMBB
8344   //  v_restore = 1
8345   //  b sinkMBB
8346   //
8347   // mainMBB:
8348   //  buf[LabelOffset] = LR
8349   //  v_main = 0
8350   //
8351   // sinkMBB:
8352   //  v = phi(main, restore)
8353   //
8354 
8355   MachineBasicBlock *thisMBB = MBB;
8356   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8357   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8358   MF->insert(I, mainMBB);
8359   MF->insert(I, sinkMBB);
8360 
8361   MachineInstrBuilder MIB;
8362 
8363   // Transfer the remainder of BB and its successor edges to sinkMBB.
8364   sinkMBB->splice(sinkMBB->begin(), MBB,
8365                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8366   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8367 
8368   // Note that the structure of the jmp_buf used here is not compatible
8369   // with that used by libc, and is not designed to be. Specifically, it
8370   // stores only those 'reserved' registers that LLVM does not otherwise
8371   // understand how to spill. Also, by convention, by the time this
8372   // intrinsic is called, Clang has already stored the frame address in the
8373   // first slot of the buffer and stack address in the third. Following the
8374   // X86 target code, we'll store the jump address in the second slot. We also
8375   // need to save the TOC pointer (R2) to handle jumps between shared
8376   // libraries, and that will be stored in the fourth slot. The thread
8377   // identifier (R13) is not affected.
8378 
8379   // thisMBB:
8380   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8381   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8382   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8383 
8384   // Prepare IP either in reg.
8385   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8386   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8387   unsigned BufReg = MI->getOperand(1).getReg();
8388 
8389   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8390     setUsesTOCBasePtr(*MBB->getParent());
8391     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8392             .addReg(PPC::X2)
8393             .addImm(TOCOffset)
8394             .addReg(BufReg);
8395     MIB.setMemRefs(MMOBegin, MMOEnd);
8396   }
8397 
8398   // Naked functions never have a base pointer, and so we use r1. For all
8399   // other functions, this decision must be delayed until during PEI.
8400   unsigned BaseReg;
8401   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8402     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8403   else
8404     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8405 
8406   MIB = BuildMI(*thisMBB, MI, DL,
8407                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8408             .addReg(BaseReg)
8409             .addImm(BPOffset)
8410             .addReg(BufReg);
8411   MIB.setMemRefs(MMOBegin, MMOEnd);
8412 
8413   // Setup
8414   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8415   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8416   MIB.addRegMask(TRI->getNoPreservedMask());
8417 
8418   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8419 
8420   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8421           .addMBB(mainMBB);
8422   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8423 
8424   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
8425   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
8426 
8427   // mainMBB:
8428   //  mainDstReg = 0
8429   MIB =
8430       BuildMI(mainMBB, DL,
8431               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8432 
8433   // Store IP
8434   if (Subtarget.isPPC64()) {
8435     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8436             .addReg(LabelReg)
8437             .addImm(LabelOffset)
8438             .addReg(BufReg);
8439   } else {
8440     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8441             .addReg(LabelReg)
8442             .addImm(LabelOffset)
8443             .addReg(BufReg);
8444   }
8445 
8446   MIB.setMemRefs(MMOBegin, MMOEnd);
8447 
8448   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8449   mainMBB->addSuccessor(sinkMBB);
8450 
8451   // sinkMBB:
8452   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8453           TII->get(PPC::PHI), DstReg)
8454     .addReg(mainDstReg).addMBB(mainMBB)
8455     .addReg(restoreDstReg).addMBB(thisMBB);
8456 
8457   MI->eraseFromParent();
8458   return sinkMBB;
8459 }
8460 
8461 MachineBasicBlock *
8462 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8463                                      MachineBasicBlock *MBB) const {
8464   DebugLoc DL = MI->getDebugLoc();
8465   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8466 
8467   MachineFunction *MF = MBB->getParent();
8468   MachineRegisterInfo &MRI = MF->getRegInfo();
8469 
8470   // Memory Reference
8471   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8472   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8473 
8474   MVT PVT = getPointerTy(MF->getDataLayout());
8475   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8476          "Invalid Pointer Size!");
8477 
8478   const TargetRegisterClass *RC =
8479     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8480   unsigned Tmp = MRI.createVirtualRegister(RC);
8481   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8482   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8483   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8484   unsigned BP =
8485       (PVT == MVT::i64)
8486           ? PPC::X30
8487           : (Subtarget.isSVR4ABI() &&
8488                      MF->getTarget().getRelocationModel() == Reloc::PIC_
8489                  ? PPC::R29
8490                  : PPC::R30);
8491 
8492   MachineInstrBuilder MIB;
8493 
8494   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8495   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8496   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8497   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8498 
8499   unsigned BufReg = MI->getOperand(0).getReg();
8500 
8501   // Reload FP (the jumped-to function may not have had a
8502   // frame pointer, and if so, then its r31 will be restored
8503   // as necessary).
8504   if (PVT == MVT::i64) {
8505     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8506             .addImm(0)
8507             .addReg(BufReg);
8508   } else {
8509     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8510             .addImm(0)
8511             .addReg(BufReg);
8512   }
8513   MIB.setMemRefs(MMOBegin, MMOEnd);
8514 
8515   // Reload IP
8516   if (PVT == MVT::i64) {
8517     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8518             .addImm(LabelOffset)
8519             .addReg(BufReg);
8520   } else {
8521     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8522             .addImm(LabelOffset)
8523             .addReg(BufReg);
8524   }
8525   MIB.setMemRefs(MMOBegin, MMOEnd);
8526 
8527   // Reload SP
8528   if (PVT == MVT::i64) {
8529     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8530             .addImm(SPOffset)
8531             .addReg(BufReg);
8532   } else {
8533     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8534             .addImm(SPOffset)
8535             .addReg(BufReg);
8536   }
8537   MIB.setMemRefs(MMOBegin, MMOEnd);
8538 
8539   // Reload BP
8540   if (PVT == MVT::i64) {
8541     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8542             .addImm(BPOffset)
8543             .addReg(BufReg);
8544   } else {
8545     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8546             .addImm(BPOffset)
8547             .addReg(BufReg);
8548   }
8549   MIB.setMemRefs(MMOBegin, MMOEnd);
8550 
8551   // Reload TOC
8552   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8553     setUsesTOCBasePtr(*MBB->getParent());
8554     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8555             .addImm(TOCOffset)
8556             .addReg(BufReg);
8557 
8558     MIB.setMemRefs(MMOBegin, MMOEnd);
8559   }
8560 
8561   // Jump
8562   BuildMI(*MBB, MI, DL,
8563           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8564   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8565 
8566   MI->eraseFromParent();
8567   return MBB;
8568 }
8569 
8570 MachineBasicBlock *
8571 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8572                                                MachineBasicBlock *BB) const {
8573   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8574       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8575     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8576         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8577       // Call lowering should have added an r2 operand to indicate a dependence
8578       // on the TOC base pointer value. It can't however, because there is no
8579       // way to mark the dependence as implicit there, and so the stackmap code
8580       // will confuse it with a regular operand. Instead, add the dependence
8581       // here.
8582       setUsesTOCBasePtr(*BB->getParent());
8583       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8584     }
8585 
8586     return emitPatchPoint(MI, BB);
8587   }
8588 
8589   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8590       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8591     return emitEHSjLjSetJmp(MI, BB);
8592   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8593              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8594     return emitEHSjLjLongJmp(MI, BB);
8595   }
8596 
8597   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8598 
8599   // To "insert" these instructions we actually have to insert their
8600   // control-flow patterns.
8601   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8602   MachineFunction::iterator It = ++BB->getIterator();
8603 
8604   MachineFunction *F = BB->getParent();
8605 
8606   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8607                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8608                               MI->getOpcode() == PPC::SELECT_I4 ||
8609                               MI->getOpcode() == PPC::SELECT_I8)) {
8610     SmallVector<MachineOperand, 2> Cond;
8611     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8612         MI->getOpcode() == PPC::SELECT_CC_I8)
8613       Cond.push_back(MI->getOperand(4));
8614     else
8615       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8616     Cond.push_back(MI->getOperand(1));
8617 
8618     DebugLoc dl = MI->getDebugLoc();
8619     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8620                       Cond, MI->getOperand(2).getReg(),
8621                       MI->getOperand(3).getReg());
8622   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8623              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8624              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8625              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8626              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8627              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8628              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8629              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8630              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8631              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8632              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8633              MI->getOpcode() == PPC::SELECT_I4 ||
8634              MI->getOpcode() == PPC::SELECT_I8 ||
8635              MI->getOpcode() == PPC::SELECT_F4 ||
8636              MI->getOpcode() == PPC::SELECT_F8 ||
8637              MI->getOpcode() == PPC::SELECT_QFRC ||
8638              MI->getOpcode() == PPC::SELECT_QSRC ||
8639              MI->getOpcode() == PPC::SELECT_QBRC ||
8640              MI->getOpcode() == PPC::SELECT_VRRC ||
8641              MI->getOpcode() == PPC::SELECT_VSFRC ||
8642              MI->getOpcode() == PPC::SELECT_VSSRC ||
8643              MI->getOpcode() == PPC::SELECT_VSRC) {
8644     // The incoming instruction knows the destination vreg to set, the
8645     // condition code register to branch on, the true/false values to
8646     // select between, and a branch opcode to use.
8647 
8648     //  thisMBB:
8649     //  ...
8650     //   TrueVal = ...
8651     //   cmpTY ccX, r1, r2
8652     //   bCC copy1MBB
8653     //   fallthrough --> copy0MBB
8654     MachineBasicBlock *thisMBB = BB;
8655     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8656     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8657     DebugLoc dl = MI->getDebugLoc();
8658     F->insert(It, copy0MBB);
8659     F->insert(It, sinkMBB);
8660 
8661     // Transfer the remainder of BB and its successor edges to sinkMBB.
8662     sinkMBB->splice(sinkMBB->begin(), BB,
8663                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8664     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8665 
8666     // Next, add the true and fallthrough blocks as its successors.
8667     BB->addSuccessor(copy0MBB);
8668     BB->addSuccessor(sinkMBB);
8669 
8670     if (MI->getOpcode() == PPC::SELECT_I4 ||
8671         MI->getOpcode() == PPC::SELECT_I8 ||
8672         MI->getOpcode() == PPC::SELECT_F4 ||
8673         MI->getOpcode() == PPC::SELECT_F8 ||
8674         MI->getOpcode() == PPC::SELECT_QFRC ||
8675         MI->getOpcode() == PPC::SELECT_QSRC ||
8676         MI->getOpcode() == PPC::SELECT_QBRC ||
8677         MI->getOpcode() == PPC::SELECT_VRRC ||
8678         MI->getOpcode() == PPC::SELECT_VSFRC ||
8679         MI->getOpcode() == PPC::SELECT_VSSRC ||
8680         MI->getOpcode() == PPC::SELECT_VSRC) {
8681       BuildMI(BB, dl, TII->get(PPC::BC))
8682         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8683     } else {
8684       unsigned SelectPred = MI->getOperand(4).getImm();
8685       BuildMI(BB, dl, TII->get(PPC::BCC))
8686         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8687     }
8688 
8689     //  copy0MBB:
8690     //   %FalseValue = ...
8691     //   # fallthrough to sinkMBB
8692     BB = copy0MBB;
8693 
8694     // Update machine-CFG edges
8695     BB->addSuccessor(sinkMBB);
8696 
8697     //  sinkMBB:
8698     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8699     //  ...
8700     BB = sinkMBB;
8701     BuildMI(*BB, BB->begin(), dl,
8702             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8703       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8704       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8705   } else if (MI->getOpcode() == PPC::ReadTB) {
8706     // To read the 64-bit time-base register on a 32-bit target, we read the
8707     // two halves. Should the counter have wrapped while it was being read, we
8708     // need to try again.
8709     // ...
8710     // readLoop:
8711     // mfspr Rx,TBU # load from TBU
8712     // mfspr Ry,TB  # load from TB
8713     // mfspr Rz,TBU # load from TBU
8714     // cmpw crX,Rx,Rz # check if 'old'='new'
8715     // bne readLoop   # branch if they're not equal
8716     // ...
8717 
8718     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8719     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8720     DebugLoc dl = MI->getDebugLoc();
8721     F->insert(It, readMBB);
8722     F->insert(It, sinkMBB);
8723 
8724     // Transfer the remainder of BB and its successor edges to sinkMBB.
