1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "ppc-lowering" 50 51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 59 60 static cl::opt<bool> DisableSCO("disable-ppc-sco", 61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 62 63 STATISTIC(NumTailCalls, "Number of tail calls"); 64 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 65 66 // FIXME: Remove this once the bug has been fixed! 67 extern cl::opt<bool> ANDIGlueBug; 68 69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 70 const PPCSubtarget &STI) 71 : TargetLowering(TM), Subtarget(STI) { 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 bool isPPC64 = Subtarget.isPPC64(); 79 setMinStackArgumentAlignment(isPPC64 ? 8:4); 80 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 83 if (!Subtarget.useSoftFloat()) { 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 } 87 88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 89 for (MVT VT : MVT::integer_valuetypes()) { 90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 92 } 93 94 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 95 96 // PowerPC has pre-inc load and store's. 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 111 112 if (Subtarget.useCRBits()) { 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 114 115 if (isPPC64 || Subtarget.hasFPCVT()) { 116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 118 isPPC64 ? MVT::i64 : MVT::i32); 119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 121 isPPC64 ? MVT::i64 : MVT::i32); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 125 } 126 127 // PowerPC does not support direct load / store of condition registers 128 setOperationAction(ISD::LOAD, MVT::i1, Custom); 129 setOperationAction(ISD::STORE, MVT::i1, Custom); 130 131 // FIXME: Remove this once the ANDI glue bug is fixed: 132 if (ANDIGlueBug) 133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 134 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setTruncStoreAction(VT, MVT::i1, Expand); 139 } 140 141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 142 } 143 144 // This is used in the ppcf128->int sequence. Note it has different semantics 145 // from FP_ROUND: that rounds to nearest, this rounds to zero. 146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 147 148 // We do not currently implement these libm ops for PowerPC. 149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 155 156 // PowerPC has no SREM/UREM instructions 157 setOperationAction(ISD::SREM, MVT::i32, Expand); 158 setOperationAction(ISD::UREM, MVT::i32, Expand); 159 setOperationAction(ISD::SREM, MVT::i64, Expand); 160 setOperationAction(ISD::UREM, MVT::i64, Expand); 161 162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 171 172 // We don't support sin/cos/sqrt/fmod/pow 173 setOperationAction(ISD::FSIN , MVT::f64, Expand); 174 setOperationAction(ISD::FCOS , MVT::f64, Expand); 175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 176 setOperationAction(ISD::FREM , MVT::f64, Expand); 177 setOperationAction(ISD::FPOW , MVT::f64, Expand); 178 setOperationAction(ISD::FMA , MVT::f64, Legal); 179 setOperationAction(ISD::FSIN , MVT::f32, Expand); 180 setOperationAction(ISD::FCOS , MVT::f32, Expand); 181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 182 setOperationAction(ISD::FREM , MVT::f32, Expand); 183 setOperationAction(ISD::FPOW , MVT::f32, Expand); 184 setOperationAction(ISD::FMA , MVT::f32, Legal); 185 186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 187 188 // If we're enabling GP optimizations, use hardware square root 189 if (!Subtarget.hasFSQRT() && 190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 191 Subtarget.hasFRE())) 192 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 193 194 if (!Subtarget.hasFSQRT() && 195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 196 Subtarget.hasFRES())) 197 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 198 199 if (Subtarget.hasFCPSGN()) { 200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 202 } else { 203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 205 } 206 207 if (Subtarget.hasFPRND()) { 208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 209 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 211 setOperationAction(ISD::FROUND, MVT::f64, Legal); 212 213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 214 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 216 setOperationAction(ISD::FROUND, MVT::f32, Legal); 217 } 218 219 // PowerPC does not have BSWAP, CTPOP or CTTZ 220 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 221 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 223 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 224 225 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 226 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 227 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 228 } else { 229 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 230 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 231 } 232 233 // PowerPC does not have ROTR 234 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 235 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 236 237 if (!Subtarget.useCRBits()) { 238 // PowerPC does not have Select 239 setOperationAction(ISD::SELECT, MVT::i32, Expand); 240 setOperationAction(ISD::SELECT, MVT::i64, Expand); 241 setOperationAction(ISD::SELECT, MVT::f32, Expand); 242 setOperationAction(ISD::SELECT, MVT::f64, Expand); 243 } 244 245 // PowerPC wants to turn select_cc of FP into fsel when possible. 246 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 247 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 248 249 // PowerPC wants to optimize integer setcc a bit 250 if (!Subtarget.useCRBits()) 251 setOperationAction(ISD::SETCC, MVT::i32, Custom); 252 253 // PowerPC does not have BRCOND which requires SetCC 254 if (!Subtarget.useCRBits()) 255 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 256 257 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 258 259 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 261 262 // PowerPC does not have [U|S]INT_TO_FP 263 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 265 266 if (Subtarget.hasDirectMove() && isPPC64) { 267 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 268 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 269 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 270 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 271 } else { 272 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 273 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 274 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 275 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 276 } 277 278 // We cannot sextinreg(i1). Expand to shifts. 279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 280 281 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 282 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 283 // support continuation, user-level threading, and etc.. As a result, no 284 // other SjLj exception interfaces are implemented and please don't build 285 // your own exception handling based on them. 286 // LLVM/Clang supports zero-cost DWARF exception handling. 287 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 288 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 289 290 // We want to legalize GlobalAddress and ConstantPool nodes into the 291 // appropriate instructions to materialize the address. 292 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 294 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 296 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 297 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 298 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 299 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 300 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 301 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 302 303 // TRAP is legal. 304 setOperationAction(ISD::TRAP, MVT::Other, Legal); 305 306 // TRAMPOLINE is custom lowered. 307 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 308 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 309 310 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 311 setOperationAction(ISD::VASTART , MVT::Other, Custom); 312 313 if (Subtarget.isSVR4ABI()) { 314 if (isPPC64) { 315 // VAARG always uses double-word chunks, so promote anything smaller. 316 setOperationAction(ISD::VAARG, MVT::i1, Promote); 317 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 318 setOperationAction(ISD::VAARG, MVT::i8, Promote); 319 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 320 setOperationAction(ISD::VAARG, MVT::i16, Promote); 321 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 322 setOperationAction(ISD::VAARG, MVT::i32, Promote); 323 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 324 setOperationAction(ISD::VAARG, MVT::Other, Expand); 325 } else { 326 // VAARG is custom lowered with the 32-bit SVR4 ABI. 327 setOperationAction(ISD::VAARG, MVT::Other, Custom); 328 setOperationAction(ISD::VAARG, MVT::i64, Custom); 329 } 330 } else 331 setOperationAction(ISD::VAARG, MVT::Other, Expand); 332 333 if (Subtarget.isSVR4ABI() && !isPPC64) 334 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 335 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 336 else 337 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 338 339 // Use the default implementation. 340 setOperationAction(ISD::VAEND , MVT::Other, Expand); 341 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 342 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 344 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 345 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 346 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 347 348 // We want to custom lower some of our intrinsics. 349 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 350 351 // To handle counter-based loop conditions. 352 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 353 354 // Comparisons that require checking two conditions. 355 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 356 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 357 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 358 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 359 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 360 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 361 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 362 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 363 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 364 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 365 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 366 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 367 368 if (Subtarget.has64BitSupport()) { 369 // They also have instructions for converting between i64 and fp. 370 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 371 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 372 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 373 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 374 // This is just the low 32 bits of a (signed) fp->i64 conversion. 375 // We cannot do this with Promote because i64 is not a legal type. 376 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 377 378 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 379 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 380 } else { 381 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 383 } 384 385 // With the instructions enabled under FPCVT, we can do everything. 386 if (Subtarget.hasFPCVT()) { 387 if (Subtarget.has64BitSupport()) { 388 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 389 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 390 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 391 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 392 } 393 394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 395 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 398 } 399 400 if (Subtarget.use64BitRegs()) { 401 // 64-bit PowerPC implementations can support i64 types directly 402 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 403 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 404 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 405 // 64-bit PowerPC wants to expand i128 shifts itself. 406 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 407 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 408 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 409 } else { 410 // 32-bit PowerPC wants to expand i64 shifts itself. 411 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 412 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 413 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 414 } 415 416 if (Subtarget.hasAltivec()) { 417 // First set operation action for all vector types to expand. Then we 418 // will selectively turn on ones that can be effectively codegen'd. 419 for (MVT VT : MVT::vector_valuetypes()) { 420 // add/sub are legal for all supported vector VT's. 421 setOperationAction(ISD::ADD, VT, Legal); 422 setOperationAction(ISD::SUB, VT, Legal); 423 424 // Vector instructions introduced in P8 425 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 426 setOperationAction(ISD::CTPOP, VT, Legal); 427 setOperationAction(ISD::CTLZ, VT, Legal); 428 } 429 else { 430 setOperationAction(ISD::CTPOP, VT, Expand); 431 setOperationAction(ISD::CTLZ, VT, Expand); 432 } 433 434 // We promote all shuffles to v16i8. 435 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 436 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 437 438 // We promote all non-typed operations to v4i32. 439 setOperationAction(ISD::AND , VT, Promote); 440 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 441 setOperationAction(ISD::OR , VT, Promote); 442 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 443 setOperationAction(ISD::XOR , VT, Promote); 444 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 445 setOperationAction(ISD::LOAD , VT, Promote); 446 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 447 setOperationAction(ISD::SELECT, VT, Promote); 448 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 449 setOperationAction(ISD::SELECT_CC, VT, Promote); 450 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 451 setOperationAction(ISD::STORE, VT, Promote); 452 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 453 454 // No other operations are legal. 455 setOperationAction(ISD::MUL , VT, Expand); 456 setOperationAction(ISD::SDIV, VT, Expand); 457 setOperationAction(ISD::SREM, VT, Expand); 458 setOperationAction(ISD::UDIV, VT, Expand); 459 setOperationAction(ISD::UREM, VT, Expand); 460 setOperationAction(ISD::FDIV, VT, Expand); 461 setOperationAction(ISD::FREM, VT, Expand); 462 setOperationAction(ISD::FNEG, VT, Expand); 463 setOperationAction(ISD::FSQRT, VT, Expand); 464 setOperationAction(ISD::FLOG, VT, Expand); 465 setOperationAction(ISD::FLOG10, VT, Expand); 466 setOperationAction(ISD::FLOG2, VT, Expand); 467 setOperationAction(ISD::FEXP, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FSIN, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FABS, VT, Expand); 472 setOperationAction(ISD::FPOWI, VT, Expand); 473 setOperationAction(ISD::FFLOOR, VT, Expand); 474 setOperationAction(ISD::FCEIL, VT, Expand); 475 setOperationAction(ISD::FTRUNC, VT, Expand); 476 setOperationAction(ISD::FRINT, VT, Expand); 477 setOperationAction(ISD::FNEARBYINT, VT, Expand); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 479 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 480 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 481 setOperationAction(ISD::MULHU, VT, Expand); 482 setOperationAction(ISD::MULHS, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SDIVREM, VT, Expand); 487 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 488 setOperationAction(ISD::FPOW, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTTZ, VT, Expand); 491 setOperationAction(ISD::VSELECT, VT, Expand); 492 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 493 setOperationAction(ISD::ROTL, VT, Expand); 494 setOperationAction(ISD::ROTR, VT, Expand); 495 496 for (MVT InnerVT : MVT::vector_valuetypes()) { 497 setTruncStoreAction(VT, InnerVT, Expand); 498 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 499 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 500 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 501 } 502 } 503 504 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 505 // with merges, splats, etc. 506 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 507 508 setOperationAction(ISD::AND , MVT::v4i32, Legal); 509 setOperationAction(ISD::OR , MVT::v4i32, Legal); 510 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 511 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 512 setOperationAction(ISD::SELECT, MVT::v4i32, 513 Subtarget.useCRBits() ? Legal : Expand); 514 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 516 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 517 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 518 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 519 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 520 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 521 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 523 524 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 525 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 526 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 527 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 528 529 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 530 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 531 532 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 533 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 534 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 535 } 536 537 if (Subtarget.hasP8Altivec()) 538 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 539 else 540 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 541 542 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 543 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 544 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 547 548 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 549 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 550 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 551 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 552 553 // Altivec does not contain unordered floating-point compare instructions 554 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 556 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 557 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 558 559 if (Subtarget.hasVSX()) { 560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 if (Subtarget.hasP8Vector()) { 563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 565 } 566 if (Subtarget.hasDirectMove() && isPPC64) { 567 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 568 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 569 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 570 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 571 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 575 } 576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 579 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 580 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 581 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 582 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 583 584 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 585 586 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 587 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 588 589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 593 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 594 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 595 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 596 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 597 598 // Share the Altivec comparison restrictions. 599 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 600 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 601 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 602 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 603 604 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 605 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 606 607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 608 609 if (Subtarget.hasP8Vector()) 610 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 611 612 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 613 614 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 615 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 616 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 617 618 if (Subtarget.hasP8Altivec()) { 619 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 620 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 621 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 622 623 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 624 } 625 else { 626 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 627 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 628 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 629 630 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 631 632 // VSX v2i64 only supports non-arithmetic operations. 633 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 634 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 635 } 636 637 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 638 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 639 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 640 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 641 642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 643 644 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 645 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 646 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 647 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 648 649 // Vector operation legalization checks the result type of 650 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 651 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 652 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 653 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 654 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 655 656 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 657 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 658 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 659 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 660 661 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 662 } 663 664 if (Subtarget.hasP8Altivec()) { 665 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 666 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 667 } 668 } 669 670 if (Subtarget.hasQPX()) { 671 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 672 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 673 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 674 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 675 676 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 677 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 678 679 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 680 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 681 682 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 683 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 684 685 if (!Subtarget.useCRBits()) 686 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 687 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 688 689 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 690 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 691 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 692 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 693 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 695 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 696 697 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 698 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 699 700 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 701 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 702 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 703 704 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 705 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 706 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 707 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 708 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 709 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 710 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 711 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 712 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 713 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 714 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 715 716 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 717 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 718 719 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 720 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 721 722 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 723 724 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 725 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 726 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 727 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 728 729 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 730 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 731 732 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 733 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 734 735 if (!Subtarget.useCRBits()) 736 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 737 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 738 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 740 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 741 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 742 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 743 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 746 747 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 748 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 749 750 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 751 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 752 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 753 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 754 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 755 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 756 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 757 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 758 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 759 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 760 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 761 762 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 763 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 764 765 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 766 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 767 768 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 769 770 setOperationAction(ISD::AND , MVT::v4i1, Legal); 771 setOperationAction(ISD::OR , MVT::v4i1, Legal); 772 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 773 774 if (!Subtarget.useCRBits()) 775 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 776 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 777 778 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 779 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 780 781 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 782 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 783 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 784 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 785 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 786 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 787 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 788 789 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 790 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 791 792 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 793 794 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 795 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 796 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 797 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 798 799 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 800 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 801 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 802 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 803 804 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 805 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 806 807 // These need to set FE_INEXACT, and so cannot be vectorized here. 808 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 809 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 810 811 if (TM.Options.UnsafeFPMath) { 812 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 813 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 814 815 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 816 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 817 } else { 818 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 819 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 820 821 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 822 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 823 } 824 } 825 826 if (Subtarget.has64BitSupport()) 827 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 828 829 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 830 831 if (!isPPC64) { 832 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 833 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 834 } 835 836 setBooleanContents(ZeroOrOneBooleanContent); 837 838 if (Subtarget.hasAltivec()) { 839 // Altivec instructions set fields to all zeros or all ones. 840 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 841 } 842 843 if (!isPPC64) { 844 // These libcalls are not available in 32-bit. 845 setLibcallName(RTLIB::SHL_I128, nullptr); 846 setLibcallName(RTLIB::SRL_I128, nullptr); 847 setLibcallName(RTLIB::SRA_I128, nullptr); 848 } 849 850 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 851 852 // We have target-specific dag combine patterns for the following nodes: 853 setTargetDAGCombine(ISD::SINT_TO_FP); 854 if (Subtarget.hasFPCVT()) 855 setTargetDAGCombine(ISD::UINT_TO_FP); 856 setTargetDAGCombine(ISD::LOAD); 857 setTargetDAGCombine(ISD::STORE); 858 setTargetDAGCombine(ISD::BR_CC); 859 if (Subtarget.useCRBits()) 860 setTargetDAGCombine(ISD::BRCOND); 861 setTargetDAGCombine(ISD::BSWAP); 862 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 863 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 864 setTargetDAGCombine(ISD::INTRINSIC_VOID); 865 866 setTargetDAGCombine(ISD::SIGN_EXTEND); 867 setTargetDAGCombine(ISD::ZERO_EXTEND); 868 setTargetDAGCombine(ISD::ANY_EXTEND); 869 870 if (Subtarget.useCRBits()) { 871 setTargetDAGCombine(ISD::TRUNCATE); 872 setTargetDAGCombine(ISD::SETCC); 873 setTargetDAGCombine(ISD::SELECT_CC); 874 } 875 876 // Use reciprocal estimates. 877 if (TM.Options.UnsafeFPMath) { 878 setTargetDAGCombine(ISD::FDIV); 879 setTargetDAGCombine(ISD::FSQRT); 880 } 881 882 // Darwin long double math library functions have $LDBL128 appended. 883 if (Subtarget.isDarwin()) { 884 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 885 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 886 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 887 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 888 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 889 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 890 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 891 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 892 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 893 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 894 } 895 896 // With 32 condition bits, we don't need to sink (and duplicate) compares 897 // aggressively in CodeGenPrep. 898 if (Subtarget.useCRBits()) { 899 setHasMultipleConditionRegisters(); 900 setJumpIsExpensive(); 901 } 902 903 setMinFunctionAlignment(2); 904 if (Subtarget.isDarwin()) 905 setPrefFunctionAlignment(4); 906 907 switch (Subtarget.getDarwinDirective()) { 908 default: break; 909 case PPC::DIR_970: 910 case PPC::DIR_A2: 911 case PPC::DIR_E500mc: 912 case PPC::DIR_E5500: 913 case PPC::DIR_PWR4: 914 case PPC::DIR_PWR5: 915 case PPC::DIR_PWR5X: 916 case PPC::DIR_PWR6: 917 case PPC::DIR_PWR6X: 918 case PPC::DIR_PWR7: 919 case PPC::DIR_PWR8: 920 case PPC::DIR_PWR9: 921 setPrefFunctionAlignment(4); 922 setPrefLoopAlignment(4); 923 break; 924 } 925 926 927 if (Subtarget.enableMachineScheduler()) 928 setSchedulingPreference(Sched::Source); 929 else 930 setSchedulingPreference(Sched::Hybrid); 931 932 computeRegisterProperties(STI.getRegisterInfo()); 933 934 // The Freescale cores do better with aggressive inlining of memcpy and 935 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 936 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 937 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 938 MaxStoresPerMemset = 32; 939 MaxStoresPerMemsetOptSize = 16; 940 MaxStoresPerMemcpy = 32; 941 MaxStoresPerMemcpyOptSize = 8; 942 MaxStoresPerMemmove = 32; 943 MaxStoresPerMemmoveOptSize = 8; 944 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 945 // The A2 also benefits from (very) aggressive inlining of memcpy and 946 // friends. The overhead of a the function call, even when warm, can be 947 // over one hundred cycles. 948 MaxStoresPerMemset = 128; 949 MaxStoresPerMemcpy = 128; 950 MaxStoresPerMemmove = 128; 951 } 952 } 953 954 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 955 /// the desired ByVal argument alignment. 956 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 957 unsigned MaxMaxAlign) { 958 if (MaxAlign == MaxMaxAlign) 959 return; 960 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 961 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 962 MaxAlign = 32; 963 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 964 MaxAlign = 16; 965 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 966 unsigned EltAlign = 0; 967 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 968 if (EltAlign > MaxAlign) 969 MaxAlign = EltAlign; 970 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 971 for (auto *EltTy : STy->elements()) { 972 unsigned EltAlign = 0; 973 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 974 if (EltAlign > MaxAlign) 975 MaxAlign = EltAlign; 976 if (MaxAlign == MaxMaxAlign) 977 break; 978 } 979 } 980 } 981 982 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 983 /// function arguments in the caller parameter area. 984 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 985 const DataLayout &DL) const { 986 // Darwin passes everything on 4 byte boundary. 987 if (Subtarget.isDarwin()) 988 return 4; 989 990 // 16byte and wider vectors are passed on 16byte boundary. 991 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 992 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 993 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 994 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 995 return Align; 996 } 997 998 bool PPCTargetLowering::useSoftFloat() const { 999 return Subtarget.useSoftFloat(); 1000 } 1001 1002 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1003 switch ((PPCISD::NodeType)Opcode) { 1004 case PPCISD::FIRST_NUMBER: break; 1005 case PPCISD::FSEL: return "PPCISD::FSEL"; 1006 case PPCISD::FCFID: return "PPCISD::FCFID"; 1007 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1008 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1009 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1010 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1011 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1012 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1013 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1014 case PPCISD::FRE: return "PPCISD::FRE"; 1015 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1016 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1017 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1018 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1019 case PPCISD::VPERM: return "PPCISD::VPERM"; 1020 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1021 case PPCISD::CMPB: return "PPCISD::CMPB"; 1022 case PPCISD::Hi: return "PPCISD::Hi"; 1023 case PPCISD::Lo: return "PPCISD::Lo"; 1024 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1025 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1026 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1027 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1028 case PPCISD::SRL: return "PPCISD::SRL"; 1029 case PPCISD::SRA: return "PPCISD::SRA"; 1030 case PPCISD::SHL: return "PPCISD::SHL"; 1031 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1032 case PPCISD::CALL: return "PPCISD::CALL"; 1033 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1034 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1035 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1036 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1037 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1038 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1039 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1040 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1041 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1042 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1043 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1044 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1045 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1046 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1047 case PPCISD::VCMP: return "PPCISD::VCMP"; 1048 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1049 case PPCISD::LBRX: return "PPCISD::LBRX"; 1050 case PPCISD::STBRX: return "PPCISD::STBRX"; 1051 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1052 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1053 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1054 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1055 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1056 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1057 case PPCISD::BDZ: return "PPCISD::BDZ"; 1058 case PPCISD::MFFS: return "PPCISD::MFFS"; 1059 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1060 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1061 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1062 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1063 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1064 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1065 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1066 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1067 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1068 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1069 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1070 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1071 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1072 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1073 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1074 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1075 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1076 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1077 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1078 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1079 case PPCISD::SC: return "PPCISD::SC"; 1080 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1081 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1082 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1083 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1084 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1085 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1086 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1087 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1088 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1089 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1090 } 1091 return nullptr; 1092 } 1093 1094 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1095 EVT VT) const { 1096 if (!VT.isVector()) 1097 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1098 1099 if (Subtarget.hasQPX()) 1100 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1101 1102 return VT.changeVectorElementTypeToInteger(); 1103 } 1104 1105 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1106 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1107 return true; 1108 } 1109 1110 //===----------------------------------------------------------------------===// 1111 // Node matching predicates, for use by the tblgen matching code. 1112 //===----------------------------------------------------------------------===// 1113 1114 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1115 static bool isFloatingPointZero(SDValue Op) { 1116 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1117 return CFP->getValueAPF().isZero(); 1118 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1119 // Maybe this has already been legalized into the constant pool? 1120 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1121 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1122 return CFP->getValueAPF().isZero(); 1123 } 1124 return false; 1125 } 1126 1127 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1128 /// true if Op is undef or if it matches the specified value. 1129 static bool isConstantOrUndef(int Op, int Val) { 1130 return Op < 0 || Op == Val; 1131 } 1132 1133 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1134 /// VPKUHUM instruction. 1135 /// The ShuffleKind distinguishes between big-endian operations with 1136 /// two different inputs (0), either-endian operations with two identical 1137 /// inputs (1), and little-endian operations with two different inputs (2). 1138 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1139 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1140 SelectionDAG &DAG) { 1141 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1142 if (ShuffleKind == 0) { 1143 if (IsLE) 1144 return false; 1145 for (unsigned i = 0; i != 16; ++i) 1146 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1147 return false; 1148 } else if (ShuffleKind == 2) { 1149 if (!IsLE) 1150 return false; 1151 for (unsigned i = 0; i != 16; ++i) 1152 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1153 return false; 1154 } else if (ShuffleKind == 1) { 1155 unsigned j = IsLE ? 0 : 1; 1156 for (unsigned i = 0; i != 8; ++i) 1157 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1158 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1159 return false; 1160 } 1161 return true; 1162 } 1163 1164 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1165 /// VPKUWUM instruction. 1166 /// The ShuffleKind distinguishes between big-endian operations with 1167 /// two different inputs (0), either-endian operations with two identical 1168 /// inputs (1), and little-endian operations with two different inputs (2). 1169 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1170 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1171 SelectionDAG &DAG) { 1172 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1173 if (ShuffleKind == 0) { 1174 if (IsLE) 1175 return false; 1176 for (unsigned i = 0; i != 16; i += 2) 1177 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1178 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1179 return false; 1180 } else if (ShuffleKind == 2) { 1181 if (!IsLE) 1182 return false; 1183 for (unsigned i = 0; i != 16; i += 2) 1184 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1185 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1186 return false; 1187 } else if (ShuffleKind == 1) { 1188 unsigned j = IsLE ? 0 : 2; 1189 for (unsigned i = 0; i != 8; i += 2) 1190 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1191 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1192 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1193 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1194 return false; 1195 } 1196 return true; 1197 } 1198 1199 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1200 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1201 /// current subtarget. 