1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 // FIXME: Remove this once soft-float is supported. 46 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic", 47 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden); 48 49 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 50 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 51 52 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 53 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 54 55 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 56 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 57 58 // FIXME: Remove this once the bug has been fixed! 59 extern cl::opt<bool> ANDIGlueBug; 60 61 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 62 const PPCSubtarget &STI) 63 : TargetLowering(TM), Subtarget(STI) { 64 // Use _setjmp/_longjmp instead of setjmp/longjmp. 65 setUseUnderscoreSetJmp(true); 66 setUseUnderscoreLongJmp(true); 67 68 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 69 // arguments are at least 4/8 bytes aligned. 70 bool isPPC64 = Subtarget.isPPC64(); 71 setMinStackArgumentAlignment(isPPC64 ? 8:4); 72 73 // Set up the register classes. 74 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 75 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 76 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 77 78 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 79 for (MVT VT : MVT::integer_valuetypes()) { 80 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 81 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 82 } 83 84 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 85 86 // PowerPC has pre-inc load and store's. 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 92 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 101 102 if (Subtarget.useCRBits()) { 103 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 104 105 if (isPPC64 || Subtarget.hasFPCVT()) { 106 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 107 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 108 isPPC64 ? MVT::i64 : MVT::i32); 109 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 110 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 111 isPPC64 ? MVT::i64 : MVT::i32); 112 } else { 113 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 114 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 115 } 116 117 // PowerPC does not support direct load / store of condition registers 118 setOperationAction(ISD::LOAD, MVT::i1, Custom); 119 setOperationAction(ISD::STORE, MVT::i1, Custom); 120 121 // FIXME: Remove this once the ANDI glue bug is fixed: 122 if (ANDIGlueBug) 123 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 124 125 for (MVT VT : MVT::integer_valuetypes()) { 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 128 setTruncStoreAction(VT, MVT::i1, Expand); 129 } 130 131 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 132 } 133 134 // This is used in the ppcf128->int sequence. Note it has different semantics 135 // from FP_ROUND: that rounds to nearest, this rounds to zero. 136 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 137 138 // We do not currently implement these libm ops for PowerPC. 139 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 143 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 144 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 145 146 // PowerPC has no SREM/UREM instructions 147 setOperationAction(ISD::SREM, MVT::i32, Expand); 148 setOperationAction(ISD::UREM, MVT::i32, Expand); 149 setOperationAction(ISD::SREM, MVT::i64, Expand); 150 setOperationAction(ISD::UREM, MVT::i64, Expand); 151 152 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 153 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 155 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 156 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 159 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 161 162 // We don't support sin/cos/sqrt/fmod/pow 163 setOperationAction(ISD::FSIN , MVT::f64, Expand); 164 setOperationAction(ISD::FCOS , MVT::f64, Expand); 165 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 166 setOperationAction(ISD::FREM , MVT::f64, Expand); 167 setOperationAction(ISD::FPOW , MVT::f64, Expand); 168 setOperationAction(ISD::FMA , MVT::f64, Legal); 169 setOperationAction(ISD::FSIN , MVT::f32, Expand); 170 setOperationAction(ISD::FCOS , MVT::f32, Expand); 171 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 172 setOperationAction(ISD::FREM , MVT::f32, Expand); 173 setOperationAction(ISD::FPOW , MVT::f32, Expand); 174 setOperationAction(ISD::FMA , MVT::f32, Legal); 175 176 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 177 178 // If we're enabling GP optimizations, use hardware square root 179 if (!Subtarget.hasFSQRT() && 180 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 181 Subtarget.hasFRE())) 182 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 183 184 if (!Subtarget.hasFSQRT() && 185 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 186 Subtarget.hasFRES())) 187 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 188 189 if (Subtarget.hasFCPSGN()) { 190 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 191 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 192 } else { 193 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 194 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 195 } 196 197 if (Subtarget.hasFPRND()) { 198 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 199 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 200 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 201 setOperationAction(ISD::FROUND, MVT::f64, Legal); 202 203 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 204 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 205 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 206 setOperationAction(ISD::FROUND, MVT::f32, Legal); 207 } 208 209 // PowerPC does not have BSWAP, CTPOP or CTTZ 210 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 211 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 212 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 213 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 214 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 215 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 216 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 217 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 218 219 if (Subtarget.hasPOPCNTD()) { 220 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 221 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 222 } else { 223 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 224 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 225 } 226 227 // PowerPC does not have ROTR 228 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 229 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 230 231 if (!Subtarget.useCRBits()) { 232 // PowerPC does not have Select 233 setOperationAction(ISD::SELECT, MVT::i32, Expand); 234 setOperationAction(ISD::SELECT, MVT::i64, Expand); 235 setOperationAction(ISD::SELECT, MVT::f32, Expand); 236 setOperationAction(ISD::SELECT, MVT::f64, Expand); 237 } 238 239 // PowerPC wants to turn select_cc of FP into fsel when possible. 240 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 241 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 242 243 // PowerPC wants to optimize integer setcc a bit 244 if (!Subtarget.useCRBits()) 245 setOperationAction(ISD::SETCC, MVT::i32, Custom); 246 247 // PowerPC does not have BRCOND which requires SetCC 248 if (!Subtarget.useCRBits()) 249 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 250 251 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 252 253 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 255 256 // PowerPC does not have [U|S]INT_TO_FP 257 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 259 260 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 261 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 262 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 263 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 264 265 // We cannot sextinreg(i1). Expand to shifts. 266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 267 268 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 269 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 270 // support continuation, user-level threading, and etc.. As a result, no 271 // other SjLj exception interfaces are implemented and please don't build 272 // your own exception handling based on them. 273 // LLVM/Clang supports zero-cost DWARF exception handling. 274 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 275 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 276 277 // We want to legalize GlobalAddress and ConstantPool nodes into the 278 // appropriate instructions to materialize the address. 279 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 280 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 281 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 282 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 283 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 284 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 289 290 // TRAP is legal. 291 setOperationAction(ISD::TRAP, MVT::Other, Legal); 292 293 // TRAMPOLINE is custom lowered. 294 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 295 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 296 297 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 298 setOperationAction(ISD::VASTART , MVT::Other, Custom); 299 300 if (Subtarget.isSVR4ABI()) { 301 if (isPPC64) { 302 // VAARG always uses double-word chunks, so promote anything smaller. 303 setOperationAction(ISD::VAARG, MVT::i1, Promote); 304 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 305 setOperationAction(ISD::VAARG, MVT::i8, Promote); 306 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 307 setOperationAction(ISD::VAARG, MVT::i16, Promote); 308 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 309 setOperationAction(ISD::VAARG, MVT::i32, Promote); 310 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 311 setOperationAction(ISD::VAARG, MVT::Other, Expand); 312 } else { 313 // VAARG is custom lowered with the 32-bit SVR4 ABI. 314 setOperationAction(ISD::VAARG, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::i64, Custom); 316 } 317 } else 318 setOperationAction(ISD::VAARG, MVT::Other, Expand); 319 320 if (Subtarget.isSVR4ABI() && !isPPC64) 321 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 322 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 323 else 324 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 325 326 // Use the default implementation. 327 setOperationAction(ISD::VAEND , MVT::Other, Expand); 328 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 329 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 332 333 // We want to custom lower some of our intrinsics. 334 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 335 336 // To handle counter-based loop conditions. 337 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 338 339 // Comparisons that require checking two conditions. 340 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 341 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 342 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 343 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 344 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 345 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 346 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 347 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 348 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 349 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 350 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 351 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 352 353 if (Subtarget.has64BitSupport()) { 354 // They also have instructions for converting between i64 and fp. 355 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 356 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 357 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 358 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 359 // This is just the low 32 bits of a (signed) fp->i64 conversion. 360 // We cannot do this with Promote because i64 is not a legal type. 361 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 362 363 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 364 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 365 } else { 366 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 367 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 368 } 369 370 // With the instructions enabled under FPCVT, we can do everything. 371 if (Subtarget.hasFPCVT()) { 372 if (Subtarget.has64BitSupport()) { 373 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 374 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 375 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 376 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 377 } 378 379 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 383 } 384 385 if (Subtarget.use64BitRegs()) { 386 // 64-bit PowerPC implementations can support i64 types directly 387 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 388 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 389 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 390 // 64-bit PowerPC wants to expand i128 shifts itself. 391 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 392 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 393 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 394 } else { 395 // 32-bit PowerPC wants to expand i64 shifts itself. 396 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 397 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 398 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 399 } 400 401 if (Subtarget.hasAltivec()) { 402 // First set operation action for all vector types to expand. Then we 403 // will selectively turn on ones that can be effectively codegen'd. 404 for (MVT VT : MVT::vector_valuetypes()) { 405 // add/sub are legal for all supported vector VT's. 406 setOperationAction(ISD::ADD, VT, Legal); 407 setOperationAction(ISD::SUB, VT, Legal); 408 409 // Vector instructions introduced in P8 410 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 411 setOperationAction(ISD::CTPOP, VT, Legal); 412 setOperationAction(ISD::CTLZ, VT, Legal); 413 } 414 else { 415 setOperationAction(ISD::CTPOP, VT, Expand); 416 setOperationAction(ISD::CTLZ, VT, Expand); 417 } 418 419 // We promote all shuffles to v16i8. 420 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 421 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 422 423 // We promote all non-typed operations to v4i32. 424 setOperationAction(ISD::AND , VT, Promote); 425 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 426 setOperationAction(ISD::OR , VT, Promote); 427 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 428 setOperationAction(ISD::XOR , VT, Promote); 429 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 430 setOperationAction(ISD::LOAD , VT, Promote); 431 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 432 setOperationAction(ISD::SELECT, VT, Promote); 433 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 434 setOperationAction(ISD::SELECT_CC, VT, Promote); 435 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 436 setOperationAction(ISD::STORE, VT, Promote); 437 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 438 439 // No other operations are legal. 440 setOperationAction(ISD::MUL , VT, Expand); 441 setOperationAction(ISD::SDIV, VT, Expand); 442 setOperationAction(ISD::SREM, VT, Expand); 443 setOperationAction(ISD::UDIV, VT, Expand); 444 setOperationAction(ISD::UREM, VT, Expand); 445 setOperationAction(ISD::FDIV, VT, Expand); 446 setOperationAction(ISD::FREM, VT, Expand); 447 setOperationAction(ISD::FNEG, VT, Expand); 448 setOperationAction(ISD::FSQRT, VT, Expand); 449 setOperationAction(ISD::FLOG, VT, Expand); 450 setOperationAction(ISD::FLOG10, VT, Expand); 451 setOperationAction(ISD::FLOG2, VT, Expand); 452 setOperationAction(ISD::FEXP, VT, Expand); 453 setOperationAction(ISD::FEXP2, VT, Expand); 454 setOperationAction(ISD::FSIN, VT, Expand); 455 setOperationAction(ISD::FCOS, VT, Expand); 456 setOperationAction(ISD::FABS, VT, Expand); 457 setOperationAction(ISD::FPOWI, VT, Expand); 458 setOperationAction(ISD::FFLOOR, VT, Expand); 459 setOperationAction(ISD::FCEIL, VT, Expand); 460 setOperationAction(ISD::FTRUNC, VT, Expand); 461 setOperationAction(ISD::FRINT, VT, Expand); 462 setOperationAction(ISD::FNEARBYINT, VT, Expand); 463 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 464 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 465 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 466 setOperationAction(ISD::MULHU, VT, Expand); 467 setOperationAction(ISD::MULHS, VT, Expand); 468 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 469 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 470 setOperationAction(ISD::UDIVREM, VT, Expand); 471 setOperationAction(ISD::SDIVREM, VT, Expand); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 473 setOperationAction(ISD::FPOW, VT, Expand); 474 setOperationAction(ISD::BSWAP, VT, Expand); 475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 476 setOperationAction(ISD::CTTZ, VT, Expand); 477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 480 481 for (MVT InnerVT : MVT::vector_valuetypes()) { 482 setTruncStoreAction(VT, InnerVT, Expand); 483 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 484 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 485 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 486 } 487 } 488 489 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 490 // with merges, splats, etc. 491 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 492 493 setOperationAction(ISD::AND , MVT::v4i32, Legal); 494 setOperationAction(ISD::OR , MVT::v4i32, Legal); 495 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 496 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 497 setOperationAction(ISD::SELECT, MVT::v4i32, 498 Subtarget.useCRBits() ? Legal : Expand); 499 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 500 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 501 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 502 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 503 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 504 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 505 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 506 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 507 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 508 509 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 510 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 511 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 512 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 513 514 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 515 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 516 517 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 518 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 519 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 520 } 521 522 if (Subtarget.hasP8Altivec()) 523 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 524 else 525 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 526 527 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 528 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 529 530 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 531 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 532 533 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 534 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 535 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 536 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 537 538 // Altivec does not contain unordered floating-point compare instructions 539 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 540 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 541 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 542 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 543 544 if (Subtarget.hasVSX()) { 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 546 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 547 if (Subtarget.hasP8Vector()) { 548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 549 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 550 } 551 if (Subtarget.hasDirectMove()) { 552 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 553 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 554 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 555 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 556 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 557 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 558 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 559 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 560 } 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 563 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 564 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 565 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 566 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 567 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 568 569 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 570 571 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 572 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 573 574 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 575 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 576 577 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 578 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 579 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 580 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 581 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 582 583 // Share the Altivec comparison restrictions. 584 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 585 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 586 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 587 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 588 589 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 590 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 593 594 if (Subtarget.hasP8Vector()) 595 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 596 597 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 598 599 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 600 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 601 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 602 603 if (Subtarget.hasP8Altivec()) { 604 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 605 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 606 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 607 608 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 609 } 610 else { 611 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 612 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 613 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 614 615 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 616 617 // VSX v2i64 only supports non-arithmetic operations. 618 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 619 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 620 } 621 622 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 623 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 624 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 625 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 626 627 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 628 629 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 630 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 631 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 632 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 633 634 // Vector operation legalization checks the result type of 635 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 636 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 637 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 638 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 639 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 640 641 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 642 } 643 644 if (Subtarget.hasP8Altivec()) { 645 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 646 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 647 } 648 } 649 650 if (Subtarget.hasQPX()) { 651 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 652 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 653 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 654 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 655 656 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 657 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 658 659 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 660 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 661 662 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 663 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 664 665 if (!Subtarget.useCRBits()) 666 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 667 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 668 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 670 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 671 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 672 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 673 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 674 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 675 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 676 677 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 678 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 679 680 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 681 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 682 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 683 684 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 685 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 686 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 687 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 688 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 689 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 690 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 691 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 692 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 693 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 694 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 695 696 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 697 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 698 699 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 700 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 701 702 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 703 704 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 705 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 706 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 707 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 708 709 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 710 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 711 712 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 713 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 714 715 if (!Subtarget.useCRBits()) 716 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 717 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 718 719 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 720 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 721 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 722 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 723 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 724 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 725 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 726 727 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 728 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 729 730 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 731 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 732 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 733 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 734 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 735 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 736 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 737 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 738 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 739 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 740 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 741 742 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 743 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 744 745 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 746 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 747 748 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 749 750 setOperationAction(ISD::AND , MVT::v4i1, Legal); 751 setOperationAction(ISD::OR , MVT::v4i1, Legal); 752 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 753 754 if (!Subtarget.useCRBits()) 755 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 756 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 757 758 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 759 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 760 761 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 762 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 763 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 764 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 765 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 766 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 767 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 768 769 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 770 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 771 772 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 773 774 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 775 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 776 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 777 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 778 779 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 780 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 781 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 782 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 783 784 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 785 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 786 787 // These need to set FE_INEXACT, and so cannot be vectorized here. 788 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 789 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 790 791 if (TM.Options.UnsafeFPMath) { 792 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 793 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 794 795 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 796 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 797 } else { 798 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 799 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 800 801 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 802 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 803 } 804 } 805 806 if (Subtarget.has64BitSupport()) 807 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 808 809 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 810 811 if (!isPPC64) { 812 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 813 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 814 } 815 816 setBooleanContents(ZeroOrOneBooleanContent); 817 818 if (Subtarget.hasAltivec()) { 819 // Altivec instructions set fields to all zeros or all ones. 820 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 821 } 822 823 if (!isPPC64) { 824 // These libcalls are not available in 32-bit. 825 setLibcallName(RTLIB::SHL_I128, nullptr); 826 setLibcallName(RTLIB::SRL_I128, nullptr); 827 setLibcallName(RTLIB::SRA_I128, nullptr); 828 } 829 830 if (isPPC64) { 831 setStackPointerRegisterToSaveRestore(PPC::X1); 832 setExceptionPointerRegister(PPC::X3); 833 setExceptionSelectorRegister(PPC::X4); 834 } else { 835 setStackPointerRegisterToSaveRestore(PPC::R1); 836 setExceptionPointerRegister(PPC::R3); 837 setExceptionSelectorRegister(PPC::R4); 838 } 839 840 // We have target-specific dag combine patterns for the following nodes: 841 setTargetDAGCombine(ISD::SINT_TO_FP); 842 if (Subtarget.hasFPCVT()) 843 setTargetDAGCombine(ISD::UINT_TO_FP); 844 setTargetDAGCombine(ISD::LOAD); 845 setTargetDAGCombine(ISD::STORE); 846 setTargetDAGCombine(ISD::BR_CC); 847 if (Subtarget.useCRBits()) 848 setTargetDAGCombine(ISD::BRCOND); 849 setTargetDAGCombine(ISD::BSWAP); 850 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 851 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 852 setTargetDAGCombine(ISD::INTRINSIC_VOID); 853 854 setTargetDAGCombine(ISD::SIGN_EXTEND); 855 setTargetDAGCombine(ISD::ZERO_EXTEND); 856 setTargetDAGCombine(ISD::ANY_EXTEND); 857 858 if (Subtarget.useCRBits()) { 859 setTargetDAGCombine(ISD::TRUNCATE); 860 setTargetDAGCombine(ISD::SETCC); 861 setTargetDAGCombine(ISD::SELECT_CC); 862 } 863 864 // Use reciprocal estimates. 865 if (TM.Options.UnsafeFPMath) { 866 setTargetDAGCombine(ISD::FDIV); 867 setTargetDAGCombine(ISD::FSQRT); 868 } 869 870 // Darwin long double math library functions have $LDBL128 appended. 871 if (Subtarget.isDarwin()) { 872 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 873 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 874 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 875 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 876 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 877 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 878 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 879 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 880 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 881 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 882 } 883 884 // With 32 condition bits, we don't need to sink (and duplicate) compares 885 // aggressively in CodeGenPrep. 886 if (Subtarget.useCRBits()) { 887 setHasMultipleConditionRegisters(); 888 setJumpIsExpensive(); 889 } 890 891 setMinFunctionAlignment(2); 892 if (Subtarget.isDarwin()) 893 setPrefFunctionAlignment(4); 894 895 switch (Subtarget.getDarwinDirective()) { 896 default: break; 897 case PPC::DIR_970: 898 case PPC::DIR_A2: 899 case PPC::DIR_E500mc: 900 case PPC::DIR_E5500: 901 case PPC::DIR_PWR4: 902 case PPC::DIR_PWR5: 903 case PPC::DIR_PWR5X: 904 case PPC::DIR_PWR6: 905 case PPC::DIR_PWR6X: 906 case PPC::DIR_PWR7: 907 case PPC::DIR_PWR8: 908 setPrefFunctionAlignment(4); 909 setPrefLoopAlignment(4); 910 break; 911 } 912 913 setInsertFencesForAtomic(true); 914 915 if (Subtarget.enableMachineScheduler()) 916 setSchedulingPreference(Sched::Source); 917 else 918 setSchedulingPreference(Sched::Hybrid); 919 920 computeRegisterProperties(STI.getRegisterInfo()); 921 922 // The Freescale cores do better with aggressive inlining of memcpy and 923 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 924 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 925 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 926 MaxStoresPerMemset = 32; 927 MaxStoresPerMemsetOptSize = 16; 928 MaxStoresPerMemcpy = 32; 929 MaxStoresPerMemcpyOptSize = 8; 930 MaxStoresPerMemmove = 32; 931 MaxStoresPerMemmoveOptSize = 8; 932 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 933 // The A2 also benefits from (very) aggressive inlining of memcpy and 934 // friends. The overhead of a the function call, even when warm, can be 935 // over one hundred cycles. 936 MaxStoresPerMemset = 128; 937 MaxStoresPerMemcpy = 128; 938 MaxStoresPerMemmove = 128; 939 } 940 } 941 942 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 943 /// the desired ByVal argument alignment. 944 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 945 unsigned MaxMaxAlign) { 946 if (MaxAlign == MaxMaxAlign) 947 return; 948 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 949 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 950 MaxAlign = 32; 951 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 952 MaxAlign = 16; 953 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 954 unsigned EltAlign = 0; 955 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 956 if (EltAlign > MaxAlign) 957 MaxAlign = EltAlign; 958 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 959 for (auto *EltTy : STy->elements()) { 960 unsigned EltAlign = 0; 961 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 962 if (EltAlign > MaxAlign) 963 MaxAlign = EltAlign; 964 if (MaxAlign == MaxMaxAlign) 965 break; 966 } 967 } 968 } 969 970 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 971 /// function arguments in the caller parameter area. 972 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 973 const DataLayout &DL) const { 974 // Darwin passes everything on 4 byte boundary. 975 if (Subtarget.isDarwin()) 976 return 4; 977 978 // 16byte and wider vectors are passed on 16byte boundary. 979 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 980 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 981 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 982 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 983 return Align; 984 } 985 986 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 987 switch ((PPCISD::NodeType)Opcode) { 988 case PPCISD::FIRST_NUMBER: break; 989 case PPCISD::FSEL: return "PPCISD::FSEL"; 990 case PPCISD::FCFID: return "PPCISD::FCFID"; 991 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 992 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 993 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 994 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 995 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 996 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 997 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 998 case PPCISD::FRE: return "PPCISD::FRE"; 999 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1000 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1001 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1002 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1003 case PPCISD::VPERM: return "PPCISD::VPERM"; 1004 case PPCISD::CMPB: return "PPCISD::CMPB"; 1005 case PPCISD::Hi: return "PPCISD::Hi"; 1006 case PPCISD::Lo: return "PPCISD::Lo"; 1007 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1008 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1009 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1010 case PPCISD::SRL: return "PPCISD::SRL"; 1011 case PPCISD::SRA: return "PPCISD::SRA"; 1012 case PPCISD::SHL: return "PPCISD::SHL"; 1013 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1014 case PPCISD::CALL: return "PPCISD::CALL"; 1015 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1016 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1017 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1018 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1019 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1020 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1021 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1022 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1023 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1024 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1025 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1026 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1027 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1028 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1029 case PPCISD::VCMP: return "PPCISD::VCMP"; 1030 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1031 case PPCISD::LBRX: return "PPCISD::LBRX"; 1032 case PPCISD::STBRX: return "PPCISD::STBRX"; 1033 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1034 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1035 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1036 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1037 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1038 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1039 case PPCISD::BDZ: return "PPCISD::BDZ"; 1040 case PPCISD::MFFS: return "PPCISD::MFFS"; 1041 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1042 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1043 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1044 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1045 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1046 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1047 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1048 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1049 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1050 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1051 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1052 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1053 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1054 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1055 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1056 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1057 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1058 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1059 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1060 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1061 case PPCISD::SC: return "PPCISD::SC"; 1062 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1063 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1064 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1065 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1066 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1067 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1068 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1069 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1070 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1071 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1072 } 1073 return nullptr; 1074 } 1075 1076 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1077 EVT VT) const { 1078 if (!VT.isVector()) 1079 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1080 1081 if (Subtarget.hasQPX()) 1082 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1083 1084 return VT.changeVectorElementTypeToInteger(); 1085 } 1086 1087 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1088 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1089 return true; 1090 } 1091 1092 //===----------------------------------------------------------------------===// 1093 // Node matching predicates, for use by the tblgen matching code. 1094 //===----------------------------------------------------------------------===// 1095 1096 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1097 static bool isFloatingPointZero(SDValue Op) { 1098 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1099 return CFP->getValueAPF().isZero(); 1100 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1101 // Maybe this has already been legalized into the constant pool? 1102 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1103 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1104 return CFP->getValueAPF().isZero(); 1105 } 1106 return false; 1107 } 1108 1109 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1110 /// true if Op is undef or if it matches the specified value. 1111 static bool isConstantOrUndef(int Op, int Val) { 1112 return Op < 0 || Op == Val; 1113 } 1114 1115 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1116 /// VPKUHUM instruction. 1117 /// The ShuffleKind distinguishes between big-endian operations with 1118 /// two different inputs (0), either-endian operations with two identical 1119 /// inputs (1), and little-endian operations with two different inputs (2). 1120 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1121 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1122 SelectionDAG &DAG) { 1123 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1124 if (ShuffleKind == 0) { 1125 if (IsLE) 1126 return false; 1127 for (unsigned i = 0; i != 16; ++i) 1128 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1129 return false; 1130 } else if (ShuffleKind == 2) { 1131 if (!IsLE) 1132 return false; 1133 for (unsigned i = 0; i != 16; ++i) 1134 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1135 return false; 1136 } else if (ShuffleKind == 1) { 1137 unsigned j = IsLE ? 0 : 1; 1138 for (unsigned i = 0; i != 8; ++i) 1139 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1140 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1141 return false; 1142 } 1143 return true; 1144 } 1145 1146 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1147 /// VPKUWUM instruction. 1148 /// The ShuffleKind distinguishes between big-endian operations with 1149 /// two different inputs (0), either-endian operations with two identical 1150 /// inputs (1), and little-endian operations with two different inputs (2). 1151 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1152 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1153 SelectionDAG &DAG) { 1154 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1155 if (ShuffleKind == 0) { 1156 if (IsLE) 1157 return false; 1158 for (unsigned i = 0; i != 16; i += 2) 1159 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1160 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1161 return false; 1162 } else if (ShuffleKind == 2) { 1163 if (!IsLE) 1164 return false; 1165 for (unsigned i = 0; i != 16; i += 2) 1166 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1167 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1168 return false; 1169 } else if (ShuffleKind == 1) { 1170 unsigned j = IsLE ? 0 : 2; 1171 for (unsigned i = 0; i != 8; i += 2) 1172 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1173 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1174 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1175 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1176 return false; 1177 } 1178 return true; 1179 } 1180 1181 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1182 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1183 /// current subtarget. 1184 /// 1185 /// The ShuffleKind distinguishes between big-endian operations with 1186 /// two different inputs (0), either-endian operations with two identical 1187 /// inputs (1), and little-endian operations with two different inputs (2). 1188 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1189 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1190 SelectionDAG &DAG) { 1191 const PPCSubtarget& Subtarget = 1192 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1193 if (!Subtarget.hasP8Vector()) 1194 return false; 1195 1196 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1197 if (ShuffleKind == 0) { 1198 if (IsLE) 1199 return false; 1200 for (unsigned i = 0; i != 16; i += 4) 1201 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1202 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1203 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1204 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1205 return false; 1206 } else if (ShuffleKind == 2) { 1207 if (!IsLE) 1208 return false; 1209 for (unsigned i = 0; i != 16; i += 4) 1210 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1211 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1212 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1213 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1214 return false; 1215 } else if (ShuffleKind == 1) { 1216 unsigned j = IsLE ? 0 : 4; 1217 for (unsigned i = 0; i != 8; i += 4) 1218 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1219 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1220 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1221 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1222 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1223 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1224 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1225 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 /// isVMerge - Common function, used to match vmrg* shuffles. 1232 /// 1233 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1234 unsigned LHSStart, unsigned RHSStart) { 1235 if (N->getValueType(0) != MVT::v16i8) 1236 return false; 1237 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1238 "Unsupported merge size!"); 1239 1240 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1241 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1242 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1243 LHSStart+j+i*UnitSize) || 1244 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1245 RHSStart+j+i*UnitSize)) 1246 return false; 1247 } 1248 return true; 1249 } 1250 1251 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1252 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1253 /// The ShuffleKind distinguishes between big-endian merges with two 1254 /// different inputs (0), either-endian merges with two identical inputs (1), 1255 /// and little-endian merges with two different inputs (2). For the latter, 1256 /// the input operands are swapped (see PPCInstrAltivec.td). 1257 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1258 unsigned ShuffleKind, SelectionDAG &DAG) { 1259 if (DAG.getDataLayout().isLittleEndian()) { 1260 if (ShuffleKind == 1) // unary 1261 return isVMerge(N, UnitSize, 0, 0); 1262 else if (ShuffleKind == 2) // swapped 1263 return isVMerge(N, UnitSize, 0, 16); 1264 else 1265 return false; 1266 } else { 1267 if (ShuffleKind == 1) // unary 1268 return isVMerge(N, UnitSize, 8, 8); 1269 else if (ShuffleKind == 0) // normal 1270 return isVMerge(N, UnitSize, 8, 24); 1271 else 1272 return false; 1273 } 1274 } 1275 1276 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1277 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1278 /// The ShuffleKind distinguishes between big-endian merges with two 1279 /// different inputs (0), either-endian merges with two identical inputs (1), 1280 /// and little-endian merges with two different inputs (2). For the latter, 1281 /// the input operands are swapped (see PPCInstrAltivec.td). 1282 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1283 unsigned ShuffleKind, SelectionDAG &DAG) { 1284 if (DAG.getDataLayout().isLittleEndian()) { 1285 if (ShuffleKind == 1) // unary 1286 return isVMerge(N, UnitSize, 8, 8); 1287 else if (ShuffleKind == 2) // swapped 1288 return isVMerge(N, UnitSize, 8, 24); 1289 else 1290 return false; 1291 } else { 1292 if (ShuffleKind == 1) // unary 1293 return isVMerge(N, UnitSize, 0, 0); 1294 else if (ShuffleKind == 0) // normal 1295 return isVMerge(N, UnitSize, 0, 16); 1296 else 1297 return false; 1298 } 1299 } 1300 1301 /** 1302 * \brief Common function used to match vmrgew and vmrgow shuffles 1303 * 1304 * The indexOffset determines whether to look for even or odd words in 1305 * the shuffle mask. This is based on the of the endianness of the target 1306 * machine. 1307 * - Little Endian: 1308 * - Use offset of 0 to check for odd elements 1309 * - Use offset of 4 to check for even elements 1310 * - Big Endian: 1311 * - Use offset of 0 to check for even elements 1312 * - Use offset of 4 to check for odd elements 1313 * A detailed description of the vector element ordering for little endian and 1314 * big endian can be found at 1315 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1316 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1317 * compiler differences mean to you 1318 * 1319 * The mask to the shuffle vector instruction specifies the indices of the 1320 * elements from the two input vectors to place in the result. The elements are 1321 * numbered in array-access order, starting with the first vector. These vectors 1322 * are always of type v16i8, thus each vector will contain 16 elements of size 1323 * 8. More info on the shuffle vector can be found in the 1324 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1325 * Language Reference. 1326 * 1327 * The RHSStartValue indicates whether the same input vectors are used (unary) 1328 * or two different input vectors are used, based on the following: 1329 * - If the instruction uses the same vector for both inputs, the range of the 1330 * indices will be 0 to 15. In this case, the RHSStart value passed should 1331 * be 0. 1332 * - If the instruction has two different vectors then the range of the 1333 * indices will be 0 to 31. In this case, the RHSStart value passed should 1334 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1335 * to 31 specify elements in the second vector). 1336 * 1337 * \param[in] N The shuffle vector SD Node to analyze 1338 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1339 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1340 * vector to the shuffle_vector instruction 1341 * \return true iff this shuffle vector represents an even or odd word merge 1342 */ 1343 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1344 unsigned RHSStartValue) { 1345 if (N->getValueType(0) != MVT::v16i8) 1346 return false; 1347 1348 for (unsigned i = 0; i < 2; ++i) 1349 for (unsigned j = 0; j < 4; ++j) 1350 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1351 i*RHSStartValue+j+IndexOffset) || 1352 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1353 i*RHSStartValue+j+IndexOffset+8)) 1354 return false; 1355 return true; 1356 } 1357 1358 /** 1359 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1360 * vmrgow instructions. 1361 * 1362 * \param[in] N The shuffle vector SD Node to analyze 1363 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1364 * \param[in] ShuffleKind Identify the type of merge: 1365 * - 0 = big-endian merge with two different inputs; 1366 * - 1 = either-endian merge with two identical inputs; 1367 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1368 * little-endian merges). 