8725     sinkMBB->splice(sinkMBB->begin(), BB,
8726                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8727     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8728 
8729     BB->addSuccessor(readMBB);
8730     BB = readMBB;
8731 
8732     MachineRegisterInfo &RegInfo = F->getRegInfo();
8733     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8734     unsigned LoReg = MI->getOperand(0).getReg();
8735     unsigned HiReg = MI->getOperand(1).getReg();
8736 
8737     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8738     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8739     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8740 
8741     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8742 
8743     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8744       .addReg(HiReg).addReg(ReadAgainReg);
8745     BuildMI(BB, dl, TII->get(PPC::BCC))
8746       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8747 
8748     BB->addSuccessor(readMBB);
8749     BB->addSuccessor(sinkMBB);
8750   }
8751   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8752     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8753   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8754     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8755   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8756     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8757   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8758     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8759 
8760   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8761     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8762   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8763     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8764   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8765     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8766   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8767     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8768 
8769   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8770     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8771   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8772     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8773   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8774     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8775   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8776     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8777 
8778   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8779     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8780   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8781     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8782   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8783     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8784   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8785     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8786 
8787   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8788     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8789   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8790     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8791   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8792     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8793   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8794     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8795 
8796   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
8797     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
8798   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
8799     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
8800   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
8801     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
8802   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
8803     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
8804 
8805   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
8806     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
8807   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
8808     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
8809   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
8810     BB = EmitAtomicBinary(MI, BB, 4, 0);
8811   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
8812     BB = EmitAtomicBinary(MI, BB, 8, 0);
8813 
8814   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
8815            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
8816            (Subtarget.hasPartwordAtomics() &&
8817             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
8818            (Subtarget.hasPartwordAtomics() &&
8819             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
8820     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
8821 
8822     auto LoadMnemonic = PPC::LDARX;
8823     auto StoreMnemonic = PPC::STDCX;
8824     switch(MI->getOpcode()) {
8825     default:
8826       llvm_unreachable("Compare and swap of unknown size");
8827     case PPC::ATOMIC_CMP_SWAP_I8:
8828       LoadMnemonic = PPC::LBARX;
8829       StoreMnemonic = PPC::STBCX;
8830       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8831       break;
8832     case PPC::ATOMIC_CMP_SWAP_I16:
8833       LoadMnemonic = PPC::LHARX;
8834       StoreMnemonic = PPC::STHCX;
8835       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8836       break;
8837     case PPC::ATOMIC_CMP_SWAP_I32:
8838       LoadMnemonic = PPC::LWARX;
8839       StoreMnemonic = PPC::STWCX;
8840       break;
8841     case PPC::ATOMIC_CMP_SWAP_I64:
8842       LoadMnemonic = PPC::LDARX;
8843       StoreMnemonic = PPC::STDCX;
8844       break;
8845     }
8846     unsigned dest   = MI->getOperand(0).getReg();
8847     unsigned ptrA   = MI->getOperand(1).getReg();
8848     unsigned ptrB   = MI->getOperand(2).getReg();
8849     unsigned oldval = MI->getOperand(3).getReg();
8850     unsigned newval = MI->getOperand(4).getReg();
8851     DebugLoc dl     = MI->getDebugLoc();
8852 
8853     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8854     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8855     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8856     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8857     F->insert(It, loop1MBB);
8858     F->insert(It, loop2MBB);
8859     F->insert(It, midMBB);
8860     F->insert(It, exitMBB);
8861     exitMBB->splice(exitMBB->begin(), BB,
8862                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8863     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8864 
8865     //  thisMBB:
8866     //   ...
8867     //   fallthrough --> loopMBB
8868     BB->addSuccessor(loop1MBB);
8869 
8870     // loop1MBB:
8871     //   l[bhwd]arx dest, ptr
8872     //   cmp[wd] dest, oldval
8873     //   bne- midMBB
8874     // loop2MBB:
8875     //   st[bhwd]cx. newval, ptr
8876     //   bne- loopMBB
8877     //   b exitBB
8878     // midMBB:
8879     //   st[bhwd]cx. dest, ptr
8880     // exitBB:
8881     BB = loop1MBB;
8882     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8883       .addReg(ptrA).addReg(ptrB);
8884     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
8885       .addReg(oldval).addReg(dest);
8886     BuildMI(BB, dl, TII->get(PPC::BCC))
8887       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8888     BB->addSuccessor(loop2MBB);
8889     BB->addSuccessor(midMBB);
8890 
8891     BB = loop2MBB;
8892     BuildMI(BB, dl, TII->get(StoreMnemonic))
8893       .addReg(newval).addReg(ptrA).addReg(ptrB);
8894     BuildMI(BB, dl, TII->get(PPC::BCC))
8895       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8896     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8897     BB->addSuccessor(loop1MBB);
8898     BB->addSuccessor(exitMBB);
8899 
8900     BB = midMBB;
8901     BuildMI(BB, dl, TII->get(StoreMnemonic))
8902       .addReg(dest).addReg(ptrA).addReg(ptrB);
8903     BB->addSuccessor(exitMBB);
8904 
8905     //  exitMBB:
8906     //   ...
8907     BB = exitMBB;
8908   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
8909              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
8910     // We must use 64-bit registers for addresses when targeting 64-bit,
8911     // since we're actually doing arithmetic on them.  Other registers
8912     // can be 32-bit.
8913     bool is64bit = Subtarget.isPPC64();
8914     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
8915 
8916     unsigned dest   = MI->getOperand(0).getReg();
8917     unsigned ptrA   = MI->getOperand(1).getReg();
8918     unsigned ptrB   = MI->getOperand(2).getReg();
8919     unsigned oldval = MI->getOperand(3).getReg();
8920     unsigned newval = MI->getOperand(4).getReg();
8921     DebugLoc dl     = MI->getDebugLoc();
8922 
8923     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8924     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8925     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8926     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8927     F->insert(It, loop1MBB);
8928     F->insert(It, loop2MBB);
8929     F->insert(It, midMBB);
8930     F->insert(It, exitMBB);
8931     exitMBB->splice(exitMBB->begin(), BB,
8932                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8933     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8934 
8935     MachineRegisterInfo &RegInfo = F->getRegInfo();
8936     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8937                                             : &PPC::GPRCRegClass;
8938     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8939     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8940     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8941     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
8942     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
8943     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
8944     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
8945     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8946     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8947     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8948     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8949     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8950     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8951     unsigned Ptr1Reg;
8952     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
8953     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8954     //  thisMBB:
8955     //   ...
8956     //   fallthrough --> loopMBB
8957     BB->addSuccessor(loop1MBB);
8958 
8959     // The 4-byte load must be aligned, while a char or short may be
8960     // anywhere in the word.  Hence all this nasty bookkeeping code.
8961     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8962     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8963     //   xori shift, shift1, 24 [16]
8964     //   rlwinm ptr, ptr1, 0, 0, 29
8965     //   slw newval2, newval, shift
8966     //   slw oldval2, oldval,shift
8967     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8968     //   slw mask, mask2, shift
8969     //   and newval3, newval2, mask
8970     //   and oldval3, oldval2, mask
8971     // loop1MBB:
8972     //   lwarx tmpDest, ptr
8973     //   and tmp, tmpDest, mask
8974     //   cmpw tmp, oldval3
8975     //   bne- midMBB
8976     // loop2MBB:
8977     //   andc tmp2, tmpDest, mask
8978     //   or tmp4, tmp2, newval3
8979     //   stwcx. tmp4, ptr
8980     //   bne- loop1MBB
8981     //   b exitBB
8982     // midMBB:
8983     //   stwcx. tmpDest, ptr
8984     // exitBB:
8985     //   srw dest, tmpDest, shift
8986     if (ptrA != ZeroReg) {
8987       Ptr1Reg = RegInfo.createVirtualRegister(RC);
8988       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8989         .addReg(ptrA).addReg(ptrB);
8990     } else {
8991       Ptr1Reg = ptrB;
8992     }
8993     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8994         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8995     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8996         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8997     if (is64bit)
8998       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8999         .addReg(Ptr1Reg).addImm(0).addImm(61);
9000     else
9001       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9002         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9003     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9004         .addReg(newval).addReg(ShiftReg);
9005     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9006         .addReg(oldval).addReg(ShiftReg);
9007     if (is8bit)
9008       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9009     else {
9010       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9011       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9012         .addReg(Mask3Reg).addImm(65535);
9013     }
9014     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9015         .addReg(Mask2Reg).addReg(ShiftReg);
9016     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9017         .addReg(NewVal2Reg).addReg(MaskReg);
9018     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9019         .addReg(OldVal2Reg).addReg(MaskReg);
9020 
9021     BB = loop1MBB;
9022     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9023         .addReg(ZeroReg).addReg(PtrReg);
9024     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9025         .addReg(TmpDestReg).addReg(MaskReg);
9026     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9027         .addReg(TmpReg).addReg(OldVal3Reg);
9028     BuildMI(BB, dl, TII->get(PPC::BCC))
9029         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9030     BB->addSuccessor(loop2MBB);
9031     BB->addSuccessor(midMBB);
9032 
9033     BB = loop2MBB;
9034     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9035         .addReg(TmpDestReg).addReg(MaskReg);
9036     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9037         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9038     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9039         .addReg(ZeroReg).addReg(PtrReg);
9040     BuildMI(BB, dl, TII->get(PPC::BCC))
9041       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9042     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9043     BB->addSuccessor(loop1MBB);
9044     BB->addSuccessor(exitMBB);
9045 
9046     BB = midMBB;
9047     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9048       .addReg(ZeroReg).addReg(PtrReg);
9049     BB->addSuccessor(exitMBB);
9050 
9051     //  exitMBB:
9052     //   ...
9053     BB = exitMBB;
9054     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9055       .addReg(ShiftReg);
9056   } else if (MI->getOpcode() == PPC::FADDrtz) {
9057     // This pseudo performs an FADD with rounding mode temporarily forced
9058     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9059     // is not modeled at the SelectionDAG level.
9060     unsigned Dest = MI->getOperand(0).getReg();
9061     unsigned Src1 = MI->getOperand(1).getReg();
9062     unsigned Src2 = MI->getOperand(2).getReg();
9063     DebugLoc dl   = MI->getDebugLoc();
9064 
9065     MachineRegisterInfo &RegInfo = F->getRegInfo();
9066     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9067 
9068     // Save FPSCR value.
9069     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9070 
9071     // Set rounding mode to round-to-zero.
9072     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9073     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9074 
9075     // Perform addition.
9076     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9077 
9078     // Restore FPSCR value.
9079     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9080   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9081              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9082              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9083              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9084     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9085                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9086                       PPC::ANDIo8 : PPC::ANDIo;
9087     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9088                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9089 
9090     MachineRegisterInfo &RegInfo = F->getRegInfo();
9091     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9092                                                   &PPC::GPRCRegClass :
9093                                                   &PPC::G8RCRegClass);
9094 
9095     DebugLoc dl   = MI->getDebugLoc();
9096     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9097       .addReg(MI->getOperand(1).getReg()).addImm(1);
9098     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9099             MI->getOperand(0).getReg())
9100       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9101   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9102     DebugLoc Dl = MI->getDebugLoc();
9103     MachineRegisterInfo &RegInfo = F->getRegInfo();
9104     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9105     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9106     return BB;
9107   } else {
9108     llvm_unreachable("Unexpected instr type to insert");
9109   }
9110 
9111   MI->eraseFromParent();   // The pseudo instruction is gone now.
9112   return BB;
9113 }
9114 
9115 //===----------------------------------------------------------------------===//
9116 // Target Optimization Hooks
9117 //===----------------------------------------------------------------------===//
9118 
9119 static std::string getRecipOp(const char *Base, EVT VT) {
9120   std::string RecipOp(Base);
9121   if (VT.getScalarType() == MVT::f64)
9122     RecipOp += "d";
9123   else
9124     RecipOp += "f";
9125 
9126   if (VT.isVector())
9127     RecipOp = "vec-" + RecipOp;
9128 
9129   return RecipOp;
9130 }
9131 
9132 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9133                                             DAGCombinerInfo &DCI,
9134                                             unsigned &RefinementSteps,
9135                                             bool &UseOneConstNR) const {
9136   EVT VT = Operand.getValueType();
9137   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9138       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9139       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9140       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9141       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9142       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9143     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9144     std::string RecipOp = getRecipOp("sqrt", VT);
9145     if (!Recips.isEnabled(RecipOp))
9146       return SDValue();
9147 
9148     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9149     UseOneConstNR = true;
9150     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9151   }
9152   return SDValue();
9153 }
9154 
9155 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9156                                             DAGCombinerInfo &DCI,
9157                                             unsigned &RefinementSteps) const {
9158   EVT VT = Operand.getValueType();
9159   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9160       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9161       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9162       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9163       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9164       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9165     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9166     std::string RecipOp = getRecipOp("div", VT);
9167     if (!Recips.isEnabled(RecipOp))
9168       return SDValue();
9169 
9170     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9171     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9172   }
9173   return SDValue();
9174 }
9175 
9176 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9177   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9178   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9179   // enabled for division), this functionality is redundant with the default
9180   // combiner logic (once the division -> reciprocal/multiply transformation
9181   // has taken place). As a result, this matters more for older cores than for
9182   // newer ones.
9183 
9184   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9185   // reciprocal if there are two or more FDIVs (for embedded cores with only
9186   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9187   switch (Subtarget.getDarwinDirective()) {
9188   default:
9189     return 3;
9190   case PPC::DIR_440:
9191   case PPC::DIR_A2:
9192   case PPC::DIR_E500mc:
9193   case PPC::DIR_E5500:
9194     return 2;
9195   }
9196 }
9197 
9198 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9199 // collapsed, and so we need to look through chains of them.
9200 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9201                                      int64_t& Offset, SelectionDAG &DAG) {
9202   if (DAG.isBaseWithConstantOffset(Loc)) {
9203     Base = Loc.getOperand(0);
9204     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9205 
9206     // The base might itself be a base plus an offset, and if so, accumulate
9207     // that as well.