1202 /// 1203 /// The ShuffleKind distinguishes between big-endian operations with 1204 /// two different inputs (0), either-endian operations with two identical 1205 /// inputs (1), and little-endian operations with two different inputs (2). 1206 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1207 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1208 SelectionDAG &DAG) { 1209 const PPCSubtarget& Subtarget = 1210 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1211 if (!Subtarget.hasP8Vector()) 1212 return false; 1213 1214 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1215 if (ShuffleKind == 0) { 1216 if (IsLE) 1217 return false; 1218 for (unsigned i = 0; i != 16; i += 4) 1219 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1220 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1221 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1222 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1223 return false; 1224 } else if (ShuffleKind == 2) { 1225 if (!IsLE) 1226 return false; 1227 for (unsigned i = 0; i != 16; i += 4) 1228 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1229 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1230 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1231 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1232 return false; 1233 } else if (ShuffleKind == 1) { 1234 unsigned j = IsLE ? 0 : 4; 1235 for (unsigned i = 0; i != 8; i += 4) 1236 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1237 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1238 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1239 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1240 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1241 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1242 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1243 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1244 return false; 1245 } 1246 return true; 1247 } 1248 1249 /// isVMerge - Common function, used to match vmrg* shuffles. 1250 /// 1251 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1252 unsigned LHSStart, unsigned RHSStart) { 1253 if (N->getValueType(0) != MVT::v16i8) 1254 return false; 1255 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1256 "Unsupported merge size!"); 1257 1258 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1259 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1260 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1261 LHSStart+j+i*UnitSize) || 1262 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1263 RHSStart+j+i*UnitSize)) 1264 return false; 1265 } 1266 return true; 1267 } 1268 1269 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1270 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1271 /// The ShuffleKind distinguishes between big-endian merges with two 1272 /// different inputs (0), either-endian merges with two identical inputs (1), 1273 /// and little-endian merges with two different inputs (2). For the latter, 1274 /// the input operands are swapped (see PPCInstrAltivec.td). 1275 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1276 unsigned ShuffleKind, SelectionDAG &DAG) { 1277 if (DAG.getDataLayout().isLittleEndian()) { 1278 if (ShuffleKind == 1) // unary 1279 return isVMerge(N, UnitSize, 0, 0); 1280 else if (ShuffleKind == 2) // swapped 1281 return isVMerge(N, UnitSize, 0, 16); 1282 else 1283 return false; 1284 } else { 1285 if (ShuffleKind == 1) // unary 1286 return isVMerge(N, UnitSize, 8, 8); 1287 else if (ShuffleKind == 0) // normal 1288 return isVMerge(N, UnitSize, 8, 24); 1289 else 1290 return false; 1291 } 1292 } 1293 1294 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1295 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1296 /// The ShuffleKind distinguishes between big-endian merges with two 1297 /// different inputs (0), either-endian merges with two identical inputs (1), 1298 /// and little-endian merges with two different inputs (2). For the latter, 1299 /// the input operands are swapped (see PPCInstrAltivec.td). 1300 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1301 unsigned ShuffleKind, SelectionDAG &DAG) { 1302 if (DAG.getDataLayout().isLittleEndian()) { 1303 if (ShuffleKind == 1) // unary 1304 return isVMerge(N, UnitSize, 8, 8); 1305 else if (ShuffleKind == 2) // swapped 1306 return isVMerge(N, UnitSize, 8, 24); 1307 else 1308 return false; 1309 } else { 1310 if (ShuffleKind == 1) // unary 1311 return isVMerge(N, UnitSize, 0, 0); 1312 else if (ShuffleKind == 0) // normal 1313 return isVMerge(N, UnitSize, 0, 16); 1314 else 1315 return false; 1316 } 1317 } 1318 1319 /** 1320 * \brief Common function used to match vmrgew and vmrgow shuffles 1321 * 1322 * The indexOffset determines whether to look for even or odd words in 1323 * the shuffle mask. This is based on the of the endianness of the target 1324 * machine. 1325 * - Little Endian: 1326 * - Use offset of 0 to check for odd elements 1327 * - Use offset of 4 to check for even elements 1328 * - Big Endian: 1329 * - Use offset of 0 to check for even elements 1330 * - Use offset of 4 to check for odd elements 1331 * A detailed description of the vector element ordering for little endian and 1332 * big endian can be found at 1333 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1334 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1335 * compiler differences mean to you 1336 * 1337 * The mask to the shuffle vector instruction specifies the indices of the 1338 * elements from the two input vectors to place in the result. The elements are 1339 * numbered in array-access order, starting with the first vector. These vectors 1340 * are always of type v16i8, thus each vector will contain 16 elements of size 1341 * 8. More info on the shuffle vector can be found in the 1342 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1343 * Language Reference. 1344 * 1345 * The RHSStartValue indicates whether the same input vectors are used (unary) 1346 * or two different input vectors are used, based on the following: 1347 * - If the instruction uses the same vector for both inputs, the range of the 1348 * indices will be 0 to 15. In this case, the RHSStart value passed should 1349 * be 0. 1350 * - If the instruction has two different vectors then the range of the 1351 * indices will be 0 to 31. In this case, the RHSStart value passed should 1352 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1353 * to 31 specify elements in the second vector). 1354 * 1355 * \param[in] N The shuffle vector SD Node to analyze 1356 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1357 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1358 * vector to the shuffle_vector instruction 1359 * \return true iff this shuffle vector represents an even or odd word merge 1360 */ 1361 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1362 unsigned RHSStartValue) { 1363 if (N->getValueType(0) != MVT::v16i8) 1364 return false; 1365 1366 for (unsigned i = 0; i < 2; ++i) 1367 for (unsigned j = 0; j < 4; ++j) 1368 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1369 i*RHSStartValue+j+IndexOffset) || 1370 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1371 i*RHSStartValue+j+IndexOffset+8)) 1372 return false; 1373 return true; 1374 } 1375 1376 /** 1377 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1378 * vmrgow instructions. 1379 * 1380 * \param[in] N The shuffle vector SD Node to analyze 1381 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1382 * \param[in] ShuffleKind Identify the type of merge: 1383 * - 0 = big-endian merge with two different inputs; 1384 * - 1 = either-endian merge with two identical inputs; 1385 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1386 * little-endian merges). 1387 * \param[in] DAG The current SelectionDAG 1388 * \return true iff this shuffle mask 1389 */ 1390 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1391 unsigned ShuffleKind, SelectionDAG &DAG) { 1392 if (DAG.getDataLayout().isLittleEndian()) { 1393 unsigned indexOffset = CheckEven ? 4 : 0; 1394 if (ShuffleKind == 1) // Unary 1395 return isVMerge(N, indexOffset, 0); 1396 else if (ShuffleKind == 2) // swapped 1397 return isVMerge(N, indexOffset, 16); 1398 else 1399 return false; 1400 } 1401 else { 1402 unsigned indexOffset = CheckEven ? 0 : 4; 1403 if (ShuffleKind == 1) // Unary 1404 return isVMerge(N, indexOffset, 0); 1405 else if (ShuffleKind == 0) // Normal 1406 return isVMerge(N, indexOffset, 16); 1407 else 1408 return false; 1409 } 1410 return false; 1411 } 1412 1413 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1414 /// amount, otherwise return -1. 1415 /// The ShuffleKind distinguishes between big-endian operations with two 1416 /// different inputs (0), either-endian operations with two identical inputs 1417 /// (1), and little-endian operations with two different inputs (2). For the 1418 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1419 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1420 SelectionDAG &DAG) { 1421 if (N->getValueType(0) != MVT::v16i8) 1422 return -1; 1423 1424 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1425 1426 // Find the first non-undef value in the shuffle mask. 1427 unsigned i; 1428 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1429 /*search*/; 1430 1431 if (i == 16) return -1; // all undef. 1432 1433 // Otherwise, check to see if the rest of the elements are consecutively 1434 // numbered from this value. 1435 unsigned ShiftAmt = SVOp->getMaskElt(i); 1436 if (ShiftAmt < i) return -1; 1437 1438 ShiftAmt -= i; 1439 bool isLE = DAG.getDataLayout().isLittleEndian(); 1440 1441 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1442 // Check the rest of the elements to see if they are consecutive. 1443 for (++i; i != 16; ++i) 1444 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1445 return -1; 1446 } else if (ShuffleKind == 1) { 1447 // Check the rest of the elements to see if they are consecutive. 1448 for (++i; i != 16; ++i) 1449 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1450 return -1; 1451 } else 1452 return -1; 1453 1454 if (isLE) 1455 ShiftAmt = 16 - ShiftAmt; 1456 1457 return ShiftAmt; 1458 } 1459 1460 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1461 /// specifies a splat of a single element that is suitable for input to 1462 /// VSPLTB/VSPLTH/VSPLTW. 1463 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1464 assert(N->getValueType(0) == MVT::v16i8 && 1465 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1466 1467 // The consecutive indices need to specify an element, not part of two 1468 // different elements. So abandon ship early if this isn't the case. 1469 if (N->getMaskElt(0) % EltSize != 0) 1470 return false; 1471 1472 // This is a splat operation if each element of the permute is the same, and 1473 // if the value doesn't reference the second vector. 1474 unsigned ElementBase = N->getMaskElt(0); 1475 1476 // FIXME: Handle UNDEF elements too! 1477 if (ElementBase >= 16) 1478 return false; 1479 1480 // Check that the indices are consecutive, in the case of a multi-byte element 1481 // splatted with a v16i8 mask. 1482 for (unsigned i = 1; i != EltSize; ++i) 1483 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1484 return false; 1485 1486 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1487 if (N->getMaskElt(i) < 0) continue; 1488 for (unsigned j = 0; j != EltSize; ++j) 1489 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1496 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1497 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1498 SelectionDAG &DAG) { 1499 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1500 assert(isSplatShuffleMask(SVOp, EltSize)); 1501 if (DAG.getDataLayout().isLittleEndian()) 1502 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1503 else 1504 return SVOp->getMaskElt(0) / EltSize; 1505 } 1506 1507 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1508 /// by using a vspltis[bhw] instruction of the specified element size, return 1509 /// the constant being splatted. The ByteSize field indicates the number of 1510 /// bytes of each element [124] -> [bhw]. 1511 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1512 SDValue OpVal(nullptr, 0); 1513 1514 // If ByteSize of the splat is bigger than the element size of the 1515 // build_vector, then we have a case where we are checking for a splat where 1516 // multiple elements of the buildvector are folded together into a single 1517 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1518 unsigned EltSize = 16/N->getNumOperands(); 1519 if (EltSize < ByteSize) { 1520 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1521 SDValue UniquedVals[4]; 1522 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1523 1524 // See if all of the elements in the buildvector agree across. 1525 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1526 if (N->getOperand(i).isUndef()) continue; 1527 // If the element isn't a constant, bail fully out. 1528 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1529 1530 1531 if (!UniquedVals[i&(Multiple-1)].getNode()) 1532 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1533 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1534 return SDValue(); // no match. 1535 } 1536 1537 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1538 // either constant or undef values that are identical for each chunk. See 1539 // if these chunks can form into a larger vspltis*. 1540 1541 // Check to see if all of the leading entries are either 0 or -1. If 1542 // neither, then this won't fit into the immediate field. 1543 bool LeadingZero = true; 1544 bool LeadingOnes = true; 1545 for (unsigned i = 0; i != Multiple-1; ++i) { 1546 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1547 1548 LeadingZero &= isNullConstant(UniquedVals[i]); 1549 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1550 } 1551 // Finally, check the least significant entry. 1552 if (LeadingZero) { 1553 if (!UniquedVals[Multiple-1].getNode()) 1554 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1555 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1556 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1557 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1558 } 1559 if (LeadingOnes) { 1560 if (!UniquedVals[Multiple-1].getNode()) 1561 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1562 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1563 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1564 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1565 } 1566 1567 return SDValue(); 1568 } 1569 1570 // Check to see if this buildvec has a single non-undef value in its elements. 1571 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1572 if (N->getOperand(i).isUndef()) continue; 1573 if (!OpVal.getNode()) 1574 OpVal = N->getOperand(i); 1575 else if (OpVal != N->getOperand(i)) 1576 return SDValue(); 1577 } 1578 1579 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1580 1581 unsigned ValSizeInBytes = EltSize; 1582 uint64_t Value = 0; 1583 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1584 Value = CN->getZExtValue(); 1585 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1586 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1587 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1588 } 1589 1590 // If the splat value is larger than the element value, then we can never do 1591 // this splat. The only case that we could fit the replicated bits into our 1592 // immediate field for would be zero, and we prefer to use vxor for it. 1593 if (ValSizeInBytes < ByteSize) return SDValue(); 1594 1595 // If the element value is larger than the splat value, check if it consists 1596 // of a repeated bit pattern of size ByteSize. 1597 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1598 return SDValue(); 1599 1600 // Properly sign extend the value. 1601 int MaskVal = SignExtend32(Value, ByteSize * 8); 1602 1603 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1604 if (MaskVal == 0) return SDValue(); 1605 1606 // Finally, if this value fits in a 5 bit sext field, return it 1607 if (SignExtend32<5>(MaskVal) == MaskVal) 1608 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1609 return SDValue(); 1610 } 1611 1612 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1613 /// amount, otherwise return -1. 1614 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1615 EVT VT = N->getValueType(0); 1616 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1617 return -1; 1618 1619 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1620 1621 // Find the first non-undef value in the shuffle mask. 1622 unsigned i; 1623 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1624 /*search*/; 1625 1626 if (i == 4) return -1; // all undef. 1627 1628 // Otherwise, check to see if the rest of the elements are consecutively 1629 // numbered from this value. 1630 unsigned ShiftAmt = SVOp->getMaskElt(i); 1631 if (ShiftAmt < i) return -1; 1632 ShiftAmt -= i; 1633 1634 // Check the rest of the elements to see if they are consecutive. 1635 for (++i; i != 4; ++i) 1636 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1637 return -1; 1638 1639 return ShiftAmt; 1640 } 1641 1642 //===----------------------------------------------------------------------===// 1643 // Addressing Mode Selection 1644 //===----------------------------------------------------------------------===// 1645 1646 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1647 /// or 64-bit immediate, and if the value can be accurately represented as a 1648 /// sign extension from a 16-bit value. If so, this returns true and the 1649 /// immediate. 1650 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1651 if (!isa<ConstantSDNode>(N)) 1652 return false; 1653 1654 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1655 if (N->getValueType(0) == MVT::i32) 1656 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1657 else 1658 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1659 } 1660 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1661 return isIntS16Immediate(Op.getNode(), Imm); 1662 } 1663 1664 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1665 /// can be represented as an indexed [r+r] operation. Returns false if it 1666 /// can be more efficiently represented with [r+imm]. 1667 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1668 SDValue &Index, 1669 SelectionDAG &DAG) const { 1670 short imm = 0; 1671 if (N.getOpcode() == ISD::ADD) { 1672 if (isIntS16Immediate(N.getOperand(1), imm)) 1673 return false; // r+i 1674 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1675 return false; // r+i 1676 1677 Base = N.getOperand(0); 1678 Index = N.getOperand(1); 1679 return true; 1680 } else if (N.getOpcode() == ISD::OR) { 1681 if (isIntS16Immediate(N.getOperand(1), imm)) 1682 return false; // r+i can fold it if we can. 1683 1684 // If this is an or of disjoint bitfields, we can codegen this as an add 1685 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1686 // disjoint. 1687 APInt LHSKnownZero, LHSKnownOne; 1688 APInt RHSKnownZero, RHSKnownOne; 1689 DAG.computeKnownBits(N.getOperand(0), 1690 LHSKnownZero, LHSKnownOne); 1691 1692 if (LHSKnownZero.getBoolValue()) { 1693 DAG.computeKnownBits(N.getOperand(1), 1694 RHSKnownZero, RHSKnownOne); 1695 // If all of the bits are known zero on the LHS or RHS, the add won't 1696 // carry. 1697 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1698 Base = N.getOperand(0); 1699 Index = N.getOperand(1); 1700 return true; 1701 } 1702 } 1703 } 1704 1705 return false; 1706 } 1707 1708 // If we happen to be doing an i64 load or store into a stack slot that has 1709 // less than a 4-byte alignment, then the frame-index elimination may need to 1710 // use an indexed load or store instruction (because the offset may not be a 1711 // multiple of 4). The extra register needed to hold the offset comes from the 1712 // register scavenger, and it is possible that the scavenger will need to use 1713 // an emergency spill slot. As a result, we need to make sure that a spill slot 1714 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1715 // stack slot. 1716 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1717 // FIXME: This does not handle the LWA case. 1718 if (VT != MVT::i64) 1719 return; 1720 1721 // NOTE: We'll exclude negative FIs here, which come from argument 1722 // lowering, because there are no known test cases triggering this problem 1723 // using packed structures (or similar). We can remove this exclusion if 1724 // we find such a test case. The reason why this is so test-case driven is 1725 // because this entire 'fixup' is only to prevent crashes (from the 1726 // register scavenger) on not-really-valid inputs. For example, if we have: 1727 // %a = alloca i1 1728 // %b = bitcast i1* %a to i64* 1729 // store i64* a, i64 b 1730 // then the store should really be marked as 'align 1', but is not. If it 1731 // were marked as 'align 1' then the indexed form would have been 1732 // instruction-selected initially, and the problem this 'fixup' is preventing 1733 // won't happen regardless. 1734 if (FrameIdx < 0) 1735 return; 1736 1737 MachineFunction &MF = DAG.getMachineFunction(); 1738 MachineFrameInfo *MFI = MF.getFrameInfo(); 1739 1740 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1741 if (Align >= 4) 1742 return; 1743 1744 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1745 FuncInfo->setHasNonRISpills(); 1746 } 1747 1748 /// Returns true if the address N can be represented by a base register plus 1749 /// a signed 16-bit displacement [r+imm], and if it is not better 1750 /// represented as reg+reg. If Aligned is true, only accept displacements 1751 /// suitable for STD and friends, i.e. multiples of 4. 1752 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1753 SDValue &Base, 1754 SelectionDAG &DAG, 1755 bool Aligned) const { 1756 // FIXME dl should come from parent load or store, not from address 1757 SDLoc dl(N); 1758 // If this can be more profitably realized as r+r, fail. 1759 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1760 return false; 1761 1762 if (N.getOpcode() == ISD::ADD) { 1763 short imm = 0; 1764 if (isIntS16Immediate(N.getOperand(1), imm) && 1765 (!Aligned || (imm & 3) == 0)) { 1766 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1767 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1768 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1769 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1770 } else { 1771 Base = N.getOperand(0); 1772 } 1773 return true; // [r+i] 1774 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1775 // Match LOAD (ADD (X, Lo(G))). 1776 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1777 && "Cannot handle constant offsets yet!"); 1778 Disp = N.getOperand(1).getOperand(0); // The global address. 1779 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1780 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1781 Disp.getOpcode() == ISD::TargetConstantPool || 1782 Disp.getOpcode() == ISD::TargetJumpTable); 1783 Base = N.getOperand(0); 1784 return true; // [&g+r] 1785 } 1786 } else if (N.getOpcode() == ISD::OR) { 1787 short imm = 0; 1788 if (isIntS16Immediate(N.getOperand(1), imm) && 1789 (!Aligned || (imm & 3) == 0)) { 1790 // If this is an or of disjoint bitfields, we can codegen this as an add 1791 // (for better address arithmetic) if the LHS and RHS of the OR are 1792 // provably disjoint. 1793 APInt LHSKnownZero, LHSKnownOne; 1794 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1795 1796 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1797 // If all of the bits are known zero on the LHS or RHS, the add won't 1798 // carry. 1799 if (FrameIndexSDNode *FI = 1800 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1801 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1802 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1803 } else { 1804 Base = N.getOperand(0); 1805 } 1806 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1807 return true; 1808 } 1809 } 1810 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1811 // Loading from a constant address. 1812 1813 // If this address fits entirely in a 16-bit sext immediate field, codegen 1814 // this as "d, 0" 1815 short Imm; 1816 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1817 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1818 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1819 CN->getValueType(0)); 1820 return true; 1821 } 1822 1823 // Handle 32-bit sext immediates with LIS + addr mode. 1824 if ((CN->getValueType(0) == MVT::i32 || 1825 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1826 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1827 int Addr = (int)CN->getZExtValue(); 1828 1829 // Otherwise, break this down into an LIS + disp. 1830 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1831 1832 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1833 MVT::i32); 1834 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1835 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1836 return true; 1837 } 1838 } 1839 1840 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1841 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1842 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1843 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1844 } else 1845 Base = N; 1846 return true; // [r+0] 1847 } 1848 1849 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1850 /// represented as an indexed [r+r] operation. 1851 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1852 SDValue &Index, 1853 SelectionDAG &DAG) const { 1854 // Check to see if we can easily represent this as an [r+r] address. This 1855 // will fail if it thinks that the address is more profitably represented as 1856 // reg+imm, e.g. where imm = 0. 1857 if (SelectAddressRegReg(N, Base, Index, DAG)) 1858 return true; 1859 1860 // If the operand is an addition, always emit this as [r+r], since this is 1861 // better (for code size, and execution, as the memop does the add for free) 1862 // than emitting an explicit add. 1863 if (N.getOpcode() == ISD::ADD) { 1864 Base = N.getOperand(0); 1865 Index = N.getOperand(1); 1866 return true; 1867 } 1868 1869 // Otherwise, do it the hard way, using R0 as the base register. 1870 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1871 N.getValueType()); 1872 Index = N; 1873 return true; 1874 } 1875 1876 /// getPreIndexedAddressParts - returns true by value, base pointer and 1877 /// offset pointer and addressing mode by reference if the node's address 1878 /// can be legally represented as pre-indexed load / store address. 1879 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1880 SDValue &Offset, 1881 ISD::MemIndexedMode &AM, 1882 SelectionDAG &DAG) const { 1883 if (DisablePPCPreinc) return false; 1884 1885 bool isLoad = true; 1886 SDValue Ptr; 1887 EVT VT; 1888 unsigned Alignment; 1889 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1890 Ptr = LD->getBasePtr(); 1891 VT = LD->getMemoryVT(); 1892 Alignment = LD->getAlignment(); 1893 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1894 Ptr = ST->getBasePtr(); 1895 VT = ST->getMemoryVT(); 1896 Alignment = ST->getAlignment(); 1897 isLoad = false; 1898 } else 1899 return false; 1900 1901 // PowerPC doesn't have preinc load/store instructions for vectors (except 1902 // for QPX, which does have preinc r+r forms). 1903 if (VT.isVector()) { 1904 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1905 return false; 1906 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1907 AM = ISD::PRE_INC; 1908 return true; 1909 } 1910 } 1911 1912 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1913 1914 // Common code will reject creating a pre-inc form if the base pointer 1915 // is a frame index, or if N is a store and the base pointer is either 1916 // the same as or a predecessor of the value being stored. Check for 1917 // those situations here, and try with swapped Base/Offset instead. 1918 bool Swap = false; 1919 1920 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1921 Swap = true; 1922 else if (!isLoad) { 1923 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1924 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1925 Swap = true; 1926 } 1927 1928 if (Swap) 1929 std::swap(Base, Offset); 1930 1931 AM = ISD::PRE_INC; 1932 return true; 1933 } 1934 1935 // LDU/STU can only handle immediates that are a multiple of 4. 1936 if (VT != MVT::i64) { 1937 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1938 return false; 1939 } else { 1940 // LDU/STU need an address with at least 4-byte alignment. 1941 if (Alignment < 4) 1942 return false; 1943 1944 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1945 return false; 1946 } 1947 1948 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1949 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1950 // sext i32 to i64 when addr mode is r+i. 1951 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1952 LD->getExtensionType() == ISD::SEXTLOAD && 1953 isa<ConstantSDNode>(Offset)) 1954 return false; 1955 } 1956 1957 AM = ISD::PRE_INC; 1958 return true; 1959 } 1960 1961 //===----------------------------------------------------------------------===// 1962 // LowerOperation implementation 1963 //===----------------------------------------------------------------------===// 1964 1965 /// GetLabelAccessInfo - Return true if we should reference labels using a 1966 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1967 static bool GetLabelAccessInfo(const TargetMachine &TM, 1968 const PPCSubtarget &Subtarget, 1969 unsigned &HiOpFlags, unsigned &LoOpFlags, 1970 const GlobalValue *GV = nullptr) { 1971 HiOpFlags = PPCII::MO_HA; 1972 LoOpFlags = PPCII::MO_LO; 1973 1974 // Don't use the pic base if not in PIC relocation model. 1975 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1976 1977 if (isPIC) { 1978 HiOpFlags |= PPCII::MO_PIC_FLAG; 1979 LoOpFlags |= PPCII::MO_PIC_FLAG; 1980 } 1981 1982 // If this is a reference to a global value that requires a non-lazy-ptr, make 1983 // sure that instruction lowering adds it. 1984 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1985 HiOpFlags |= PPCII::MO_NLP_FLAG; 1986 LoOpFlags |= PPCII::MO_NLP_FLAG; 1987 1988 if (GV->hasHiddenVisibility()) { 1989 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1990 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1991 } 1992 } 1993 1994 return isPIC; 1995 } 1996 1997 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1998 SelectionDAG &DAG) { 1999 SDLoc DL(HiPart); 2000 EVT PtrVT = HiPart.getValueType(); 2001 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2002 2003 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2004 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2005 2006 // With PIC, the first instruction is actually "GR+hi(&G)". 2007 if (isPIC) 2008 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2009 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2010 2011 // Generate non-pic code that has direct accesses to the constant pool. 2012 // The address of the global is just (hi(&g)+lo(&g)). 2013 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2014 } 2015 2016 static void setUsesTOCBasePtr(MachineFunction &MF) { 2017 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2018 FuncInfo->setUsesTOCBasePtr(); 2019 } 2020 2021 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2022 setUsesTOCBasePtr(DAG.getMachineFunction()); 2023 } 2024 2025 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2026 SDValue GA) { 2027 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2028 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2029 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2030 2031 SDValue Ops[] = { GA, Reg }; 2032 return DAG.getMemIntrinsicNode( 2033 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2034 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2035 false, 0); 2036 } 2037 2038 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2039 SelectionDAG &DAG) const { 2040 EVT PtrVT = Op.getValueType(); 2041 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2042 const Constant *C = CP->getConstVal(); 2043 2044 // 64-bit SVR4 ABI code is always position-independent. 2045 // The actual address of the GlobalValue is stored in the TOC. 2046 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2047 setUsesTOCBasePtr(DAG); 2048 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2049 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2050 } 2051 2052 unsigned MOHiFlag, MOLoFlag; 2053 bool isPIC = 2054 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2055 2056 if (isPIC && Subtarget.isSVR4ABI()) { 2057 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2058 PPCII::MO_PIC_FLAG); 2059 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2060 } 2061 2062 SDValue CPIHi = 2063 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2064 SDValue CPILo = 2065 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2066 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2067 } 2068 2069 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2070 EVT PtrVT = Op.getValueType(); 2071 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2072 2073 // 64-bit SVR4 ABI code is always position-independent. 2074 // The actual address of the GlobalValue is stored in the TOC. 2075 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2076 setUsesTOCBasePtr(DAG); 2077 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2078 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2079 } 2080 2081 unsigned MOHiFlag, MOLoFlag; 2082 bool isPIC = 2083 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2084 2085 if (isPIC && Subtarget.isSVR4ABI()) { 2086 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2087 PPCII::MO_PIC_FLAG); 2088 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2089 } 2090 2091 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2092 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2093 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2094 } 2095 2096 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2097 SelectionDAG &DAG) const { 2098 EVT PtrVT = Op.getValueType(); 2099 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2100 const BlockAddress *BA = BASDN->getBlockAddress(); 2101 2102 // 64-bit SVR4 ABI code is always position-independent. 2103 // The actual BlockAddress is stored in the TOC. 2104 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2105 setUsesTOCBasePtr(DAG); 2106 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2107 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2108 } 2109 2110 unsigned MOHiFlag, MOLoFlag; 2111 bool isPIC = 2112 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2113 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2114 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2115 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2116 } 2117 2118 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2119 SelectionDAG &DAG) const { 2120 2121 // FIXME: TLS addresses currently use medium model code sequences, 2122 // which is the most useful form. Eventually support for small and 2123 // large models could be added if users need it, at the cost of 2124 // additional complexity. 2125 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2126 if (DAG.getTarget().Options.EmulatedTLS) 2127 return LowerToTLSEmulatedModel(GA, DAG); 2128 2129 SDLoc dl(GA); 2130 const GlobalValue *GV = GA->getGlobal(); 2131 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2132 bool is64bit = Subtarget.isPPC64(); 2133 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2134 PICLevel::Level picLevel = M->getPICLevel(); 2135 2136 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2137 2138 if (Model == TLSModel::LocalExec) { 2139 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2140 PPCII::MO_TPREL_HA); 2141 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2142 PPCII::MO_TPREL_LO); 2143 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2144 is64bit ? MVT::i64 : MVT::i32); 2145 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2146 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2147 } 2148 2149 if (Model == TLSModel::InitialExec) { 2150 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2151 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2152 PPCII::MO_TLS); 2153 SDValue GOTPtr; 2154 if (is64bit) { 2155 setUsesTOCBasePtr(DAG); 2156 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2157 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2158 PtrVT, GOTReg, TGA); 2159 } else 2160 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2161 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2162 PtrVT, TGA, GOTPtr); 2163 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2164 } 2165 2166 if (Model == TLSModel::GeneralDynamic) { 2167 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2168 SDValue GOTPtr; 2169 if (is64bit) { 2170 setUsesTOCBasePtr(DAG); 2171 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2172 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2173 GOTReg, TGA); 2174 } else { 2175 if (picLevel == PICLevel::Small) 2176 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2177 else 2178 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2179 } 2180 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2181 GOTPtr, TGA, TGA); 2182 } 2183 2184 if (Model == TLSModel::LocalDynamic) { 2185 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2186 SDValue GOTPtr; 2187 if (is64bit) { 2188 setUsesTOCBasePtr(DAG); 2189 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2190 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2191 GOTReg, TGA); 2192 } else { 2193 if (picLevel == PICLevel::Small) 2194 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2195 else 2196 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2197 } 2198 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2199 PtrVT, GOTPtr, TGA, TGA); 2200 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2201 PtrVT, TLSAddr, TGA); 2202 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2203 } 2204 2205 llvm_unreachable("Unknown TLS model!"); 2206 } 2207 2208 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2209 SelectionDAG &DAG) const { 2210 EVT PtrVT = Op.getValueType(); 2211 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2212 SDLoc DL(GSDN); 2213 const GlobalValue *GV = GSDN->getGlobal(); 2214 2215 // 64-bit SVR4 ABI code is always position-independent. 2216 // The actual address of the GlobalValue is stored in the TOC. 2217 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2218 setUsesTOCBasePtr(DAG); 2219 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2220 return getTOCEntry(DAG, DL, true, GA); 2221 } 2222 2223 unsigned MOHiFlag, MOLoFlag; 2224 bool isPIC = 2225 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2226 2227 if (isPIC && Subtarget.isSVR4ABI()) { 2228 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2229 GSDN->getOffset(), 2230 PPCII::MO_PIC_FLAG); 2231 return getTOCEntry(DAG, DL, false, GA); 2232 } 2233 2234 SDValue GAHi = 2235 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2236 SDValue GALo = 2237 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2238 2239 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2240 2241 // If the global reference is actually to a non-lazy-pointer, we have to do an 2242 // extra load to get the address of the global. 2243 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2244 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2245 false, false, false, 0); 2246 return Ptr; 2247 } 2248 2249 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2250 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2251 SDLoc dl(Op); 2252 2253 if (Op.getValueType() == MVT::v2i64) { 2254 // When the operands themselves are v2i64 values, we need to do something 2255 // special because VSX has no underlying comparison operations for these. 2256 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2257 // Equality can be handled by casting to the legal type for Altivec 2258 // comparisons, everything else needs to be expanded. 2259 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2260 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2261 DAG.getSetCC(dl, MVT::v4i32, 2262 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2263 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2264 CC)); 2265 } 2266 2267 return SDValue(); 2268 } 2269 2270 // We handle most of these in the usual way. 2271 return Op; 2272 } 2273 2274 // If we're comparing for equality to zero, expose the fact that this is 2275 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2276 // fold the new nodes. 2277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2278 if (C->isNullValue() && CC == ISD::SETEQ) { 2279 EVT VT = Op.getOperand(0).getValueType(); 2280 SDValue Zext = Op.getOperand(0); 2281 if (VT.bitsLT(MVT::i32)) { 2282 VT = MVT::i32; 2283 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2284 } 2285 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2286 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2287 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2288 DAG.getConstant(Log2b, dl, MVT::i32)); 2289 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2290 } 2291 // Leave comparisons against 0 and -1 alone for now, since they're usually 2292 // optimized. FIXME: revisit this when we can custom lower all setcc 2293 // optimizations. 2294 if (C->isAllOnesValue() || C->isNullValue()) 2295 return SDValue(); 2296 } 2297 2298 // If we have an integer seteq/setne, turn it into a compare against zero 2299 // by xor'ing the rhs with the lhs, which is faster than setting a 2300 // condition register, reading it back out, and masking the correct bit. The 2301 // normal approach here uses sub to do this instead of xor. Using xor exposes 2302 // the result to other bit-twiddling opportunities. 2303 EVT LHSVT = Op.getOperand(0).getValueType(); 2304 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2305 EVT VT = Op.getValueType(); 2306 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2307 Op.getOperand(1)); 2308 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2309 } 2310 return SDValue(); 2311 } 2312 2313 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2314 const PPCSubtarget &Subtarget) const { 2315 SDNode *Node = Op.getNode(); 2316 EVT VT = Node->getValueType(0); 2317 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2318 SDValue InChain = Node->getOperand(0); 2319 SDValue VAListPtr = Node->getOperand(1); 2320 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2321 SDLoc dl(Node); 2322 2323 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2324 2325 // gpr_index 2326 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2327 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2328 false, false, false, 0); 2329 InChain = GprIndex.getValue(1); 2330 2331 if (VT == MVT::i64) { 2332 // Check if GprIndex is even 2333 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2334 DAG.getConstant(1, dl, MVT::i32)); 2335 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2336 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2337 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2338 DAG.getConstant(1, dl, MVT::i32)); 2339 // Align GprIndex to be even if it isn't 2340 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2341 GprIndex); 2342 } 2343 2344 // fpr index is 1 byte after gpr 2345 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2346 DAG.getConstant(1, dl, MVT::i32)); 2347 2348 // fpr 2349 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2350 FprPtr, MachinePointerInfo(SV), MVT::i8, 2351 false, false, false, 0); 2352 InChain = FprIndex.getValue(1); 2353 2354 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2355 DAG.getConstant(8, dl, MVT::i32)); 2356 2357 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2358 DAG.getConstant(4, dl, MVT::i32)); 2359 2360 // areas 2361 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2362 MachinePointerInfo(), false, false, 2363 false, 0); 2364 InChain = OverflowArea.getValue(1); 2365 2366 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2367 MachinePointerInfo(), false, false, 2368 false, 0); 2369 InChain = RegSaveArea.getValue(1); 2370 2371 // select overflow_area if index > 8 2372 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2373 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2374 2375 // adjustment constant gpr_index * 4/8 2376 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2377 VT.isInteger() ? GprIndex : FprIndex, 2378 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2379 MVT::i32)); 2380 2381 // OurReg = RegSaveArea + RegConstant 2382 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2383 RegConstant); 2384 2385 // Floating types are 32 bytes into RegSaveArea 2386 if (VT.isFloatingPoint()) 2387 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2388 DAG.getConstant(32, dl, MVT::i32)); 2389 2390 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2391 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2392 VT.isInteger() ? GprIndex : FprIndex, 2393 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2394 MVT::i32)); 2395 2396 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2397 VT.isInteger() ? VAListPtr : FprPtr, 2398 MachinePointerInfo(SV), 2399 MVT::i8, false, false, 0); 2400 2401 // determine if we should load from reg_save_area or overflow_area 2402 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2403 2404 // increase overflow_area by 4/8 if gpr/fpr > 8 2405 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2406 DAG.getConstant(VT.isInteger() ? 