1369 * \param[in] DAG The current SelectionDAG 1370 * \return true iff this shuffle mask 1371 */ 1372 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1373 unsigned ShuffleKind, SelectionDAG &DAG) { 1374 if (DAG.getDataLayout().isLittleEndian()) { 1375 unsigned indexOffset = CheckEven ? 4 : 0; 1376 if (ShuffleKind == 1) // Unary 1377 return isVMerge(N, indexOffset, 0); 1378 else if (ShuffleKind == 2) // swapped 1379 return isVMerge(N, indexOffset, 16); 1380 else 1381 return false; 1382 } 1383 else { 1384 unsigned indexOffset = CheckEven ? 0 : 4; 1385 if (ShuffleKind == 1) // Unary 1386 return isVMerge(N, indexOffset, 0); 1387 else if (ShuffleKind == 0) // Normal 1388 return isVMerge(N, indexOffset, 16); 1389 else 1390 return false; 1391 } 1392 return false; 1393 } 1394 1395 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1396 /// amount, otherwise return -1. 1397 /// The ShuffleKind distinguishes between big-endian operations with two 1398 /// different inputs (0), either-endian operations with two identical inputs 1399 /// (1), and little-endian operations with two different inputs (2). For the 1400 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1401 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1402 SelectionDAG &DAG) { 1403 if (N->getValueType(0) != MVT::v16i8) 1404 return -1; 1405 1406 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1407 1408 // Find the first non-undef value in the shuffle mask. 1409 unsigned i; 1410 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1411 /*search*/; 1412 1413 if (i == 16) return -1; // all undef. 1414 1415 // Otherwise, check to see if the rest of the elements are consecutively 1416 // numbered from this value. 1417 unsigned ShiftAmt = SVOp->getMaskElt(i); 1418 if (ShiftAmt < i) return -1; 1419 1420 ShiftAmt -= i; 1421 bool isLE = DAG.getDataLayout().isLittleEndian(); 1422 1423 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1424 // Check the rest of the elements to see if they are consecutive. 1425 for (++i; i != 16; ++i) 1426 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1427 return -1; 1428 } else if (ShuffleKind == 1) { 1429 // Check the rest of the elements to see if they are consecutive. 1430 for (++i; i != 16; ++i) 1431 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1432 return -1; 1433 } else 1434 return -1; 1435 1436 if (isLE) 1437 ShiftAmt = 16 - ShiftAmt; 1438 1439 return ShiftAmt; 1440 } 1441 1442 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1443 /// specifies a splat of a single element that is suitable for input to 1444 /// VSPLTB/VSPLTH/VSPLTW. 1445 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1446 assert(N->getValueType(0) == MVT::v16i8 && 1447 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1448 1449 // The consecutive indices need to specify an element, not part of two 1450 // different elements. So abandon ship early if this isn't the case. 1451 if (N->getMaskElt(0) % EltSize != 0) 1452 return false; 1453 1454 // This is a splat operation if each element of the permute is the same, and 1455 // if the value doesn't reference the second vector. 1456 unsigned ElementBase = N->getMaskElt(0); 1457 1458 // FIXME: Handle UNDEF elements too! 1459 if (ElementBase >= 16) 1460 return false; 1461 1462 // Check that the indices are consecutive, in the case of a multi-byte element 1463 // splatted with a v16i8 mask. 1464 for (unsigned i = 1; i != EltSize; ++i) 1465 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1466 return false; 1467 1468 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1469 if (N->getMaskElt(i) < 0) continue; 1470 for (unsigned j = 0; j != EltSize; ++j) 1471 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1472 return false; 1473 } 1474 return true; 1475 } 1476 1477 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1478 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1479 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1480 SelectionDAG &DAG) { 1481 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1482 assert(isSplatShuffleMask(SVOp, EltSize)); 1483 if (DAG.getDataLayout().isLittleEndian()) 1484 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1485 else 1486 return SVOp->getMaskElt(0) / EltSize; 1487 } 1488 1489 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1490 /// by using a vspltis[bhw] instruction of the specified element size, return 1491 /// the constant being splatted. The ByteSize field indicates the number of 1492 /// bytes of each element [124] -> [bhw]. 1493 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1494 SDValue OpVal(nullptr, 0); 1495 1496 // If ByteSize of the splat is bigger than the element size of the 1497 // build_vector, then we have a case where we are checking for a splat where 1498 // multiple elements of the buildvector are folded together into a single 1499 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1500 unsigned EltSize = 16/N->getNumOperands(); 1501 if (EltSize < ByteSize) { 1502 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1503 SDValue UniquedVals[4]; 1504 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1505 1506 // See if all of the elements in the buildvector agree across. 1507 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1508 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1509 // If the element isn't a constant, bail fully out. 1510 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1511 1512 1513 if (!UniquedVals[i&(Multiple-1)].getNode()) 1514 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1515 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1516 return SDValue(); // no match. 1517 } 1518 1519 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1520 // either constant or undef values that are identical for each chunk. See 1521 // if these chunks can form into a larger vspltis*. 1522 1523 // Check to see if all of the leading entries are either 0 or -1. If 1524 // neither, then this won't fit into the immediate field. 1525 bool LeadingZero = true; 1526 bool LeadingOnes = true; 1527 for (unsigned i = 0; i != Multiple-1; ++i) { 1528 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1529 1530 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 1531 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 1532 } 1533 // Finally, check the least significant entry. 1534 if (LeadingZero) { 1535 if (!UniquedVals[Multiple-1].getNode()) 1536 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1537 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1538 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1539 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1540 } 1541 if (LeadingOnes) { 1542 if (!UniquedVals[Multiple-1].getNode()) 1543 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1544 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1545 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1546 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1547 } 1548 1549 return SDValue(); 1550 } 1551 1552 // Check to see if this buildvec has a single non-undef value in its elements. 1553 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1554 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1555 if (!OpVal.getNode()) 1556 OpVal = N->getOperand(i); 1557 else if (OpVal != N->getOperand(i)) 1558 return SDValue(); 1559 } 1560 1561 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1562 1563 unsigned ValSizeInBytes = EltSize; 1564 uint64_t Value = 0; 1565 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1566 Value = CN->getZExtValue(); 1567 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1568 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1569 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1570 } 1571 1572 // If the splat value is larger than the element value, then we can never do 1573 // this splat. The only case that we could fit the replicated bits into our 1574 // immediate field for would be zero, and we prefer to use vxor for it. 1575 if (ValSizeInBytes < ByteSize) return SDValue(); 1576 1577 // If the element value is larger than the splat value, check if it consists 1578 // of a repeated bit pattern of size ByteSize. 1579 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1580 return SDValue(); 1581 1582 // Properly sign extend the value. 1583 int MaskVal = SignExtend32(Value, ByteSize * 8); 1584 1585 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1586 if (MaskVal == 0) return SDValue(); 1587 1588 // Finally, if this value fits in a 5 bit sext field, return it 1589 if (SignExtend32<5>(MaskVal) == MaskVal) 1590 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1591 return SDValue(); 1592 } 1593 1594 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1595 /// amount, otherwise return -1. 1596 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1597 EVT VT = N->getValueType(0); 1598 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1599 return -1; 1600 1601 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1602 1603 // Find the first non-undef value in the shuffle mask. 1604 unsigned i; 1605 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1606 /*search*/; 1607 1608 if (i == 4) return -1; // all undef. 1609 1610 // Otherwise, check to see if the rest of the elements are consecutively 1611 // numbered from this value. 1612 unsigned ShiftAmt = SVOp->getMaskElt(i); 1613 if (ShiftAmt < i) return -1; 1614 ShiftAmt -= i; 1615 1616 // Check the rest of the elements to see if they are consecutive. 1617 for (++i; i != 4; ++i) 1618 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1619 return -1; 1620 1621 return ShiftAmt; 1622 } 1623 1624 //===----------------------------------------------------------------------===// 1625 // Addressing Mode Selection 1626 //===----------------------------------------------------------------------===// 1627 1628 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1629 /// or 64-bit immediate, and if the value can be accurately represented as a 1630 /// sign extension from a 16-bit value. If so, this returns true and the 1631 /// immediate. 1632 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1633 if (!isa<ConstantSDNode>(N)) 1634 return false; 1635 1636 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1637 if (N->getValueType(0) == MVT::i32) 1638 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1639 else 1640 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1641 } 1642 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1643 return isIntS16Immediate(Op.getNode(), Imm); 1644 } 1645 1646 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1647 /// can be represented as an indexed [r+r] operation. Returns false if it 1648 /// can be more efficiently represented with [r+imm]. 1649 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1650 SDValue &Index, 1651 SelectionDAG &DAG) const { 1652 short imm = 0; 1653 if (N.getOpcode() == ISD::ADD) { 1654 if (isIntS16Immediate(N.getOperand(1), imm)) 1655 return false; // r+i 1656 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1657 return false; // r+i 1658 1659 Base = N.getOperand(0); 1660 Index = N.getOperand(1); 1661 return true; 1662 } else if (N.getOpcode() == ISD::OR) { 1663 if (isIntS16Immediate(N.getOperand(1), imm)) 1664 return false; // r+i can fold it if we can. 1665 1666 // If this is an or of disjoint bitfields, we can codegen this as an add 1667 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1668 // disjoint. 1669 APInt LHSKnownZero, LHSKnownOne; 1670 APInt RHSKnownZero, RHSKnownOne; 1671 DAG.computeKnownBits(N.getOperand(0), 1672 LHSKnownZero, LHSKnownOne); 1673 1674 if (LHSKnownZero.getBoolValue()) { 1675 DAG.computeKnownBits(N.getOperand(1), 1676 RHSKnownZero, RHSKnownOne); 1677 // If all of the bits are known zero on the LHS or RHS, the add won't 1678 // carry. 1679 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1680 Base = N.getOperand(0); 1681 Index = N.getOperand(1); 1682 return true; 1683 } 1684 } 1685 } 1686 1687 return false; 1688 } 1689 1690 // If we happen to be doing an i64 load or store into a stack slot that has 1691 // less than a 4-byte alignment, then the frame-index elimination may need to 1692 // use an indexed load or store instruction (because the offset may not be a 1693 // multiple of 4). The extra register needed to hold the offset comes from the 1694 // register scavenger, and it is possible that the scavenger will need to use 1695 // an emergency spill slot. As a result, we need to make sure that a spill slot 1696 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1697 // stack slot. 1698 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1699 // FIXME: This does not handle the LWA case. 1700 if (VT != MVT::i64) 1701 return; 1702 1703 // NOTE: We'll exclude negative FIs here, which come from argument 1704 // lowering, because there are no known test cases triggering this problem 1705 // using packed structures (or similar). We can remove this exclusion if 1706 // we find such a test case. The reason why this is so test-case driven is 1707 // because this entire 'fixup' is only to prevent crashes (from the 1708 // register scavenger) on not-really-valid inputs. For example, if we have: 1709 // %a = alloca i1 1710 // %b = bitcast i1* %a to i64* 1711 // store i64* a, i64 b 1712 // then the store should really be marked as 'align 1', but is not. If it 1713 // were marked as 'align 1' then the indexed form would have been 1714 // instruction-selected initially, and the problem this 'fixup' is preventing 1715 // won't happen regardless. 1716 if (FrameIdx < 0) 1717 return; 1718 1719 MachineFunction &MF = DAG.getMachineFunction(); 1720 MachineFrameInfo *MFI = MF.getFrameInfo(); 1721 1722 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1723 if (Align >= 4) 1724 return; 1725 1726 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1727 FuncInfo->setHasNonRISpills(); 1728 } 1729 1730 /// Returns true if the address N can be represented by a base register plus 1731 /// a signed 16-bit displacement [r+imm], and if it is not better 1732 /// represented as reg+reg. If Aligned is true, only accept displacements 1733 /// suitable for STD and friends, i.e. multiples of 4. 1734 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1735 SDValue &Base, 1736 SelectionDAG &DAG, 1737 bool Aligned) const { 1738 // FIXME dl should come from parent load or store, not from address 1739 SDLoc dl(N); 1740 // If this can be more profitably realized as r+r, fail. 1741 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1742 return false; 1743 1744 if (N.getOpcode() == ISD::ADD) { 1745 short imm = 0; 1746 if (isIntS16Immediate(N.getOperand(1), imm) && 1747 (!Aligned || (imm & 3) == 0)) { 1748 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1749 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1750 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1751 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1752 } else { 1753 Base = N.getOperand(0); 1754 } 1755 return true; // [r+i] 1756 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1757 // Match LOAD (ADD (X, Lo(G))). 1758 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1759 && "Cannot handle constant offsets yet!"); 1760 Disp = N.getOperand(1).getOperand(0); // The global address. 1761 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1762 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1763 Disp.getOpcode() == ISD::TargetConstantPool || 1764 Disp.getOpcode() == ISD::TargetJumpTable); 1765 Base = N.getOperand(0); 1766 return true; // [&g+r] 1767 } 1768 } else if (N.getOpcode() == ISD::OR) { 1769 short imm = 0; 1770 if (isIntS16Immediate(N.getOperand(1), imm) && 1771 (!Aligned || (imm & 3) == 0)) { 1772 // If this is an or of disjoint bitfields, we can codegen this as an add 1773 // (for better address arithmetic) if the LHS and RHS of the OR are 1774 // provably disjoint. 1775 APInt LHSKnownZero, LHSKnownOne; 1776 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1777 1778 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1779 // If all of the bits are known zero on the LHS or RHS, the add won't 1780 // carry. 1781 if (FrameIndexSDNode *FI = 1782 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1783 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1784 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1785 } else { 1786 Base = N.getOperand(0); 1787 } 1788 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1789 return true; 1790 } 1791 } 1792 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1793 // Loading from a constant address. 1794 1795 // If this address fits entirely in a 16-bit sext immediate field, codegen 1796 // this as "d, 0" 1797 short Imm; 1798 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1799 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1800 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1801 CN->getValueType(0)); 1802 return true; 1803 } 1804 1805 // Handle 32-bit sext immediates with LIS + addr mode. 1806 if ((CN->getValueType(0) == MVT::i32 || 1807 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1808 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1809 int Addr = (int)CN->getZExtValue(); 1810 1811 // Otherwise, break this down into an LIS + disp. 1812 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1813 1814 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1815 MVT::i32); 1816 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1817 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1818 return true; 1819 } 1820 } 1821 1822 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1823 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1824 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1825 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1826 } else 1827 Base = N; 1828 return true; // [r+0] 1829 } 1830 1831 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1832 /// represented as an indexed [r+r] operation. 1833 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1834 SDValue &Index, 1835 SelectionDAG &DAG) const { 1836 // Check to see if we can easily represent this as an [r+r] address. This 1837 // will fail if it thinks that the address is more profitably represented as 1838 // reg+imm, e.g. where imm = 0. 1839 if (SelectAddressRegReg(N, Base, Index, DAG)) 1840 return true; 1841 1842 // If the operand is an addition, always emit this as [r+r], since this is 1843 // better (for code size, and execution, as the memop does the add for free) 1844 // than emitting an explicit add. 1845 if (N.getOpcode() == ISD::ADD) { 1846 Base = N.getOperand(0); 1847 Index = N.getOperand(1); 1848 return true; 1849 } 1850 1851 // Otherwise, do it the hard way, using R0 as the base register. 1852 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1853 N.getValueType()); 1854 Index = N; 1855 return true; 1856 } 1857 1858 /// getPreIndexedAddressParts - returns true by value, base pointer and 1859 /// offset pointer and addressing mode by reference if the node's address 1860 /// can be legally represented as pre-indexed load / store address. 1861 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1862 SDValue &Offset, 1863 ISD::MemIndexedMode &AM, 1864 SelectionDAG &DAG) const { 1865 if (DisablePPCPreinc) return false; 1866 1867 bool isLoad = true; 1868 SDValue Ptr; 1869 EVT VT; 1870 unsigned Alignment; 1871 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1872 Ptr = LD->getBasePtr(); 1873 VT = LD->getMemoryVT(); 1874 Alignment = LD->getAlignment(); 1875 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1876 Ptr = ST->getBasePtr(); 1877 VT = ST->getMemoryVT(); 1878 Alignment = ST->getAlignment(); 1879 isLoad = false; 1880 } else 1881 return false; 1882 1883 // PowerPC doesn't have preinc load/store instructions for vectors (except 1884 // for QPX, which does have preinc r+r forms). 1885 if (VT.isVector()) { 1886 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1887 return false; 1888 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1889 AM = ISD::PRE_INC; 1890 return true; 1891 } 1892 } 1893 1894 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1895 1896 // Common code will reject creating a pre-inc form if the base pointer 1897 // is a frame index, or if N is a store and the base pointer is either 1898 // the same as or a predecessor of the value being stored. Check for 1899 // those situations here, and try with swapped Base/Offset instead. 1900 bool Swap = false; 1901 1902 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1903 Swap = true; 1904 else if (!isLoad) { 1905 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1906 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1907 Swap = true; 1908 } 1909 1910 if (Swap) 1911 std::swap(Base, Offset); 1912 1913 AM = ISD::PRE_INC; 1914 return true; 1915 } 1916 1917 // LDU/STU can only handle immediates that are a multiple of 4. 1918 if (VT != MVT::i64) { 1919 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1920 return false; 1921 } else { 1922 // LDU/STU need an address with at least 4-byte alignment. 1923 if (Alignment < 4) 1924 return false; 1925 1926 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1927 return false; 1928 } 1929 1930 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1931 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1932 // sext i32 to i64 when addr mode is r+i. 1933 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1934 LD->getExtensionType() == ISD::SEXTLOAD && 1935 isa<ConstantSDNode>(Offset)) 1936 return false; 1937 } 1938 1939 AM = ISD::PRE_INC; 1940 return true; 1941 } 1942 1943 //===----------------------------------------------------------------------===// 1944 // LowerOperation implementation 1945 //===----------------------------------------------------------------------===// 1946 1947 /// GetLabelAccessInfo - Return true if we should reference labels using a 1948 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1949 static bool GetLabelAccessInfo(const TargetMachine &TM, 1950 const PPCSubtarget &Subtarget, 1951 unsigned &HiOpFlags, unsigned &LoOpFlags, 1952 const GlobalValue *GV = nullptr) { 1953 HiOpFlags = PPCII::MO_HA; 1954 LoOpFlags = PPCII::MO_LO; 1955 1956 // Don't use the pic base if not in PIC relocation model. 1957 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1958 1959 if (isPIC) { 1960 HiOpFlags |= PPCII::MO_PIC_FLAG; 1961 LoOpFlags |= PPCII::MO_PIC_FLAG; 1962 } 1963 1964 // If this is a reference to a global value that requires a non-lazy-ptr, make 1965 // sure that instruction lowering adds it. 1966 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1967 HiOpFlags |= PPCII::MO_NLP_FLAG; 1968 LoOpFlags |= PPCII::MO_NLP_FLAG; 1969 1970 if (GV->hasHiddenVisibility()) { 1971 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1972 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1973 } 1974 } 1975 1976 return isPIC; 1977 } 1978 1979 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1980 SelectionDAG &DAG) { 1981 SDLoc DL(HiPart); 1982 EVT PtrVT = HiPart.getValueType(); 1983 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1984 1985 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1986 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1987 1988 // With PIC, the first instruction is actually "GR+hi(&G)". 1989 if (isPIC) 1990 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1991 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1992 1993 // Generate non-pic code that has direct accesses to the constant pool. 1994 // The address of the global is just (hi(&g)+lo(&g)). 1995 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1996 } 1997 1998 static void setUsesTOCBasePtr(MachineFunction &MF) { 1999 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2000 FuncInfo->setUsesTOCBasePtr(); 2001 } 2002 2003 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2004 setUsesTOCBasePtr(DAG.getMachineFunction()); 2005 } 2006 2007 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2008 SDValue GA) { 2009 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2010 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2011 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2012 2013 SDValue Ops[] = { GA, Reg }; 2014 return DAG.getMemIntrinsicNode( 2015 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2016 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2017 false, 0); 2018 } 2019 2020 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 EVT PtrVT = Op.getValueType(); 2023 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2024 const Constant *C = CP->getConstVal(); 2025 2026 // 64-bit SVR4 ABI code is always position-independent. 2027 // The actual address of the GlobalValue is stored in the TOC. 2028 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2029 setUsesTOCBasePtr(DAG); 2030 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2031 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2032 } 2033 2034 unsigned MOHiFlag, MOLoFlag; 2035 bool isPIC = 2036 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2037 2038 if (isPIC && Subtarget.isSVR4ABI()) { 2039 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2040 PPCII::MO_PIC_FLAG); 2041 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2042 } 2043 2044 SDValue CPIHi = 2045 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2046 SDValue CPILo = 2047 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2048 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2049 } 2050 2051 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2052 EVT PtrVT = Op.getValueType(); 2053 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2054 2055 // 64-bit SVR4 ABI code is always position-independent. 2056 // The actual address of the GlobalValue is stored in the TOC. 2057 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2058 setUsesTOCBasePtr(DAG); 2059 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2060 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2061 } 2062 2063 unsigned MOHiFlag, MOLoFlag; 2064 bool isPIC = 2065 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2066 2067 if (isPIC && Subtarget.isSVR4ABI()) { 2068 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2069 PPCII::MO_PIC_FLAG); 2070 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2071 } 2072 2073 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2074 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2075 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2076 } 2077 2078 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2079 SelectionDAG &DAG) const { 2080 EVT PtrVT = Op.getValueType(); 2081 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2082 const BlockAddress *BA = BASDN->getBlockAddress(); 2083 2084 // 64-bit SVR4 ABI code is always position-independent. 2085 // The actual BlockAddress is stored in the TOC. 2086 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2087 setUsesTOCBasePtr(DAG); 2088 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2089 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2090 } 2091 2092 unsigned MOHiFlag, MOLoFlag; 2093 bool isPIC = 2094 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2095 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2096 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2097 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2098 } 2099 2100 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2101 SelectionDAG &DAG) const { 2102 2103 // FIXME: TLS addresses currently use medium model code sequences, 2104 // which is the most useful form. Eventually support for small and 2105 // large models could be added if users need it, at the cost of 2106 // additional complexity. 2107 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2108 if (DAG.getTarget().Options.EmulatedTLS) 2109 return LowerToTLSEmulatedModel(GA, DAG); 2110 2111 SDLoc dl(GA); 2112 const GlobalValue *GV = GA->getGlobal(); 2113 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2114 bool is64bit = Subtarget.isPPC64(); 2115 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2116 PICLevel::Level picLevel = M->getPICLevel(); 2117 2118 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2119 2120 if (Model == TLSModel::LocalExec) { 2121 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2122 PPCII::MO_TPREL_HA); 2123 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2124 PPCII::MO_TPREL_LO); 2125 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2126 is64bit ? MVT::i64 : MVT::i32); 2127 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2128 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2129 } 2130 2131 if (Model == TLSModel::InitialExec) { 2132 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2133 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2134 PPCII::MO_TLS); 2135 SDValue GOTPtr; 2136 if (is64bit) { 2137 setUsesTOCBasePtr(DAG); 2138 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2139 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2140 PtrVT, GOTReg, TGA); 2141 } else 2142 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2143 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2144 PtrVT, TGA, GOTPtr); 2145 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2146 } 2147 2148 if (Model == TLSModel::GeneralDynamic) { 2149 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2150 SDValue GOTPtr; 2151 if (is64bit) { 2152 setUsesTOCBasePtr(DAG); 2153 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2154 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2155 GOTReg, TGA); 2156 } else { 2157 if (picLevel == PICLevel::Small) 2158 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2159 else 2160 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2161 } 2162 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2163 GOTPtr, TGA, TGA); 2164 } 2165 2166 if (Model == TLSModel::LocalDynamic) { 2167 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2168 SDValue GOTPtr; 2169 if (is64bit) { 2170 setUsesTOCBasePtr(DAG); 2171 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2172 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2173 GOTReg, TGA); 2174 } else { 2175 if (picLevel == PICLevel::Small) 2176 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2177 else 2178 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2179 } 2180 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2181 PtrVT, GOTPtr, TGA, TGA); 2182 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2183 PtrVT, TLSAddr, TGA); 2184 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2185 } 2186 2187 llvm_unreachable("Unknown TLS model!"); 2188 } 2189 2190 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2191 SelectionDAG &DAG) const { 2192 EVT PtrVT = Op.getValueType(); 2193 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2194 SDLoc DL(GSDN); 2195 const GlobalValue *GV = GSDN->getGlobal(); 2196 2197 // 64-bit SVR4 ABI code is always position-independent. 2198 // The actual address of the GlobalValue is stored in the TOC. 2199 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2200 setUsesTOCBasePtr(DAG); 2201 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2202 return getTOCEntry(DAG, DL, true, GA); 2203 } 2204 2205 unsigned MOHiFlag, MOLoFlag; 2206 bool isPIC = 2207 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2208 2209 if (isPIC && Subtarget.isSVR4ABI()) { 2210 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2211 GSDN->getOffset(), 2212 PPCII::MO_PIC_FLAG); 2213 return getTOCEntry(DAG, DL, false, GA); 2214 } 2215 2216 SDValue GAHi = 2217 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2218 SDValue GALo = 2219 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2220 2221 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2222 2223 // If the global reference is actually to a non-lazy-pointer, we have to do an 2224 // extra load to get the address of the global. 2225 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2226 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2227 false, false, false, 0); 2228 return Ptr; 2229 } 2230 2231 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2232 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2233 SDLoc dl(Op); 2234 2235 if (Op.getValueType() == MVT::v2i64) { 2236 // When the operands themselves are v2i64 values, we need to do something 2237 // special because VSX has no underlying comparison operations for these. 2238 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2239 // Equality can be handled by casting to the legal type for Altivec 2240 // comparisons, everything else needs to be expanded. 2241 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2242 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2243 DAG.getSetCC(dl, MVT::v4i32, 2244 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2245 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2246 CC)); 2247 } 2248 2249 return SDValue(); 2250 } 2251 2252 // We handle most of these in the usual way. 2253 return Op; 2254 } 2255 2256 // If we're comparing for equality to zero, expose the fact that this is 2257 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2258 // fold the new nodes. 2259 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2260 if (C->isNullValue() && CC == ISD::SETEQ) { 2261 EVT VT = Op.getOperand(0).getValueType(); 2262 SDValue Zext = Op.getOperand(0); 2263 if (VT.bitsLT(MVT::i32)) { 2264 VT = MVT::i32; 2265 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2266 } 2267 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2268 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2269 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2270 DAG.getConstant(Log2b, dl, MVT::i32)); 2271 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2272 } 2273 // Leave comparisons against 0 and -1 alone for now, since they're usually 2274 // optimized. FIXME: revisit this when we can custom lower all setcc 2275 // optimizations. 2276 if (C->isAllOnesValue() || C->isNullValue()) 2277 return SDValue(); 2278 } 2279 2280 // If we have an integer seteq/setne, turn it into a compare against zero 2281 // by xor'ing the rhs with the lhs, which is faster than setting a 2282 // condition register, reading it back out, and masking the correct bit. The 2283 // normal approach here uses sub to do this instead of xor. Using xor exposes 2284 // the result to other bit-twiddling opportunities. 2285 EVT LHSVT = Op.getOperand(0).getValueType(); 2286 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2287 EVT VT = Op.getValueType(); 2288 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2289 Op.getOperand(1)); 2290 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2291 } 2292 return SDValue(); 2293 } 2294 2295 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2296 const PPCSubtarget &Subtarget) const { 2297 SDNode *Node = Op.getNode(); 2298 EVT VT = Node->getValueType(0); 2299 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2300 SDValue InChain = Node->getOperand(0); 2301 SDValue VAListPtr = Node->getOperand(1); 2302 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2303 SDLoc dl(Node); 2304 2305 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2306 2307 // gpr_index 2308 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2309 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2310 false, false, false, 0); 2311 InChain = GprIndex.getValue(1); 2312 2313 if (VT == MVT::i64) { 2314 // Check if GprIndex is even 2315 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2316 DAG.getConstant(1, dl, MVT::i32)); 2317 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2318 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2319 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2320 DAG.getConstant(1, dl, MVT::i32)); 2321 // Align GprIndex to be even if it isn't 2322 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2323 GprIndex); 2324 } 2325 2326 // fpr index is 1 byte after gpr 2327 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2328 DAG.getConstant(1, dl, MVT::i32)); 2329 2330 // fpr 2331 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2332 FprPtr, MachinePointerInfo(SV), MVT::i8, 2333 false, false, false, 0); 2334 InChain = FprIndex.getValue(1); 2335 2336 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2337 DAG.getConstant(8, dl, MVT::i32)); 2338 2339 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2340 DAG.getConstant(4, dl, MVT::i32)); 2341 2342 // areas 2343 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2344 MachinePointerInfo(), false, false, 2345 false, 0); 2346 InChain = OverflowArea.getValue(1); 2347 2348 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2349 MachinePointerInfo(), false, false, 2350 false, 0); 2351 InChain = RegSaveArea.getValue(1); 2352 2353 // select overflow_area if index > 8 2354 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2355 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2356 2357 // adjustment constant gpr_index * 4/8 2358 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2359 VT.isInteger() ? GprIndex : FprIndex, 2360 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2361 MVT::i32)); 2362 2363 // OurReg = RegSaveArea + RegConstant 2364 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2365 RegConstant); 2366 2367 // Floating types are 32 bytes into RegSaveArea 2368 if (VT.isFloatingPoint()) 2369 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2370 DAG.getConstant(32, dl, MVT::i32)); 2371 2372 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2373 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2374 VT.isInteger() ? GprIndex : FprIndex, 2375 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2376 MVT::i32)); 2377 2378 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2379 VT.isInteger() ? VAListPtr : FprPtr, 2380 MachinePointerInfo(SV), 2381 MVT::i8, false, false, 0); 2382 2383 // determine if we should load from reg_save_area or overflow_area 2384 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2385 2386 // increase overflow_area by 4/8 if gpr/fpr > 8 2387 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2388 DAG.getConstant(VT.isInteger() ? 4 : 8, 2389 dl, MVT::i32)); 2390 2391 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2392 OverflowAreaPlusN); 2393 2394 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2395 OverflowAreaPtr, 2396 MachinePointerInfo(), 2397 MVT::i32, false, false, 0); 2398 2399 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2400 false, false, false, 0); 2401 } 2402 2403 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2404 const PPCSubtarget &Subtarget) const { 2405 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2406 2407 // We have to copy the entire va_list struct: 2408 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2409 return DAG.getMemcpy(Op.getOperand(0), Op, 2410 Op.getOperand(1), Op.getOperand(2), 2411 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2412 false, MachinePointerInfo(), MachinePointerInfo()); 2413 } 2414 2415 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2416 SelectionDAG &DAG) const { 2417 return Op.getOperand(0); 2418 } 2419 2420 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2421 SelectionDAG &DAG) const { 2422 SDValue Chain = Op.getOperand(0); 2423 SDValue Trmp = Op.getOperand(1); // trampoline 2424 SDValue FPtr = Op.getOperand(2); // nested function 2425 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2426 SDLoc dl(Op); 2427 2428 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2429 bool isPPC64 = (PtrVT == MVT::i64); 2430 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2431 2432 TargetLowering::ArgListTy Args; 2433 TargetLowering::ArgListEntry Entry; 2434 2435 Entry.Ty = IntPtrTy; 2436 Entry.Node = Trmp; Args.push_back(Entry); 2437 2438 // TrampSize == (isPPC64 ? 48 : 40); 2439 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2440 isPPC64 ? MVT::i64 : MVT::i32); 2441 Args.push_back(Entry); 2442 2443 Entry.Node = FPtr; Args.push_back(Entry); 2444 Entry.Node = Nest; Args.push_back(Entry); 2445 2446 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2447 TargetLowering::CallLoweringInfo CLI(DAG); 2448 CLI.setDebugLoc(dl).setChain(Chain) 2449 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2450 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2451 std::move(Args), 0); 2452 2453 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2454 return CallResult.second; 2455 } 2456 2457 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2458 const PPCSubtarget &Subtarget) const { 2459 MachineFunction &MF = DAG.getMachineFunction(); 2460 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2461 2462 SDLoc dl(Op); 2463 2464 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2465 // vastart just stores the address of the VarArgsFrameIndex slot into the 2466 // memory location argument. 2467 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2468 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2469 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2470 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2471 MachinePointerInfo(SV), 2472 false, false, 0); 2473 } 2474 2475 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2476 // We suppose the given va_list is already allocated. 2477 // 2478 // typedef struct { 2479 // char gpr; /* index into the array of 8 GPRs 2480 // * stored in the register save area 2481 // * gpr=0 corresponds to r3, 2482 // * gpr=1 to r4, etc. 2483 // */ 2484 // char fpr; /* index into the array of 8 FPRs 2485 // * stored in the register save area 2486 // * fpr=0 corresponds to f1, 2487 // * fpr=1 to f2, etc. 2488 // */ 2489 // char *overflow_arg_area; 2490 // /* location on stack that holds 2491 // * the next overflow argument 2492 // */ 2493 // char *reg_save_area; 2494 // /* where r3:r10 and f1:f8 (if saved) 2495 // * are stored 2496 // */ 2497 // } va_list[1]; 2498 2499 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2500 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2501 2502 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2503 2504 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2505 PtrVT); 2506 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2507 PtrVT); 2508 2509 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2510 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2511 2512 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2513 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2514 2515 uint64_t FPROffset = 1; 2516 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2517 2518 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2519 2520 // Store first byte : number of int regs 2521 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2522 Op.getOperand(1), 2523 MachinePointerInfo(SV), 2524 MVT::i8, false, false, 0); 2525 uint64_t nextOffset = FPROffset; 2526 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2527 ConstFPROffset); 2528 2529 // Store second byte : number of float regs 2530 SDValue secondStore = 2531 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2532 MachinePointerInfo(SV, nextOffset), MVT::i8, 2533 false, false, 0); 2534 nextOffset += StackOffset; 2535 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2536 2537 // Store second word : arguments given on stack 2538 SDValue thirdStore = 2539 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2540 MachinePointerInfo(SV, nextOffset), 2541 false, false, 0); 2542 nextOffset += FrameOffset; 2543 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2544 2545 // Store third word : arguments given in registers 2546 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2547 MachinePointerInfo(SV, nextOffset), 2548 false, false, 0); 2549 2550 } 2551 2552 #include "PPCGenCallingConv.inc" 2553 2554 // Function whose sole purpose is to kill compiler warnings 2555 // stemming from unused functions included from PPCGenCallingConv.inc. 2556 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2557 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2558 } 2559 2560 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2561 CCValAssign::LocInfo &LocInfo, 2562 ISD::ArgFlagsTy &ArgFlags, 2563 CCState &State) { 2564 return true; 2565 } 2566 2567 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2568 MVT &LocVT, 2569 CCValAssign::LocInfo &LocInfo, 2570 ISD::ArgFlagsTy &ArgFlags, 2571 CCState &State) { 2572 static const MCPhysReg ArgRegs[] = { 2573 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2574 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2575 }; 2576 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2577 2578 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2579 2580 // Skip one register if the first unallocated register has an even register 2581 // number and there are still argument registers available which have not been 2582 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2583 // need to skip a register if RegNum is odd. 2584 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2585 State.AllocateReg(ArgRegs[RegNum]); 2586 } 2587 2588 // Always return false here, as this function only makes sure that the first 2589 // unallocated register has an odd register number and does not actually 2590 // allocate a register for the current argument. 2591 return false; 2592 } 2593 2594 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2595 MVT &LocVT, 2596 CCValAssign::LocInfo &LocInfo, 2597 ISD::ArgFlagsTy &ArgFlags, 2598 CCState &State) { 2599 static const MCPhysReg ArgRegs[] = { 2600 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2601 PPC::F8 2602 }; 2603 2604 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2605 2606 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2607 2608 // If there is only one Floating-point register left we need to put both f64 2609 // values of a split ppc_fp128 value on the stack. 2610 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2611 State.AllocateReg(ArgRegs[RegNum]); 2612 } 2613 2614 // Always return false here, as this function only makes sure that the two f64 2615 // values a ppc_fp128 value is split into are both passed in registers or both 2616 // passed on the stack and does not actually allocate a register for the 2617 // current argument. 2618 return false; 2619 } 2620 2621 /// FPR - The set of FP registers that should be allocated for arguments, 2622 /// on Darwin. 2623 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2624 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2625 PPC::F11, PPC::F12, PPC::F13}; 2626 2627 /// QFPR - The set of QPX registers that should be allocated for arguments. 2628 static const MCPhysReg QFPR[] = { 2629 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2630 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2631 2632 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2633 /// the stack. 2634 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2635 unsigned PtrByteSize) { 2636 unsigned ArgSize = ArgVT.getStoreSize(); 2637 if (Flags.isByVal()) 2638 ArgSize = Flags.getByValSize(); 2639 2640 // Round up to multiples of the pointer size, except for array members, 2641 // which are always packed. 2642 if (!Flags.isInConsecutiveRegs()) 2643 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2644 2645 return ArgSize; 2646 } 2647 2648 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2649 /// on the stack. 2650 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2651 ISD::ArgFlagsTy Flags, 2652 unsigned PtrByteSize) { 2653 unsigned Align = PtrByteSize; 2654 2655 // Altivec parameters are padded to a 16 byte boundary. 2656 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2657 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2658 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2659 ArgVT == MVT::v1i128) 2660 Align = 16; 2661 // QPX vector types stored in double-precision are padded to a 32 byte 2662 // boundary. 2663 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2664 Align = 32; 2665 2666 // ByVal parameters are aligned as requested. 2667 if (Flags.isByVal()) { 2668 unsigned BVAlign = Flags.getByValAlign(); 2669 if (BVAlign > PtrByteSize) { 2670 if (BVAlign % PtrByteSize != 0) 2671 llvm_unreachable( 2672 "ByVal alignment is not a multiple of the pointer size"); 2673 2674 Align = BVAlign; 2675 } 2676 } 2677 2678 // Array members are always packed to their original alignment. 2679 if (Flags.isInConsecutiveRegs()) { 2680 // If the array member was split into multiple registers, the first 2681 // needs to be aligned to the size of the full type. (Except for 2682 // ppcf128, which is only aligned as its f64 components.) 2683 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2684 Align = OrigVT.getStoreSize(); 2685 else 2686 Align = ArgVT.getStoreSize(); 2687 } 2688 2689 return Align; 2690 } 2691 2692 /// CalculateStackSlotUsed - Return whether this argument will use its 2693 /// stack slot (instead of being passed in registers). ArgOffset, 2694 /// AvailableFPRs, and AvailableVRs must hold the current argument 2695 /// position, and will be updated to account for this argument. 2696 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2697 ISD::ArgFlagsTy Flags, 2698 unsigned PtrByteSize, 2699 unsigned LinkageSize, 2700 unsigned ParamAreaSize, 2701 unsigned &ArgOffset, 2702 unsigned &AvailableFPRs, 2703 unsigned &AvailableVRs, bool HasQPX) { 2704 bool UseMemory = false; 2705 2706 // Respect alignment of argument on the stack. 2707 unsigned Align = 2708 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2709 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2710 // If there's no space left in the argument save area, we must 2711 // use memory (this check also catches zero-sized arguments). 2712 if (ArgOffset >= LinkageSize + ParamAreaSize) 2713 UseMemory = true; 2714 2715 // Allocate argument on the stack. 2716 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2717 if (Flags.isInConsecutiveRegsLast()) 2718 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2719 // If we overran the argument save area, we must use memory 2720 // (this check catches arguments passed partially in memory) 2721 if (ArgOffset > LinkageSize + ParamAreaSize) 2722 UseMemory = true; 2723 2724 // However, if the argument is actually passed in an FPR or a VR, 2725 // we don't use memory after all. 2726 if (!Flags.isByVal()) { 2727 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2728 // QPX registers overlap with the scalar FP registers. 2729 (HasQPX && (ArgVT == MVT::v4f32 || 2730 ArgVT == MVT::v4f64 || 2731 ArgVT == MVT::v4i1))) 2732 if (AvailableFPRs > 0) { 2733 --AvailableFPRs; 2734 return false; 2735 } 2736 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2737 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2738 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2739 ArgVT == MVT::v1i128) 2740 if (AvailableVRs > 0) { 2741 --AvailableVRs; 2742 return false; 2743 } 2744 } 2745 2746 return UseMemory; 2747 } 2748 2749 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2750 /// ensure minimum alignment required for target. 2751 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2752 unsigned NumBytes) { 2753 unsigned TargetAlign = Lowering->getStackAlignment(); 2754 unsigned AlignMask = TargetAlign - 1; 2755 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2756 return NumBytes; 2757 } 2758 2759 SDValue 2760 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2761 CallingConv::ID CallConv, bool isVarArg, 2762 const SmallVectorImpl<ISD::InputArg> 2763 &Ins, 2764 SDLoc dl, SelectionDAG &DAG, 2765 SmallVectorImpl<SDValue> &InVals) 2766 const { 2767 if (Subtarget.isSVR4ABI()) { 2768 if (Subtarget.isPPC64()) 2769 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2770 dl, DAG, InVals); 2771 else 2772 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2773 dl, DAG, InVals); 2774 } else { 2775 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2776 dl, DAG, InVals); 2777 } 2778 } 2779 2780 SDValue 2781 PPCTargetLowering::LowerFormalArguments_32SVR4( 2782 SDValue Chain, 2783 CallingConv::ID CallConv, bool isVarArg, 2784 const SmallVectorImpl<ISD::InputArg> 2785 &Ins, 2786 SDLoc dl, SelectionDAG &DAG, 2787 SmallVectorImpl<SDValue> &InVals) const { 2788 2789 // 32-bit SVR4 ABI Stack Frame Layout: 2790 // +-----------------------------------+ 2791 // +--> | Back chain | 2792 // | +-----------------------------------+ 2793 // | | Floating-point register save area | 2794 // | +-----------------------------------+ 2795 // | | General register save area | 2796 // | +-----------------------------------+ 2797 // | | CR save word | 2798 // | +-----------------------------------+ 2799 // | | VRSAVE save word | 2800 // | +-----------------------------------+ 2801 // | | Alignment padding | 2802 // | +-----------------------------------+ 2803 // | | Vector register save area | 2804 // | +-----------------------------------+ 2805 // | | Local variable space | 2806 // | +-----------------------------------+ 2807 // | | Parameter list area | 2808 // | +-----------------------------------+ 2809 // | | LR save word | 2810 // | +-----------------------------------+ 2811 // SP--> +--- | Back chain | 2812 // +-----------------------------------+ 2813 // 2814 // Specifications: 2815 // System V Application Binary Interface PowerPC Processor Supplement 2816 // AltiVec Technology Programming Interface Manual 2817 2818 MachineFunction &MF = DAG.getMachineFunction(); 2819 MachineFrameInfo *MFI = MF.getFrameInfo(); 2820 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2821 2822 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2823 // Potential tail calls could cause overwriting of argument stack slots. 2824 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2825 (CallConv == CallingConv::Fast)); 2826 unsigned PtrByteSize = 4; 2827 2828 // Assign locations to all of the incoming arguments. 