9208     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9209   }
9210 }
9211 
9212 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9213                             unsigned Bytes, int Dist,
9214                             SelectionDAG &DAG) {
9215   if (VT.getSizeInBits() / 8 != Bytes)
9216     return false;
9217 
9218   SDValue BaseLoc = Base->getBasePtr();
9219   if (Loc.getOpcode() == ISD::FrameIndex) {
9220     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9221       return false;
9222     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9223     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9224     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9225     int FS  = MFI->getObjectSize(FI);
9226     int BFS = MFI->getObjectSize(BFI);
9227     if (FS != BFS || FS != (int)Bytes) return false;
9228     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9229   }
9230 
9231   SDValue Base1 = Loc, Base2 = BaseLoc;
9232   int64_t Offset1 = 0, Offset2 = 0;
9233   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9234   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9235   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9236     return true;
9237 
9238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9239   const GlobalValue *GV1 = nullptr;
9240   const GlobalValue *GV2 = nullptr;
9241   Offset1 = 0;
9242   Offset2 = 0;
9243   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9244   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9245   if (isGA1 && isGA2 && GV1 == GV2)
9246     return Offset1 == (Offset2 + Dist*Bytes);
9247   return false;
9248 }
9249 
9250 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9251 // not enforce equality of the chain operands.
9252 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9253                             unsigned Bytes, int Dist,
9254                             SelectionDAG &DAG) {
9255   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9256     EVT VT = LS->getMemoryVT();
9257     SDValue Loc = LS->getBasePtr();
9258     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9259   }
9260 
9261   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9262     EVT VT;
9263     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9264     default: return false;
9265     case Intrinsic::ppc_qpx_qvlfd:
9266     case Intrinsic::ppc_qpx_qvlfda:
9267       VT = MVT::v4f64;
9268       break;
9269     case Intrinsic::ppc_qpx_qvlfs:
9270     case Intrinsic::ppc_qpx_qvlfsa:
9271       VT = MVT::v4f32;
9272       break;
9273     case Intrinsic::ppc_qpx_qvlfcd:
9274     case Intrinsic::ppc_qpx_qvlfcda:
9275       VT = MVT::v2f64;
9276       break;
9277     case Intrinsic::ppc_qpx_qvlfcs:
9278     case Intrinsic::ppc_qpx_qvlfcsa:
9279       VT = MVT::v2f32;
9280       break;
9281     case Intrinsic::ppc_qpx_qvlfiwa:
9282     case Intrinsic::ppc_qpx_qvlfiwz:
9283     case Intrinsic::ppc_altivec_lvx:
9284     case Intrinsic::ppc_altivec_lvxl:
9285     case Intrinsic::ppc_vsx_lxvw4x:
9286       VT = MVT::v4i32;
9287       break;
9288     case Intrinsic::ppc_vsx_lxvd2x:
9289       VT = MVT::v2f64;
9290       break;
9291     case Intrinsic::ppc_altivec_lvebx:
9292       VT = MVT::i8;
9293       break;
9294     case Intrinsic::ppc_altivec_lvehx:
9295       VT = MVT::i16;
9296       break;
9297     case Intrinsic::ppc_altivec_lvewx:
9298       VT = MVT::i32;
9299       break;
9300     }
9301 
9302     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9303   }
9304 
9305   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9306     EVT VT;
9307     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9308     default: return false;
9309     case Intrinsic::ppc_qpx_qvstfd:
9310     case Intrinsic::ppc_qpx_qvstfda:
9311       VT = MVT::v4f64;
9312       break;
9313     case Intrinsic::ppc_qpx_qvstfs:
9314     case Intrinsic::ppc_qpx_qvstfsa:
9315       VT = MVT::v4f32;
9316       break;
9317     case Intrinsic::ppc_qpx_qvstfcd:
9318     case Intrinsic::ppc_qpx_qvstfcda:
9319       VT = MVT::v2f64;
9320       break;
9321     case Intrinsic::ppc_qpx_qvstfcs:
9322     case Intrinsic::ppc_qpx_qvstfcsa:
9323       VT = MVT::v2f32;
9324       break;
9325     case Intrinsic::ppc_qpx_qvstfiw:
9326     case Intrinsic::ppc_qpx_qvstfiwa:
9327     case Intrinsic::ppc_altivec_stvx:
9328     case Intrinsic::ppc_altivec_stvxl:
9329     case Intrinsic::ppc_vsx_stxvw4x:
9330       VT = MVT::v4i32;
9331       break;
9332     case Intrinsic::ppc_vsx_stxvd2x:
9333       VT = MVT::v2f64;
9334       break;
9335     case Intrinsic::ppc_altivec_stvebx:
9336       VT = MVT::i8;
9337       break;
9338     case Intrinsic::ppc_altivec_stvehx:
9339       VT = MVT::i16;
9340       break;
9341     case Intrinsic::ppc_altivec_stvewx:
9342       VT = MVT::i32;
9343       break;
9344     }
9345 
9346     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9347   }
9348 
9349   return false;
9350 }
9351 
9352 // Return true is there is a nearyby consecutive load to the one provided
9353 // (regardless of alignment). We search up and down the chain, looking though
9354 // token factors and other loads (but nothing else). As a result, a true result
9355 // indicates that it is safe to create a new consecutive load adjacent to the
9356 // load provided.
9357 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9358   SDValue Chain = LD->getChain();
9359   EVT VT = LD->getMemoryVT();
9360 
9361   SmallSet<SDNode *, 16> LoadRoots;
9362   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9363   SmallSet<SDNode *, 16> Visited;
9364 
9365   // First, search up the chain, branching to follow all token-factor operands.
9366   // If we find a consecutive load, then we're done, otherwise, record all
9367   // nodes just above the top-level loads and token factors.
9368   while (!Queue.empty()) {
9369     SDNode *ChainNext = Queue.pop_back_val();
9370     if (!Visited.insert(ChainNext).second)
9371       continue;
9372 
9373     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9374       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9375         return true;
9376 
9377       if (!Visited.count(ChainLD->getChain().getNode()))
9378         Queue.push_back(ChainLD->getChain().getNode());
9379     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9380       for (const SDUse &O : ChainNext->ops())
9381         if (!Visited.count(O.getNode()))
9382           Queue.push_back(O.getNode());
9383     } else
9384       LoadRoots.insert(ChainNext);
9385   }
9386 
9387   // Second, search down the chain, starting from the top-level nodes recorded
9388   // in the first phase. These top-level nodes are the nodes just above all
9389   // loads and token factors. Starting with their uses, recursively look though
9390   // all loads (just the chain uses) and token factors to find a consecutive
9391   // load.
9392   Visited.clear();
9393   Queue.clear();
9394 
9395   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9396        IE = LoadRoots.end(); I != IE; ++I) {
9397     Queue.push_back(*I);
9398 
9399     while (!Queue.empty()) {
9400       SDNode *LoadRoot = Queue.pop_back_val();
9401       if (!Visited.insert(LoadRoot).second)
9402         continue;
9403 
9404       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9405         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9406           return true;
9407 
9408       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9409            UE = LoadRoot->use_end(); UI != UE; ++UI)
9410         if (((isa<MemSDNode>(*UI) &&
9411             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9412             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9413           Queue.push_back(*UI);
9414     }
9415   }
9416 
9417   return false;
9418 }
9419 
9420 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9421                                                   DAGCombinerInfo &DCI) const {
9422   SelectionDAG &DAG = DCI.DAG;
9423   SDLoc dl(N);
9424 
9425   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9426   // If we're tracking CR bits, we need to be careful that we don't have:
9427   //   trunc(binary-ops(zext(x), zext(y)))
9428   // or
9429   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9430   // such that we're unnecessarily moving things into GPRs when it would be
9431   // better to keep them in CR bits.
9432 
9433   // Note that trunc here can be an actual i1 trunc, or can be the effective
9434   // truncation that comes from a setcc or select_cc.
9435   if (N->getOpcode() == ISD::TRUNCATE &&
9436       N->getValueType(0) != MVT::i1)
9437     return SDValue();
9438 
9439   if (N->getOperand(0).getValueType() != MVT::i32 &&
9440       N->getOperand(0).getValueType() != MVT::i64)
9441     return SDValue();
9442 
9443   if (N->getOpcode() == ISD::SETCC ||
9444       N->getOpcode() == ISD::SELECT_CC) {
9445     // If we're looking at a comparison, then we need to make sure that the
9446     // high bits (all except for the first) don't matter the result.
9447     ISD::CondCode CC =
9448       cast<CondCodeSDNode>(N->getOperand(
9449         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9450     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9451 
9452     if (ISD::isSignedIntSetCC(CC)) {
9453       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9454           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9455         return SDValue();
9456     } else if (ISD::isUnsignedIntSetCC(CC)) {
9457       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9458                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9459           !DAG.MaskedValueIsZero(N->getOperand(1),
9460                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9461         return SDValue();
9462     } else {
9463       // This is neither a signed nor an unsigned comparison, just make sure
9464       // that the high bits are equal.
9465       APInt Op1Zero, Op1One;
9466       APInt Op2Zero, Op2One;
9467       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9468       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9469 
9470       // We don't really care about what is known about the first bit (if
9471       // anything), so clear it in all masks prior to comparing them.
9472       Op1Zero.clearBit(0); Op1One.clearBit(0);
9473       Op2Zero.clearBit(0); Op2One.clearBit(0);
9474 
9475       if (Op1Zero != Op2Zero || Op1One != Op2One)
9476         return SDValue();
9477     }
9478   }
9479 
9480   // We now know that the higher-order bits are irrelevant, we just need to
9481   // make sure that all of the intermediate operations are bit operations, and
9482   // all inputs are extensions.
9483   if (N->getOperand(0).getOpcode() != ISD::AND &&
9484       N->getOperand(0).getOpcode() != ISD::OR  &&
9485       N->getOperand(0).getOpcode() != ISD::XOR &&
9486       N->getOperand(0).getOpcode() != ISD::SELECT &&
9487       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9488       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9489       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9490       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9491       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9492     return SDValue();
9493 
9494   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9495       N->getOperand(1).getOpcode() != ISD::AND &&
9496       N->getOperand(1).getOpcode() != ISD::OR  &&
9497       N->getOperand(1).getOpcode() != ISD::XOR &&
9498       N->getOperand(1).getOpcode() != ISD::SELECT &&
9499       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9500       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9501       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9502       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9503       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9504     return SDValue();
9505 
9506   SmallVector<SDValue, 4> Inputs;
9507   SmallVector<SDValue, 8> BinOps, PromOps;
9508   SmallPtrSet<SDNode *, 16> Visited;
9509 
9510   for (unsigned i = 0; i < 2; ++i) {
9511     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9512           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9513           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9514           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9515         isa<ConstantSDNode>(N->getOperand(i)))
9516       Inputs.push_back(N->getOperand(i));
9517     else
9518       BinOps.push_back(N->getOperand(i));
9519 
9520     if (N->getOpcode() == ISD::TRUNCATE)
9521       break;
9522   }
9523 
9524   // Visit all inputs, collect all binary operations (and, or, xor and
9525   // select) that are all fed by extensions.
9526   while (!BinOps.empty()) {
9527     SDValue BinOp = BinOps.back();
9528     BinOps.pop_back();
9529 
9530     if (!Visited.insert(BinOp.getNode()).second)
9531       continue;
9532 
9533     PromOps.push_back(BinOp);
9534 
9535     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9536       // The condition of the select is not promoted.
9537       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9538         continue;
9539       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9540         continue;
9541 
9542       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9543             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9544             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9545            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9546           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9547         Inputs.push_back(BinOp.getOperand(i));
9548       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9549                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9550                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9551                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9552                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9553                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9554                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9555                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9556                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9557         BinOps.push_back(BinOp.getOperand(i));
9558       } else {
9559         // We have an input that is not an extension or another binary
9560         // operation; we'll abort this transformation.
9561         return SDValue();
9562       }
9563     }
9564   }
9565 
9566   // Make sure that this is a self-contained cluster of operations (which
9567   // is not quite the same thing as saying that everything has only one
9568   // use).
9569   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9570     if (isa<ConstantSDNode>(Inputs[i]))
9571       continue;
9572 
9573     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9574                               UE = Inputs[i].getNode()->use_end();
9575          UI != UE; ++UI) {
9576       SDNode *User = *UI;
9577       if (User != N && !Visited.count(User))
9578         return SDValue();
9579 
9580       // Make sure that we're not going to promote the non-output-value
9581       // operand(s) or SELECT or SELECT_CC.
9582       // FIXME: Although we could sometimes handle this, and it does occur in
9583       // practice that one of the condition inputs to the select is also one of
9584       // the outputs, we currently can't deal with this.
9585       if (User->getOpcode() == ISD::SELECT) {
9586         if (User->getOperand(0) == Inputs[i])
9587           return SDValue();
9588       } else if (User->getOpcode() == ISD::SELECT_CC) {
9589         if (User->getOperand(0) == Inputs[i] ||
9590             User->getOperand(1) == Inputs[i])
9591           return SDValue();
9592       }
9593     }
9594   }
9595 
9596   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9597     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9598                               UE = PromOps[i].getNode()->use_end();
9599          UI != UE; ++UI) {
9600       SDNode *User = *UI;
9601       if (User != N && !Visited.count(User))
9602         return SDValue();
9603 
9604       // Make sure that we're not going to promote the non-output-value
9605       // operand(s) or SELECT or SELECT_CC.