4 : 8, 2407 dl, MVT::i32)); 2408 2409 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2410 OverflowAreaPlusN); 2411 2412 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2413 OverflowAreaPtr, 2414 MachinePointerInfo(), 2415 MVT::i32, false, false, 0); 2416 2417 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2418 false, false, false, 0); 2419 } 2420 2421 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2422 const PPCSubtarget &Subtarget) const { 2423 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2424 2425 // We have to copy the entire va_list struct: 2426 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2427 return DAG.getMemcpy(Op.getOperand(0), Op, 2428 Op.getOperand(1), Op.getOperand(2), 2429 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2430 false, MachinePointerInfo(), MachinePointerInfo()); 2431 } 2432 2433 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2434 SelectionDAG &DAG) const { 2435 return Op.getOperand(0); 2436 } 2437 2438 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2439 SelectionDAG &DAG) const { 2440 SDValue Chain = Op.getOperand(0); 2441 SDValue Trmp = Op.getOperand(1); // trampoline 2442 SDValue FPtr = Op.getOperand(2); // nested function 2443 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2444 SDLoc dl(Op); 2445 2446 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2447 bool isPPC64 = (PtrVT == MVT::i64); 2448 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2449 2450 TargetLowering::ArgListTy Args; 2451 TargetLowering::ArgListEntry Entry; 2452 2453 Entry.Ty = IntPtrTy; 2454 Entry.Node = Trmp; Args.push_back(Entry); 2455 2456 // TrampSize == (isPPC64 ? 48 : 40); 2457 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2458 isPPC64 ? MVT::i64 : MVT::i32); 2459 Args.push_back(Entry); 2460 2461 Entry.Node = FPtr; Args.push_back(Entry); 2462 Entry.Node = Nest; Args.push_back(Entry); 2463 2464 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2465 TargetLowering::CallLoweringInfo CLI(DAG); 2466 CLI.setDebugLoc(dl).setChain(Chain) 2467 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2468 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2469 std::move(Args), 0); 2470 2471 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2472 return CallResult.second; 2473 } 2474 2475 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2476 const PPCSubtarget &Subtarget) const { 2477 MachineFunction &MF = DAG.getMachineFunction(); 2478 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2479 2480 SDLoc dl(Op); 2481 2482 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2483 // vastart just stores the address of the VarArgsFrameIndex slot into the 2484 // memory location argument. 2485 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2486 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2487 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2488 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2489 MachinePointerInfo(SV), 2490 false, false, 0); 2491 } 2492 2493 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2494 // We suppose the given va_list is already allocated. 2495 // 2496 // typedef struct { 2497 // char gpr; /* index into the array of 8 GPRs 2498 // * stored in the register save area 2499 // * gpr=0 corresponds to r3, 2500 // * gpr=1 to r4, etc. 2501 // */ 2502 // char fpr; /* index into the array of 8 FPRs 2503 // * stored in the register save area 2504 // * fpr=0 corresponds to f1, 2505 // * fpr=1 to f2, etc. 2506 // */ 2507 // char *overflow_arg_area; 2508 // /* location on stack that holds 2509 // * the next overflow argument 2510 // */ 2511 // char *reg_save_area; 2512 // /* where r3:r10 and f1:f8 (if saved) 2513 // * are stored 2514 // */ 2515 // } va_list[1]; 2516 2517 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2518 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2519 2520 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2521 2522 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2523 PtrVT); 2524 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2525 PtrVT); 2526 2527 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2528 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2529 2530 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2531 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2532 2533 uint64_t FPROffset = 1; 2534 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2535 2536 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2537 2538 // Store first byte : number of int regs 2539 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2540 Op.getOperand(1), 2541 MachinePointerInfo(SV), 2542 MVT::i8, false, false, 0); 2543 uint64_t nextOffset = FPROffset; 2544 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2545 ConstFPROffset); 2546 2547 // Store second byte : number of float regs 2548 SDValue secondStore = 2549 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2550 MachinePointerInfo(SV, nextOffset), MVT::i8, 2551 false, false, 0); 2552 nextOffset += StackOffset; 2553 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2554 2555 // Store second word : arguments given on stack 2556 SDValue thirdStore = 2557 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2558 MachinePointerInfo(SV, nextOffset), 2559 false, false, 0); 2560 nextOffset += FrameOffset; 2561 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2562 2563 // Store third word : arguments given in registers 2564 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2565 MachinePointerInfo(SV, nextOffset), 2566 false, false, 0); 2567 2568 } 2569 2570 #include "PPCGenCallingConv.inc" 2571 2572 // Function whose sole purpose is to kill compiler warnings 2573 // stemming from unused functions included from PPCGenCallingConv.inc. 2574 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2575 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2576 } 2577 2578 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2579 CCValAssign::LocInfo &LocInfo, 2580 ISD::ArgFlagsTy &ArgFlags, 2581 CCState &State) { 2582 return true; 2583 } 2584 2585 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2586 MVT &LocVT, 2587 CCValAssign::LocInfo &LocInfo, 2588 ISD::ArgFlagsTy &ArgFlags, 2589 CCState &State) { 2590 static const MCPhysReg ArgRegs[] = { 2591 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2592 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2593 }; 2594 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2595 2596 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2597 2598 // Skip one register if the first unallocated register has an even register 2599 // number and there are still argument registers available which have not been 2600 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2601 // need to skip a register if RegNum is odd. 2602 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2603 State.AllocateReg(ArgRegs[RegNum]); 2604 } 2605 2606 // Always return false here, as this function only makes sure that the first 2607 // unallocated register has an odd register number and does not actually 2608 // allocate a register for the current argument. 2609 return false; 2610 } 2611 2612 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2613 MVT &LocVT, 2614 CCValAssign::LocInfo &LocInfo, 2615 ISD::ArgFlagsTy &ArgFlags, 2616 CCState &State) { 2617 static const MCPhysReg ArgRegs[] = { 2618 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2619 PPC::F8 2620 }; 2621 2622 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2623 2624 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2625 2626 // If there is only one Floating-point register left we need to put both f64 2627 // values of a split ppc_fp128 value on the stack. 2628 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2629 State.AllocateReg(ArgRegs[RegNum]); 2630 } 2631 2632 // Always return false here, as this function only makes sure that the two f64 2633 // values a ppc_fp128 value is split into are both passed in registers or both 2634 // passed on the stack and does not actually allocate a register for the 2635 // current argument. 2636 return false; 2637 } 2638 2639 /// FPR - The set of FP registers that should be allocated for arguments, 2640 /// on Darwin. 2641 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2642 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2643 PPC::F11, PPC::F12, PPC::F13}; 2644 2645 /// QFPR - The set of QPX registers that should be allocated for arguments. 2646 static const MCPhysReg QFPR[] = { 2647 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2648 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2649 2650 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2651 /// the stack. 2652 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2653 unsigned PtrByteSize) { 2654 unsigned ArgSize = ArgVT.getStoreSize(); 2655 if (Flags.isByVal()) 2656 ArgSize = Flags.getByValSize(); 2657 2658 // Round up to multiples of the pointer size, except for array members, 2659 // which are always packed. 2660 if (!Flags.isInConsecutiveRegs()) 2661 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2662 2663 return ArgSize; 2664 } 2665 2666 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2667 /// on the stack. 2668 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2669 ISD::ArgFlagsTy Flags, 2670 unsigned PtrByteSize) { 2671 unsigned Align = PtrByteSize; 2672 2673 // Altivec parameters are padded to a 16 byte boundary. 2674 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2675 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2676 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2677 ArgVT == MVT::v1i128) 2678 Align = 16; 2679 // QPX vector types stored in double-precision are padded to a 32 byte 2680 // boundary. 2681 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2682 Align = 32; 2683 2684 // ByVal parameters are aligned as requested. 2685 if (Flags.isByVal()) { 2686 unsigned BVAlign = Flags.getByValAlign(); 2687 if (BVAlign > PtrByteSize) { 2688 if (BVAlign % PtrByteSize != 0) 2689 llvm_unreachable( 2690 "ByVal alignment is not a multiple of the pointer size"); 2691 2692 Align = BVAlign; 2693 } 2694 } 2695 2696 // Array members are always packed to their original alignment. 2697 if (Flags.isInConsecutiveRegs()) { 2698 // If the array member was split into multiple registers, the first 2699 // needs to be aligned to the size of the full type. (Except for 2700 // ppcf128, which is only aligned as its f64 components.) 2701 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2702 Align = OrigVT.getStoreSize(); 2703 else 2704 Align = ArgVT.getStoreSize(); 2705 } 2706 2707 return Align; 2708 } 2709 2710 /// CalculateStackSlotUsed - Return whether this argument will use its 2711 /// stack slot (instead of being passed in registers). ArgOffset, 2712 /// AvailableFPRs, and AvailableVRs must hold the current argument 2713 /// position, and will be updated to account for this argument. 2714 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2715 ISD::ArgFlagsTy Flags, 2716 unsigned PtrByteSize, 2717 unsigned LinkageSize, 2718 unsigned ParamAreaSize, 2719 unsigned &ArgOffset, 2720 unsigned &AvailableFPRs, 2721 unsigned &AvailableVRs, bool HasQPX) { 2722 bool UseMemory = false; 2723 2724 // Respect alignment of argument on the stack. 2725 unsigned Align = 2726 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2727 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2728 // If there's no space left in the argument save area, we must 2729 // use memory (this check also catches zero-sized arguments). 2730 if (ArgOffset >= LinkageSize + ParamAreaSize) 2731 UseMemory = true; 2732 2733 // Allocate argument on the stack. 2734 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2735 if (Flags.isInConsecutiveRegsLast()) 2736 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2737 // If we overran the argument save area, we must use memory 2738 // (this check catches arguments passed partially in memory) 2739 if (ArgOffset > LinkageSize + ParamAreaSize) 2740 UseMemory = true; 2741 2742 // However, if the argument is actually passed in an FPR or a VR, 2743 // we don't use memory after all. 2744 if (!Flags.isByVal()) { 2745 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2746 // QPX registers overlap with the scalar FP registers. 2747 (HasQPX && (ArgVT == MVT::v4f32 || 2748 ArgVT == MVT::v4f64 || 2749 ArgVT == MVT::v4i1))) 2750 if (AvailableFPRs > 0) { 2751 --AvailableFPRs; 2752 return false; 2753 } 2754 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2755 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2756 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2757 ArgVT == MVT::v1i128) 2758 if (AvailableVRs > 0) { 2759 --AvailableVRs; 2760 return false; 2761 } 2762 } 2763 2764 return UseMemory; 2765 } 2766 2767 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2768 /// ensure minimum alignment required for target. 2769 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2770 unsigned NumBytes) { 2771 unsigned TargetAlign = Lowering->getStackAlignment(); 2772 unsigned AlignMask = TargetAlign - 1; 2773 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2774 return NumBytes; 2775 } 2776 2777 SDValue 2778 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2779 CallingConv::ID CallConv, bool isVarArg, 2780 const SmallVectorImpl<ISD::InputArg> 2781 &Ins, 2782 SDLoc dl, SelectionDAG &DAG, 2783 SmallVectorImpl<SDValue> &InVals) 2784 const { 2785 if (Subtarget.isSVR4ABI()) { 2786 if (Subtarget.isPPC64()) 2787 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2788 dl, DAG, InVals); 2789 else 2790 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2791 dl, DAG, InVals); 2792 } else { 2793 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2794 dl, DAG, InVals); 2795 } 2796 } 2797 2798 SDValue 2799 PPCTargetLowering::LowerFormalArguments_32SVR4( 2800 SDValue Chain, 2801 CallingConv::ID CallConv, bool isVarArg, 2802 const SmallVectorImpl<ISD::InputArg> 2803 &Ins, 2804 SDLoc dl, SelectionDAG &DAG, 2805 SmallVectorImpl<SDValue> &InVals) const { 2806 2807 // 32-bit SVR4 ABI Stack Frame Layout: 2808 // +-----------------------------------+ 2809 // +--> | Back chain | 2810 // | +-----------------------------------+ 2811 // | | Floating-point register save area | 2812 // | +-----------------------------------+ 2813 // | | General register save area | 2814 // | +-----------------------------------+ 2815 // | | CR save word | 2816 // | +-----------------------------------+ 2817 // | | VRSAVE save word | 2818 // | +-----------------------------------+ 2819 // | | Alignment padding | 2820 // | +-----------------------------------+ 2821 // | | Vector register save area | 2822 // | +-----------------------------------+ 2823 // | | Local variable space | 2824 // | +-----------------------------------+ 2825 // | | Parameter list area | 2826 // | +-----------------------------------+ 2827 // | | LR save word | 2828 // | +-----------------------------------+ 2829 // SP--> +--- | Back chain | 2830 // +-----------------------------------+ 2831 // 2832 // Specifications: 2833 // System V Application Binary Interface PowerPC Processor Supplement 2834 // AltiVec Technology Programming Interface Manual 2835 2836 MachineFunction &MF = DAG.getMachineFunction(); 2837 MachineFrameInfo *MFI = MF.getFrameInfo(); 2838 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2839 2840 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2841 // Potential tail calls could cause overwriting of argument stack slots. 2842 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2843 (CallConv == CallingConv::Fast)); 2844 unsigned PtrByteSize = 4; 2845 2846 // Assign locations to all of the incoming arguments. 2847 SmallVector<CCValAssign, 16> ArgLocs; 2848 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2849 *DAG.getContext()); 2850 2851 // Reserve space for the linkage area on the stack. 2852 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2853 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2854 if (Subtarget.useSoftFloat()) 2855 CCInfo.PreAnalyzeFormalArguments(Ins); 2856 2857 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2858 CCInfo.clearWasPPCF128(); 2859 2860 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2861 CCValAssign &VA = ArgLocs[i]; 2862 2863 // Arguments stored in registers. 2864 if (VA.isRegLoc()) { 2865 const TargetRegisterClass *RC; 2866 EVT ValVT = VA.getValVT(); 2867 2868 switch (ValVT.getSimpleVT().SimpleTy) { 2869 default: 2870 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2871 case MVT::i1: 2872 case MVT::i32: 2873 RC = &PPC::GPRCRegClass; 2874 break; 2875 case MVT::f32: 2876 if (Subtarget.hasP8Vector()) 2877 RC = &PPC::VSSRCRegClass; 2878 else 2879 RC = &PPC::F4RCRegClass; 2880 break; 2881 case MVT::f64: 2882 if (Subtarget.hasVSX()) 2883 RC = &PPC::VSFRCRegClass; 2884 else 2885 RC = &PPC::F8RCRegClass; 2886 break; 2887 case MVT::v16i8: 2888 case MVT::v8i16: 2889 case MVT::v4i32: 2890 RC = &PPC::VRRCRegClass; 2891 break; 2892 case MVT::v4f32: 2893 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2894 break; 2895 case MVT::v2f64: 2896 case MVT::v2i64: 2897 RC = &PPC::VSHRCRegClass; 2898 break; 2899 case MVT::v4f64: 2900 RC = &PPC::QFRCRegClass; 2901 break; 2902 case MVT::v4i1: 2903 RC = &PPC::QBRCRegClass; 2904 break; 2905 } 2906 2907 // Transform the arguments stored in physical registers into virtual ones. 2908 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2909 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2910 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2911 2912 if (ValVT == MVT::i1) 2913 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2914 2915 InVals.push_back(ArgValue); 2916 } else { 2917 // Argument stored in memory. 2918 assert(VA.isMemLoc()); 2919 2920 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2921 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2922 isImmutable); 2923 2924 // Create load nodes to retrieve arguments from the stack. 2925 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2926 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2927 MachinePointerInfo(), 2928 false, false, false, 0)); 2929 } 2930 } 2931 2932 // Assign locations to all of the incoming aggregate by value arguments. 2933 // Aggregates passed by value are stored in the local variable space of the 2934 // caller's stack frame, right above the parameter list area. 2935 SmallVector<CCValAssign, 16> ByValArgLocs; 2936 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2937 ByValArgLocs, *DAG.getContext()); 2938 2939 // Reserve stack space for the allocations in CCInfo. 2940 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2941 2942 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2943 2944 // Area that is at least reserved in the caller of this function. 2945 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2946 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2947 2948 // Set the size that is at least reserved in caller of this function. Tail 2949 // call optimized function's reserved stack space needs to be aligned so that 2950 // taking the difference between two stack areas will result in an aligned 2951 // stack. 2952 MinReservedArea = 2953 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2954 FuncInfo->setMinReservedArea(MinReservedArea); 2955 2956 SmallVector<SDValue, 8> MemOps; 2957 2958 // If the function takes variable number of arguments, make a frame index for 2959 // the start of the first vararg value... for expansion of llvm.va_start. 2960 if (isVarArg) { 2961 static const MCPhysReg GPArgRegs[] = { 2962 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2963 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2964 }; 2965 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2966 2967 static const MCPhysReg FPArgRegs[] = { 2968 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2969 PPC::F8 2970 }; 2971 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2972 2973 if (Subtarget.useSoftFloat()) 2974 NumFPArgRegs = 0; 2975 2976 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2977 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2978 2979 // Make room for NumGPArgRegs and NumFPArgRegs. 2980 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2981 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2982 2983 FuncInfo->setVarArgsStackOffset( 2984 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2985 CCInfo.getNextStackOffset(), true)); 2986 2987 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2988 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2989 2990 // The fixed integer arguments of a variadic function are stored to the 2991 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2992 // the result of va_next. 2993 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2994 // Get an existing live-in vreg, or add a new one. 2995 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2996 if (!VReg) 2997 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2998 2999 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3000 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3001 MachinePointerInfo(), false, false, 0); 3002 MemOps.push_back(Store); 3003 // Increment the address by four for the next argument to store 3004 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3005 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3006 } 3007 3008 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3009 // is set. 3010 // The double arguments are stored to the VarArgsFrameIndex 3011 // on the stack. 3012 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3013 // Get an existing live-in vreg, or add a new one. 3014 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3015 if (!VReg) 3016 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3017 3018 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3019 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3020 MachinePointerInfo(), false, false, 0); 3021 MemOps.push_back(Store); 3022 // Increment the address by eight for the next argument to store 3023 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3024 PtrVT); 3025 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3026 } 3027 } 3028 3029 if (!MemOps.empty()) 3030 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3031 3032 return Chain; 3033 } 3034 3035 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3036 // value to MVT::i64 and then truncate to the correct register size. 3037 SDValue 3038 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3039 SelectionDAG &DAG, SDValue ArgVal, 3040 SDLoc dl) const { 3041 if (Flags.isSExt()) 3042 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3043 DAG.getValueType(ObjectVT)); 3044 else if (Flags.isZExt()) 3045 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3046 DAG.getValueType(ObjectVT)); 3047 3048 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3049 } 3050 3051 SDValue 3052 PPCTargetLowering::LowerFormalArguments_64SVR4( 3053 SDValue Chain, 3054 CallingConv::ID CallConv, bool isVarArg, 3055 const SmallVectorImpl<ISD::InputArg> 3056 &Ins, 3057 SDLoc dl, SelectionDAG &DAG, 3058 SmallVectorImpl<SDValue> &InVals) const { 3059 // TODO: add description of PPC stack frame format, or at least some docs. 3060 // 3061 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3062 bool isLittleEndian = Subtarget.isLittleEndian(); 3063 MachineFunction &MF = DAG.getMachineFunction(); 3064 MachineFrameInfo *MFI = MF.getFrameInfo(); 3065 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3066 3067 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3068 "fastcc not supported on varargs functions"); 3069 3070 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3071 // Potential tail calls could cause overwriting of argument stack slots. 3072 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3073 (CallConv == CallingConv::Fast)); 3074 unsigned PtrByteSize = 8; 3075 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3076 3077 static const MCPhysReg GPR[] = { 3078 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3079 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3080 }; 3081 static const MCPhysReg VR[] = { 3082 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3083 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3084 }; 3085 static const MCPhysReg VSRH[] = { 3086 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3087 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3088 }; 3089 3090 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3091 const unsigned Num_FPR_Regs = 13; 3092 const unsigned Num_VR_Regs = array_lengthof(VR); 3093 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3094 3095 // Do a first pass over the arguments to determine whether the ABI 3096 // guarantees that our caller has allocated the parameter save area 3097 // on its stack frame. In the ELFv1 ABI, this is always the case; 3098 // in the ELFv2 ABI, it is true if this is a vararg function or if 3099 // any parameter is located in a stack slot. 3100 3101 bool HasParameterArea = !isELFv2ABI || isVarArg; 3102 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3103 unsigned NumBytes = LinkageSize; 3104 unsigned AvailableFPRs = Num_FPR_Regs; 3105 unsigned AvailableVRs = Num_VR_Regs; 3106 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3107 if (Ins[i].Flags.isNest()) 3108 continue; 3109 3110 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3111 PtrByteSize, LinkageSize, ParamAreaSize, 3112 NumBytes, AvailableFPRs, AvailableVRs, 3113 Subtarget.hasQPX())) 3114 HasParameterArea = true; 3115 } 3116 3117 // Add DAG nodes to load the arguments or copy them out of registers. On 3118 // entry to a function on PPC, the arguments start after the linkage area, 3119 // although the first ones are often in registers. 3120 3121 unsigned ArgOffset = LinkageSize; 3122 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3123 unsigned &QFPR_idx = FPR_idx; 3124 SmallVector<SDValue, 8> MemOps; 3125 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3126 unsigned CurArgIdx = 0; 3127 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3128 SDValue ArgVal; 3129 bool needsLoad = false; 3130 EVT ObjectVT = Ins[ArgNo].VT; 3131 EVT OrigVT = Ins[ArgNo].ArgVT; 3132 unsigned ObjSize = ObjectVT.getStoreSize(); 3133 unsigned ArgSize = ObjSize; 3134 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3135 if (Ins[ArgNo].isOrigArg()) { 3136 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3137 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3138 } 3139 // We re-align the argument offset for each argument, except when using the 3140 // fast calling convention, when we need to make sure we do that only when 3141 // we'll actually use a stack slot. 3142 unsigned CurArgOffset, Align; 3143 auto ComputeArgOffset = [&]() { 3144 /* Respect alignment of argument on the stack. */ 3145 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3146 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3147 CurArgOffset = ArgOffset; 3148 }; 3149 3150 if (CallConv != CallingConv::Fast) { 3151 ComputeArgOffset(); 3152 3153 /* Compute GPR index associated with argument offset. */ 3154 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3155 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3156 } 3157 3158 // FIXME the codegen can be much improved in some cases. 3159 // We do not have to keep everything in memory. 3160 if (Flags.isByVal()) { 3161 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3162 3163 if (CallConv == CallingConv::Fast) 3164 ComputeArgOffset(); 3165 3166 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3167 ObjSize = Flags.getByValSize(); 3168 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3169 // Empty aggregate parameters do not take up registers. Examples: 3170 // struct { } a; 3171 // union { } b; 3172 // int c[0]; 3173 // etc. However, we have to provide a place-holder in InVals, so 3174 // pretend we have an 8-byte item at the current address for that 3175 // purpose. 3176 if (!ObjSize) { 3177 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3178 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3179 InVals.push_back(FIN); 3180 continue; 3181 } 3182 3183 // Create a stack object covering all stack doublewords occupied 3184 // by the argument. If the argument is (fully or partially) on 3185 // the stack, or if the argument is fully in registers but the 3186 // caller has allocated the parameter save anyway, we can refer 3187 // directly to the caller's stack frame. Otherwise, create a 3188 // local copy in our own frame. 3189 int FI; 3190 if (HasParameterArea || 3191 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3192 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3193 else 3194 FI = MFI->CreateStackObject(ArgSize, Align, false); 3195 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3196 3197 // Handle aggregates smaller than 8 bytes. 3198 if (ObjSize < PtrByteSize) { 3199 // The value of the object is its address, which differs from the 3200 // address of the enclosing doubleword on big-endian systems. 3201 SDValue Arg = FIN; 3202 if (!isLittleEndian) { 3203 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3204 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3205 } 3206 InVals.push_back(Arg); 3207 3208 if (GPR_idx != Num_GPR_Regs) { 3209 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3210 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3211 SDValue Store; 3212 3213 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3214 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3215 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3216 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3217 MachinePointerInfo(&*FuncArg), ObjType, 3218 false, false, 0); 3219 } else { 3220 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3221 // store the whole register as-is to the parameter save area 3222 // slot. 3223 Store = 3224 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3225 MachinePointerInfo(&*FuncArg), false, false, 0); 3226 } 3227 3228 MemOps.push_back(Store); 3229 } 3230 // Whether we copied from a register or not, advance the offset 3231 // into the parameter save area by a full doubleword. 3232 ArgOffset += PtrByteSize; 3233 continue; 3234 } 3235 3236 // The value of the object is its address, which is the address of 3237 // its first stack doubleword. 3238 InVals.push_back(FIN); 3239 3240 // Store whatever pieces of the object are in registers to memory. 3241 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3242 if (GPR_idx == Num_GPR_Regs) 3243 break; 3244 3245 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3246 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3247 SDValue Addr = FIN; 3248 if (j) { 3249 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3250 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3251 } 3252 SDValue Store = 3253 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3254 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3255 MemOps.push_back(Store); 3256 ++GPR_idx; 3257 } 3258 ArgOffset += ArgSize; 3259 continue; 3260 } 3261 3262 switch (ObjectVT.getSimpleVT().SimpleTy) { 3263 default: llvm_unreachable("Unhandled argument type!"); 3264 case MVT::i1: 3265 case MVT::i32: 3266 case MVT::i64: 3267 if (Flags.isNest()) { 3268 // The 'nest' parameter, if any, is passed in R11. 3269 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3270 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3271 3272 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3273 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3274 3275 break; 3276 } 3277 3278 // These can be scalar arguments or elements of an integer array type 3279 // passed directly. Clang may use those instead of "byval" aggregate 3280 // types to avoid forcing arguments to memory unnecessarily. 3281 if (GPR_idx != Num_GPR_Regs) { 3282 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3283 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3284 3285 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3286 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3287 // value to MVT::i64 and then truncate to the correct register size. 3288 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3289 } else { 3290 if (CallConv == CallingConv::Fast) 3291 ComputeArgOffset(); 3292 3293 needsLoad = true; 3294 ArgSize = PtrByteSize; 3295 } 3296 if (CallConv != CallingConv::Fast || needsLoad) 3297 ArgOffset += 8; 3298 break; 3299 3300 case MVT::f32: 3301 case MVT::f64: 3302 // These can be scalar arguments or elements of a float array type 3303 // passed directly. The latter are used to implement ELFv2 homogenous 3304 // float aggregates. 3305 if (FPR_idx != Num_FPR_Regs) { 3306 unsigned VReg; 3307 3308 if (ObjectVT == MVT::f32) 3309 VReg = MF.addLiveIn(FPR[FPR_idx], 3310 Subtarget.hasP8Vector() 3311 ? &PPC::VSSRCRegClass 3312 : &PPC::F4RCRegClass); 3313 else 3314 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3315 ? &PPC::VSFRCRegClass 3316 : &PPC::F8RCRegClass); 3317 3318 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3319 ++FPR_idx; 3320 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3321 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3322 // once we support fp <-> gpr moves. 3323 3324 // This can only ever happen in the presence of f32 array types, 3325 // since otherwise we never run out of FPRs before running out 3326 // of GPRs. 3327 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3328 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3329 3330 if (ObjectVT == MVT::f32) { 3331 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3332 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3333 DAG.getConstant(32, dl, MVT::i32)); 3334 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3335 } 3336 3337 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3338 } else { 3339 if (CallConv == CallingConv::Fast) 3340 ComputeArgOffset(); 3341 3342 needsLoad = true; 3343 } 3344 3345 // When passing an array of floats, the array occupies consecutive 3346 // space in the argument area; only round up to the next doubleword 3347 // at the end of the array. Otherwise, each float takes 8 bytes. 3348 if (CallConv != CallingConv::Fast || needsLoad) { 3349 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3350 ArgOffset += ArgSize; 3351 if (Flags.isInConsecutiveRegsLast()) 3352 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3353 } 3354 break; 3355 case MVT::v4f32: 3356 case MVT::v4i32: 3357 case MVT::v8i16: 3358 case MVT::v16i8: 3359 case MVT::v2f64: 3360 case MVT::v2i64: 3361 case MVT::v1i128: 3362 if (!Subtarget.hasQPX()) { 3363 // These can be scalar arguments or elements of a vector array type 3364 // passed directly. The latter are used to implement ELFv2 homogenous 3365 // vector aggregates. 3366 if (VR_idx != Num_VR_Regs) { 3367 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3368 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3369 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3370 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3371 ++VR_idx; 3372 } else { 3373 if (CallConv == CallingConv::Fast) 3374 ComputeArgOffset(); 3375 3376 needsLoad = true; 3377 } 3378 if (CallConv != CallingConv::Fast || needsLoad) 3379 ArgOffset += 16; 3380 break; 3381 } // not QPX 3382 3383 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3384 "Invalid QPX parameter type"); 3385 /* fall through */ 3386 3387 case MVT::v4f64: 3388 case MVT::v4i1: 3389 // QPX vectors are treated like their scalar floating-point subregisters 3390 // (except that they're larger). 3391 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3392 if (QFPR_idx != Num_QFPR_Regs) { 3393 const TargetRegisterClass *RC; 3394 switch (ObjectVT.getSimpleVT().SimpleTy) { 3395 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3396 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3397 default: RC = &PPC::QBRCRegClass; break; 3398 } 3399 3400 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3401 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3402 ++QFPR_idx; 3403 } else { 3404 if (CallConv == CallingConv::Fast) 3405 ComputeArgOffset(); 3406 needsLoad = true; 3407 } 3408 if (CallConv != CallingConv::Fast || needsLoad) 3409 ArgOffset += Sz; 3410 break; 3411 } 3412 3413 // We need to load the argument to a virtual register if we determined 3414 // above that we ran out of physical registers of the appropriate type. 3415 if (needsLoad) { 3416 if (ObjSize < ArgSize && !isLittleEndian) 3417 CurArgOffset += ArgSize - ObjSize; 3418 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3419 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3420 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3421 false, false, false, 0); 3422 } 3423 3424 InVals.push_back(ArgVal); 3425 } 3426 3427 // Area that is at least reserved in the caller of this function. 3428 unsigned MinReservedArea; 3429 if (HasParameterArea) 3430 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3431 else 3432 MinReservedArea = LinkageSize; 3433 3434 // Set the size that is at least reserved in caller of this function. Tail 3435 // call optimized functions' reserved stack space needs to be aligned so that 3436 // taking the difference between two stack areas will result in an aligned 3437 // stack. 3438 MinReservedArea = 3439 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3440 FuncInfo->setMinReservedArea(MinReservedArea); 3441 3442 // If the function takes variable number of arguments, make a frame index for 3443 // the start of the first vararg value... for expansion of llvm.va_start. 3444 if (isVarArg) { 3445 int Depth = ArgOffset; 3446 3447 FuncInfo->setVarArgsFrameIndex( 3448 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3449 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3450 3451 // If this function is vararg, store any remaining integer argument regs 3452 // to their spots on the stack so that they may be loaded by deferencing the 3453 // result of va_next. 3454 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3455 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3456 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3457 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3458 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3459 MachinePointerInfo(), false, false, 0); 3460 MemOps.push_back(Store); 3461 // Increment the address by four for the next argument to store 3462 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3463 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3464 } 3465 } 3466 3467 if (!MemOps.empty()) 3468 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3469 3470 return Chain; 3471 } 3472 3473 SDValue 3474 PPCTargetLowering::LowerFormalArguments_Darwin( 3475 SDValue Chain, 3476 CallingConv::ID CallConv, bool isVarArg, 3477 const SmallVectorImpl<ISD::InputArg> 3478 &Ins, 3479 SDLoc dl, SelectionDAG &DAG, 3480 SmallVectorImpl<SDValue> &InVals) const { 3481 // TODO: add description of PPC stack frame format, or at least some docs. 3482 // 3483 MachineFunction &MF = DAG.getMachineFunction(); 3484 MachineFrameInfo *MFI = MF.getFrameInfo(); 3485 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3486 3487 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3488 bool isPPC64 = PtrVT == MVT::i64; 3489 // Potential tail calls could cause overwriting of argument stack slots. 3490 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3491 (CallConv == CallingConv::Fast)); 3492 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3493 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3494 unsigned ArgOffset = LinkageSize; 3495 // Area that is at least reserved in caller of this function. 3496 unsigned MinReservedArea = ArgOffset; 3497 3498 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3499 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3500 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3501 }; 3502 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3503 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3504 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3505 }; 3506 static const MCPhysReg VR[] = { 3507 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3508 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3509 }; 3510 3511 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3512 const unsigned Num_FPR_Regs = 13; 3513 const unsigned Num_VR_Regs = array_lengthof( VR); 3514 3515 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3516 3517 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3518 3519 // In 32-bit non-varargs functions, the stack space for vectors is after the 3520 // stack space for non-vectors. We do not use this space unless we have 3521 // too many vectors to fit in registers, something that only occurs in 3522 // constructed examples:), but we have to walk the arglist to figure 3523 // that out...for the pathological case, compute VecArgOffset as the 3524 // start of the vector parameter area. Computing VecArgOffset is the 3525 // entire point of the following loop. 3526 unsigned VecArgOffset = ArgOffset; 3527 if (!isVarArg && !isPPC64) { 3528 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3529 ++ArgNo) { 3530 EVT ObjectVT = Ins[ArgNo].VT; 3531 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3532 3533 if (Flags.isByVal()) { 3534 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3535 unsigned ObjSize = Flags.getByValSize(); 3536 unsigned ArgSize = 3537 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3538 VecArgOffset += ArgSize; 3539 continue; 3540 } 3541 3542 switch(ObjectVT.getSimpleVT().SimpleTy) { 3543 default: llvm_unreachable("Unhandled argument type!"); 3544 case MVT::i1: 3545 case MVT::i32: 3546 case MVT::f32: 3547 VecArgOffset += 4; 3548 break; 3549 case MVT::i64: // PPC64 3550 case MVT::f64: 3551 // FIXME: We are guaranteed to be !isPPC64 at this point. 3552 // Does MVT::i64 apply? 3553 VecArgOffset += 8; 3554 break; 3555 case MVT::v4f32: 3556 case MVT::v4i32: 3557 case MVT::v8i16: 3558 case MVT::v16i8: 3559 // Nothing to do, we're only looking at Nonvector args here. 3560 break; 3561 } 3562 } 3563 } 3564 // We've found where the vector parameter area in memory is. Skip the 3565 // first 12 parameters; these don't use that memory. 3566 VecArgOffset = ((VecArgOffset+15)/16)*16; 3567 VecArgOffset += 12*16; 3568 3569 // Add DAG nodes to load the arguments or copy them out of registers. On 3570 // entry to a function on PPC, the arguments start after the linkage area, 3571 // although the first ones are often in registers. 3572 3573 SmallVector<SDValue, 8> MemOps; 3574 unsigned nAltivecParamsAtEnd = 0; 3575 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3576 unsigned CurArgIdx = 0; 3577 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3578 SDValue ArgVal; 3579 bool needsLoad = false; 3580 EVT ObjectVT = Ins[ArgNo].VT; 3581 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3582 unsigned ArgSize = ObjSize; 3583 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3584 if (Ins[ArgNo].isOrigArg()) { 3585 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3586 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3587 } 3588 unsigned CurArgOffset = ArgOffset; 3589 3590 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3591 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3592 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3593 if (isVarArg || isPPC64) { 3594 MinReservedArea = ((MinReservedArea+15)/16)*16; 3595 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3596 Flags, 3597 PtrByteSize); 3598 } else nAltivecParamsAtEnd++; 3599 } else 3600 // Calculate min reserved area. 3601 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3602 Flags, 3603 PtrByteSize); 3604 3605 // FIXME the codegen can be much improved in some cases. 