2829 SmallVector<CCValAssign, 16> ArgLocs; 2830 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2831 *DAG.getContext()); 2832 2833 // Reserve space for the linkage area on the stack. 2834 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2835 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2836 2837 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2838 2839 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2840 CCValAssign &VA = ArgLocs[i]; 2841 2842 // Arguments stored in registers. 2843 if (VA.isRegLoc()) { 2844 const TargetRegisterClass *RC; 2845 EVT ValVT = VA.getValVT(); 2846 2847 switch (ValVT.getSimpleVT().SimpleTy) { 2848 default: 2849 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2850 case MVT::i1: 2851 case MVT::i32: 2852 RC = &PPC::GPRCRegClass; 2853 break; 2854 case MVT::f32: 2855 if (Subtarget.hasP8Vector()) 2856 RC = &PPC::VSSRCRegClass; 2857 else 2858 RC = &PPC::F4RCRegClass; 2859 break; 2860 case MVT::f64: 2861 if (Subtarget.hasVSX()) 2862 RC = &PPC::VSFRCRegClass; 2863 else 2864 RC = &PPC::F8RCRegClass; 2865 break; 2866 case MVT::v16i8: 2867 case MVT::v8i16: 2868 case MVT::v4i32: 2869 RC = &PPC::VRRCRegClass; 2870 break; 2871 case MVT::v4f32: 2872 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2873 break; 2874 case MVT::v2f64: 2875 case MVT::v2i64: 2876 RC = &PPC::VSHRCRegClass; 2877 break; 2878 case MVT::v4f64: 2879 RC = &PPC::QFRCRegClass; 2880 break; 2881 case MVT::v4i1: 2882 RC = &PPC::QBRCRegClass; 2883 break; 2884 } 2885 2886 // Transform the arguments stored in physical registers into virtual ones. 2887 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2888 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2889 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2890 2891 if (ValVT == MVT::i1) 2892 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2893 2894 InVals.push_back(ArgValue); 2895 } else { 2896 // Argument stored in memory. 2897 assert(VA.isMemLoc()); 2898 2899 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2900 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2901 isImmutable); 2902 2903 // Create load nodes to retrieve arguments from the stack. 2904 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2905 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2906 MachinePointerInfo(), 2907 false, false, false, 0)); 2908 } 2909 } 2910 2911 // Assign locations to all of the incoming aggregate by value arguments. 2912 // Aggregates passed by value are stored in the local variable space of the 2913 // caller's stack frame, right above the parameter list area. 2914 SmallVector<CCValAssign, 16> ByValArgLocs; 2915 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2916 ByValArgLocs, *DAG.getContext()); 2917 2918 // Reserve stack space for the allocations in CCInfo. 2919 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2920 2921 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2922 2923 // Area that is at least reserved in the caller of this function. 2924 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2925 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2926 2927 // Set the size that is at least reserved in caller of this function. Tail 2928 // call optimized function's reserved stack space needs to be aligned so that 2929 // taking the difference between two stack areas will result in an aligned 2930 // stack. 2931 MinReservedArea = 2932 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2933 FuncInfo->setMinReservedArea(MinReservedArea); 2934 2935 SmallVector<SDValue, 8> MemOps; 2936 2937 // If the function takes variable number of arguments, make a frame index for 2938 // the start of the first vararg value... for expansion of llvm.va_start. 2939 if (isVarArg) { 2940 static const MCPhysReg GPArgRegs[] = { 2941 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2942 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2943 }; 2944 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2945 2946 static const MCPhysReg FPArgRegs[] = { 2947 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2948 PPC::F8 2949 }; 2950 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2951 if (DisablePPCFloatInVariadic) 2952 NumFPArgRegs = 0; 2953 2954 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2955 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2956 2957 // Make room for NumGPArgRegs and NumFPArgRegs. 2958 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2959 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2960 2961 FuncInfo->setVarArgsStackOffset( 2962 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2963 CCInfo.getNextStackOffset(), true)); 2964 2965 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2966 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2967 2968 // The fixed integer arguments of a variadic function are stored to the 2969 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2970 // the result of va_next. 2971 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2972 // Get an existing live-in vreg, or add a new one. 2973 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2974 if (!VReg) 2975 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2976 2977 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2978 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2979 MachinePointerInfo(), false, false, 0); 2980 MemOps.push_back(Store); 2981 // Increment the address by four for the next argument to store 2982 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2983 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2984 } 2985 2986 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2987 // is set. 2988 // The double arguments are stored to the VarArgsFrameIndex 2989 // on the stack. 2990 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 2991 // Get an existing live-in vreg, or add a new one. 2992 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 2993 if (!VReg) 2994 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 2995 2996 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 2997 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2998 MachinePointerInfo(), false, false, 0); 2999 MemOps.push_back(Store); 3000 // Increment the address by eight for the next argument to store 3001 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3002 PtrVT); 3003 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3004 } 3005 } 3006 3007 if (!MemOps.empty()) 3008 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3009 3010 return Chain; 3011 } 3012 3013 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3014 // value to MVT::i64 and then truncate to the correct register size. 3015 SDValue 3016 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3017 SelectionDAG &DAG, SDValue ArgVal, 3018 SDLoc dl) const { 3019 if (Flags.isSExt()) 3020 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3021 DAG.getValueType(ObjectVT)); 3022 else if (Flags.isZExt()) 3023 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3024 DAG.getValueType(ObjectVT)); 3025 3026 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3027 } 3028 3029 SDValue 3030 PPCTargetLowering::LowerFormalArguments_64SVR4( 3031 SDValue Chain, 3032 CallingConv::ID CallConv, bool isVarArg, 3033 const SmallVectorImpl<ISD::InputArg> 3034 &Ins, 3035 SDLoc dl, SelectionDAG &DAG, 3036 SmallVectorImpl<SDValue> &InVals) const { 3037 // TODO: add description of PPC stack frame format, or at least some docs. 3038 // 3039 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3040 bool isLittleEndian = Subtarget.isLittleEndian(); 3041 MachineFunction &MF = DAG.getMachineFunction(); 3042 MachineFrameInfo *MFI = MF.getFrameInfo(); 3043 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3044 3045 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3046 "fastcc not supported on varargs functions"); 3047 3048 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3049 // Potential tail calls could cause overwriting of argument stack slots. 3050 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3051 (CallConv == CallingConv::Fast)); 3052 unsigned PtrByteSize = 8; 3053 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3054 3055 static const MCPhysReg GPR[] = { 3056 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3057 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3058 }; 3059 static const MCPhysReg VR[] = { 3060 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3061 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3062 }; 3063 static const MCPhysReg VSRH[] = { 3064 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3065 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3066 }; 3067 3068 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3069 const unsigned Num_FPR_Regs = 13; 3070 const unsigned Num_VR_Regs = array_lengthof(VR); 3071 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3072 3073 // Do a first pass over the arguments to determine whether the ABI 3074 // guarantees that our caller has allocated the parameter save area 3075 // on its stack frame. In the ELFv1 ABI, this is always the case; 3076 // in the ELFv2 ABI, it is true if this is a vararg function or if 3077 // any parameter is located in a stack slot. 3078 3079 bool HasParameterArea = !isELFv2ABI || isVarArg; 3080 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3081 unsigned NumBytes = LinkageSize; 3082 unsigned AvailableFPRs = Num_FPR_Regs; 3083 unsigned AvailableVRs = Num_VR_Regs; 3084 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3085 if (Ins[i].Flags.isNest()) 3086 continue; 3087 3088 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3089 PtrByteSize, LinkageSize, ParamAreaSize, 3090 NumBytes, AvailableFPRs, AvailableVRs, 3091 Subtarget.hasQPX())) 3092 HasParameterArea = true; 3093 } 3094 3095 // Add DAG nodes to load the arguments or copy them out of registers. On 3096 // entry to a function on PPC, the arguments start after the linkage area, 3097 // although the first ones are often in registers. 3098 3099 unsigned ArgOffset = LinkageSize; 3100 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3101 unsigned &QFPR_idx = FPR_idx; 3102 SmallVector<SDValue, 8> MemOps; 3103 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3104 unsigned CurArgIdx = 0; 3105 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3106 SDValue ArgVal; 3107 bool needsLoad = false; 3108 EVT ObjectVT = Ins[ArgNo].VT; 3109 EVT OrigVT = Ins[ArgNo].ArgVT; 3110 unsigned ObjSize = ObjectVT.getStoreSize(); 3111 unsigned ArgSize = ObjSize; 3112 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3113 if (Ins[ArgNo].isOrigArg()) { 3114 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3115 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3116 } 3117 // We re-align the argument offset for each argument, except when using the 3118 // fast calling convention, when we need to make sure we do that only when 3119 // we'll actually use a stack slot. 3120 unsigned CurArgOffset, Align; 3121 auto ComputeArgOffset = [&]() { 3122 /* Respect alignment of argument on the stack. */ 3123 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3124 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3125 CurArgOffset = ArgOffset; 3126 }; 3127 3128 if (CallConv != CallingConv::Fast) { 3129 ComputeArgOffset(); 3130 3131 /* Compute GPR index associated with argument offset. */ 3132 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3133 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3134 } 3135 3136 // FIXME the codegen can be much improved in some cases. 3137 // We do not have to keep everything in memory. 3138 if (Flags.isByVal()) { 3139 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3140 3141 if (CallConv == CallingConv::Fast) 3142 ComputeArgOffset(); 3143 3144 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3145 ObjSize = Flags.getByValSize(); 3146 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3147 // Empty aggregate parameters do not take up registers. Examples: 3148 // struct { } a; 3149 // union { } b; 3150 // int c[0]; 3151 // etc. However, we have to provide a place-holder in InVals, so 3152 // pretend we have an 8-byte item at the current address for that 3153 // purpose. 3154 if (!ObjSize) { 3155 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3156 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3157 InVals.push_back(FIN); 3158 continue; 3159 } 3160 3161 // Create a stack object covering all stack doublewords occupied 3162 // by the argument. If the argument is (fully or partially) on 3163 // the stack, or if the argument is fully in registers but the 3164 // caller has allocated the parameter save anyway, we can refer 3165 // directly to the caller's stack frame. Otherwise, create a 3166 // local copy in our own frame. 3167 int FI; 3168 if (HasParameterArea || 3169 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3170 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3171 else 3172 FI = MFI->CreateStackObject(ArgSize, Align, false); 3173 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3174 3175 // Handle aggregates smaller than 8 bytes. 3176 if (ObjSize < PtrByteSize) { 3177 // The value of the object is its address, which differs from the 3178 // address of the enclosing doubleword on big-endian systems. 3179 SDValue Arg = FIN; 3180 if (!isLittleEndian) { 3181 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3182 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3183 } 3184 InVals.push_back(Arg); 3185 3186 if (GPR_idx != Num_GPR_Regs) { 3187 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3188 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3189 SDValue Store; 3190 3191 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3192 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3193 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3194 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3195 MachinePointerInfo(&*FuncArg), ObjType, 3196 false, false, 0); 3197 } else { 3198 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3199 // store the whole register as-is to the parameter save area 3200 // slot. 3201 Store = 3202 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3203 MachinePointerInfo(&*FuncArg), false, false, 0); 3204 } 3205 3206 MemOps.push_back(Store); 3207 } 3208 // Whether we copied from a register or not, advance the offset 3209 // into the parameter save area by a full doubleword. 3210 ArgOffset += PtrByteSize; 3211 continue; 3212 } 3213 3214 // The value of the object is its address, which is the address of 3215 // its first stack doubleword. 3216 InVals.push_back(FIN); 3217 3218 // Store whatever pieces of the object are in registers to memory. 3219 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3220 if (GPR_idx == Num_GPR_Regs) 3221 break; 3222 3223 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3224 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3225 SDValue Addr = FIN; 3226 if (j) { 3227 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3228 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3229 } 3230 SDValue Store = 3231 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3232 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3233 MemOps.push_back(Store); 3234 ++GPR_idx; 3235 } 3236 ArgOffset += ArgSize; 3237 continue; 3238 } 3239 3240 switch (ObjectVT.getSimpleVT().SimpleTy) { 3241 default: llvm_unreachable("Unhandled argument type!"); 3242 case MVT::i1: 3243 case MVT::i32: 3244 case MVT::i64: 3245 if (Flags.isNest()) { 3246 // The 'nest' parameter, if any, is passed in R11. 3247 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3248 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3249 3250 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3251 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3252 3253 break; 3254 } 3255 3256 // These can be scalar arguments or elements of an integer array type 3257 // passed directly. Clang may use those instead of "byval" aggregate 3258 // types to avoid forcing arguments to memory unnecessarily. 3259 if (GPR_idx != Num_GPR_Regs) { 3260 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3261 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3262 3263 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3264 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3265 // value to MVT::i64 and then truncate to the correct register size. 3266 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3267 } else { 3268 if (CallConv == CallingConv::Fast) 3269 ComputeArgOffset(); 3270 3271 needsLoad = true; 3272 ArgSize = PtrByteSize; 3273 } 3274 if (CallConv != CallingConv::Fast || needsLoad) 3275 ArgOffset += 8; 3276 break; 3277 3278 case MVT::f32: 3279 case MVT::f64: 3280 // These can be scalar arguments or elements of a float array type 3281 // passed directly. The latter are used to implement ELFv2 homogenous 3282 // float aggregates. 3283 if (FPR_idx != Num_FPR_Regs) { 3284 unsigned VReg; 3285 3286 if (ObjectVT == MVT::f32) 3287 VReg = MF.addLiveIn(FPR[FPR_idx], 3288 Subtarget.hasP8Vector() 3289 ? &PPC::VSSRCRegClass 3290 : &PPC::F4RCRegClass); 3291 else 3292 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3293 ? &PPC::VSFRCRegClass 3294 : &PPC::F8RCRegClass); 3295 3296 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3297 ++FPR_idx; 3298 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3299 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3300 // once we support fp <-> gpr moves. 3301 3302 // This can only ever happen in the presence of f32 array types, 3303 // since otherwise we never run out of FPRs before running out 3304 // of GPRs. 3305 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3306 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3307 3308 if (ObjectVT == MVT::f32) { 3309 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3310 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3311 DAG.getConstant(32, dl, MVT::i32)); 3312 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3313 } 3314 3315 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3316 } else { 3317 if (CallConv == CallingConv::Fast) 3318 ComputeArgOffset(); 3319 3320 needsLoad = true; 3321 } 3322 3323 // When passing an array of floats, the array occupies consecutive 3324 // space in the argument area; only round up to the next doubleword 3325 // at the end of the array. Otherwise, each float takes 8 bytes. 3326 if (CallConv != CallingConv::Fast || needsLoad) { 3327 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3328 ArgOffset += ArgSize; 3329 if (Flags.isInConsecutiveRegsLast()) 3330 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3331 } 3332 break; 3333 case MVT::v4f32: 3334 case MVT::v4i32: 3335 case MVT::v8i16: 3336 case MVT::v16i8: 3337 case MVT::v2f64: 3338 case MVT::v2i64: 3339 case MVT::v1i128: 3340 if (!Subtarget.hasQPX()) { 3341 // These can be scalar arguments or elements of a vector array type 3342 // passed directly. The latter are used to implement ELFv2 homogenous 3343 // vector aggregates. 3344 if (VR_idx != Num_VR_Regs) { 3345 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3346 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3347 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3348 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3349 ++VR_idx; 3350 } else { 3351 if (CallConv == CallingConv::Fast) 3352 ComputeArgOffset(); 3353 3354 needsLoad = true; 3355 } 3356 if (CallConv != CallingConv::Fast || needsLoad) 3357 ArgOffset += 16; 3358 break; 3359 } // not QPX 3360 3361 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3362 "Invalid QPX parameter type"); 3363 /* fall through */ 3364 3365 case MVT::v4f64: 3366 case MVT::v4i1: 3367 // QPX vectors are treated like their scalar floating-point subregisters 3368 // (except that they're larger). 3369 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3370 if (QFPR_idx != Num_QFPR_Regs) { 3371 const TargetRegisterClass *RC; 3372 switch (ObjectVT.getSimpleVT().SimpleTy) { 3373 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3374 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3375 default: RC = &PPC::QBRCRegClass; break; 3376 } 3377 3378 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3379 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3380 ++QFPR_idx; 3381 } else { 3382 if (CallConv == CallingConv::Fast) 3383 ComputeArgOffset(); 3384 needsLoad = true; 3385 } 3386 if (CallConv != CallingConv::Fast || needsLoad) 3387 ArgOffset += Sz; 3388 break; 3389 } 3390 3391 // We need to load the argument to a virtual register if we determined 3392 // above that we ran out of physical registers of the appropriate type. 3393 if (needsLoad) { 3394 if (ObjSize < ArgSize && !isLittleEndian) 3395 CurArgOffset += ArgSize - ObjSize; 3396 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3397 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3398 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3399 false, false, false, 0); 3400 } 3401 3402 InVals.push_back(ArgVal); 3403 } 3404 3405 // Area that is at least reserved in the caller of this function. 3406 unsigned MinReservedArea; 3407 if (HasParameterArea) 3408 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3409 else 3410 MinReservedArea = LinkageSize; 3411 3412 // Set the size that is at least reserved in caller of this function. Tail 3413 // call optimized functions' reserved stack space needs to be aligned so that 3414 // taking the difference between two stack areas will result in an aligned 3415 // stack. 3416 MinReservedArea = 3417 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3418 FuncInfo->setMinReservedArea(MinReservedArea); 3419 3420 // If the function takes variable number of arguments, make a frame index for 3421 // the start of the first vararg value... for expansion of llvm.va_start. 3422 if (isVarArg) { 3423 int Depth = ArgOffset; 3424 3425 FuncInfo->setVarArgsFrameIndex( 3426 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3427 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3428 3429 // If this function is vararg, store any remaining integer argument regs 3430 // to their spots on the stack so that they may be loaded by deferencing the 3431 // result of va_next. 3432 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3433 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3434 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3435 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3436 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3437 MachinePointerInfo(), false, false, 0); 3438 MemOps.push_back(Store); 3439 // Increment the address by four for the next argument to store 3440 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3441 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3442 } 3443 } 3444 3445 if (!MemOps.empty()) 3446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3447 3448 return Chain; 3449 } 3450 3451 SDValue 3452 PPCTargetLowering::LowerFormalArguments_Darwin( 3453 SDValue Chain, 3454 CallingConv::ID CallConv, bool isVarArg, 3455 const SmallVectorImpl<ISD::InputArg> 3456 &Ins, 3457 SDLoc dl, SelectionDAG &DAG, 3458 SmallVectorImpl<SDValue> &InVals) const { 3459 // TODO: add description of PPC stack frame format, or at least some docs. 3460 // 3461 MachineFunction &MF = DAG.getMachineFunction(); 3462 MachineFrameInfo *MFI = MF.getFrameInfo(); 3463 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3464 3465 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3466 bool isPPC64 = PtrVT == MVT::i64; 3467 // Potential tail calls could cause overwriting of argument stack slots. 3468 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3469 (CallConv == CallingConv::Fast)); 3470 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3471 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3472 unsigned ArgOffset = LinkageSize; 3473 // Area that is at least reserved in caller of this function. 3474 unsigned MinReservedArea = ArgOffset; 3475 3476 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3477 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3478 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3479 }; 3480 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3481 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3482 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3483 }; 3484 static const MCPhysReg VR[] = { 3485 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3486 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3487 }; 3488 3489 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3490 const unsigned Num_FPR_Regs = 13; 3491 const unsigned Num_VR_Regs = array_lengthof( VR); 3492 3493 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3494 3495 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3496 3497 // In 32-bit non-varargs functions, the stack space for vectors is after the 3498 // stack space for non-vectors. We do not use this space unless we have 3499 // too many vectors to fit in registers, something that only occurs in 3500 // constructed examples:), but we have to walk the arglist to figure 3501 // that out...for the pathological case, compute VecArgOffset as the 3502 // start of the vector parameter area. Computing VecArgOffset is the 3503 // entire point of the following loop. 3504 unsigned VecArgOffset = ArgOffset; 3505 if (!isVarArg && !isPPC64) { 3506 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3507 ++ArgNo) { 3508 EVT ObjectVT = Ins[ArgNo].VT; 3509 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3510 3511 if (Flags.isByVal()) { 3512 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3513 unsigned ObjSize = Flags.getByValSize(); 3514 unsigned ArgSize = 3515 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3516 VecArgOffset += ArgSize; 3517 continue; 3518 } 3519 3520 switch(ObjectVT.getSimpleVT().SimpleTy) { 3521 default: llvm_unreachable("Unhandled argument type!"); 3522 case MVT::i1: 3523 case MVT::i32: 3524 case MVT::f32: 3525 VecArgOffset += 4; 3526 break; 3527 case MVT::i64: // PPC64 3528 case MVT::f64: 3529 // FIXME: We are guaranteed to be !isPPC64 at this point. 3530 // Does MVT::i64 apply? 3531 VecArgOffset += 8; 3532 break; 3533 case MVT::v4f32: 3534 case MVT::v4i32: 3535 case MVT::v8i16: 3536 case MVT::v16i8: 3537 // Nothing to do, we're only looking at Nonvector args here. 3538 break; 3539 } 3540 } 3541 } 3542 // We've found where the vector parameter area in memory is. Skip the 3543 // first 12 parameters; these don't use that memory. 3544 VecArgOffset = ((VecArgOffset+15)/16)*16; 3545 VecArgOffset += 12*16; 3546 3547 // Add DAG nodes to load the arguments or copy them out of registers. On 3548 // entry to a function on PPC, the arguments start after the linkage area, 3549 // although the first ones are often in registers. 3550 3551 SmallVector<SDValue, 8> MemOps; 3552 unsigned nAltivecParamsAtEnd = 0; 3553 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3554 unsigned CurArgIdx = 0; 3555 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3556 SDValue ArgVal; 3557 bool needsLoad = false; 3558 EVT ObjectVT = Ins[ArgNo].VT; 3559 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3560 unsigned ArgSize = ObjSize; 3561 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3562 if (Ins[ArgNo].isOrigArg()) { 3563 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3564 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3565 } 3566 unsigned CurArgOffset = ArgOffset; 3567 3568 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3569 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3570 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3571 if (isVarArg || isPPC64) { 3572 MinReservedArea = ((MinReservedArea+15)/16)*16; 3573 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3574 Flags, 3575 PtrByteSize); 3576 } else nAltivecParamsAtEnd++; 3577 } else 3578 // Calculate min reserved area. 3579 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3580 Flags, 3581 PtrByteSize); 3582 3583 // FIXME the codegen can be much improved in some cases. 3584 // We do not have to keep everything in memory. 3585 if (Flags.isByVal()) { 3586 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3587 3588 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3589 ObjSize = Flags.getByValSize(); 3590 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3591 // Objects of size 1 and 2 are right justified, everything else is 3592 // left justified. This means the memory address is adjusted forwards. 3593 if (ObjSize==1 || ObjSize==2) { 3594 CurArgOffset = CurArgOffset + (4 - ObjSize); 3595 } 3596 // The value of the object is its address. 3597 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3598 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3599 InVals.push_back(FIN); 3600 if (ObjSize==1 || ObjSize==2) { 3601 if (GPR_idx != Num_GPR_Regs) { 3602 unsigned VReg; 3603 if (isPPC64) 3604 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3605 else 3606 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3607 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3608 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3609 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3610 MachinePointerInfo(&*FuncArg), 3611 ObjType, false, false, 0); 3612 MemOps.push_back(Store); 3613 ++GPR_idx; 3614 } 3615 3616 ArgOffset += PtrByteSize; 3617 3618 continue; 3619 } 3620 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3621 // Store whatever pieces of the object are in registers 3622 // to memory. ArgOffset will be the address of the beginning 3623 // of the object. 3624 if (GPR_idx != Num_GPR_Regs) { 3625 unsigned VReg; 3626 if (isPPC64) 3627 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3628 else 3629 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3630 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3631 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3632 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3633 SDValue Store = 3634 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3635 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3636 MemOps.push_back(Store); 3637 ++GPR_idx; 3638 ArgOffset += PtrByteSize; 3639 } else { 3640 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3641 break; 3642 } 3643 } 3644 continue; 3645 } 3646 3647 switch (ObjectVT.getSimpleVT().SimpleTy) { 3648 default: llvm_unreachable("Unhandled argument type!"); 3649 case MVT::i1: 3650 case MVT::i32: 3651 if (!isPPC64) { 3652 if (GPR_idx != Num_GPR_Regs) { 3653 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3654 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3655 3656 if (ObjectVT == MVT::i1) 3657 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3658 3659 ++GPR_idx; 3660 } else { 3661 needsLoad = true; 3662 ArgSize = PtrByteSize; 3663 } 3664 // All int arguments reserve stack space in the Darwin ABI. 3665 ArgOffset += PtrByteSize; 3666 break; 3667 } 3668 // FALLTHROUGH 3669 case MVT::i64: // PPC64 3670 if (GPR_idx != Num_GPR_Regs) { 3671 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3672 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3673 3674 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3675 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3676 // value to MVT::i64 and then truncate to the correct register size. 3677 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3678 3679 ++GPR_idx; 3680 } else { 3681 needsLoad = true; 3682 ArgSize = PtrByteSize; 3683 } 3684 // All int arguments reserve stack space in the Darwin ABI. 3685 ArgOffset += 8; 3686 break; 3687 3688 case MVT::f32: 3689 case MVT::f64: 3690 // Every 4 bytes of argument space consumes one of the GPRs available for 3691 // argument passing. 3692 if (GPR_idx != Num_GPR_Regs) { 3693 ++GPR_idx; 3694 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3695 ++GPR_idx; 3696 } 3697 if (FPR_idx != Num_FPR_Regs) { 3698 unsigned VReg; 3699 3700 if (ObjectVT == MVT::f32) 3701 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3702 else 3703 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3704 3705 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3706 ++FPR_idx; 3707 } else { 3708 needsLoad = true; 3709 } 3710 3711 // All FP arguments reserve stack space in the Darwin ABI. 3712 ArgOffset += isPPC64 ? 8 : ObjSize; 3713 break; 3714 case MVT::v4f32: 3715 case MVT::v4i32: 3716 case MVT::v8i16: 3717 case MVT::v16i8: 3718 // Note that vector arguments in registers don't reserve stack space, 3719 // except in varargs functions. 3720 if (VR_idx != Num_VR_Regs) { 3721 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3722 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3723 if (isVarArg) { 3724 while ((ArgOffset % 16) != 0) { 3725 ArgOffset += PtrByteSize; 3726 if (GPR_idx != Num_GPR_Regs) 3727 GPR_idx++; 3728 } 3729 ArgOffset += 16; 3730 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3731 } 3732 ++VR_idx; 3733 } else { 3734 if (!isVarArg && !isPPC64) { 3735 // Vectors go after all the nonvectors. 3736 CurArgOffset = VecArgOffset; 3737 VecArgOffset += 16; 3738 } else { 3739 // Vectors are aligned. 3740 ArgOffset = ((ArgOffset+15)/16)*16; 3741 CurArgOffset = ArgOffset; 3742 ArgOffset += 16; 3743 } 3744 needsLoad = true; 3745 } 3746 break; 3747 } 3748 3749 // We need to load the argument to a virtual register if we determined above 3750 // that we ran out of physical registers of the appropriate type. 3751 if (needsLoad) { 3752 int FI = MFI->CreateFixedObject(ObjSize, 3753 CurArgOffset + (ArgSize - ObjSize), 3754 isImmutable); 3755 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3756 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3757 false, false, false, 0); 3758 } 3759 3760 InVals.push_back(ArgVal); 3761 } 3762 3763 // Allow for Altivec parameters at the end, if needed. 3764 if (nAltivecParamsAtEnd) { 3765 MinReservedArea = ((MinReservedArea+15)/16)*16; 3766 MinReservedArea += 16*nAltivecParamsAtEnd; 3767 } 3768 3769 // Area that is at least reserved in the caller of this function. 3770 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3771 3772 // Set the size that is at least reserved in caller of this function. Tail 3773 // call optimized functions' reserved stack space needs to be aligned so that 3774 // taking the difference between two stack areas will result in an aligned 3775 // stack. 3776 MinReservedArea = 3777 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3778 FuncInfo->setMinReservedArea(MinReservedArea); 3779 3780 // If the function takes variable number of arguments, make a frame index for 3781 // the start of the first vararg value... for expansion of llvm.va_start. 3782 if (isVarArg) { 3783 int Depth = ArgOffset; 3784 3785 FuncInfo->setVarArgsFrameIndex( 3786 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3787 Depth, true)); 3788 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3789 3790 // If this function is vararg, store any remaining integer argument regs 3791 // to their spots on the stack so that they may be loaded by deferencing the 3792 // result of va_next. 3793 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3794 unsigned VReg; 3795 3796 if (isPPC64) 3797 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3798 else 3799 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3800 3801 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3802 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3803 MachinePointerInfo(), false, false, 0); 3804 MemOps.push_back(Store); 3805 // Increment the address by four for the next argument to store 3806 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3807 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3808 } 3809 } 3810 3811 if (!MemOps.empty()) 3812 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3813 3814 return Chain; 3815 } 3816 3817 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3818 /// adjusted to accommodate the arguments for the tailcall. 3819 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3820 unsigned ParamSize) { 3821 3822 if (!isTailCall) return 0; 3823 3824 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3825 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3826 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3827 // Remember only if the new adjustement is bigger. 3828 if (SPDiff < FI->getTailCallSPDelta()) 3829 FI->setTailCallSPDelta(SPDiff); 3830 3831 return SPDiff; 3832 } 3833 3834 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3835 /// for tail call optimization. Targets which want to do tail call 3836 /// optimization should implement this function. 3837 bool 3838 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3839 CallingConv::ID CalleeCC, 3840 bool isVarArg, 3841 const SmallVectorImpl<ISD::InputArg> &Ins, 3842 SelectionDAG& DAG) const { 3843 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3844 return false; 3845 3846 // Variable argument functions are not supported. 3847 if (isVarArg) 3848 return false; 3849 3850 MachineFunction &MF = DAG.getMachineFunction(); 3851 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3852 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3853 // Functions containing by val parameters are not supported. 3854 for (unsigned i = 0; i != Ins.size(); i++) { 3855 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3856 if (Flags.isByVal()) return false; 3857 } 3858 3859 // Non-PIC/GOT tail calls are supported. 3860 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3861 return true; 3862 3863 // At the moment we can only do local tail calls (in same module, hidden 3864 // or protected) if we are generating PIC. 3865 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3866 return G->getGlobal()->hasHiddenVisibility() 3867 || G->getGlobal()->hasProtectedVisibility(); 3868 } 3869 3870 return false; 3871 } 3872 3873 /// isCallCompatibleAddress - Return the immediate to use if the specified 3874 /// 32-bit value is representable in the immediate field of a BxA instruction. 3875 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3876 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3877 if (!C) return nullptr; 3878 3879 int Addr = C->getZExtValue(); 3880 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3881 SignExtend32<26>(Addr) != Addr) 3882 return nullptr; // Top 6 bits have to be sext of immediate. 3883 3884 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3885 DAG.getTargetLoweringInfo().getPointerTy( 3886 DAG.getDataLayout())).getNode(); 3887 } 3888 3889 namespace { 3890 3891 struct TailCallArgumentInfo { 3892 SDValue Arg; 3893 SDValue FrameIdxOp; 3894 int FrameIdx; 3895 3896 TailCallArgumentInfo() : FrameIdx(0) {} 3897 }; 3898 } 3899 3900 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3901 static void 3902 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3903 SDValue Chain, 3904 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3905 SmallVectorImpl<SDValue> &MemOpChains, 3906 SDLoc dl) { 3907 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3908 SDValue Arg = TailCallArgs[i].Arg; 3909 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3910 int FI = TailCallArgs[i].FrameIdx; 3911 // Store relative to framepointer. 3912 MemOpChains.push_back(DAG.getStore( 3913 Chain, dl, Arg, FIN, 3914 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3915 false, 0)); 3916 } 3917 } 3918 3919 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3920 /// the appropriate stack slot for the tail call optimized function call. 3921 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3922 MachineFunction &MF, 3923 SDValue Chain, 3924 SDValue OldRetAddr, 3925 SDValue OldFP, 3926 int SPDiff, 3927 bool isPPC64, 3928 bool isDarwinABI, 3929 SDLoc dl) { 3930 if (SPDiff) { 3931 // Calculate the new stack slot for the return address. 3932 int SlotSize = isPPC64 ? 8 : 4; 3933 const PPCFrameLowering *FL = 3934 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3935 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3936 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3937 NewRetAddrLoc, true); 3938 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3939 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3940 Chain = DAG.getStore( 3941 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3942 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3943 false, false, 0); 3944 3945 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3946 // slot as the FP is never overwritten. 3947 if (isDarwinABI) { 3948 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3949 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3950 true); 3951 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3952 Chain = DAG.getStore( 3953 Chain, dl, OldFP, NewFramePtrIdx, 3954 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3955 false, false, 0); 3956 } 3957 } 3958 return Chain; 3959 } 3960 3961 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3962 /// the position of the argument. 3963 static void 3964 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3965 SDValue Arg, int SPDiff, unsigned ArgOffset, 3966 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3967 int Offset = ArgOffset + SPDiff; 3968 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3969 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3970 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3971 SDValue FIN = DAG.getFrameIndex(FI, VT); 3972 TailCallArgumentInfo Info; 3973 Info.Arg = Arg; 3974 Info.FrameIdxOp = FIN; 3975 Info.FrameIdx = FI; 3976 TailCallArguments.push_back(Info); 3977 } 3978 3979 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3980 /// stack slot. Returns the chain as result and the loaded frame pointers in 3981 /// LROpOut/FPOpout. Used when tail calling. 3982 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3983 int SPDiff, 3984 SDValue Chain, 3985 SDValue &LROpOut, 3986 SDValue &FPOpOut, 3987 bool isDarwinABI, 3988 SDLoc dl) const { 3989 if (SPDiff) { 3990 // Load the LR and FP stack slot for later adjusting. 3991 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 3992 LROpOut = getReturnAddrFrameIndex(DAG); 3993 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 3994 false, false, false, 0); 3995 Chain = SDValue(LROpOut.getNode(), 1); 3996 3997 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 3998 // slot as the FP is never overwritten. 3999 if (isDarwinABI) { 4000 FPOpOut = getFramePointerFrameIndex(DAG); 4001 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4002 false, false, false, 0); 4003 Chain = SDValue(FPOpOut.getNode(), 1); 4004 } 4005 } 4006 return Chain; 4007 } 4008 4009 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4010 /// by "Src" to address "Dst" of size "Size". Alignment information is 4011 /// specified by the specific parameter attribute. The copy will be passed as 4012 /// a byval function parameter. 4013 /// Sometimes what we are copying is the end of a larger object, the part that 4014 /// does not fit in registers. 4015 static SDValue 4016 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4017 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4018 SDLoc dl) { 4019 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4020 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4021 false, false, false, MachinePointerInfo(), 4022 MachinePointerInfo()); 4023 } 4024 4025 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4026 /// tail calls. 4027 static void 4028 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4029 SDValue Arg, SDValue PtrOff, int SPDiff, 4030 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4031 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4032 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4033 SDLoc dl) { 4034 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4035 if (!isTailCall) { 4036 if (isVector) { 4037 SDValue StackPtr; 4038 if (isPPC64) 4039 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4040 else 4041 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4042 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4043 DAG.getConstant(ArgOffset, dl, PtrVT)); 4044 } 4045 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4046 MachinePointerInfo(), false, false, 0)); 4047 // Calculate and remember argument location. 4048 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4049 TailCallArguments); 4050 } 4051 4052 static 4053 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4054 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4055 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4056 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4057 MachineFunction &MF = DAG.getMachineFunction(); 4058 4059 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4060 // might overwrite each other in case of tail call optimization. 4061 SmallVector<SDValue, 8> MemOpChains2; 4062 // Do not flag preceding copytoreg stuff together with the following stuff. 4063 InFlag = SDValue(); 4064 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4065 MemOpChains2, dl); 4066 if (!MemOpChains2.empty()) 4067 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4068 4069 // Store the return address to the appropriate stack slot. 4070 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4071 isPPC64, isDarwinABI, dl); 4072 4073 // Emit callseq_end just before tailcall node. 4074 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4075 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4076 InFlag = Chain.getValue(1); 4077 } 4078 4079 // Is this global address that of a function that can be called by name? (as 4080 // opposed to something that must hold a descriptor for an indirect call). 4081 static bool isFunctionGlobalAddress(SDValue Callee) { 4082 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4083 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4084 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4085 return false; 4086 4087 return G->getGlobal()->getType()->getElementType()->isFunctionTy(); 4088 } 4089 4090 return false; 4091 } 4092 4093 static 4094 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4095 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4096 bool isTailCall, bool IsPatchPoint, bool hasNest, 4097 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4098 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4099 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4100 4101 bool isPPC64 = Subtarget.isPPC64(); 4102 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4103 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4104 4105 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4106 NodeTys.push_back(MVT::Other); // Returns a chain 4107 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4108 4109 unsigned CallOpc = PPCISD::CALL; 4110 4111 bool needIndirectCall = true; 4112 if (!isSVR4ABI || !isPPC64) 4113 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4114 // If this is an absolute destination address, use the munged value. 4115 Callee = SDValue(Dest, 0); 4116 needIndirectCall = false; 4117 } 4118 4119 if (isFunctionGlobalAddress(Callee)) { 4120 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4121 // A call to a TLS address is actually an indirect call to a 4122 // thread-specific pointer. 4123 unsigned OpFlags = 0; 4124 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4125 (Subtarget.getTargetTriple().isMacOSX() && 4126 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4127 !G->getGlobal()->isStrongDefinitionForLinker()) || 4128 (Subtarget.isTargetELF() && !isPPC64 && 4129 !G->getGlobal()->hasLocalLinkage() && 4130 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4131 // PC-relative references to external symbols should go through $stub, 4132 // unless we're building with the leopard linker or later, which 4133 // automatically synthesizes these stubs. 4134 OpFlags = PPCII::MO_PLT_OR_STUB; 4135 } 4136 4137 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4138 // every direct call is) turn it into a TargetGlobalAddress / 4139 // TargetExternalSymbol node so that legalize doesn't hack it. 4140 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4141 Callee.getValueType(), 0, OpFlags); 4142 needIndirectCall = false; 4143 } 4144 4145 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4146 unsigned char OpFlags = 0; 4147 4148 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4149 (Subtarget.getTargetTriple().isMacOSX() && 4150 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4151 (Subtarget.isTargetELF() && !isPPC64 && 4152 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4153 // PC-relative references to external symbols should go through $stub, 4154 // unless we're building with the leopard linker or later, which 4155 // automatically synthesizes these stubs. 4156 OpFlags = PPCII::MO_PLT_OR_STUB; 4157 } 4158 4159 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4160 OpFlags); 4161 needIndirectCall = false; 4162 } 4163 4164 if (IsPatchPoint) { 4165 // We'll form an invalid direct call when lowering a patchpoint; the full 4166 // sequence for an indirect call is complicated, and many of the 4167 // instructions introduced might have side effects (and, thus, can't be 4168 // removed later). The call itself will be removed as soon as the 4169 // argument/return lowering is complete, so the fact that it has the wrong 4170 // kind of operands should not really matter. 4171 needIndirectCall = false; 4172 } 4173 4174 if (needIndirectCall) { 4175 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4176 // to do the call, we can't use PPCISD::CALL. 4177 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4178 4179 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4180 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4181 // entry point, but to the function descriptor (the function entry point 4182 // address is part of the function descriptor though). 4183 // The function descriptor is a three doubleword structure with the 4184 // following fields: function entry point, TOC base address and 4185 // environment pointer. 4186 // Thus for a call through a function pointer, the following actions need 4187 // to be performed: 4188 // 1. Save the TOC of the caller in the TOC save area of its stack 4189 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4190 // 2. Load the address of the function entry point from the function 4191 // descriptor. 4192 // 3. Load the TOC of the callee from the function descriptor into r2. 4193 // 4. Load the environment pointer from the function descriptor into 4194 // r11. 4195 // 5. Branch to the function entry point address. 4196 // 6. On return of the callee, the TOC of the caller needs to be 4197 // restored (this is done in FinishCall()). 4198 // 4199 // The loads are scheduled at the beginning of the call sequence, and the 4200 // register copies are flagged together to ensure that no other 4201 // operations can be scheduled in between. E.g. without flagging the 4202 // copies together, a TOC access in the caller could be scheduled between 4203 // the assignment of the callee TOC and the branch to the callee, which 4204 // results in the TOC access going through the TOC of the callee instead 4205 // of going through the TOC of the caller, which leads to incorrect code. 4206 4207 // Load the address of the function entry point from the function 4208 // descriptor. 4209 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4210 if (LDChain.getValueType() == MVT::Glue) 4211 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4212 4213 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4214 4215 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4216 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4217 false, false, LoadsInv, 8); 4218 4219 // Load environment pointer into r11. 4220 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4221 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4222 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4223 MPI.getWithOffset(16), false, false, 4224 LoadsInv, 8); 4225 4226 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4227 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4228 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4229 MPI.getWithOffset(8), false, false, 4230 LoadsInv, 8); 4231 4232 setUsesTOCBasePtr(DAG); 4233 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4234 InFlag); 4235 Chain = TOCVal.getValue(0); 4236 InFlag = TOCVal.getValue(1); 4237 4238 // If the function call has an explicit 'nest' parameter, it takes the 4239 // place of the environment pointer. 4240 if (!hasNest) { 4241 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4242 InFlag); 4243 4244 Chain = EnvVal.getValue(0); 4245 InFlag = EnvVal.getValue(1); 4246 } 4247 4248 MTCTROps[0] = Chain; 4249 MTCTROps[1] = LoadFuncPtr; 4250 MTCTROps[2] = InFlag; 4251 } 4252 4253 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4254 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4255 InFlag = Chain.getValue(1); 4256 4257 NodeTys.clear(); 4258 NodeTys.push_back(MVT::Other); 4259 NodeTys.push_back(MVT::Glue); 4260 Ops.push_back(Chain); 4261 CallOpc = PPCISD::BCTRL; 4262 Callee.setNode(nullptr); 4263 // Add use of X11 (holding environment pointer) 4264 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4265 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4266 // Add CTR register as callee so a bctr can be emitted later. 4267 if (isTailCall) 4268 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4269 } 4270 4271 // If this is a direct call, pass the chain and the callee. 4272 if (Callee.getNode()) { 4273 Ops.push_back(Chain); 4274 Ops.push_back(Callee); 4275 } 4276 // If this is a tail call add stack pointer delta. 