9606       // FIXME: Although we could sometimes handle this, and it does occur in
9607       // practice that one of the condition inputs to the select is also one of
9608       // the outputs, we currently can't deal with this.
9609       if (User->getOpcode() == ISD::SELECT) {
9610         if (User->getOperand(0) == PromOps[i])
9611           return SDValue();
9612       } else if (User->getOpcode() == ISD::SELECT_CC) {
9613         if (User->getOperand(0) == PromOps[i] ||
9614             User->getOperand(1) == PromOps[i])
9615           return SDValue();
9616       }
9617     }
9618   }
9619 
9620   // Replace all inputs with the extension operand.
9621   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9622     // Constants may have users outside the cluster of to-be-promoted nodes,
9623     // and so we need to replace those as we do the promotions.
9624     if (isa<ConstantSDNode>(Inputs[i]))
9625       continue;
9626     else
9627       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9628   }
9629 
9630   // Replace all operations (these are all the same, but have a different
9631   // (i1) return type). DAG.getNode will validate that the types of
9632   // a binary operator match, so go through the list in reverse so that
9633   // we've likely promoted both operands first. Any intermediate truncations or
9634   // extensions disappear.
9635   while (!PromOps.empty()) {
9636     SDValue PromOp = PromOps.back();
9637     PromOps.pop_back();
9638 
9639     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9640         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9641         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9642         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9643       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9644           PromOp.getOperand(0).getValueType() != MVT::i1) {
9645         // The operand is not yet ready (see comment below).
9646         PromOps.insert(PromOps.begin(), PromOp);
9647         continue;
9648       }
9649 
9650       SDValue RepValue = PromOp.getOperand(0);
9651       if (isa<ConstantSDNode>(RepValue))
9652         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9653 
9654       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9655       continue;
9656     }
9657 
9658     unsigned C;
9659     switch (PromOp.getOpcode()) {
9660     default:             C = 0; break;
9661     case ISD::SELECT:    C = 1; break;
9662     case ISD::SELECT_CC: C = 2; break;
9663     }
9664 
9665     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9666          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9667         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9668          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9669       // The to-be-promoted operands of this node have not yet been
9670       // promoted (this should be rare because we're going through the
9671       // list backward, but if one of the operands has several users in
9672       // this cluster of to-be-promoted nodes, it is possible).
9673       PromOps.insert(PromOps.begin(), PromOp);
9674       continue;
9675     }
9676 
9677     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9678                                 PromOp.getNode()->op_end());
9679 
9680     // If there are any constant inputs, make sure they're replaced now.
9681     for (unsigned i = 0; i < 2; ++i)
9682       if (isa<ConstantSDNode>(Ops[C+i]))
9683         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9684 
9685     DAG.ReplaceAllUsesOfValueWith(PromOp,
9686       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9687   }
9688 
9689   // Now we're left with the initial truncation itself.
9690   if (N->getOpcode() == ISD::TRUNCATE)
9691     return N->getOperand(0);
9692 
9693   // Otherwise, this is a comparison. The operands to be compared have just
9694   // changed type (to i1), but everything else is the same.
9695   return SDValue(N, 0);
9696 }
9697 
9698 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9699                                                   DAGCombinerInfo &DCI) const {
9700   SelectionDAG &DAG = DCI.DAG;
9701   SDLoc dl(N);
9702 
9703   // If we're tracking CR bits, we need to be careful that we don't have:
9704   //   zext(binary-ops(trunc(x), trunc(y)))
9705   // or
9706   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9707   // such that we're unnecessarily moving things into CR bits that can more
9708   // efficiently stay in GPRs. Note that if we're not certain that the high
9709   // bits are set as required by the final extension, we still may need to do
9710   // some masking to get the proper behavior.
9711 
9712   // This same functionality is important on PPC64 when dealing with
9713   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9714   // the return values of functions. Because it is so similar, it is handled
9715   // here as well.
9716 
9717   if (N->getValueType(0) != MVT::i32 &&
9718       N->getValueType(0) != MVT::i64)
9719     return SDValue();
9720 
9721   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9722         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9723     return SDValue();
9724 
9725   if (N->getOperand(0).getOpcode() != ISD::AND &&
9726       N->getOperand(0).getOpcode() != ISD::OR  &&
9727       N->getOperand(0).getOpcode() != ISD::XOR &&
9728       N->getOperand(0).getOpcode() != ISD::SELECT &&
9729       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9730     return SDValue();
9731 
9732   SmallVector<SDValue, 4> Inputs;
9733   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9734   SmallPtrSet<SDNode *, 16> Visited;
9735 
9736   // Visit all inputs, collect all binary operations (and, or, xor and
9737   // select) that are all fed by truncations.
9738   while (!BinOps.empty()) {
9739     SDValue BinOp = BinOps.back();
9740     BinOps.pop_back();
9741 
9742     if (!Visited.insert(BinOp.getNode()).second)
9743       continue;
9744 
9745     PromOps.push_back(BinOp);
9746 
9747     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9748       // The condition of the select is not promoted.
9749       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9750         continue;
9751       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9752         continue;
9753 
9754       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9755           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9756         Inputs.push_back(BinOp.getOperand(i));
9757       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9758                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9759                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9760                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9761                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9762         BinOps.push_back(BinOp.getOperand(i));
9763       } else {
9764         // We have an input that is not a truncation or another binary
9765         // operation; we'll abort this transformation.
9766         return SDValue();
9767       }
9768     }
9769   }
9770 
9771   // The operands of a select that must be truncated when the select is
9772   // promoted because the operand is actually part of the to-be-promoted set.
9773   DenseMap<SDNode *, EVT> SelectTruncOp[2];
9774 
9775   // Make sure that this is a self-contained cluster of operations (which
9776   // is not quite the same thing as saying that everything has only one
9777   // use).
9778   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9779     if (isa<ConstantSDNode>(Inputs[i]))
9780       continue;
9781 
9782     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9783                               UE = Inputs[i].getNode()->use_end();
9784          UI != UE; ++UI) {
9785       SDNode *User = *UI;
9786       if (User != N && !Visited.count(User))
9787         return SDValue();
9788 
9789       // If we're going to promote the non-output-value operand(s) or SELECT or
9790       // SELECT_CC, record them for truncation.
9791       if (User->getOpcode() == ISD::SELECT) {
9792         if (User->getOperand(0) == Inputs[i])
9793           SelectTruncOp[0].insert(std::make_pair(User,
9794                                     User->getOperand(0).getValueType()));
9795       } else if (User->getOpcode() == ISD::SELECT_CC) {
9796         if (User->getOperand(0) == Inputs[i])
9797           SelectTruncOp[0].insert(std::make_pair(User,
9798                                     User->getOperand(0).getValueType()));
9799         if (User->getOperand(1) == Inputs[i])
9800           SelectTruncOp[1].insert(std::make_pair(User,
9801                                     User->getOperand(1).getValueType()));
9802       }
9803     }
9804   }
9805 
9806   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9807     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9808                               UE = PromOps[i].getNode()->use_end();
9809          UI != UE; ++UI) {
9810       SDNode *User = *UI;
9811       if (User != N && !Visited.count(User))
9812         return SDValue();
9813 
9814       // If we're going to promote the non-output-value operand(s) or SELECT or
9815       // SELECT_CC, record them for truncation.
9816       if (User->getOpcode() == ISD::SELECT) {
9817         if (User->getOperand(0) == PromOps[i])
9818           SelectTruncOp[0].insert(std::make_pair(User,
9819                                     User->getOperand(0).getValueType()));
9820       } else if (User->getOpcode() == ISD::SELECT_CC) {
9821         if (User->getOperand(0) == PromOps[i])
9822           SelectTruncOp[0].insert(std::make_pair(User,
9823                                     User->getOperand(0).getValueType()));
9824         if (User->getOperand(1) == PromOps[i])
9825           SelectTruncOp[1].insert(std::make_pair(User,
9826                                     User->getOperand(1).getValueType()));
9827       }
9828     }
9829   }
9830 
9831   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
9832   bool ReallyNeedsExt = false;
9833   if (N->getOpcode() != ISD::ANY_EXTEND) {
9834     // If all of the inputs are not already sign/zero extended, then
9835     // we'll still need to do that at the end.
9836     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9837       if (isa<ConstantSDNode>(Inputs[i]))
9838         continue;
9839 
9840       unsigned OpBits =
9841         Inputs[i].getOperand(0).getValueSizeInBits();
9842       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
9843 
9844       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
9845            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
9846                                   APInt::getHighBitsSet(OpBits,
9847                                                         OpBits-PromBits))) ||
9848           (N->getOpcode() == ISD::SIGN_EXTEND &&
9849            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
9850              (OpBits-(PromBits-1)))) {
9851         ReallyNeedsExt = true;
9852         break;
9853       }
9854     }
9855   }
9856 
9857   // Replace all inputs, either with the truncation operand, or a
9858   // truncation or extension to the final output type.
9859   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9860     // Constant inputs need to be replaced with the to-be-promoted nodes that
9861     // use them because they might have users outside of the cluster of
9862     // promoted nodes.
9863     if (isa<ConstantSDNode>(Inputs[i]))
9864       continue;
9865 
9866     SDValue InSrc = Inputs[i].getOperand(0);
9867     if (Inputs[i].getValueType() == N->getValueType(0))
9868       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
9869     else if (N->getOpcode() == ISD::SIGN_EXTEND)
9870       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9871         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
9872     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9873       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9874         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
9875     else
9876       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9877         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
9878   }
9879 
9880   // Replace all operations (these are all the same, but have a different
9881   // (promoted) return type). DAG.getNode will validate that the types of
9882   // a binary operator match, so go through the list in reverse so that
9883   // we've likely promoted both operands first.
9884   while (!PromOps.empty()) {
9885     SDValue PromOp = PromOps.back();
9886     PromOps.pop_back();
9887 
9888     unsigned C;
9889     switch (PromOp.getOpcode()) {
9890     default:             C = 0; break;
9891     case ISD::SELECT:    C = 1; break;
9892     case ISD::SELECT_CC: C = 2; break;
9893     }
9894 
9895     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9896          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
9897         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9898          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
9899       // The to-be-promoted operands of this node have not yet been
9900       // promoted (this should be rare because we're going through the
9901       // list backward, but if one of the operands has several users in
9902       // this cluster of to-be-promoted nodes, it is possible).
9903       PromOps.insert(PromOps.begin(), PromOp);
9904       continue;
9905     }
9906 
9907     // For SELECT and SELECT_CC nodes, we do a similar check for any
9908     // to-be-promoted comparison inputs.
9909     if (PromOp.getOpcode() == ISD::SELECT ||
9910         PromOp.getOpcode() == ISD::SELECT_CC) {
9911       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
9912            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
9913           (SelectTruncOp[1].count(PromOp.getNode()) &&
9914            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
9915         PromOps.insert(PromOps.begin(), PromOp);
9916         continue;
9917       }
9918     }
9919 
9920     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9921                                 PromOp.getNode()->op_end());
9922 
9923     // If this node has constant inputs, then they'll need to be promoted here.
9924     for (unsigned i = 0; i < 2; ++i) {
9925       if (!isa<ConstantSDNode>(Ops[C+i]))
9926         continue;
9927       if (Ops[C+i].getValueType() == N->getValueType(0))
9928         continue;
9929 
9930       if (N->getOpcode() == ISD::SIGN_EXTEND)
9931         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9932       else if (N->getOpcode() == ISD::ZERO_EXTEND)
9933         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9934       else
9935         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9936     }
9937 
9938     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
9939     // truncate them again to the original value type.
9940     if (PromOp.getOpcode() == ISD::SELECT ||
9941         PromOp.getOpcode() == ISD::SELECT_CC) {
9942       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
9943       if (SI0 != SelectTruncOp[0].end())
9944         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
9945       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
9946       if (SI1 != SelectTruncOp[1].end())
9947         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
9948     }
9949 
9950     DAG.ReplaceAllUsesOfValueWith(PromOp,
9951       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
9952   }
9953 
9954   // Now we're left with the initial extension itself.
9955   if (!ReallyNeedsExt)
9956     return N->getOperand(0);
9957 
9958   // To zero extend, just mask off everything except for the first bit (in the
9959   // i1 case).
9960   if (N->getOpcode() == ISD::ZERO_EXTEND)
9961     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
9962                        DAG.getConstant(APInt::getLowBitsSet(
9963                                          N->getValueSizeInBits(0), PromBits),
9964                                        dl, N->getValueType(0)));
9965 
9966   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
9967          "Invalid extension type");
9968   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
9969   SDValue ShiftCst =
9970       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
9971   return DAG.getNode(
9972       ISD::SRA, dl, N->getValueType(0),
9973       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
9974       ShiftCst);
9975 }
9976 
9977 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
9978                                               DAGCombinerInfo &DCI) const {
9979   assert((N->getOpcode() == ISD::SINT_TO_FP ||
9980           N->getOpcode() == ISD::UINT_TO_FP) &&
9981          "Need an int -> FP conversion node here");
9982 
9983   if (!Subtarget.has64BitSupport())
9984     return SDValue();
9985 
9986   SelectionDAG &DAG = DCI.DAG;
9987   SDLoc dl(N);
9988   SDValue Op(N, 0);
9989 
9990   // Don't handle ppc_fp128 here or i1 conversions.