3606 // We do not have to keep everything in memory. 3607 if (Flags.isByVal()) { 3608 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3609 3610 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3611 ObjSize = Flags.getByValSize(); 3612 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3613 // Objects of size 1 and 2 are right justified, everything else is 3614 // left justified. This means the memory address is adjusted forwards. 3615 if (ObjSize==1 || ObjSize==2) { 3616 CurArgOffset = CurArgOffset + (4 - ObjSize); 3617 } 3618 // The value of the object is its address. 3619 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3620 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3621 InVals.push_back(FIN); 3622 if (ObjSize==1 || ObjSize==2) { 3623 if (GPR_idx != Num_GPR_Regs) { 3624 unsigned VReg; 3625 if (isPPC64) 3626 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3627 else 3628 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3629 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3630 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3631 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3632 MachinePointerInfo(&*FuncArg), 3633 ObjType, false, false, 0); 3634 MemOps.push_back(Store); 3635 ++GPR_idx; 3636 } 3637 3638 ArgOffset += PtrByteSize; 3639 3640 continue; 3641 } 3642 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3643 // Store whatever pieces of the object are in registers 3644 // to memory. ArgOffset will be the address of the beginning 3645 // of the object. 3646 if (GPR_idx != Num_GPR_Regs) { 3647 unsigned VReg; 3648 if (isPPC64) 3649 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3650 else 3651 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3652 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3653 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3654 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3655 SDValue Store = 3656 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3657 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3658 MemOps.push_back(Store); 3659 ++GPR_idx; 3660 ArgOffset += PtrByteSize; 3661 } else { 3662 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3663 break; 3664 } 3665 } 3666 continue; 3667 } 3668 3669 switch (ObjectVT.getSimpleVT().SimpleTy) { 3670 default: llvm_unreachable("Unhandled argument type!"); 3671 case MVT::i1: 3672 case MVT::i32: 3673 if (!isPPC64) { 3674 if (GPR_idx != Num_GPR_Regs) { 3675 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3676 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3677 3678 if (ObjectVT == MVT::i1) 3679 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3680 3681 ++GPR_idx; 3682 } else { 3683 needsLoad = true; 3684 ArgSize = PtrByteSize; 3685 } 3686 // All int arguments reserve stack space in the Darwin ABI. 3687 ArgOffset += PtrByteSize; 3688 break; 3689 } 3690 // FALLTHROUGH 3691 case MVT::i64: // PPC64 3692 if (GPR_idx != Num_GPR_Regs) { 3693 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3694 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3695 3696 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3697 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3698 // value to MVT::i64 and then truncate to the correct register size. 3699 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3700 3701 ++GPR_idx; 3702 } else { 3703 needsLoad = true; 3704 ArgSize = PtrByteSize; 3705 } 3706 // All int arguments reserve stack space in the Darwin ABI. 3707 ArgOffset += 8; 3708 break; 3709 3710 case MVT::f32: 3711 case MVT::f64: 3712 // Every 4 bytes of argument space consumes one of the GPRs available for 3713 // argument passing. 3714 if (GPR_idx != Num_GPR_Regs) { 3715 ++GPR_idx; 3716 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3717 ++GPR_idx; 3718 } 3719 if (FPR_idx != Num_FPR_Regs) { 3720 unsigned VReg; 3721 3722 if (ObjectVT == MVT::f32) 3723 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3724 else 3725 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3726 3727 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3728 ++FPR_idx; 3729 } else { 3730 needsLoad = true; 3731 } 3732 3733 // All FP arguments reserve stack space in the Darwin ABI. 3734 ArgOffset += isPPC64 ? 8 : ObjSize; 3735 break; 3736 case MVT::v4f32: 3737 case MVT::v4i32: 3738 case MVT::v8i16: 3739 case MVT::v16i8: 3740 // Note that vector arguments in registers don't reserve stack space, 3741 // except in varargs functions. 3742 if (VR_idx != Num_VR_Regs) { 3743 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3744 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3745 if (isVarArg) { 3746 while ((ArgOffset % 16) != 0) { 3747 ArgOffset += PtrByteSize; 3748 if (GPR_idx != Num_GPR_Regs) 3749 GPR_idx++; 3750 } 3751 ArgOffset += 16; 3752 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3753 } 3754 ++VR_idx; 3755 } else { 3756 if (!isVarArg && !isPPC64) { 3757 // Vectors go after all the nonvectors. 3758 CurArgOffset = VecArgOffset; 3759 VecArgOffset += 16; 3760 } else { 3761 // Vectors are aligned. 3762 ArgOffset = ((ArgOffset+15)/16)*16; 3763 CurArgOffset = ArgOffset; 3764 ArgOffset += 16; 3765 } 3766 needsLoad = true; 3767 } 3768 break; 3769 } 3770 3771 // We need to load the argument to a virtual register if we determined above 3772 // that we ran out of physical registers of the appropriate type. 3773 if (needsLoad) { 3774 int FI = MFI->CreateFixedObject(ObjSize, 3775 CurArgOffset + (ArgSize - ObjSize), 3776 isImmutable); 3777 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3778 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3779 false, false, false, 0); 3780 } 3781 3782 InVals.push_back(ArgVal); 3783 } 3784 3785 // Allow for Altivec parameters at the end, if needed. 3786 if (nAltivecParamsAtEnd) { 3787 MinReservedArea = ((MinReservedArea+15)/16)*16; 3788 MinReservedArea += 16*nAltivecParamsAtEnd; 3789 } 3790 3791 // Area that is at least reserved in the caller of this function. 3792 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3793 3794 // Set the size that is at least reserved in caller of this function. Tail 3795 // call optimized functions' reserved stack space needs to be aligned so that 3796 // taking the difference between two stack areas will result in an aligned 3797 // stack. 3798 MinReservedArea = 3799 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3800 FuncInfo->setMinReservedArea(MinReservedArea); 3801 3802 // If the function takes variable number of arguments, make a frame index for 3803 // the start of the first vararg value... for expansion of llvm.va_start. 3804 if (isVarArg) { 3805 int Depth = ArgOffset; 3806 3807 FuncInfo->setVarArgsFrameIndex( 3808 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3809 Depth, true)); 3810 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3811 3812 // If this function is vararg, store any remaining integer argument regs 3813 // to their spots on the stack so that they may be loaded by deferencing the 3814 // result of va_next. 3815 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3816 unsigned VReg; 3817 3818 if (isPPC64) 3819 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3820 else 3821 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3822 3823 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3824 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3825 MachinePointerInfo(), false, false, 0); 3826 MemOps.push_back(Store); 3827 // Increment the address by four for the next argument to store 3828 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3829 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3830 } 3831 } 3832 3833 if (!MemOps.empty()) 3834 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3835 3836 return Chain; 3837 } 3838 3839 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3840 /// adjusted to accommodate the arguments for the tailcall. 3841 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3842 unsigned ParamSize) { 3843 3844 if (!isTailCall) return 0; 3845 3846 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3847 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3848 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3849 // Remember only if the new adjustement is bigger. 3850 if (SPDiff < FI->getTailCallSPDelta()) 3851 FI->setTailCallSPDelta(SPDiff); 3852 3853 return SPDiff; 3854 } 3855 3856 static bool isFunctionGlobalAddress(SDValue Callee); 3857 3858 static bool 3859 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3860 // If !G, Callee can be an external symbol. 3861 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3862 if (!G) return false; 3863 3864 const GlobalValue *GV = G->getGlobal(); 3865 3866 if (GV->isDeclaration()) return false; 3867 3868 switch(GV->getLinkage()) { 3869 default: llvm_unreachable("unknow linkage type"); 3870 case GlobalValue::AvailableExternallyLinkage: 3871 case GlobalValue::ExternalWeakLinkage: 3872 return false; 3873 3874 // Callee with weak linkage is allowed if it has hidden or protected 3875 // visibility 3876 case GlobalValue::LinkOnceAnyLinkage: 3877 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 3878 case GlobalValue::WeakAnyLinkage: 3879 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 3880 if (GV->hasDefaultVisibility()) 3881 return false; 3882 3883 case GlobalValue::ExternalLinkage: 3884 case GlobalValue::InternalLinkage: 3885 case GlobalValue::PrivateLinkage: 3886 break; 3887 } 3888 3889 // With '-fPIC', calling default visiblity function need insert 'nop' after 3890 // function call, no matter that function resides in same module or not, so 3891 // we treat it as in different module. 3892 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 3893 return false; 3894 3895 return true; 3896 } 3897 3898 static bool 3899 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 3900 const SmallVectorImpl<ISD::OutputArg> &Outs) { 3901 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 3902 3903 const unsigned PtrByteSize = 8; 3904 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3905 3906 static const MCPhysReg GPR[] = { 3907 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3908 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3909 }; 3910 static const MCPhysReg VR[] = { 3911 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3912 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3913 }; 3914 3915 const unsigned NumGPRs = array_lengthof(GPR); 3916 const unsigned NumFPRs = 13; 3917 const unsigned NumVRs = array_lengthof(VR); 3918 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 3919 3920 unsigned NumBytes = LinkageSize; 3921 unsigned AvailableFPRs = NumFPRs; 3922 unsigned AvailableVRs = NumVRs; 3923 3924 for (const ISD::OutputArg& Param : Outs) { 3925 if (Param.Flags.isNest()) continue; 3926 3927 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 3928 PtrByteSize, LinkageSize, ParamAreaSize, 3929 NumBytes, AvailableFPRs, AvailableVRs, 3930 Subtarget.hasQPX())) 3931 return true; 3932 } 3933 return false; 3934 } 3935 3936 static bool 3937 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 3938 if (CS->arg_size() != CallerFn->getArgumentList().size()) 3939 return false; 3940 3941 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 3942 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 3943 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 3944 3945 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 3946 const Value* CalleeArg = *CalleeArgIter; 3947 const Value* CallerArg = &(*CallerArgIter); 3948 if (CalleeArg == CallerArg) 3949 continue; 3950 3951 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 3952 // tail call @callee([4 x i64] undef, [4 x i64] %b) 3953 // } 3954 // 1st argument of callee is undef and has the same type as caller. 3955 if (CalleeArg->getType() == CallerArg->getType() && 3956 isa<UndefValue>(CalleeArg)) 3957 continue; 3958 3959 return false; 3960 } 3961 3962 return true; 3963 } 3964 3965 bool 3966 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 3967 SDValue Callee, 3968 CallingConv::ID CalleeCC, 3969 ImmutableCallSite *CS, 3970 bool isVarArg, 3971 const SmallVectorImpl<ISD::OutputArg> &Outs, 3972 const SmallVectorImpl<ISD::InputArg> &Ins, 3973 SelectionDAG& DAG) const { 3974 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 3975 3976 if (DisableSCO && !TailCallOpt) return false; 3977 3978 // Variadic argument functions are not supported. 3979 if (isVarArg) return false; 3980 3981 MachineFunction &MF = DAG.getMachineFunction(); 3982 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3983 3984 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 3985 // the same calling convention 3986 if (CallerCC != CalleeCC) return false; 3987 3988 // SCO support C calling convention 3989 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 3990 return false; 3991 3992 // Functions containing by val parameters are not supported. 3993 if (std::any_of(Ins.begin(), Ins.end(), 3994 [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); })) 3995 return false; 3996 3997 // No TCO/SCO on indirect call because Caller have to restore its TOC 3998 if (!isFunctionGlobalAddress(Callee) && 3999 !isa<ExternalSymbolSDNode>(Callee)) 4000 return false; 4001 4002 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 4003 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 4004 // module. 4005 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4006 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 4007 return false; 4008 4009 // TCO allows altering callee ABI, so we don't have to check further. 4010 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4011 return true; 4012 4013 if (DisableSCO) return false; 4014 4015 // If callee use the same argument list that caller is using, then we can 4016 // apply SCO on this case. If it is not, then we need to check if callee needs 4017 // stack for passing arguments. 4018 if (!hasSameArgumentList(MF.getFunction(), CS) && 4019 needStackSlotPassParameters(Subtarget, Outs)) { 4020 return false; 4021 } 4022 4023 return true; 4024 } 4025 4026 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4027 /// for tail call optimization. Targets which want to do tail call 4028 /// optimization should implement this function. 4029 bool 4030 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4031 CallingConv::ID CalleeCC, 4032 bool isVarArg, 4033 const SmallVectorImpl<ISD::InputArg> &Ins, 4034 SelectionDAG& DAG) const { 4035 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4036 return false; 4037 4038 // Variable argument functions are not supported. 4039 if (isVarArg) 4040 return false; 4041 4042 MachineFunction &MF = DAG.getMachineFunction(); 4043 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4044 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4045 // Functions containing by val parameters are not supported. 4046 for (unsigned i = 0; i != Ins.size(); i++) { 4047 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4048 if (Flags.isByVal()) return false; 4049 } 4050 4051 // Non-PIC/GOT tail calls are supported. 4052 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4053 return true; 4054 4055 // At the moment we can only do local tail calls (in same module, hidden 4056 // or protected) if we are generating PIC. 4057 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4058 return G->getGlobal()->hasHiddenVisibility() 4059 || G->getGlobal()->hasProtectedVisibility(); 4060 } 4061 4062 return false; 4063 } 4064 4065 /// isCallCompatibleAddress - Return the immediate to use if the specified 4066 /// 32-bit value is representable in the immediate field of a BxA instruction. 4067 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4068 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4069 if (!C) return nullptr; 4070 4071 int Addr = C->getZExtValue(); 4072 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4073 SignExtend32<26>(Addr) != Addr) 4074 return nullptr; // Top 6 bits have to be sext of immediate. 4075 4076 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 4077 DAG.getTargetLoweringInfo().getPointerTy( 4078 DAG.getDataLayout())).getNode(); 4079 } 4080 4081 namespace { 4082 4083 struct TailCallArgumentInfo { 4084 SDValue Arg; 4085 SDValue FrameIdxOp; 4086 int FrameIdx; 4087 4088 TailCallArgumentInfo() : FrameIdx(0) {} 4089 }; 4090 } 4091 4092 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4093 static void 4094 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 4095 SDValue Chain, 4096 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4097 SmallVectorImpl<SDValue> &MemOpChains, 4098 SDLoc dl) { 4099 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4100 SDValue Arg = TailCallArgs[i].Arg; 4101 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4102 int FI = TailCallArgs[i].FrameIdx; 4103 // Store relative to framepointer. 4104 MemOpChains.push_back(DAG.getStore( 4105 Chain, dl, Arg, FIN, 4106 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 4107 false, 0)); 4108 } 4109 } 4110 4111 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4112 /// the appropriate stack slot for the tail call optimized function call. 4113 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 4114 MachineFunction &MF, 4115 SDValue Chain, 4116 SDValue OldRetAddr, 4117 SDValue OldFP, 4118 int SPDiff, 4119 bool isPPC64, 4120 bool isDarwinABI, 4121 SDLoc dl) { 4122 if (SPDiff) { 4123 // Calculate the new stack slot for the return address. 4124 int SlotSize = isPPC64 ? 8 : 4; 4125 const PPCFrameLowering *FL = 4126 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 4127 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4128 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 4129 NewRetAddrLoc, true); 4130 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4131 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4132 Chain = DAG.getStore( 4133 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4134 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 4135 false, false, 0); 4136 4137 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4138 // slot as the FP is never overwritten. 4139 if (isDarwinABI) { 4140 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4141 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 4142 true); 4143 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4144 Chain = DAG.getStore( 4145 Chain, dl, OldFP, NewFramePtrIdx, 4146 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 4147 false, false, 0); 4148 } 4149 } 4150 return Chain; 4151 } 4152 4153 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4154 /// the position of the argument. 4155 static void 4156 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4157 SDValue Arg, int SPDiff, unsigned ArgOffset, 4158 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4159 int Offset = ArgOffset + SPDiff; 4160 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 4161 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 4162 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4163 SDValue FIN = DAG.getFrameIndex(FI, VT); 4164 TailCallArgumentInfo Info; 4165 Info.Arg = Arg; 4166 Info.FrameIdxOp = FIN; 4167 Info.FrameIdx = FI; 4168 TailCallArguments.push_back(Info); 4169 } 4170 4171 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4172 /// stack slot. Returns the chain as result and the loaded frame pointers in 4173 /// LROpOut/FPOpout. Used when tail calling. 4174 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 4175 int SPDiff, 4176 SDValue Chain, 4177 SDValue &LROpOut, 4178 SDValue &FPOpOut, 4179 bool isDarwinABI, 4180 SDLoc dl) const { 4181 if (SPDiff) { 4182 // Load the LR and FP stack slot for later adjusting. 4183 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4184 LROpOut = getReturnAddrFrameIndex(DAG); 4185 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 4186 false, false, false, 0); 4187 Chain = SDValue(LROpOut.getNode(), 1); 4188 4189 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4190 // slot as the FP is never overwritten. 4191 if (isDarwinABI) { 4192 FPOpOut = getFramePointerFrameIndex(DAG); 4193 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4194 false, false, false, 0); 4195 Chain = SDValue(FPOpOut.getNode(), 1); 4196 } 4197 } 4198 return Chain; 4199 } 4200 4201 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4202 /// by "Src" to address "Dst" of size "Size". Alignment information is 4203 /// specified by the specific parameter attribute. The copy will be passed as 4204 /// a byval function parameter. 4205 /// Sometimes what we are copying is the end of a larger object, the part that 4206 /// does not fit in registers. 4207 static SDValue 4208 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4209 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4210 SDLoc dl) { 4211 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4212 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4213 false, false, false, MachinePointerInfo(), 4214 MachinePointerInfo()); 4215 } 4216 4217 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4218 /// tail calls. 4219 static void 4220 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4221 SDValue Arg, SDValue PtrOff, int SPDiff, 4222 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4223 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4224 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4225 SDLoc dl) { 4226 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4227 if (!isTailCall) { 4228 if (isVector) { 4229 SDValue StackPtr; 4230 if (isPPC64) 4231 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4232 else 4233 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4234 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4235 DAG.getConstant(ArgOffset, dl, PtrVT)); 4236 } 4237 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4238 MachinePointerInfo(), false, false, 0)); 4239 // Calculate and remember argument location. 4240 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4241 TailCallArguments); 4242 } 4243 4244 static 4245 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4246 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4247 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4248 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4249 MachineFunction &MF = DAG.getMachineFunction(); 4250 4251 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4252 // might overwrite each other in case of tail call optimization. 4253 SmallVector<SDValue, 8> MemOpChains2; 4254 // Do not flag preceding copytoreg stuff together with the following stuff. 4255 InFlag = SDValue(); 4256 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4257 MemOpChains2, dl); 4258 if (!MemOpChains2.empty()) 4259 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4260 4261 // Store the return address to the appropriate stack slot. 4262 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4263 isPPC64, isDarwinABI, dl); 4264 4265 // Emit callseq_end just before tailcall node. 4266 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4267 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4268 InFlag = Chain.getValue(1); 4269 } 4270 4271 // Is this global address that of a function that can be called by name? (as 4272 // opposed to something that must hold a descriptor for an indirect call). 4273 static bool isFunctionGlobalAddress(SDValue Callee) { 4274 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4275 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4276 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4277 return false; 4278 4279 return G->getGlobal()->getValueType()->isFunctionTy(); 4280 } 4281 4282 return false; 4283 } 4284 4285 static 4286 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4287 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4288 bool isTailCall, bool IsPatchPoint, bool hasNest, 4289 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4290 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4291 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4292 4293 bool isPPC64 = Subtarget.isPPC64(); 4294 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4295 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4296 4297 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4298 NodeTys.push_back(MVT::Other); // Returns a chain 4299 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4300 4301 unsigned CallOpc = PPCISD::CALL; 4302 4303 bool needIndirectCall = true; 4304 if (!isSVR4ABI || !isPPC64) 4305 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4306 // If this is an absolute destination address, use the munged value. 4307 Callee = SDValue(Dest, 0); 4308 needIndirectCall = false; 4309 } 4310 4311 if (isFunctionGlobalAddress(Callee)) { 4312 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4313 // A call to a TLS address is actually an indirect call to a 4314 // thread-specific pointer. 4315 unsigned OpFlags = 0; 4316 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4317 (Subtarget.getTargetTriple().isMacOSX() && 4318 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4319 !G->getGlobal()->isStrongDefinitionForLinker()) || 4320 (Subtarget.isTargetELF() && !isPPC64 && 4321 !G->getGlobal()->hasLocalLinkage() && 4322 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4323 // PC-relative references to external symbols should go through $stub, 4324 // unless we're building with the leopard linker or later, which 4325 // automatically synthesizes these stubs. 4326 OpFlags = PPCII::MO_PLT_OR_STUB; 4327 } 4328 4329 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4330 // every direct call is) turn it into a TargetGlobalAddress / 4331 // TargetExternalSymbol node so that legalize doesn't hack it. 4332 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4333 Callee.getValueType(), 0, OpFlags); 4334 needIndirectCall = false; 4335 } 4336 4337 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4338 unsigned char OpFlags = 0; 4339 4340 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4341 (Subtarget.getTargetTriple().isMacOSX() && 4342 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4343 (Subtarget.isTargetELF() && !isPPC64 && 4344 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4345 // PC-relative references to external symbols should go through $stub, 4346 // unless we're building with the leopard linker or later, which 4347 // automatically synthesizes these stubs. 4348 OpFlags = PPCII::MO_PLT_OR_STUB; 4349 } 4350 4351 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4352 OpFlags); 4353 needIndirectCall = false; 4354 } 4355 4356 if (IsPatchPoint) { 4357 // We'll form an invalid direct call when lowering a patchpoint; the full 4358 // sequence for an indirect call is complicated, and many of the 4359 // instructions introduced might have side effects (and, thus, can't be 4360 // removed later). The call itself will be removed as soon as the 4361 // argument/return lowering is complete, so the fact that it has the wrong 4362 // kind of operands should not really matter. 4363 needIndirectCall = false; 4364 } 4365 4366 if (needIndirectCall) { 4367 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4368 // to do the call, we can't use PPCISD::CALL. 4369 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4370 4371 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4372 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4373 // entry point, but to the function descriptor (the function entry point 4374 // address is part of the function descriptor though). 4375 // The function descriptor is a three doubleword structure with the 4376 // following fields: function entry point, TOC base address and 4377 // environment pointer. 4378 // Thus for a call through a function pointer, the following actions need 4379 // to be performed: 4380 // 1. Save the TOC of the caller in the TOC save area of its stack 4381 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4382 // 2. Load the address of the function entry point from the function 4383 // descriptor. 4384 // 3. Load the TOC of the callee from the function descriptor into r2. 4385 // 4. Load the environment pointer from the function descriptor into 4386 // r11. 4387 // 5. Branch to the function entry point address. 4388 // 6. On return of the callee, the TOC of the caller needs to be 4389 // restored (this is done in FinishCall()). 4390 // 4391 // The loads are scheduled at the beginning of the call sequence, and the 4392 // register copies are flagged together to ensure that no other 4393 // operations can be scheduled in between. E.g. without flagging the 4394 // copies together, a TOC access in the caller could be scheduled between 4395 // the assignment of the callee TOC and the branch to the callee, which 4396 // results in the TOC access going through the TOC of the callee instead 4397 // of going through the TOC of the caller, which leads to incorrect code. 4398 4399 // Load the address of the function entry point from the function 4400 // descriptor. 4401 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4402 if (LDChain.getValueType() == MVT::Glue) 4403 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4404 4405 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4406 4407 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4408 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4409 false, false, LoadsInv, 8); 4410 4411 // Load environment pointer into r11. 4412 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4413 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4414 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4415 MPI.getWithOffset(16), false, false, 4416 LoadsInv, 8); 4417 4418 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4419 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4420 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4421 MPI.getWithOffset(8), false, false, 4422 LoadsInv, 8); 4423 4424 setUsesTOCBasePtr(DAG); 4425 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4426 InFlag); 4427 Chain = TOCVal.getValue(0); 4428 InFlag = TOCVal.getValue(1); 4429 4430 // If the function call has an explicit 'nest' parameter, it takes the 4431 // place of the environment pointer. 4432 if (!hasNest) { 4433 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4434 InFlag); 4435 4436 Chain = EnvVal.getValue(0); 4437 InFlag = EnvVal.getValue(1); 4438 } 4439 4440 MTCTROps[0] = Chain; 4441 MTCTROps[1] = LoadFuncPtr; 4442 MTCTROps[2] = InFlag; 4443 } 4444 4445 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4446 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4447 InFlag = Chain.getValue(1); 4448 4449 NodeTys.clear(); 4450 NodeTys.push_back(MVT::Other); 4451 NodeTys.push_back(MVT::Glue); 4452 Ops.push_back(Chain); 4453 CallOpc = PPCISD::BCTRL; 4454 Callee.setNode(nullptr); 4455 // Add use of X11 (holding environment pointer) 4456 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4457 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4458 // Add CTR register as callee so a bctr can be emitted later. 4459 if (isTailCall) 4460 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4461 } 4462 4463 // If this is a direct call, pass the chain and the callee. 4464 if (Callee.getNode()) { 4465 Ops.push_back(Chain); 4466 Ops.push_back(Callee); 4467 } 4468 // If this is a tail call add stack pointer delta. 4469 if (isTailCall) 4470 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4471 4472 // Add argument registers to the end of the list so that they are known live 4473 // into the call. 4474 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4475 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4476 RegsToPass[i].second.getValueType())); 4477 4478 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4479 // into the call. 4480 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4481 setUsesTOCBasePtr(DAG); 4482 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4483 } 4484 4485 return CallOpc; 4486 } 4487 4488 static 4489 bool isLocalCall(const SDValue &Callee) 4490 { 4491 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4492 return G->getGlobal()->isStrongDefinitionForLinker(); 4493 return false; 4494 } 4495 4496 SDValue 4497 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4498 CallingConv::ID CallConv, bool isVarArg, 4499 const SmallVectorImpl<ISD::InputArg> &Ins, 4500 SDLoc dl, SelectionDAG &DAG, 4501 SmallVectorImpl<SDValue> &InVals) const { 4502 4503 SmallVector<CCValAssign, 16> RVLocs; 4504 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4505 *DAG.getContext()); 4506 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4507 4508 // Copy all of the result registers out of their specified physreg. 4509 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4510 CCValAssign &VA = RVLocs[i]; 4511 assert(VA.isRegLoc() && "Can only return in registers!"); 4512 4513 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4514 VA.getLocReg(), VA.getLocVT(), InFlag); 4515 Chain = Val.getValue(1); 4516 InFlag = Val.getValue(2); 4517 4518 switch (VA.getLocInfo()) { 4519 default: llvm_unreachable("Unknown loc info!"); 4520 case CCValAssign::Full: break; 4521 case CCValAssign::AExt: 4522 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4523 break; 4524 case CCValAssign::ZExt: 4525 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4526 DAG.getValueType(VA.getValVT())); 4527 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4528 break; 4529 case CCValAssign::SExt: 4530 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4531 DAG.getValueType(VA.getValVT())); 4532 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4533 break; 4534 } 4535 4536 InVals.push_back(Val); 4537 } 4538 4539 return Chain; 4540 } 4541 4542 SDValue 4543 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4544 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4545 bool hasNest, SelectionDAG &DAG, 4546 SmallVector<std::pair<unsigned, SDValue>, 8> 4547 &RegsToPass, 4548 SDValue InFlag, SDValue Chain, 4549 SDValue CallSeqStart, SDValue &Callee, 4550 int SPDiff, unsigned NumBytes, 4551 const SmallVectorImpl<ISD::InputArg> &Ins, 4552 SmallVectorImpl<SDValue> &InVals, 4553 ImmutableCallSite *CS) const { 4554 4555 std::vector<EVT> NodeTys; 4556 SmallVector<SDValue, 8> Ops; 4557 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4558 SPDiff, isTailCall, IsPatchPoint, hasNest, 4559 RegsToPass, Ops, NodeTys, CS, Subtarget); 4560 4561 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4562 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4563 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4564 4565 // When performing tail call optimization the callee pops its arguments off 4566 // the stack. Account for this here so these bytes can be pushed back on in 4567 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4568 int BytesCalleePops = 4569 (CallConv == CallingConv::Fast && 4570 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4571 4572 // Add a register mask operand representing the call-preserved registers. 4573 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4574 const uint32_t *Mask = 4575 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4576 assert(Mask && "Missing call preserved mask for calling convention"); 4577 Ops.push_back(DAG.getRegisterMask(Mask)); 4578 4579 if (InFlag.getNode()) 4580 Ops.push_back(InFlag); 4581 4582 // Emit tail call. 4583 if (isTailCall) { 4584 assert(((Callee.getOpcode() == ISD::Register && 4585 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4586 Callee.getOpcode() == ISD::TargetExternalSymbol || 4587 Callee.getOpcode() == ISD::TargetGlobalAddress || 4588 isa<ConstantSDNode>(Callee)) && 4589 "Expecting an global address, external symbol, absolute value or register"); 4590 4591 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4592 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4593 } 4594 4595 // Add a NOP immediately after the branch instruction when using the 64-bit 4596 // SVR4 ABI. At link time, if caller and callee are in a different module and 4597 // thus have a different TOC, the call will be replaced with a call to a stub 4598 // function which saves the current TOC, loads the TOC of the callee and 4599 // branches to the callee. The NOP will be replaced with a load instruction 4600 // which restores the TOC of the caller from the TOC save slot of the current 4601 // stack frame. If caller and callee belong to the same module (and have the 4602 // same TOC), the NOP will remain unchanged. 4603 4604 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4605 !IsPatchPoint) { 4606 if (CallOpc == PPCISD::BCTRL) { 4607 // This is a call through a function pointer. 4608 // Restore the caller TOC from the save area into R2. 4609 // See PrepareCall() for more information about calls through function 4610 // pointers in the 64-bit SVR4 ABI. 4611 // We are using a target-specific load with r2 hard coded, because the 4612 // result of a target-independent load would never go directly into r2, 4613 // since r2 is a reserved register (which prevents the register allocator 4614 // from allocating it), resulting in an additional register being 4615 // allocated and an unnecessary move instruction being generated. 4616 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4617 4618 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4619 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4620 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4621 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4622 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4623 4624 // The address needs to go after the chain input but before the flag (or 4625 // any other variadic arguments). 4626 Ops.insert(std::next(Ops.begin()), AddTOC); 4627 } else if ((CallOpc == PPCISD::CALL) && 4628 (!isLocalCall(Callee) || 4629 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4630 // Otherwise insert NOP for non-local calls. 4631 CallOpc = PPCISD::CALL_NOP; 4632 } 4633 4634 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4635 InFlag = Chain.getValue(1); 4636 4637 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4638 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4639 InFlag, dl); 4640 if (!Ins.empty()) 4641 InFlag = Chain.getValue(1); 4642 4643 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4644 Ins, dl, DAG, InVals); 4645 } 4646 4647 SDValue 4648 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4649 SmallVectorImpl<SDValue> &InVals) const { 4650 SelectionDAG &DAG = CLI.DAG; 4651 SDLoc &dl = CLI.DL; 4652 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4653 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4654 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4655 SDValue Chain = CLI.Chain; 4656 SDValue Callee = CLI.Callee; 4657 bool &isTailCall = CLI.IsTailCall; 4658 CallingConv::ID CallConv = CLI.CallConv; 4659 bool isVarArg = CLI.IsVarArg; 4660 bool IsPatchPoint = CLI.IsPatchPoint; 4661 ImmutableCallSite *CS = CLI.CS; 4662 4663 if (isTailCall) { 4664 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4665 isTailCall = 4666 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4667 isVarArg, Outs, Ins, DAG); 4668 else 4669 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4670 Ins, DAG); 4671 if (isTailCall) { 4672 ++NumTailCalls; 4673 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4674 ++NumSiblingCalls; 4675 4676 assert(isa<GlobalAddressSDNode>(Callee) && 4677 "Callee should be an llvm::Function object."); 4678 DEBUG( 4679 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4680 const unsigned Width = 80 - strlen("TCO caller: ") 4681 - strlen(", callee linkage: 0, 0"); 4682 dbgs() << "TCO caller: " 4683 << left_justify(DAG.getMachineFunction().getName(), Width) 4684 << ", callee linkage: " 4685 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4686 ); 4687 } 4688 } 4689 4690 if (!isTailCall && CS && CS->isMustTailCall()) 4691 report_fatal_error("failed to perform tail call elimination on a call " 4692 "site marked musttail"); 4693 4694 if (Subtarget.isSVR4ABI()) { 4695 if (Subtarget.isPPC64()) 4696 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4697 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4698 dl, DAG, InVals, CS); 4699 else 4700 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4701 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4702 dl, DAG, InVals, CS); 4703 } 4704 4705 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4706 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4707 dl, DAG, InVals, CS); 4708 } 4709 4710 SDValue 4711 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4712 CallingConv::ID CallConv, bool isVarArg, 4713 bool isTailCall, bool IsPatchPoint, 4714 const SmallVectorImpl<ISD::OutputArg> &Outs, 4715 const SmallVectorImpl<SDValue> &OutVals, 4716 const SmallVectorImpl<ISD::InputArg> &Ins, 4717 SDLoc dl, SelectionDAG &DAG, 4718 SmallVectorImpl<SDValue> &InVals, 4719 ImmutableCallSite *CS) const { 4720 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4721 // of the 32-bit SVR4 ABI stack frame layout. 4722 4723 assert((CallConv == CallingConv::C || 4724 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4725 4726 unsigned PtrByteSize = 4; 4727 4728 MachineFunction &MF = DAG.getMachineFunction(); 4729 4730 // Mark this function as potentially containing a function that contains a 4731 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4732 // and restoring the callers stack pointer in this functions epilog. This is 4733 // done because by tail calling the called function might overwrite the value 4734 // in this function's (MF) stack pointer stack slot 0(SP). 4735 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4736 CallConv == CallingConv::Fast) 4737 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4738 4739 // Count how many bytes are to be pushed on the stack, including the linkage 4740 // area, parameter list area and the part of the local variable space which 4741 // contains copies of aggregates which are passed by value. 4742 4743 // Assign locations to all of the outgoing arguments. 4744 SmallVector<CCValAssign, 16> ArgLocs; 4745 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4746 *DAG.getContext()); 4747 4748 // Reserve space for the linkage area on the stack. 4749 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4750 PtrByteSize); 4751 if (Subtarget.useSoftFloat()) 4752 CCInfo.PreAnalyzeCallOperands(Outs); 4753 4754 if (isVarArg) { 4755 // Handle fixed and variable vector arguments differently. 4756 // Fixed vector arguments go into registers as long as registers are 4757 // available. Variable vector arguments always go into memory. 4758 unsigned NumArgs = Outs.size(); 4759 4760 for (unsigned i = 0; i != NumArgs; ++i) { 4761 MVT ArgVT = Outs[i].VT; 4762 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4763 bool Result; 4764 4765 if (Outs[i].IsFixed) { 4766 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4767 CCInfo); 4768 } else { 4769 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4770 ArgFlags, CCInfo); 4771 } 4772 4773 if (Result) { 4774 #ifndef NDEBUG 4775 errs() << "Call operand #" << i << " has unhandled type " 4776 << EVT(ArgVT).getEVTString() << "\n"; 4777 #endif 4778 llvm_unreachable(nullptr); 4779 } 4780 } 4781 } else { 4782 // All arguments are treated the same. 4783 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4784 } 4785 CCInfo.clearWasPPCF128(); 4786 4787 // Assign locations to all of the outgoing aggregate by value arguments. 4788 SmallVector<CCValAssign, 16> ByValArgLocs; 4789 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4790 ByValArgLocs, *DAG.getContext()); 4791 4792 // Reserve stack space for the allocations in CCInfo. 4793 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4794 4795 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4796 4797 // Size of the linkage area, parameter list area and the part of the local 4798 // space variable where copies of aggregates which are passed by value are 4799 // stored. 4800 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4801 4802 // Calculate by how many bytes the stack has to be adjusted in case of tail 4803 // call optimization. 4804 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4805 4806 // Adjust the stack pointer for the new arguments... 