4277 if (isTailCall) 4278 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4279 4280 // Add argument registers to the end of the list so that they are known live 4281 // into the call. 4282 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4283 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4284 RegsToPass[i].second.getValueType())); 4285 4286 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4287 // into the call. 4288 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4289 setUsesTOCBasePtr(DAG); 4290 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4291 } 4292 4293 return CallOpc; 4294 } 4295 4296 static 4297 bool isLocalCall(const SDValue &Callee) 4298 { 4299 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4300 return G->getGlobal()->isStrongDefinitionForLinker(); 4301 return false; 4302 } 4303 4304 SDValue 4305 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4306 CallingConv::ID CallConv, bool isVarArg, 4307 const SmallVectorImpl<ISD::InputArg> &Ins, 4308 SDLoc dl, SelectionDAG &DAG, 4309 SmallVectorImpl<SDValue> &InVals) const { 4310 4311 SmallVector<CCValAssign, 16> RVLocs; 4312 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4313 *DAG.getContext()); 4314 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4315 4316 // Copy all of the result registers out of their specified physreg. 4317 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4318 CCValAssign &VA = RVLocs[i]; 4319 assert(VA.isRegLoc() && "Can only return in registers!"); 4320 4321 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4322 VA.getLocReg(), VA.getLocVT(), InFlag); 4323 Chain = Val.getValue(1); 4324 InFlag = Val.getValue(2); 4325 4326 switch (VA.getLocInfo()) { 4327 default: llvm_unreachable("Unknown loc info!"); 4328 case CCValAssign::Full: break; 4329 case CCValAssign::AExt: 4330 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4331 break; 4332 case CCValAssign::ZExt: 4333 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4334 DAG.getValueType(VA.getValVT())); 4335 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4336 break; 4337 case CCValAssign::SExt: 4338 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4339 DAG.getValueType(VA.getValVT())); 4340 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4341 break; 4342 } 4343 4344 InVals.push_back(Val); 4345 } 4346 4347 return Chain; 4348 } 4349 4350 SDValue 4351 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4352 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4353 bool hasNest, SelectionDAG &DAG, 4354 SmallVector<std::pair<unsigned, SDValue>, 8> 4355 &RegsToPass, 4356 SDValue InFlag, SDValue Chain, 4357 SDValue CallSeqStart, SDValue &Callee, 4358 int SPDiff, unsigned NumBytes, 4359 const SmallVectorImpl<ISD::InputArg> &Ins, 4360 SmallVectorImpl<SDValue> &InVals, 4361 ImmutableCallSite *CS) const { 4362 4363 std::vector<EVT> NodeTys; 4364 SmallVector<SDValue, 8> Ops; 4365 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4366 SPDiff, isTailCall, IsPatchPoint, hasNest, 4367 RegsToPass, Ops, NodeTys, CS, Subtarget); 4368 4369 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4370 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4371 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4372 4373 // When performing tail call optimization the callee pops its arguments off 4374 // the stack. Account for this here so these bytes can be pushed back on in 4375 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4376 int BytesCalleePops = 4377 (CallConv == CallingConv::Fast && 4378 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4379 4380 // Add a register mask operand representing the call-preserved registers. 4381 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4382 const uint32_t *Mask = 4383 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4384 assert(Mask && "Missing call preserved mask for calling convention"); 4385 Ops.push_back(DAG.getRegisterMask(Mask)); 4386 4387 if (InFlag.getNode()) 4388 Ops.push_back(InFlag); 4389 4390 // Emit tail call. 4391 if (isTailCall) { 4392 assert(((Callee.getOpcode() == ISD::Register && 4393 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4394 Callee.getOpcode() == ISD::TargetExternalSymbol || 4395 Callee.getOpcode() == ISD::TargetGlobalAddress || 4396 isa<ConstantSDNode>(Callee)) && 4397 "Expecting an global address, external symbol, absolute value or register"); 4398 4399 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4400 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4401 } 4402 4403 // Add a NOP immediately after the branch instruction when using the 64-bit 4404 // SVR4 ABI. At link time, if caller and callee are in a different module and 4405 // thus have a different TOC, the call will be replaced with a call to a stub 4406 // function which saves the current TOC, loads the TOC of the callee and 4407 // branches to the callee. The NOP will be replaced with a load instruction 4408 // which restores the TOC of the caller from the TOC save slot of the current 4409 // stack frame. If caller and callee belong to the same module (and have the 4410 // same TOC), the NOP will remain unchanged. 4411 4412 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4413 !IsPatchPoint) { 4414 if (CallOpc == PPCISD::BCTRL) { 4415 // This is a call through a function pointer. 4416 // Restore the caller TOC from the save area into R2. 4417 // See PrepareCall() for more information about calls through function 4418 // pointers in the 64-bit SVR4 ABI. 4419 // We are using a target-specific load with r2 hard coded, because the 4420 // result of a target-independent load would never go directly into r2, 4421 // since r2 is a reserved register (which prevents the register allocator 4422 // from allocating it), resulting in an additional register being 4423 // allocated and an unnecessary move instruction being generated. 4424 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4425 4426 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4427 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4428 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4429 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4430 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4431 4432 // The address needs to go after the chain input but before the flag (or 4433 // any other variadic arguments). 4434 Ops.insert(std::next(Ops.begin()), AddTOC); 4435 } else if ((CallOpc == PPCISD::CALL) && 4436 (!isLocalCall(Callee) || 4437 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4438 // Otherwise insert NOP for non-local calls. 4439 CallOpc = PPCISD::CALL_NOP; 4440 } 4441 4442 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4443 InFlag = Chain.getValue(1); 4444 4445 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4446 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4447 InFlag, dl); 4448 if (!Ins.empty()) 4449 InFlag = Chain.getValue(1); 4450 4451 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4452 Ins, dl, DAG, InVals); 4453 } 4454 4455 SDValue 4456 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4457 SmallVectorImpl<SDValue> &InVals) const { 4458 SelectionDAG &DAG = CLI.DAG; 4459 SDLoc &dl = CLI.DL; 4460 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4461 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4462 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4463 SDValue Chain = CLI.Chain; 4464 SDValue Callee = CLI.Callee; 4465 bool &isTailCall = CLI.IsTailCall; 4466 CallingConv::ID CallConv = CLI.CallConv; 4467 bool isVarArg = CLI.IsVarArg; 4468 bool IsPatchPoint = CLI.IsPatchPoint; 4469 ImmutableCallSite *CS = CLI.CS; 4470 4471 if (isTailCall) 4472 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4473 Ins, DAG); 4474 4475 if (!isTailCall && CS && CS->isMustTailCall()) 4476 report_fatal_error("failed to perform tail call elimination on a call " 4477 "site marked musttail"); 4478 4479 if (Subtarget.isSVR4ABI()) { 4480 if (Subtarget.isPPC64()) 4481 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4482 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4483 dl, DAG, InVals, CS); 4484 else 4485 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4486 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4487 dl, DAG, InVals, CS); 4488 } 4489 4490 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4491 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4492 dl, DAG, InVals, CS); 4493 } 4494 4495 SDValue 4496 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4497 CallingConv::ID CallConv, bool isVarArg, 4498 bool isTailCall, bool IsPatchPoint, 4499 const SmallVectorImpl<ISD::OutputArg> &Outs, 4500 const SmallVectorImpl<SDValue> &OutVals, 4501 const SmallVectorImpl<ISD::InputArg> &Ins, 4502 SDLoc dl, SelectionDAG &DAG, 4503 SmallVectorImpl<SDValue> &InVals, 4504 ImmutableCallSite *CS) const { 4505 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4506 // of the 32-bit SVR4 ABI stack frame layout. 4507 4508 assert((CallConv == CallingConv::C || 4509 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4510 4511 unsigned PtrByteSize = 4; 4512 4513 MachineFunction &MF = DAG.getMachineFunction(); 4514 4515 // Mark this function as potentially containing a function that contains a 4516 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4517 // and restoring the callers stack pointer in this functions epilog. This is 4518 // done because by tail calling the called function might overwrite the value 4519 // in this function's (MF) stack pointer stack slot 0(SP). 4520 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4521 CallConv == CallingConv::Fast) 4522 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4523 4524 // Count how many bytes are to be pushed on the stack, including the linkage 4525 // area, parameter list area and the part of the local variable space which 4526 // contains copies of aggregates which are passed by value. 4527 4528 // Assign locations to all of the outgoing arguments. 4529 SmallVector<CCValAssign, 16> ArgLocs; 4530 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4531 *DAG.getContext()); 4532 4533 // Reserve space for the linkage area on the stack. 4534 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4535 PtrByteSize); 4536 4537 if (isVarArg) { 4538 // Handle fixed and variable vector arguments differently. 4539 // Fixed vector arguments go into registers as long as registers are 4540 // available. Variable vector arguments always go into memory. 4541 unsigned NumArgs = Outs.size(); 4542 4543 for (unsigned i = 0; i != NumArgs; ++i) { 4544 MVT ArgVT = Outs[i].VT; 4545 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4546 bool Result; 4547 4548 if (Outs[i].IsFixed) { 4549 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4550 CCInfo); 4551 } else { 4552 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4553 ArgFlags, CCInfo); 4554 } 4555 4556 if (Result) { 4557 #ifndef NDEBUG 4558 errs() << "Call operand #" << i << " has unhandled type " 4559 << EVT(ArgVT).getEVTString() << "\n"; 4560 #endif 4561 llvm_unreachable(nullptr); 4562 } 4563 } 4564 } else { 4565 // All arguments are treated the same. 4566 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4567 } 4568 4569 // Assign locations to all of the outgoing aggregate by value arguments. 4570 SmallVector<CCValAssign, 16> ByValArgLocs; 4571 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4572 ByValArgLocs, *DAG.getContext()); 4573 4574 // Reserve stack space for the allocations in CCInfo. 4575 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4576 4577 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4578 4579 // Size of the linkage area, parameter list area and the part of the local 4580 // space variable where copies of aggregates which are passed by value are 4581 // stored. 4582 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4583 4584 // Calculate by how many bytes the stack has to be adjusted in case of tail 4585 // call optimization. 4586 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4587 4588 // Adjust the stack pointer for the new arguments... 4589 // These operations are automatically eliminated by the prolog/epilog pass 4590 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4591 dl); 4592 SDValue CallSeqStart = Chain; 4593 4594 // Load the return address and frame pointer so it can be moved somewhere else 4595 // later. 4596 SDValue LROp, FPOp; 4597 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4598 dl); 4599 4600 // Set up a copy of the stack pointer for use loading and storing any 4601 // arguments that may not fit in the registers available for argument 4602 // passing. 4603 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4604 4605 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4606 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4607 SmallVector<SDValue, 8> MemOpChains; 4608 4609 bool seenFloatArg = false; 4610 // Walk the register/memloc assignments, inserting copies/loads. 4611 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4612 i != e; 4613 ++i) { 4614 CCValAssign &VA = ArgLocs[i]; 4615 SDValue Arg = OutVals[i]; 4616 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4617 4618 if (Flags.isByVal()) { 4619 // Argument is an aggregate which is passed by value, thus we need to 4620 // create a copy of it in the local variable space of the current stack 4621 // frame (which is the stack frame of the caller) and pass the address of 4622 // this copy to the callee. 4623 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4624 CCValAssign &ByValVA = ByValArgLocs[j++]; 4625 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4626 4627 // Memory reserved in the local variable space of the callers stack frame. 4628 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4629 4630 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4631 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4632 StackPtr, PtrOff); 4633 4634 // Create a copy of the argument in the local area of the current 4635 // stack frame. 4636 SDValue MemcpyCall = 4637 CreateCopyOfByValArgument(Arg, PtrOff, 4638 CallSeqStart.getNode()->getOperand(0), 4639 Flags, DAG, dl); 4640 4641 // This must go outside the CALLSEQ_START..END. 4642 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4643 CallSeqStart.getNode()->getOperand(1), 4644 SDLoc(MemcpyCall)); 4645 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4646 NewCallSeqStart.getNode()); 4647 Chain = CallSeqStart = NewCallSeqStart; 4648 4649 // Pass the address of the aggregate copy on the stack either in a 4650 // physical register or in the parameter list area of the current stack 4651 // frame to the callee. 4652 Arg = PtrOff; 4653 } 4654 4655 if (VA.isRegLoc()) { 4656 if (Arg.getValueType() == MVT::i1) 4657 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4658 4659 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4660 // Put argument in a physical register. 4661 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4662 } else { 4663 // Put argument in the parameter list area of the current stack frame. 4664 assert(VA.isMemLoc()); 4665 unsigned LocMemOffset = VA.getLocMemOffset(); 4666 4667 if (!isTailCall) { 4668 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4669 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4670 StackPtr, PtrOff); 4671 4672 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4673 MachinePointerInfo(), 4674 false, false, 0)); 4675 } else { 4676 // Calculate and remember argument location. 4677 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4678 TailCallArguments); 4679 } 4680 } 4681 } 4682 4683 if (!MemOpChains.empty()) 4684 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4685 4686 // Build a sequence of copy-to-reg nodes chained together with token chain 4687 // and flag operands which copy the outgoing args into the appropriate regs. 4688 SDValue InFlag; 4689 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4690 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4691 RegsToPass[i].second, InFlag); 4692 InFlag = Chain.getValue(1); 4693 } 4694 4695 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4696 // registers. 4697 if (isVarArg) { 4698 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4699 SDValue Ops[] = { Chain, InFlag }; 4700 4701 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4702 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4703 4704 InFlag = Chain.getValue(1); 4705 } 4706 4707 if (isTailCall) 4708 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4709 false, TailCallArguments); 4710 4711 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4712 /* unused except on PPC64 ELFv1 */ false, DAG, 4713 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4714 NumBytes, Ins, InVals, CS); 4715 } 4716 4717 // Copy an argument into memory, being careful to do this outside the 4718 // call sequence for the call to which the argument belongs. 4719 SDValue 4720 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4721 SDValue CallSeqStart, 4722 ISD::ArgFlagsTy Flags, 4723 SelectionDAG &DAG, 4724 SDLoc dl) const { 4725 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4726 CallSeqStart.getNode()->getOperand(0), 4727 Flags, DAG, dl); 4728 // The MEMCPY must go outside the CALLSEQ_START..END. 4729 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4730 CallSeqStart.getNode()->getOperand(1), 4731 SDLoc(MemcpyCall)); 4732 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4733 NewCallSeqStart.getNode()); 4734 return NewCallSeqStart; 4735 } 4736 4737 SDValue 4738 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4739 CallingConv::ID CallConv, bool isVarArg, 4740 bool isTailCall, bool IsPatchPoint, 4741 const SmallVectorImpl<ISD::OutputArg> &Outs, 4742 const SmallVectorImpl<SDValue> &OutVals, 4743 const SmallVectorImpl<ISD::InputArg> &Ins, 4744 SDLoc dl, SelectionDAG &DAG, 4745 SmallVectorImpl<SDValue> &InVals, 4746 ImmutableCallSite *CS) const { 4747 4748 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4749 bool isLittleEndian = Subtarget.isLittleEndian(); 4750 unsigned NumOps = Outs.size(); 4751 bool hasNest = false; 4752 4753 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4754 unsigned PtrByteSize = 8; 4755 4756 MachineFunction &MF = DAG.getMachineFunction(); 4757 4758 // Mark this function as potentially containing a function that contains a 4759 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4760 // and restoring the callers stack pointer in this functions epilog. This is 4761 // done because by tail calling the called function might overwrite the value 4762 // in this function's (MF) stack pointer stack slot 0(SP). 4763 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4764 CallConv == CallingConv::Fast) 4765 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4766 4767 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4768 "fastcc not supported on varargs functions"); 4769 4770 // Count how many bytes are to be pushed on the stack, including the linkage 4771 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4772 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4773 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4774 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4775 unsigned NumBytes = LinkageSize; 4776 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4777 unsigned &QFPR_idx = FPR_idx; 4778 4779 static const MCPhysReg GPR[] = { 4780 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4781 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4782 }; 4783 static const MCPhysReg VR[] = { 4784 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4785 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4786 }; 4787 static const MCPhysReg VSRH[] = { 4788 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4789 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4790 }; 4791 4792 const unsigned NumGPRs = array_lengthof(GPR); 4793 const unsigned NumFPRs = 13; 4794 const unsigned NumVRs = array_lengthof(VR); 4795 const unsigned NumQFPRs = NumFPRs; 4796 4797 // When using the fast calling convention, we don't provide backing for 4798 // arguments that will be in registers. 4799 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4800 4801 // Add up all the space actually used. 4802 for (unsigned i = 0; i != NumOps; ++i) { 4803 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4804 EVT ArgVT = Outs[i].VT; 4805 EVT OrigVT = Outs[i].ArgVT; 4806 4807 if (Flags.isNest()) 4808 continue; 4809 4810 if (CallConv == CallingConv::Fast) { 4811 if (Flags.isByVal()) 4812 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4813 else 4814 switch (ArgVT.getSimpleVT().SimpleTy) { 4815 default: llvm_unreachable("Unexpected ValueType for argument!"); 4816 case MVT::i1: 4817 case MVT::i32: 4818 case MVT::i64: 4819 if (++NumGPRsUsed <= NumGPRs) 4820 continue; 4821 break; 4822 case MVT::v4i32: 4823 case MVT::v8i16: 4824 case MVT::v16i8: 4825 case MVT::v2f64: 4826 case MVT::v2i64: 4827 case MVT::v1i128: 4828 if (++NumVRsUsed <= NumVRs) 4829 continue; 4830 break; 4831 case MVT::v4f32: 4832 // When using QPX, this is handled like a FP register, otherwise, it 4833 // is an Altivec register. 4834 if (Subtarget.hasQPX()) { 4835 if (++NumFPRsUsed <= NumFPRs) 4836 continue; 4837 } else { 4838 if (++NumVRsUsed <= NumVRs) 4839 continue; 4840 } 4841 break; 4842 case MVT::f32: 4843 case MVT::f64: 4844 case MVT::v4f64: // QPX 4845 case MVT::v4i1: // QPX 4846 if (++NumFPRsUsed <= NumFPRs) 4847 continue; 4848 break; 4849 } 4850 } 4851 4852 /* Respect alignment of argument on the stack. */ 4853 unsigned Align = 4854 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4855 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4856 4857 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4858 if (Flags.isInConsecutiveRegsLast()) 4859 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4860 } 4861 4862 unsigned NumBytesActuallyUsed = NumBytes; 4863 4864 // The prolog code of the callee may store up to 8 GPR argument registers to 4865 // the stack, allowing va_start to index over them in memory if its varargs. 4866 // Because we cannot tell if this is needed on the caller side, we have to 4867 // conservatively assume that it is needed. As such, make sure we have at 4868 // least enough stack space for the caller to store the 8 GPRs. 4869 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4870 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4871 4872 // Tail call needs the stack to be aligned. 4873 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4874 CallConv == CallingConv::Fast) 4875 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4876 4877 // Calculate by how many bytes the stack has to be adjusted in case of tail 4878 // call optimization. 4879 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4880 4881 // To protect arguments on the stack from being clobbered in a tail call, 4882 // force all the loads to happen before doing any other lowering. 4883 if (isTailCall) 4884 Chain = DAG.getStackArgumentTokenFactor(Chain); 4885 4886 // Adjust the stack pointer for the new arguments... 4887 // These operations are automatically eliminated by the prolog/epilog pass 4888 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4889 dl); 4890 SDValue CallSeqStart = Chain; 4891 4892 // Load the return address and frame pointer so it can be move somewhere else 4893 // later. 4894 SDValue LROp, FPOp; 4895 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4896 dl); 4897 4898 // Set up a copy of the stack pointer for use loading and storing any 4899 // arguments that may not fit in the registers available for argument 4900 // passing. 4901 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4902 4903 // Figure out which arguments are going to go in registers, and which in 4904 // memory. Also, if this is a vararg function, floating point operations 4905 // must be stored to our stack, and loaded into integer regs as well, if 4906 // any integer regs are available for argument passing. 4907 unsigned ArgOffset = LinkageSize; 4908 4909 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4910 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4911 4912 SmallVector<SDValue, 8> MemOpChains; 4913 for (unsigned i = 0; i != NumOps; ++i) { 4914 SDValue Arg = OutVals[i]; 4915 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4916 EVT ArgVT = Outs[i].VT; 4917 EVT OrigVT = Outs[i].ArgVT; 4918 4919 // PtrOff will be used to store the current argument to the stack if a 4920 // register cannot be found for it. 4921 SDValue PtrOff; 4922 4923 // We re-align the argument offset for each argument, except when using the 4924 // fast calling convention, when we need to make sure we do that only when 4925 // we'll actually use a stack slot. 4926 auto ComputePtrOff = [&]() { 4927 /* Respect alignment of argument on the stack. */ 4928 unsigned Align = 4929 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4930 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4931 4932 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4933 4934 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4935 }; 4936 4937 if (CallConv != CallingConv::Fast) { 4938 ComputePtrOff(); 4939 4940 /* Compute GPR index associated with argument offset. */ 4941 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4942 GPR_idx = std::min(GPR_idx, NumGPRs); 4943 } 4944 4945 // Promote integers to 64-bit values. 4946 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4947 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4948 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4949 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4950 } 4951 4952 // FIXME memcpy is used way more than necessary. Correctness first. 4953 // Note: "by value" is code for passing a structure by value, not 4954 // basic types. 4955 if (Flags.isByVal()) { 4956 // Note: Size includes alignment padding, so 4957 // struct x { short a; char b; } 4958 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4959 // These are the proper values we need for right-justifying the 4960 // aggregate in a parameter register. 4961 unsigned Size = Flags.getByValSize(); 4962 4963 // An empty aggregate parameter takes up no storage and no 4964 // registers. 4965 if (Size == 0) 4966 continue; 4967 4968 if (CallConv == CallingConv::Fast) 4969 ComputePtrOff(); 4970 4971 // All aggregates smaller than 8 bytes must be passed right-justified. 4972 if (Size==1 || Size==2 || Size==4) { 4973 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4974 if (GPR_idx != NumGPRs) { 4975 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4976 MachinePointerInfo(), VT, 4977 false, false, false, 0); 4978 MemOpChains.push_back(Load.getValue(1)); 4979 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4980 4981 ArgOffset += PtrByteSize; 4982 continue; 4983 } 4984 } 4985 4986 if (GPR_idx == NumGPRs && Size < 8) { 4987 SDValue AddPtr = PtrOff; 4988 if (!isLittleEndian) { 4989 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 4990 PtrOff.getValueType()); 4991 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 4992 } 4993 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 4994 CallSeqStart, 4995 Flags, DAG, dl); 4996 ArgOffset += PtrByteSize; 4997 continue; 4998 } 4999 // Copy entire object into memory. There are cases where gcc-generated 5000 // code assumes it is there, even if it could be put entirely into 5001 // registers. (This is not what the doc says.) 5002 5003 // FIXME: The above statement is likely due to a misunderstanding of the 5004 // documents. All arguments must be copied into the parameter area BY 5005 // THE CALLEE in the event that the callee takes the address of any 5006 // formal argument. That has not yet been implemented. However, it is 5007 // reasonable to use the stack area as a staging area for the register 5008 // load. 5009 5010 // Skip this for small aggregates, as we will use the same slot for a 5011 // right-justified copy, below. 5012 if (Size >= 8) 5013 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5014 CallSeqStart, 5015 Flags, DAG, dl); 5016 5017 // When a register is available, pass a small aggregate right-justified. 5018 if (Size < 8 && GPR_idx != NumGPRs) { 5019 // The easiest way to get this right-justified in a register 5020 // is to copy the structure into the rightmost portion of a 5021 // local variable slot, then load the whole slot into the 5022 // register. 5023 // FIXME: The memcpy seems to produce pretty awful code for 5024 // small aggregates, particularly for packed ones. 5025 // FIXME: It would be preferable to use the slot in the 5026 // parameter save area instead of a new local variable. 5027 SDValue AddPtr = PtrOff; 5028 if (!isLittleEndian) { 5029 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5030 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5031 } 5032 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5033 CallSeqStart, 5034 Flags, DAG, dl); 5035 5036 // Load the slot into the register. 5037 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5038 MachinePointerInfo(), 5039 false, false, false, 0); 5040 MemOpChains.push_back(Load.getValue(1)); 5041 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5042 5043 // Done with this argument. 5044 ArgOffset += PtrByteSize; 5045 continue; 5046 } 5047 5048 // For aggregates larger than PtrByteSize, copy the pieces of the 5049 // object that fit into registers from the parameter save area. 5050 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5051 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5052 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5053 if (GPR_idx != NumGPRs) { 5054 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5055 MachinePointerInfo(), 5056 false, false, false, 0); 5057 MemOpChains.push_back(Load.getValue(1)); 5058 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5059 ArgOffset += PtrByteSize; 5060 } else { 5061 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5062 break; 5063 } 5064 } 5065 continue; 5066 } 5067 5068 switch (Arg.getSimpleValueType().SimpleTy) { 5069 default: llvm_unreachable("Unexpected ValueType for argument!"); 5070 case MVT::i1: 5071 case MVT::i32: 5072 case MVT::i64: 5073 if (Flags.isNest()) { 5074 // The 'nest' parameter, if any, is passed in R11. 5075 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5076 hasNest = true; 5077 break; 5078 } 5079 5080 // These can be scalar arguments or elements of an integer array type 5081 // passed directly. Clang may use those instead of "byval" aggregate 5082 // types to avoid forcing arguments to memory unnecessarily. 5083 if (GPR_idx != NumGPRs) { 5084 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5085 } else { 5086 if (CallConv == CallingConv::Fast) 5087 ComputePtrOff(); 5088 5089 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5090 true, isTailCall, false, MemOpChains, 5091 TailCallArguments, dl); 5092 if (CallConv == CallingConv::Fast) 5093 ArgOffset += PtrByteSize; 5094 } 5095 if (CallConv != CallingConv::Fast) 5096 ArgOffset += PtrByteSize; 5097 break; 5098 case MVT::f32: 5099 case MVT::f64: { 5100 // These can be scalar arguments or elements of a float array type 5101 // passed directly. The latter are used to implement ELFv2 homogenous 5102 // float aggregates. 5103 5104 // Named arguments go into FPRs first, and once they overflow, the 5105 // remaining arguments go into GPRs and then the parameter save area. 5106 // Unnamed arguments for vararg functions always go to GPRs and 5107 // then the parameter save area. For now, put all arguments to vararg 5108 // routines always in both locations (FPR *and* GPR or stack slot). 5109 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5110 bool NeededLoad = false; 5111 5112 // First load the argument into the next available FPR. 5113 if (FPR_idx != NumFPRs) 5114 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5115 5116 // Next, load the argument into GPR or stack slot if needed. 5117 if (!NeedGPROrStack) 5118 ; 5119 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5120 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5121 // once we support fp <-> gpr moves. 5122 5123 // In the non-vararg case, this can only ever happen in the 5124 // presence of f32 array types, since otherwise we never run 5125 // out of FPRs before running out of GPRs. 5126 SDValue ArgVal; 5127 5128 // Double values are always passed in a single GPR. 5129 if (Arg.getValueType() != MVT::f32) { 5130 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5131 5132 // Non-array float values are extended and passed in a GPR. 5133 } else if (!Flags.isInConsecutiveRegs()) { 5134 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5135 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5136 5137 // If we have an array of floats, we collect every odd element 5138 // together with its predecessor into one GPR. 5139 } else if (ArgOffset % PtrByteSize != 0) { 5140 SDValue Lo, Hi; 5141 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5142 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5143 if (!isLittleEndian) 5144 std::swap(Lo, Hi); 5145 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5146 5147 // The final element, if even, goes into the first half of a GPR. 5148 } else if (Flags.isInConsecutiveRegsLast()) { 5149 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5150 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5151 if (!isLittleEndian) 5152 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5153 DAG.getConstant(32, dl, MVT::i32)); 5154 5155 // Non-final even elements are skipped; they will be handled 5156 // together the with subsequent argument on the next go-around. 5157 } else 5158 ArgVal = SDValue(); 5159 5160 if (ArgVal.getNode()) 5161 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5162 } else { 5163 if (CallConv == CallingConv::Fast) 5164 ComputePtrOff(); 5165 5166 // Single-precision floating-point values are mapped to the 5167 // second (rightmost) word of the stack doubleword. 5168 if (Arg.getValueType() == MVT::f32 && 5169 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5170 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5171 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5172 } 5173 5174 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5175 true, isTailCall, false, MemOpChains, 5176 TailCallArguments, dl); 5177 5178 NeededLoad = true; 5179 } 5180 // When passing an array of floats, the array occupies consecutive 5181 // space in the argument area; only round up to the next doubleword 5182 // at the end of the array. Otherwise, each float takes 8 bytes. 5183 if (CallConv != CallingConv::Fast || NeededLoad) { 5184 ArgOffset += (Arg.getValueType() == MVT::f32 && 5185 Flags.isInConsecutiveRegs()) ? 4 : 8; 5186 if (Flags.isInConsecutiveRegsLast()) 5187 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5188 } 5189 break; 5190 } 5191 case MVT::v4f32: 5192 case MVT::v4i32: 5193 case MVT::v8i16: 5194 case MVT::v16i8: 5195 case MVT::v2f64: 5196 case MVT::v2i64: 5197 case MVT::v1i128: 5198 if (!Subtarget.hasQPX()) { 5199 // These can be scalar arguments or elements of a vector array type 5200 // passed directly. The latter are used to implement ELFv2 homogenous 5201 // vector aggregates. 5202 5203 // For a varargs call, named arguments go into VRs or on the stack as 5204 // usual; unnamed arguments always go to the stack or the corresponding 5205 // GPRs when within range. For now, we always put the value in both 5206 // locations (or even all three). 5207 if (isVarArg) { 5208 // We could elide this store in the case where the object fits 5209 // entirely in R registers. Maybe later. 5210 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5211 MachinePointerInfo(), false, false, 0); 5212 MemOpChains.push_back(Store); 5213 if (VR_idx != NumVRs) { 5214 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5215 MachinePointerInfo(), 5216 false, false, false, 0); 5217 MemOpChains.push_back(Load.getValue(1)); 5218 5219 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5220 Arg.getSimpleValueType() == MVT::v2i64) ? 5221 VSRH[VR_idx] : VR[VR_idx]; 5222 ++VR_idx; 5223 5224 RegsToPass.push_back(std::make_pair(VReg, Load)); 5225 } 5226 ArgOffset += 16; 5227 for (unsigned i=0; i<16; i+=PtrByteSize) { 5228 if (GPR_idx == NumGPRs) 5229 break; 5230 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5231 DAG.getConstant(i, dl, PtrVT)); 5232 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5233 false, false, false, 0); 5234 MemOpChains.push_back(Load.getValue(1)); 5235 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5236 } 5237 break; 5238 } 5239 5240 // Non-varargs Altivec params go into VRs or on the stack. 5241 if (VR_idx != NumVRs) { 5242 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5243 Arg.getSimpleValueType() == MVT::v2i64) ? 5244 VSRH[VR_idx] : VR[VR_idx]; 5245 ++VR_idx; 5246 5247 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5248 } else { 5249 if (CallConv == CallingConv::Fast) 5250 ComputePtrOff(); 5251 5252 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5253 true, isTailCall, true, MemOpChains, 5254 TailCallArguments, dl); 5255 if (CallConv == CallingConv::Fast) 5256 ArgOffset += 16; 5257 } 5258 5259 if (CallConv != CallingConv::Fast) 5260 ArgOffset += 16; 5261 break; 5262 } // not QPX 5263 5264 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5265 "Invalid QPX parameter type"); 5266 5267 /* fall through */ 5268 case MVT::v4f64: 5269 case MVT::v4i1: { 5270 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5271 if (isVarArg) { 5272 // We could elide this store in the case where the object fits 5273 // entirely in R registers. Maybe later. 5274 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5275 MachinePointerInfo(), false, false, 0); 5276 MemOpChains.push_back(Store); 5277 if (QFPR_idx != NumQFPRs) { 5278 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5279 Store, PtrOff, MachinePointerInfo(), 5280 false, false, false, 0); 5281 MemOpChains.push_back(Load.getValue(1)); 5282 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5283 } 5284 ArgOffset += (IsF32 ? 16 : 32); 5285 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5286 if (GPR_idx == NumGPRs) 5287 break; 5288 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5289 DAG.getConstant(i, dl, PtrVT)); 5290 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5291 false, false, false, 0); 5292 MemOpChains.push_back(Load.getValue(1)); 5293 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5294 } 5295 break; 5296 } 5297 5298 // Non-varargs QPX params go into registers or on the stack. 5299 if (QFPR_idx != NumQFPRs) { 5300 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5301 } else { 5302 if (CallConv == CallingConv::Fast) 5303 ComputePtrOff(); 5304 5305 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5306 true, isTailCall, true, MemOpChains, 5307 TailCallArguments, dl); 5308 if (CallConv == CallingConv::Fast) 5309 ArgOffset += (IsF32 ? 16 : 32); 5310 } 5311 5312 if (CallConv != CallingConv::Fast) 5313 ArgOffset += (IsF32 ? 16 : 32); 5314 break; 5315 } 5316 } 5317 } 5318 5319 assert(NumBytesActuallyUsed == ArgOffset); 5320 (void)NumBytesActuallyUsed; 5321 5322 if (!MemOpChains.empty()) 5323 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5324 5325 // Check if this is an indirect call (MTCTR/BCTRL). 5326 // See PrepareCall() for more information about calls through function 5327 // pointers in the 64-bit SVR4 ABI. 5328 if (!isTailCall && !IsPatchPoint && 5329 !isFunctionGlobalAddress(Callee) && 5330 !isa<ExternalSymbolSDNode>(Callee)) { 5331 // Load r2 into a virtual register and store it to the TOC save area. 5332 setUsesTOCBasePtr(DAG); 5333 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5334 // TOC save area offset. 5335 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5336 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5337 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5338 Chain = DAG.getStore( 5339 Val.getValue(1), dl, Val, AddPtr, 5340 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5341 false, false, 0); 5342 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5343 // This does not mean the MTCTR instruction must use R12; it's easier 5344 // to model this as an extra parameter, so do that. 5345 if (isELFv2ABI && !IsPatchPoint) 5346 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5347 } 5348 5349 // Build a sequence of copy-to-reg nodes chained together with token chain 5350 // and flag operands which copy the outgoing args into the appropriate regs. 5351 SDValue InFlag; 5352 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5353 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5354 RegsToPass[i].second, InFlag); 5355 InFlag = Chain.getValue(1); 5356 } 5357 5358 if (isTailCall) 5359 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5360 FPOp, true, TailCallArguments); 5361 5362 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5363 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5364 SPDiff, NumBytes, Ins, InVals, CS); 5365 } 5366 5367 SDValue 5368 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5369 CallingConv::ID CallConv, bool isVarArg, 5370 bool isTailCall, bool IsPatchPoint, 5371 const SmallVectorImpl<ISD::OutputArg> &Outs, 5372 const SmallVectorImpl<SDValue> &OutVals, 5373 const SmallVectorImpl<ISD::InputArg> &Ins, 5374 SDLoc dl, SelectionDAG &DAG, 5375 SmallVectorImpl<SDValue> &InVals, 5376 ImmutableCallSite *CS) const { 5377 5378 unsigned NumOps = Outs.size(); 5379 5380 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5381 bool isPPC64 = PtrVT == MVT::i64; 5382 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5383 5384 MachineFunction &MF = DAG.getMachineFunction(); 5385 5386 // Mark this function as potentially containing a function that contains a 5387 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5388 // and restoring the callers stack pointer in this functions epilog. This is 5389 // done because by tail calling the called function might overwrite the value 5390 // in this function's (MF) stack pointer stack slot 0(SP). 5391 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5392 CallConv == CallingConv::Fast) 5393 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5394 5395 // Count how many bytes are to be pushed on the stack, including the linkage 5396 // area, and parameter passing area. We start with 24/48 bytes, which is 5397 // prereserved space for [SP][CR][LR][3 x unused]. 5398 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5399 unsigned NumBytes = LinkageSize; 5400 5401 // Add up all the space actually used. 5402 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5403 // they all go in registers, but we must reserve stack space for them for 5404 // possible use by the caller. In varargs or 64-bit calls, parameters are 5405 // assigned stack space in order, with padding so Altivec parameters are 5406 // 16-byte aligned. 5407 unsigned nAltivecParamsAtEnd = 0; 5408 for (unsigned i = 0; i != NumOps; ++i) { 5409 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5410 EVT ArgVT = Outs[i].VT; 5411 // Varargs Altivec parameters are padded to a 16 byte boundary. 5412 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5413 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5414 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5415 if (!isVarArg && !isPPC64) { 5416 // Non-varargs Altivec parameters go after all the non-Altivec 5417 // parameters; handle those later so we know how much padding we need. 5418 nAltivecParamsAtEnd++; 5419 continue; 5420 } 5421 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5422 NumBytes = ((NumBytes+15)/16)*16; 5423 } 5424 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5425 } 5426 5427 // Allow for Altivec parameters at the end, if needed. 5428 if (nAltivecParamsAtEnd) { 5429 NumBytes = ((NumBytes+15)/16)*16; 5430 NumBytes += 16*nAltivecParamsAtEnd; 5431 } 5432 5433 // The prolog code of the callee may store up to 8 GPR argument registers to 5434 // the stack, allowing va_start to index over them in memory if its varargs. 5435 // Because we cannot tell if this is needed on the caller side, we have to 5436 // conservatively assume that it is needed. As such, make sure we have at 5437 // least enough stack space for the caller to store the 8 GPRs. 5438 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5439 5440 // Tail call needs the stack to be aligned. 5441 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5442 CallConv == CallingConv::Fast) 5443 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5444 5445 // Calculate by how many bytes the stack has to be adjusted in case of tail 5446 // call optimization. 5447 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5448 5449 // To protect arguments on the stack from being clobbered in a tail call, 5450 // force all the loads to happen before doing any other lowering. 5451 if (isTailCall) 5452 Chain = DAG.getStackArgumentTokenFactor(Chain); 5453 5454 // Adjust the stack pointer for the new arguments... 5455 // These operations are automatically eliminated by the prolog/epilog pass 5456 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5457 dl); 5458 SDValue CallSeqStart = Chain; 5459 5460 // Load the return address and frame pointer so it can be move somewhere else 5461 // later. 5462 SDValue LROp, FPOp; 5463 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5464 dl); 5465 5466 // Set up a copy of the stack pointer for use loading and storing any 5467 // arguments that may not fit in the registers available for argument 5468 // passing. 5469 SDValue StackPtr; 5470 if (isPPC64) 5471 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5472 else 5473 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5474 5475 // Figure out which arguments are going to go in registers, and which in 5476 // memory. Also, if this is a vararg function, floating point operations 5477 // must be stored to our stack, and loaded into integer regs as well, if 5478 // any integer regs are available for argument passing. 5479 unsigned ArgOffset = LinkageSize; 5480 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5481 5482 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5483 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5484 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5485 }; 5486 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5487 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5488 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5489 }; 5490 static const MCPhysReg VR[] = { 5491 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5492 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5493 }; 5494 const unsigned NumGPRs = array_lengthof(GPR_32); 5495 const unsigned NumFPRs = 13; 5496 const unsigned NumVRs = array_lengthof(VR); 5497 5498 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5499 5500 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5501 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5502 5503 SmallVector<SDValue, 8> MemOpChains; 5504 for (unsigned i = 0; i != NumOps; ++i) { 5505 SDValue Arg = OutVals[i]; 5506 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5507 5508 // PtrOff will be used to store the current argument to the stack if a 5509 // register cannot be found for it. 5510 SDValue PtrOff; 5511 5512 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5513 5514 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5515 5516 // On PPC64, promote integers to 64-bit values. 5517 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5518 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5519 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5520 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5521 } 5522 5523 // FIXME memcpy is used way more than necessary. Correctness first. 5524 // Note: "by value" is code for passing a structure by value, not 5525 // basic types. 5526 if (Flags.isByVal()) { 5527 unsigned Size = Flags.getByValSize(); 5528 // Very small objects are passed right-justified. Everything else is 5529 // passed left-justified. 5530 if (Size==1 || Size==2) { 5531 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5532 if (GPR_idx != NumGPRs) { 5533 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5534 MachinePointerInfo(), VT, 5535 false, false, false, 0); 5536 MemOpChains.push_back(Load.getValue(1)); 5537 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5538 5539 ArgOffset += PtrByteSize; 5540 } else { 5541 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5542 PtrOff.getValueType()); 5543 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5544 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5545 CallSeqStart, 5546 Flags, DAG, dl); 5547 ArgOffset += PtrByteSize; 5548 } 5549 continue; 5550 } 5551 // Copy entire object into memory. There are cases where gcc-generated 5552 // code assumes it is there, even if it could be put entirely into 5553 // registers. (This is not what the doc says.) 5554 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5555 CallSeqStart, 5556 Flags, DAG, dl); 5557 5558 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5559 // copy the pieces of the object that fit into registers from the 5560 // parameter save area. 5561 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5562 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5563 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5564 if (GPR_idx != NumGPRs) { 5565 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5566 MachinePointerInfo(), 5567 false, false, false, 0); 5568 MemOpChains.push_back(Load.getValue(1)); 5569 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5570 ArgOffset += PtrByteSize; 5571 } else { 5572 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5573 break; 5574 } 5575 } 5576 continue; 5577 } 5578 5579 switch (Arg.getSimpleValueType().SimpleTy) { 5580 default: llvm_unreachable("Unexpected ValueType for argument!"); 5581 case MVT::i1: 5582 case MVT::i32: 5583 case MVT::i64: 5584 if (GPR_idx != NumGPRs) { 5585 if (Arg.getValueType() == MVT::i1) 5586 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5587 5588 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5589 } else { 5590 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5591 isPPC64, isTailCall, false, MemOpChains, 5592 TailCallArguments, dl); 5593 } 5594 ArgOffset += PtrByteSize; 5595 break; 5596 case MVT::f32: 5597 case MVT::f64: 5598 if (FPR_idx != NumFPRs) { 5599 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5600 5601 if (isVarArg) { 5602 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5603 MachinePointerInfo(), false, false, 0); 5604 MemOpChains.push_back(Store); 5605 5606 // Float varargs are always shadowed in available integer registers 5607 if (GPR_idx != NumGPRs) { 5608 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5609 MachinePointerInfo(), false, false, 5610 false, 0); 5611 MemOpChains.push_back(Load.getValue(1)); 5612 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5613 } 5614 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5615 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5616 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5617 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5618 MachinePointerInfo(), 5619 false, false, false, 0); 5620 MemOpChains.push_back(Load.getValue(1)); 5621 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5622 } 5623 } else { 5624 // If we have any FPRs remaining, we may also have GPRs remaining. 5625 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5626 // GPRs. 5627 if (GPR_idx != NumGPRs) 5628 ++GPR_idx; 5629 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5630 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5631 ++GPR_idx; 5632 } 5633 } else 5634 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5635 isPPC64, isTailCall, false, MemOpChains, 5636 TailCallArguments, dl); 5637 if (isPPC64) 5638 ArgOffset += 8; 5639 else 5640 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5641 break; 5642 case MVT::v4f32: 5643 case MVT::v4i32: 5644 case MVT::v8i16: 5645 case MVT::v16i8: 5646 if (isVarArg) { 5647 // These go aligned on the stack, or in the corresponding R registers 5648 // when within range. The Darwin PPC ABI doc claims they also go in 5649 // V registers; in fact gcc does this only for arguments that are 5650 // prototyped, not for those that match the ... We do it for all 5651 // arguments, seems to work. 5652 while (ArgOffset % 16 !=0) { 5653 ArgOffset += PtrByteSize; 5654 if (GPR_idx != NumGPRs) 5655 GPR_idx++; 5656 } 5657 // We could elide this store in the case where the object fits 5658 // entirely in R registers. Maybe later. 5659 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5660 DAG.getConstant(ArgOffset, dl, PtrVT)); 5661 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5662 MachinePointerInfo(), false, false, 0); 5663 MemOpChains.push_back(Store); 5664 if (VR_idx != NumVRs) { 5665 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5666 MachinePointerInfo(), 5667 false, false, false, 0); 5668 MemOpChains.push_back(Load.getValue(1)); 5669 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5670 } 5671 ArgOffset += 16; 5672 for (unsigned i=0; i<16; i+=PtrByteSize) { 5673 if (GPR_idx == NumGPRs) 5674 break; 5675 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5676 DAG.getConstant(i, dl, PtrVT)); 5677 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5678 false, false, false, 0); 5679 MemOpChains.push_back(Load.getValue(1)); 5680 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5681 } 5682 break; 5683 } 5684 5685 // Non-varargs Altivec params generally go in registers, but have 5686 // stack space allocated at the end. 5687 if (VR_idx != NumVRs) { 5688 // Doesn't have GPR space allocated. 5689 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5690 } else if (nAltivecParamsAtEnd==0) { 5691 // We are emitting Altivec params in order. 5692 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5693 isPPC64, isTailCall, true, MemOpChains, 5694 TailCallArguments, dl); 5695 ArgOffset += 16; 5696 } 5697 break; 5698 } 5699 } 5700 // If all Altivec parameters fit in registers, as they usually do, 5701 // they get stack space following the non-Altivec parameters. We 5702 // don't track this here because nobody below needs it. 5703 // If there are more Altivec parameters than fit in registers emit 5704 // the stores here. 5705 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5706 unsigned j = 0; 5707 // Offset is aligned; skip 1st 12 params which go in V registers. 