9991   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
9992     return SDValue();
9993   if (Op.getOperand(0).getValueType() == MVT::i1)
9994     return SDValue();
9995 
9996   // For i32 intermediate values, unfortunately, the conversion functions
9997   // leave the upper 32 bits of the value are undefined. Within the set of
9998   // scalar instructions, we have no method for zero- or sign-extending the
9999   // value. Thus, we cannot handle i32 intermediate values here.
10000   if (Op.getOperand(0).getValueType() == MVT::i32)
10001     return SDValue();
10002 
10003   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10004          "UINT_TO_FP is supported only with FPCVT");
10005 
10006   // If we have FCFIDS, then use it when converting to single-precision.
10007   // Otherwise, convert to double-precision and then round.
10008   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10009                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10010                                                             : PPCISD::FCFIDS)
10011                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10012                                                             : PPCISD::FCFID);
10013   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10014                   ? MVT::f32
10015                   : MVT::f64;
10016 
10017   // If we're converting from a float, to an int, and back to a float again,
10018   // then we don't need the store/load pair at all.
10019   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10020        Subtarget.hasFPCVT()) ||
10021       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10022     SDValue Src = Op.getOperand(0).getOperand(0);
10023     if (Src.getValueType() == MVT::f32) {
10024       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10025       DCI.AddToWorklist(Src.getNode());
10026     } else if (Src.getValueType() != MVT::f64) {
10027       // Make sure that we don't pick up a ppc_fp128 source value.
10028       return SDValue();
10029     }
10030 
10031     unsigned FCTOp =
10032       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10033                                                         PPCISD::FCTIDUZ;
10034 
10035     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10036     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10037 
10038     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10039       FP = DAG.getNode(ISD::FP_ROUND, dl,
10040                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10041       DCI.AddToWorklist(FP.getNode());
10042     }
10043 
10044     return FP;
10045   }
10046 
10047   return SDValue();
10048 }
10049 
10050 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10051 // builtins) into loads with swaps.
10052 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10053                                               DAGCombinerInfo &DCI) const {
10054   SelectionDAG &DAG = DCI.DAG;
10055   SDLoc dl(N);
10056   SDValue Chain;
10057   SDValue Base;
10058   MachineMemOperand *MMO;
10059 
10060   switch (N->getOpcode()) {
10061   default:
10062     llvm_unreachable("Unexpected opcode for little endian VSX load");
10063   case ISD::LOAD: {
10064     LoadSDNode *LD = cast<LoadSDNode>(N);
10065     Chain = LD->getChain();
10066     Base = LD->getBasePtr();
10067     MMO = LD->getMemOperand();
10068     // If the MMO suggests this isn't a load of a full vector, leave
10069     // things alone.  For a built-in, we have to make the change for
10070     // correctness, so if there is a size problem that will be a bug.
10071     if (MMO->getSize() < 16)
10072       return SDValue();
10073     break;
10074   }
10075   case ISD::INTRINSIC_W_CHAIN: {
10076     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10077     Chain = Intrin->getChain();
10078     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10079     // us what we want. Get operand 2 instead.
10080     Base = Intrin->getOperand(2);
10081     MMO = Intrin->getMemOperand();
10082     break;
10083   }
10084   }
10085 
10086   MVT VecTy = N->getValueType(0).getSimpleVT();
10087   SDValue LoadOps[] = { Chain, Base };
10088   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10089                                          DAG.getVTList(VecTy, MVT::Other),
10090                                          LoadOps, VecTy, MMO);
10091   DCI.AddToWorklist(Load.getNode());
10092   Chain = Load.getValue(1);
10093   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10094                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
10095   DCI.AddToWorklist(Swap.getNode());
10096   return Swap;
10097 }
10098 
10099 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10100 // builtins) into stores with swaps.
10101 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10102                                                DAGCombinerInfo &DCI) const {
10103   SelectionDAG &DAG = DCI.DAG;
10104   SDLoc dl(N);
10105   SDValue Chain;
10106   SDValue Base;
10107   unsigned SrcOpnd;
10108   MachineMemOperand *MMO;
10109 
10110   switch (N->getOpcode()) {
10111   default:
10112     llvm_unreachable("Unexpected opcode for little endian VSX store");
10113   case ISD::STORE: {
10114     StoreSDNode *ST = cast<StoreSDNode>(N);
10115     Chain = ST->getChain();
10116     Base = ST->getBasePtr();
10117     MMO = ST->getMemOperand();
10118     SrcOpnd = 1;
10119     // If the MMO suggests this isn't a store of a full vector, leave
10120     // things alone.  For a built-in, we have to make the change for
10121     // correctness, so if there is a size problem that will be a bug.
10122     if (MMO->getSize() < 16)
10123       return SDValue();
10124     break;
10125   }
10126   case ISD::INTRINSIC_VOID: {
10127     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10128     Chain = Intrin->getChain();
10129     // Intrin->getBasePtr() oddly does not get what we want.
10130     Base = Intrin->getOperand(3);
10131     MMO = Intrin->getMemOperand();
10132     SrcOpnd = 2;
10133     break;
10134   }
10135   }
10136 
10137   SDValue Src = N->getOperand(SrcOpnd);
10138   MVT VecTy = Src.getValueType().getSimpleVT();
10139   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10140                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
10141   DCI.AddToWorklist(Swap.getNode());
10142   Chain = Swap.getValue(1);
10143   SDValue StoreOps[] = { Chain, Swap, Base };
10144   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10145                                           DAG.getVTList(MVT::Other),
10146                                           StoreOps, VecTy, MMO);
10147   DCI.AddToWorklist(Store.getNode());
10148   return Store;
10149 }
10150 
10151 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10152                                              DAGCombinerInfo &DCI) const {
10153   SelectionDAG &DAG = DCI.DAG;
10154   SDLoc dl(N);
10155   switch (N->getOpcode()) {
10156   default: break;
10157   case PPCISD::SHL:
10158     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10159       if (C->isNullValue())   // 0 << V -> 0.
10160         return N->getOperand(0);
10161     }
10162     break;
10163   case PPCISD::SRL:
10164     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10165       if (C->isNullValue())   // 0 >>u V -> 0.
10166         return N->getOperand(0);
10167     }
10168     break;
10169   case PPCISD::SRA:
10170     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10171       if (C->isNullValue() ||   //  0 >>s V -> 0.
10172           C->isAllOnesValue())    // -1 >>s V -> -1.
10173         return N->getOperand(0);
10174     }
10175     break;
10176   case ISD::SIGN_EXTEND:
10177   case ISD::ZERO_EXTEND:
10178   case ISD::ANY_EXTEND:
10179     return DAGCombineExtBoolTrunc(N, DCI);
10180   case ISD::TRUNCATE:
10181   case ISD::SETCC:
10182   case ISD::SELECT_CC:
10183     return DAGCombineTruncBoolExt(N, DCI);
10184   case ISD::SINT_TO_FP:
10185   case ISD::UINT_TO_FP:
10186     return combineFPToIntToFP(N, DCI);
10187   case ISD::STORE: {
10188     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10189     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10190         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10191         N->getOperand(1).getValueType() == MVT::i32 &&
10192         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10193       SDValue Val = N->getOperand(1).getOperand(0);
10194       if (Val.getValueType() == MVT::f32) {
10195         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10196         DCI.AddToWorklist(Val.getNode());
10197       }
10198       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10199       DCI.AddToWorklist(Val.getNode());
10200 
10201       SDValue Ops[] = {
10202         N->getOperand(0), Val, N->getOperand(2),
10203         DAG.getValueType(N->getOperand(1).getValueType())
10204       };
10205 
10206       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10207               DAG.getVTList(MVT::Other), Ops,
10208               cast<StoreSDNode>(N)->getMemoryVT(),
10209               cast<StoreSDNode>(N)->getMemOperand());
10210       DCI.AddToWorklist(Val.getNode());
10211       return Val;
10212     }
10213 
10214     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10215     if (cast<StoreSDNode>(N)->isUnindexed() &&
10216         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10217         N->getOperand(1).getNode()->hasOneUse() &&
10218         (N->getOperand(1).getValueType() == MVT::i32 ||
10219          N->getOperand(1).getValueType() == MVT::i16 ||
10220          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10221           N->getOperand(1).getValueType() == MVT::i64))) {
10222       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10223       // Do an any-extend to 32-bits if this is a half-word input.
10224       if (BSwapOp.getValueType() == MVT::i16)
10225         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10226 
10227       SDValue Ops[] = {
10228         N->getOperand(0), BSwapOp, N->getOperand(2),
10229         DAG.getValueType(N->getOperand(1).getValueType())
10230       };
10231       return
10232         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10233                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10234                                 cast<StoreSDNode>(N)->getMemOperand());
10235     }
10236 
10237     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10238     EVT VT = N->getOperand(1).getValueType();
10239     if (VT.isSimple()) {
10240       MVT StoreVT = VT.getSimpleVT();
10241       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10242           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10243            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10244         return expandVSXStoreForLE(N, DCI);
10245     }
10246     break;
10247   }
10248   case ISD::LOAD: {
10249     LoadSDNode *LD = cast<LoadSDNode>(N);
10250     EVT VT = LD->getValueType(0);
10251 
10252     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10253     if (VT.isSimple()) {
10254       MVT LoadVT = VT.getSimpleVT();
10255       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10256           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10257            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10258         return expandVSXLoadForLE(N, DCI);
10259     }
10260 
10261     EVT MemVT = LD->getMemoryVT();
10262     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10263     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10264     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10265     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10266     if (LD->isUnindexed() && VT.isVector() &&
10267         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10268           // P8 and later hardware should just use LOAD.
10269           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10270                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10271          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10272           LD->getAlignment() >= ScalarABIAlignment)) &&
10273         LD->getAlignment() < ABIAlignment) {
10274       // This is a type-legal unaligned Altivec or QPX load.
10275       SDValue Chain = LD->getChain();
10276       SDValue Ptr = LD->getBasePtr();
10277       bool isLittleEndian = Subtarget.isLittleEndian();
10278 
10279       // This implements the loading of unaligned vectors as described in
10280       // the venerable Apple Velocity Engine overview. Specifically:
10281       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10282       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10283       //
10284       // The general idea is to expand a sequence of one or more unaligned
10285       // loads into an alignment-based permutation-control instruction (lvsl
10286       // or lvsr), a series of regular vector loads (which always truncate
10287       // their input address to an aligned address), and a series of
10288       // permutations.  The results of these permutations are the requested
10289       // loaded values.  The trick is that the last "extra" load is not taken
10290       // from the address you might suspect (sizeof(vector) bytes after the
10291       // last requested load), but rather sizeof(vector) - 1 bytes after the
10292       // last requested vector. The point of this is to avoid a page fault if
10293       // the base address happened to be aligned. This works because if the
10294       // base address is aligned, then adding less than a full vector length
10295       // will cause the last vector in the sequence to be (re)loaded.
10296       // Otherwise, the next vector will be fetched as you might suspect was
10297       // necessary.
10298 
10299       // We might be able to reuse the permutation generation from
10300       // a different base address offset from this one by an aligned amount.
10301       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10302       // optimization later.
10303       Intrinsic::ID Intr, IntrLD, IntrPerm;
10304       MVT PermCntlTy, PermTy, LDTy;
10305       if (Subtarget.hasAltivec()) {
10306         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10307                                  Intrinsic::ppc_altivec_lvsl;
10308         IntrLD = Intrinsic::ppc_altivec_lvx;
10309         IntrPerm = Intrinsic::ppc_altivec_vperm;
10310         PermCntlTy = MVT::v16i8;
10311         PermTy = MVT::v4i32;
10312         LDTy = MVT::v4i32;
10313       } else {
10314         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10315                                        Intrinsic::ppc_qpx_qvlpcls;
10316         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10317                                        Intrinsic::ppc_qpx_qvlfs;
10318         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10319         PermCntlTy = MVT::v4f64;
10320         PermTy = MVT::v4f64;
10321         LDTy = MemVT.getSimpleVT();
10322       }
10323 
10324       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10325 
10326       // Create the new MMO for the new base load. It is like the original MMO,
10327       // but represents an area in memory almost twice the vector size centered
10328       // on the original address. If the address is unaligned, we might start
10329       // reading up to (sizeof(vector)-1) bytes below the address of the
10330       // original unaligned load.
10331       MachineFunction &MF = DAG.getMachineFunction();
10332       MachineMemOperand *BaseMMO =
10333         MF.getMachineMemOperand(LD->getMemOperand(),
10334                                 -(long)MemVT.getStoreSize()+1,
10335                                 2*MemVT.getStoreSize()-1);
10336 
10337       // Create the new base load.
10338       SDValue LDXIntID =
10339           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10340       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10341       SDValue BaseLoad =
10342         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10343                                 DAG.getVTList(PermTy, MVT::Other),
10344                                 BaseLoadOps, LDTy, BaseMMO);
10345 
10346       // Note that the value of IncOffset (which is provided to the next
10347       // load's pointer info offset value, and thus used to calculate the
10348       // alignment), and the value of IncValue (which is actually used to
10349       // increment the pointer value) are different! This is because we
10350       // require the next load to appear to be aligned, even though it
10351       // is actually offset from the base pointer by a lesser amount.