4807 // These operations are automatically eliminated by the prolog/epilog pass 4808 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4809 dl); 4810 SDValue CallSeqStart = Chain; 4811 4812 // Load the return address and frame pointer so it can be moved somewhere else 4813 // later. 4814 SDValue LROp, FPOp; 4815 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4816 dl); 4817 4818 // Set up a copy of the stack pointer for use loading and storing any 4819 // arguments that may not fit in the registers available for argument 4820 // passing. 4821 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4822 4823 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4824 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4825 SmallVector<SDValue, 8> MemOpChains; 4826 4827 bool seenFloatArg = false; 4828 // Walk the register/memloc assignments, inserting copies/loads. 4829 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4830 i != e; 4831 ++i) { 4832 CCValAssign &VA = ArgLocs[i]; 4833 SDValue Arg = OutVals[i]; 4834 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4835 4836 if (Flags.isByVal()) { 4837 // Argument is an aggregate which is passed by value, thus we need to 4838 // create a copy of it in the local variable space of the current stack 4839 // frame (which is the stack frame of the caller) and pass the address of 4840 // this copy to the callee. 4841 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4842 CCValAssign &ByValVA = ByValArgLocs[j++]; 4843 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4844 4845 // Memory reserved in the local variable space of the callers stack frame. 4846 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4847 4848 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4849 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4850 StackPtr, PtrOff); 4851 4852 // Create a copy of the argument in the local area of the current 4853 // stack frame. 4854 SDValue MemcpyCall = 4855 CreateCopyOfByValArgument(Arg, PtrOff, 4856 CallSeqStart.getNode()->getOperand(0), 4857 Flags, DAG, dl); 4858 4859 // This must go outside the CALLSEQ_START..END. 4860 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4861 CallSeqStart.getNode()->getOperand(1), 4862 SDLoc(MemcpyCall)); 4863 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4864 NewCallSeqStart.getNode()); 4865 Chain = CallSeqStart = NewCallSeqStart; 4866 4867 // Pass the address of the aggregate copy on the stack either in a 4868 // physical register or in the parameter list area of the current stack 4869 // frame to the callee. 4870 Arg = PtrOff; 4871 } 4872 4873 if (VA.isRegLoc()) { 4874 if (Arg.getValueType() == MVT::i1) 4875 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4876 4877 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4878 // Put argument in a physical register. 4879 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4880 } else { 4881 // Put argument in the parameter list area of the current stack frame. 4882 assert(VA.isMemLoc()); 4883 unsigned LocMemOffset = VA.getLocMemOffset(); 4884 4885 if (!isTailCall) { 4886 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4887 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4888 StackPtr, PtrOff); 4889 4890 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4891 MachinePointerInfo(), 4892 false, false, 0)); 4893 } else { 4894 // Calculate and remember argument location. 4895 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4896 TailCallArguments); 4897 } 4898 } 4899 } 4900 4901 if (!MemOpChains.empty()) 4902 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4903 4904 // Build a sequence of copy-to-reg nodes chained together with token chain 4905 // and flag operands which copy the outgoing args into the appropriate regs. 4906 SDValue InFlag; 4907 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4908 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4909 RegsToPass[i].second, InFlag); 4910 InFlag = Chain.getValue(1); 4911 } 4912 4913 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4914 // registers. 4915 if (isVarArg) { 4916 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4917 SDValue Ops[] = { Chain, InFlag }; 4918 4919 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4920 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4921 4922 InFlag = Chain.getValue(1); 4923 } 4924 4925 if (isTailCall) 4926 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4927 false, TailCallArguments); 4928 4929 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4930 /* unused except on PPC64 ELFv1 */ false, DAG, 4931 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4932 NumBytes, Ins, InVals, CS); 4933 } 4934 4935 // Copy an argument into memory, being careful to do this outside the 4936 // call sequence for the call to which the argument belongs. 4937 SDValue 4938 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4939 SDValue CallSeqStart, 4940 ISD::ArgFlagsTy Flags, 4941 SelectionDAG &DAG, 4942 SDLoc dl) const { 4943 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4944 CallSeqStart.getNode()->getOperand(0), 4945 Flags, DAG, dl); 4946 // The MEMCPY must go outside the CALLSEQ_START..END. 4947 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4948 CallSeqStart.getNode()->getOperand(1), 4949 SDLoc(MemcpyCall)); 4950 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4951 NewCallSeqStart.getNode()); 4952 return NewCallSeqStart; 4953 } 4954 4955 SDValue 4956 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4957 CallingConv::ID CallConv, bool isVarArg, 4958 bool isTailCall, bool IsPatchPoint, 4959 const SmallVectorImpl<ISD::OutputArg> &Outs, 4960 const SmallVectorImpl<SDValue> &OutVals, 4961 const SmallVectorImpl<ISD::InputArg> &Ins, 4962 SDLoc dl, SelectionDAG &DAG, 4963 SmallVectorImpl<SDValue> &InVals, 4964 ImmutableCallSite *CS) const { 4965 4966 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4967 bool isLittleEndian = Subtarget.isLittleEndian(); 4968 unsigned NumOps = Outs.size(); 4969 bool hasNest = false; 4970 bool IsSibCall = false; 4971 4972 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4973 unsigned PtrByteSize = 8; 4974 4975 MachineFunction &MF = DAG.getMachineFunction(); 4976 4977 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 4978 IsSibCall = true; 4979 4980 // Mark this function as potentially containing a function that contains a 4981 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4982 // and restoring the callers stack pointer in this functions epilog. This is 4983 // done because by tail calling the called function might overwrite the value 4984 // in this function's (MF) stack pointer stack slot 0(SP). 4985 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4986 CallConv == CallingConv::Fast) 4987 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4988 4989 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4990 "fastcc not supported on varargs functions"); 4991 4992 // Count how many bytes are to be pushed on the stack, including the linkage 4993 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4994 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4995 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4996 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4997 unsigned NumBytes = LinkageSize; 4998 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4999 unsigned &QFPR_idx = FPR_idx; 5000 5001 static const MCPhysReg GPR[] = { 5002 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5003 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5004 }; 5005 static const MCPhysReg VR[] = { 5006 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5007 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5008 }; 5009 static const MCPhysReg VSRH[] = { 5010 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 5011 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 5012 }; 5013 5014 const unsigned NumGPRs = array_lengthof(GPR); 5015 const unsigned NumFPRs = 13; 5016 const unsigned NumVRs = array_lengthof(VR); 5017 const unsigned NumQFPRs = NumFPRs; 5018 5019 // When using the fast calling convention, we don't provide backing for 5020 // arguments that will be in registers. 5021 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5022 5023 // Add up all the space actually used. 5024 for (unsigned i = 0; i != NumOps; ++i) { 5025 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5026 EVT ArgVT = Outs[i].VT; 5027 EVT OrigVT = Outs[i].ArgVT; 5028 5029 if (Flags.isNest()) 5030 continue; 5031 5032 if (CallConv == CallingConv::Fast) { 5033 if (Flags.isByVal()) 5034 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5035 else 5036 switch (ArgVT.getSimpleVT().SimpleTy) { 5037 default: llvm_unreachable("Unexpected ValueType for argument!"); 5038 case MVT::i1: 5039 case MVT::i32: 5040 case MVT::i64: 5041 if (++NumGPRsUsed <= NumGPRs) 5042 continue; 5043 break; 5044 case MVT::v4i32: 5045 case MVT::v8i16: 5046 case MVT::v16i8: 5047 case MVT::v2f64: 5048 case MVT::v2i64: 5049 case MVT::v1i128: 5050 if (++NumVRsUsed <= NumVRs) 5051 continue; 5052 break; 5053 case MVT::v4f32: 5054 // When using QPX, this is handled like a FP register, otherwise, it 5055 // is an Altivec register. 5056 if (Subtarget.hasQPX()) { 5057 if (++NumFPRsUsed <= NumFPRs) 5058 continue; 5059 } else { 5060 if (++NumVRsUsed <= NumVRs) 5061 continue; 5062 } 5063 break; 5064 case MVT::f32: 5065 case MVT::f64: 5066 case MVT::v4f64: // QPX 5067 case MVT::v4i1: // QPX 5068 if (++NumFPRsUsed <= NumFPRs) 5069 continue; 5070 break; 5071 } 5072 } 5073 5074 /* Respect alignment of argument on the stack. */ 5075 unsigned Align = 5076 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5077 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5078 5079 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5080 if (Flags.isInConsecutiveRegsLast()) 5081 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5082 } 5083 5084 unsigned NumBytesActuallyUsed = NumBytes; 5085 5086 // The prolog code of the callee may store up to 8 GPR argument registers to 5087 // the stack, allowing va_start to index over them in memory if its varargs. 5088 // Because we cannot tell if this is needed on the caller side, we have to 5089 // conservatively assume that it is needed. As such, make sure we have at 5090 // least enough stack space for the caller to store the 8 GPRs. 5091 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5092 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5093 5094 // Tail call needs the stack to be aligned. 5095 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5096 CallConv == CallingConv::Fast) 5097 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5098 5099 int SPDiff = 0; 5100 5101 // Calculate by how many bytes the stack has to be adjusted in case of tail 5102 // call optimization. 5103 if (!IsSibCall) 5104 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5105 5106 // To protect arguments on the stack from being clobbered in a tail call, 5107 // force all the loads to happen before doing any other lowering. 5108 if (isTailCall) 5109 Chain = DAG.getStackArgumentTokenFactor(Chain); 5110 5111 // Adjust the stack pointer for the new arguments... 5112 // These operations are automatically eliminated by the prolog/epilog pass 5113 if (!IsSibCall) 5114 Chain = DAG.getCALLSEQ_START(Chain, 5115 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5116 SDValue CallSeqStart = Chain; 5117 5118 // Load the return address and frame pointer so it can be move somewhere else 5119 // later. 5120 SDValue LROp, FPOp; 5121 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5122 dl); 5123 5124 // Set up a copy of the stack pointer for use loading and storing any 5125 // arguments that may not fit in the registers available for argument 5126 // passing. 5127 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5128 5129 // Figure out which arguments are going to go in registers, and which in 5130 // memory. Also, if this is a vararg function, floating point operations 5131 // must be stored to our stack, and loaded into integer regs as well, if 5132 // any integer regs are available for argument passing. 5133 unsigned ArgOffset = LinkageSize; 5134 5135 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5136 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5137 5138 SmallVector<SDValue, 8> MemOpChains; 5139 for (unsigned i = 0; i != NumOps; ++i) { 5140 SDValue Arg = OutVals[i]; 5141 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5142 EVT ArgVT = Outs[i].VT; 5143 EVT OrigVT = Outs[i].ArgVT; 5144 5145 // PtrOff will be used to store the current argument to the stack if a 5146 // register cannot be found for it. 5147 SDValue PtrOff; 5148 5149 // We re-align the argument offset for each argument, except when using the 5150 // fast calling convention, when we need to make sure we do that only when 5151 // we'll actually use a stack slot. 5152 auto ComputePtrOff = [&]() { 5153 /* Respect alignment of argument on the stack. */ 5154 unsigned Align = 5155 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5156 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5157 5158 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5159 5160 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5161 }; 5162 5163 if (CallConv != CallingConv::Fast) { 5164 ComputePtrOff(); 5165 5166 /* Compute GPR index associated with argument offset. */ 5167 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5168 GPR_idx = std::min(GPR_idx, NumGPRs); 5169 } 5170 5171 // Promote integers to 64-bit values. 5172 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5173 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5174 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5175 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5176 } 5177 5178 // FIXME memcpy is used way more than necessary. Correctness first. 5179 // Note: "by value" is code for passing a structure by value, not 5180 // basic types. 5181 if (Flags.isByVal()) { 5182 // Note: Size includes alignment padding, so 5183 // struct x { short a; char b; } 5184 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5185 // These are the proper values we need for right-justifying the 5186 // aggregate in a parameter register. 5187 unsigned Size = Flags.getByValSize(); 5188 5189 // An empty aggregate parameter takes up no storage and no 5190 // registers. 5191 if (Size == 0) 5192 continue; 5193 5194 if (CallConv == CallingConv::Fast) 5195 ComputePtrOff(); 5196 5197 // All aggregates smaller than 8 bytes must be passed right-justified. 5198 if (Size==1 || Size==2 || Size==4) { 5199 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5200 if (GPR_idx != NumGPRs) { 5201 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5202 MachinePointerInfo(), VT, 5203 false, false, false, 0); 5204 MemOpChains.push_back(Load.getValue(1)); 5205 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5206 5207 ArgOffset += PtrByteSize; 5208 continue; 5209 } 5210 } 5211 5212 if (GPR_idx == NumGPRs && Size < 8) { 5213 SDValue AddPtr = PtrOff; 5214 if (!isLittleEndian) { 5215 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5216 PtrOff.getValueType()); 5217 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5218 } 5219 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5220 CallSeqStart, 5221 Flags, DAG, dl); 5222 ArgOffset += PtrByteSize; 5223 continue; 5224 } 5225 // Copy entire object into memory. There are cases where gcc-generated 5226 // code assumes it is there, even if it could be put entirely into 5227 // registers. (This is not what the doc says.) 5228 5229 // FIXME: The above statement is likely due to a misunderstanding of the 5230 // documents. All arguments must be copied into the parameter area BY 5231 // THE CALLEE in the event that the callee takes the address of any 5232 // formal argument. That has not yet been implemented. However, it is 5233 // reasonable to use the stack area as a staging area for the register 5234 // load. 5235 5236 // Skip this for small aggregates, as we will use the same slot for a 5237 // right-justified copy, below. 5238 if (Size >= 8) 5239 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5240 CallSeqStart, 5241 Flags, DAG, dl); 5242 5243 // When a register is available, pass a small aggregate right-justified. 5244 if (Size < 8 && GPR_idx != NumGPRs) { 5245 // The easiest way to get this right-justified in a register 5246 // is to copy the structure into the rightmost portion of a 5247 // local variable slot, then load the whole slot into the 5248 // register. 5249 // FIXME: The memcpy seems to produce pretty awful code for 5250 // small aggregates, particularly for packed ones. 5251 // FIXME: It would be preferable to use the slot in the 5252 // parameter save area instead of a new local variable. 5253 SDValue AddPtr = PtrOff; 5254 if (!isLittleEndian) { 5255 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5256 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5257 } 5258 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5259 CallSeqStart, 5260 Flags, DAG, dl); 5261 5262 // Load the slot into the register. 5263 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5264 MachinePointerInfo(), 5265 false, false, false, 0); 5266 MemOpChains.push_back(Load.getValue(1)); 5267 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5268 5269 // Done with this argument. 5270 ArgOffset += PtrByteSize; 5271 continue; 5272 } 5273 5274 // For aggregates larger than PtrByteSize, copy the pieces of the 5275 // object that fit into registers from the parameter save area. 5276 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5277 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5278 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5279 if (GPR_idx != NumGPRs) { 5280 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5281 MachinePointerInfo(), 5282 false, false, false, 0); 5283 MemOpChains.push_back(Load.getValue(1)); 5284 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5285 ArgOffset += PtrByteSize; 5286 } else { 5287 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5288 break; 5289 } 5290 } 5291 continue; 5292 } 5293 5294 switch (Arg.getSimpleValueType().SimpleTy) { 5295 default: llvm_unreachable("Unexpected ValueType for argument!"); 5296 case MVT::i1: 5297 case MVT::i32: 5298 case MVT::i64: 5299 if (Flags.isNest()) { 5300 // The 'nest' parameter, if any, is passed in R11. 5301 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5302 hasNest = true; 5303 break; 5304 } 5305 5306 // These can be scalar arguments or elements of an integer array type 5307 // passed directly. Clang may use those instead of "byval" aggregate 5308 // types to avoid forcing arguments to memory unnecessarily. 5309 if (GPR_idx != NumGPRs) { 5310 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5311 } else { 5312 if (CallConv == CallingConv::Fast) 5313 ComputePtrOff(); 5314 5315 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5316 true, isTailCall, false, MemOpChains, 5317 TailCallArguments, dl); 5318 if (CallConv == CallingConv::Fast) 5319 ArgOffset += PtrByteSize; 5320 } 5321 if (CallConv != CallingConv::Fast) 5322 ArgOffset += PtrByteSize; 5323 break; 5324 case MVT::f32: 5325 case MVT::f64: { 5326 // These can be scalar arguments or elements of a float array type 5327 // passed directly. The latter are used to implement ELFv2 homogenous 5328 // float aggregates. 5329 5330 // Named arguments go into FPRs first, and once they overflow, the 5331 // remaining arguments go into GPRs and then the parameter save area. 5332 // Unnamed arguments for vararg functions always go to GPRs and 5333 // then the parameter save area. For now, put all arguments to vararg 5334 // routines always in both locations (FPR *and* GPR or stack slot). 5335 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5336 bool NeededLoad = false; 5337 5338 // First load the argument into the next available FPR. 5339 if (FPR_idx != NumFPRs) 5340 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5341 5342 // Next, load the argument into GPR or stack slot if needed. 5343 if (!NeedGPROrStack) 5344 ; 5345 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5346 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5347 // once we support fp <-> gpr moves. 5348 5349 // In the non-vararg case, this can only ever happen in the 5350 // presence of f32 array types, since otherwise we never run 5351 // out of FPRs before running out of GPRs. 5352 SDValue ArgVal; 5353 5354 // Double values are always passed in a single GPR. 5355 if (Arg.getValueType() != MVT::f32) { 5356 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5357 5358 // Non-array float values are extended and passed in a GPR. 5359 } else if (!Flags.isInConsecutiveRegs()) { 5360 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5361 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5362 5363 // If we have an array of floats, we collect every odd element 5364 // together with its predecessor into one GPR. 5365 } else if (ArgOffset % PtrByteSize != 0) { 5366 SDValue Lo, Hi; 5367 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5368 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5369 if (!isLittleEndian) 5370 std::swap(Lo, Hi); 5371 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5372 5373 // The final element, if even, goes into the first half of a GPR. 5374 } else if (Flags.isInConsecutiveRegsLast()) { 5375 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5376 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5377 if (!isLittleEndian) 5378 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5379 DAG.getConstant(32, dl, MVT::i32)); 5380 5381 // Non-final even elements are skipped; they will be handled 5382 // together the with subsequent argument on the next go-around. 5383 } else 5384 ArgVal = SDValue(); 5385 5386 if (ArgVal.getNode()) 5387 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5388 } else { 5389 if (CallConv == CallingConv::Fast) 5390 ComputePtrOff(); 5391 5392 // Single-precision floating-point values are mapped to the 5393 // second (rightmost) word of the stack doubleword. 5394 if (Arg.getValueType() == MVT::f32 && 5395 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5396 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5397 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5398 } 5399 5400 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5401 true, isTailCall, false, MemOpChains, 5402 TailCallArguments, dl); 5403 5404 NeededLoad = true; 5405 } 5406 // When passing an array of floats, the array occupies consecutive 5407 // space in the argument area; only round up to the next doubleword 5408 // at the end of the array. Otherwise, each float takes 8 bytes. 5409 if (CallConv != CallingConv::Fast || NeededLoad) { 5410 ArgOffset += (Arg.getValueType() == MVT::f32 && 5411 Flags.isInConsecutiveRegs()) ? 4 : 8; 5412 if (Flags.isInConsecutiveRegsLast()) 5413 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5414 } 5415 break; 5416 } 5417 case MVT::v4f32: 5418 case MVT::v4i32: 5419 case MVT::v8i16: 5420 case MVT::v16i8: 5421 case MVT::v2f64: 5422 case MVT::v2i64: 5423 case MVT::v1i128: 5424 if (!Subtarget.hasQPX()) { 5425 // These can be scalar arguments or elements of a vector array type 5426 // passed directly. The latter are used to implement ELFv2 homogenous 5427 // vector aggregates. 5428 5429 // For a varargs call, named arguments go into VRs or on the stack as 5430 // usual; unnamed arguments always go to the stack or the corresponding 5431 // GPRs when within range. For now, we always put the value in both 5432 // locations (or even all three). 5433 if (isVarArg) { 5434 // We could elide this store in the case where the object fits 5435 // entirely in R registers. Maybe later. 5436 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5437 MachinePointerInfo(), false, false, 0); 5438 MemOpChains.push_back(Store); 5439 if (VR_idx != NumVRs) { 5440 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5441 MachinePointerInfo(), 5442 false, false, false, 0); 5443 MemOpChains.push_back(Load.getValue(1)); 5444 5445 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5446 Arg.getSimpleValueType() == MVT::v2i64) ? 5447 VSRH[VR_idx] : VR[VR_idx]; 5448 ++VR_idx; 5449 5450 RegsToPass.push_back(std::make_pair(VReg, Load)); 5451 } 5452 ArgOffset += 16; 5453 for (unsigned i=0; i<16; i+=PtrByteSize) { 5454 if (GPR_idx == NumGPRs) 5455 break; 5456 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5457 DAG.getConstant(i, dl, PtrVT)); 5458 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5459 false, false, false, 0); 5460 MemOpChains.push_back(Load.getValue(1)); 5461 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5462 } 5463 break; 5464 } 5465 5466 // Non-varargs Altivec params go into VRs or on the stack. 5467 if (VR_idx != NumVRs) { 5468 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5469 Arg.getSimpleValueType() == MVT::v2i64) ? 5470 VSRH[VR_idx] : VR[VR_idx]; 5471 ++VR_idx; 5472 5473 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5474 } else { 5475 if (CallConv == CallingConv::Fast) 5476 ComputePtrOff(); 5477 5478 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5479 true, isTailCall, true, MemOpChains, 5480 TailCallArguments, dl); 5481 if (CallConv == CallingConv::Fast) 5482 ArgOffset += 16; 5483 } 5484 5485 if (CallConv != CallingConv::Fast) 5486 ArgOffset += 16; 5487 break; 5488 } // not QPX 5489 5490 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5491 "Invalid QPX parameter type"); 5492 5493 /* fall through */ 5494 case MVT::v4f64: 5495 case MVT::v4i1: { 5496 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5497 if (isVarArg) { 5498 // We could elide this store in the case where the object fits 5499 // entirely in R registers. Maybe later. 5500 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5501 MachinePointerInfo(), false, false, 0); 5502 MemOpChains.push_back(Store); 5503 if (QFPR_idx != NumQFPRs) { 5504 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5505 Store, PtrOff, MachinePointerInfo(), 5506 false, false, false, 0); 5507 MemOpChains.push_back(Load.getValue(1)); 5508 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5509 } 5510 ArgOffset += (IsF32 ? 16 : 32); 5511 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5512 if (GPR_idx == NumGPRs) 5513 break; 5514 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5515 DAG.getConstant(i, dl, PtrVT)); 5516 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5517 false, false, false, 0); 5518 MemOpChains.push_back(Load.getValue(1)); 5519 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5520 } 5521 break; 5522 } 5523 5524 // Non-varargs QPX params go into registers or on the stack. 5525 if (QFPR_idx != NumQFPRs) { 5526 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5527 } else { 5528 if (CallConv == CallingConv::Fast) 5529 ComputePtrOff(); 5530 5531 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5532 true, isTailCall, true, MemOpChains, 5533 TailCallArguments, dl); 5534 if (CallConv == CallingConv::Fast) 5535 ArgOffset += (IsF32 ? 16 : 32); 5536 } 5537 5538 if (CallConv != CallingConv::Fast) 5539 ArgOffset += (IsF32 ? 16 : 32); 5540 break; 5541 } 5542 } 5543 } 5544 5545 assert(NumBytesActuallyUsed == ArgOffset); 5546 (void)NumBytesActuallyUsed; 5547 5548 if (!MemOpChains.empty()) 5549 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5550 5551 // Check if this is an indirect call (MTCTR/BCTRL). 5552 // See PrepareCall() for more information about calls through function 5553 // pointers in the 64-bit SVR4 ABI. 5554 if (!isTailCall && !IsPatchPoint && 5555 !isFunctionGlobalAddress(Callee) && 5556 !isa<ExternalSymbolSDNode>(Callee)) { 5557 // Load r2 into a virtual register and store it to the TOC save area. 5558 setUsesTOCBasePtr(DAG); 5559 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5560 // TOC save area offset. 5561 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5562 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5563 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5564 Chain = DAG.getStore( 5565 Val.getValue(1), dl, Val, AddPtr, 5566 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5567 false, false, 0); 5568 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5569 // This does not mean the MTCTR instruction must use R12; it's easier 5570 // to model this as an extra parameter, so do that. 5571 if (isELFv2ABI && !IsPatchPoint) 5572 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5573 } 5574 5575 // Build a sequence of copy-to-reg nodes chained together with token chain 5576 // and flag operands which copy the outgoing args into the appropriate regs. 5577 SDValue InFlag; 5578 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5579 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5580 RegsToPass[i].second, InFlag); 5581 InFlag = Chain.getValue(1); 5582 } 5583 5584 if (isTailCall && !IsSibCall) 5585 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5586 FPOp, true, TailCallArguments); 5587 5588 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5589 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5590 SPDiff, NumBytes, Ins, InVals, CS); 5591 } 5592 5593 SDValue 5594 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5595 CallingConv::ID CallConv, bool isVarArg, 5596 bool isTailCall, bool IsPatchPoint, 5597 const SmallVectorImpl<ISD::OutputArg> &Outs, 5598 const SmallVectorImpl<SDValue> &OutVals, 5599 const SmallVectorImpl<ISD::InputArg> &Ins, 5600 SDLoc dl, SelectionDAG &DAG, 5601 SmallVectorImpl<SDValue> &InVals, 5602 ImmutableCallSite *CS) const { 5603 5604 unsigned NumOps = Outs.size(); 5605 5606 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5607 bool isPPC64 = PtrVT == MVT::i64; 5608 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5609 5610 MachineFunction &MF = DAG.getMachineFunction(); 5611 5612 // Mark this function as potentially containing a function that contains a 5613 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5614 // and restoring the callers stack pointer in this functions epilog. This is 5615 // done because by tail calling the called function might overwrite the value 5616 // in this function's (MF) stack pointer stack slot 0(SP). 5617 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5618 CallConv == CallingConv::Fast) 5619 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5620 5621 // Count how many bytes are to be pushed on the stack, including the linkage 5622 // area, and parameter passing area. We start with 24/48 bytes, which is 5623 // prereserved space for [SP][CR][LR][3 x unused]. 5624 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5625 unsigned NumBytes = LinkageSize; 5626 5627 // Add up all the space actually used. 5628 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5629 // they all go in registers, but we must reserve stack space for them for 5630 // possible use by the caller. In varargs or 64-bit calls, parameters are 5631 // assigned stack space in order, with padding so Altivec parameters are 5632 // 16-byte aligned. 5633 unsigned nAltivecParamsAtEnd = 0; 5634 for (unsigned i = 0; i != NumOps; ++i) { 5635 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5636 EVT ArgVT = Outs[i].VT; 5637 // Varargs Altivec parameters are padded to a 16 byte boundary. 5638 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5639 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5640 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5641 if (!isVarArg && !isPPC64) { 5642 // Non-varargs Altivec parameters go after all the non-Altivec 5643 // parameters; handle those later so we know how much padding we need. 5644 nAltivecParamsAtEnd++; 5645 continue; 5646 } 5647 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5648 NumBytes = ((NumBytes+15)/16)*16; 5649 } 5650 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5651 } 5652 5653 // Allow for Altivec parameters at the end, if needed. 5654 if (nAltivecParamsAtEnd) { 5655 NumBytes = ((NumBytes+15)/16)*16; 5656 NumBytes += 16*nAltivecParamsAtEnd; 5657 } 5658 5659 // The prolog code of the callee may store up to 8 GPR argument registers to 5660 // the stack, allowing va_start to index over them in memory if its varargs. 5661 // Because we cannot tell if this is needed on the caller side, we have to 5662 // conservatively assume that it is needed. As such, make sure we have at 5663 // least enough stack space for the caller to store the 8 GPRs. 5664 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5665 5666 // Tail call needs the stack to be aligned. 5667 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5668 CallConv == CallingConv::Fast) 5669 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5670 5671 // Calculate by how many bytes the stack has to be adjusted in case of tail 5672 // call optimization. 5673 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5674 5675 // To protect arguments on the stack from being clobbered in a tail call, 5676 // force all the loads to happen before doing any other lowering. 5677 if (isTailCall) 5678 Chain = DAG.getStackArgumentTokenFactor(Chain); 5679 5680 // Adjust the stack pointer for the new arguments... 5681 // These operations are automatically eliminated by the prolog/epilog pass 5682 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5683 dl); 5684 SDValue CallSeqStart = Chain; 5685 5686 // Load the return address and frame pointer so it can be move somewhere else 5687 // later. 5688 SDValue LROp, FPOp; 5689 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5690 dl); 5691 5692 // Set up a copy of the stack pointer for use loading and storing any 5693 // arguments that may not fit in the registers available for argument 5694 // passing. 5695 SDValue StackPtr; 5696 if (isPPC64) 5697 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5698 else 5699 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5700 5701 // Figure out which arguments are going to go in registers, and which in 5702 // memory. Also, if this is a vararg function, floating point operations 5703 // must be stored to our stack, and loaded into integer regs as well, if 5704 // any integer regs are available for argument passing. 5705 unsigned ArgOffset = LinkageSize; 5706 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5707 5708 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5709 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5710 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5711 }; 5712 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5713 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5714 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5715 }; 5716 static const MCPhysReg VR[] = { 5717 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5718 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5719 }; 5720 const unsigned NumGPRs = array_lengthof(GPR_32); 5721 const unsigned NumFPRs = 13; 5722 const unsigned NumVRs = array_lengthof(VR); 5723 5724 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5725 5726 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5727 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5728 5729 SmallVector<SDValue, 8> MemOpChains; 5730 for (unsigned i = 0; i != NumOps; ++i) { 5731 SDValue Arg = OutVals[i]; 5732 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5733 5734 // PtrOff will be used to store the current argument to the stack if a 5735 // register cannot be found for it. 5736 SDValue PtrOff; 5737 5738 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5739 5740 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5741 5742 // On PPC64, promote integers to 64-bit values. 5743 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5744 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5745 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5746 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5747 } 5748 5749 // FIXME memcpy is used way more than necessary. Correctness first. 5750 // Note: "by value" is code for passing a structure by value, not 5751 // basic types. 5752 if (Flags.isByVal()) { 5753 unsigned Size = Flags.getByValSize(); 5754 // Very small objects are passed right-justified. Everything else is 5755 // passed left-justified. 5756 if (Size==1 || Size==2) { 5757 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5758 if (GPR_idx != NumGPRs) { 5759 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5760 MachinePointerInfo(), VT, 5761 false, false, false, 0); 5762 MemOpChains.push_back(Load.getValue(1)); 5763 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5764 5765 ArgOffset += PtrByteSize; 5766 } else { 5767 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5768 PtrOff.getValueType()); 5769 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5770 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5771 CallSeqStart, 5772 Flags, DAG, dl); 5773 ArgOffset += PtrByteSize; 5774 } 5775 continue; 5776 } 5777 // Copy entire object into memory. There are cases where gcc-generated 5778 // code assumes it is there, even if it could be put entirely into 5779 // registers. (This is not what the doc says.) 5780 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5781 CallSeqStart, 5782 Flags, DAG, dl); 5783 5784 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5785 // copy the pieces of the object that fit into registers from the 5786 // parameter save area. 5787 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5788 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5789 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5790 if (GPR_idx != NumGPRs) { 5791 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5792 MachinePointerInfo(), 5793 false, false, false, 0); 5794 MemOpChains.push_back(Load.getValue(1)); 5795 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5796 ArgOffset += PtrByteSize; 5797 } else { 5798 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5799 break; 5800 } 5801 } 5802 continue; 5803 } 5804 5805 switch (Arg.getSimpleValueType().SimpleTy) { 5806 default: llvm_unreachable("Unexpected ValueType for argument!"); 5807 case MVT::i1: 5808 case MVT::i32: 5809 case MVT::i64: 5810 if (GPR_idx != NumGPRs) { 5811 if (Arg.getValueType() == MVT::i1) 5812 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5813 5814 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5815 } else { 5816 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5817 isPPC64, isTailCall, false, MemOpChains, 5818 TailCallArguments, dl); 5819 } 5820 ArgOffset += PtrByteSize; 5821 break; 5822 case MVT::f32: 5823 case MVT::f64: 5824 if (FPR_idx != NumFPRs) { 5825 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5826 5827 if (isVarArg) { 5828 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5829 MachinePointerInfo(), false, false, 0); 5830 MemOpChains.push_back(Store); 5831 5832 // Float varargs are always shadowed in available integer registers 5833 if (GPR_idx != NumGPRs) { 5834 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5835 MachinePointerInfo(), false, false, 5836 false, 0); 5837 MemOpChains.push_back(Load.getValue(1)); 5838 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5839 } 5840 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5841 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5842 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5843 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5844 MachinePointerInfo(), 5845 false, false, false, 0); 5846 MemOpChains.push_back(Load.getValue(1)); 5847 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5848 } 5849 } else { 5850 // If we have any FPRs remaining, we may also have GPRs remaining. 5851 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5852 // GPRs. 5853 if (GPR_idx != NumGPRs) 5854 ++GPR_idx; 5855 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5856 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5857 ++GPR_idx; 5858 } 5859 } else 5860 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5861 isPPC64, isTailCall, false, MemOpChains, 5862 TailCallArguments, dl); 5863 if (isPPC64) 5864 ArgOffset += 8; 5865 else 5866 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5867 break; 5868 case MVT::v4f32: 5869 case MVT::v4i32: 5870 case MVT::v8i16: 5871 case MVT::v16i8: 5872 if (isVarArg) { 5873 // These go aligned on the stack, or in the corresponding R registers 5874 // when within range. The Darwin PPC ABI doc claims they also go in 5875 // V registers; in fact gcc does this only for arguments that are 5876 // prototyped, not for those that match the ... We do it for all 5877 // arguments, seems to work. 5878 while (ArgOffset % 16 !=0) { 5879 ArgOffset += PtrByteSize; 5880 if (GPR_idx != NumGPRs) 5881 GPR_idx++; 5882 } 5883 // We could elide this store in the case where the object fits 5884 // entirely in R registers. Maybe later. 5885 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5886 DAG.getConstant(ArgOffset, dl, PtrVT)); 5887 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5888 MachinePointerInfo(), false, false, 0); 5889 MemOpChains.push_back(Store); 5890 if (VR_idx != NumVRs) { 5891 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5892 MachinePointerInfo(), 5893 false, false, false, 0); 5894 MemOpChains.push_back(Load.getValue(1)); 5895 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5896 } 5897 ArgOffset += 16; 5898 for (unsigned i=0; i<16; i+=PtrByteSize) { 5899 if (GPR_idx == NumGPRs) 5900 break; 5901 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5902 DAG.getConstant(i, dl, PtrVT)); 5903 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5904 false, false, false, 0); 5905 MemOpChains.push_back(Load.getValue(1)); 5906 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5907 } 5908 break; 5909 } 5910 5911 // Non-varargs Altivec params generally go in registers, but have 5912 // stack space allocated at the end. 5913 if (VR_idx != NumVRs) { 5914 // Doesn't have GPR space allocated. 5915 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5916 } else if (nAltivecParamsAtEnd==0) { 5917 // We are emitting Altivec params in order. 5918 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5919 isPPC64, isTailCall, true, MemOpChains, 5920 TailCallArguments, dl); 5921 ArgOffset += 16; 5922 } 5923 break; 5924 } 5925 } 5926 // If all Altivec parameters fit in registers, as they usually do, 5927 // they get stack space following the non-Altivec parameters. We 5928 // don't track this here because nobody below needs it. 5929 // If there are more Altivec parameters than fit in registers emit 5930 // the stores here. 5931 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5932 unsigned j = 0; 5933 // Offset is aligned; skip 1st 12 params which go in V registers. 5934 ArgOffset = ((ArgOffset+15)/16)*16; 5935 ArgOffset += 12*16; 5936 for (unsigned i = 0; i != NumOps; ++i) { 5937 SDValue Arg = OutVals[i]; 5938 EVT ArgType = Outs[i].VT; 5939 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5940 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5941 if (++j > NumVRs) { 5942 SDValue PtrOff; 5943 // We are emitting Altivec params in order. 5944 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5945 isPPC64, isTailCall, true, MemOpChains, 5946 TailCallArguments, dl); 5947 ArgOffset += 16; 5948 } 5949 } 5950 } 5951 } 5952 5953 if (!MemOpChains.empty()) 5954 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5955 5956 // On Darwin, R12 must contain the address of an indirect callee. This does 5957 // not mean the MTCTR instruction must use R12; it's easier to model this as 5958 // an extra parameter, so do that. 5959 if (!isTailCall && 5960 !isFunctionGlobalAddress(Callee) && 5961 !isa<ExternalSymbolSDNode>(Callee) && 5962 !isBLACompatibleAddress(Callee, DAG)) 5963 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5964 PPC::R12), Callee)); 5965 5966 // Build a sequence of copy-to-reg nodes chained together with token chain 5967 // and flag operands which copy the outgoing args into the appropriate regs. 5968 SDValue InFlag; 5969 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5970 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5971 RegsToPass[i].second, InFlag); 5972 InFlag = Chain.getValue(1); 5973 } 5974 5975 if (isTailCall) 5976 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5977 FPOp, true, TailCallArguments); 5978 5979 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5980 /* unused except on PPC64 ELFv1 */ false, DAG, 5981 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5982 NumBytes, Ins, InVals, CS); 5983 } 5984 5985 bool 5986 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5987 MachineFunction &MF, bool isVarArg, 5988 const SmallVectorImpl<ISD::OutputArg> &Outs, 5989 LLVMContext &Context) const { 5990 SmallVector<CCValAssign, 16> RVLocs; 5991 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5992 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5993 } 5994 5995 SDValue 5996 PPCTargetLowering::LowerReturn(SDValue Chain, 5997 CallingConv::ID CallConv, bool isVarArg, 5998 const SmallVectorImpl<ISD::OutputArg> &Outs, 5999 const SmallVectorImpl<SDValue> &OutVals, 6000 SDLoc dl, SelectionDAG &DAG) const { 6001 6002 SmallVector<CCValAssign, 16> RVLocs; 6003 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 6004 *DAG.getContext()); 6005 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 6006 6007 SDValue Flag; 6008 SmallVector<SDValue, 4> RetOps(1, Chain); 6009 6010 // Copy the result values into the output registers. 