5708 ArgOffset = ((ArgOffset+15)/16)*16; 5709 ArgOffset += 12*16; 5710 for (unsigned i = 0; i != NumOps; ++i) { 5711 SDValue Arg = OutVals[i]; 5712 EVT ArgType = Outs[i].VT; 5713 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5714 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5715 if (++j > NumVRs) { 5716 SDValue PtrOff; 5717 // We are emitting Altivec params in order. 5718 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5719 isPPC64, isTailCall, true, MemOpChains, 5720 TailCallArguments, dl); 5721 ArgOffset += 16; 5722 } 5723 } 5724 } 5725 } 5726 5727 if (!MemOpChains.empty()) 5728 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5729 5730 // On Darwin, R12 must contain the address of an indirect callee. This does 5731 // not mean the MTCTR instruction must use R12; it's easier to model this as 5732 // an extra parameter, so do that. 5733 if (!isTailCall && 5734 !isFunctionGlobalAddress(Callee) && 5735 !isa<ExternalSymbolSDNode>(Callee) && 5736 !isBLACompatibleAddress(Callee, DAG)) 5737 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5738 PPC::R12), Callee)); 5739 5740 // Build a sequence of copy-to-reg nodes chained together with token chain 5741 // and flag operands which copy the outgoing args into the appropriate regs. 5742 SDValue InFlag; 5743 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5744 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5745 RegsToPass[i].second, InFlag); 5746 InFlag = Chain.getValue(1); 5747 } 5748 5749 if (isTailCall) 5750 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5751 FPOp, true, TailCallArguments); 5752 5753 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5754 /* unused except on PPC64 ELFv1 */ false, DAG, 5755 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5756 NumBytes, Ins, InVals, CS); 5757 } 5758 5759 bool 5760 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5761 MachineFunction &MF, bool isVarArg, 5762 const SmallVectorImpl<ISD::OutputArg> &Outs, 5763 LLVMContext &Context) const { 5764 SmallVector<CCValAssign, 16> RVLocs; 5765 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5766 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5767 } 5768 5769 SDValue 5770 PPCTargetLowering::LowerReturn(SDValue Chain, 5771 CallingConv::ID CallConv, bool isVarArg, 5772 const SmallVectorImpl<ISD::OutputArg> &Outs, 5773 const SmallVectorImpl<SDValue> &OutVals, 5774 SDLoc dl, SelectionDAG &DAG) const { 5775 5776 SmallVector<CCValAssign, 16> RVLocs; 5777 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5778 *DAG.getContext()); 5779 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5780 5781 SDValue Flag; 5782 SmallVector<SDValue, 4> RetOps(1, Chain); 5783 5784 // Copy the result values into the output registers. 5785 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5786 CCValAssign &VA = RVLocs[i]; 5787 assert(VA.isRegLoc() && "Can only return in registers!"); 5788 5789 SDValue Arg = OutVals[i]; 5790 5791 switch (VA.getLocInfo()) { 5792 default: llvm_unreachable("Unknown loc info!"); 5793 case CCValAssign::Full: break; 5794 case CCValAssign::AExt: 5795 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5796 break; 5797 case CCValAssign::ZExt: 5798 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5799 break; 5800 case CCValAssign::SExt: 5801 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5802 break; 5803 } 5804 5805 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5806 Flag = Chain.getValue(1); 5807 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5808 } 5809 5810 RetOps[0] = Chain; // Update chain. 5811 5812 // Add the flag if we have it. 5813 if (Flag.getNode()) 5814 RetOps.push_back(Flag); 5815 5816 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5817 } 5818 5819 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5820 const PPCSubtarget &Subtarget) const { 5821 // When we pop the dynamic allocation we need to restore the SP link. 5822 SDLoc dl(Op); 5823 5824 // Get the corect type for pointers. 5825 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5826 5827 // Construct the stack pointer operand. 5828 bool isPPC64 = Subtarget.isPPC64(); 5829 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5830 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5831 5832 // Get the operands for the STACKRESTORE. 5833 SDValue Chain = Op.getOperand(0); 5834 SDValue SaveSP = Op.getOperand(1); 5835 5836 // Load the old link SP. 5837 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5838 MachinePointerInfo(), 5839 false, false, false, 0); 5840 5841 // Restore the stack pointer. 5842 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5843 5844 // Store the old link SP. 5845 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5846 false, false, 0); 5847 } 5848 5849 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5850 MachineFunction &MF = DAG.getMachineFunction(); 5851 bool isPPC64 = Subtarget.isPPC64(); 5852 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5853 5854 // Get current frame pointer save index. The users of this index will be 5855 // primarily DYNALLOC instructions. 5856 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5857 int RASI = FI->getReturnAddrSaveIndex(); 5858 5859 // If the frame pointer save index hasn't been defined yet. 5860 if (!RASI) { 5861 // Find out what the fix offset of the frame pointer save area. 5862 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5863 // Allocate the frame index for frame pointer save area. 5864 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5865 // Save the result. 5866 FI->setReturnAddrSaveIndex(RASI); 5867 } 5868 return DAG.getFrameIndex(RASI, PtrVT); 5869 } 5870 5871 SDValue 5872 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5873 MachineFunction &MF = DAG.getMachineFunction(); 5874 bool isPPC64 = Subtarget.isPPC64(); 5875 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5876 5877 // Get current frame pointer save index. The users of this index will be 5878 // primarily DYNALLOC instructions. 5879 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5880 int FPSI = FI->getFramePointerSaveIndex(); 5881 5882 // If the frame pointer save index hasn't been defined yet. 5883 if (!FPSI) { 5884 // Find out what the fix offset of the frame pointer save area. 5885 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5886 // Allocate the frame index for frame pointer save area. 5887 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5888 // Save the result. 5889 FI->setFramePointerSaveIndex(FPSI); 5890 } 5891 return DAG.getFrameIndex(FPSI, PtrVT); 5892 } 5893 5894 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5895 SelectionDAG &DAG, 5896 const PPCSubtarget &Subtarget) const { 5897 // Get the inputs. 5898 SDValue Chain = Op.getOperand(0); 5899 SDValue Size = Op.getOperand(1); 5900 SDLoc dl(Op); 5901 5902 // Get the corect type for pointers. 5903 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5904 // Negate the size. 5905 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5906 DAG.getConstant(0, dl, PtrVT), Size); 5907 // Construct a node for the frame pointer save index. 5908 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5909 // Build a DYNALLOC node. 5910 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5911 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5912 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5913 } 5914 5915 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5916 SelectionDAG &DAG) const { 5917 SDLoc DL(Op); 5918 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5919 DAG.getVTList(MVT::i32, MVT::Other), 5920 Op.getOperand(0), Op.getOperand(1)); 5921 } 5922 5923 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5924 SelectionDAG &DAG) const { 5925 SDLoc DL(Op); 5926 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5927 Op.getOperand(0), Op.getOperand(1)); 5928 } 5929 5930 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5931 if (Op.getValueType().isVector()) 5932 return LowerVectorLoad(Op, DAG); 5933 5934 assert(Op.getValueType() == MVT::i1 && 5935 "Custom lowering only for i1 loads"); 5936 5937 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5938 5939 SDLoc dl(Op); 5940 LoadSDNode *LD = cast<LoadSDNode>(Op); 5941 5942 SDValue Chain = LD->getChain(); 5943 SDValue BasePtr = LD->getBasePtr(); 5944 MachineMemOperand *MMO = LD->getMemOperand(); 5945 5946 SDValue NewLD = 5947 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5948 BasePtr, MVT::i8, MMO); 5949 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5950 5951 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5952 return DAG.getMergeValues(Ops, dl); 5953 } 5954 5955 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5956 if (Op.getOperand(1).getValueType().isVector()) 5957 return LowerVectorStore(Op, DAG); 5958 5959 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5960 "Custom lowering only for i1 stores"); 5961 5962 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5963 5964 SDLoc dl(Op); 5965 StoreSDNode *ST = cast<StoreSDNode>(Op); 5966 5967 SDValue Chain = ST->getChain(); 5968 SDValue BasePtr = ST->getBasePtr(); 5969 SDValue Value = ST->getValue(); 5970 MachineMemOperand *MMO = ST->getMemOperand(); 5971 5972 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5973 Value); 5974 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 5975 } 5976 5977 // FIXME: Remove this once the ANDI glue bug is fixed: 5978 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 5979 assert(Op.getValueType() == MVT::i1 && 5980 "Custom lowering only for i1 results"); 5981 5982 SDLoc DL(Op); 5983 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 5984 Op.getOperand(0)); 5985 } 5986 5987 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 5988 /// possible. 5989 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5990 // Not FP? Not a fsel. 5991 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 5992 !Op.getOperand(2).getValueType().isFloatingPoint()) 5993 return Op; 5994 5995 // We might be able to do better than this under some circumstances, but in 5996 // general, fsel-based lowering of select is a finite-math-only optimization. 5997 // For more information, see section F.3 of the 2.06 ISA specification. 5998 if (!DAG.getTarget().Options.NoInfsFPMath || 5999 !DAG.getTarget().Options.NoNaNsFPMath) 6000 return Op; 6001 // TODO: Propagate flags from the select rather than global settings. 6002 SDNodeFlags Flags; 6003 Flags.setNoInfs(true); 6004 Flags.setNoNaNs(true); 6005 6006 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6007 6008 EVT ResVT = Op.getValueType(); 6009 EVT CmpVT = Op.getOperand(0).getValueType(); 6010 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6011 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6012 SDLoc dl(Op); 6013 6014 // If the RHS of the comparison is a 0.0, we don't need to do the 6015 // subtraction at all. 6016 SDValue Sel1; 6017 if (isFloatingPointZero(RHS)) 6018 switch (CC) { 6019 default: break; // SETUO etc aren't handled by fsel. 6020 case ISD::SETNE: 6021 std::swap(TV, FV); 6022 case ISD::SETEQ: 6023 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6024 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6025 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6026 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6027 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6028 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6029 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6030 case ISD::SETULT: 6031 case ISD::SETLT: 6032 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6033 case ISD::SETOGE: 6034 case ISD::SETGE: 6035 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6036 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6037 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6038 case ISD::SETUGT: 6039 case ISD::SETGT: 6040 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6041 case ISD::SETOLE: 6042 case ISD::SETLE: 6043 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6044 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6045 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6046 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6047 } 6048 6049 SDValue Cmp; 6050 switch (CC) { 6051 default: break; // SETUO etc aren't handled by fsel. 6052 case ISD::SETNE: 6053 std::swap(TV, FV); 6054 case ISD::SETEQ: 6055 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6056 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6057 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6058 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6059 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6060 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6061 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6062 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6063 case ISD::SETULT: 6064 case ISD::SETLT: 6065 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6066 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6067 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6068 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6069 case ISD::SETOGE: 6070 case ISD::SETGE: 6071 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6072 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6073 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6074 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6075 case ISD::SETUGT: 6076 case ISD::SETGT: 6077 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6078 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6079 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6080 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6081 case ISD::SETOLE: 6082 case ISD::SETLE: 6083 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6084 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6085 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6086 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6087 } 6088 return Op; 6089 } 6090 6091 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6092 SelectionDAG &DAG, 6093 SDLoc dl) const { 6094 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6095 SDValue Src = Op.getOperand(0); 6096 if (Src.getValueType() == MVT::f32) 6097 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6098 6099 SDValue Tmp; 6100 switch (Op.getSimpleValueType().SimpleTy) { 6101 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6102 case MVT::i32: 6103 Tmp = DAG.getNode( 6104 Op.getOpcode() == ISD::FP_TO_SINT 6105 ? PPCISD::FCTIWZ 6106 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6107 dl, MVT::f64, Src); 6108 break; 6109 case MVT::i64: 6110 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6111 "i64 FP_TO_UINT is supported only with FPCVT"); 6112 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6113 PPCISD::FCTIDUZ, 6114 dl, MVT::f64, Src); 6115 break; 6116 } 6117 6118 // Convert the FP value to an int value through memory. 6119 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6120 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6121 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6122 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6123 MachinePointerInfo MPI = 6124 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6125 6126 // Emit a store to the stack slot. 6127 SDValue Chain; 6128 if (i32Stack) { 6129 MachineFunction &MF = DAG.getMachineFunction(); 6130 MachineMemOperand *MMO = 6131 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6132 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6133 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6134 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6135 } else 6136 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6137 MPI, false, false, 0); 6138 6139 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6140 // add in a bias. 6141 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6142 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6143 DAG.getConstant(4, dl, FIPtr.getValueType())); 6144 MPI = MPI.getWithOffset(4); 6145 } 6146 6147 RLI.Chain = Chain; 6148 RLI.Ptr = FIPtr; 6149 RLI.MPI = MPI; 6150 } 6151 6152 /// \brief Custom lowers floating point to integer conversions to use 6153 /// the direct move instructions available in ISA 2.07 to avoid the 6154 /// need for load/store combinations. 6155 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6156 SelectionDAG &DAG, 6157 SDLoc dl) const { 6158 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6159 SDValue Src = Op.getOperand(0); 6160 6161 if (Src.getValueType() == MVT::f32) 6162 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6163 6164 SDValue Tmp; 6165 switch (Op.getSimpleValueType().SimpleTy) { 6166 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6167 case MVT::i32: 6168 Tmp = DAG.getNode( 6169 Op.getOpcode() == ISD::FP_TO_SINT 6170 ? PPCISD::FCTIWZ 6171 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6172 dl, MVT::f64, Src); 6173 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6174 break; 6175 case MVT::i64: 6176 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6177 "i64 FP_TO_UINT is supported only with FPCVT"); 6178 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6179 PPCISD::FCTIDUZ, 6180 dl, MVT::f64, Src); 6181 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6182 break; 6183 } 6184 return Tmp; 6185 } 6186 6187 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6188 SDLoc dl) const { 6189 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6190 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6191 6192 ReuseLoadInfo RLI; 6193 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6194 6195 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6196 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6197 RLI.Ranges); 6198 } 6199 6200 // We're trying to insert a regular store, S, and then a load, L. If the 6201 // incoming value, O, is a load, we might just be able to have our load use the 6202 // address used by O. However, we don't know if anything else will store to 6203 // that address before we can load from it. To prevent this situation, we need 6204 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6205 // the same chain operand as O, we create a token factor from the chain results 6206 // of O and L, and we replace all uses of O's chain result with that token 6207 // factor (see spliceIntoChain below for this last part). 6208 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6209 ReuseLoadInfo &RLI, 6210 SelectionDAG &DAG, 6211 ISD::LoadExtType ET) const { 6212 SDLoc dl(Op); 6213 if (ET == ISD::NON_EXTLOAD && 6214 (Op.getOpcode() == ISD::FP_TO_UINT || 6215 Op.getOpcode() == ISD::FP_TO_SINT) && 6216 isOperationLegalOrCustom(Op.getOpcode(), 6217 Op.getOperand(0).getValueType())) { 6218 6219 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6220 return true; 6221 } 6222 6223 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6224 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6225 LD->isNonTemporal()) 6226 return false; 6227 if (LD->getMemoryVT() != MemVT) 6228 return false; 6229 6230 RLI.Ptr = LD->getBasePtr(); 6231 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6232 assert(LD->getAddressingMode() == ISD::PRE_INC && 6233 "Non-pre-inc AM on PPC?"); 6234 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6235 LD->getOffset()); 6236 } 6237 6238 RLI.Chain = LD->getChain(); 6239 RLI.MPI = LD->getPointerInfo(); 6240 RLI.IsInvariant = LD->isInvariant(); 6241 RLI.Alignment = LD->getAlignment(); 6242 RLI.AAInfo = LD->getAAInfo(); 6243 RLI.Ranges = LD->getRanges(); 6244 6245 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6246 return true; 6247 } 6248 6249 // Given the head of the old chain, ResChain, insert a token factor containing 6250 // it and NewResChain, and make users of ResChain now be users of that token 6251 // factor. 6252 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6253 SDValue NewResChain, 6254 SelectionDAG &DAG) const { 6255 if (!ResChain) 6256 return; 6257 6258 SDLoc dl(NewResChain); 6259 6260 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6261 NewResChain, DAG.getUNDEF(MVT::Other)); 6262 assert(TF.getNode() != NewResChain.getNode() && 6263 "A new TF really is required here"); 6264 6265 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6266 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6267 } 6268 6269 /// \brief Custom lowers integer to floating point conversions to use 6270 /// the direct move instructions available in ISA 2.07 to avoid the 6271 /// need for load/store combinations. 6272 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6273 SelectionDAG &DAG, 6274 SDLoc dl) const { 6275 assert((Op.getValueType() == MVT::f32 || 6276 Op.getValueType() == MVT::f64) && 6277 "Invalid floating point type as target of conversion"); 6278 assert(Subtarget.hasFPCVT() && 6279 "Int to FP conversions with direct moves require FPCVT"); 6280 SDValue FP; 6281 SDValue Src = Op.getOperand(0); 6282 bool SinglePrec = Op.getValueType() == MVT::f32; 6283 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6284 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6285 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6286 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6287 6288 if (WordInt) { 6289 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6290 dl, MVT::f64, Src); 6291 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6292 } 6293 else { 6294 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6295 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6296 } 6297 6298 return FP; 6299 } 6300 6301 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6302 SelectionDAG &DAG) const { 6303 SDLoc dl(Op); 6304 6305 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6306 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6307 return SDValue(); 6308 6309 SDValue Value = Op.getOperand(0); 6310 // The values are now known to be -1 (false) or 1 (true). To convert this 6311 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6312 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6313 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6314 6315 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 6316 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs, 6317 FPHalfs, FPHalfs); 6318 6319 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6320 6321 if (Op.getValueType() != MVT::v4f64) 6322 Value = DAG.getNode(ISD::FP_ROUND, dl, 6323 Op.getValueType(), Value, 6324 DAG.getIntPtrConstant(1, dl)); 6325 return Value; 6326 } 6327 6328 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6329 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6330 return SDValue(); 6331 6332 if (Op.getOperand(0).getValueType() == MVT::i1) 6333 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6334 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6335 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6336 6337 // If we have direct moves, we can do all the conversion, skip the store/load 6338 // however, without FPCVT we can't do most conversions. 6339 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6340 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6341 6342 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6343 "UINT_TO_FP is supported only with FPCVT"); 6344 6345 // If we have FCFIDS, then use it when converting to single-precision. 6346 // Otherwise, convert to double-precision and then round. 6347 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6348 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6349 : PPCISD::FCFIDS) 6350 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6351 : PPCISD::FCFID); 6352 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6353 ? MVT::f32 6354 : MVT::f64; 6355 6356 if (Op.getOperand(0).getValueType() == MVT::i64) { 6357 SDValue SINT = Op.getOperand(0); 6358 // When converting to single-precision, we actually need to convert 6359 // to double-precision first and then round to single-precision. 6360 // To avoid double-rounding effects during that operation, we have 6361 // to prepare the input operand. Bits that might be truncated when 6362 // converting to double-precision are replaced by a bit that won't 6363 // be lost at this stage, but is below the single-precision rounding 6364 // position. 6365 // 6366 // However, if -enable-unsafe-fp-math is in effect, accept double 6367 // rounding to avoid the extra overhead. 6368 if (Op.getValueType() == MVT::f32 && 6369 !Subtarget.hasFPCVT() && 6370 !DAG.getTarget().Options.UnsafeFPMath) { 6371 6372 // Twiddle input to make sure the low 11 bits are zero. (If this 6373 // is the case, we are guaranteed the value will fit into the 53 bit 6374 // mantissa of an IEEE double-precision value without rounding.) 6375 // If any of those low 11 bits were not zero originally, make sure 6376 // bit 12 (value 2048) is set instead, so that the final rounding 6377 // to single-precision gets the correct result. 6378 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6379 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6380 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6381 Round, DAG.getConstant(2047, dl, MVT::i64)); 6382 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6383 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6384 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6385 6386 // However, we cannot use that value unconditionally: if the magnitude 6387 // of the input value is small, the bit-twiddling we did above might 6388 // end up visibly changing the output. Fortunately, in that case, we 6389 // don't need to twiddle bits since the original input will convert 6390 // exactly to double-precision floating-point already. Therefore, 6391 // construct a conditional to use the original value if the top 11 6392 // bits are all sign-bit copies, and use the rounded value computed 6393 // above otherwise. 6394 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6395 SINT, DAG.getConstant(53, dl, MVT::i32)); 6396 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6397 Cond, DAG.getConstant(1, dl, MVT::i64)); 6398 Cond = DAG.getSetCC(dl, MVT::i32, 6399 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6400 6401 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6402 } 6403 6404 ReuseLoadInfo RLI; 6405 SDValue Bits; 6406 6407 MachineFunction &MF = DAG.getMachineFunction(); 6408 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6409 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6410 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6411 RLI.Ranges); 6412 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6413 } else if (Subtarget.hasLFIWAX() && 6414 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6415 MachineMemOperand *MMO = 6416 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6417 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6418 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6419 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6420 DAG.getVTList(MVT::f64, MVT::Other), 6421 Ops, MVT::i32, MMO); 6422 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6423 } else if (Subtarget.hasFPCVT() && 6424 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6425 MachineMemOperand *MMO = 6426 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6427 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6428 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6429 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6430 DAG.getVTList(MVT::f64, MVT::Other), 6431 Ops, MVT::i32, MMO); 6432 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6433 } else if (((Subtarget.hasLFIWAX() && 6434 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6435 (Subtarget.hasFPCVT() && 6436 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6437 SINT.getOperand(0).getValueType() == MVT::i32) { 6438 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6439 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6440 6441 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6442 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6443 6444 SDValue Store = DAG.getStore( 6445 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6446 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6447 false, false, 0); 6448 6449 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6450 "Expected an i32 store"); 6451 6452 RLI.Ptr = FIdx; 6453 RLI.Chain = Store; 6454 RLI.MPI = 6455 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6456 RLI.Alignment = 4; 6457 6458 MachineMemOperand *MMO = 6459 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6460 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6461 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6462 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6463 PPCISD::LFIWZX : PPCISD::LFIWAX, 6464 dl, DAG.getVTList(MVT::f64, MVT::Other), 6465 Ops, MVT::i32, MMO); 6466 } else 6467 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6468 6469 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6470 6471 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6472 FP = DAG.getNode(ISD::FP_ROUND, dl, 6473 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6474 return FP; 6475 } 6476 6477 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6478 "Unhandled INT_TO_FP type in custom expander!"); 6479 // Since we only generate this in 64-bit mode, we can take advantage of 6480 // 64-bit registers. In particular, sign extend the input value into the 6481 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6482 // then lfd it and fcfid it. 6483 MachineFunction &MF = DAG.getMachineFunction(); 6484 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6485 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6486 6487 SDValue Ld; 6488 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6489 ReuseLoadInfo RLI; 6490 bool ReusingLoad; 6491 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6492 DAG))) { 6493 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6494 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6495 6496 SDValue Store = DAG.getStore( 6497 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6498 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6499 false, false, 0); 6500 6501 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6502 "Expected an i32 store"); 6503 6504 RLI.Ptr = FIdx; 6505 RLI.Chain = Store; 6506 RLI.MPI = 6507 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6508 RLI.Alignment = 4; 6509 } 6510 6511 MachineMemOperand *MMO = 6512 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6513 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6514 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6515 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6516 PPCISD::LFIWZX : PPCISD::LFIWAX, 6517 dl, DAG.getVTList(MVT::f64, MVT::Other), 6518 Ops, MVT::i32, MMO); 6519 if (ReusingLoad) 6520 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6521 } else { 6522 assert(Subtarget.isPPC64() && 6523 "i32->FP without LFIWAX supported only on PPC64"); 6524 6525 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6526 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6527 6528 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6529 Op.getOperand(0)); 6530 6531 // STD the extended value into the stack slot. 6532 SDValue Store = DAG.getStore( 6533 DAG.getEntryNode(), dl, Ext64, FIdx, 6534 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6535 false, false, 0); 6536 6537 // Load the value as a double. 6538 Ld = DAG.getLoad( 6539 MVT::f64, dl, Store, FIdx, 6540 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6541 false, false, false, 0); 6542 } 6543 6544 // FCFID it and return it. 6545 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6546 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6547 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6548 DAG.getIntPtrConstant(0, dl)); 6549 return FP; 6550 } 6551 6552 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6553 SelectionDAG &DAG) const { 6554 SDLoc dl(Op); 6555 /* 6556 The rounding mode is in bits 30:31 of FPSR, and has the following 6557 settings: 6558 00 Round to nearest 6559 01 Round to 0 6560 10 Round to +inf 6561 11 Round to -inf 6562 6563 FLT_ROUNDS, on the other hand, expects the following: 6564 -1 Undefined 6565 0 Round to 0 6566 1 Round to nearest 6567 2 Round to +inf 6568 3 Round to -inf 6569 6570 To perform the conversion, we do: 6571 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6572 */ 6573 6574 MachineFunction &MF = DAG.getMachineFunction(); 6575 EVT VT = Op.getValueType(); 6576 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6577 6578 // Save FP Control Word to register 6579 EVT NodeTys[] = { 6580 MVT::f64, // return register 6581 MVT::Glue // unused in this context 6582 }; 6583 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6584 6585 // Save FP register to stack slot 6586 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6587 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6588 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6589 StackSlot, MachinePointerInfo(), false, false,0); 6590 6591 // Load FP Control Word from low 32 bits of stack slot. 6592 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6593 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6594 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6595 false, false, false, 0); 6596 6597 // Transform as necessary 6598 SDValue CWD1 = 6599 DAG.getNode(ISD::AND, dl, MVT::i32, 6600 CWD, DAG.getConstant(3, dl, MVT::i32)); 6601 SDValue CWD2 = 6602 DAG.getNode(ISD::SRL, dl, MVT::i32, 6603 DAG.getNode(ISD::AND, dl, MVT::i32, 6604 DAG.getNode(ISD::XOR, dl, MVT::i32, 6605 CWD, DAG.getConstant(3, dl, MVT::i32)), 6606 DAG.getConstant(3, dl, MVT::i32)), 6607 DAG.getConstant(1, dl, MVT::i32)); 6608 6609 SDValue RetVal = 6610 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6611 6612 return DAG.getNode((VT.getSizeInBits() < 16 ? 6613 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6614 } 6615 6616 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6617 EVT VT = Op.getValueType(); 6618 unsigned BitWidth = VT.getSizeInBits(); 6619 SDLoc dl(Op); 6620 assert(Op.getNumOperands() == 3 && 6621 VT == Op.getOperand(1).getValueType() && 6622 "Unexpected SHL!"); 6623 6624 // Expand into a bunch of logical ops. Note that these ops 6625 // depend on the PPC behavior for oversized shift amounts. 6626 SDValue Lo = Op.getOperand(0); 6627 SDValue Hi = Op.getOperand(1); 6628 SDValue Amt = Op.getOperand(2); 6629 EVT AmtVT = Amt.getValueType(); 6630 6631 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6632 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6633 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6634 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6635 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6636 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6637 DAG.getConstant(-BitWidth, dl, AmtVT)); 6638 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6639 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6640 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6641 SDValue OutOps[] = { OutLo, OutHi }; 6642 return DAG.getMergeValues(OutOps, dl); 6643 } 6644 6645 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6646 EVT VT = Op.getValueType(); 6647 SDLoc dl(Op); 6648 unsigned BitWidth = VT.getSizeInBits(); 6649 assert(Op.getNumOperands() == 3 && 6650 VT == Op.getOperand(1).getValueType() && 6651 "Unexpected SRL!"); 6652 6653 // Expand into a bunch of logical ops. Note that these ops 6654 // depend on the PPC behavior for oversized shift amounts. 6655 SDValue Lo = Op.getOperand(0); 6656 SDValue Hi = Op.getOperand(1); 6657 SDValue Amt = Op.getOperand(2); 6658 EVT AmtVT = Amt.getValueType(); 6659 6660 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6661 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6662 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6663 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6664 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6665 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6666 DAG.getConstant(-BitWidth, dl, AmtVT)); 6667 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6668 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6669 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6670 SDValue OutOps[] = { OutLo, OutHi }; 6671 return DAG.getMergeValues(OutOps, dl); 6672 } 6673 6674 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6675 SDLoc dl(Op); 6676 EVT VT = Op.getValueType(); 6677 unsigned BitWidth = VT.getSizeInBits(); 6678 assert(Op.getNumOperands() == 3 && 6679 VT == Op.getOperand(1).getValueType() && 6680 "Unexpected SRA!"); 6681 6682 // Expand into a bunch of logical ops, followed by a select_cc. 6683 SDValue Lo = Op.getOperand(0); 6684 SDValue Hi = Op.getOperand(1); 6685 SDValue Amt = Op.getOperand(2); 6686 EVT AmtVT = Amt.getValueType(); 6687 6688 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6689 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6690 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6691 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6692 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6693 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6694 DAG.getConstant(-BitWidth, dl, AmtVT)); 6695 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6696 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6697 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6698 Tmp4, Tmp6, ISD::SETLE); 6699 SDValue OutOps[] = { OutLo, OutHi }; 6700 return DAG.getMergeValues(OutOps, dl); 6701 } 6702 6703 //===----------------------------------------------------------------------===// 6704 // Vector related lowering. 6705 // 6706 6707 /// BuildSplatI - Build a canonical splati of Val with an element size of 6708 /// SplatSize. Cast the result to VT. 6709 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6710 SelectionDAG &DAG, SDLoc dl) { 6711 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6712 6713 static const MVT VTys[] = { // canonical VT to use for each size. 6714 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6715 }; 6716 6717 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6718 6719 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6720 if (Val == -1) 6721 SplatSize = 1; 6722 6723 EVT CanonicalVT = VTys[SplatSize-1]; 6724 6725 // Build a canonical splat for this value. 6726 SDValue Elt = DAG.getConstant(Val, dl, MVT::i32); 6727 SmallVector<SDValue, 8> Ops; 6728 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 6729 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops); 6730 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 6731 } 6732 6733 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6734 /// specified intrinsic ID. 6735 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6736 SelectionDAG &DAG, SDLoc dl, 6737 EVT DestVT = MVT::Other) { 6738 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6739 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6740 DAG.getConstant(IID, dl, MVT::i32), Op); 6741 } 6742 6743 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6744 /// specified intrinsic ID. 6745 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6746 SelectionDAG &DAG, SDLoc dl, 6747 EVT DestVT = MVT::Other) { 6748 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6749 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6750 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6751 } 6752 6753 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6754 /// specified intrinsic ID. 6755 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6756 SDValue Op2, SelectionDAG &DAG, 6757 SDLoc dl, EVT DestVT = MVT::Other) { 6758 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6759 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6760 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6761 } 6762 6763 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6764 /// amount. The result has the specified value type. 6765 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6766 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6767 // Force LHS/RHS to be the right type. 6768 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6769 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6770 6771 int Ops[16]; 6772 for (unsigned i = 0; i != 16; ++i) 6773 Ops[i] = i + Amt; 6774 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6775 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6776 } 6777 6778 // If this is a case we can't handle, return null and let the default 6779 // expansion code take care of it. If we CAN select this case, and if it 6780 // selects to a single instruction, return Op. Otherwise, if we can codegen 6781 // this case more efficiently than a constant pool load, lower it to the 6782 // sequence of ops that should be used. 6783 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6784 SelectionDAG &DAG) const { 6785 SDLoc dl(Op); 6786 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6787 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6788 6789 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6790 // We first build an i32 vector, load it into a QPX register, 6791 // then convert it to a floating-point vector and compare it 6792 // to a zero vector to get the boolean result. 6793 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6794 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6795 MachinePointerInfo PtrInfo = 6796 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6797 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6798 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6799 6800 assert(BVN->getNumOperands() == 4 && 6801 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6802 6803 bool IsConst = true; 6804 for (unsigned i = 0; i < 4; ++i) { 6805 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6806 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6807 IsConst = false; 6808 break; 6809 } 6810 } 6811 6812 if (IsConst) { 6813 Constant *One = 6814 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6815 Constant *NegOne = 6816 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6817 6818 SmallVector<Constant*, 4> CV(4, NegOne); 6819 for (unsigned i = 0; i < 4; ++i) { 6820 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6821 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6822 else if (cast<ConstantSDNode>(BVN->getOperand(i))-> 6823 getConstantIntValue()->isZero()) 6824 continue; 6825 else 6826 CV[i] = One; 6827 } 6828 6829 Constant *CP = ConstantVector::get(CV); 6830 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6831 16 /* alignment */); 6832 6833 SmallVector<SDValue, 2> Ops; 6834 Ops.push_back(DAG.getEntryNode()); 6835 Ops.push_back(CPIdx); 6836 6837 SmallVector<EVT, 2> ValueVTs; 6838 ValueVTs.push_back(MVT::v4i1); 6839 ValueVTs.push_back(MVT::Other); // chain 6840 SDVTList VTs = DAG.getVTList(ValueVTs); 6841 6842 return DAG.getMemIntrinsicNode( 6843 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6844 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6845 } 6846 6847 SmallVector<SDValue, 4> Stores; 6848 for (unsigned i = 0; i < 4; ++i) { 6849 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6850 6851 unsigned Offset = 4*i; 6852 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6853 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6854 6855 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6856 if (StoreSize > 4) { 6857 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6858 BVN->getOperand(i), Idx, 6859 PtrInfo.getWithOffset(Offset), 6860 MVT::i32, false, false, 0)); 6861 } else { 6862 SDValue StoreValue = BVN->getOperand(i); 6863 if (StoreSize < 4) 6864 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6865 6866 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6867 StoreValue, Idx, 6868 PtrInfo.getWithOffset(Offset), 6869 false, false, 0)); 6870 } 6871 } 6872 6873 SDValue StoreChain; 6874 if (!Stores.empty()) 6875 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6876 else 6877 StoreChain = DAG.getEntryNode(); 6878 6879 // Now load from v4i32 into the QPX register; this will extend it to 6880 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6881 // is typed as v4f64 because the QPX register integer states are not 6882 // explicitly represented. 6883 6884 SmallVector<SDValue, 2> Ops; 6885 Ops.push_back(StoreChain); 6886 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6887 Ops.push_back(FIdx); 6888 6889 SmallVector<EVT, 2> ValueVTs; 6890 ValueVTs.push_back(MVT::v4f64); 6891 ValueVTs.push_back(MVT::Other); // chain 6892 SDVTList VTs = DAG.getVTList(ValueVTs); 6893 6894 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6895 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6896 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6897 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6898 LoadedVect); 6899 6900 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64); 6901 FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 6902 FPZeros, FPZeros, FPZeros, FPZeros); 6903 6904 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6905 } 6906 6907 // All other QPX vectors are handled by generic code. 6908 if (Subtarget.hasQPX()) 6909 return SDValue(); 6910 6911 // Check if this is a splat of a constant value. 6912 APInt APSplatBits, APSplatUndef; 6913 unsigned SplatBitSize; 6914 bool HasAnyUndefs; 6915 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6916 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6917 SplatBitSize > 32) 6918 return SDValue(); 6919 6920 unsigned SplatBits = APSplatBits.getZExtValue(); 6921 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6922 unsigned SplatSize = SplatBitSize / 8; 6923 6924 // First, handle single instruction cases. 6925 6926 // All zeros? 6927 if (SplatBits == 0) { 6928 // Canonicalize all zero vectors to be v4i32. 6929 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6930 SDValue Z = DAG.getConstant(0, dl, MVT::i32); 6931 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 6932 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6933 } 6934 return Op; 6935 } 6936 6937 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6938 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6939 (32-SplatBitSize)); 6940 if (SextVal >= -16 && SextVal <= 15) 6941 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6942 6943 // Two instruction sequences. 6944 6945 // If this value is in the range [-32,30] and is even, use: 6946 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6947 // If this value is in the range [17,31] and is odd, use: 6948 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6949 // If this value is in the range [-31,-17] and is odd, use: 6950 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6951 // Note the last two are three-instruction sequences. 6952 if (SextVal >= -32 && SextVal <= 31) { 6953 // To avoid having these optimizations undone by constant folding, 6954 // we convert to a pseudo that will be expanded later into one of 6955 // the above forms. 6956 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6957 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6958 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6959 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6960 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6961 if (VT == Op.getValueType()) 6962 return RetVal; 6963 else 6964 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6965 } 6966 6967 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6968 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6969 // for fneg/fabs. 6970 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6971 // Make -1 and vspltisw -1: 6972 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6973 6974 // Make the VSLW intrinsic, computing 0x8000_0000. 6975 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6976 OnesV, DAG, dl); 6977 6978 // xor by OnesV to invert it. 6979 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6980 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6981 } 6982 6983 // Check to see if this is a wide variety of vsplti*, binop self cases. 6984 static const signed char SplatCsts[] = { 6985 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 6986 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 6987 }; 6988 6989 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 6990 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 6991 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 6992 int i = SplatCsts[idx]; 6993 6994 // Figure out what shift amount will be used by altivec if shifted by i in 6995 // this splat size. 6996 unsigned TypeShiftAmt = i & (SplatBitSize-1); 6997 6998 // vsplti + shl self. 6999 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7000 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7001 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7002 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7003 Intrinsic::ppc_altivec_vslw 7004 }; 7005 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7006 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7007 } 7008 7009 // vsplti + srl self. 7010 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7011 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7012 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7013 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7014 Intrinsic::ppc_altivec_vsrw 7015 }; 7016 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7017 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7018 } 7019 7020 // vsplti + sra self. 7021 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7022 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7023 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7024 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7025 Intrinsic::ppc_altivec_vsraw 7026 }; 7027 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7028 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7029 } 7030 7031 // vsplti + rol self. 7032 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7033 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7034 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7035 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7036 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7037 Intrinsic::ppc_altivec_vrlw 7038 }; 7039 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7040 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7041 } 7042 7043 // t = vsplti c, result = vsldoi t, t, 1 7044 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7045 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7046 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7047 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7048 } 7049 // t = vsplti c, result = vsldoi t, t, 2 7050 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7051 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7052 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7053 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7054 } 7055 // t = vsplti c, result = vsldoi t, t, 3 7056 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7057 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7058 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7059 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7060 } 7061 } 7062 7063 return SDValue(); 7064 } 7065 7066 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7067 /// the specified operations to build the shuffle. 7068 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7069 SDValue RHS, SelectionDAG &DAG, 7070 SDLoc dl) { 7071 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7072 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7073 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7074 7075 enum { 7076 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7077 OP_VMRGHW, 7078 OP_VMRGLW, 7079 OP_VSPLTISW0, 7080 OP_VSPLTISW1, 7081 OP_VSPLTISW2, 7082 OP_VSPLTISW3, 7083 OP_VSLDOI4, 7084 OP_VSLDOI8, 7085 OP_VSLDOI12 7086 }; 7087 7088 if (OpNum == OP_COPY) { 7089 if (LHSID == (1*9+2)*9+3) return LHS; 7090 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7091 return RHS; 7092 } 7093 7094 SDValue OpLHS, OpRHS; 7095 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7096 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7097 7098 int ShufIdxs[16]; 7099 switch (OpNum) { 7100 default: llvm_unreachable("Unknown i32 permute!"); 7101 case OP_VMRGHW: 7102 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7103 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7104 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7105 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7106 break; 7107 case OP_VMRGLW: 7108 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7109 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7110 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7111 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7112 break; 7113 case OP_VSPLTISW0: 7114 for (unsigned i = 0; i != 16; ++i) 7115 ShufIdxs[i] = (i&3)+0; 7116 break; 7117 case OP_VSPLTISW1: 7118 for (unsigned i = 0; i != 16; ++i) 7119 ShufIdxs[i] = (i&3)+4; 7120 break; 7121 case OP_VSPLTISW2: 7122 for (unsigned i = 0; i != 16; ++i) 7123 ShufIdxs[i] = (i&3)+8; 7124 break; 7125 case OP_VSPLTISW3: 7126 for (unsigned i = 0; i != 16; ++i) 7127 ShufIdxs[i] = (i&3)+12; 7128 break; 7129 case OP_VSLDOI4: 7130 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7131 case OP_VSLDOI8: 7132 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7133 case OP_VSLDOI12: 7134 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7135 } 7136 EVT VT = OpLHS.getValueType(); 7137 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7138 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7139 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7140 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7141 } 7142 7143 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7144 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7145 /// return the code it can be lowered into. Worst case, it can always be 7146 /// lowered into a vperm. 