10352       int IncOffset = VT.getSizeInBits() / 8;
10353       int IncValue = IncOffset;
10354 
10355       // Walk (both up and down) the chain looking for another load at the real
10356       // (aligned) offset (the alignment of the other load does not matter in
10357       // this case). If found, then do not use the offset reduction trick, as
10358       // that will prevent the loads from being later combined (as they would
10359       // otherwise be duplicates).
10360       if (!findConsecutiveLoad(LD, DAG))
10361         --IncValue;
10362 
10363       SDValue Increment =
10364           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10365       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10366 
10367       MachineMemOperand *ExtraMMO =
10368         MF.getMachineMemOperand(LD->getMemOperand(),
10369                                 1, 2*MemVT.getStoreSize()-1);
10370       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10371       SDValue ExtraLoad =
10372         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10373                                 DAG.getVTList(PermTy, MVT::Other),
10374                                 ExtraLoadOps, LDTy, ExtraMMO);
10375 
10376       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10377         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10378 
10379       // Because vperm has a big-endian bias, we must reverse the order
10380       // of the input vectors and complement the permute control vector
10381       // when generating little endian code.  We have already handled the
10382       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10383       // and ExtraLoad here.
10384       SDValue Perm;
10385       if (isLittleEndian)
10386         Perm = BuildIntrinsicOp(IntrPerm,
10387                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10388       else
10389         Perm = BuildIntrinsicOp(IntrPerm,
10390                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10391 
10392       if (VT != PermTy)
10393         Perm = Subtarget.hasAltivec() ?
10394                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10395                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10396                                DAG.getTargetConstant(1, dl, MVT::i64));
10397                                // second argument is 1 because this rounding
10398                                // is always exact.
10399 
10400       // The output of the permutation is our loaded result, the TokenFactor is
10401       // our new chain.
10402       DCI.CombineTo(N, Perm, TF);
10403       return SDValue(N, 0);
10404     }
10405     }
10406     break;
10407     case ISD::INTRINSIC_WO_CHAIN: {
10408       bool isLittleEndian = Subtarget.isLittleEndian();
10409       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10410       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10411                                            : Intrinsic::ppc_altivec_lvsl);
10412       if ((IID == Intr ||
10413            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10414            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10415         N->getOperand(1)->getOpcode() == ISD::ADD) {
10416         SDValue Add = N->getOperand(1);
10417 
10418         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10419                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10420 
10421         if (DAG.MaskedValueIsZero(
10422                 Add->getOperand(1),
10423                 APInt::getAllOnesValue(Bits /* alignment */)
10424                     .zext(
10425                         Add.getValueType().getScalarType().getSizeInBits()))) {
10426           SDNode *BasePtr = Add->getOperand(0).getNode();
10427           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10428                                     UE = BasePtr->use_end();
10429                UI != UE; ++UI) {
10430             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10431                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10432               // We've found another LVSL/LVSR, and this address is an aligned
10433               // multiple of that one. The results will be the same, so use the
10434               // one we've just found instead.
10435 
10436               return SDValue(*UI, 0);
10437             }
10438           }
10439         }
10440 
10441         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10442           SDNode *BasePtr = Add->getOperand(0).getNode();
10443           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10444                UE = BasePtr->use_end(); UI != UE; ++UI) {
10445             if (UI->getOpcode() == ISD::ADD &&
10446                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10447                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10448                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10449                 (1ULL << Bits) == 0) {
10450               SDNode *OtherAdd = *UI;
10451               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10452                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10453                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10454                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10455                   return SDValue(*VI, 0);
10456                 }
10457               }
10458             }
10459           }
10460         }
10461       }
10462     }
10463 
10464     break;
10465   case ISD::INTRINSIC_W_CHAIN: {
10466     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10467     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10468       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10469       default:
10470         break;
10471       case Intrinsic::ppc_vsx_lxvw4x:
10472       case Intrinsic::ppc_vsx_lxvd2x:
10473         return expandVSXLoadForLE(N, DCI);
10474       }
10475     }
10476     break;
10477   }
10478   case ISD::INTRINSIC_VOID: {
10479     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10480     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10481       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10482       default:
10483         break;
10484       case Intrinsic::ppc_vsx_stxvw4x:
10485       case Intrinsic::ppc_vsx_stxvd2x:
10486         return expandVSXStoreForLE(N, DCI);
10487       }
10488     }
10489     break;
10490   }
10491   case ISD::BSWAP:
10492     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10493     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10494         N->getOperand(0).hasOneUse() &&
10495         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10496          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10497           N->getValueType(0) == MVT::i64))) {
10498       SDValue Load = N->getOperand(0);
10499       LoadSDNode *LD = cast<LoadSDNode>(Load);
10500       // Create the byte-swapping load.
10501       SDValue Ops[] = {
10502         LD->getChain(),    // Chain
10503         LD->getBasePtr(),  // Ptr
10504         DAG.getValueType(N->getValueType(0)) // VT
10505       };
10506       SDValue BSLoad =
10507         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10508                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10509                                               MVT::i64 : MVT::i32, MVT::Other),
10510                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10511 
10512       // If this is an i16 load, insert the truncate.
10513       SDValue ResVal = BSLoad;
10514       if (N->getValueType(0) == MVT::i16)
10515         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10516 
10517       // First, combine the bswap away.  This makes the value produced by the
10518       // load dead.
10519       DCI.CombineTo(N, ResVal);
10520 
10521       // Next, combine the load away, we give it a bogus result value but a real
10522       // chain result.  The result value is dead because the bswap is dead.
10523       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10524 
10525       // Return N so it doesn't get rechecked!
10526       return SDValue(N, 0);
10527     }
10528 
10529     break;
10530   case PPCISD::VCMP: {
10531     // If a VCMPo node already exists with exactly the same operands as this
10532     // node, use its result instead of this node (VCMPo computes both a CR6 and
10533     // a normal output).
10534     //
10535     if (!N->getOperand(0).hasOneUse() &&
10536         !N->getOperand(1).hasOneUse() &&
10537         !N->getOperand(2).hasOneUse()) {
10538 
10539       // Scan all of the users of the LHS, looking for VCMPo's that match.
10540       SDNode *VCMPoNode = nullptr;
10541 
10542       SDNode *LHSN = N->getOperand(0).getNode();
10543       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10544            UI != E; ++UI)
10545         if (UI->getOpcode() == PPCISD::VCMPo &&
10546             UI->getOperand(1) == N->getOperand(1) &&
10547             UI->getOperand(2) == N->getOperand(2) &&
10548             UI->getOperand(0) == N->getOperand(0)) {
10549           VCMPoNode = *UI;
10550           break;
10551         }
10552 
10553       // If there is no VCMPo node, or if the flag value has a single use, don't
10554       // transform this.
10555       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10556         break;
10557 
10558       // Look at the (necessarily single) use of the flag value.  If it has a
10559       // chain, this transformation is more complex.  Note that multiple things
10560       // could use the value result, which we should ignore.
10561       SDNode *FlagUser = nullptr;
10562       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10563            FlagUser == nullptr; ++UI) {
10564         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10565         SDNode *User = *UI;
10566         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10567           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10568             FlagUser = User;
10569             break;
10570           }
10571         }
10572       }
10573 
10574       // If the user is a MFOCRF instruction, we know this is safe.
10575       // Otherwise we give up for right now.
10576       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10577         return SDValue(VCMPoNode, 0);
10578     }
10579     break;
10580   }
10581   case ISD::BRCOND: {
10582     SDValue Cond = N->getOperand(1);
10583     SDValue Target = N->getOperand(2);
10584 
10585     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10586         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10587           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10588 
10589       // We now need to make the intrinsic dead (it cannot be instruction
10590       // selected).
10591       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10592       assert(Cond.getNode()->hasOneUse() &&
10593              "Counter decrement has more than one use");
10594 
10595       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10596                          N->getOperand(0), Target);
10597     }
10598   }
10599   break;
10600   case ISD::BR_CC: {
10601     // If this is a branch on an altivec predicate comparison, lower this so
10602     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10603     // lowering is done pre-legalize, because the legalizer lowers the predicate
10604     // compare down to code that is difficult to reassemble.
10605     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10606     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10607 
10608     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10609     // value. If so, pass-through the AND to get to the intrinsic.
10610     if (LHS.getOpcode() == ISD::AND &&
10611         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10612         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10613           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10614         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10615         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
10616           isZero())
10617       LHS = LHS.getOperand(0);
10618 
10619     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10620         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10621           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10622         isa<ConstantSDNode>(RHS)) {
10623       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10624              "Counter decrement comparison is not EQ or NE");
10625 
10626       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10627       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10628                     (CC == ISD::SETNE && !Val);
10629 
10630       // We now need to make the intrinsic dead (it cannot be instruction
10631       // selected).
10632       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10633       assert(LHS.getNode()->hasOneUse() &&
10634              "Counter decrement has more than one use");
10635 
10636       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10637                          N->getOperand(0), N->getOperand(4));
10638     }
10639 
10640     int CompareOpc;
10641     bool isDot;
10642 
10643     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10644         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10645         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10646       assert(isDot && "Can't compare against a vector result!");
10647 
10648       // If this is a comparison against something other than 0/1, then we know
10649       // that the condition is never/always true.
10650       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10651       if (Val != 0 && Val != 1) {
10652         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10653           return N->getOperand(0);
10654         // Always !=, turn it into an unconditional branch.
10655         return DAG.getNode(ISD::BR, dl, MVT::Other,
10656                            N->getOperand(0), N->getOperand(4));
10657       }
10658 
10659       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10660 
10661       // Create the PPCISD altivec 'dot' comparison node.
10662       SDValue Ops[] = {
10663         LHS.getOperand(2),  // LHS of compare
10664         LHS.getOperand(3),  // RHS of compare
10665         DAG.getConstant(CompareOpc, dl, MVT::i32)
10666       };
10667       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10668       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10669 
10670       // Unpack the result based on how the target uses it.
10671       PPC::Predicate CompOpc;
10672       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
10673       default:  // Can't happen, don't crash on invalid number though.
10674       case 0:   // Branch on the value of the EQ bit of CR6.
10675         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
10676         break;
10677       case 1:   // Branch on the inverted value of the EQ bit of CR6.
10678         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
10679         break;
10680       case 2:   // Branch on the value of the LT bit of CR6.
10681         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
10682         break;
10683       case 3:   // Branch on the inverted value of the LT bit of CR6.
10684         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
10685         break;
10686       }
10687 
10688       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
10689                          DAG.getConstant(CompOpc, dl, MVT::i32),
10690                          DAG.getRegister(PPC::CR6, MVT::i32),
10691                          N->getOperand(4), CompNode.getValue(1));
10692     }
10693     break;
10694   }
10695   }
10696 
10697   return SDValue();
10698 }
10699 
10700 SDValue
10701 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10702                                   SelectionDAG &DAG,
10703                                   std::vector<SDNode *> *Created) const {
10704   // fold (sdiv X, pow2)
10705   EVT VT = N->getValueType(0);
10706   if (VT == MVT::i64 && !Subtarget.isPPC64())
10707     return SDValue();
10708   if ((VT != MVT::i32 && VT != MVT::i64) ||
10709       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
10710     return SDValue();
10711 
10712   SDLoc DL(N);
10713   SDValue N0 = N->getOperand(0);
10714 
10715   bool IsNegPow2 = (-Divisor).isPowerOf2();
10716   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
10717   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
10718 
10719   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
10720   if (Created)
10721     Created->push_back(Op.getNode());
10722 
10723   if (IsNegPow2) {
10724     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
10725     if (Created)
10726       Created->push_back(Op.getNode());
10727   }
10728 
10729   return Op;
10730 }
10731 
10732 //===----------------------------------------------------------------------===//
10733 // Inline Assembly Support
10734 //===----------------------------------------------------------------------===//
10735 
10736 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10737                                                       APInt &KnownZero,
10738                                                       APInt &KnownOne,
10739                                                       const SelectionDAG &DAG,
10740                                                       unsigned Depth) const {
10741   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
10742   switch (Op.getOpcode()) {
10743   default: break;
10744   case PPCISD::LBRX: {
10745     // lhbrx is known to have the top bits cleared out.
10746     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
10747       KnownZero = 0xFFFF0000;
10748     break;
10749   }
10750   case ISD::INTRINSIC_WO_CHAIN: {
10751     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
10752     default: break;
10753     case Intrinsic::ppc_altivec_vcmpbfp_p:
10754     case Intrinsic::ppc_altivec_vcmpeqfp_p:
10755     case Intrinsic::ppc_altivec_vcmpequb_p:
10756     case Intrinsic::ppc_altivec_vcmpequh_p:
10757     case Intrinsic::ppc_altivec_vcmpequw_p:
10758     case Intrinsic::ppc_altivec_vcmpequd_p:
10759     case Intrinsic::ppc_altivec_vcmpgefp_p:
10760     case Intrinsic::ppc_altivec_vcmpgtfp_p:
10761     case Intrinsic::ppc_altivec_vcmpgtsb_p:
10762     case Intrinsic::ppc_altivec_vcmpgtsh_p:
10763     case Intrinsic::ppc_altivec_vcmpgtsw_p:
10764     case Intrinsic::ppc_altivec_vcmpgtsd_p:
10765     case Intrinsic::ppc_altivec_vcmpgtub_p:
10766     case Intrinsic::ppc_altivec_vcmpgtuh_p:
10767     case Intrinsic::ppc_altivec_vcmpgtuw_p:
10768     case Intrinsic::ppc_altivec_vcmpgtud_p:
10769       KnownZero = ~1U;  // All bits but the low one are known to be zero.
10770       break;
10771     }
10772   }
10773   }
10774 }
10775 
10776 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10777   switch (Subtarget.getDarwinDirective()) {
10778   default: break;
10779   case PPC::DIR_970:
10780   case PPC::DIR_PWR4:
10781   case PPC::DIR_PWR5:
10782   case PPC::DIR_PWR5X:
10783   case PPC::DIR_PWR6:
10784   case PPC::DIR_PWR6X:
10785   case PPC::DIR_PWR7:
10786   case PPC::DIR_PWR8: {
10787     if (!ML)
10788       break;
10789 
10790     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10791 
10792     // For small loops (between 5 and 8 instructions), align to a 32-byte
10793     // boundary so that the entire loop fits in one instruction-cache line.