6011 for (unsigned i = 0; i != RVLocs.size(); ++i) { 6012 CCValAssign &VA = RVLocs[i]; 6013 assert(VA.isRegLoc() && "Can only return in registers!"); 6014 6015 SDValue Arg = OutVals[i]; 6016 6017 switch (VA.getLocInfo()) { 6018 default: llvm_unreachable("Unknown loc info!"); 6019 case CCValAssign::Full: break; 6020 case CCValAssign::AExt: 6021 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 6022 break; 6023 case CCValAssign::ZExt: 6024 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6025 break; 6026 case CCValAssign::SExt: 6027 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6028 break; 6029 } 6030 6031 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 6032 Flag = Chain.getValue(1); 6033 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6034 } 6035 6036 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6037 const MCPhysReg *I = 6038 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 6039 if (I) { 6040 for (; *I; ++I) { 6041 6042 if (PPC::G8RCRegClass.contains(*I)) 6043 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 6044 else if (PPC::F8RCRegClass.contains(*I)) 6045 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6046 else if (PPC::CRRCRegClass.contains(*I)) 6047 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6048 else if (PPC::VRRCRegClass.contains(*I)) 6049 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6050 else 6051 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6052 } 6053 } 6054 6055 RetOps[0] = Chain; // Update chain. 6056 6057 // Add the flag if we have it. 6058 if (Flag.getNode()) 6059 RetOps.push_back(Flag); 6060 6061 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6062 } 6063 6064 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET( 6065 SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { 6066 SDLoc dl(Op); 6067 6068 // Get the corect type for integers. 6069 EVT IntVT = Op.getValueType(); 6070 6071 // Get the inputs. 6072 SDValue Chain = Op.getOperand(0); 6073 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6074 // Build a DYNAREAOFFSET node. 6075 SDValue Ops[2] = {Chain, FPSIdx}; 6076 SDVTList VTs = DAG.getVTList(IntVT); 6077 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6078 } 6079 6080 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 6081 const PPCSubtarget &Subtarget) const { 6082 // When we pop the dynamic allocation we need to restore the SP link. 6083 SDLoc dl(Op); 6084 6085 // Get the corect type for pointers. 6086 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6087 6088 // Construct the stack pointer operand. 6089 bool isPPC64 = Subtarget.isPPC64(); 6090 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6091 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6092 6093 // Get the operands for the STACKRESTORE. 6094 SDValue Chain = Op.getOperand(0); 6095 SDValue SaveSP = Op.getOperand(1); 6096 6097 // Load the old link SP. 6098 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 6099 MachinePointerInfo(), 6100 false, false, false, 0); 6101 6102 // Restore the stack pointer. 6103 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6104 6105 // Store the old link SP. 6106 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 6107 false, false, 0); 6108 } 6109 6110 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6111 MachineFunction &MF = DAG.getMachineFunction(); 6112 bool isPPC64 = Subtarget.isPPC64(); 6113 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6114 6115 // Get current frame pointer save index. The users of this index will be 6116 // primarily DYNALLOC instructions. 6117 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6118 int RASI = FI->getReturnAddrSaveIndex(); 6119 6120 // If the frame pointer save index hasn't been defined yet. 6121 if (!RASI) { 6122 // Find out what the fix offset of the frame pointer save area. 6123 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6124 // Allocate the frame index for frame pointer save area. 6125 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6126 // Save the result. 6127 FI->setReturnAddrSaveIndex(RASI); 6128 } 6129 return DAG.getFrameIndex(RASI, PtrVT); 6130 } 6131 6132 SDValue 6133 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6134 MachineFunction &MF = DAG.getMachineFunction(); 6135 bool isPPC64 = Subtarget.isPPC64(); 6136 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6137 6138 // Get current frame pointer save index. The users of this index will be 6139 // primarily DYNALLOC instructions. 6140 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6141 int FPSI = FI->getFramePointerSaveIndex(); 6142 6143 // If the frame pointer save index hasn't been defined yet. 6144 if (!FPSI) { 6145 // Find out what the fix offset of the frame pointer save area. 6146 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6147 // Allocate the frame index for frame pointer save area. 6148 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6149 // Save the result. 6150 FI->setFramePointerSaveIndex(FPSI); 6151 } 6152 return DAG.getFrameIndex(FPSI, PtrVT); 6153 } 6154 6155 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6156 SelectionDAG &DAG, 6157 const PPCSubtarget &Subtarget) const { 6158 // Get the inputs. 6159 SDValue Chain = Op.getOperand(0); 6160 SDValue Size = Op.getOperand(1); 6161 SDLoc dl(Op); 6162 6163 // Get the corect type for pointers. 6164 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6165 // Negate the size. 6166 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6167 DAG.getConstant(0, dl, PtrVT), Size); 6168 // Construct a node for the frame pointer save index. 6169 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6170 // Build a DYNALLOC node. 6171 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6172 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6173 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6174 } 6175 6176 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6177 SelectionDAG &DAG) const { 6178 SDLoc DL(Op); 6179 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6180 DAG.getVTList(MVT::i32, MVT::Other), 6181 Op.getOperand(0), Op.getOperand(1)); 6182 } 6183 6184 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6185 SelectionDAG &DAG) const { 6186 SDLoc DL(Op); 6187 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6188 Op.getOperand(0), Op.getOperand(1)); 6189 } 6190 6191 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6192 if (Op.getValueType().isVector()) 6193 return LowerVectorLoad(Op, DAG); 6194 6195 assert(Op.getValueType() == MVT::i1 && 6196 "Custom lowering only for i1 loads"); 6197 6198 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6199 6200 SDLoc dl(Op); 6201 LoadSDNode *LD = cast<LoadSDNode>(Op); 6202 6203 SDValue Chain = LD->getChain(); 6204 SDValue BasePtr = LD->getBasePtr(); 6205 MachineMemOperand *MMO = LD->getMemOperand(); 6206 6207 SDValue NewLD = 6208 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6209 BasePtr, MVT::i8, MMO); 6210 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6211 6212 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6213 return DAG.getMergeValues(Ops, dl); 6214 } 6215 6216 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6217 if (Op.getOperand(1).getValueType().isVector()) 6218 return LowerVectorStore(Op, DAG); 6219 6220 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6221 "Custom lowering only for i1 stores"); 6222 6223 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6224 6225 SDLoc dl(Op); 6226 StoreSDNode *ST = cast<StoreSDNode>(Op); 6227 6228 SDValue Chain = ST->getChain(); 6229 SDValue BasePtr = ST->getBasePtr(); 6230 SDValue Value = ST->getValue(); 6231 MachineMemOperand *MMO = ST->getMemOperand(); 6232 6233 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6234 Value); 6235 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6236 } 6237 6238 // FIXME: Remove this once the ANDI glue bug is fixed: 6239 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6240 assert(Op.getValueType() == MVT::i1 && 6241 "Custom lowering only for i1 results"); 6242 6243 SDLoc DL(Op); 6244 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6245 Op.getOperand(0)); 6246 } 6247 6248 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6249 /// possible. 6250 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6251 // Not FP? Not a fsel. 6252 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6253 !Op.getOperand(2).getValueType().isFloatingPoint()) 6254 return Op; 6255 6256 // We might be able to do better than this under some circumstances, but in 6257 // general, fsel-based lowering of select is a finite-math-only optimization. 6258 // For more information, see section F.3 of the 2.06 ISA specification. 6259 if (!DAG.getTarget().Options.NoInfsFPMath || 6260 !DAG.getTarget().Options.NoNaNsFPMath) 6261 return Op; 6262 // TODO: Propagate flags from the select rather than global settings. 6263 SDNodeFlags Flags; 6264 Flags.setNoInfs(true); 6265 Flags.setNoNaNs(true); 6266 6267 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6268 6269 EVT ResVT = Op.getValueType(); 6270 EVT CmpVT = Op.getOperand(0).getValueType(); 6271 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6272 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6273 SDLoc dl(Op); 6274 6275 // If the RHS of the comparison is a 0.0, we don't need to do the 6276 // subtraction at all. 6277 SDValue Sel1; 6278 if (isFloatingPointZero(RHS)) 6279 switch (CC) { 6280 default: break; // SETUO etc aren't handled by fsel. 6281 case ISD::SETNE: 6282 std::swap(TV, FV); 6283 case ISD::SETEQ: 6284 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6285 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6286 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6287 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6288 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6289 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6290 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6291 case ISD::SETULT: 6292 case ISD::SETLT: 6293 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6294 case ISD::SETOGE: 6295 case ISD::SETGE: 6296 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6297 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6298 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6299 case ISD::SETUGT: 6300 case ISD::SETGT: 6301 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6302 case ISD::SETOLE: 6303 case ISD::SETLE: 6304 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6305 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6306 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6307 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6308 } 6309 6310 SDValue Cmp; 6311 switch (CC) { 6312 default: break; // SETUO etc aren't handled by fsel. 6313 case ISD::SETNE: 6314 std::swap(TV, FV); 6315 case ISD::SETEQ: 6316 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6317 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6318 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6319 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6320 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6321 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6322 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6323 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6324 case ISD::SETULT: 6325 case ISD::SETLT: 6326 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6327 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6328 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6329 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6330 case ISD::SETOGE: 6331 case ISD::SETGE: 6332 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6333 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6334 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6335 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6336 case ISD::SETUGT: 6337 case ISD::SETGT: 6338 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6339 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6340 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6341 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6342 case ISD::SETOLE: 6343 case ISD::SETLE: 6344 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6345 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6346 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6347 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6348 } 6349 return Op; 6350 } 6351 6352 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6353 SelectionDAG &DAG, 6354 SDLoc dl) const { 6355 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6356 SDValue Src = Op.getOperand(0); 6357 if (Src.getValueType() == MVT::f32) 6358 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6359 6360 SDValue Tmp; 6361 switch (Op.getSimpleValueType().SimpleTy) { 6362 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6363 case MVT::i32: 6364 Tmp = DAG.getNode( 6365 Op.getOpcode() == ISD::FP_TO_SINT 6366 ? PPCISD::FCTIWZ 6367 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6368 dl, MVT::f64, Src); 6369 break; 6370 case MVT::i64: 6371 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6372 "i64 FP_TO_UINT is supported only with FPCVT"); 6373 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6374 PPCISD::FCTIDUZ, 6375 dl, MVT::f64, Src); 6376 break; 6377 } 6378 6379 // Convert the FP value to an int value through memory. 6380 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6381 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6382 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6383 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6384 MachinePointerInfo MPI = 6385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6386 6387 // Emit a store to the stack slot. 6388 SDValue Chain; 6389 if (i32Stack) { 6390 MachineFunction &MF = DAG.getMachineFunction(); 6391 MachineMemOperand *MMO = 6392 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6393 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6394 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6395 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6396 } else 6397 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6398 MPI, false, false, 0); 6399 6400 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6401 // add in a bias on big endian. 6402 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6403 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6404 DAG.getConstant(4, dl, FIPtr.getValueType())); 6405 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6406 } 6407 6408 RLI.Chain = Chain; 6409 RLI.Ptr = FIPtr; 6410 RLI.MPI = MPI; 6411 } 6412 6413 /// \brief Custom lowers floating point to integer conversions to use 6414 /// the direct move instructions available in ISA 2.07 to avoid the 6415 /// need for load/store combinations. 6416 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6417 SelectionDAG &DAG, 6418 SDLoc dl) const { 6419 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6420 SDValue Src = Op.getOperand(0); 6421 6422 if (Src.getValueType() == MVT::f32) 6423 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6424 6425 SDValue Tmp; 6426 switch (Op.getSimpleValueType().SimpleTy) { 6427 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6428 case MVT::i32: 6429 Tmp = DAG.getNode( 6430 Op.getOpcode() == ISD::FP_TO_SINT 6431 ? PPCISD::FCTIWZ 6432 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6433 dl, MVT::f64, Src); 6434 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6435 break; 6436 case MVT::i64: 6437 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6438 "i64 FP_TO_UINT is supported only with FPCVT"); 6439 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6440 PPCISD::FCTIDUZ, 6441 dl, MVT::f64, Src); 6442 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6443 break; 6444 } 6445 return Tmp; 6446 } 6447 6448 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6449 SDLoc dl) const { 6450 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6451 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6452 6453 ReuseLoadInfo RLI; 6454 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6455 6456 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6457 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6458 RLI.Ranges); 6459 } 6460 6461 // We're trying to insert a regular store, S, and then a load, L. If the 6462 // incoming value, O, is a load, we might just be able to have our load use the 6463 // address used by O. However, we don't know if anything else will store to 6464 // that address before we can load from it. To prevent this situation, we need 6465 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6466 // the same chain operand as O, we create a token factor from the chain results 6467 // of O and L, and we replace all uses of O's chain result with that token 6468 // factor (see spliceIntoChain below for this last part). 6469 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6470 ReuseLoadInfo &RLI, 6471 SelectionDAG &DAG, 6472 ISD::LoadExtType ET) const { 6473 SDLoc dl(Op); 6474 if (ET == ISD::NON_EXTLOAD && 6475 (Op.getOpcode() == ISD::FP_TO_UINT || 6476 Op.getOpcode() == ISD::FP_TO_SINT) && 6477 isOperationLegalOrCustom(Op.getOpcode(), 6478 Op.getOperand(0).getValueType())) { 6479 6480 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6481 return true; 6482 } 6483 6484 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6485 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6486 LD->isNonTemporal()) 6487 return false; 6488 if (LD->getMemoryVT() != MemVT) 6489 return false; 6490 6491 RLI.Ptr = LD->getBasePtr(); 6492 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6493 assert(LD->getAddressingMode() == ISD::PRE_INC && 6494 "Non-pre-inc AM on PPC?"); 6495 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6496 LD->getOffset()); 6497 } 6498 6499 RLI.Chain = LD->getChain(); 6500 RLI.MPI = LD->getPointerInfo(); 6501 RLI.IsInvariant = LD->isInvariant(); 6502 RLI.Alignment = LD->getAlignment(); 6503 RLI.AAInfo = LD->getAAInfo(); 6504 RLI.Ranges = LD->getRanges(); 6505 6506 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6507 return true; 6508 } 6509 6510 // Given the head of the old chain, ResChain, insert a token factor containing 6511 // it and NewResChain, and make users of ResChain now be users of that token 6512 // factor. 6513 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6514 SDValue NewResChain, 6515 SelectionDAG &DAG) const { 6516 if (!ResChain) 6517 return; 6518 6519 SDLoc dl(NewResChain); 6520 6521 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6522 NewResChain, DAG.getUNDEF(MVT::Other)); 6523 assert(TF.getNode() != NewResChain.getNode() && 6524 "A new TF really is required here"); 6525 6526 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6527 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6528 } 6529 6530 /// \brief Analyze profitability of direct move 6531 /// prefer float load to int load plus direct move 6532 /// when there is no integer use of int load 6533 static bool directMoveIsProfitable(const SDValue &Op) { 6534 SDNode *Origin = Op.getOperand(0).getNode(); 6535 if (Origin->getOpcode() != ISD::LOAD) 6536 return true; 6537 6538 for (SDNode::use_iterator UI = Origin->use_begin(), 6539 UE = Origin->use_end(); 6540 UI != UE; ++UI) { 6541 6542 // Only look at the users of the loaded value. 6543 if (UI.getUse().get().getResNo() != 0) 6544 continue; 6545 6546 if (UI->getOpcode() != ISD::SINT_TO_FP && 6547 UI->getOpcode() != ISD::UINT_TO_FP) 6548 return true; 6549 } 6550 6551 return false; 6552 } 6553 6554 /// \brief Custom lowers integer to floating point conversions to use 6555 /// the direct move instructions available in ISA 2.07 to avoid the 6556 /// need for load/store combinations. 6557 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6558 SelectionDAG &DAG, 6559 SDLoc dl) const { 6560 assert((Op.getValueType() == MVT::f32 || 6561 Op.getValueType() == MVT::f64) && 6562 "Invalid floating point type as target of conversion"); 6563 assert(Subtarget.hasFPCVT() && 6564 "Int to FP conversions with direct moves require FPCVT"); 6565 SDValue FP; 6566 SDValue Src = Op.getOperand(0); 6567 bool SinglePrec = Op.getValueType() == MVT::f32; 6568 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6569 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6570 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6571 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6572 6573 if (WordInt) { 6574 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6575 dl, MVT::f64, Src); 6576 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6577 } 6578 else { 6579 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6580 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6581 } 6582 6583 return FP; 6584 } 6585 6586 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6587 SelectionDAG &DAG) const { 6588 SDLoc dl(Op); 6589 6590 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6591 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6592 return SDValue(); 6593 6594 SDValue Value = Op.getOperand(0); 6595 // The values are now known to be -1 (false) or 1 (true). To convert this 6596 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6597 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6598 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6599 6600 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6601 6602 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6603 6604 if (Op.getValueType() != MVT::v4f64) 6605 Value = DAG.getNode(ISD::FP_ROUND, dl, 6606 Op.getValueType(), Value, 6607 DAG.getIntPtrConstant(1, dl)); 6608 return Value; 6609 } 6610 6611 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6612 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6613 return SDValue(); 6614 6615 if (Op.getOperand(0).getValueType() == MVT::i1) 6616 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6617 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6618 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6619 6620 // If we have direct moves, we can do all the conversion, skip the store/load 6621 // however, without FPCVT we can't do most conversions. 6622 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6623 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6624 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6625 6626 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6627 "UINT_TO_FP is supported only with FPCVT"); 6628 6629 // If we have FCFIDS, then use it when converting to single-precision. 6630 // Otherwise, convert to double-precision and then round. 6631 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6632 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6633 : PPCISD::FCFIDS) 6634 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6635 : PPCISD::FCFID); 6636 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6637 ? MVT::f32 6638 : MVT::f64; 6639 6640 if (Op.getOperand(0).getValueType() == MVT::i64) { 6641 SDValue SINT = Op.getOperand(0); 6642 // When converting to single-precision, we actually need to convert 6643 // to double-precision first and then round to single-precision. 6644 // To avoid double-rounding effects during that operation, we have 6645 // to prepare the input operand. Bits that might be truncated when 6646 // converting to double-precision are replaced by a bit that won't 6647 // be lost at this stage, but is below the single-precision rounding 6648 // position. 6649 // 6650 // However, if -enable-unsafe-fp-math is in effect, accept double 6651 // rounding to avoid the extra overhead. 6652 if (Op.getValueType() == MVT::f32 && 6653 !Subtarget.hasFPCVT() && 6654 !DAG.getTarget().Options.UnsafeFPMath) { 6655 6656 // Twiddle input to make sure the low 11 bits are zero. (If this 6657 // is the case, we are guaranteed the value will fit into the 53 bit 6658 // mantissa of an IEEE double-precision value without rounding.) 6659 // If any of those low 11 bits were not zero originally, make sure 6660 // bit 12 (value 2048) is set instead, so that the final rounding 6661 // to single-precision gets the correct result. 6662 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6663 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6664 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6665 Round, DAG.getConstant(2047, dl, MVT::i64)); 6666 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6667 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6668 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6669 6670 // However, we cannot use that value unconditionally: if the magnitude 6671 // of the input value is small, the bit-twiddling we did above might 6672 // end up visibly changing the output. Fortunately, in that case, we 6673 // don't need to twiddle bits since the original input will convert 6674 // exactly to double-precision floating-point already. Therefore, 6675 // construct a conditional to use the original value if the top 11 6676 // bits are all sign-bit copies, and use the rounded value computed 6677 // above otherwise. 6678 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6679 SINT, DAG.getConstant(53, dl, MVT::i32)); 6680 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6681 Cond, DAG.getConstant(1, dl, MVT::i64)); 6682 Cond = DAG.getSetCC(dl, MVT::i32, 6683 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6684 6685 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6686 } 6687 6688 ReuseLoadInfo RLI; 6689 SDValue Bits; 6690 6691 MachineFunction &MF = DAG.getMachineFunction(); 6692 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6693 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6694 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6695 RLI.Ranges); 6696 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6697 } else if (Subtarget.hasLFIWAX() && 6698 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6699 MachineMemOperand *MMO = 6700 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6701 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6702 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6703 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6704 DAG.getVTList(MVT::f64, MVT::Other), 6705 Ops, MVT::i32, MMO); 6706 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6707 } else if (Subtarget.hasFPCVT() && 6708 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6709 MachineMemOperand *MMO = 6710 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6711 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6712 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6713 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6714 DAG.getVTList(MVT::f64, MVT::Other), 6715 Ops, MVT::i32, MMO); 6716 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6717 } else if (((Subtarget.hasLFIWAX() && 6718 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6719 (Subtarget.hasFPCVT() && 6720 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6721 SINT.getOperand(0).getValueType() == MVT::i32) { 6722 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6723 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6724 6725 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6726 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6727 6728 SDValue Store = DAG.getStore( 6729 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6730 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6731 false, false, 0); 6732 6733 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6734 "Expected an i32 store"); 6735 6736 RLI.Ptr = FIdx; 6737 RLI.Chain = Store; 6738 RLI.MPI = 6739 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6740 RLI.Alignment = 4; 6741 6742 MachineMemOperand *MMO = 6743 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6744 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6745 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6746 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6747 PPCISD::LFIWZX : PPCISD::LFIWAX, 6748 dl, DAG.getVTList(MVT::f64, MVT::Other), 6749 Ops, MVT::i32, MMO); 6750 } else 6751 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6752 6753 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6754 6755 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6756 FP = DAG.getNode(ISD::FP_ROUND, dl, 6757 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6758 return FP; 6759 } 6760 6761 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6762 "Unhandled INT_TO_FP type in custom expander!"); 6763 // Since we only generate this in 64-bit mode, we can take advantage of 6764 // 64-bit registers. In particular, sign extend the input value into the 6765 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6766 // then lfd it and fcfid it. 6767 MachineFunction &MF = DAG.getMachineFunction(); 6768 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6769 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6770 6771 SDValue Ld; 6772 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6773 ReuseLoadInfo RLI; 6774 bool ReusingLoad; 6775 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6776 DAG))) { 6777 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6778 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6779 6780 SDValue Store = DAG.getStore( 6781 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6782 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6783 false, false, 0); 6784 6785 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6786 "Expected an i32 store"); 6787 6788 RLI.Ptr = FIdx; 6789 RLI.Chain = Store; 6790 RLI.MPI = 6791 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6792 RLI.Alignment = 4; 6793 } 6794 6795 MachineMemOperand *MMO = 6796 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6797 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6798 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6799 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6800 PPCISD::LFIWZX : PPCISD::LFIWAX, 6801 dl, DAG.getVTList(MVT::f64, MVT::Other), 6802 Ops, MVT::i32, MMO); 6803 if (ReusingLoad) 6804 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6805 } else { 6806 assert(Subtarget.isPPC64() && 6807 "i32->FP without LFIWAX supported only on PPC64"); 6808 6809 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6810 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6811 6812 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6813 Op.getOperand(0)); 6814 6815 // STD the extended value into the stack slot. 6816 SDValue Store = DAG.getStore( 6817 DAG.getEntryNode(), dl, Ext64, FIdx, 6818 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6819 false, false, 0); 6820 6821 // Load the value as a double. 6822 Ld = DAG.getLoad( 6823 MVT::f64, dl, Store, FIdx, 6824 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6825 false, false, false, 0); 6826 } 6827 6828 // FCFID it and return it. 6829 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6830 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6831 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6832 DAG.getIntPtrConstant(0, dl)); 6833 return FP; 6834 } 6835 6836 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6837 SelectionDAG &DAG) const { 6838 SDLoc dl(Op); 6839 /* 6840 The rounding mode is in bits 30:31 of FPSR, and has the following 6841 settings: 6842 00 Round to nearest 6843 01 Round to 0 6844 10 Round to +inf 6845 11 Round to -inf 6846 6847 FLT_ROUNDS, on the other hand, expects the following: 6848 -1 Undefined 6849 0 Round to 0 6850 1 Round to nearest 6851 2 Round to +inf 6852 3 Round to -inf 6853 6854 To perform the conversion, we do: 6855 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6856 */ 6857 6858 MachineFunction &MF = DAG.getMachineFunction(); 6859 EVT VT = Op.getValueType(); 6860 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6861 6862 // Save FP Control Word to register 6863 EVT NodeTys[] = { 6864 MVT::f64, // return register 6865 MVT::Glue // unused in this context 6866 }; 6867 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6868 6869 // Save FP register to stack slot 6870 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6871 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6872 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6873 StackSlot, MachinePointerInfo(), false, false,0); 6874 6875 // Load FP Control Word from low 32 bits of stack slot. 6876 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6877 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6878 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6879 false, false, false, 0); 6880 6881 // Transform as necessary 6882 SDValue CWD1 = 6883 DAG.getNode(ISD::AND, dl, MVT::i32, 6884 CWD, DAG.getConstant(3, dl, MVT::i32)); 6885 SDValue CWD2 = 6886 DAG.getNode(ISD::SRL, dl, MVT::i32, 6887 DAG.getNode(ISD::AND, dl, MVT::i32, 6888 DAG.getNode(ISD::XOR, dl, MVT::i32, 6889 CWD, DAG.getConstant(3, dl, MVT::i32)), 6890 DAG.getConstant(3, dl, MVT::i32)), 6891 DAG.getConstant(1, dl, MVT::i32)); 6892 6893 SDValue RetVal = 6894 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6895 6896 return DAG.getNode((VT.getSizeInBits() < 16 ? 6897 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6898 } 6899 6900 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6901 EVT VT = Op.getValueType(); 6902 unsigned BitWidth = VT.getSizeInBits(); 6903 SDLoc dl(Op); 6904 assert(Op.getNumOperands() == 3 && 6905 VT == Op.getOperand(1).getValueType() && 6906 "Unexpected SHL!"); 6907 6908 // Expand into a bunch of logical ops. Note that these ops 6909 // depend on the PPC behavior for oversized shift amounts. 6910 SDValue Lo = Op.getOperand(0); 6911 SDValue Hi = Op.getOperand(1); 6912 SDValue Amt = Op.getOperand(2); 6913 EVT AmtVT = Amt.getValueType(); 6914 6915 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6916 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6917 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6918 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6919 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6920 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6921 DAG.getConstant(-BitWidth, dl, AmtVT)); 6922 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6923 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6924 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6925 SDValue OutOps[] = { OutLo, OutHi }; 6926 return DAG.getMergeValues(OutOps, dl); 6927 } 6928 6929 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6930 EVT VT = Op.getValueType(); 6931 SDLoc dl(Op); 6932 unsigned BitWidth = VT.getSizeInBits(); 6933 assert(Op.getNumOperands() == 3 && 6934 VT == Op.getOperand(1).getValueType() && 6935 "Unexpected SRL!"); 6936 6937 // Expand into a bunch of logical ops. Note that these ops 6938 // depend on the PPC behavior for oversized shift amounts. 6939 SDValue Lo = Op.getOperand(0); 6940 SDValue Hi = Op.getOperand(1); 6941 SDValue Amt = Op.getOperand(2); 6942 EVT AmtVT = Amt.getValueType(); 6943 6944 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6945 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6946 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6947 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6948 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6949 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6950 DAG.getConstant(-BitWidth, dl, AmtVT)); 6951 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6952 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6953 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6954 SDValue OutOps[] = { OutLo, OutHi }; 6955 return DAG.getMergeValues(OutOps, dl); 6956 } 6957 6958 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6959 SDLoc dl(Op); 6960 EVT VT = Op.getValueType(); 6961 unsigned BitWidth = VT.getSizeInBits(); 6962 assert(Op.getNumOperands() == 3 && 6963 VT == Op.getOperand(1).getValueType() && 6964 "Unexpected SRA!"); 6965 6966 // Expand into a bunch of logical ops, followed by a select_cc. 6967 SDValue Lo = Op.getOperand(0); 6968 SDValue Hi = Op.getOperand(1); 6969 SDValue Amt = Op.getOperand(2); 6970 EVT AmtVT = Amt.getValueType(); 6971 6972 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6973 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6974 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6975 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6976 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6977 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6978 DAG.getConstant(-BitWidth, dl, AmtVT)); 6979 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6980 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6981 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6982 Tmp4, Tmp6, ISD::SETLE); 6983 SDValue OutOps[] = { OutLo, OutHi }; 6984 return DAG.getMergeValues(OutOps, dl); 6985 } 6986 6987 //===----------------------------------------------------------------------===// 6988 // Vector related lowering. 6989 // 6990 6991 /// BuildSplatI - Build a canonical splati of Val with an element size of 6992 /// SplatSize. Cast the result to VT. 6993 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6994 SelectionDAG &DAG, SDLoc dl) { 6995 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6996 6997 static const MVT VTys[] = { // canonical VT to use for each size. 6998 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6999 }; 7000 7001 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 7002 7003 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 7004 if (Val == -1) 7005 SplatSize = 1; 7006 7007 EVT CanonicalVT = VTys[SplatSize-1]; 7008 7009 // Build a canonical splat for this value. 7010 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 7011 } 7012 7013 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 7014 /// specified intrinsic ID. 7015 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 7016 SelectionDAG &DAG, SDLoc dl, 7017 EVT DestVT = MVT::Other) { 7018 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 7019 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7020 DAG.getConstant(IID, dl, MVT::i32), Op); 7021 } 7022 7023 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 7024 /// specified intrinsic ID. 7025 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 7026 SelectionDAG &DAG, SDLoc dl, 7027 EVT DestVT = MVT::Other) { 7028 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 7029 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7030 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 7031 } 7032 7033 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 7034 /// specified intrinsic ID. 7035 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 7036 SDValue Op2, SelectionDAG &DAG, 7037 SDLoc dl, EVT DestVT = MVT::Other) { 7038 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 7039 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 7040 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 7041 } 7042 7043 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 7044 /// amount. The result has the specified value type. 7045 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 7046 EVT VT, SelectionDAG &DAG, SDLoc dl) { 7047 // Force LHS/RHS to be the right type. 7048 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7049 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7050 7051 int Ops[16]; 7052 for (unsigned i = 0; i != 16; ++i) 7053 Ops[i] = i + Amt; 7054 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7055 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7056 } 7057 7058 // If this is a case we can't handle, return null and let the default 7059 // expansion code take care of it. If we CAN select this case, and if it 7060 // selects to a single instruction, return Op. Otherwise, if we can codegen 7061 // this case more efficiently than a constant pool load, lower it to the 7062 // sequence of ops that should be used. 7063 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7064 SelectionDAG &DAG) const { 7065 SDLoc dl(Op); 7066 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7067 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7068 7069 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7070 // We first build an i32 vector, load it into a QPX register, 7071 // then convert it to a floating-point vector and compare it 7072 // to a zero vector to get the boolean result. 7073 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7074 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7075 MachinePointerInfo PtrInfo = 7076 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7077 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7078 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7079 7080 assert(BVN->getNumOperands() == 4 && 7081 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7082 7083 bool IsConst = true; 7084 for (unsigned i = 0; i < 4; ++i) { 7085 if (BVN->getOperand(i).isUndef()) continue; 7086 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7087 IsConst = false; 7088 break; 7089 } 7090 } 7091 7092 if (IsConst) { 7093 Constant *One = 7094 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7095 Constant *NegOne = 7096 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7097 7098 SmallVector<Constant*, 4> CV(4, NegOne); 7099 for (unsigned i = 0; i < 4; ++i) { 7100 if (BVN->getOperand(i).isUndef()) 7101 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7102 else if (isNullConstant(BVN->getOperand(i))) 7103 continue; 7104 else 7105 CV[i] = One; 7106 } 7107 7108 Constant *CP = ConstantVector::get(CV); 7109 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7110 16 /* alignment */); 7111 7112 SmallVector<SDValue, 2> Ops; 7113 Ops.push_back(DAG.getEntryNode()); 7114 Ops.push_back(CPIdx); 7115 7116 SmallVector<EVT, 2> ValueVTs; 7117 ValueVTs.push_back(MVT::v4i1); 7118 ValueVTs.push_back(MVT::Other); // chain 7119 SDVTList VTs = DAG.getVTList(ValueVTs); 7120 7121 return DAG.getMemIntrinsicNode( 7122 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7123 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7124 } 7125 7126 SmallVector<SDValue, 4> Stores; 7127 for (unsigned i = 0; i < 4; ++i) { 7128 if (BVN->getOperand(i).isUndef()) continue; 7129 7130 unsigned Offset = 4*i; 7131 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7132 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7133 7134 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7135 if (StoreSize > 4) { 7136 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 7137 BVN->getOperand(i), Idx, 7138 PtrInfo.getWithOffset(Offset), 7139 MVT::i32, false, false, 0)); 7140 } else { 7141 SDValue StoreValue = BVN->getOperand(i); 7142 if (StoreSize < 4) 7143 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7144 7145 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 7146 StoreValue, Idx, 7147 PtrInfo.getWithOffset(Offset), 7148 false, false, 0)); 7149 } 7150 } 7151 7152 SDValue StoreChain; 7153 if (!Stores.empty()) 7154 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7155 else 7156 StoreChain = DAG.getEntryNode(); 7157 7158 // Now load from v4i32 into the QPX register; this will extend it to 7159 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7160 // is typed as v4f64 because the QPX register integer states are not 7161 // explicitly represented. 7162 7163 SmallVector<SDValue, 2> Ops; 7164 Ops.push_back(StoreChain); 7165 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 7166 Ops.push_back(FIdx); 7167 7168 SmallVector<EVT, 2> ValueVTs; 7169 ValueVTs.push_back(MVT::v4f64); 7170 ValueVTs.push_back(MVT::Other); // chain 7171 SDVTList VTs = DAG.getVTList(ValueVTs); 7172 7173 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7174 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7175 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7176 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7177 LoadedVect); 7178 7179 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7180 7181 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7182 } 7183 7184 // All other QPX vectors are handled by generic code. 7185 if (Subtarget.hasQPX()) 7186 return SDValue(); 7187 7188 // Check if this is a splat of a constant value. 