7147 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7148 SelectionDAG &DAG) const { 7149 SDLoc dl(Op); 7150 SDValue V1 = Op.getOperand(0); 7151 SDValue V2 = Op.getOperand(1); 7152 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7153 EVT VT = Op.getValueType(); 7154 bool isLittleEndian = Subtarget.isLittleEndian(); 7155 7156 if (Subtarget.hasQPX()) { 7157 if (VT.getVectorNumElements() != 4) 7158 return SDValue(); 7159 7160 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7161 7162 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7163 if (AlignIdx != -1) { 7164 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7165 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7166 } else if (SVOp->isSplat()) { 7167 int SplatIdx = SVOp->getSplatIndex(); 7168 if (SplatIdx >= 4) { 7169 std::swap(V1, V2); 7170 SplatIdx -= 4; 7171 } 7172 7173 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7174 // nothing to do. 7175 7176 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7177 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7178 } 7179 7180 // Lower this into a qvgpci/qvfperm pair. 7181 7182 // Compute the qvgpci literal 7183 unsigned idx = 0; 7184 for (unsigned i = 0; i < 4; ++i) { 7185 int m = SVOp->getMaskElt(i); 7186 unsigned mm = m >= 0 ? (unsigned) m : i; 7187 idx |= mm << (3-i)*3; 7188 } 7189 7190 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7191 DAG.getConstant(idx, dl, MVT::i32)); 7192 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7193 } 7194 7195 // Cases that are handled by instructions that take permute immediates 7196 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7197 // selected by the instruction selector. 7198 if (V2.getOpcode() == ISD::UNDEF) { 7199 if (PPC::isSplatShuffleMask(SVOp, 1) || 7200 PPC::isSplatShuffleMask(SVOp, 2) || 7201 PPC::isSplatShuffleMask(SVOp, 4) || 7202 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7203 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7204 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7205 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7206 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7207 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7208 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7209 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7210 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7211 (Subtarget.hasP8Altivec() && ( 7212 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7213 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7214 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7215 return Op; 7216 } 7217 } 7218 7219 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7220 // and produce a fixed permutation. If any of these match, do not lower to 7221 // VPERM. 7222 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7223 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7224 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7225 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7226 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7227 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7228 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7229 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7230 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7231 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7232 (Subtarget.hasP8Altivec() && ( 7233 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7234 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7235 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7236 return Op; 7237 7238 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7239 // perfect shuffle table to emit an optimal matching sequence. 7240 ArrayRef<int> PermMask = SVOp->getMask(); 7241 7242 unsigned PFIndexes[4]; 7243 bool isFourElementShuffle = true; 7244 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7245 unsigned EltNo = 8; // Start out undef. 7246 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7247 if (PermMask[i*4+j] < 0) 7248 continue; // Undef, ignore it. 7249 7250 unsigned ByteSource = PermMask[i*4+j]; 7251 if ((ByteSource & 3) != j) { 7252 isFourElementShuffle = false; 7253 break; 7254 } 7255 7256 if (EltNo == 8) { 7257 EltNo = ByteSource/4; 7258 } else if (EltNo != ByteSource/4) { 7259 isFourElementShuffle = false; 7260 break; 7261 } 7262 } 7263 PFIndexes[i] = EltNo; 7264 } 7265 7266 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7267 // perfect shuffle vector to determine if it is cost effective to do this as 7268 // discrete instructions, or whether we should use a vperm. 7269 // For now, we skip this for little endian until such time as we have a 7270 // little-endian perfect shuffle table. 7271 if (isFourElementShuffle && !isLittleEndian) { 7272 // Compute the index in the perfect shuffle table. 7273 unsigned PFTableIndex = 7274 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7275 7276 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7277 unsigned Cost = (PFEntry >> 30); 7278 7279 // Determining when to avoid vperm is tricky. Many things affect the cost 7280 // of vperm, particularly how many times the perm mask needs to be computed. 7281 // For example, if the perm mask can be hoisted out of a loop or is already 7282 // used (perhaps because there are multiple permutes with the same shuffle 7283 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7284 // the loop requires an extra register. 7285 // 7286 // As a compromise, we only emit discrete instructions if the shuffle can be 7287 // generated in 3 or fewer operations. When we have loop information 7288 // available, if this block is within a loop, we should avoid using vperm 7289 // for 3-operation perms and use a constant pool load instead. 7290 if (Cost < 3) 7291 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7292 } 7293 7294 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7295 // vector that will get spilled to the constant pool. 7296 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7297 7298 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7299 // that it is in input element units, not in bytes. Convert now. 7300 7301 // For little endian, the order of the input vectors is reversed, and 7302 // the permutation mask is complemented with respect to 31. This is 7303 // necessary to produce proper semantics with the big-endian-biased vperm 7304 // instruction. 7305 EVT EltVT = V1.getValueType().getVectorElementType(); 7306 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7307 7308 SmallVector<SDValue, 16> ResultMask; 7309 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7310 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7311 7312 for (unsigned j = 0; j != BytesPerElement; ++j) 7313 if (isLittleEndian) 7314 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7315 dl, MVT::i32)); 7316 else 7317 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7318 MVT::i32)); 7319 } 7320 7321 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7322 ResultMask); 7323 if (isLittleEndian) 7324 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7325 V2, V1, VPermMask); 7326 else 7327 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7328 V1, V2, VPermMask); 7329 } 7330 7331 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7332 /// vector comparison. If it is, return true and fill in Opc/isDot with 7333 /// information about the intrinsic. 7334 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7335 bool &isDot, const PPCSubtarget &Subtarget) { 7336 unsigned IntrinsicID = 7337 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7338 CompareOpc = -1; 7339 isDot = false; 7340 switch (IntrinsicID) { 7341 default: return false; 7342 // Comparison predicates. 7343 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7344 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7345 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7346 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7347 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7348 case Intrinsic::ppc_altivec_vcmpequd_p: 7349 if (Subtarget.hasP8Altivec()) { 7350 CompareOpc = 199; 7351 isDot = 1; 7352 } else 7353 return false; 7354 7355 break; 7356 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7357 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7358 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7359 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7360 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7361 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7362 if (Subtarget.hasP8Altivec()) { 7363 CompareOpc = 967; 7364 isDot = 1; 7365 } else 7366 return false; 7367 7368 break; 7369 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7370 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7371 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7372 case Intrinsic::ppc_altivec_vcmpgtud_p: 7373 if (Subtarget.hasP8Altivec()) { 7374 CompareOpc = 711; 7375 isDot = 1; 7376 } else 7377 return false; 7378 7379 break; 7380 // VSX predicate comparisons use the same infrastructure 7381 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7382 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7383 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7384 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7385 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7386 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7387 if (Subtarget.hasVSX()) { 7388 switch (IntrinsicID) { 7389 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7390 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7391 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7392 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7393 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7394 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7395 } 7396 isDot = 1; 7397 } 7398 else 7399 return false; 7400 7401 break; 7402 7403 // Normal Comparisons. 7404 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7405 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7406 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7407 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7408 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7409 case Intrinsic::ppc_altivec_vcmpequd: 7410 if (Subtarget.hasP8Altivec()) { 7411 CompareOpc = 199; 7412 isDot = 0; 7413 } else 7414 return false; 7415 7416 break; 7417 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7418 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7419 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7420 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7421 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7422 case Intrinsic::ppc_altivec_vcmpgtsd: 7423 if (Subtarget.hasP8Altivec()) { 7424 CompareOpc = 967; 7425 isDot = 0; 7426 } else 7427 return false; 7428 7429 break; 7430 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7431 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7432 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7433 case Intrinsic::ppc_altivec_vcmpgtud: 7434 if (Subtarget.hasP8Altivec()) { 7435 CompareOpc = 711; 7436 isDot = 0; 7437 } else 7438 return false; 7439 7440 break; 7441 } 7442 return true; 7443 } 7444 7445 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7446 /// lower, do it, otherwise return null. 7447 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7448 SelectionDAG &DAG) const { 7449 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7450 // opcode number of the comparison. 7451 SDLoc dl(Op); 7452 int CompareOpc; 7453 bool isDot; 7454 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7455 return SDValue(); // Don't custom lower most intrinsics. 7456 7457 // If this is a non-dot comparison, make the VCMP node and we are done. 7458 if (!isDot) { 7459 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7460 Op.getOperand(1), Op.getOperand(2), 7461 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7462 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7463 } 7464 7465 // Create the PPCISD altivec 'dot' comparison node. 7466 SDValue Ops[] = { 7467 Op.getOperand(2), // LHS 7468 Op.getOperand(3), // RHS 7469 DAG.getConstant(CompareOpc, dl, MVT::i32) 7470 }; 7471 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7472 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7473 7474 // Now that we have the comparison, emit a copy from the CR to a GPR. 7475 // This is flagged to the above dot comparison. 7476 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7477 DAG.getRegister(PPC::CR6, MVT::i32), 7478 CompNode.getValue(1)); 7479 7480 // Unpack the result based on how the target uses it. 7481 unsigned BitNo; // Bit # of CR6. 7482 bool InvertBit; // Invert result? 7483 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7484 default: // Can't happen, don't crash on invalid number though. 7485 case 0: // Return the value of the EQ bit of CR6. 7486 BitNo = 0; InvertBit = false; 7487 break; 7488 case 1: // Return the inverted value of the EQ bit of CR6. 7489 BitNo = 0; InvertBit = true; 7490 break; 7491 case 2: // Return the value of the LT bit of CR6. 7492 BitNo = 2; InvertBit = false; 7493 break; 7494 case 3: // Return the inverted value of the LT bit of CR6. 7495 BitNo = 2; InvertBit = true; 7496 break; 7497 } 7498 7499 // Shift the bit into the low position. 7500 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7501 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7502 // Isolate the bit. 7503 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7504 DAG.getConstant(1, dl, MVT::i32)); 7505 7506 // If we are supposed to, toggle the bit. 7507 if (InvertBit) 7508 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7509 DAG.getConstant(1, dl, MVT::i32)); 7510 return Flags; 7511 } 7512 7513 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7514 SelectionDAG &DAG) const { 7515 SDLoc dl(Op); 7516 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7517 // instructions), but for smaller types, we need to first extend up to v2i32 7518 // before doing going farther. 7519 if (Op.getValueType() == MVT::v2i64) { 7520 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7521 if (ExtVT != MVT::v2i32) { 7522 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7523 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7524 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7525 ExtVT.getVectorElementType(), 4))); 7526 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7527 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7528 DAG.getValueType(MVT::v2i32)); 7529 } 7530 7531 return Op; 7532 } 7533 7534 return SDValue(); 7535 } 7536 7537 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7538 SelectionDAG &DAG) const { 7539 SDLoc dl(Op); 7540 // Create a stack slot that is 16-byte aligned. 7541 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7542 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7543 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7544 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7545 7546 // Store the input value into Value#0 of the stack slot. 7547 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7548 Op.getOperand(0), FIdx, MachinePointerInfo(), 7549 false, false, 0); 7550 // Load it out. 7551 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7552 false, false, false, 0); 7553 } 7554 7555 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7556 SelectionDAG &DAG) const { 7557 SDLoc dl(Op); 7558 SDNode *N = Op.getNode(); 7559 7560 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7561 "Unknown extract_vector_elt type"); 7562 7563 SDValue Value = N->getOperand(0); 7564 7565 // The first part of this is like the store lowering except that we don't 7566 // need to track the chain. 7567 7568 // The values are now known to be -1 (false) or 1 (true). To convert this 7569 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7570 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7571 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7572 7573 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7574 // understand how to form the extending load. 7575 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7576 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7577 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7578 7579 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7580 7581 // Now convert to an integer and store. 7582 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7583 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7584 Value); 7585 7586 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7587 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7588 MachinePointerInfo PtrInfo = 7589 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7590 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7591 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7592 7593 SDValue StoreChain = DAG.getEntryNode(); 7594 SmallVector<SDValue, 2> Ops; 7595 Ops.push_back(StoreChain); 7596 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7597 Ops.push_back(Value); 7598 Ops.push_back(FIdx); 7599 7600 SmallVector<EVT, 2> ValueVTs; 7601 ValueVTs.push_back(MVT::Other); // chain 7602 SDVTList VTs = DAG.getVTList(ValueVTs); 7603 7604 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7605 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7606 7607 // Extract the value requested. 7608 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7609 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7610 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7611 7612 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7613 PtrInfo.getWithOffset(Offset), 7614 false, false, false, 0); 7615 7616 if (!Subtarget.useCRBits()) 7617 return IntVal; 7618 7619 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7620 } 7621 7622 /// Lowering for QPX v4i1 loads 7623 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7624 SelectionDAG &DAG) const { 7625 SDLoc dl(Op); 7626 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7627 SDValue LoadChain = LN->getChain(); 7628 SDValue BasePtr = LN->getBasePtr(); 7629 7630 if (Op.getValueType() == MVT::v4f64 || 7631 Op.getValueType() == MVT::v4f32) { 7632 EVT MemVT = LN->getMemoryVT(); 7633 unsigned Alignment = LN->getAlignment(); 7634 7635 // If this load is properly aligned, then it is legal. 7636 if (Alignment >= MemVT.getStoreSize()) 7637 return Op; 7638 7639 EVT ScalarVT = Op.getValueType().getScalarType(), 7640 ScalarMemVT = MemVT.getScalarType(); 7641 unsigned Stride = ScalarMemVT.getStoreSize(); 7642 7643 SmallVector<SDValue, 8> Vals, LoadChains; 7644 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7645 SDValue Load; 7646 if (ScalarVT != ScalarMemVT) 7647 Load = 7648 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7649 BasePtr, 7650 LN->getPointerInfo().getWithOffset(Idx*Stride), 7651 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7652 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7653 LN->getAAInfo()); 7654 else 7655 Load = 7656 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7657 LN->getPointerInfo().getWithOffset(Idx*Stride), 7658 LN->isVolatile(), LN->isNonTemporal(), 7659 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7660 LN->getAAInfo()); 7661 7662 if (Idx == 0 && LN->isIndexed()) { 7663 assert(LN->getAddressingMode() == ISD::PRE_INC && 7664 "Unknown addressing mode on vector load"); 7665 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7666 LN->getAddressingMode()); 7667 } 7668 7669 Vals.push_back(Load); 7670 LoadChains.push_back(Load.getValue(1)); 7671 7672 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7673 DAG.getConstant(Stride, dl, 7674 BasePtr.getValueType())); 7675 } 7676 7677 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7678 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7679 Op.getValueType(), Vals); 7680 7681 if (LN->isIndexed()) { 7682 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7683 return DAG.getMergeValues(RetOps, dl); 7684 } 7685 7686 SDValue RetOps[] = { Value, TF }; 7687 return DAG.getMergeValues(RetOps, dl); 7688 } 7689 7690 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7691 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7692 7693 // To lower v4i1 from a byte array, we load the byte elements of the 7694 // vector and then reuse the BUILD_VECTOR logic. 7695 7696 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7697 for (unsigned i = 0; i < 4; ++i) { 7698 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7699 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7700 7701 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7702 dl, MVT::i32, LoadChain, Idx, 7703 LN->getPointerInfo().getWithOffset(i), 7704 MVT::i8 /* memory type */, 7705 LN->isVolatile(), LN->isNonTemporal(), 7706 LN->isInvariant(), 7707 1 /* alignment */, LN->getAAInfo())); 7708 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7709 } 7710 7711 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7712 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7713 7714 SDValue RVals[] = { Value, LoadChain }; 7715 return DAG.getMergeValues(RVals, dl); 7716 } 7717 7718 /// Lowering for QPX v4i1 stores 7719 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7720 SelectionDAG &DAG) const { 7721 SDLoc dl(Op); 7722 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7723 SDValue StoreChain = SN->getChain(); 7724 SDValue BasePtr = SN->getBasePtr(); 7725 SDValue Value = SN->getValue(); 7726 7727 if (Value.getValueType() == MVT::v4f64 || 7728 Value.getValueType() == MVT::v4f32) { 7729 EVT MemVT = SN->getMemoryVT(); 7730 unsigned Alignment = SN->getAlignment(); 7731 7732 // If this store is properly aligned, then it is legal. 7733 if (Alignment >= MemVT.getStoreSize()) 7734 return Op; 7735 7736 EVT ScalarVT = Value.getValueType().getScalarType(), 7737 ScalarMemVT = MemVT.getScalarType(); 7738 unsigned Stride = ScalarMemVT.getStoreSize(); 7739 7740 SmallVector<SDValue, 8> Stores; 7741 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7742 SDValue Ex = DAG.getNode( 7743 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7744 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7745 SDValue Store; 7746 if (ScalarVT != ScalarMemVT) 7747 Store = 7748 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7749 SN->getPointerInfo().getWithOffset(Idx*Stride), 7750 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7751 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7752 else 7753 Store = 7754 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7755 SN->getPointerInfo().getWithOffset(Idx*Stride), 7756 SN->isVolatile(), SN->isNonTemporal(), 7757 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7758 7759 if (Idx == 0 && SN->isIndexed()) { 7760 assert(SN->getAddressingMode() == ISD::PRE_INC && 7761 "Unknown addressing mode on vector store"); 7762 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7763 SN->getAddressingMode()); 7764 } 7765 7766 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7767 DAG.getConstant(Stride, dl, 7768 BasePtr.getValueType())); 7769 Stores.push_back(Store); 7770 } 7771 7772 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7773 7774 if (SN->isIndexed()) { 7775 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7776 return DAG.getMergeValues(RetOps, dl); 7777 } 7778 7779 return TF; 7780 } 7781 7782 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7783 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7784 7785 // The values are now known to be -1 (false) or 1 (true). To convert this 7786 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7787 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7788 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7789 7790 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7791 // understand how to form the extending load. 7792 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64); 7793 FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, 7794 FPHalfs, FPHalfs, FPHalfs, FPHalfs); 7795 7796 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7797 7798 // Now convert to an integer and store. 7799 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7800 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7801 Value); 7802 7803 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7804 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7805 MachinePointerInfo PtrInfo = 7806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7807 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7808 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7809 7810 SmallVector<SDValue, 2> Ops; 7811 Ops.push_back(StoreChain); 7812 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7813 Ops.push_back(Value); 7814 Ops.push_back(FIdx); 7815 7816 SmallVector<EVT, 2> ValueVTs; 7817 ValueVTs.push_back(MVT::Other); // chain 7818 SDVTList VTs = DAG.getVTList(ValueVTs); 7819 7820 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7821 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7822 7823 // Move data into the byte array. 7824 SmallVector<SDValue, 4> Loads, LoadChains; 7825 for (unsigned i = 0; i < 4; ++i) { 7826 unsigned Offset = 4*i; 7827 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7828 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7829 7830 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7831 PtrInfo.getWithOffset(Offset), 7832 false, false, false, 0)); 7833 LoadChains.push_back(Loads[i].getValue(1)); 7834 } 7835 7836 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7837 7838 SmallVector<SDValue, 4> Stores; 7839 for (unsigned i = 0; i < 4; ++i) { 7840 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7841 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7842 7843 Stores.push_back(DAG.getTruncStore( 7844 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7845 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7846 1 /* alignment */, SN->getAAInfo())); 7847 } 7848 7849 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7850 7851 return StoreChain; 7852 } 7853 7854 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7855 SDLoc dl(Op); 7856 if (Op.getValueType() == MVT::v4i32) { 7857 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7858 7859 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7860 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7861 7862 SDValue RHSSwap = // = vrlw RHS, 16 7863 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7864 7865 // Shrinkify inputs to v8i16. 7866 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7867 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7868 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7869 7870 // Low parts multiplied together, generating 32-bit results (we ignore the 7871 // top parts). 7872 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7873 LHS, RHS, DAG, dl, MVT::v4i32); 7874 7875 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7876 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7877 // Shift the high parts up 16 bits. 7878 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7879 Neg16, DAG, dl); 7880 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7881 } else if (Op.getValueType() == MVT::v8i16) { 7882 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7883 7884 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7885 7886 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7887 LHS, RHS, Zero, DAG, dl); 7888 } else if (Op.getValueType() == MVT::v16i8) { 7889 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7890 bool isLittleEndian = Subtarget.isLittleEndian(); 7891 7892 // Multiply the even 8-bit parts, producing 16-bit sums. 7893 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7894 LHS, RHS, DAG, dl, MVT::v8i16); 7895 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7896 7897 // Multiply the odd 8-bit parts, producing 16-bit sums. 7898 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7899 LHS, RHS, DAG, dl, MVT::v8i16); 7900 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7901 7902 // Merge the results together. Because vmuleub and vmuloub are 7903 // instructions with a big-endian bias, we must reverse the 7904 // element numbering and reverse the meaning of "odd" and "even" 7905 // when generating little endian code. 7906 int Ops[16]; 7907 for (unsigned i = 0; i != 8; ++i) { 7908 if (isLittleEndian) { 7909 Ops[i*2 ] = 2*i; 7910 Ops[i*2+1] = 2*i+16; 7911 } else { 7912 Ops[i*2 ] = 2*i+1; 7913 Ops[i*2+1] = 2*i+1+16; 7914 } 7915 } 7916 if (isLittleEndian) 7917 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7918 else 7919 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7920 } else { 7921 llvm_unreachable("Unknown mul to lower!"); 7922 } 7923 } 7924 7925 /// LowerOperation - Provide custom lowering hooks for some operations. 7926 /// 7927 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7928 switch (Op.getOpcode()) { 7929 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7930 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7931 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7932 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7933 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7934 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7935 case ISD::SETCC: return LowerSETCC(Op, DAG); 7936 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7937 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7938 case ISD::VASTART: 7939 return LowerVASTART(Op, DAG, Subtarget); 7940 7941 case ISD::VAARG: 7942 return LowerVAARG(Op, DAG, Subtarget); 7943 7944 case ISD::VACOPY: 7945 return LowerVACOPY(Op, DAG, Subtarget); 7946 7947 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7948 case ISD::DYNAMIC_STACKALLOC: 7949 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7950 7951 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7952 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7953 7954 case ISD::LOAD: return LowerLOAD(Op, DAG); 7955 case ISD::STORE: return LowerSTORE(Op, DAG); 7956 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7957 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7958 case ISD::FP_TO_UINT: 7959 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7960 SDLoc(Op)); 7961 case ISD::UINT_TO_FP: 7962 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7963 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7964 7965 // Lower 64-bit shifts. 7966 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7967 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7968 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7969 7970 // Vector-related lowering. 7971 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7972 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7973 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7974 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7975 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7976 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7977 case ISD::MUL: return LowerMUL(Op, DAG); 7978 7979 // For counter-based loop handling. 7980 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7981 7982 // Frame & Return address. 7983 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7984 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7985 } 7986 } 7987 7988 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 7989 SmallVectorImpl<SDValue>&Results, 7990 SelectionDAG &DAG) const { 7991 SDLoc dl(N); 7992 switch (N->getOpcode()) { 7993 default: 7994 llvm_unreachable("Do not know how to custom type legalize this operation!"); 7995 case ISD::READCYCLECOUNTER: { 7996 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 7997 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 7998 7999 Results.push_back(RTB); 8000 Results.push_back(RTB.getValue(1)); 8001 Results.push_back(RTB.getValue(2)); 8002 break; 8003 } 8004 case ISD::INTRINSIC_W_CHAIN: { 8005 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8006 Intrinsic::ppc_is_decremented_ctr_nonzero) 8007 break; 8008 8009 assert(N->getValueType(0) == MVT::i1 && 8010 "Unexpected result type for CTR decrement intrinsic"); 8011 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8012 N->getValueType(0)); 8013 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8014 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8015 N->getOperand(1)); 8016 8017 Results.push_back(NewInt); 8018 Results.push_back(NewInt.getValue(1)); 8019 break; 8020 } 8021 case ISD::VAARG: { 8022 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8023 return; 8024 8025 EVT VT = N->getValueType(0); 8026 8027 if (VT == MVT::i64) { 8028 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8029 8030 Results.push_back(NewNode); 8031 Results.push_back(NewNode.getValue(1)); 8032 } 8033 return; 8034 } 8035 case ISD::FP_ROUND_INREG: { 8036 assert(N->getValueType(0) == MVT::ppcf128); 8037 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8038 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8039 MVT::f64, N->getOperand(0), 8040 DAG.getIntPtrConstant(0, dl)); 8041 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8042 MVT::f64, N->getOperand(0), 8043 DAG.getIntPtrConstant(1, dl)); 8044 8045 // Add the two halves of the long double in round-to-zero mode. 8046 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8047 8048 // We know the low half is about to be thrown away, so just use something 8049 // convenient. 8050 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8051 FPreg, FPreg)); 8052 return; 8053 } 8054 case ISD::FP_TO_SINT: 8055 case ISD::FP_TO_UINT: 8056 // LowerFP_TO_INT() can only handle f32 and f64. 8057 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8058 return; 8059 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8060 return; 8061 } 8062 } 8063 8064 //===----------------------------------------------------------------------===// 8065 // Other Lowering Code 8066 //===----------------------------------------------------------------------===// 8067 8068 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8069 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8070 Function *Func = Intrinsic::getDeclaration(M, Id); 8071 return Builder.CreateCall(Func, {}); 8072 } 8073 8074 // The mappings for emitLeading/TrailingFence is taken from 8075 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8076 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8077 AtomicOrdering Ord, bool IsStore, 8078 bool IsLoad) const { 8079 if (Ord == SequentiallyConsistent) 8080 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8081 if (isAtLeastRelease(Ord)) 8082 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8083 return nullptr; 8084 } 8085 8086 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8087 AtomicOrdering Ord, bool IsStore, 8088 bool IsLoad) const { 8089 if (IsLoad && isAtLeastAcquire(Ord)) 8090 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8091 // FIXME: this is too conservative, a dependent branch + isync is enough. 8092 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8093 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8094 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8095 return nullptr; 8096 } 8097 8098 MachineBasicBlock * 8099 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8100 unsigned AtomicSize, 8101 unsigned BinOpcode) const { 8102 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8103 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8104 8105 auto LoadMnemonic = PPC::LDARX; 8106 auto StoreMnemonic = PPC::STDCX; 8107 switch (AtomicSize) { 8108 default: 8109 llvm_unreachable("Unexpected size of atomic entity"); 8110 case 1: 8111 LoadMnemonic = PPC::LBARX; 8112 StoreMnemonic = PPC::STBCX; 8113 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8114 break; 8115 case 2: 8116 LoadMnemonic = PPC::LHARX; 8117 StoreMnemonic = PPC::STHCX; 8118 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8119 break; 8120 case 4: 8121 LoadMnemonic = PPC::LWARX; 8122 StoreMnemonic = PPC::STWCX; 8123 break; 8124 case 8: 8125 LoadMnemonic = PPC::LDARX; 8126 StoreMnemonic = PPC::STDCX; 8127 break; 8128 } 8129 8130 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8131 MachineFunction *F = BB->getParent(); 8132 MachineFunction::iterator It = ++BB->getIterator(); 8133 8134 unsigned dest = MI->getOperand(0).getReg(); 8135 unsigned ptrA = MI->getOperand(1).getReg(); 8136 unsigned ptrB = MI->getOperand(2).getReg(); 8137 unsigned incr = MI->getOperand(3).getReg(); 8138 DebugLoc dl = MI->getDebugLoc(); 8139 8140 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8141 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8142 F->insert(It, loopMBB); 8143 F->insert(It, exitMBB); 8144 exitMBB->splice(exitMBB->begin(), BB, 8145 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8146 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8147 8148 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8149 unsigned TmpReg = (!BinOpcode) ? incr : 8150 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8151 : &PPC::GPRCRegClass); 8152 8153 // thisMBB: 8154 // ... 8155 // fallthrough --> loopMBB 8156 BB->addSuccessor(loopMBB); 8157 8158 // loopMBB: 8159 // l[wd]arx dest, ptr 8160 // add r0, dest, incr 8161 // st[wd]cx. r0, ptr 8162 // bne- loopMBB 8163 // fallthrough --> exitMBB 8164 BB = loopMBB; 8165 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8166 .addReg(ptrA).addReg(ptrB); 8167 if (BinOpcode) 8168 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8169 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8170 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8171 BuildMI(BB, dl, TII->get(PPC::BCC)) 8172 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8173 BB->addSuccessor(loopMBB); 8174 BB->addSuccessor(exitMBB); 8175 8176 // exitMBB: 8177 // ... 8178 BB = exitMBB; 8179 return BB; 8180 } 8181 8182 MachineBasicBlock * 8183 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8184 MachineBasicBlock *BB, 8185 bool is8bit, // operation 8186 unsigned BinOpcode) const { 8187 // If we support part-word atomic mnemonics, just use them 8188 if (Subtarget.hasPartwordAtomics()) 8189 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8190 8191 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8192 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8193 // In 64 bit mode we have to use 64 bits for addresses, even though the 8194 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8195 // registers without caring whether they're 32 or 64, but here we're 8196 // doing actual arithmetic on the addresses. 8197 bool is64bit = Subtarget.isPPC64(); 8198 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8199 8200 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8201 MachineFunction *F = BB->getParent(); 8202 MachineFunction::iterator It = ++BB->getIterator(); 8203 8204 unsigned dest = MI->getOperand(0).getReg(); 8205 unsigned ptrA = MI->getOperand(1).getReg(); 8206 unsigned ptrB = MI->getOperand(2).getReg(); 8207 unsigned incr = MI->getOperand(3).getReg(); 8208 DebugLoc dl = MI->getDebugLoc(); 8209 8210 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8211 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8212 F->insert(It, loopMBB); 8213 F->insert(It, exitMBB); 8214 exitMBB->splice(exitMBB->begin(), BB, 8215 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8216 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8217 8218 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8219 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8220 : &PPC::GPRCRegClass; 8221 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8222 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8223 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8224 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8225 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8226 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8227 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8228 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8229 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8230 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8231 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8232 unsigned Ptr1Reg; 8233 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8234 8235 // thisMBB: 8236 // ... 8237 // fallthrough --> loopMBB 8238 BB->addSuccessor(loopMBB); 8239 8240 // The 4-byte load must be aligned, while a char or short may be 8241 // anywhere in the word. Hence all this nasty bookkeeping code. 8242 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8243 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8244 // xori shift, shift1, 24 [16] 8245 // rlwinm ptr, ptr1, 0, 0, 29 8246 // slw incr2, incr, shift 8247 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8248 // slw mask, mask2, shift 8249 // loopMBB: 8250 // lwarx tmpDest, ptr 8251 // add tmp, tmpDest, incr2 8252 // andc tmp2, tmpDest, mask 8253 // and tmp3, tmp, mask 8254 // or tmp4, tmp3, tmp2 8255 // stwcx. tmp4, ptr 8256 // bne- loopMBB 8257 // fallthrough --> exitMBB 8258 // srw dest, tmpDest, shift 8259 if (ptrA != ZeroReg) { 8260 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8261 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8262 .addReg(ptrA).addReg(ptrB); 8263 } else { 8264 Ptr1Reg = ptrB; 8265 } 8266 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8267 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8268 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8269 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8270 if (is64bit) 8271 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8272 .addReg(Ptr1Reg).addImm(0).addImm(61); 8273 else 8274 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8275 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8276 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8277 .addReg(incr).addReg(ShiftReg); 8278 if (is8bit) 8279 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8280 else { 8281 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8282 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8283 } 8284 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8285 .addReg(Mask2Reg).addReg(ShiftReg); 8286 8287 BB = loopMBB; 8288 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8289 .addReg(ZeroReg).addReg(PtrReg); 8290 if (BinOpcode) 8291 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8292 .addReg(Incr2Reg).addReg(TmpDestReg); 8293 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8294 .addReg(TmpDestReg).addReg(MaskReg); 8295 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8296 .addReg(TmpReg).addReg(MaskReg); 8297 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8298 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8299 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8300 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8301 BuildMI(BB, dl, TII->get(PPC::BCC)) 8302 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8303 BB->addSuccessor(loopMBB); 8304 BB->addSuccessor(exitMBB); 8305 8306 // exitMBB: 8307 // ... 8308 BB = exitMBB; 8309 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8310 .addReg(ShiftReg); 8311 return BB; 8312 } 8313 8314 llvm::MachineBasicBlock* 8315 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8316 MachineBasicBlock *MBB) const { 8317 DebugLoc DL = MI->getDebugLoc(); 8318 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8319 8320 MachineFunction *MF = MBB->getParent(); 8321 MachineRegisterInfo &MRI = MF->getRegInfo(); 8322 8323 const BasicBlock *BB = MBB->getBasicBlock(); 8324 MachineFunction::iterator I = ++MBB->getIterator(); 8325 8326 // Memory Reference 8327 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8328 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8329 8330 unsigned DstReg = MI->getOperand(0).getReg(); 8331 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8332 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8333 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8334 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8335 8336 MVT PVT = getPointerTy(MF->getDataLayout()); 8337 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8338 "Invalid Pointer Size!"); 8339 // For v = setjmp(buf), we generate 8340 // 8341 // thisMBB: 8342 // SjLjSetup mainMBB 8343 // bl mainMBB 8344 // v_restore = 1 8345 // b sinkMBB 8346 // 8347 // mainMBB: 8348 // buf[LabelOffset] = LR 8349 // v_main = 0 8350 // 8351 // sinkMBB: 8352 // v = phi(main, restore) 8353 // 8354 8355 MachineBasicBlock *thisMBB = MBB; 8356 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8357 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8358 MF->insert(I, mainMBB); 8359 MF->insert(I, sinkMBB); 8360 8361 MachineInstrBuilder MIB; 8362 8363 // Transfer the remainder of BB and its successor edges to sinkMBB. 8364 sinkMBB->splice(sinkMBB->begin(), MBB, 8365 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8366 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8367 8368 // Note that the structure of the jmp_buf used here is not compatible 8369 // with that used by libc, and is not designed to be. Specifically, it 8370 // stores only those 'reserved' registers that LLVM does not otherwise 8371 // understand how to spill. Also, by convention, by the time this 8372 // intrinsic is called, Clang has already stored the frame address in the 8373 // first slot of the buffer and stack address in the third. Following the 8374 // X86 target code, we'll store the jump address in the second slot. We also 8375 // need to save the TOC pointer (R2) to handle jumps between shared 8376 // libraries, and that will be stored in the fourth slot. The thread 8377 // identifier (R13) is not affected. 8378 8379 // thisMBB: 8380 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8381 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8382 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8383 8384 // Prepare IP either in reg. 8385 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8386 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8387 unsigned BufReg = MI->getOperand(1).getReg(); 8388 8389 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8390 setUsesTOCBasePtr(*MBB->getParent()); 8391 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8392 .addReg(PPC::X2) 8393 .addImm(TOCOffset) 8394 .addReg(BufReg); 8395 MIB.setMemRefs(MMOBegin, MMOEnd); 8396 } 8397 8398 // Naked functions never have a base pointer, and so we use r1. For all 8399 // other functions, this decision must be delayed until during PEI. 8400 unsigned BaseReg; 8401 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8402 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8403 else 8404 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8405 8406 MIB = BuildMI(*thisMBB, MI, DL, 8407 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8408 .addReg(BaseReg) 8409 .addImm(BPOffset) 8410 .addReg(BufReg); 8411 MIB.setMemRefs(MMOBegin, MMOEnd); 8412 8413 // Setup 8414 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8415 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8416 MIB.addRegMask(TRI->getNoPreservedMask()); 8417 8418 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8419 8420 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8421 .addMBB(mainMBB); 8422 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8423 8424 thisMBB->addSuccessor(mainMBB, /* weight */ 0); 8425 thisMBB->addSuccessor(sinkMBB, /* weight */ 1); 8426 8427 // mainMBB: 8428 // mainDstReg = 0 8429 MIB = 8430 BuildMI(mainMBB, DL, 8431 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8432 8433 // Store IP 8434 if (Subtarget.isPPC64()) { 8435 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8436 .addReg(LabelReg) 8437 .addImm(LabelOffset) 8438 .addReg(BufReg); 8439 } else { 8440 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8441 .addReg(LabelReg) 8442 .addImm(LabelOffset) 8443 .addReg(BufReg); 8444 } 8445 8446 MIB.setMemRefs(MMOBegin, MMOEnd); 8447 8448 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8449 mainMBB->addSuccessor(sinkMBB); 8450 8451 // sinkMBB: 8452 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8453 TII->get(PPC::PHI), DstReg) 8454 .addReg(mainDstReg).addMBB(mainMBB) 8455 .addReg(restoreDstReg).addMBB(thisMBB); 8456 8457 MI->eraseFromParent(); 8458 return sinkMBB; 8459 } 8460 8461 MachineBasicBlock * 8462 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8463 MachineBasicBlock *MBB) const { 8464 DebugLoc DL = MI->getDebugLoc(); 8465 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8466 8467 MachineFunction *MF = MBB->getParent(); 8468 MachineRegisterInfo &MRI = MF->getRegInfo(); 8469 8470 // Memory Reference 8471 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8472 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8473 8474 MVT PVT = getPointerTy(MF->getDataLayout()); 8475 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8476 "Invalid Pointer Size!"); 8477 8478 const TargetRegisterClass *RC = 8479 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8480 unsigned Tmp = MRI.createVirtualRegister(RC); 8481 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8482 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8483 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8484 unsigned BP = 8485 (PVT == MVT::i64) 8486 ? PPC::X30 8487 : (Subtarget.isSVR4ABI() && 8488 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8489 ? PPC::R29 8490 : PPC::R30); 8491 8492 MachineInstrBuilder MIB; 8493 8494 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8495 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8496 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8497 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8498 8499 unsigned BufReg = MI->getOperand(0).getReg(); 8500 8501 // Reload FP (the jumped-to function may not have had a 8502 // frame pointer, and if so, then its r31 will be restored 8503 // as necessary). 8504 if (PVT == MVT::i64) { 8505 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8506 .addImm(0) 8507 .addReg(BufReg); 8508 } else { 8509 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8510 .addImm(0) 8511 .addReg(BufReg); 8512 } 8513 MIB.setMemRefs(MMOBegin, MMOEnd); 8514 8515 // Reload IP 8516 if (PVT == MVT::i64) { 8517 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8518 .addImm(LabelOffset) 8519 .addReg(BufReg); 8520 } else { 8521 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8522 .addImm(LabelOffset) 8523 .addReg(BufReg); 8524 } 8525 MIB.setMemRefs(MMOBegin, MMOEnd); 8526 8527 // Reload SP 8528 if (PVT == MVT::i64) { 8529 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8530 .addImm(SPOffset) 8531 .addReg(BufReg); 8532 } else { 8533 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8534 .addImm(SPOffset) 8535 .addReg(BufReg); 8536 } 8537 MIB.setMemRefs(MMOBegin, MMOEnd); 8538 8539 // Reload BP 8540 if (PVT == MVT::i64) { 8541 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8542 .addImm(BPOffset) 8543 .addReg(BufReg); 8544 } else { 8545 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8546 .addImm(BPOffset) 8547 .addReg(BufReg); 8548 } 8549 MIB.setMemRefs(MMOBegin, MMOEnd); 8550 8551 // Reload TOC 8552 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8553 setUsesTOCBasePtr(*MBB->getParent()); 8554 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8555 .addImm(TOCOffset) 8556 .addReg(BufReg); 8557 8558 MIB.setMemRefs(MMOBegin, MMOEnd); 8559 } 8560 8561 // Jump 8562 BuildMI(*MBB, MI, DL, 8563 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8564 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8565 8566 MI->eraseFromParent(); 8567 return MBB; 8568 } 8569 8570 MachineBasicBlock * 8571 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8572 MachineBasicBlock *BB) const { 8573 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8574 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8575 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8576 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8577 // Call lowering should have added an r2 operand to indicate a dependence 8578 // on the TOC base pointer value. It can't however, because there is no 8579 // way to mark the dependence as implicit there, and so the stackmap code 8580 // will confuse it with a regular operand. Instead, add the dependence 8581 // here. 8582 setUsesTOCBasePtr(*BB->getParent()); 8583 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8584 } 8585 8586 return emitPatchPoint(MI, BB); 8587 } 8588 8589 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8590 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8591 return emitEHSjLjSetJmp(MI, BB); 8592 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8593 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8594 return emitEHSjLjLongJmp(MI, BB); 8595 } 8596 8597 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8598 8599 // To "insert" these instructions we actually have to insert their 8600 // control-flow patterns. 