10794     uint64_t LoopSize = 0;
10795     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
10796       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
10797         LoopSize += TII->GetInstSizeInBytes(J);
10798 
10799     if (LoopSize > 16 && LoopSize <= 32)
10800       return 5;
10801 
10802     break;
10803   }
10804   }
10805 
10806   return TargetLowering::getPrefLoopAlignment(ML);
10807 }
10808 
10809 /// getConstraintType - Given a constraint, return the type of
10810 /// constraint it is for this target.
10811 PPCTargetLowering::ConstraintType
10812 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
10813   if (Constraint.size() == 1) {
10814     switch (Constraint[0]) {
10815     default: break;
10816     case 'b':
10817     case 'r':
10818     case 'f':
10819     case 'v':
10820     case 'y':
10821       return C_RegisterClass;
10822     case 'Z':
10823       // FIXME: While Z does indicate a memory constraint, it specifically
10824       // indicates an r+r address (used in conjunction with the 'y' modifier
10825       // in the replacement string). Currently, we're forcing the base
10826       // register to be r0 in the asm printer (which is interpreted as zero)
10827       // and forming the complete address in the second register. This is
10828       // suboptimal.
10829       return C_Memory;
10830     }
10831   } else if (Constraint == "wc") { // individual CR bits.
10832     return C_RegisterClass;
10833   } else if (Constraint == "wa" || Constraint == "wd" ||
10834              Constraint == "wf" || Constraint == "ws") {
10835     return C_RegisterClass; // VSX registers.
10836   }
10837   return TargetLowering::getConstraintType(Constraint);
10838 }
10839 
10840 /// Examine constraint type and operand type and determine a weight value.
10841 /// This object must already have been set up with the operand type
10842 /// and the current alternative constraint selected.
10843 TargetLowering::ConstraintWeight
10844 PPCTargetLowering::getSingleConstraintMatchWeight(
10845     AsmOperandInfo &info, const char *constraint) const {
10846   ConstraintWeight weight = CW_Invalid;
10847   Value *CallOperandVal = info.CallOperandVal;
10848     // If we don't have a value, we can't do a match,
10849     // but allow it at the lowest weight.
10850   if (!CallOperandVal)
10851     return CW_Default;
10852   Type *type = CallOperandVal->getType();
10853 
10854   // Look at the constraint type.
10855   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
10856     return CW_Register; // an individual CR bit.
10857   else if ((StringRef(constraint) == "wa" ||
10858             StringRef(constraint) == "wd" ||
10859             StringRef(constraint) == "wf") &&
10860            type->isVectorTy())
10861     return CW_Register;
10862   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
10863     return CW_Register;
10864 
10865   switch (*constraint) {
10866   default:
10867     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10868     break;
10869   case 'b':
10870     if (type->isIntegerTy())
10871       weight = CW_Register;
10872     break;
10873   case 'f':
10874     if (type->isFloatTy())
10875       weight = CW_Register;
10876     break;
10877   case 'd':
10878     if (type->isDoubleTy())
10879       weight = CW_Register;
10880     break;
10881   case 'v':
10882     if (type->isVectorTy())
10883       weight = CW_Register;
10884     break;
10885   case 'y':
10886     weight = CW_Register;
10887     break;
10888   case 'Z':
10889     weight = CW_Memory;
10890     break;
10891   }
10892   return weight;
10893 }
10894 
10895 std::pair<unsigned, const TargetRegisterClass *>
10896 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10897                                                 StringRef Constraint,
10898                                                 MVT VT) const {
10899   if (Constraint.size() == 1) {
10900     // GCC RS6000 Constraint Letters
10901     switch (Constraint[0]) {
10902     case 'b':   // R1-R31
10903       if (VT == MVT::i64 && Subtarget.isPPC64())
10904         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
10905       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
10906     case 'r':   // R0-R31
10907       if (VT == MVT::i64 && Subtarget.isPPC64())
10908         return std::make_pair(0U, &PPC::G8RCRegClass);
10909       return std::make_pair(0U, &PPC::GPRCRegClass);
10910     case 'f':
10911       if (VT == MVT::f32 || VT == MVT::i32)
10912         return std::make_pair(0U, &PPC::F4RCRegClass);
10913       if (VT == MVT::f64 || VT == MVT::i64)
10914         return std::make_pair(0U, &PPC::F8RCRegClass);
10915       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10916         return std::make_pair(0U, &PPC::QFRCRegClass);
10917       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10918         return std::make_pair(0U, &PPC::QSRCRegClass);
10919       break;
10920     case 'v':
10921       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10922         return std::make_pair(0U, &PPC::QFRCRegClass);
10923       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10924         return std::make_pair(0U, &PPC::QSRCRegClass);
10925       if (Subtarget.hasAltivec())
10926         return std::make_pair(0U, &PPC::VRRCRegClass);
10927     case 'y':   // crrc
10928       return std::make_pair(0U, &PPC::CRRCRegClass);
10929     }
10930   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
10931     // An individual CR bit.
10932     return std::make_pair(0U, &PPC::CRBITRCRegClass);
10933   } else if ((Constraint == "wa" || Constraint == "wd" ||
10934              Constraint == "wf") && Subtarget.hasVSX()) {
10935     return std::make_pair(0U, &PPC::VSRCRegClass);
10936   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
10937     if (VT == MVT::f32 && Subtarget.hasP8Vector())
10938       return std::make_pair(0U, &PPC::VSSRCRegClass);
10939     else
10940       return std::make_pair(0U, &PPC::VSFRCRegClass);
10941   }
10942 
10943   std::pair<unsigned, const TargetRegisterClass *> R =
10944       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10945 
10946   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
10947   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
10948   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
10949   // register.
10950   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
10951   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
10952   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
10953       PPC::GPRCRegClass.contains(R.first))
10954     return std::make_pair(TRI->getMatchingSuperReg(R.first,
10955                             PPC::sub_32, &PPC::G8RCRegClass),
10956                           &PPC::G8RCRegClass);
10957 
10958   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
10959   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
10960     R.first = PPC::CR0;
10961     R.second = &PPC::CRRCRegClass;
10962   }
10963 
10964   return R;
10965 }
10966 
10967 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10968 /// vector.  If it is invalid, don't add anything to Ops.
10969 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10970                                                      std::string &Constraint,
10971                                                      std::vector<SDValue>&Ops,
10972                                                      SelectionDAG &DAG) const {
10973   SDValue Result;
10974 
10975   // Only support length 1 constraints.
10976   if (Constraint.length() > 1) return;
10977 
10978   char Letter = Constraint[0];
10979   switch (Letter) {
10980   default: break;
10981   case 'I':
10982   case 'J':
10983   case 'K':
10984   case 'L':
10985   case 'M':
10986   case 'N':
10987   case 'O':
10988   case 'P': {
10989     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
10990     if (!CST) return; // Must be an immediate to match.
10991     SDLoc dl(Op);
10992     int64_t Value = CST->getSExtValue();
10993     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
10994                          // numbers are printed as such.
10995     switch (Letter) {
10996     default: llvm_unreachable("Unknown constraint letter!");
10997     case 'I':  // "I" is a signed 16-bit constant.
10998       if (isInt<16>(Value))
10999         Result = DAG.getTargetConstant(Value, dl, TCVT);
11000       break;
11001     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11002       if (isShiftedUInt<16, 16>(Value))
11003         Result = DAG.getTargetConstant(Value, dl, TCVT);
11004       break;
11005     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11006       if (isShiftedInt<16, 16>(Value))
11007         Result = DAG.getTargetConstant(Value, dl, TCVT);
11008       break;
11009     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11010       if (isUInt<16>(Value))
11011         Result = DAG.getTargetConstant(Value, dl, TCVT);
11012       break;
11013     case 'M':  // "M" is a constant that is greater than 31.
11014       if (Value > 31)
11015         Result = DAG.getTargetConstant(Value, dl, TCVT);
11016       break;
11017     case 'N':  // "N" is a positive constant that is an exact power of two.
11018       if (Value > 0 && isPowerOf2_64(Value))
11019         Result = DAG.getTargetConstant(Value, dl, TCVT);
11020       break;
11021     case 'O':  // "O" is the constant zero.
11022       if (Value == 0)
11023         Result = DAG.getTargetConstant(Value, dl, TCVT);
11024       break;
11025     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11026       if (isInt<16>(-Value))
11027         Result = DAG.getTargetConstant(Value, dl, TCVT);
11028       break;
11029     }
11030     break;
11031   }
11032   }
11033 
11034   if (Result.getNode()) {
11035     Ops.push_back(Result);
11036     return;
11037   }
11038 
11039   // Handle standard constraint letters.
11040   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11041 }
11042 
11043 // isLegalAddressingMode - Return true if the addressing mode represented
11044 // by AM is legal for this target, for a load/store of the specified type.
11045 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11046                                               const AddrMode &AM, Type *Ty,
11047                                               unsigned AS) const {
11048   // PPC does not allow r+i addressing modes for vectors!
11049   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11050     return false;
11051 
11052   // PPC allows a sign-extended 16-bit immediate field.
11053   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11054     return false;
11055 
11056   // No global is ever allowed as a base.
11057   if (AM.BaseGV)
11058     return false;
11059 
11060   // PPC only support r+r,
11061   switch (AM.Scale) {
11062   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11063     break;
11064   case 1:
11065     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11066       return false;
11067     // Otherwise we have r+r or r+i.
11068     break;
11069   case 2:
11070     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11071       return false;
11072     // Allow 2*r as r+r.
11073     break;
11074   default:
11075     // No other scales are supported.
11076     return false;
11077   }
11078 
11079   return true;
11080 }
11081 
11082 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11083                                            SelectionDAG &DAG) const {
11084   MachineFunction &MF = DAG.getMachineFunction();
11085   MachineFrameInfo *MFI = MF.getFrameInfo();
11086   MFI->setReturnAddressIsTaken(true);
11087 
11088   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11089     return SDValue();
11090 
11091   SDLoc dl(Op);
11092   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11093 
11094   // Make sure the function does not optimize away the store of the RA to
11095   // the stack.
11096   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11097   FuncInfo->setLRStoreRequired();
11098   bool isPPC64 = Subtarget.isPPC64();
11099   auto PtrVT = getPointerTy(MF.getDataLayout());
11100 
11101   if (Depth > 0) {
11102     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11103     SDValue Offset =
11104         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11105                         isPPC64 ? MVT::i64 : MVT::i32);
11106     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11107                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11108                        MachinePointerInfo(), false, false, false, 0);
11109   }
11110 
11111   // Just load the return address off the stack.
11112   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11113   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11114                      MachinePointerInfo(), false, false, false, 0);
11115 }
11116 
11117 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11118                                           SelectionDAG &DAG) const {
11119   SDLoc dl(Op);
11120   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11121 
11122   MachineFunction &MF = DAG.getMachineFunction();
11123   MachineFrameInfo *MFI = MF.getFrameInfo();
11124   MFI->setFrameAddressIsTaken(true);
11125 
11126   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11127   bool isPPC64 = PtrVT == MVT::i64;
11128 
11129   // Naked functions never have a frame pointer, and so we use r1. For all
11130   // other functions, this decision must be delayed until during PEI.
11131   unsigned FrameReg;
11132   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11133     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11134   else
11135     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11136 
11137   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11138                                          PtrVT);
11139   while (Depth--)
11140     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11141                             FrameAddr, MachinePointerInfo(), false, false,
11142                             false, 0);
11143   return FrameAddr;
11144 }
11145 
11146 // FIXME? Maybe this could be a TableGen attribute on some registers and
11147 // this table could be generated automatically from RegInfo.
11148 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11149                                               SelectionDAG &DAG) const {
11150   bool isPPC64 = Subtarget.isPPC64();
11151   bool isDarwinABI = Subtarget.isDarwinABI();
11152 
11153   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11154       (!isPPC64 && VT != MVT::i32))
11155     report_fatal_error("Invalid register global variable type");
11156 
11157   bool is64Bit = isPPC64 && VT == MVT::i64;
11158   unsigned Reg = StringSwitch<unsigned>(RegName)
11159                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11160                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11161                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11162                                   (is64Bit ? PPC::X13 : PPC::R13))
11163                    .Default(0);
11164 
11165   if (Reg)
11166     return Reg;
11167   report_fatal_error("Invalid register name global variable");
11168 }
11169 
11170 bool
11171 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11172   // The PowerPC target isn't yet aware of offsets.