7189 APInt APSplatBits, APSplatUndef; 7190 unsigned SplatBitSize; 7191 bool HasAnyUndefs; 7192 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7193 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7194 SplatBitSize > 32) 7195 return SDValue(); 7196 7197 unsigned SplatBits = APSplatBits.getZExtValue(); 7198 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7199 unsigned SplatSize = SplatBitSize / 8; 7200 7201 // First, handle single instruction cases. 7202 7203 // All zeros? 7204 if (SplatBits == 0) { 7205 // Canonicalize all zero vectors to be v4i32. 7206 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7207 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7208 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7209 } 7210 return Op; 7211 } 7212 7213 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7214 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7215 (32-SplatBitSize)); 7216 if (SextVal >= -16 && SextVal <= 15) 7217 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7218 7219 // Two instruction sequences. 7220 7221 // If this value is in the range [-32,30] and is even, use: 7222 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7223 // If this value is in the range [17,31] and is odd, use: 7224 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7225 // If this value is in the range [-31,-17] and is odd, use: 7226 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7227 // Note the last two are three-instruction sequences. 7228 if (SextVal >= -32 && SextVal <= 31) { 7229 // To avoid having these optimizations undone by constant folding, 7230 // we convert to a pseudo that will be expanded later into one of 7231 // the above forms. 7232 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7233 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7234 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7235 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7236 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7237 if (VT == Op.getValueType()) 7238 return RetVal; 7239 else 7240 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7241 } 7242 7243 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7244 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7245 // for fneg/fabs. 7246 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7247 // Make -1 and vspltisw -1: 7248 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7249 7250 // Make the VSLW intrinsic, computing 0x8000_0000. 7251 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7252 OnesV, DAG, dl); 7253 7254 // xor by OnesV to invert it. 7255 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7256 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7257 } 7258 7259 // Check to see if this is a wide variety of vsplti*, binop self cases. 7260 static const signed char SplatCsts[] = { 7261 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7262 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7263 }; 7264 7265 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7266 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7267 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7268 int i = SplatCsts[idx]; 7269 7270 // Figure out what shift amount will be used by altivec if shifted by i in 7271 // this splat size. 7272 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7273 7274 // vsplti + shl self. 7275 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7276 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7277 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7278 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7279 Intrinsic::ppc_altivec_vslw 7280 }; 7281 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7282 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7283 } 7284 7285 // vsplti + srl self. 7286 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7287 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7288 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7289 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7290 Intrinsic::ppc_altivec_vsrw 7291 }; 7292 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7293 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7294 } 7295 7296 // vsplti + sra self. 7297 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7298 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7299 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7300 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7301 Intrinsic::ppc_altivec_vsraw 7302 }; 7303 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7304 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7305 } 7306 7307 // vsplti + rol self. 7308 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7309 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7310 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7311 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7312 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7313 Intrinsic::ppc_altivec_vrlw 7314 }; 7315 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7316 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7317 } 7318 7319 // t = vsplti c, result = vsldoi t, t, 1 7320 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7321 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7322 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7323 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7324 } 7325 // t = vsplti c, result = vsldoi t, t, 2 7326 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7327 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7328 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7329 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7330 } 7331 // t = vsplti c, result = vsldoi t, t, 3 7332 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7333 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7334 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7335 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7336 } 7337 } 7338 7339 return SDValue(); 7340 } 7341 7342 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7343 /// the specified operations to build the shuffle. 7344 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7345 SDValue RHS, SelectionDAG &DAG, 7346 SDLoc dl) { 7347 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7348 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7349 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7350 7351 enum { 7352 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7353 OP_VMRGHW, 7354 OP_VMRGLW, 7355 OP_VSPLTISW0, 7356 OP_VSPLTISW1, 7357 OP_VSPLTISW2, 7358 OP_VSPLTISW3, 7359 OP_VSLDOI4, 7360 OP_VSLDOI8, 7361 OP_VSLDOI12 7362 }; 7363 7364 if (OpNum == OP_COPY) { 7365 if (LHSID == (1*9+2)*9+3) return LHS; 7366 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7367 return RHS; 7368 } 7369 7370 SDValue OpLHS, OpRHS; 7371 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7372 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7373 7374 int ShufIdxs[16]; 7375 switch (OpNum) { 7376 default: llvm_unreachable("Unknown i32 permute!"); 7377 case OP_VMRGHW: 7378 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7379 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7380 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7381 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7382 break; 7383 case OP_VMRGLW: 7384 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7385 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7386 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7387 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7388 break; 7389 case OP_VSPLTISW0: 7390 for (unsigned i = 0; i != 16; ++i) 7391 ShufIdxs[i] = (i&3)+0; 7392 break; 7393 case OP_VSPLTISW1: 7394 for (unsigned i = 0; i != 16; ++i) 7395 ShufIdxs[i] = (i&3)+4; 7396 break; 7397 case OP_VSPLTISW2: 7398 for (unsigned i = 0; i != 16; ++i) 7399 ShufIdxs[i] = (i&3)+8; 7400 break; 7401 case OP_VSPLTISW3: 7402 for (unsigned i = 0; i != 16; ++i) 7403 ShufIdxs[i] = (i&3)+12; 7404 break; 7405 case OP_VSLDOI4: 7406 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7407 case OP_VSLDOI8: 7408 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7409 case OP_VSLDOI12: 7410 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7411 } 7412 EVT VT = OpLHS.getValueType(); 7413 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7414 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7415 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7416 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7417 } 7418 7419 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7420 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7421 /// return the code it can be lowered into. Worst case, it can always be 7422 /// lowered into a vperm. 7423 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7424 SelectionDAG &DAG) const { 7425 SDLoc dl(Op); 7426 SDValue V1 = Op.getOperand(0); 7427 SDValue V2 = Op.getOperand(1); 7428 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7429 EVT VT = Op.getValueType(); 7430 bool isLittleEndian = Subtarget.isLittleEndian(); 7431 7432 if (Subtarget.hasVSX()) { 7433 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7434 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7435 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7436 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7437 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7438 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7439 } 7440 } 7441 7442 if (Subtarget.hasQPX()) { 7443 if (VT.getVectorNumElements() != 4) 7444 return SDValue(); 7445 7446 if (V2.isUndef()) V2 = V1; 7447 7448 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7449 if (AlignIdx != -1) { 7450 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7451 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7452 } else if (SVOp->isSplat()) { 7453 int SplatIdx = SVOp->getSplatIndex(); 7454 if (SplatIdx >= 4) { 7455 std::swap(V1, V2); 7456 SplatIdx -= 4; 7457 } 7458 7459 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7460 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7461 } 7462 7463 // Lower this into a qvgpci/qvfperm pair. 7464 7465 // Compute the qvgpci literal 7466 unsigned idx = 0; 7467 for (unsigned i = 0; i < 4; ++i) { 7468 int m = SVOp->getMaskElt(i); 7469 unsigned mm = m >= 0 ? (unsigned) m : i; 7470 idx |= mm << (3-i)*3; 7471 } 7472 7473 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7474 DAG.getConstant(idx, dl, MVT::i32)); 7475 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7476 } 7477 7478 // Cases that are handled by instructions that take permute immediates 7479 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7480 // selected by the instruction selector. 7481 if (V2.isUndef()) { 7482 if (PPC::isSplatShuffleMask(SVOp, 1) || 7483 PPC::isSplatShuffleMask(SVOp, 2) || 7484 PPC::isSplatShuffleMask(SVOp, 4) || 7485 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7486 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7487 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7488 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7489 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7490 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7491 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7492 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7493 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7494 (Subtarget.hasP8Altivec() && ( 7495 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7496 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7497 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7498 return Op; 7499 } 7500 } 7501 7502 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7503 // and produce a fixed permutation. If any of these match, do not lower to 7504 // VPERM. 7505 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7506 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7507 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7508 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7509 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7510 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7511 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7512 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7513 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7514 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7515 (Subtarget.hasP8Altivec() && ( 7516 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7517 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7518 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7519 return Op; 7520 7521 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7522 // perfect shuffle table to emit an optimal matching sequence. 7523 ArrayRef<int> PermMask = SVOp->getMask(); 7524 7525 unsigned PFIndexes[4]; 7526 bool isFourElementShuffle = true; 7527 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7528 unsigned EltNo = 8; // Start out undef. 7529 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7530 if (PermMask[i*4+j] < 0) 7531 continue; // Undef, ignore it. 7532 7533 unsigned ByteSource = PermMask[i*4+j]; 7534 if ((ByteSource & 3) != j) { 7535 isFourElementShuffle = false; 7536 break; 7537 } 7538 7539 if (EltNo == 8) { 7540 EltNo = ByteSource/4; 7541 } else if (EltNo != ByteSource/4) { 7542 isFourElementShuffle = false; 7543 break; 7544 } 7545 } 7546 PFIndexes[i] = EltNo; 7547 } 7548 7549 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7550 // perfect shuffle vector to determine if it is cost effective to do this as 7551 // discrete instructions, or whether we should use a vperm. 7552 // For now, we skip this for little endian until such time as we have a 7553 // little-endian perfect shuffle table. 7554 if (isFourElementShuffle && !isLittleEndian) { 7555 // Compute the index in the perfect shuffle table. 7556 unsigned PFTableIndex = 7557 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7558 7559 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7560 unsigned Cost = (PFEntry >> 30); 7561 7562 // Determining when to avoid vperm is tricky. Many things affect the cost 7563 // of vperm, particularly how many times the perm mask needs to be computed. 7564 // For example, if the perm mask can be hoisted out of a loop or is already 7565 // used (perhaps because there are multiple permutes with the same shuffle 7566 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7567 // the loop requires an extra register. 7568 // 7569 // As a compromise, we only emit discrete instructions if the shuffle can be 7570 // generated in 3 or fewer operations. When we have loop information 7571 // available, if this block is within a loop, we should avoid using vperm 7572 // for 3-operation perms and use a constant pool load instead. 7573 if (Cost < 3) 7574 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7575 } 7576 7577 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7578 // vector that will get spilled to the constant pool. 7579 if (V2.isUndef()) V2 = V1; 7580 7581 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7582 // that it is in input element units, not in bytes. Convert now. 7583 7584 // For little endian, the order of the input vectors is reversed, and 7585 // the permutation mask is complemented with respect to 31. This is 7586 // necessary to produce proper semantics with the big-endian-biased vperm 7587 // instruction. 7588 EVT EltVT = V1.getValueType().getVectorElementType(); 7589 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7590 7591 SmallVector<SDValue, 16> ResultMask; 7592 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7593 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7594 7595 for (unsigned j = 0; j != BytesPerElement; ++j) 7596 if (isLittleEndian) 7597 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7598 dl, MVT::i32)); 7599 else 7600 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7601 MVT::i32)); 7602 } 7603 7604 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7605 if (isLittleEndian) 7606 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7607 V2, V1, VPermMask); 7608 else 7609 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7610 V1, V2, VPermMask); 7611 } 7612 7613 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7614 /// vector comparison. If it is, return true and fill in Opc/isDot with 7615 /// information about the intrinsic. 7616 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7617 bool &isDot, const PPCSubtarget &Subtarget) { 7618 unsigned IntrinsicID = 7619 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7620 CompareOpc = -1; 7621 isDot = false; 7622 switch (IntrinsicID) { 7623 default: return false; 7624 // Comparison predicates. 7625 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7626 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7627 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7628 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7629 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7630 case Intrinsic::ppc_altivec_vcmpequd_p: 7631 if (Subtarget.hasP8Altivec()) { 7632 CompareOpc = 199; 7633 isDot = 1; 7634 } else 7635 return false; 7636 7637 break; 7638 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7639 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7640 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7641 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7642 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7643 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7644 if (Subtarget.hasP8Altivec()) { 7645 CompareOpc = 967; 7646 isDot = 1; 7647 } else 7648 return false; 7649 7650 break; 7651 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7652 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7653 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7654 case Intrinsic::ppc_altivec_vcmpgtud_p: 7655 if (Subtarget.hasP8Altivec()) { 7656 CompareOpc = 711; 7657 isDot = 1; 7658 } else 7659 return false; 7660 7661 break; 7662 // VSX predicate comparisons use the same infrastructure 7663 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7664 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7665 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7666 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7667 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7668 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7669 if (Subtarget.hasVSX()) { 7670 switch (IntrinsicID) { 7671 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7672 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7673 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7674 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7675 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7676 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7677 } 7678 isDot = 1; 7679 } 7680 else 7681 return false; 7682 7683 break; 7684 7685 // Normal Comparisons. 7686 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7687 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7688 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7689 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7690 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7691 case Intrinsic::ppc_altivec_vcmpequd: 7692 if (Subtarget.hasP8Altivec()) { 7693 CompareOpc = 199; 7694 isDot = 0; 7695 } else 7696 return false; 7697 7698 break; 7699 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7700 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7701 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7702 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7703 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7704 case Intrinsic::ppc_altivec_vcmpgtsd: 7705 if (Subtarget.hasP8Altivec()) { 7706 CompareOpc = 967; 7707 isDot = 0; 7708 } else 7709 return false; 7710 7711 break; 7712 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7713 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7714 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7715 case Intrinsic::ppc_altivec_vcmpgtud: 7716 if (Subtarget.hasP8Altivec()) { 7717 CompareOpc = 711; 7718 isDot = 0; 7719 } else 7720 return false; 7721 7722 break; 7723 } 7724 return true; 7725 } 7726 7727 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7728 /// lower, do it, otherwise return null. 7729 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7730 SelectionDAG &DAG) const { 7731 unsigned IntrinsicID = 7732 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7733 7734 if (IntrinsicID == Intrinsic::thread_pointer) { 7735 // Reads the thread pointer register, used for __builtin_thread_pointer. 7736 bool is64bit = Subtarget.isPPC64(); 7737 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7738 is64bit ? MVT::i64 : MVT::i32); 7739 } 7740 7741 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7742 // opcode number of the comparison. 7743 SDLoc dl(Op); 7744 int CompareOpc; 7745 bool isDot; 7746 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7747 return SDValue(); // Don't custom lower most intrinsics. 7748 7749 // If this is a non-dot comparison, make the VCMP node and we are done. 7750 if (!isDot) { 7751 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7752 Op.getOperand(1), Op.getOperand(2), 7753 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7754 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7755 } 7756 7757 // Create the PPCISD altivec 'dot' comparison node. 7758 SDValue Ops[] = { 7759 Op.getOperand(2), // LHS 7760 Op.getOperand(3), // RHS 7761 DAG.getConstant(CompareOpc, dl, MVT::i32) 7762 }; 7763 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7764 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7765 7766 // Now that we have the comparison, emit a copy from the CR to a GPR. 7767 // This is flagged to the above dot comparison. 7768 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7769 DAG.getRegister(PPC::CR6, MVT::i32), 7770 CompNode.getValue(1)); 7771 7772 // Unpack the result based on how the target uses it. 7773 unsigned BitNo; // Bit # of CR6. 7774 bool InvertBit; // Invert result? 7775 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7776 default: // Can't happen, don't crash on invalid number though. 7777 case 0: // Return the value of the EQ bit of CR6. 7778 BitNo = 0; InvertBit = false; 7779 break; 7780 case 1: // Return the inverted value of the EQ bit of CR6. 7781 BitNo = 0; InvertBit = true; 7782 break; 7783 case 2: // Return the value of the LT bit of CR6. 7784 BitNo = 2; InvertBit = false; 7785 break; 7786 case 3: // Return the inverted value of the LT bit of CR6. 7787 BitNo = 2; InvertBit = true; 7788 break; 7789 } 7790 7791 // Shift the bit into the low position. 7792 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7793 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7794 // Isolate the bit. 7795 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7796 DAG.getConstant(1, dl, MVT::i32)); 7797 7798 // If we are supposed to, toggle the bit. 7799 if (InvertBit) 7800 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7801 DAG.getConstant(1, dl, MVT::i32)); 7802 return Flags; 7803 } 7804 7805 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7806 SelectionDAG &DAG) const { 7807 SDLoc dl(Op); 7808 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7809 // instructions), but for smaller types, we need to first extend up to v2i32 7810 // before doing going farther. 7811 if (Op.getValueType() == MVT::v2i64) { 7812 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7813 if (ExtVT != MVT::v2i32) { 7814 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7815 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7816 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7817 ExtVT.getVectorElementType(), 4))); 7818 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7819 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7820 DAG.getValueType(MVT::v2i32)); 7821 } 7822 7823 return Op; 7824 } 7825 7826 return SDValue(); 7827 } 7828 7829 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7830 SelectionDAG &DAG) const { 7831 SDLoc dl(Op); 7832 // Create a stack slot that is 16-byte aligned. 7833 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7834 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7835 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7836 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7837 7838 // Store the input value into Value#0 of the stack slot. 7839 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7840 Op.getOperand(0), FIdx, MachinePointerInfo(), 7841 false, false, 0); 7842 // Load it out. 7843 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7844 false, false, false, 0); 7845 } 7846 7847 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7848 SelectionDAG &DAG) const { 7849 SDLoc dl(Op); 7850 SDNode *N = Op.getNode(); 7851 7852 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7853 "Unknown extract_vector_elt type"); 7854 7855 SDValue Value = N->getOperand(0); 7856 7857 // The first part of this is like the store lowering except that we don't 7858 // need to track the chain. 7859 7860 // The values are now known to be -1 (false) or 1 (true). To convert this 7861 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7862 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7863 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7864 7865 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7866 // understand how to form the extending load. 7867 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7868 7869 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7870 7871 // Now convert to an integer and store. 7872 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7873 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7874 Value); 7875 7876 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7877 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7878 MachinePointerInfo PtrInfo = 7879 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7880 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7881 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7882 7883 SDValue StoreChain = DAG.getEntryNode(); 7884 SmallVector<SDValue, 2> Ops; 7885 Ops.push_back(StoreChain); 7886 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7887 Ops.push_back(Value); 7888 Ops.push_back(FIdx); 7889 7890 SmallVector<EVT, 2> ValueVTs; 7891 ValueVTs.push_back(MVT::Other); // chain 7892 SDVTList VTs = DAG.getVTList(ValueVTs); 7893 7894 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7895 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7896 7897 // Extract the value requested. 7898 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7899 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7900 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7901 7902 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7903 PtrInfo.getWithOffset(Offset), 7904 false, false, false, 0); 7905 7906 if (!Subtarget.useCRBits()) 7907 return IntVal; 7908 7909 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7910 } 7911 7912 /// Lowering for QPX v4i1 loads 7913 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7914 SelectionDAG &DAG) const { 7915 SDLoc dl(Op); 7916 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7917 SDValue LoadChain = LN->getChain(); 7918 SDValue BasePtr = LN->getBasePtr(); 7919 7920 if (Op.getValueType() == MVT::v4f64 || 7921 Op.getValueType() == MVT::v4f32) { 7922 EVT MemVT = LN->getMemoryVT(); 7923 unsigned Alignment = LN->getAlignment(); 7924 7925 // If this load is properly aligned, then it is legal. 7926 if (Alignment >= MemVT.getStoreSize()) 7927 return Op; 7928 7929 EVT ScalarVT = Op.getValueType().getScalarType(), 7930 ScalarMemVT = MemVT.getScalarType(); 7931 unsigned Stride = ScalarMemVT.getStoreSize(); 7932 7933 SmallVector<SDValue, 8> Vals, LoadChains; 7934 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7935 SDValue Load; 7936 if (ScalarVT != ScalarMemVT) 7937 Load = 7938 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7939 BasePtr, 7940 LN->getPointerInfo().getWithOffset(Idx*Stride), 7941 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7942 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7943 LN->getAAInfo()); 7944 else 7945 Load = 7946 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7947 LN->getPointerInfo().getWithOffset(Idx*Stride), 7948 LN->isVolatile(), LN->isNonTemporal(), 7949 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7950 LN->getAAInfo()); 7951 7952 if (Idx == 0 && LN->isIndexed()) { 7953 assert(LN->getAddressingMode() == ISD::PRE_INC && 7954 "Unknown addressing mode on vector load"); 7955 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7956 LN->getAddressingMode()); 7957 } 7958 7959 Vals.push_back(Load); 7960 LoadChains.push_back(Load.getValue(1)); 7961 7962 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7963 DAG.getConstant(Stride, dl, 7964 BasePtr.getValueType())); 7965 } 7966 7967 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7968 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 7969 7970 if (LN->isIndexed()) { 7971 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7972 return DAG.getMergeValues(RetOps, dl); 7973 } 7974 7975 SDValue RetOps[] = { Value, TF }; 7976 return DAG.getMergeValues(RetOps, dl); 7977 } 7978 7979 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7980 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7981 7982 // To lower v4i1 from a byte array, we load the byte elements of the 7983 // vector and then reuse the BUILD_VECTOR logic. 7984 7985 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7986 for (unsigned i = 0; i < 4; ++i) { 7987 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7988 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7989 7990 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7991 dl, MVT::i32, LoadChain, Idx, 7992 LN->getPointerInfo().getWithOffset(i), 7993 MVT::i8 /* memory type */, 7994 LN->isVolatile(), LN->isNonTemporal(), 7995 LN->isInvariant(), 7996 1 /* alignment */, LN->getAAInfo())); 7997 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7998 } 7999 8000 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 8001 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 8002 8003 SDValue RVals[] = { Value, LoadChain }; 8004 return DAG.getMergeValues(RVals, dl); 8005 } 8006 8007 /// Lowering for QPX v4i1 stores 8008 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 8009 SelectionDAG &DAG) const { 8010 SDLoc dl(Op); 8011 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 8012 SDValue StoreChain = SN->getChain(); 8013 SDValue BasePtr = SN->getBasePtr(); 8014 SDValue Value = SN->getValue(); 8015 8016 if (Value.getValueType() == MVT::v4f64 || 8017 Value.getValueType() == MVT::v4f32) { 8018 EVT MemVT = SN->getMemoryVT(); 8019 unsigned Alignment = SN->getAlignment(); 8020 8021 // If this store is properly aligned, then it is legal. 8022 if (Alignment >= MemVT.getStoreSize()) 8023 return Op; 8024 8025 EVT ScalarVT = Value.getValueType().getScalarType(), 8026 ScalarMemVT = MemVT.getScalarType(); 8027 unsigned Stride = ScalarMemVT.getStoreSize(); 8028 8029 SmallVector<SDValue, 8> Stores; 8030 for (unsigned Idx = 0; Idx < 4; ++Idx) { 8031 SDValue Ex = DAG.getNode( 8032 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 8033 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 8034 SDValue Store; 8035 if (ScalarVT != ScalarMemVT) 8036 Store = 8037 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 8038 SN->getPointerInfo().getWithOffset(Idx*Stride), 8039 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 8040 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 8041 else 8042 Store = 8043 DAG.getStore(StoreChain, dl, Ex, BasePtr, 8044 SN->getPointerInfo().getWithOffset(Idx*Stride), 8045 SN->isVolatile(), SN->isNonTemporal(), 8046 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 8047 8048 if (Idx == 0 && SN->isIndexed()) { 8049 assert(SN->getAddressingMode() == ISD::PRE_INC && 8050 "Unknown addressing mode on vector store"); 8051 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 8052 SN->getAddressingMode()); 8053 } 8054 8055 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8056 DAG.getConstant(Stride, dl, 8057 BasePtr.getValueType())); 8058 Stores.push_back(Store); 8059 } 8060 8061 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8062 8063 if (SN->isIndexed()) { 8064 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8065 return DAG.getMergeValues(RetOps, dl); 8066 } 8067 8068 return TF; 8069 } 8070 8071 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8072 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8073 8074 // The values are now known to be -1 (false) or 1 (true). To convert this 8075 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8076 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8077 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8078 8079 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8080 // understand how to form the extending load. 8081 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8082 8083 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8084 8085 // Now convert to an integer and store. 8086 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8087 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8088 Value); 8089 8090 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 8091 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 8092 MachinePointerInfo PtrInfo = 8093 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8094 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8095 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8096 8097 SmallVector<SDValue, 2> Ops; 8098 Ops.push_back(StoreChain); 8099 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 8100 Ops.push_back(Value); 8101 Ops.push_back(FIdx); 8102 8103 SmallVector<EVT, 2> ValueVTs; 8104 ValueVTs.push_back(MVT::Other); // chain 8105 SDVTList VTs = DAG.getVTList(ValueVTs); 8106 8107 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8108 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8109 8110 // Move data into the byte array. 8111 SmallVector<SDValue, 4> Loads, LoadChains; 8112 for (unsigned i = 0; i < 4; ++i) { 8113 unsigned Offset = 4*i; 8114 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8115 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8116 8117 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8118 PtrInfo.getWithOffset(Offset), 8119 false, false, false, 0)); 8120 LoadChains.push_back(Loads[i].getValue(1)); 8121 } 8122 8123 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8124 8125 SmallVector<SDValue, 4> Stores; 8126 for (unsigned i = 0; i < 4; ++i) { 8127 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8128 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8129 8130 Stores.push_back(DAG.getTruncStore( 8131 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8132 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 8133 1 /* alignment */, SN->getAAInfo())); 8134 } 8135 8136 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8137 8138 return StoreChain; 8139 } 8140 8141 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8142 SDLoc dl(Op); 8143 if (Op.getValueType() == MVT::v4i32) { 8144 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8145 8146 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8147 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8148 8149 SDValue RHSSwap = // = vrlw RHS, 16 8150 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8151 8152 // Shrinkify inputs to v8i16. 8153 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8154 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8155 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8156 8157 // Low parts multiplied together, generating 32-bit results (we ignore the 8158 // top parts). 8159 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8160 LHS, RHS, DAG, dl, MVT::v4i32); 8161 8162 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8163 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8164 // Shift the high parts up 16 bits. 8165 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8166 Neg16, DAG, dl); 8167 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8168 } else if (Op.getValueType() == MVT::v8i16) { 8169 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8170 8171 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8172 8173 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8174 LHS, RHS, Zero, DAG, dl); 8175 } else if (Op.getValueType() == MVT::v16i8) { 8176 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8177 bool isLittleEndian = Subtarget.isLittleEndian(); 8178 8179 // Multiply the even 8-bit parts, producing 16-bit sums. 8180 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8181 LHS, RHS, DAG, dl, MVT::v8i16); 8182 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8183 8184 // Multiply the odd 8-bit parts, producing 16-bit sums. 8185 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8186 LHS, RHS, DAG, dl, MVT::v8i16); 8187 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8188 8189 // Merge the results together. Because vmuleub and vmuloub are 8190 // instructions with a big-endian bias, we must reverse the 8191 // element numbering and reverse the meaning of "odd" and "even" 8192 // when generating little endian code. 8193 int Ops[16]; 8194 for (unsigned i = 0; i != 8; ++i) { 8195 if (isLittleEndian) { 8196 Ops[i*2 ] = 2*i; 8197 Ops[i*2+1] = 2*i+16; 8198 } else { 8199 Ops[i*2 ] = 2*i+1; 8200 Ops[i*2+1] = 2*i+1+16; 8201 } 8202 } 8203 if (isLittleEndian) 8204 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8205 else 8206 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8207 } else { 8208 llvm_unreachable("Unknown mul to lower!"); 8209 } 8210 } 8211 8212 /// LowerOperation - Provide custom lowering hooks for some operations. 8213 /// 8214 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8215 switch (Op.getOpcode()) { 8216 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8217 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8218 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8219 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8220 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8221 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8222 case ISD::SETCC: return LowerSETCC(Op, DAG); 8223 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8224 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8225 case ISD::VASTART: 8226 return LowerVASTART(Op, DAG, Subtarget); 8227 8228 case ISD::VAARG: 8229 return LowerVAARG(Op, DAG, Subtarget); 8230 8231 case ISD::VACOPY: 8232 return LowerVACOPY(Op, DAG, Subtarget); 8233 8234 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 8235 case ISD::DYNAMIC_STACKALLOC: 8236 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 8237 case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget); 8238 8239 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8240 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8241 8242 case ISD::LOAD: return LowerLOAD(Op, DAG); 8243 case ISD::STORE: return LowerSTORE(Op, DAG); 8244 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8245 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8246 case ISD::FP_TO_UINT: 8247 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8248 SDLoc(Op)); 8249 case ISD::UINT_TO_FP: 8250 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8251 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8252 8253 // Lower 64-bit shifts. 8254 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8255 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8256 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8257 8258 // Vector-related lowering. 8259 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8260 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8261 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8262 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8263 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8264 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8265 case ISD::MUL: return LowerMUL(Op, DAG); 8266 8267 // For counter-based loop handling. 8268 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8269 8270 // Frame & Return address. 8271 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8272 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8273 } 8274 } 8275 8276 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8277 SmallVectorImpl<SDValue>&Results, 8278 SelectionDAG &DAG) const { 8279 SDLoc dl(N); 8280 switch (N->getOpcode()) { 8281 default: 8282 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8283 case ISD::READCYCLECOUNTER: { 8284 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8285 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8286 8287 Results.push_back(RTB); 8288 Results.push_back(RTB.getValue(1)); 8289 Results.push_back(RTB.getValue(2)); 8290 break; 8291 } 8292 case ISD::INTRINSIC_W_CHAIN: { 8293 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8294 Intrinsic::ppc_is_decremented_ctr_nonzero) 8295 break; 8296 8297 assert(N->getValueType(0) == MVT::i1 && 8298 "Unexpected result type for CTR decrement intrinsic"); 8299 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8300 N->getValueType(0)); 8301 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8302 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8303 N->getOperand(1)); 8304 8305 Results.push_back(NewInt); 8306 Results.push_back(NewInt.getValue(1)); 8307 break; 8308 } 8309 case ISD::VAARG: { 8310 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8311 return; 8312 8313 EVT VT = N->getValueType(0); 8314 8315 if (VT == MVT::i64) { 8316 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8317 8318 Results.push_back(NewNode); 8319 Results.push_back(NewNode.getValue(1)); 8320 } 8321 return; 8322 } 8323 case ISD::FP_ROUND_INREG: { 8324 assert(N->getValueType(0) == MVT::ppcf128); 8325 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8326 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8327 MVT::f64, N->getOperand(0), 8328 DAG.getIntPtrConstant(0, dl)); 8329 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8330 MVT::f64, N->getOperand(0), 8331 DAG.getIntPtrConstant(1, dl)); 8332 8333 // Add the two halves of the long double in round-to-zero mode. 8334 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8335 8336 // We know the low half is about to be thrown away, so just use something 8337 // convenient. 8338 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8339 FPreg, FPreg)); 8340 return; 8341 } 8342 case ISD::FP_TO_SINT: 8343 case ISD::FP_TO_UINT: 8344 // LowerFP_TO_INT() can only handle f32 and f64. 8345 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8346 return; 8347 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8348 return; 8349 } 8350 } 8351 8352 //===----------------------------------------------------------------------===// 8353 // Other Lowering Code 8354 //===----------------------------------------------------------------------===// 8355 8356 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8357 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8358 Function *Func = Intrinsic::getDeclaration(M, Id); 8359 return Builder.CreateCall(Func, {}); 8360 } 8361 8362 // The mappings for emitLeading/TrailingFence is taken from 8363 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8364 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8365 AtomicOrdering Ord, bool IsStore, 8366 bool IsLoad) const { 8367 if (Ord == AtomicOrdering::SequentiallyConsistent) 8368 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8369 if (isReleaseOrStronger(Ord)) 8370 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8371 return nullptr; 8372 } 8373 8374 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8375 AtomicOrdering Ord, bool IsStore, 8376 bool IsLoad) const { 8377 if (IsLoad && isAcquireOrStronger(Ord)) 8378 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8379 // FIXME: this is too conservative, a dependent branch + isync is enough. 