8601 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8602 MachineFunction::iterator It = ++BB->getIterator(); 8603 8604 MachineFunction *F = BB->getParent(); 8605 8606 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8607 MI->getOpcode() == PPC::SELECT_CC_I8 || 8608 MI->getOpcode() == PPC::SELECT_I4 || 8609 MI->getOpcode() == PPC::SELECT_I8)) { 8610 SmallVector<MachineOperand, 2> Cond; 8611 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8612 MI->getOpcode() == PPC::SELECT_CC_I8) 8613 Cond.push_back(MI->getOperand(4)); 8614 else 8615 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8616 Cond.push_back(MI->getOperand(1)); 8617 8618 DebugLoc dl = MI->getDebugLoc(); 8619 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8620 Cond, MI->getOperand(2).getReg(), 8621 MI->getOperand(3).getReg()); 8622 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8623 MI->getOpcode() == PPC::SELECT_CC_I8 || 8624 MI->getOpcode() == PPC::SELECT_CC_F4 || 8625 MI->getOpcode() == PPC::SELECT_CC_F8 || 8626 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8627 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8628 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8629 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8630 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8631 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8632 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8633 MI->getOpcode() == PPC::SELECT_I4 || 8634 MI->getOpcode() == PPC::SELECT_I8 || 8635 MI->getOpcode() == PPC::SELECT_F4 || 8636 MI->getOpcode() == PPC::SELECT_F8 || 8637 MI->getOpcode() == PPC::SELECT_QFRC || 8638 MI->getOpcode() == PPC::SELECT_QSRC || 8639 MI->getOpcode() == PPC::SELECT_QBRC || 8640 MI->getOpcode() == PPC::SELECT_VRRC || 8641 MI->getOpcode() == PPC::SELECT_VSFRC || 8642 MI->getOpcode() == PPC::SELECT_VSSRC || 8643 MI->getOpcode() == PPC::SELECT_VSRC) { 8644 // The incoming instruction knows the destination vreg to set, the 8645 // condition code register to branch on, the true/false values to 8646 // select between, and a branch opcode to use. 8647 8648 // thisMBB: 8649 // ... 8650 // TrueVal = ... 8651 // cmpTY ccX, r1, r2 8652 // bCC copy1MBB 8653 // fallthrough --> copy0MBB 8654 MachineBasicBlock *thisMBB = BB; 8655 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8656 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8657 DebugLoc dl = MI->getDebugLoc(); 8658 F->insert(It, copy0MBB); 8659 F->insert(It, sinkMBB); 8660 8661 // Transfer the remainder of BB and its successor edges to sinkMBB. 8662 sinkMBB->splice(sinkMBB->begin(), BB, 8663 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8664 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8665 8666 // Next, add the true and fallthrough blocks as its successors. 8667 BB->addSuccessor(copy0MBB); 8668 BB->addSuccessor(sinkMBB); 8669 8670 if (MI->getOpcode() == PPC::SELECT_I4 || 8671 MI->getOpcode() == PPC::SELECT_I8 || 8672 MI->getOpcode() == PPC::SELECT_F4 || 8673 MI->getOpcode() == PPC::SELECT_F8 || 8674 MI->getOpcode() == PPC::SELECT_QFRC || 8675 MI->getOpcode() == PPC::SELECT_QSRC || 8676 MI->getOpcode() == PPC::SELECT_QBRC || 8677 MI->getOpcode() == PPC::SELECT_VRRC || 8678 MI->getOpcode() == PPC::SELECT_VSFRC || 8679 MI->getOpcode() == PPC::SELECT_VSSRC || 8680 MI->getOpcode() == PPC::SELECT_VSRC) { 8681 BuildMI(BB, dl, TII->get(PPC::BC)) 8682 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8683 } else { 8684 unsigned SelectPred = MI->getOperand(4).getImm(); 8685 BuildMI(BB, dl, TII->get(PPC::BCC)) 8686 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8687 } 8688 8689 // copy0MBB: 8690 // %FalseValue = ... 8691 // # fallthrough to sinkMBB 8692 BB = copy0MBB; 8693 8694 // Update machine-CFG edges 8695 BB->addSuccessor(sinkMBB); 8696 8697 // sinkMBB: 8698 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8699 // ... 8700 BB = sinkMBB; 8701 BuildMI(*BB, BB->begin(), dl, 8702 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8703 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8704 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8705 } else if (MI->getOpcode() == PPC::ReadTB) { 8706 // To read the 64-bit time-base register on a 32-bit target, we read the 8707 // two halves. Should the counter have wrapped while it was being read, we 8708 // need to try again. 8709 // ... 8710 // readLoop: 8711 // mfspr Rx,TBU # load from TBU 8712 // mfspr Ry,TB # load from TB 8713 // mfspr Rz,TBU # load from TBU 8714 // cmpw crX,Rx,Rz # check if 'old'='new' 8715 // bne readLoop # branch if they're not equal 8716 // ... 8717 8718 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8719 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8720 DebugLoc dl = MI->getDebugLoc(); 8721 F->insert(It, readMBB); 8722 F->insert(It, sinkMBB); 8723 8724 // Transfer the remainder of BB and its successor edges to sinkMBB. 8725 sinkMBB->splice(sinkMBB->begin(), BB, 8726 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8727 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8728 8729 BB->addSuccessor(readMBB); 8730 BB = readMBB; 8731 8732 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8733 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8734 unsigned LoReg = MI->getOperand(0).getReg(); 8735 unsigned HiReg = MI->getOperand(1).getReg(); 8736 8737 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8738 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8739 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8740 8741 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8742 8743 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8744 .addReg(HiReg).addReg(ReadAgainReg); 8745 BuildMI(BB, dl, TII->get(PPC::BCC)) 8746 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8747 8748 BB->addSuccessor(readMBB); 8749 BB->addSuccessor(sinkMBB); 8750 } 8751 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8752 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8753 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8754 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8755 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8756 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8757 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8758 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8759 8760 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8761 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8762 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8763 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8765 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8766 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8767 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8768 8769 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8770 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8771 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8772 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8774 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8776 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8777 8778 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8779 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8780 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8781 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8783 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8785 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8786 8787 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8788 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8789 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8790 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8792 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8794 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8795 8796 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8797 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8798 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8799 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8801 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8803 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8804 8805 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8806 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8807 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8808 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8809 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8810 BB = EmitAtomicBinary(MI, BB, 4, 0); 8811 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8812 BB = EmitAtomicBinary(MI, BB, 8, 0); 8813 8814 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8815 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8816 (Subtarget.hasPartwordAtomics() && 8817 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8818 (Subtarget.hasPartwordAtomics() && 8819 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8820 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8821 8822 auto LoadMnemonic = PPC::LDARX; 8823 auto StoreMnemonic = PPC::STDCX; 8824 switch(MI->getOpcode()) { 8825 default: 8826 llvm_unreachable("Compare and swap of unknown size"); 8827 case PPC::ATOMIC_CMP_SWAP_I8: 8828 LoadMnemonic = PPC::LBARX; 8829 StoreMnemonic = PPC::STBCX; 8830 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8831 break; 8832 case PPC::ATOMIC_CMP_SWAP_I16: 8833 LoadMnemonic = PPC::LHARX; 8834 StoreMnemonic = PPC::STHCX; 8835 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8836 break; 8837 case PPC::ATOMIC_CMP_SWAP_I32: 8838 LoadMnemonic = PPC::LWARX; 8839 StoreMnemonic = PPC::STWCX; 8840 break; 8841 case PPC::ATOMIC_CMP_SWAP_I64: 8842 LoadMnemonic = PPC::LDARX; 8843 StoreMnemonic = PPC::STDCX; 8844 break; 8845 } 8846 unsigned dest = MI->getOperand(0).getReg(); 8847 unsigned ptrA = MI->getOperand(1).getReg(); 8848 unsigned ptrB = MI->getOperand(2).getReg(); 8849 unsigned oldval = MI->getOperand(3).getReg(); 8850 unsigned newval = MI->getOperand(4).getReg(); 8851 DebugLoc dl = MI->getDebugLoc(); 8852 8853 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8854 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8855 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8856 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8857 F->insert(It, loop1MBB); 8858 F->insert(It, loop2MBB); 8859 F->insert(It, midMBB); 8860 F->insert(It, exitMBB); 8861 exitMBB->splice(exitMBB->begin(), BB, 8862 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8863 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8864 8865 // thisMBB: 8866 // ... 8867 // fallthrough --> loopMBB 8868 BB->addSuccessor(loop1MBB); 8869 8870 // loop1MBB: 8871 // l[bhwd]arx dest, ptr 8872 // cmp[wd] dest, oldval 8873 // bne- midMBB 8874 // loop2MBB: 8875 // st[bhwd]cx. newval, ptr 8876 // bne- loopMBB 8877 // b exitBB 8878 // midMBB: 8879 // st[bhwd]cx. dest, ptr 8880 // exitBB: 8881 BB = loop1MBB; 8882 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8883 .addReg(ptrA).addReg(ptrB); 8884 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8885 .addReg(oldval).addReg(dest); 8886 BuildMI(BB, dl, TII->get(PPC::BCC)) 8887 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8888 BB->addSuccessor(loop2MBB); 8889 BB->addSuccessor(midMBB); 8890 8891 BB = loop2MBB; 8892 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8893 .addReg(newval).addReg(ptrA).addReg(ptrB); 8894 BuildMI(BB, dl, TII->get(PPC::BCC)) 8895 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8896 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8897 BB->addSuccessor(loop1MBB); 8898 BB->addSuccessor(exitMBB); 8899 8900 BB = midMBB; 8901 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8902 .addReg(dest).addReg(ptrA).addReg(ptrB); 8903 BB->addSuccessor(exitMBB); 8904 8905 // exitMBB: 8906 // ... 8907 BB = exitMBB; 8908 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8909 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8910 // We must use 64-bit registers for addresses when targeting 64-bit, 8911 // since we're actually doing arithmetic on them. Other registers 8912 // can be 32-bit. 8913 bool is64bit = Subtarget.isPPC64(); 8914 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8915 8916 unsigned dest = MI->getOperand(0).getReg(); 8917 unsigned ptrA = MI->getOperand(1).getReg(); 8918 unsigned ptrB = MI->getOperand(2).getReg(); 8919 unsigned oldval = MI->getOperand(3).getReg(); 8920 unsigned newval = MI->getOperand(4).getReg(); 8921 DebugLoc dl = MI->getDebugLoc(); 8922 8923 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8924 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8925 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8926 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8927 F->insert(It, loop1MBB); 8928 F->insert(It, loop2MBB); 8929 F->insert(It, midMBB); 8930 F->insert(It, exitMBB); 8931 exitMBB->splice(exitMBB->begin(), BB, 8932 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8933 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8934 8935 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8936 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8937 : &PPC::GPRCRegClass; 8938 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8939 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8940 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8941 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8942 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8943 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8944 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8945 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8946 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8947 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8948 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8949 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8950 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8951 unsigned Ptr1Reg; 8952 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8953 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8954 // thisMBB: 8955 // ... 8956 // fallthrough --> loopMBB 8957 BB->addSuccessor(loop1MBB); 8958 8959 // The 4-byte load must be aligned, while a char or short may be 8960 // anywhere in the word. Hence all this nasty bookkeeping code. 8961 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8962 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8963 // xori shift, shift1, 24 [16] 8964 // rlwinm ptr, ptr1, 0, 0, 29 8965 // slw newval2, newval, shift 8966 // slw oldval2, oldval,shift 8967 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8968 // slw mask, mask2, shift 8969 // and newval3, newval2, mask 8970 // and oldval3, oldval2, mask 8971 // loop1MBB: 8972 // lwarx tmpDest, ptr 8973 // and tmp, tmpDest, mask 8974 // cmpw tmp, oldval3 8975 // bne- midMBB 8976 // loop2MBB: 8977 // andc tmp2, tmpDest, mask 8978 // or tmp4, tmp2, newval3 8979 // stwcx. tmp4, ptr 8980 // bne- loop1MBB 8981 // b exitBB 8982 // midMBB: 8983 // stwcx. tmpDest, ptr 8984 // exitBB: 8985 // srw dest, tmpDest, shift 8986 if (ptrA != ZeroReg) { 8987 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8988 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8989 .addReg(ptrA).addReg(ptrB); 8990 } else { 8991 Ptr1Reg = ptrB; 8992 } 8993 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8994 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8995 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8996 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8997 if (is64bit) 8998 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8999 .addReg(Ptr1Reg).addImm(0).addImm(61); 9000 else 9001 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9002 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9003 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9004 .addReg(newval).addReg(ShiftReg); 9005 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9006 .addReg(oldval).addReg(ShiftReg); 9007 if (is8bit) 9008 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9009 else { 9010 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9011 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9012 .addReg(Mask3Reg).addImm(65535); 9013 } 9014 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9015 .addReg(Mask2Reg).addReg(ShiftReg); 9016 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9017 .addReg(NewVal2Reg).addReg(MaskReg); 9018 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9019 .addReg(OldVal2Reg).addReg(MaskReg); 9020 9021 BB = loop1MBB; 9022 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9023 .addReg(ZeroReg).addReg(PtrReg); 9024 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9025 .addReg(TmpDestReg).addReg(MaskReg); 9026 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9027 .addReg(TmpReg).addReg(OldVal3Reg); 9028 BuildMI(BB, dl, TII->get(PPC::BCC)) 9029 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9030 BB->addSuccessor(loop2MBB); 9031 BB->addSuccessor(midMBB); 9032 9033 BB = loop2MBB; 9034 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9035 .addReg(TmpDestReg).addReg(MaskReg); 9036 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9037 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9038 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9039 .addReg(ZeroReg).addReg(PtrReg); 9040 BuildMI(BB, dl, TII->get(PPC::BCC)) 9041 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9042 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9043 BB->addSuccessor(loop1MBB); 9044 BB->addSuccessor(exitMBB); 9045 9046 BB = midMBB; 9047 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9048 .addReg(ZeroReg).addReg(PtrReg); 9049 BB->addSuccessor(exitMBB); 9050 9051 // exitMBB: 9052 // ... 9053 BB = exitMBB; 9054 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9055 .addReg(ShiftReg); 9056 } else if (MI->getOpcode() == PPC::FADDrtz) { 9057 // This pseudo performs an FADD with rounding mode temporarily forced 9058 // to round-to-zero. We emit this via custom inserter since the FPSCR 9059 // is not modeled at the SelectionDAG level. 9060 unsigned Dest = MI->getOperand(0).getReg(); 9061 unsigned Src1 = MI->getOperand(1).getReg(); 9062 unsigned Src2 = MI->getOperand(2).getReg(); 9063 DebugLoc dl = MI->getDebugLoc(); 9064 9065 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9066 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9067 9068 // Save FPSCR value. 9069 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9070 9071 // Set rounding mode to round-to-zero. 9072 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9073 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9074 9075 // Perform addition. 9076 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9077 9078 // Restore FPSCR value. 9079 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9080 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9081 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9082 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9083 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9084 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9085 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9086 PPC::ANDIo8 : PPC::ANDIo; 9087 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9088 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9089 9090 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9091 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9092 &PPC::GPRCRegClass : 9093 &PPC::G8RCRegClass); 9094 9095 DebugLoc dl = MI->getDebugLoc(); 9096 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9097 .addReg(MI->getOperand(1).getReg()).addImm(1); 9098 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9099 MI->getOperand(0).getReg()) 9100 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9101 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9102 DebugLoc Dl = MI->getDebugLoc(); 9103 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9104 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9105 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9106 return BB; 9107 } else { 9108 llvm_unreachable("Unexpected instr type to insert"); 9109 } 9110 9111 MI->eraseFromParent(); // The pseudo instruction is gone now. 9112 return BB; 9113 } 9114 9115 //===----------------------------------------------------------------------===// 9116 // Target Optimization Hooks 9117 //===----------------------------------------------------------------------===// 9118 9119 static std::string getRecipOp(const char *Base, EVT VT) { 9120 std::string RecipOp(Base); 9121 if (VT.getScalarType() == MVT::f64) 9122 RecipOp += "d"; 9123 else 9124 RecipOp += "f"; 9125 9126 if (VT.isVector()) 9127 RecipOp = "vec-" + RecipOp; 9128 9129 return RecipOp; 9130 } 9131 9132 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9133 DAGCombinerInfo &DCI, 9134 unsigned &RefinementSteps, 9135 bool &UseOneConstNR) const { 9136 EVT VT = Operand.getValueType(); 9137 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9138 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9139 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9140 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9141 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9142 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9143 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9144 std::string RecipOp = getRecipOp("sqrt", VT); 9145 if (!Recips.isEnabled(RecipOp)) 9146 return SDValue(); 9147 9148 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9149 UseOneConstNR = true; 9150 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9151 } 9152 return SDValue(); 9153 } 9154 9155 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9156 DAGCombinerInfo &DCI, 9157 unsigned &RefinementSteps) const { 9158 EVT VT = Operand.getValueType(); 9159 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9160 (VT == MVT::f64 && Subtarget.hasFRE()) || 9161 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9162 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9163 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9164 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9165 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9166 std::string RecipOp = getRecipOp("div", VT); 9167 if (!Recips.isEnabled(RecipOp)) 9168 return SDValue(); 9169 9170 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9171 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9172 } 9173 return SDValue(); 9174 } 9175 9176 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9177 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9178 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9179 // enabled for division), this functionality is redundant with the default 9180 // combiner logic (once the division -> reciprocal/multiply transformation 9181 // has taken place). As a result, this matters more for older cores than for 9182 // newer ones. 9183 9184 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9185 // reciprocal if there are two or more FDIVs (for embedded cores with only 9186 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9187 switch (Subtarget.getDarwinDirective()) { 9188 default: 9189 return 3; 9190 case PPC::DIR_440: 9191 case PPC::DIR_A2: 9192 case PPC::DIR_E500mc: 9193 case PPC::DIR_E5500: 9194 return 2; 9195 } 9196 } 9197 9198 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9199 // collapsed, and so we need to look through chains of them. 9200 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9201 int64_t& Offset, SelectionDAG &DAG) { 9202 if (DAG.isBaseWithConstantOffset(Loc)) { 9203 Base = Loc.getOperand(0); 9204 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9205 9206 // The base might itself be a base plus an offset, and if so, accumulate 9207 // that as well. 9208 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9209 } 9210 } 9211 9212 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9213 unsigned Bytes, int Dist, 9214 SelectionDAG &DAG) { 9215 if (VT.getSizeInBits() / 8 != Bytes) 9216 return false; 9217 9218 SDValue BaseLoc = Base->getBasePtr(); 9219 if (Loc.getOpcode() == ISD::FrameIndex) { 9220 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9221 return false; 9222 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9223 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9224 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9225 int FS = MFI->getObjectSize(FI); 9226 int BFS = MFI->getObjectSize(BFI); 9227 if (FS != BFS || FS != (int)Bytes) return false; 9228 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9229 } 9230 9231 SDValue Base1 = Loc, Base2 = BaseLoc; 9232 int64_t Offset1 = 0, Offset2 = 0; 9233 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9234 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9235 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9236 return true; 9237 9238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9239 const GlobalValue *GV1 = nullptr; 9240 const GlobalValue *GV2 = nullptr; 9241 Offset1 = 0; 9242 Offset2 = 0; 9243 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9244 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9245 if (isGA1 && isGA2 && GV1 == GV2) 9246 return Offset1 == (Offset2 + Dist*Bytes); 9247 return false; 9248 } 9249 9250 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9251 // not enforce equality of the chain operands. 9252 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9253 unsigned Bytes, int Dist, 9254 SelectionDAG &DAG) { 9255 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9256 EVT VT = LS->getMemoryVT(); 9257 SDValue Loc = LS->getBasePtr(); 9258 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9259 } 9260 9261 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9262 EVT VT; 9263 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9264 default: return false; 9265 case Intrinsic::ppc_qpx_qvlfd: 9266 case Intrinsic::ppc_qpx_qvlfda: 9267 VT = MVT::v4f64; 9268 break; 9269 case Intrinsic::ppc_qpx_qvlfs: 9270 case Intrinsic::ppc_qpx_qvlfsa: 9271 VT = MVT::v4f32; 9272 break; 9273 case Intrinsic::ppc_qpx_qvlfcd: 9274 case Intrinsic::ppc_qpx_qvlfcda: 9275 VT = MVT::v2f64; 9276 break; 9277 case Intrinsic::ppc_qpx_qvlfcs: 9278 case Intrinsic::ppc_qpx_qvlfcsa: 9279 VT = MVT::v2f32; 9280 break; 9281 case Intrinsic::ppc_qpx_qvlfiwa: 9282 case Intrinsic::ppc_qpx_qvlfiwz: 9283 case Intrinsic::ppc_altivec_lvx: 9284 case Intrinsic::ppc_altivec_lvxl: 9285 case Intrinsic::ppc_vsx_lxvw4x: 9286 VT = MVT::v4i32; 9287 break; 9288 case Intrinsic::ppc_vsx_lxvd2x: 9289 VT = MVT::v2f64; 9290 break; 9291 case Intrinsic::ppc_altivec_lvebx: 9292 VT = MVT::i8; 9293 break; 9294 case Intrinsic::ppc_altivec_lvehx: 9295 VT = MVT::i16; 9296 break; 9297 case Intrinsic::ppc_altivec_lvewx: 9298 VT = MVT::i32; 9299 break; 9300 } 9301 9302 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9303 } 9304 9305 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9306 EVT VT; 9307 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9308 default: return false; 9309 case Intrinsic::ppc_qpx_qvstfd: 9310 case Intrinsic::ppc_qpx_qvstfda: 9311 VT = MVT::v4f64; 9312 break; 9313 case Intrinsic::ppc_qpx_qvstfs: 9314 case Intrinsic::ppc_qpx_qvstfsa: 9315 VT = MVT::v4f32; 9316 break; 9317 case Intrinsic::ppc_qpx_qvstfcd: 9318 case Intrinsic::ppc_qpx_qvstfcda: 9319 VT = MVT::v2f64; 9320 break; 9321 case Intrinsic::ppc_qpx_qvstfcs: 9322 case Intrinsic::ppc_qpx_qvstfcsa: 9323 VT = MVT::v2f32; 9324 break; 9325 case Intrinsic::ppc_qpx_qvstfiw: 9326 case Intrinsic::ppc_qpx_qvstfiwa: 9327 case Intrinsic::ppc_altivec_stvx: 9328 case Intrinsic::ppc_altivec_stvxl: 9329 case Intrinsic::ppc_vsx_stxvw4x: 9330 VT = MVT::v4i32; 9331 break; 9332 case Intrinsic::ppc_vsx_stxvd2x: 9333 VT = MVT::v2f64; 9334 break; 9335 case Intrinsic::ppc_altivec_stvebx: 9336 VT = MVT::i8; 9337 break; 9338 case Intrinsic::ppc_altivec_stvehx: 9339 VT = MVT::i16; 9340 break; 9341 case Intrinsic::ppc_altivec_stvewx: 9342 VT = MVT::i32; 9343 break; 9344 } 9345 9346 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9347 } 9348 9349 return false; 9350 } 9351 9352 // Return true is there is a nearyby consecutive load to the one provided 9353 // (regardless of alignment). We search up and down the chain, looking though 9354 // token factors and other loads (but nothing else). As a result, a true result 9355 // indicates that it is safe to create a new consecutive load adjacent to the 9356 // load provided. 9357 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9358 SDValue Chain = LD->getChain(); 9359 EVT VT = LD->getMemoryVT(); 9360 9361 SmallSet<SDNode *, 16> LoadRoots; 9362 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9363 SmallSet<SDNode *, 16> Visited; 9364 9365 // First, search up the chain, branching to follow all token-factor operands. 9366 // If we find a consecutive load, then we're done, otherwise, record all 9367 // nodes just above the top-level loads and token factors. 9368 while (!Queue.empty()) { 9369 SDNode *ChainNext = Queue.pop_back_val(); 9370 if (!Visited.insert(ChainNext).second) 9371 continue; 9372 9373 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9374 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9375 return true; 9376 9377 if (!Visited.count(ChainLD->getChain().getNode())) 9378 Queue.push_back(ChainLD->getChain().getNode()); 9379 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9380 for (const SDUse &O : ChainNext->ops()) 9381 if (!Visited.count(O.getNode())) 9382 Queue.push_back(O.getNode()); 9383 } else 9384 LoadRoots.insert(ChainNext); 9385 } 9386 9387 // Second, search down the chain, starting from the top-level nodes recorded 9388 // in the first phase. These top-level nodes are the nodes just above all 9389 // loads and token factors. Starting with their uses, recursively look though 9390 // all loads (just the chain uses) and token factors to find a consecutive 9391 // load. 9392 Visited.clear(); 9393 Queue.clear(); 9394 9395 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9396 IE = LoadRoots.end(); I != IE; ++I) { 9397 Queue.push_back(*I); 9398 9399 while (!Queue.empty()) { 9400 SDNode *LoadRoot = Queue.pop_back_val(); 9401 if (!Visited.insert(LoadRoot).second) 9402 continue; 9403 9404 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9405 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9406 return true; 9407 9408 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9409 UE = LoadRoot->use_end(); UI != UE; ++UI) 9410 if (((isa<MemSDNode>(*UI) && 9411 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9412 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9413 Queue.push_back(*UI); 9414 } 9415 } 9416 9417 return false; 9418 } 9419 9420 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9421 DAGCombinerInfo &DCI) const { 9422 SelectionDAG &DAG = DCI.DAG; 9423 SDLoc dl(N); 9424 9425 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9426 // If we're tracking CR bits, we need to be careful that we don't have: 9427 // trunc(binary-ops(zext(x), zext(y))) 9428 // or 9429 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9430 // such that we're unnecessarily moving things into GPRs when it would be 9431 // better to keep them in CR bits. 9432 9433 // Note that trunc here can be an actual i1 trunc, or can be the effective 9434 // truncation that comes from a setcc or select_cc. 9435 if (N->getOpcode() == ISD::TRUNCATE && 9436 N->getValueType(0) != MVT::i1) 9437 return SDValue(); 9438 9439 if (N->getOperand(0).getValueType() != MVT::i32 && 9440 N->getOperand(0).getValueType() != MVT::i64) 9441 return SDValue(); 9442 9443 if (N->getOpcode() == ISD::SETCC || 9444 N->getOpcode() == ISD::SELECT_CC) { 9445 // If we're looking at a comparison, then we need to make sure that the 9446 // high bits (all except for the first) don't matter the result. 9447 ISD::CondCode CC = 9448 cast<CondCodeSDNode>(N->getOperand( 9449 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9450 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9451 9452 if (ISD::isSignedIntSetCC(CC)) { 9453 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9454 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9455 return SDValue(); 9456 } else if (ISD::isUnsignedIntSetCC(CC)) { 9457 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9458 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9459 !DAG.MaskedValueIsZero(N->getOperand(1), 9460 APInt::getHighBitsSet(OpBits, OpBits-1))) 9461 return SDValue(); 9462 } else { 9463 // This is neither a signed nor an unsigned comparison, just make sure 9464 // that the high bits are equal. 9465 APInt Op1Zero, Op1One; 9466 APInt Op2Zero, Op2One; 9467 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9468 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9469 9470 // We don't really care about what is known about the first bit (if 9471 // anything), so clear it in all masks prior to comparing them. 9472 Op1Zero.clearBit(0); Op1One.clearBit(0); 9473 Op2Zero.clearBit(0); Op2One.clearBit(0); 9474 9475 if (Op1Zero != Op2Zero || Op1One != Op2One) 9476 return SDValue(); 9477 } 9478 } 9479 9480 // We now know that the higher-order bits are irrelevant, we just need to 9481 // make sure that all of the intermediate operations are bit operations, and 9482 // all inputs are extensions. 9483 if (N->getOperand(0).getOpcode() != ISD::AND && 9484 N->getOperand(0).getOpcode() != ISD::OR && 9485 N->getOperand(0).getOpcode() != ISD::XOR && 9486 N->getOperand(0).getOpcode() != ISD::SELECT && 9487 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9488 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9489 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9490 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9491 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9492 return SDValue(); 9493 9494 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9495 N->getOperand(1).getOpcode() != ISD::AND && 9496 N->getOperand(1).getOpcode() != ISD::OR && 9497 N->getOperand(1).getOpcode() != ISD::XOR && 9498 N->getOperand(1).getOpcode() != ISD::SELECT && 9499 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9500 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9501 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9502 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9503 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9504 return SDValue(); 9505 9506 SmallVector<SDValue, 4> Inputs; 9507 SmallVector<SDValue, 8> BinOps, PromOps; 9508 SmallPtrSet<SDNode *, 16> Visited; 9509 9510 for (unsigned i = 0; i < 2; ++i) { 9511 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9512 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9513 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9514 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9515 isa<ConstantSDNode>(N->getOperand(i))) 9516 Inputs.push_back(N->getOperand(i)); 9517 else 9518 BinOps.push_back(N->getOperand(i)); 9519 9520 if (N->getOpcode() == ISD::TRUNCATE) 9521 break; 9522 } 9523 9524 // Visit all inputs, collect all binary operations (and, or, xor and 9525 // select) that are all fed by extensions. 9526 while (!BinOps.empty()) { 9527 SDValue BinOp = BinOps.back(); 9528 BinOps.pop_back(); 9529 9530 if (!Visited.insert(BinOp.getNode()).second) 9531 continue; 9532 9533 PromOps.push_back(BinOp); 9534 9535 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9536 // The condition of the select is not promoted. 9537 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9538 continue; 9539 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9540 continue; 9541 9542 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9543 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9544 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9545 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9546 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9547 Inputs.push_back(BinOp.getOperand(i)); 9548 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9549 BinOp.getOperand(i).getOpcode() == ISD::OR || 9550 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9551 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9552 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9553 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9554 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9555 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9556 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9557 BinOps.push_back(BinOp.getOperand(i)); 9558 } else { 9559 // We have an input that is not an extension or another binary 9560 // operation; we'll abort this transformation. 9561 return SDValue(); 9562 } 9563 } 9564 } 9565 9566 // Make sure that this is a self-contained cluster of operations (which 9567 // is not quite the same thing as saying that everything has only one 9568 // use). 9569 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9570 if (isa<ConstantSDNode>(Inputs[i])) 9571 continue; 9572 9573 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9574 UE = Inputs[i].getNode()->use_end(); 9575 UI != UE; ++UI) { 9576 SDNode *User = *UI; 9577 if (User != N && !Visited.count(User)) 9578 return SDValue(); 9579 9580 // Make sure that we're not going to promote the non-output-value 9581 // operand(s) or SELECT or SELECT_CC. 9582 // FIXME: Although we could sometimes handle this, and it does occur in 9583 // practice that one of the condition inputs to the select is also one of 9584 // the outputs, we currently can't deal with this. 9585 if (User->getOpcode() == ISD::SELECT) { 9586 if (User->getOperand(0) == Inputs[i]) 9587 return SDValue(); 9588 } else if (User->getOpcode() == ISD::SELECT_CC) { 9589 if (User->getOperand(0) == Inputs[i] || 9590 User->getOperand(1) == Inputs[i]) 9591 return SDValue(); 9592 } 9593 } 9594 } 9595 9596 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9597 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9598 UE = PromOps[i].getNode()->use_end(); 9599 UI != UE; ++UI) { 9600 SDNode *User = *UI; 9601 if (User != N && !Visited.count(User)) 9602 return SDValue(); 9603 9604 // Make sure that we're not going to promote the non-output-value 9605 // operand(s) or SELECT or SELECT_CC. 9606 // FIXME: Although we could sometimes handle this, and it does occur in 9607 // practice that one of the condition inputs to the select is also one of 9608 // the outputs, we currently can't deal with this. 9609 if (User->getOpcode() == ISD::SELECT) { 9610 if (User->getOperand(0) == PromOps[i]) 9611 return SDValue(); 9612 } else if (User->getOpcode() == ISD::SELECT_CC) { 9613 if (User->getOperand(0) == PromOps[i] || 9614 User->getOperand(1) == PromOps[i]) 9615 return SDValue(); 9616 } 9617 } 9618 } 9619 9620 // Replace all inputs with the extension operand. 9621 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9622 // Constants may have users outside the cluster of to-be-promoted nodes, 9623 // and so we need to replace those as we do the promotions. 9624 if (isa<ConstantSDNode>(Inputs[i])) 9625 continue; 9626 else 9627 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9628 } 9629 9630 // Replace all operations (these are all the same, but have a different 9631 // (i1) return type). DAG.getNode will validate that the types of 9632 // a binary operator match, so go through the list in reverse so that 9633 // we've likely promoted both operands first. Any intermediate truncations or 9634 // extensions disappear. 9635 while (!PromOps.empty()) { 9636 SDValue PromOp = PromOps.back(); 9637 PromOps.pop_back(); 9638 9639 if (PromOp.getOpcode() == ISD::TRUNCATE || 9640 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9641 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9642 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9643 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9644 PromOp.getOperand(0).getValueType() != MVT::i1) { 9645 // The operand is not yet ready (see comment below). 9646 PromOps.insert(PromOps.begin(), PromOp); 9647 continue; 9648 } 9649 9650 SDValue RepValue = PromOp.getOperand(0); 9651 if (isa<ConstantSDNode>(RepValue)) 9652 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9653 9654 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9655 continue; 9656 } 9657 9658 unsigned C; 9659 switch (PromOp.getOpcode()) { 9660 default: C = 0; break; 9661 case ISD::SELECT: C = 1; break; 9662 case ISD::SELECT_CC: C = 2; break; 9663 } 9664 9665 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9666 PromOp.getOperand(C).getValueType() != MVT::i1) || 9667 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9668 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9669 // The to-be-promoted operands of this node have not yet been 9670 // promoted (this should be rare because we're going through the 9671 // list backward, but if one of the operands has several users in 9672 // this cluster of to-be-promoted nodes, it is possible). 9673 PromOps.insert(PromOps.begin(), PromOp); 9674 continue; 9675 } 9676 9677 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9678 PromOp.getNode()->op_end()); 9679 9680 // If there are any constant inputs, make sure they're replaced now. 9681 for (unsigned i = 0; i < 2; ++i) 9682 if (isa<ConstantSDNode>(Ops[C+i])) 9683 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9684 9685 DAG.ReplaceAllUsesOfValueWith(PromOp, 9686 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9687 } 9688 9689 // Now we're left with the initial truncation itself. 9690 if (N->getOpcode() == ISD::TRUNCATE) 9691 return N->getOperand(0); 9692 9693 // Otherwise, this is a comparison. The operands to be compared have just 9694 // changed type (to i1), but everything else is the same. 9695 return SDValue(N, 0); 9696 } 9697 9698 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9699 DAGCombinerInfo &DCI) const { 9700 SelectionDAG &DAG = DCI.DAG; 9701 SDLoc dl(N); 9702 9703 // If we're tracking CR bits, we need to be careful that we don't have: 9704 // zext(binary-ops(trunc(x), trunc(y))) 9705 // or 9706 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9707 // such that we're unnecessarily moving things into CR bits that can more 9708 // efficiently stay in GPRs. Note that if we're not certain that the high 9709 // bits are set as required by the final extension, we still may need to do 9710 // some masking to get the proper behavior. 9711 9712 // This same functionality is important on PPC64 when dealing with 9713 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9714 // the return values of functions. Because it is so similar, it is handled 9715 // here as well. 9716 9717 if (N->getValueType(0) != MVT::i32 && 9718 N->getValueType(0) != MVT::i64) 9719 return SDValue(); 9720 9721 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9722 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9723 return SDValue(); 9724 9725 if (N->getOperand(0).getOpcode() != ISD::AND && 9726 N->getOperand(0).getOpcode() != ISD::OR && 9727 N->getOperand(0).getOpcode() != ISD::XOR && 9728 N->getOperand(0).getOpcode() != ISD::SELECT && 9729 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9730 return SDValue(); 9731 9732 SmallVector<SDValue, 4> Inputs; 9733 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9734 SmallPtrSet<SDNode *, 16> Visited; 9735 9736 // Visit all inputs, collect all binary operations (and, or, xor and 9737 // select) that are all fed by truncations. 9738 while (!BinOps.empty()) { 9739 SDValue BinOp = BinOps.back(); 9740 BinOps.pop_back(); 9741 9742 if (!Visited.insert(BinOp.getNode()).second) 9743 continue; 9744 9745 PromOps.push_back(BinOp); 9746 9747 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9748 // The condition of the select is not promoted. 9749 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9750 continue; 9751 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9752 continue; 9753 9754 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9755 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9756 Inputs.push_back(BinOp.getOperand(i)); 9757 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9758 BinOp.getOperand(i).getOpcode() == ISD::OR || 9759 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9760 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9761 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9762 BinOps.push_back(BinOp.getOperand(i)); 9763 } else { 9764 // We have an input that is not a truncation or another binary 9765 // operation; we'll abort this transformation. 9766 return SDValue(); 9767 } 9768 } 9769 } 9770 9771 // The operands of a select that must be truncated when the select is 9772 // promoted because the operand is actually part of the to-be-promoted set. 9773 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9774 9775 // Make sure that this is a self-contained cluster of operations (which 9776 // is not quite the same thing as saying that everything has only one 9777 // use). 9778 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9779 if (isa<ConstantSDNode>(Inputs[i])) 9780 continue; 9781 9782 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9783 UE = Inputs[i].getNode()->use_end(); 9784 UI != UE; ++UI) { 9785 SDNode *User = *UI; 9786 if (User != N && !Visited.count(User)) 9787 return SDValue(); 9788 9789 // If we're going to promote the non-output-value operand(s) or SELECT or 9790 // SELECT_CC, record them for truncation. 9791 if (User->getOpcode() == ISD::SELECT) { 9792 if (User->getOperand(0) == Inputs[i]) 9793 SelectTruncOp[0].insert(std::make_pair(User, 9794 User->getOperand(0).getValueType())); 9795 } else if (User->getOpcode() == ISD::SELECT_CC) { 9796 if (User->getOperand(0) == Inputs[i]) 9797 SelectTruncOp[0].insert(std::make_pair(User, 9798 User->getOperand(0).getValueType())); 9799 if (User->getOperand(1) == Inputs[i]) 9800 SelectTruncOp[1].insert(std::make_pair(User, 9801 User->getOperand(1).getValueType())); 9802 } 9803 } 9804 } 9805 9806 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9807 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9808 UE = PromOps[i].getNode()->use_end(); 9809 UI != UE; ++UI) { 9810 SDNode *User = *UI; 9811 if (User != N && !Visited.count(User)) 9812 return SDValue(); 9813 9814 // If we're going to promote the non-output-value operand(s) or SELECT or 9815 // SELECT_CC, record them for truncation. 9816 if (User->getOpcode() == ISD::SELECT) { 9817 if (User->getOperand(0) == PromOps[i]) 9818 SelectTruncOp[0].insert(std::make_pair(User, 9819 User->getOperand(0).getValueType())); 9820 } else if (User->getOpcode() == ISD::SELECT_CC) { 9821 if (User->getOperand(0) == PromOps[i]) 9822 SelectTruncOp[0].insert(std::make_pair(User, 9823 User->getOperand(0).getValueType())); 9824 if (User->getOperand(1) == PromOps[i]) 9825 SelectTruncOp[1].insert(std::make_pair(User, 9826 User->getOperand(1).getValueType())); 9827 } 9828 } 9829 } 9830 9831 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9832 bool ReallyNeedsExt = false; 9833 if (N->getOpcode() != ISD::ANY_EXTEND) { 9834 // If all of the inputs are not already sign/zero extended, then 9835 // we'll still need to do that at the end. 9836 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9837 if (isa<ConstantSDNode>(Inputs[i])) 9838 continue; 9839 9840 unsigned OpBits = 9841 Inputs[i].getOperand(0).getValueSizeInBits(); 9842 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9843 9844 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9845 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9846 APInt::getHighBitsSet(OpBits, 9847 OpBits-PromBits))) || 9848 (N->getOpcode() == ISD::SIGN_EXTEND && 9849 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9850 (OpBits-(PromBits-1)))) { 9851 ReallyNeedsExt = true; 9852 break; 9853 } 9854 } 9855 } 9856 9857 // Replace all inputs, either with the truncation operand, or a 9858 // truncation or extension to the final output type. 9859 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9860 // Constant inputs need to be replaced with the to-be-promoted nodes that 9861 // use them because they might have users outside of the cluster of 9862 // promoted nodes. 9863 if (isa<ConstantSDNode>(Inputs[i])) 9864 continue; 9865 9866 SDValue InSrc = Inputs[i].getOperand(0); 9867 if (Inputs[i].getValueType() == N->getValueType(0)) 9868 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9869 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9870 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9871 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9872 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9873 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9874 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9875 else 9876 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9877 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9878 } 9879 9880 // Replace all operations (these are all the same, but have a different 9881 // (promoted) return type). DAG.getNode will validate that the types of 9882 // a binary operator match, so go through the list in reverse so that 9883 // we've likely promoted both operands first. 9884 while (!PromOps.empty()) { 9885 SDValue PromOp = PromOps.back(); 9886 PromOps.pop_back(); 9887 9888 unsigned C; 9889 switch (PromOp.getOpcode()) { 9890 default: C = 0; break; 9891 case ISD::SELECT: C = 1; break; 9892 case ISD::SELECT_CC: C = 2; break; 9893 } 9894 9895 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9896 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9897 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9898 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9899 // The to-be-promoted operands of this node have not yet been 9900 // promoted (this should be rare because we're going through the 9901 // list backward, but if one of the operands has several users in 9902 // this cluster of to-be-promoted nodes, it is possible). 9903 PromOps.insert(PromOps.begin(), PromOp); 9904 continue; 9905 } 9906 9907 // For SELECT and SELECT_CC nodes, we do a similar check for any 9908 // to-be-promoted comparison inputs. 9909 if (PromOp.getOpcode() == ISD::SELECT || 9910 PromOp.getOpcode() == ISD::SELECT_CC) { 9911 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9912 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9913 (SelectTruncOp[1].count(PromOp.getNode()) && 9914 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9915 PromOps.insert(PromOps.begin(), PromOp); 9916 continue; 9917 } 9918 } 9919 9920 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9921 PromOp.getNode()->op_end()); 9922 9923 // If this node has constant inputs, then they'll need to be promoted here. 9924 for (unsigned i = 0; i < 2; ++i) { 9925 if (!isa<ConstantSDNode>(Ops[C+i])) 9926 continue; 9927 if (Ops[C+i].getValueType() == N->getValueType(0)) 9928 continue; 9929 9930 if (N->getOpcode() == ISD::SIGN_EXTEND) 9931 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9932 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9933 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9934 else 9935 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9936 } 9937 9938 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9939 // truncate them again to the original value type. 9940 if (PromOp.getOpcode() == ISD::SELECT || 9941 PromOp.getOpcode() == ISD::SELECT_CC) { 9942 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9943 if (SI0 != SelectTruncOp[0].end()) 9944 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9945 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9946 if (SI1 != SelectTruncOp[1].end()) 9947 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9948 } 9949 9950 DAG.ReplaceAllUsesOfValueWith(PromOp, 9951 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9952 } 9953 9954 // Now we're left with the initial extension itself. 9955 if (!ReallyNeedsExt) 9956 return N->getOperand(0); 9957 9958 // To zero extend, just mask off everything except for the first bit (in the 9959 // i1 case). 9960 if (N->getOpcode() == ISD::ZERO_EXTEND) 9961 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9962 DAG.getConstant(APInt::getLowBitsSet( 9963 N->getValueSizeInBits(0), PromBits), 9964 dl, N->getValueType(0))); 9965 9966 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9967 "Invalid extension type"); 9968 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9969 SDValue ShiftCst = 9970 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9971 return DAG.getNode( 9972 ISD::SRA, dl, N->getValueType(0), 9973 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9974 ShiftCst); 9975 } 9976 9977 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9978 DAGCombinerInfo &DCI) const { 9979 assert((N->getOpcode() == ISD::SINT_TO_FP || 9980 N->getOpcode() == ISD::UINT_TO_FP) && 9981 "Need an int -> FP conversion node here"); 9982 9983 if (!Subtarget.has64BitSupport()) 9984 return SDValue(); 9985 9986 SelectionDAG &DAG = DCI.DAG; 9987 SDLoc dl(N); 9988 SDValue Op(N, 0); 9989 9990 // Don't handle ppc_fp128 here or i1 conversions. 9991 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 9992 return SDValue(); 9993 if (Op.getOperand(0).getValueType() == MVT::i1) 9994 return SDValue(); 9995 9996 // For i32 intermediate values, unfortunately, the conversion functions 9997 // leave the upper 32 bits of the value are undefined. Within the set of 9998 // scalar instructions, we have no method for zero- or sign-extending the 9999 // value. Thus, we cannot handle i32 intermediate values here. 10000 if (Op.getOperand(0).getValueType() == MVT::i32) 10001 return SDValue(); 10002 10003 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10004 "UINT_TO_FP is supported only with FPCVT"); 10005 10006 // If we have FCFIDS, then use it when converting to single-precision. 10007 // Otherwise, convert to double-precision and then round. 10008 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10009 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10010 : PPCISD::FCFIDS) 10011 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10012 : PPCISD::FCFID); 10013 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10014 ? MVT::f32 10015 : MVT::f64; 10016 10017 // If we're converting from a float, to an int, and back to a float again, 10018 // then we don't need the store/load pair at all. 10019 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10020 Subtarget.hasFPCVT()) || 10021 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10022 SDValue Src = Op.getOperand(0).getOperand(0); 10023 if (Src.getValueType() == MVT::f32) { 10024 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10025 DCI.AddToWorklist(Src.getNode()); 10026 } else if (Src.getValueType() != MVT::f64) { 10027 // Make sure that we don't pick up a ppc_fp128 source value. 