11173   return false;
11174 }
11175 
11176 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11177                                            const CallInst &I,
11178                                            unsigned Intrinsic) const {
11179 
11180   switch (Intrinsic) {
11181   case Intrinsic::ppc_qpx_qvlfd:
11182   case Intrinsic::ppc_qpx_qvlfs:
11183   case Intrinsic::ppc_qpx_qvlfcd:
11184   case Intrinsic::ppc_qpx_qvlfcs:
11185   case Intrinsic::ppc_qpx_qvlfiwa:
11186   case Intrinsic::ppc_qpx_qvlfiwz:
11187   case Intrinsic::ppc_altivec_lvx:
11188   case Intrinsic::ppc_altivec_lvxl:
11189   case Intrinsic::ppc_altivec_lvebx:
11190   case Intrinsic::ppc_altivec_lvehx:
11191   case Intrinsic::ppc_altivec_lvewx:
11192   case Intrinsic::ppc_vsx_lxvd2x:
11193   case Intrinsic::ppc_vsx_lxvw4x: {
11194     EVT VT;
11195     switch (Intrinsic) {
11196     case Intrinsic::ppc_altivec_lvebx:
11197       VT = MVT::i8;
11198       break;
11199     case Intrinsic::ppc_altivec_lvehx:
11200       VT = MVT::i16;
11201       break;
11202     case Intrinsic::ppc_altivec_lvewx:
11203       VT = MVT::i32;
11204       break;
11205     case Intrinsic::ppc_vsx_lxvd2x:
11206       VT = MVT::v2f64;
11207       break;
11208     case Intrinsic::ppc_qpx_qvlfd:
11209       VT = MVT::v4f64;
11210       break;
11211     case Intrinsic::ppc_qpx_qvlfs:
11212       VT = MVT::v4f32;
11213       break;
11214     case Intrinsic::ppc_qpx_qvlfcd:
11215       VT = MVT::v2f64;
11216       break;
11217     case Intrinsic::ppc_qpx_qvlfcs:
11218       VT = MVT::v2f32;
11219       break;
11220     default:
11221       VT = MVT::v4i32;
11222       break;
11223     }
11224 
11225     Info.opc = ISD::INTRINSIC_W_CHAIN;
11226     Info.memVT = VT;
11227     Info.ptrVal = I.getArgOperand(0);
11228     Info.offset = -VT.getStoreSize()+1;
11229     Info.size = 2*VT.getStoreSize()-1;
11230     Info.align = 1;
11231     Info.vol = false;
11232     Info.readMem = true;
11233     Info.writeMem = false;
11234     return true;
11235   }
11236   case Intrinsic::ppc_qpx_qvlfda:
11237   case Intrinsic::ppc_qpx_qvlfsa:
11238   case Intrinsic::ppc_qpx_qvlfcda:
11239   case Intrinsic::ppc_qpx_qvlfcsa:
11240   case Intrinsic::ppc_qpx_qvlfiwaa:
11241   case Intrinsic::ppc_qpx_qvlfiwza: {
11242     EVT VT;
11243     switch (Intrinsic) {
11244     case Intrinsic::ppc_qpx_qvlfda:
11245       VT = MVT::v4f64;
11246       break;
11247     case Intrinsic::ppc_qpx_qvlfsa:
11248       VT = MVT::v4f32;
11249       break;
11250     case Intrinsic::ppc_qpx_qvlfcda:
11251       VT = MVT::v2f64;
11252       break;
11253     case Intrinsic::ppc_qpx_qvlfcsa:
11254       VT = MVT::v2f32;
11255       break;
11256     default:
11257       VT = MVT::v4i32;
11258       break;
11259     }
11260 
11261     Info.opc = ISD::INTRINSIC_W_CHAIN;
11262     Info.memVT = VT;
11263     Info.ptrVal = I.getArgOperand(0);
11264     Info.offset = 0;
11265     Info.size = VT.getStoreSize();
11266     Info.align = 1;
11267     Info.vol = false;
11268     Info.readMem = true;
11269     Info.writeMem = false;
11270     return true;
11271   }
11272   case Intrinsic::ppc_qpx_qvstfd:
11273   case Intrinsic::ppc_qpx_qvstfs:
11274   case Intrinsic::ppc_qpx_qvstfcd:
11275   case Intrinsic::ppc_qpx_qvstfcs:
11276   case Intrinsic::ppc_qpx_qvstfiw:
11277   case Intrinsic::ppc_altivec_stvx:
11278   case Intrinsic::ppc_altivec_stvxl:
11279   case Intrinsic::ppc_altivec_stvebx:
11280   case Intrinsic::ppc_altivec_stvehx:
11281   case Intrinsic::ppc_altivec_stvewx:
11282   case Intrinsic::ppc_vsx_stxvd2x:
11283   case Intrinsic::ppc_vsx_stxvw4x: {
11284     EVT VT;
11285     switch (Intrinsic) {
11286     case Intrinsic::ppc_altivec_stvebx:
11287       VT = MVT::i8;
11288       break;
11289     case Intrinsic::ppc_altivec_stvehx:
11290       VT = MVT::i16;
11291       break;
11292     case Intrinsic::ppc_altivec_stvewx:
11293       VT = MVT::i32;
11294       break;
11295     case Intrinsic::ppc_vsx_stxvd2x:
11296       VT = MVT::v2f64;
11297       break;
11298     case Intrinsic::ppc_qpx_qvstfd:
11299       VT = MVT::v4f64;
11300       break;
11301     case Intrinsic::ppc_qpx_qvstfs:
11302       VT = MVT::v4f32;
11303       break;
11304     case Intrinsic::ppc_qpx_qvstfcd:
11305       VT = MVT::v2f64;
11306       break;
11307     case Intrinsic::ppc_qpx_qvstfcs:
11308       VT = MVT::v2f32;
11309       break;
11310     default:
11311       VT = MVT::v4i32;
11312       break;
11313     }
11314 
11315     Info.opc = ISD::INTRINSIC_VOID;
11316     Info.memVT = VT;
11317     Info.ptrVal = I.getArgOperand(1);
11318     Info.offset = -VT.getStoreSize()+1;
11319     Info.size = 2*VT.getStoreSize()-1;
11320     Info.align = 1;
11321     Info.vol = false;
11322     Info.readMem = false;
11323     Info.writeMem = true;
11324     return true;
11325   }
11326   case Intrinsic::ppc_qpx_qvstfda:
11327   case Intrinsic::ppc_qpx_qvstfsa:
11328   case Intrinsic::ppc_qpx_qvstfcda:
11329   case Intrinsic::ppc_qpx_qvstfcsa:
11330   case Intrinsic::ppc_qpx_qvstfiwa: {
11331     EVT VT;
11332     switch (Intrinsic) {
11333     case Intrinsic::ppc_qpx_qvstfda:
11334       VT = MVT::v4f64;
11335       break;
11336     case Intrinsic::ppc_qpx_qvstfsa:
11337       VT = MVT::v4f32;
11338       break;
11339     case Intrinsic::ppc_qpx_qvstfcda:
11340       VT = MVT::v2f64;
11341       break;
11342     case Intrinsic::ppc_qpx_qvstfcsa:
11343       VT = MVT::v2f32;
11344       break;
11345     default:
11346       VT = MVT::v4i32;
11347       break;
11348     }
11349 
11350     Info.opc = ISD::INTRINSIC_VOID;
11351     Info.memVT = VT;
11352     Info.ptrVal = I.getArgOperand(1);
11353     Info.offset = 0;
11354     Info.size = VT.getStoreSize();
11355     Info.align = 1;
11356     Info.vol = false;
11357     Info.readMem = false;
11358     Info.writeMem = true;
11359     return true;
11360   }
11361   default:
11362     break;
11363   }
11364 
11365   return false;
11366 }
11367 
11368 /// getOptimalMemOpType - Returns the target specific optimal type for load
11369 /// and store operations as a result of memset, memcpy, and memmove
11370 /// lowering. If DstAlign is zero that means it's safe to destination
11371 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11372 /// means there isn't a need to check it against alignment requirement,
11373 /// probably because the source does not need to be loaded. If 'IsMemset' is
11374 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11375 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11376 /// source is constant so it does not need to be loaded.
11377 /// It returns EVT::Other if the type should be determined using generic
11378 /// target-independent logic.
11379 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11380                                            unsigned DstAlign, unsigned SrcAlign,
11381                                            bool IsMemset, bool ZeroMemset,
11382                                            bool MemcpyStrSrc,
11383                                            MachineFunction &MF) const {
11384   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11385     const Function *F = MF.getFunction();
11386     // When expanding a memset, require at least two QPX instructions to cover
11387     // the cost of loading the value to be stored from the constant pool.
11388     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11389        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11390         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11391       return MVT::v4f64;
11392     }
11393 
11394     // We should use Altivec/VSX loads and stores when available. For unaligned
11395     // addresses, unaligned VSX loads are only fast starting with the P8.
11396     if (Subtarget.hasAltivec() && Size >= 16 &&
11397         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11398          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11399       return MVT::v4i32;
11400   }
11401 
11402   if (Subtarget.isPPC64()) {
11403     return MVT::i64;
11404   }
11405 
11406   return MVT::i32;
11407 }
11408 
11409 /// \brief Returns true if it is beneficial to convert a load of a constant
11410 /// to just the constant itself.
11411 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11412                                                           Type *Ty) const {
11413   assert(Ty->isIntegerTy());
11414 
11415   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11416   if (BitSize == 0 || BitSize > 64)
11417     return false;
11418   return true;
11419 }
11420 
11421 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11422   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11423     return false;
11424   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11425   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11426   return NumBits1 == 64 && NumBits2 == 32;
11427 }
11428 
11429 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11430   if (!VT1.isInteger() || !VT2.isInteger())
11431     return false;
11432   unsigned NumBits1 = VT1.getSizeInBits();
11433   unsigned NumBits2 = VT2.getSizeInBits();
11434   return NumBits1 == 64 && NumBits2 == 32;
11435 }
11436 
11437 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11438   // Generally speaking, zexts are not free, but they are free when they can be
11439   // folded with other operations.
11440   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11441     EVT MemVT = LD->getMemoryVT();
11442     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11443          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11444         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11445          LD->getExtensionType() == ISD::ZEXTLOAD))
11446       return true;
11447   }
11448 
11449   // FIXME: Add other cases...
11450   //  - 32-bit shifts with a zext to i64
11451   //  - zext after ctlz, bswap, etc.
11452   //  - zext after and by a constant mask
11453 
11454   return TargetLowering::isZExtFree(Val, VT2);
11455 }
11456 
11457 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11458   assert(VT.isFloatingPoint());
11459   return true;
11460 }
11461 
11462 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11463   return isInt<16>(Imm) || isUInt<16>(Imm);
11464 }
11465 
11466 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11467   return isInt<16>(Imm) || isUInt<16>(Imm);
11468 }
11469 
11470 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11471                                                        unsigned,
11472                                                        unsigned,
11473                                                        bool *Fast) const {
11474   if (DisablePPCUnaligned)
11475     return false;
11476 
11477   // PowerPC supports unaligned memory access for simple non-vector types.
11478   // Although accessing unaligned addresses is not as efficient as accessing
11479   // aligned addresses, it is generally more efficient than manual expansion,
11480   // and generally only traps for software emulation when crossing page
11481   // boundaries.
11482 
11483   if (!VT.isSimple())
11484     return false;
11485 
11486   if (VT.getSimpleVT().isVector()) {
11487     if (Subtarget.hasVSX()) {
11488       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11489           VT != MVT::v4f32 && VT != MVT::v4i32)
11490         return false;
11491     } else {
11492       return false;
11493     }
11494   }
11495 
11496   if (VT == MVT::ppcf128)
11497     return false;
11498 
11499   if (Fast)
11500     *Fast = true;
11501 
11502   return true;
11503 }
11504 
11505 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11506   VT = VT.getScalarType();
11507 
11508   if (!VT.isSimple())
11509     return false;
11510 
11511   switch (VT.getSimpleVT().SimpleTy) {
11512   case MVT::f32:
11513   case MVT::f64:
11514     return true;
11515   default:
11516     break;
11517   }
11518 
11519   return false;
11520 }
11521 
11522 const MCPhysReg *
11523 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11524   // LR is a callee-save register, but we must treat it as clobbered by any call
11525   // site. Hence we include LR in the scratch registers, which are in turn added
11526   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11527   // to CTR, which is used by any indirect call.
11528   static const MCPhysReg ScratchRegs[] = {
11529     PPC::X12, PPC::LR8, PPC::CTR8, 0
11530   };
11531 
11532   return ScratchRegs;
11533 }
11534 
11535 bool
11536 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11537                      EVT VT , unsigned DefinedValues) const {
11538   if (VT == MVT::v2i64)
11539     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
11540 
11541   if (Subtarget.hasQPX()) {
11542     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11543       return true;
11544   }
11545 
11546   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11547 }
11548 
11549 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11550   if (DisableILPPref || Subtarget.enableMachineScheduler())
11551     return TargetLowering::getSchedulingPreference(N);
11552 
11553   return Sched::ILP;
11554 }
11555 
11556 // Create a fast isel object.
11557 FastISel *
11558 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11559                                   const TargetLibraryInfo *LibInfo) const {
11560   return PPC::createFastISel(FuncInfo, LibInfo);
11561 }
11562