10028 return SDValue(); 10029 } 10030 10031 unsigned FCTOp = 10032 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10033 PPCISD::FCTIDUZ; 10034 10035 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10036 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10037 10038 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10039 FP = DAG.getNode(ISD::FP_ROUND, dl, 10040 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10041 DCI.AddToWorklist(FP.getNode()); 10042 } 10043 10044 return FP; 10045 } 10046 10047 return SDValue(); 10048 } 10049 10050 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10051 // builtins) into loads with swaps. 10052 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10053 DAGCombinerInfo &DCI) const { 10054 SelectionDAG &DAG = DCI.DAG; 10055 SDLoc dl(N); 10056 SDValue Chain; 10057 SDValue Base; 10058 MachineMemOperand *MMO; 10059 10060 switch (N->getOpcode()) { 10061 default: 10062 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10063 case ISD::LOAD: { 10064 LoadSDNode *LD = cast<LoadSDNode>(N); 10065 Chain = LD->getChain(); 10066 Base = LD->getBasePtr(); 10067 MMO = LD->getMemOperand(); 10068 // If the MMO suggests this isn't a load of a full vector, leave 10069 // things alone. For a built-in, we have to make the change for 10070 // correctness, so if there is a size problem that will be a bug. 10071 if (MMO->getSize() < 16) 10072 return SDValue(); 10073 break; 10074 } 10075 case ISD::INTRINSIC_W_CHAIN: { 10076 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10077 Chain = Intrin->getChain(); 10078 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10079 // us what we want. Get operand 2 instead. 10080 Base = Intrin->getOperand(2); 10081 MMO = Intrin->getMemOperand(); 10082 break; 10083 } 10084 } 10085 10086 MVT VecTy = N->getValueType(0).getSimpleVT(); 10087 SDValue LoadOps[] = { Chain, Base }; 10088 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10089 DAG.getVTList(VecTy, MVT::Other), 10090 LoadOps, VecTy, MMO); 10091 DCI.AddToWorklist(Load.getNode()); 10092 Chain = Load.getValue(1); 10093 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10094 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10095 DCI.AddToWorklist(Swap.getNode()); 10096 return Swap; 10097 } 10098 10099 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10100 // builtins) into stores with swaps. 10101 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10102 DAGCombinerInfo &DCI) const { 10103 SelectionDAG &DAG = DCI.DAG; 10104 SDLoc dl(N); 10105 SDValue Chain; 10106 SDValue Base; 10107 unsigned SrcOpnd; 10108 MachineMemOperand *MMO; 10109 10110 switch (N->getOpcode()) { 10111 default: 10112 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10113 case ISD::STORE: { 10114 StoreSDNode *ST = cast<StoreSDNode>(N); 10115 Chain = ST->getChain(); 10116 Base = ST->getBasePtr(); 10117 MMO = ST->getMemOperand(); 10118 SrcOpnd = 1; 10119 // If the MMO suggests this isn't a store of a full vector, leave 10120 // things alone. For a built-in, we have to make the change for 10121 // correctness, so if there is a size problem that will be a bug. 10122 if (MMO->getSize() < 16) 10123 return SDValue(); 10124 break; 10125 } 10126 case ISD::INTRINSIC_VOID: { 10127 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10128 Chain = Intrin->getChain(); 10129 // Intrin->getBasePtr() oddly does not get what we want. 10130 Base = Intrin->getOperand(3); 10131 MMO = Intrin->getMemOperand(); 10132 SrcOpnd = 2; 10133 break; 10134 } 10135 } 10136 10137 SDValue Src = N->getOperand(SrcOpnd); 10138 MVT VecTy = Src.getValueType().getSimpleVT(); 10139 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10140 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10141 DCI.AddToWorklist(Swap.getNode()); 10142 Chain = Swap.getValue(1); 10143 SDValue StoreOps[] = { Chain, Swap, Base }; 10144 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10145 DAG.getVTList(MVT::Other), 10146 StoreOps, VecTy, MMO); 10147 DCI.AddToWorklist(Store.getNode()); 10148 return Store; 10149 } 10150 10151 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10152 DAGCombinerInfo &DCI) const { 10153 SelectionDAG &DAG = DCI.DAG; 10154 SDLoc dl(N); 10155 switch (N->getOpcode()) { 10156 default: break; 10157 case PPCISD::SHL: 10158 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10159 if (C->isNullValue()) // 0 << V -> 0. 10160 return N->getOperand(0); 10161 } 10162 break; 10163 case PPCISD::SRL: 10164 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10165 if (C->isNullValue()) // 0 >>u V -> 0. 10166 return N->getOperand(0); 10167 } 10168 break; 10169 case PPCISD::SRA: 10170 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10171 if (C->isNullValue() || // 0 >>s V -> 0. 10172 C->isAllOnesValue()) // -1 >>s V -> -1. 10173 return N->getOperand(0); 10174 } 10175 break; 10176 case ISD::SIGN_EXTEND: 10177 case ISD::ZERO_EXTEND: 10178 case ISD::ANY_EXTEND: 10179 return DAGCombineExtBoolTrunc(N, DCI); 10180 case ISD::TRUNCATE: 10181 case ISD::SETCC: 10182 case ISD::SELECT_CC: 10183 return DAGCombineTruncBoolExt(N, DCI); 10184 case ISD::SINT_TO_FP: 10185 case ISD::UINT_TO_FP: 10186 return combineFPToIntToFP(N, DCI); 10187 case ISD::STORE: { 10188 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10189 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10190 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10191 N->getOperand(1).getValueType() == MVT::i32 && 10192 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10193 SDValue Val = N->getOperand(1).getOperand(0); 10194 if (Val.getValueType() == MVT::f32) { 10195 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10196 DCI.AddToWorklist(Val.getNode()); 10197 } 10198 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10199 DCI.AddToWorklist(Val.getNode()); 10200 10201 SDValue Ops[] = { 10202 N->getOperand(0), Val, N->getOperand(2), 10203 DAG.getValueType(N->getOperand(1).getValueType()) 10204 }; 10205 10206 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10207 DAG.getVTList(MVT::Other), Ops, 10208 cast<StoreSDNode>(N)->getMemoryVT(), 10209 cast<StoreSDNode>(N)->getMemOperand()); 10210 DCI.AddToWorklist(Val.getNode()); 10211 return Val; 10212 } 10213 10214 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10215 if (cast<StoreSDNode>(N)->isUnindexed() && 10216 N->getOperand(1).getOpcode() == ISD::BSWAP && 10217 N->getOperand(1).getNode()->hasOneUse() && 10218 (N->getOperand(1).getValueType() == MVT::i32 || 10219 N->getOperand(1).getValueType() == MVT::i16 || 10220 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10221 N->getOperand(1).getValueType() == MVT::i64))) { 10222 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10223 // Do an any-extend to 32-bits if this is a half-word input. 10224 if (BSwapOp.getValueType() == MVT::i16) 10225 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10226 10227 SDValue Ops[] = { 10228 N->getOperand(0), BSwapOp, N->getOperand(2), 10229 DAG.getValueType(N->getOperand(1).getValueType()) 10230 }; 10231 return 10232 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10233 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10234 cast<StoreSDNode>(N)->getMemOperand()); 10235 } 10236 10237 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10238 EVT VT = N->getOperand(1).getValueType(); 10239 if (VT.isSimple()) { 10240 MVT StoreVT = VT.getSimpleVT(); 10241 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10242 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10243 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10244 return expandVSXStoreForLE(N, DCI); 10245 } 10246 break; 10247 } 10248 case ISD::LOAD: { 10249 LoadSDNode *LD = cast<LoadSDNode>(N); 10250 EVT VT = LD->getValueType(0); 10251 10252 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10253 if (VT.isSimple()) { 10254 MVT LoadVT = VT.getSimpleVT(); 10255 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10256 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10257 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10258 return expandVSXLoadForLE(N, DCI); 10259 } 10260 10261 EVT MemVT = LD->getMemoryVT(); 10262 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10263 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10264 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10265 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10266 if (LD->isUnindexed() && VT.isVector() && 10267 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10268 // P8 and later hardware should just use LOAD. 10269 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10270 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10271 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10272 LD->getAlignment() >= ScalarABIAlignment)) && 10273 LD->getAlignment() < ABIAlignment) { 10274 // This is a type-legal unaligned Altivec or QPX load. 10275 SDValue Chain = LD->getChain(); 10276 SDValue Ptr = LD->getBasePtr(); 10277 bool isLittleEndian = Subtarget.isLittleEndian(); 10278 10279 // This implements the loading of unaligned vectors as described in 10280 // the venerable Apple Velocity Engine overview. Specifically: 10281 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10282 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10283 // 10284 // The general idea is to expand a sequence of one or more unaligned 10285 // loads into an alignment-based permutation-control instruction (lvsl 10286 // or lvsr), a series of regular vector loads (which always truncate 10287 // their input address to an aligned address), and a series of 10288 // permutations. The results of these permutations are the requested 10289 // loaded values. The trick is that the last "extra" load is not taken 10290 // from the address you might suspect (sizeof(vector) bytes after the 10291 // last requested load), but rather sizeof(vector) - 1 bytes after the 10292 // last requested vector. The point of this is to avoid a page fault if 10293 // the base address happened to be aligned. This works because if the 10294 // base address is aligned, then adding less than a full vector length 10295 // will cause the last vector in the sequence to be (re)loaded. 10296 // Otherwise, the next vector will be fetched as you might suspect was 10297 // necessary. 10298 10299 // We might be able to reuse the permutation generation from 10300 // a different base address offset from this one by an aligned amount. 10301 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10302 // optimization later. 10303 Intrinsic::ID Intr, IntrLD, IntrPerm; 10304 MVT PermCntlTy, PermTy, LDTy; 10305 if (Subtarget.hasAltivec()) { 10306 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10307 Intrinsic::ppc_altivec_lvsl; 10308 IntrLD = Intrinsic::ppc_altivec_lvx; 10309 IntrPerm = Intrinsic::ppc_altivec_vperm; 10310 PermCntlTy = MVT::v16i8; 10311 PermTy = MVT::v4i32; 10312 LDTy = MVT::v4i32; 10313 } else { 10314 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10315 Intrinsic::ppc_qpx_qvlpcls; 10316 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10317 Intrinsic::ppc_qpx_qvlfs; 10318 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10319 PermCntlTy = MVT::v4f64; 10320 PermTy = MVT::v4f64; 10321 LDTy = MemVT.getSimpleVT(); 10322 } 10323 10324 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10325 10326 // Create the new MMO for the new base load. It is like the original MMO, 10327 // but represents an area in memory almost twice the vector size centered 10328 // on the original address. If the address is unaligned, we might start 10329 // reading up to (sizeof(vector)-1) bytes below the address of the 10330 // original unaligned load. 10331 MachineFunction &MF = DAG.getMachineFunction(); 10332 MachineMemOperand *BaseMMO = 10333 MF.getMachineMemOperand(LD->getMemOperand(), 10334 -(long)MemVT.getStoreSize()+1, 10335 2*MemVT.getStoreSize()-1); 10336 10337 // Create the new base load. 10338 SDValue LDXIntID = 10339 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10340 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10341 SDValue BaseLoad = 10342 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10343 DAG.getVTList(PermTy, MVT::Other), 10344 BaseLoadOps, LDTy, BaseMMO); 10345 10346 // Note that the value of IncOffset (which is provided to the next 10347 // load's pointer info offset value, and thus used to calculate the 10348 // alignment), and the value of IncValue (which is actually used to 10349 // increment the pointer value) are different! This is because we 10350 // require the next load to appear to be aligned, even though it 10351 // is actually offset from the base pointer by a lesser amount. 10352 int IncOffset = VT.getSizeInBits() / 8; 10353 int IncValue = IncOffset; 10354 10355 // Walk (both up and down) the chain looking for another load at the real 10356 // (aligned) offset (the alignment of the other load does not matter in 10357 // this case). If found, then do not use the offset reduction trick, as 10358 // that will prevent the loads from being later combined (as they would 10359 // otherwise be duplicates). 10360 if (!findConsecutiveLoad(LD, DAG)) 10361 --IncValue; 10362 10363 SDValue Increment = 10364 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10365 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10366 10367 MachineMemOperand *ExtraMMO = 10368 MF.getMachineMemOperand(LD->getMemOperand(), 10369 1, 2*MemVT.getStoreSize()-1); 10370 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10371 SDValue ExtraLoad = 10372 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10373 DAG.getVTList(PermTy, MVT::Other), 10374 ExtraLoadOps, LDTy, ExtraMMO); 10375 10376 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10377 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10378 10379 // Because vperm has a big-endian bias, we must reverse the order 10380 // of the input vectors and complement the permute control vector 10381 // when generating little endian code. We have already handled the 10382 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10383 // and ExtraLoad here. 10384 SDValue Perm; 10385 if (isLittleEndian) 10386 Perm = BuildIntrinsicOp(IntrPerm, 10387 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10388 else 10389 Perm = BuildIntrinsicOp(IntrPerm, 10390 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10391 10392 if (VT != PermTy) 10393 Perm = Subtarget.hasAltivec() ? 10394 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10395 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10396 DAG.getTargetConstant(1, dl, MVT::i64)); 10397 // second argument is 1 because this rounding 10398 // is always exact. 10399 10400 // The output of the permutation is our loaded result, the TokenFactor is 10401 // our new chain. 10402 DCI.CombineTo(N, Perm, TF); 10403 return SDValue(N, 0); 10404 } 10405 } 10406 break; 10407 case ISD::INTRINSIC_WO_CHAIN: { 10408 bool isLittleEndian = Subtarget.isLittleEndian(); 10409 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10410 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10411 : Intrinsic::ppc_altivec_lvsl); 10412 if ((IID == Intr || 10413 IID == Intrinsic::ppc_qpx_qvlpcld || 10414 IID == Intrinsic::ppc_qpx_qvlpcls) && 10415 N->getOperand(1)->getOpcode() == ISD::ADD) { 10416 SDValue Add = N->getOperand(1); 10417 10418 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10419 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10420 10421 if (DAG.MaskedValueIsZero( 10422 Add->getOperand(1), 10423 APInt::getAllOnesValue(Bits /* alignment */) 10424 .zext( 10425 Add.getValueType().getScalarType().getSizeInBits()))) { 10426 SDNode *BasePtr = Add->getOperand(0).getNode(); 10427 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10428 UE = BasePtr->use_end(); 10429 UI != UE; ++UI) { 10430 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10431 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10432 // We've found another LVSL/LVSR, and this address is an aligned 10433 // multiple of that one. The results will be the same, so use the 10434 // one we've just found instead. 10435 10436 return SDValue(*UI, 0); 10437 } 10438 } 10439 } 10440 10441 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10442 SDNode *BasePtr = Add->getOperand(0).getNode(); 10443 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10444 UE = BasePtr->use_end(); UI != UE; ++UI) { 10445 if (UI->getOpcode() == ISD::ADD && 10446 isa<ConstantSDNode>(UI->getOperand(1)) && 10447 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10448 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10449 (1ULL << Bits) == 0) { 10450 SDNode *OtherAdd = *UI; 10451 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10452 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10453 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10454 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10455 return SDValue(*VI, 0); 10456 } 10457 } 10458 } 10459 } 10460 } 10461 } 10462 } 10463 10464 break; 10465 case ISD::INTRINSIC_W_CHAIN: { 10466 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10467 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10468 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10469 default: 10470 break; 10471 case Intrinsic::ppc_vsx_lxvw4x: 10472 case Intrinsic::ppc_vsx_lxvd2x: 10473 return expandVSXLoadForLE(N, DCI); 10474 } 10475 } 10476 break; 10477 } 10478 case ISD::INTRINSIC_VOID: { 10479 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10480 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10481 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10482 default: 10483 break; 10484 case Intrinsic::ppc_vsx_stxvw4x: 10485 case Intrinsic::ppc_vsx_stxvd2x: 10486 return expandVSXStoreForLE(N, DCI); 10487 } 10488 } 10489 break; 10490 } 10491 case ISD::BSWAP: 10492 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10493 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10494 N->getOperand(0).hasOneUse() && 10495 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10496 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10497 N->getValueType(0) == MVT::i64))) { 10498 SDValue Load = N->getOperand(0); 10499 LoadSDNode *LD = cast<LoadSDNode>(Load); 10500 // Create the byte-swapping load. 10501 SDValue Ops[] = { 10502 LD->getChain(), // Chain 10503 LD->getBasePtr(), // Ptr 10504 DAG.getValueType(N->getValueType(0)) // VT 10505 }; 10506 SDValue BSLoad = 10507 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10508 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10509 MVT::i64 : MVT::i32, MVT::Other), 10510 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10511 10512 // If this is an i16 load, insert the truncate. 10513 SDValue ResVal = BSLoad; 10514 if (N->getValueType(0) == MVT::i16) 10515 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10516 10517 // First, combine the bswap away. This makes the value produced by the 10518 // load dead. 10519 DCI.CombineTo(N, ResVal); 10520 10521 // Next, combine the load away, we give it a bogus result value but a real 10522 // chain result. The result value is dead because the bswap is dead. 10523 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10524 10525 // Return N so it doesn't get rechecked! 10526 return SDValue(N, 0); 10527 } 10528 10529 break; 10530 case PPCISD::VCMP: { 10531 // If a VCMPo node already exists with exactly the same operands as this 10532 // node, use its result instead of this node (VCMPo computes both a CR6 and 10533 // a normal output). 10534 // 10535 if (!N->getOperand(0).hasOneUse() && 10536 !N->getOperand(1).hasOneUse() && 10537 !N->getOperand(2).hasOneUse()) { 10538 10539 // Scan all of the users of the LHS, looking for VCMPo's that match. 10540 SDNode *VCMPoNode = nullptr; 10541 10542 SDNode *LHSN = N->getOperand(0).getNode(); 10543 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10544 UI != E; ++UI) 10545 if (UI->getOpcode() == PPCISD::VCMPo && 10546 UI->getOperand(1) == N->getOperand(1) && 10547 UI->getOperand(2) == N->getOperand(2) && 10548 UI->getOperand(0) == N->getOperand(0)) { 10549 VCMPoNode = *UI; 10550 break; 10551 } 10552 10553 // If there is no VCMPo node, or if the flag value has a single use, don't 10554 // transform this. 10555 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10556 break; 10557 10558 // Look at the (necessarily single) use of the flag value. If it has a 10559 // chain, this transformation is more complex. Note that multiple things 10560 // could use the value result, which we should ignore. 10561 SDNode *FlagUser = nullptr; 10562 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10563 FlagUser == nullptr; ++UI) { 10564 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10565 SDNode *User = *UI; 10566 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10567 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10568 FlagUser = User; 10569 break; 10570 } 10571 } 10572 } 10573 10574 // If the user is a MFOCRF instruction, we know this is safe. 10575 // Otherwise we give up for right now. 10576 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10577 return SDValue(VCMPoNode, 0); 10578 } 10579 break; 10580 } 10581 case ISD::BRCOND: { 10582 SDValue Cond = N->getOperand(1); 10583 SDValue Target = N->getOperand(2); 10584 10585 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10586 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10587 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10588 10589 // We now need to make the intrinsic dead (it cannot be instruction 10590 // selected). 10591 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10592 assert(Cond.getNode()->hasOneUse() && 10593 "Counter decrement has more than one use"); 10594 10595 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10596 N->getOperand(0), Target); 10597 } 10598 } 10599 break; 10600 case ISD::BR_CC: { 10601 // If this is a branch on an altivec predicate comparison, lower this so 10602 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10603 // lowering is done pre-legalize, because the legalizer lowers the predicate 10604 // compare down to code that is difficult to reassemble. 10605 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10606 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10607 10608 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10609 // value. If so, pass-through the AND to get to the intrinsic. 10610 if (LHS.getOpcode() == ISD::AND && 10611 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10612 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10613 Intrinsic::ppc_is_decremented_ctr_nonzero && 10614 isa<ConstantSDNode>(LHS.getOperand(1)) && 10615 !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()-> 10616 isZero()) 10617 LHS = LHS.getOperand(0); 10618 10619 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10620 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10621 Intrinsic::ppc_is_decremented_ctr_nonzero && 10622 isa<ConstantSDNode>(RHS)) { 10623 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10624 "Counter decrement comparison is not EQ or NE"); 10625 10626 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10627 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10628 (CC == ISD::SETNE && !Val); 10629 10630 // We now need to make the intrinsic dead (it cannot be instruction 10631 // selected). 10632 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10633 assert(LHS.getNode()->hasOneUse() && 10634 "Counter decrement has more than one use"); 10635 10636 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10637 N->getOperand(0), N->getOperand(4)); 10638 } 10639 10640 int CompareOpc; 10641 bool isDot; 10642 10643 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10644 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10645 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10646 assert(isDot && "Can't compare against a vector result!"); 10647 10648 // If this is a comparison against something other than 0/1, then we know 10649 // that the condition is never/always true. 10650 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10651 if (Val != 0 && Val != 1) { 10652 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10653 return N->getOperand(0); 10654 // Always !=, turn it into an unconditional branch. 10655 return DAG.getNode(ISD::BR, dl, MVT::Other, 10656 N->getOperand(0), N->getOperand(4)); 10657 } 10658 10659 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10660 10661 // Create the PPCISD altivec 'dot' comparison node. 10662 SDValue Ops[] = { 10663 LHS.getOperand(2), // LHS of compare 10664 LHS.getOperand(3), // RHS of compare 10665 DAG.getConstant(CompareOpc, dl, MVT::i32) 10666 }; 10667 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10668 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10669 10670 // Unpack the result based on how the target uses it. 10671 PPC::Predicate CompOpc; 10672 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10673 default: // Can't happen, don't crash on invalid number though. 10674 case 0: // Branch on the value of the EQ bit of CR6. 10675 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10676 break; 10677 case 1: // Branch on the inverted value of the EQ bit of CR6. 10678 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10679 break; 10680 case 2: // Branch on the value of the LT bit of CR6. 10681 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10682 break; 10683 case 3: // Branch on the inverted value of the LT bit of CR6. 10684 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10685 break; 10686 } 10687 10688 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10689 DAG.getConstant(CompOpc, dl, MVT::i32), 10690 DAG.getRegister(PPC::CR6, MVT::i32), 10691 N->getOperand(4), CompNode.getValue(1)); 10692 } 10693 break; 10694 } 10695 } 10696 10697 return SDValue(); 10698 } 10699 10700 SDValue 10701 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10702 SelectionDAG &DAG, 10703 std::vector<SDNode *> *Created) const { 10704 // fold (sdiv X, pow2) 10705 EVT VT = N->getValueType(0); 10706 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10707 return SDValue(); 10708 if ((VT != MVT::i32 && VT != MVT::i64) || 10709 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10710 return SDValue(); 10711 10712 SDLoc DL(N); 10713 SDValue N0 = N->getOperand(0); 10714 10715 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10716 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10717 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10718 10719 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10720 if (Created) 10721 Created->push_back(Op.getNode()); 10722 10723 if (IsNegPow2) { 10724 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10725 if (Created) 10726 Created->push_back(Op.getNode()); 10727 } 10728 10729 return Op; 10730 } 10731 10732 //===----------------------------------------------------------------------===// 10733 // Inline Assembly Support 10734 //===----------------------------------------------------------------------===// 10735 10736 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10737 APInt &KnownZero, 10738 APInt &KnownOne, 10739 const SelectionDAG &DAG, 10740 unsigned Depth) const { 10741 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10742 switch (Op.getOpcode()) { 10743 default: break; 10744 case PPCISD::LBRX: { 10745 // lhbrx is known to have the top bits cleared out. 10746 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10747 KnownZero = 0xFFFF0000; 10748 break; 10749 } 10750 case ISD::INTRINSIC_WO_CHAIN: { 10751 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10752 default: break; 10753 case Intrinsic::ppc_altivec_vcmpbfp_p: 10754 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10755 case Intrinsic::ppc_altivec_vcmpequb_p: 10756 case Intrinsic::ppc_altivec_vcmpequh_p: 10757 case Intrinsic::ppc_altivec_vcmpequw_p: 10758 case Intrinsic::ppc_altivec_vcmpequd_p: 10759 case Intrinsic::ppc_altivec_vcmpgefp_p: 10760 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10761 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10762 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10763 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10764 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10765 case Intrinsic::ppc_altivec_vcmpgtub_p: 10766 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10767 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10768 case Intrinsic::ppc_altivec_vcmpgtud_p: 10769 KnownZero = ~1U; // All bits but the low one are known to be zero. 10770 break; 10771 } 10772 } 10773 } 10774 } 10775 10776 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10777 switch (Subtarget.getDarwinDirective()) { 10778 default: break; 10779 case PPC::DIR_970: 10780 case PPC::DIR_PWR4: 10781 case PPC::DIR_PWR5: 10782 case PPC::DIR_PWR5X: 10783 case PPC::DIR_PWR6: 10784 case PPC::DIR_PWR6X: 10785 case PPC::DIR_PWR7: 10786 case PPC::DIR_PWR8: { 10787 if (!ML) 10788 break; 10789 10790 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10791 10792 // For small loops (between 5 and 8 instructions), align to a 32-byte 10793 // boundary so that the entire loop fits in one instruction-cache line. 10794 uint64_t LoopSize = 0; 10795 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10796 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) 10797 LoopSize += TII->GetInstSizeInBytes(J); 10798 10799 if (LoopSize > 16 && LoopSize <= 32) 10800 return 5; 10801 10802 break; 10803 } 10804 } 10805 10806 return TargetLowering::getPrefLoopAlignment(ML); 10807 } 10808 10809 /// getConstraintType - Given a constraint, return the type of 10810 /// constraint it is for this target. 10811 PPCTargetLowering::ConstraintType 10812 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10813 if (Constraint.size() == 1) { 10814 switch (Constraint[0]) { 10815 default: break; 10816 case 'b': 10817 case 'r': 10818 case 'f': 10819 case 'v': 10820 case 'y': 10821 return C_RegisterClass; 10822 case 'Z': 10823 // FIXME: While Z does indicate a memory constraint, it specifically 10824 // indicates an r+r address (used in conjunction with the 'y' modifier 10825 // in the replacement string). Currently, we're forcing the base 10826 // register to be r0 in the asm printer (which is interpreted as zero) 10827 // and forming the complete address in the second register. This is 10828 // suboptimal. 10829 return C_Memory; 10830 } 10831 } else if (Constraint == "wc") { // individual CR bits. 10832 return C_RegisterClass; 10833 } else if (Constraint == "wa" || Constraint == "wd" || 10834 Constraint == "wf" || Constraint == "ws") { 10835 return C_RegisterClass; // VSX registers. 10836 } 10837 return TargetLowering::getConstraintType(Constraint); 10838 } 10839 10840 /// Examine constraint type and operand type and determine a weight value. 10841 /// This object must already have been set up with the operand type 10842 /// and the current alternative constraint selected. 10843 TargetLowering::ConstraintWeight 10844 PPCTargetLowering::getSingleConstraintMatchWeight( 10845 AsmOperandInfo &info, const char *constraint) const { 10846 ConstraintWeight weight = CW_Invalid; 10847 Value *CallOperandVal = info.CallOperandVal; 10848 // If we don't have a value, we can't do a match, 10849 // but allow it at the lowest weight. 10850 if (!CallOperandVal) 10851 return CW_Default; 10852 Type *type = CallOperandVal->getType(); 10853 10854 // Look at the constraint type. 10855 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10856 return CW_Register; // an individual CR bit. 10857 else if ((StringRef(constraint) == "wa" || 10858 StringRef(constraint) == "wd" || 10859 StringRef(constraint) == "wf") && 10860 type->isVectorTy()) 10861 return CW_Register; 10862 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10863 return CW_Register; 10864 10865 switch (*constraint) { 10866 default: 10867 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10868 break; 10869 case 'b': 10870 if (type->isIntegerTy()) 10871 weight = CW_Register; 10872 break; 10873 case 'f': 10874 if (type->isFloatTy()) 10875 weight = CW_Register; 10876 break; 10877 case 'd': 10878 if (type->isDoubleTy()) 10879 weight = CW_Register; 10880 break; 10881 case 'v': 10882 if (type->isVectorTy()) 10883 weight = CW_Register; 10884 break; 10885 case 'y': 10886 weight = CW_Register; 10887 break; 10888 case 'Z': 10889 weight = CW_Memory; 10890 break; 10891 } 10892 return weight; 10893 } 10894 10895 std::pair<unsigned, const TargetRegisterClass *> 10896 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10897 StringRef Constraint, 10898 MVT VT) const { 10899 if (Constraint.size() == 1) { 10900 // GCC RS6000 Constraint Letters 10901 switch (Constraint[0]) { 10902 case 'b': // R1-R31 10903 if (VT == MVT::i64 && Subtarget.isPPC64()) 10904 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10905 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10906 case 'r': // R0-R31 10907 if (VT == MVT::i64 && Subtarget.isPPC64()) 10908 return std::make_pair(0U, &PPC::G8RCRegClass); 10909 return std::make_pair(0U, &PPC::GPRCRegClass); 10910 case 'f': 10911 if (VT == MVT::f32 || VT == MVT::i32) 10912 return std::make_pair(0U, &PPC::F4RCRegClass); 10913 if (VT == MVT::f64 || VT == MVT::i64) 10914 return std::make_pair(0U, &PPC::F8RCRegClass); 10915 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10916 return std::make_pair(0U, &PPC::QFRCRegClass); 10917 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10918 return std::make_pair(0U, &PPC::QSRCRegClass); 10919 break; 10920 case 'v': 10921 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10922 return std::make_pair(0U, &PPC::QFRCRegClass); 10923 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10924 return std::make_pair(0U, &PPC::QSRCRegClass); 10925 if (Subtarget.hasAltivec()) 10926 return std::make_pair(0U, &PPC::VRRCRegClass); 10927 case 'y': // crrc 10928 return std::make_pair(0U, &PPC::CRRCRegClass); 10929 } 10930 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 10931 // An individual CR bit. 10932 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10933 } else if ((Constraint == "wa" || Constraint == "wd" || 10934 Constraint == "wf") && Subtarget.hasVSX()) { 10935 return std::make_pair(0U, &PPC::VSRCRegClass); 10936 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 10937 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 10938 return std::make_pair(0U, &PPC::VSSRCRegClass); 10939 else 10940 return std::make_pair(0U, &PPC::VSFRCRegClass); 10941 } 10942 10943 std::pair<unsigned, const TargetRegisterClass *> R = 10944 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10945 10946 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10947 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10948 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10949 // register. 10950 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10951 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10952 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10953 PPC::GPRCRegClass.contains(R.first)) 10954 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10955 PPC::sub_32, &PPC::G8RCRegClass), 10956 &PPC::G8RCRegClass); 10957 10958 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10959 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10960 R.first = PPC::CR0; 10961 R.second = &PPC::CRRCRegClass; 10962 } 10963 10964 return R; 10965 } 10966 10967 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10968 /// vector. If it is invalid, don't add anything to Ops. 10969 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10970 std::string &Constraint, 10971 std::vector<SDValue>&Ops, 10972 SelectionDAG &DAG) const { 10973 SDValue Result; 10974 10975 // Only support length 1 constraints. 10976 if (Constraint.length() > 1) return; 10977 10978 char Letter = Constraint[0]; 10979 switch (Letter) { 10980 default: break; 10981 case 'I': 10982 case 'J': 10983 case 'K': 10984 case 'L': 10985 case 'M': 10986 case 'N': 10987 case 'O': 10988 case 'P': { 10989 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 10990 if (!CST) return; // Must be an immediate to match. 10991 SDLoc dl(Op); 10992 int64_t Value = CST->getSExtValue(); 10993 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 10994 // numbers are printed as such. 10995 switch (Letter) { 10996 default: llvm_unreachable("Unknown constraint letter!"); 10997 case 'I': // "I" is a signed 16-bit constant. 10998 if (isInt<16>(Value)) 10999 Result = DAG.getTargetConstant(Value, dl, TCVT); 11000 break; 11001 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11002 if (isShiftedUInt<16, 16>(Value)) 11003 Result = DAG.getTargetConstant(Value, dl, TCVT); 11004 break; 11005 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11006 if (isShiftedInt<16, 16>(Value)) 11007 Result = DAG.getTargetConstant(Value, dl, TCVT); 11008 break; 11009 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11010 if (isUInt<16>(Value)) 11011 Result = DAG.getTargetConstant(Value, dl, TCVT); 11012 break; 11013 case 'M': // "M" is a constant that is greater than 31. 11014 if (Value > 31) 11015 Result = DAG.getTargetConstant(Value, dl, TCVT); 11016 break; 11017 case 'N': // "N" is a positive constant that is an exact power of two. 11018 if (Value > 0 && isPowerOf2_64(Value)) 11019 Result = DAG.getTargetConstant(Value, dl, TCVT); 11020 break; 11021 case 'O': // "O" is the constant zero. 11022 if (Value == 0) 11023 Result = DAG.getTargetConstant(Value, dl, TCVT); 11024 break; 11025 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11026 if (isInt<16>(-Value)) 11027 Result = DAG.getTargetConstant(Value, dl, TCVT); 11028 break; 11029 } 11030 break; 11031 } 11032 } 11033 11034 if (Result.getNode()) { 11035 Ops.push_back(Result); 11036 return; 11037 } 11038 11039 // Handle standard constraint letters. 11040 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11041 } 11042 11043 // isLegalAddressingMode - Return true if the addressing mode represented 11044 // by AM is legal for this target, for a load/store of the specified type. 11045 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11046 const AddrMode &AM, Type *Ty, 11047 unsigned AS) const { 11048 // PPC does not allow r+i addressing modes for vectors! 11049 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11050 return false; 11051 11052 // PPC allows a sign-extended 16-bit immediate field. 11053 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11054 return false; 11055 11056 // No global is ever allowed as a base. 11057 if (AM.BaseGV) 11058 return false; 11059 11060 // PPC only support r+r, 11061 switch (AM.Scale) { 11062 case 0: // "r+i" or just "i", depending on HasBaseReg. 11063 break; 11064 case 1: 11065 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11066 return false; 11067 // Otherwise we have r+r or r+i. 11068 break; 11069 case 2: 11070 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11071 return false; 11072 // Allow 2*r as r+r. 11073 break; 11074 default: 11075 // No other scales are supported. 11076 return false; 11077 } 11078 11079 return true; 11080 } 11081 11082 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11083 SelectionDAG &DAG) const { 11084 MachineFunction &MF = DAG.getMachineFunction(); 11085 MachineFrameInfo *MFI = MF.getFrameInfo(); 11086 MFI->setReturnAddressIsTaken(true); 11087 11088 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11089 return SDValue(); 11090 11091 SDLoc dl(Op); 11092 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11093 11094 // Make sure the function does not optimize away the store of the RA to 11095 // the stack. 11096 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11097 FuncInfo->setLRStoreRequired(); 11098 bool isPPC64 = Subtarget.isPPC64(); 11099 auto PtrVT = getPointerTy(MF.getDataLayout()); 11100 11101 if (Depth > 0) { 11102 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11103 SDValue Offset = 11104 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11105 isPPC64 ? MVT::i64 : MVT::i32); 11106 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11107 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11108 MachinePointerInfo(), false, false, false, 0); 11109 } 11110 11111 // Just load the return address off the stack. 11112 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11113 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11114 MachinePointerInfo(), false, false, false, 0); 11115 } 11116 11117 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11118 SelectionDAG &DAG) const { 11119 SDLoc dl(Op); 11120 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11121 11122 MachineFunction &MF = DAG.getMachineFunction(); 11123 MachineFrameInfo *MFI = MF.getFrameInfo(); 11124 MFI->setFrameAddressIsTaken(true); 11125 11126 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11127 bool isPPC64 = PtrVT == MVT::i64; 11128 11129 // Naked functions never have a frame pointer, and so we use r1. For all 11130 // other functions, this decision must be delayed until during PEI. 11131 unsigned FrameReg; 11132 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11133 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11134 else 11135 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11136 11137 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11138 PtrVT); 11139 while (Depth--) 11140 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11141 FrameAddr, MachinePointerInfo(), false, false, 11142 false, 0); 11143 return FrameAddr; 11144 } 11145 11146 // FIXME? Maybe this could be a TableGen attribute on some registers and 11147 // this table could be generated automatically from RegInfo. 11148 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11149 SelectionDAG &DAG) const { 11150 bool isPPC64 = Subtarget.isPPC64(); 11151 bool isDarwinABI = Subtarget.isDarwinABI(); 11152 11153 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11154 (!isPPC64 && VT != MVT::i32)) 11155 report_fatal_error("Invalid register global variable type"); 11156 11157 bool is64Bit = isPPC64 && VT == MVT::i64; 11158 unsigned Reg = StringSwitch<unsigned>(RegName) 11159 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11160 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11161 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11162 (is64Bit ? PPC::X13 : PPC::R13)) 11163 .Default(0); 11164 11165 if (Reg) 11166 return Reg; 11167 report_fatal_error("Invalid register name global variable"); 11168 } 11169 11170 bool 11171 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11172 // The PowerPC target isn't yet aware of offsets. 11173 return false; 11174 } 11175 11176 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11177 const CallInst &I, 11178 unsigned Intrinsic) const { 11179 11180 switch (Intrinsic) { 11181 case Intrinsic::ppc_qpx_qvlfd: 11182 case Intrinsic::ppc_qpx_qvlfs: 11183 case Intrinsic::ppc_qpx_qvlfcd: 11184 case Intrinsic::ppc_qpx_qvlfcs: 11185 case Intrinsic::ppc_qpx_qvlfiwa: 11186 case Intrinsic::ppc_qpx_qvlfiwz: 11187 case Intrinsic::ppc_altivec_lvx: 11188 case Intrinsic::ppc_altivec_lvxl: 11189 case Intrinsic::ppc_altivec_lvebx: 11190 case Intrinsic::ppc_altivec_lvehx: 11191 case Intrinsic::ppc_altivec_lvewx: 11192 case Intrinsic::ppc_vsx_lxvd2x: 11193 case Intrinsic::ppc_vsx_lxvw4x: { 11194 EVT VT; 11195 switch (Intrinsic) { 11196 case Intrinsic::ppc_altivec_lvebx: 11197 VT = MVT::i8; 11198 break; 11199 case Intrinsic::ppc_altivec_lvehx: 11200 VT = MVT::i16; 11201 break; 11202 case Intrinsic::ppc_altivec_lvewx: 11203 VT = MVT::i32; 11204 break; 11205 case Intrinsic::ppc_vsx_lxvd2x: 11206 VT = MVT::v2f64; 11207 break; 11208 case Intrinsic::ppc_qpx_qvlfd: 11209 VT = MVT::v4f64; 11210 break; 11211 case Intrinsic::ppc_qpx_qvlfs: 11212 VT = MVT::v4f32; 11213 break; 11214 case Intrinsic::ppc_qpx_qvlfcd: 11215 VT = MVT::v2f64; 11216 break; 11217 case Intrinsic::ppc_qpx_qvlfcs: 11218 VT = MVT::v2f32; 11219 break; 11220 default: 11221 VT = MVT::v4i32; 11222 break; 11223 } 11224 11225 Info.opc = ISD::INTRINSIC_W_CHAIN; 11226 Info.memVT = VT; 11227 Info.ptrVal = I.getArgOperand(0); 11228 Info.offset = -VT.getStoreSize()+1; 11229 Info.size = 2*VT.getStoreSize()-1; 11230 Info.align = 1; 11231 Info.vol = false; 11232 Info.readMem = true; 11233 Info.writeMem = false; 11234 return true; 11235 } 11236 case Intrinsic::ppc_qpx_qvlfda: 11237 case Intrinsic::ppc_qpx_qvlfsa: 11238 case Intrinsic::ppc_qpx_qvlfcda: 11239 case Intrinsic::ppc_qpx_qvlfcsa: 11240 case Intrinsic::ppc_qpx_qvlfiwaa: 11241 case Intrinsic::ppc_qpx_qvlfiwza: { 11242 EVT VT; 11243 switch (Intrinsic) { 11244 case Intrinsic::ppc_qpx_qvlfda: 11245 VT = MVT::v4f64; 11246 break; 11247 case Intrinsic::ppc_qpx_qvlfsa: 11248 VT = MVT::v4f32; 11249 break; 11250 case Intrinsic::ppc_qpx_qvlfcda: 11251 VT = MVT::v2f64; 11252 break; 11253 case Intrinsic::ppc_qpx_qvlfcsa: 11254 VT = MVT::v2f32; 11255 break; 11256 default: 11257 VT = MVT::v4i32; 11258 break; 11259 } 11260 11261 Info.opc = ISD::INTRINSIC_W_CHAIN; 11262 Info.memVT = VT; 11263 Info.ptrVal = I.getArgOperand(0); 11264 Info.offset = 0; 11265 Info.size = VT.getStoreSize(); 11266 Info.align = 1; 11267 Info.vol = false; 11268 Info.readMem = true; 11269 Info.writeMem = false; 11270 return true; 11271 } 11272 case Intrinsic::ppc_qpx_qvstfd: 11273 case Intrinsic::ppc_qpx_qvstfs: 11274 case Intrinsic::ppc_qpx_qvstfcd: 11275 case Intrinsic::ppc_qpx_qvstfcs: 11276 case Intrinsic::ppc_qpx_qvstfiw: 11277 case Intrinsic::ppc_altivec_stvx: 11278 case Intrinsic::ppc_altivec_stvxl: 11279 case Intrinsic::ppc_altivec_stvebx: 11280 case Intrinsic::ppc_altivec_stvehx: 11281 case Intrinsic::ppc_altivec_stvewx: 11282 case Intrinsic::ppc_vsx_stxvd2x: 11283 case Intrinsic::ppc_vsx_stxvw4x: { 11284 EVT VT; 11285 switch (Intrinsic) { 11286 case Intrinsic::ppc_altivec_stvebx: 11287 VT = MVT::i8; 11288 break; 11289 case Intrinsic::ppc_altivec_stvehx: 11290 VT = MVT::i16; 11291 break; 11292 case Intrinsic::ppc_altivec_stvewx: 11293 VT = MVT::i32; 11294 break; 11295 case Intrinsic::ppc_vsx_stxvd2x: 11296 VT = MVT::v2f64; 11297 break; 11298 case Intrinsic::ppc_qpx_qvstfd: 11299 VT = MVT::v4f64; 11300 break; 11301 case Intrinsic::ppc_qpx_qvstfs: 11302 VT = MVT::v4f32; 11303 break; 11304 case Intrinsic::ppc_qpx_qvstfcd: 11305 VT = MVT::v2f64; 11306 break; 11307 case Intrinsic::ppc_qpx_qvstfcs: 11308 VT = MVT::v2f32; 11309 break; 11310 default: 11311 VT = MVT::v4i32; 11312 break; 11313 } 11314 11315 Info.opc = ISD::INTRINSIC_VOID; 11316 Info.memVT = VT; 11317 Info.ptrVal = I.getArgOperand(1); 11318 Info.offset = -VT.getStoreSize()+1; 11319 Info.size = 2*VT.getStoreSize()-1; 11320 Info.align = 1; 11321 Info.vol = false; 11322 Info.readMem = false; 11323 Info.writeMem = true; 11324 return true; 11325 } 11326 case Intrinsic::ppc_qpx_qvstfda: 11327 case Intrinsic::ppc_qpx_qvstfsa: 11328 case Intrinsic::ppc_qpx_qvstfcda: 11329 case Intrinsic::ppc_qpx_qvstfcsa: 11330 case Intrinsic::ppc_qpx_qvstfiwa: { 11331 EVT VT; 11332 switch (Intrinsic) { 11333 case Intrinsic::ppc_qpx_qvstfda: 11334 VT = MVT::v4f64; 11335 break; 11336 case Intrinsic::ppc_qpx_qvstfsa: 11337 VT = MVT::v4f32; 11338 break; 11339 case Intrinsic::ppc_qpx_qvstfcda: 11340 VT = MVT::v2f64; 11341 break; 11342 case Intrinsic::ppc_qpx_qvstfcsa: 11343 VT = MVT::v2f32; 11344 break; 11345 default: 11346 VT = MVT::v4i32; 11347 break; 11348 } 11349 11350 Info.opc = ISD::INTRINSIC_VOID; 11351 Info.memVT = VT; 11352 Info.ptrVal = I.getArgOperand(1); 11353 Info.offset = 0; 11354 Info.size = VT.getStoreSize(); 11355 Info.align = 1; 11356 Info.vol = false; 11357 Info.readMem = false; 11358 Info.writeMem = true; 11359 return true; 11360 } 11361 default: 11362 break; 11363 } 11364 11365 return false; 11366 } 11367 11368 /// getOptimalMemOpType - Returns the target specific optimal type for load 11369 /// and store operations as a result of memset, memcpy, and memmove 11370 /// lowering. If DstAlign is zero that means it's safe to destination 11371 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11372 /// means there isn't a need to check it against alignment requirement, 11373 /// probably because the source does not need to be loaded. If 'IsMemset' is 11374 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11375 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11376 /// source is constant so it does not need to be loaded. 11377 /// It returns EVT::Other if the type should be determined using generic 11378 /// target-independent logic. 11379 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11380 unsigned DstAlign, unsigned SrcAlign, 11381 bool IsMemset, bool ZeroMemset, 11382 bool MemcpyStrSrc, 11383 MachineFunction &MF) const { 11384 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11385 const Function *F = MF.getFunction(); 11386 // When expanding a memset, require at least two QPX instructions to cover 11387 // the cost of loading the value to be stored from the constant pool. 11388 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11389 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11390 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11391 return MVT::v4f64; 11392 } 11393 11394 // We should use Altivec/VSX loads and stores when available. For unaligned 11395 // addresses, unaligned VSX loads are only fast starting with the P8. 11396 if (Subtarget.hasAltivec() && Size >= 16 && 11397 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11398 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11399 return MVT::v4i32; 11400 } 11401 11402 if (Subtarget.isPPC64()) { 11403 return MVT::i64; 11404 } 11405 11406 return MVT::i32; 11407 } 11408 11409 /// \brief Returns true if it is beneficial to convert a load of a constant 11410 /// to just the constant itself. 11411 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11412 Type *Ty) const { 11413 assert(Ty->isIntegerTy()); 11414 11415 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11416 if (BitSize == 0 || BitSize > 64) 11417 return false; 11418 return true; 11419 } 11420 11421 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11422 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11423 return false; 11424 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11425 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11426 return NumBits1 == 64 && NumBits2 == 32; 11427 } 11428 11429 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11430 if (!VT1.isInteger() || !VT2.isInteger()) 11431 return false; 11432 unsigned NumBits1 = VT1.getSizeInBits(); 11433 unsigned NumBits2 = VT2.getSizeInBits(); 11434 return NumBits1 == 64 && NumBits2 == 32; 11435 } 11436 11437 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11438 // Generally speaking, zexts are not free, but they are free when they can be 11439 // folded with other operations. 11440 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11441 EVT MemVT = LD->getMemoryVT(); 11442 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11443 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11444 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11445 LD->getExtensionType() == ISD::ZEXTLOAD)) 11446 return true; 11447 } 11448 11449 // FIXME: Add other cases... 11450 // - 32-bit shifts with a zext to i64 11451 // - zext after ctlz, bswap, etc. 11452 // - zext after and by a constant mask 11453 11454 return TargetLowering::isZExtFree(Val, VT2); 11455 } 11456 11457 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11458 assert(VT.isFloatingPoint()); 11459 return true; 11460 } 11461 11462 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11463 return isInt<16>(Imm) || isUInt<16>(Imm); 11464 } 11465 11466 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11467 return isInt<16>(Imm) || isUInt<16>(Imm); 11468 } 11469 11470 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11471 unsigned, 11472 unsigned, 11473 bool *Fast) const { 11474 if (DisablePPCUnaligned) 11475 return false; 11476 11477 // PowerPC supports unaligned memory access for simple non-vector types. 11478 // Although accessing unaligned addresses is not as efficient as accessing 11479 // aligned addresses, it is generally more efficient than manual expansion, 11480 // and generally only traps for software emulation when crossing page 11481 // boundaries. 11482 11483 if (!VT.isSimple()) 11484 return false; 11485 11486 if (VT.getSimpleVT().isVector()) { 11487 if (Subtarget.hasVSX()) { 11488 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11489 VT != MVT::v4f32 && VT != MVT::v4i32) 11490 return false; 11491 } else { 11492 return false; 11493 } 11494 } 11495 11496 if (VT == MVT::ppcf128) 11497 return false; 11498 11499 if (Fast) 11500 *Fast = true; 11501 11502 return true; 11503 } 11504 11505 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11506 VT = VT.getScalarType(); 11507 11508 if (!VT.isSimple()) 11509 return false; 11510 11511 switch (VT.getSimpleVT().SimpleTy) { 11512 case MVT::f32: 11513 case MVT::f64: 11514 return true; 11515 default: 11516 break; 11517 } 11518 11519 return false; 11520 } 11521 11522 const MCPhysReg * 11523 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11524 // LR is a callee-save register, but we must treat it as clobbered by any call 11525 // site. Hence we include LR in the scratch registers, which are in turn added 11526 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11527 // to CTR, which is used by any indirect call. 11528 static const MCPhysReg ScratchRegs[] = { 11529 PPC::X12, PPC::LR8, PPC::CTR8, 0 11530 }; 11531 11532 return ScratchRegs; 11533 } 11534 11535 bool 11536 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11537 EVT VT , unsigned DefinedValues) const { 11538 if (VT == MVT::v2i64) 11539 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11540 11541 if (Subtarget.hasQPX()) { 11542 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11543 return true; 11544 } 11545 11546 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11547 } 11548 11549 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11550 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11551 return TargetLowering::getSchedulingPreference(N); 11552 11553 return Sched::ILP; 11554 } 11555 11556 // Create a fast isel object. 11557 FastISel * 11558 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11559 const TargetLibraryInfo *LibInfo) const { 11560 return PPC::createFastISel(FuncInfo, LibInfo); 11561 } 11562