8380 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8381 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8382 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8383 return nullptr; 8384 } 8385 8386 MachineBasicBlock * 8387 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8388 unsigned AtomicSize, 8389 unsigned BinOpcode) const { 8390 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8391 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8392 8393 auto LoadMnemonic = PPC::LDARX; 8394 auto StoreMnemonic = PPC::STDCX; 8395 switch (AtomicSize) { 8396 default: 8397 llvm_unreachable("Unexpected size of atomic entity"); 8398 case 1: 8399 LoadMnemonic = PPC::LBARX; 8400 StoreMnemonic = PPC::STBCX; 8401 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8402 break; 8403 case 2: 8404 LoadMnemonic = PPC::LHARX; 8405 StoreMnemonic = PPC::STHCX; 8406 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8407 break; 8408 case 4: 8409 LoadMnemonic = PPC::LWARX; 8410 StoreMnemonic = PPC::STWCX; 8411 break; 8412 case 8: 8413 LoadMnemonic = PPC::LDARX; 8414 StoreMnemonic = PPC::STDCX; 8415 break; 8416 } 8417 8418 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8419 MachineFunction *F = BB->getParent(); 8420 MachineFunction::iterator It = ++BB->getIterator(); 8421 8422 unsigned dest = MI->getOperand(0).getReg(); 8423 unsigned ptrA = MI->getOperand(1).getReg(); 8424 unsigned ptrB = MI->getOperand(2).getReg(); 8425 unsigned incr = MI->getOperand(3).getReg(); 8426 DebugLoc dl = MI->getDebugLoc(); 8427 8428 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8429 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8430 F->insert(It, loopMBB); 8431 F->insert(It, exitMBB); 8432 exitMBB->splice(exitMBB->begin(), BB, 8433 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8434 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8435 8436 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8437 unsigned TmpReg = (!BinOpcode) ? incr : 8438 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8439 : &PPC::GPRCRegClass); 8440 8441 // thisMBB: 8442 // ... 8443 // fallthrough --> loopMBB 8444 BB->addSuccessor(loopMBB); 8445 8446 // loopMBB: 8447 // l[wd]arx dest, ptr 8448 // add r0, dest, incr 8449 // st[wd]cx. r0, ptr 8450 // bne- loopMBB 8451 // fallthrough --> exitMBB 8452 BB = loopMBB; 8453 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8454 .addReg(ptrA).addReg(ptrB); 8455 if (BinOpcode) 8456 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8457 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8458 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8459 BuildMI(BB, dl, TII->get(PPC::BCC)) 8460 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8461 BB->addSuccessor(loopMBB); 8462 BB->addSuccessor(exitMBB); 8463 8464 // exitMBB: 8465 // ... 8466 BB = exitMBB; 8467 return BB; 8468 } 8469 8470 MachineBasicBlock * 8471 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8472 MachineBasicBlock *BB, 8473 bool is8bit, // operation 8474 unsigned BinOpcode) const { 8475 // If we support part-word atomic mnemonics, just use them 8476 if (Subtarget.hasPartwordAtomics()) 8477 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8478 8479 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8480 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8481 // In 64 bit mode we have to use 64 bits for addresses, even though the 8482 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8483 // registers without caring whether they're 32 or 64, but here we're 8484 // doing actual arithmetic on the addresses. 8485 bool is64bit = Subtarget.isPPC64(); 8486 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8487 8488 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8489 MachineFunction *F = BB->getParent(); 8490 MachineFunction::iterator It = ++BB->getIterator(); 8491 8492 unsigned dest = MI->getOperand(0).getReg(); 8493 unsigned ptrA = MI->getOperand(1).getReg(); 8494 unsigned ptrB = MI->getOperand(2).getReg(); 8495 unsigned incr = MI->getOperand(3).getReg(); 8496 DebugLoc dl = MI->getDebugLoc(); 8497 8498 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8499 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8500 F->insert(It, loopMBB); 8501 F->insert(It, exitMBB); 8502 exitMBB->splice(exitMBB->begin(), BB, 8503 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8504 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8505 8506 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8507 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8508 : &PPC::GPRCRegClass; 8509 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8510 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8511 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8512 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8513 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8514 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8515 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8516 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8517 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8518 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8519 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8520 unsigned Ptr1Reg; 8521 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8522 8523 // thisMBB: 8524 // ... 8525 // fallthrough --> loopMBB 8526 BB->addSuccessor(loopMBB); 8527 8528 // The 4-byte load must be aligned, while a char or short may be 8529 // anywhere in the word. Hence all this nasty bookkeeping code. 8530 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8531 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8532 // xori shift, shift1, 24 [16] 8533 // rlwinm ptr, ptr1, 0, 0, 29 8534 // slw incr2, incr, shift 8535 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8536 // slw mask, mask2, shift 8537 // loopMBB: 8538 // lwarx tmpDest, ptr 8539 // add tmp, tmpDest, incr2 8540 // andc tmp2, tmpDest, mask 8541 // and tmp3, tmp, mask 8542 // or tmp4, tmp3, tmp2 8543 // stwcx. tmp4, ptr 8544 // bne- loopMBB 8545 // fallthrough --> exitMBB 8546 // srw dest, tmpDest, shift 8547 if (ptrA != ZeroReg) { 8548 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8549 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8550 .addReg(ptrA).addReg(ptrB); 8551 } else { 8552 Ptr1Reg = ptrB; 8553 } 8554 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8555 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8556 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8557 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8558 if (is64bit) 8559 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8560 .addReg(Ptr1Reg).addImm(0).addImm(61); 8561 else 8562 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8563 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8564 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8565 .addReg(incr).addReg(ShiftReg); 8566 if (is8bit) 8567 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8568 else { 8569 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8570 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8571 } 8572 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8573 .addReg(Mask2Reg).addReg(ShiftReg); 8574 8575 BB = loopMBB; 8576 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8577 .addReg(ZeroReg).addReg(PtrReg); 8578 if (BinOpcode) 8579 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8580 .addReg(Incr2Reg).addReg(TmpDestReg); 8581 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8582 .addReg(TmpDestReg).addReg(MaskReg); 8583 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8584 .addReg(TmpReg).addReg(MaskReg); 8585 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8586 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8587 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8588 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8589 BuildMI(BB, dl, TII->get(PPC::BCC)) 8590 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8591 BB->addSuccessor(loopMBB); 8592 BB->addSuccessor(exitMBB); 8593 8594 // exitMBB: 8595 // ... 8596 BB = exitMBB; 8597 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8598 .addReg(ShiftReg); 8599 return BB; 8600 } 8601 8602 llvm::MachineBasicBlock* 8603 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8604 MachineBasicBlock *MBB) const { 8605 DebugLoc DL = MI->getDebugLoc(); 8606 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8607 8608 MachineFunction *MF = MBB->getParent(); 8609 MachineRegisterInfo &MRI = MF->getRegInfo(); 8610 8611 const BasicBlock *BB = MBB->getBasicBlock(); 8612 MachineFunction::iterator I = ++MBB->getIterator(); 8613 8614 // Memory Reference 8615 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8616 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8617 8618 unsigned DstReg = MI->getOperand(0).getReg(); 8619 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8620 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8621 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8622 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8623 8624 MVT PVT = getPointerTy(MF->getDataLayout()); 8625 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8626 "Invalid Pointer Size!"); 8627 // For v = setjmp(buf), we generate 8628 // 8629 // thisMBB: 8630 // SjLjSetup mainMBB 8631 // bl mainMBB 8632 // v_restore = 1 8633 // b sinkMBB 8634 // 8635 // mainMBB: 8636 // buf[LabelOffset] = LR 8637 // v_main = 0 8638 // 8639 // sinkMBB: 8640 // v = phi(main, restore) 8641 // 8642 8643 MachineBasicBlock *thisMBB = MBB; 8644 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8645 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8646 MF->insert(I, mainMBB); 8647 MF->insert(I, sinkMBB); 8648 8649 MachineInstrBuilder MIB; 8650 8651 // Transfer the remainder of BB and its successor edges to sinkMBB. 8652 sinkMBB->splice(sinkMBB->begin(), MBB, 8653 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8654 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8655 8656 // Note that the structure of the jmp_buf used here is not compatible 8657 // with that used by libc, and is not designed to be. Specifically, it 8658 // stores only those 'reserved' registers that LLVM does not otherwise 8659 // understand how to spill. Also, by convention, by the time this 8660 // intrinsic is called, Clang has already stored the frame address in the 8661 // first slot of the buffer and stack address in the third. Following the 8662 // X86 target code, we'll store the jump address in the second slot. We also 8663 // need to save the TOC pointer (R2) to handle jumps between shared 8664 // libraries, and that will be stored in the fourth slot. The thread 8665 // identifier (R13) is not affected. 8666 8667 // thisMBB: 8668 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8669 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8670 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8671 8672 // Prepare IP either in reg. 8673 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8674 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8675 unsigned BufReg = MI->getOperand(1).getReg(); 8676 8677 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8678 setUsesTOCBasePtr(*MBB->getParent()); 8679 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8680 .addReg(PPC::X2) 8681 .addImm(TOCOffset) 8682 .addReg(BufReg); 8683 MIB.setMemRefs(MMOBegin, MMOEnd); 8684 } 8685 8686 // Naked functions never have a base pointer, and so we use r1. For all 8687 // other functions, this decision must be delayed until during PEI. 8688 unsigned BaseReg; 8689 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8690 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8691 else 8692 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8693 8694 MIB = BuildMI(*thisMBB, MI, DL, 8695 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8696 .addReg(BaseReg) 8697 .addImm(BPOffset) 8698 .addReg(BufReg); 8699 MIB.setMemRefs(MMOBegin, MMOEnd); 8700 8701 // Setup 8702 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8703 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8704 MIB.addRegMask(TRI->getNoPreservedMask()); 8705 8706 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8707 8708 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8709 .addMBB(mainMBB); 8710 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8711 8712 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8713 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8714 8715 // mainMBB: 8716 // mainDstReg = 0 8717 MIB = 8718 BuildMI(mainMBB, DL, 8719 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8720 8721 // Store IP 8722 if (Subtarget.isPPC64()) { 8723 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8724 .addReg(LabelReg) 8725 .addImm(LabelOffset) 8726 .addReg(BufReg); 8727 } else { 8728 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8729 .addReg(LabelReg) 8730 .addImm(LabelOffset) 8731 .addReg(BufReg); 8732 } 8733 8734 MIB.setMemRefs(MMOBegin, MMOEnd); 8735 8736 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8737 mainMBB->addSuccessor(sinkMBB); 8738 8739 // sinkMBB: 8740 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8741 TII->get(PPC::PHI), DstReg) 8742 .addReg(mainDstReg).addMBB(mainMBB) 8743 .addReg(restoreDstReg).addMBB(thisMBB); 8744 8745 MI->eraseFromParent(); 8746 return sinkMBB; 8747 } 8748 8749 MachineBasicBlock * 8750 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8751 MachineBasicBlock *MBB) const { 8752 DebugLoc DL = MI->getDebugLoc(); 8753 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8754 8755 MachineFunction *MF = MBB->getParent(); 8756 MachineRegisterInfo &MRI = MF->getRegInfo(); 8757 8758 // Memory Reference 8759 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8760 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8761 8762 MVT PVT = getPointerTy(MF->getDataLayout()); 8763 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8764 "Invalid Pointer Size!"); 8765 8766 const TargetRegisterClass *RC = 8767 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8768 unsigned Tmp = MRI.createVirtualRegister(RC); 8769 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8770 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8771 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8772 unsigned BP = 8773 (PVT == MVT::i64) 8774 ? PPC::X30 8775 : (Subtarget.isSVR4ABI() && 8776 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8777 ? PPC::R29 8778 : PPC::R30); 8779 8780 MachineInstrBuilder MIB; 8781 8782 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8783 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8784 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8785 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8786 8787 unsigned BufReg = MI->getOperand(0).getReg(); 8788 8789 // Reload FP (the jumped-to function may not have had a 8790 // frame pointer, and if so, then its r31 will be restored 8791 // as necessary). 8792 if (PVT == MVT::i64) { 8793 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8794 .addImm(0) 8795 .addReg(BufReg); 8796 } else { 8797 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8798 .addImm(0) 8799 .addReg(BufReg); 8800 } 8801 MIB.setMemRefs(MMOBegin, MMOEnd); 8802 8803 // Reload IP 8804 if (PVT == MVT::i64) { 8805 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8806 .addImm(LabelOffset) 8807 .addReg(BufReg); 8808 } else { 8809 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8810 .addImm(LabelOffset) 8811 .addReg(BufReg); 8812 } 8813 MIB.setMemRefs(MMOBegin, MMOEnd); 8814 8815 // Reload SP 8816 if (PVT == MVT::i64) { 8817 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8818 .addImm(SPOffset) 8819 .addReg(BufReg); 8820 } else { 8821 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8822 .addImm(SPOffset) 8823 .addReg(BufReg); 8824 } 8825 MIB.setMemRefs(MMOBegin, MMOEnd); 8826 8827 // Reload BP 8828 if (PVT == MVT::i64) { 8829 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8830 .addImm(BPOffset) 8831 .addReg(BufReg); 8832 } else { 8833 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8834 .addImm(BPOffset) 8835 .addReg(BufReg); 8836 } 8837 MIB.setMemRefs(MMOBegin, MMOEnd); 8838 8839 // Reload TOC 8840 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8841 setUsesTOCBasePtr(*MBB->getParent()); 8842 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8843 .addImm(TOCOffset) 8844 .addReg(BufReg); 8845 8846 MIB.setMemRefs(MMOBegin, MMOEnd); 8847 } 8848 8849 // Jump 8850 BuildMI(*MBB, MI, DL, 8851 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8852 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8853 8854 MI->eraseFromParent(); 8855 return MBB; 8856 } 8857 8858 MachineBasicBlock * 8859 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8860 MachineBasicBlock *BB) const { 8861 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8862 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8863 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8864 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8865 // Call lowering should have added an r2 operand to indicate a dependence 8866 // on the TOC base pointer value. It can't however, because there is no 8867 // way to mark the dependence as implicit there, and so the stackmap code 8868 // will confuse it with a regular operand. Instead, add the dependence 8869 // here. 8870 setUsesTOCBasePtr(*BB->getParent()); 8871 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8872 } 8873 8874 return emitPatchPoint(MI, BB); 8875 } 8876 8877 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8878 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8879 return emitEHSjLjSetJmp(MI, BB); 8880 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8881 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8882 return emitEHSjLjLongJmp(MI, BB); 8883 } 8884 8885 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8886 8887 // To "insert" these instructions we actually have to insert their 8888 // control-flow patterns. 8889 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8890 MachineFunction::iterator It = ++BB->getIterator(); 8891 8892 MachineFunction *F = BB->getParent(); 8893 8894 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8895 MI->getOpcode() == PPC::SELECT_CC_I8 || 8896 MI->getOpcode() == PPC::SELECT_I4 || 8897 MI->getOpcode() == PPC::SELECT_I8)) { 8898 SmallVector<MachineOperand, 2> Cond; 8899 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8900 MI->getOpcode() == PPC::SELECT_CC_I8) 8901 Cond.push_back(MI->getOperand(4)); 8902 else 8903 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8904 Cond.push_back(MI->getOperand(1)); 8905 8906 DebugLoc dl = MI->getDebugLoc(); 8907 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8908 Cond, MI->getOperand(2).getReg(), 8909 MI->getOperand(3).getReg()); 8910 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8911 MI->getOpcode() == PPC::SELECT_CC_I8 || 8912 MI->getOpcode() == PPC::SELECT_CC_F4 || 8913 MI->getOpcode() == PPC::SELECT_CC_F8 || 8914 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8915 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8916 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8917 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8918 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8919 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8920 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8921 MI->getOpcode() == PPC::SELECT_I4 || 8922 MI->getOpcode() == PPC::SELECT_I8 || 8923 MI->getOpcode() == PPC::SELECT_F4 || 8924 MI->getOpcode() == PPC::SELECT_F8 || 8925 MI->getOpcode() == PPC::SELECT_QFRC || 8926 MI->getOpcode() == PPC::SELECT_QSRC || 8927 MI->getOpcode() == PPC::SELECT_QBRC || 8928 MI->getOpcode() == PPC::SELECT_VRRC || 8929 MI->getOpcode() == PPC::SELECT_VSFRC || 8930 MI->getOpcode() == PPC::SELECT_VSSRC || 8931 MI->getOpcode() == PPC::SELECT_VSRC) { 8932 // The incoming instruction knows the destination vreg to set, the 8933 // condition code register to branch on, the true/false values to 8934 // select between, and a branch opcode to use. 8935 8936 // thisMBB: 8937 // ... 8938 // TrueVal = ... 8939 // cmpTY ccX, r1, r2 8940 // bCC copy1MBB 8941 // fallthrough --> copy0MBB 8942 MachineBasicBlock *thisMBB = BB; 8943 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8944 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8945 DebugLoc dl = MI->getDebugLoc(); 8946 F->insert(It, copy0MBB); 8947 F->insert(It, sinkMBB); 8948 8949 // Transfer the remainder of BB and its successor edges to sinkMBB. 8950 sinkMBB->splice(sinkMBB->begin(), BB, 8951 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8952 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8953 8954 // Next, add the true and fallthrough blocks as its successors. 8955 BB->addSuccessor(copy0MBB); 8956 BB->addSuccessor(sinkMBB); 8957 8958 if (MI->getOpcode() == PPC::SELECT_I4 || 8959 MI->getOpcode() == PPC::SELECT_I8 || 8960 MI->getOpcode() == PPC::SELECT_F4 || 8961 MI->getOpcode() == PPC::SELECT_F8 || 8962 MI->getOpcode() == PPC::SELECT_QFRC || 8963 MI->getOpcode() == PPC::SELECT_QSRC || 8964 MI->getOpcode() == PPC::SELECT_QBRC || 8965 MI->getOpcode() == PPC::SELECT_VRRC || 8966 MI->getOpcode() == PPC::SELECT_VSFRC || 8967 MI->getOpcode() == PPC::SELECT_VSSRC || 8968 MI->getOpcode() == PPC::SELECT_VSRC) { 8969 BuildMI(BB, dl, TII->get(PPC::BC)) 8970 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8971 } else { 8972 unsigned SelectPred = MI->getOperand(4).getImm(); 8973 BuildMI(BB, dl, TII->get(PPC::BCC)) 8974 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8975 } 8976 8977 // copy0MBB: 8978 // %FalseValue = ... 8979 // # fallthrough to sinkMBB 8980 BB = copy0MBB; 8981 8982 // Update machine-CFG edges 8983 BB->addSuccessor(sinkMBB); 8984 8985 // sinkMBB: 8986 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8987 // ... 8988 BB = sinkMBB; 8989 BuildMI(*BB, BB->begin(), dl, 8990 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8991 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8992 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8993 } else if (MI->getOpcode() == PPC::ReadTB) { 8994 // To read the 64-bit time-base register on a 32-bit target, we read the 8995 // two halves. Should the counter have wrapped while it was being read, we 8996 // need to try again. 8997 // ... 8998 // readLoop: 8999 // mfspr Rx,TBU # load from TBU 9000 // mfspr Ry,TB # load from TB 9001 // mfspr Rz,TBU # load from TBU 9002 // cmpw crX,Rx,Rz # check if 'old'='new' 9003 // bne readLoop # branch if they're not equal 9004 // ... 9005 9006 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 9007 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9008 DebugLoc dl = MI->getDebugLoc(); 9009 F->insert(It, readMBB); 9010 F->insert(It, sinkMBB); 9011 9012 // Transfer the remainder of BB and its successor edges to sinkMBB. 9013 sinkMBB->splice(sinkMBB->begin(), BB, 9014 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9015 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9016 9017 BB->addSuccessor(readMBB); 9018 BB = readMBB; 9019 9020 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9021 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 9022 unsigned LoReg = MI->getOperand(0).getReg(); 9023 unsigned HiReg = MI->getOperand(1).getReg(); 9024 9025 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 9026 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 9027 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 9028 9029 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9030 9031 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 9032 .addReg(HiReg).addReg(ReadAgainReg); 9033 BuildMI(BB, dl, TII->get(PPC::BCC)) 9034 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 9035 9036 BB->addSuccessor(readMBB); 9037 BB->addSuccessor(sinkMBB); 9038 } 9039 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 9040 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 9041 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 9042 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 9043 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 9044 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 9045 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 9046 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 9047 9048 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 9049 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 9050 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 9051 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 9052 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 9053 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 9054 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 9055 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 9056 9057 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 9058 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 9059 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 9060 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 9061 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 9062 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 9063 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 9064 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 9065 9066 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 9067 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 9068 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 9069 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9070 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9071 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9072 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9073 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9074 9075 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9076 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9077 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9078 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9079 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9080 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9081 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9082 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9083 9084 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9085 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9086 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9087 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9088 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9089 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9090 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9091 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9092 9093 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 9094 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9095 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 9096 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9097 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 9098 BB = EmitAtomicBinary(MI, BB, 4, 0); 9099 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 9100 BB = EmitAtomicBinary(MI, BB, 8, 0); 9101 9102 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9103 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9104 (Subtarget.hasPartwordAtomics() && 9105 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9106 (Subtarget.hasPartwordAtomics() && 9107 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9108 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9109 9110 auto LoadMnemonic = PPC::LDARX; 9111 auto StoreMnemonic = PPC::STDCX; 9112 switch(MI->getOpcode()) { 9113 default: 9114 llvm_unreachable("Compare and swap of unknown size"); 9115 case PPC::ATOMIC_CMP_SWAP_I8: 9116 LoadMnemonic = PPC::LBARX; 9117 StoreMnemonic = PPC::STBCX; 9118 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9119 break; 9120 case PPC::ATOMIC_CMP_SWAP_I16: 9121 LoadMnemonic = PPC::LHARX; 9122 StoreMnemonic = PPC::STHCX; 9123 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9124 break; 9125 case PPC::ATOMIC_CMP_SWAP_I32: 9126 LoadMnemonic = PPC::LWARX; 9127 StoreMnemonic = PPC::STWCX; 9128 break; 9129 case PPC::ATOMIC_CMP_SWAP_I64: 9130 LoadMnemonic = PPC::LDARX; 9131 StoreMnemonic = PPC::STDCX; 9132 break; 9133 } 9134 unsigned dest = MI->getOperand(0).getReg(); 9135 unsigned ptrA = MI->getOperand(1).getReg(); 9136 unsigned ptrB = MI->getOperand(2).getReg(); 9137 unsigned oldval = MI->getOperand(3).getReg(); 9138 unsigned newval = MI->getOperand(4).getReg(); 9139 DebugLoc dl = MI->getDebugLoc(); 9140 9141 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9142 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9143 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9144 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9145 F->insert(It, loop1MBB); 9146 F->insert(It, loop2MBB); 9147 F->insert(It, midMBB); 9148 F->insert(It, exitMBB); 9149 exitMBB->splice(exitMBB->begin(), BB, 9150 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9151 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9152 9153 // thisMBB: 9154 // ... 9155 // fallthrough --> loopMBB 9156 BB->addSuccessor(loop1MBB); 9157 9158 // loop1MBB: 9159 // l[bhwd]arx dest, ptr 9160 // cmp[wd] dest, oldval 9161 // bne- midMBB 9162 // loop2MBB: 9163 // st[bhwd]cx. newval, ptr 9164 // bne- loopMBB 9165 // b exitBB 9166 // midMBB: 9167 // st[bhwd]cx. dest, ptr 9168 // exitBB: 9169 BB = loop1MBB; 9170 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9171 .addReg(ptrA).addReg(ptrB); 9172 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9173 .addReg(oldval).addReg(dest); 9174 BuildMI(BB, dl, TII->get(PPC::BCC)) 9175 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9176 BB->addSuccessor(loop2MBB); 9177 BB->addSuccessor(midMBB); 9178 9179 BB = loop2MBB; 9180 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9181 .addReg(newval).addReg(ptrA).addReg(ptrB); 9182 BuildMI(BB, dl, TII->get(PPC::BCC)) 9183 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9184 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9185 BB->addSuccessor(loop1MBB); 9186 BB->addSuccessor(exitMBB); 9187 9188 BB = midMBB; 9189 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9190 .addReg(dest).addReg(ptrA).addReg(ptrB); 9191 BB->addSuccessor(exitMBB); 9192 9193 // exitMBB: 9194 // ... 9195 BB = exitMBB; 9196 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9197 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9198 // We must use 64-bit registers for addresses when targeting 64-bit, 9199 // since we're actually doing arithmetic on them. Other registers 9200 // can be 32-bit. 9201 bool is64bit = Subtarget.isPPC64(); 9202 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9203 9204 unsigned dest = MI->getOperand(0).getReg(); 9205 unsigned ptrA = MI->getOperand(1).getReg(); 9206 unsigned ptrB = MI->getOperand(2).getReg(); 9207 unsigned oldval = MI->getOperand(3).getReg(); 9208 unsigned newval = MI->getOperand(4).getReg(); 9209 DebugLoc dl = MI->getDebugLoc(); 9210 9211 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9212 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9213 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9214 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9215 F->insert(It, loop1MBB); 9216 F->insert(It, loop2MBB); 9217 F->insert(It, midMBB); 9218 F->insert(It, exitMBB); 9219 exitMBB->splice(exitMBB->begin(), BB, 9220 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9221 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9222 9223 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9224 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9225 : &PPC::GPRCRegClass; 9226 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9227 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9228 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 9229 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9230 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9231 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9232 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9233 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9234 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9235 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9236 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9237 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9238 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9239 unsigned Ptr1Reg; 9240 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9241 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9242 // thisMBB: 9243 // ... 9244 // fallthrough --> loopMBB 9245 BB->addSuccessor(loop1MBB); 9246 9247 // The 4-byte load must be aligned, while a char or short may be 9248 // anywhere in the word. Hence all this nasty bookkeeping code. 9249 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9250 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9251 // xori shift, shift1, 24 [16] 9252 // rlwinm ptr, ptr1, 0, 0, 29 9253 // slw newval2, newval, shift 9254 // slw oldval2, oldval,shift 9255 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9256 // slw mask, mask2, shift 9257 // and newval3, newval2, mask 9258 // and oldval3, oldval2, mask 9259 // loop1MBB: 9260 // lwarx tmpDest, ptr 9261 // and tmp, tmpDest, mask 9262 // cmpw tmp, oldval3 9263 // bne- midMBB 9264 // loop2MBB: 9265 // andc tmp2, tmpDest, mask 9266 // or tmp4, tmp2, newval3 9267 // stwcx. tmp4, ptr 9268 // bne- loop1MBB 9269 // b exitBB 9270 // midMBB: 9271 // stwcx. tmpDest, ptr 9272 // exitBB: 9273 // srw dest, tmpDest, shift 9274 if (ptrA != ZeroReg) { 9275 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9276 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9277 .addReg(ptrA).addReg(ptrB); 9278 } else { 9279 Ptr1Reg = ptrB; 9280 } 9281 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9282 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9283 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9284 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9285 if (is64bit) 9286 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9287 .addReg(Ptr1Reg).addImm(0).addImm(61); 9288 else 9289 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9290 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9291 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9292 .addReg(newval).addReg(ShiftReg); 9293 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9294 .addReg(oldval).addReg(ShiftReg); 9295 if (is8bit) 9296 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9297 else { 9298 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9299 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9300 .addReg(Mask3Reg).addImm(65535); 9301 } 9302 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9303 .addReg(Mask2Reg).addReg(ShiftReg); 9304 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9305 .addReg(NewVal2Reg).addReg(MaskReg); 9306 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9307 .addReg(OldVal2Reg).addReg(MaskReg); 9308 9309 BB = loop1MBB; 9310 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9311 .addReg(ZeroReg).addReg(PtrReg); 9312 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9313 .addReg(TmpDestReg).addReg(MaskReg); 9314 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9315 .addReg(TmpReg).addReg(OldVal3Reg); 9316 BuildMI(BB, dl, TII->get(PPC::BCC)) 9317 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9318 BB->addSuccessor(loop2MBB); 9319 BB->addSuccessor(midMBB); 9320 9321 BB = loop2MBB; 9322 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9323 .addReg(TmpDestReg).addReg(MaskReg); 9324 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9325 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9326 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9327 .addReg(ZeroReg).addReg(PtrReg); 9328 BuildMI(BB, dl, TII->get(PPC::BCC)) 9329 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9330 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9331 BB->addSuccessor(loop1MBB); 9332 BB->addSuccessor(exitMBB); 9333 9334 BB = midMBB; 9335 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9336 .addReg(ZeroReg).addReg(PtrReg); 9337 BB->addSuccessor(exitMBB); 9338 9339 // exitMBB: 9340 // ... 9341 BB = exitMBB; 9342 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9343 .addReg(ShiftReg); 9344 } else if (MI->getOpcode() == PPC::FADDrtz) { 9345 // This pseudo performs an FADD with rounding mode temporarily forced 9346 // to round-to-zero. We emit this via custom inserter since the FPSCR 9347 // is not modeled at the SelectionDAG level. 9348 unsigned Dest = MI->getOperand(0).getReg(); 9349 unsigned Src1 = MI->getOperand(1).getReg(); 9350 unsigned Src2 = MI->getOperand(2).getReg(); 9351 DebugLoc dl = MI->getDebugLoc(); 9352 9353 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9354 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9355 9356 // Save FPSCR value. 9357 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9358 9359 // Set rounding mode to round-to-zero. 9360 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9361 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9362 9363 // Perform addition. 9364 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9365 9366 // Restore FPSCR value. 9367 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9368 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9369 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9370 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9371 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9372 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9373 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9374 PPC::ANDIo8 : PPC::ANDIo; 9375 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9376 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9377 9378 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9379 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9380 &PPC::GPRCRegClass : 9381 &PPC::G8RCRegClass); 9382 9383 DebugLoc dl = MI->getDebugLoc(); 9384 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9385 .addReg(MI->getOperand(1).getReg()).addImm(1); 9386 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9387 MI->getOperand(0).getReg()) 9388 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9389 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9390 DebugLoc Dl = MI->getDebugLoc(); 9391 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9392 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9393 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9394 return BB; 9395 } else { 9396 llvm_unreachable("Unexpected instr type to insert"); 9397 } 9398 9399 MI->eraseFromParent(); // The pseudo instruction is gone now. 9400 return BB; 9401 } 9402 9403 //===----------------------------------------------------------------------===// 9404 // Target Optimization Hooks 9405 //===----------------------------------------------------------------------===// 9406 9407 static std::string getRecipOp(const char *Base, EVT VT) { 9408 std::string RecipOp(Base); 9409 if (VT.getScalarType() == MVT::f64) 9410 RecipOp += "d"; 9411 else 9412 RecipOp += "f"; 9413 9414 if (VT.isVector()) 9415 RecipOp = "vec-" + RecipOp; 9416 9417 return RecipOp; 9418 } 9419 9420 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9421 DAGCombinerInfo &DCI, 9422 unsigned &RefinementSteps, 9423 bool &UseOneConstNR) const { 9424 EVT VT = Operand.getValueType(); 9425 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9426 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9427 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9428 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9429 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9430 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9431 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9432 std::string RecipOp = getRecipOp("sqrt", VT); 9433 if (!Recips.isEnabled(RecipOp)) 9434 return SDValue(); 9435 9436 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9437 UseOneConstNR = true; 9438 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9439 } 9440 return SDValue(); 9441 } 9442 9443 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9444 DAGCombinerInfo &DCI, 9445 unsigned &RefinementSteps) const { 9446 EVT VT = Operand.getValueType(); 9447 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9448 (VT == MVT::f64 && Subtarget.hasFRE()) || 9449 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9450 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9451 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9452 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9453 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9454 std::string RecipOp = getRecipOp("div", VT); 9455 if (!Recips.isEnabled(RecipOp)) 9456 return SDValue(); 9457 9458 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9459 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9460 } 9461 return SDValue(); 9462 } 9463 9464 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9465 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9466 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9467 // enabled for division), this functionality is redundant with the default 9468 // combiner logic (once the division -> reciprocal/multiply transformation 9469 // has taken place). As a result, this matters more for older cores than for 9470 // newer ones. 9471 9472 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9473 // reciprocal if there are two or more FDIVs (for embedded cores with only 9474 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9475 switch (Subtarget.getDarwinDirective()) { 9476 default: 9477 return 3; 9478 case PPC::DIR_440: 9479 case PPC::DIR_A2: 9480 case PPC::DIR_E500mc: 9481 case PPC::DIR_E5500: 9482 return 2; 9483 } 9484 } 9485 9486 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9487 // collapsed, and so we need to look through chains of them. 9488 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9489 int64_t& Offset, SelectionDAG &DAG) { 9490 if (DAG.isBaseWithConstantOffset(Loc)) { 9491 Base = Loc.getOperand(0); 9492 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9493 9494 // The base might itself be a base plus an offset, and if so, accumulate 9495 // that as well. 9496 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9497 } 9498 } 9499 9500 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9501 unsigned Bytes, int Dist, 9502 SelectionDAG &DAG) { 9503 if (VT.getSizeInBits() / 8 != Bytes) 9504 return false; 9505 9506 SDValue BaseLoc = Base->getBasePtr(); 9507 if (Loc.getOpcode() == ISD::FrameIndex) { 9508 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9509 return false; 9510 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9511 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9512 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9513 int FS = MFI->getObjectSize(FI); 9514 int BFS = MFI->getObjectSize(BFI); 9515 if (FS != BFS || FS != (int)Bytes) return false; 9516 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9517 } 9518 9519 SDValue Base1 = Loc, Base2 = BaseLoc; 9520 int64_t Offset1 = 0, Offset2 = 0; 9521 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9522 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9523 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9524 return true; 9525 9526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9527 const GlobalValue *GV1 = nullptr; 9528 const GlobalValue *GV2 = nullptr; 9529 Offset1 = 0; 9530 Offset2 = 0; 9531 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9532 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9533 if (isGA1 && isGA2 && GV1 == GV2) 9534 return Offset1 == (Offset2 + Dist*Bytes); 9535 return false; 9536 } 9537 9538 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9539 // not enforce equality of the chain operands. 9540 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9541 unsigned Bytes, int Dist, 9542 SelectionDAG &DAG) { 9543 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9544 EVT VT = LS->getMemoryVT(); 9545 SDValue Loc = LS->getBasePtr(); 9546 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9547 } 9548 9549 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9550 EVT VT; 9551 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9552 default: return false; 9553 case Intrinsic::ppc_qpx_qvlfd: 9554 case Intrinsic::ppc_qpx_qvlfda: 9555 VT = MVT::v4f64; 9556 break; 9557 case Intrinsic::ppc_qpx_qvlfs: 9558 case Intrinsic::ppc_qpx_qvlfsa: 9559 VT = MVT::v4f32; 9560 break; 9561 case Intrinsic::ppc_qpx_qvlfcd: 9562 case Intrinsic::ppc_qpx_qvlfcda: 9563 VT = MVT::v2f64; 9564 break; 9565 case Intrinsic::ppc_qpx_qvlfcs: 9566 case Intrinsic::ppc_qpx_qvlfcsa: 9567 VT = MVT::v2f32; 9568 break; 9569 case Intrinsic::ppc_qpx_qvlfiwa: 9570 case Intrinsic::ppc_qpx_qvlfiwz: 9571 case Intrinsic::ppc_altivec_lvx: 9572 case Intrinsic::ppc_altivec_lvxl: 9573 case Intrinsic::ppc_vsx_lxvw4x: 9574 VT = MVT::v4i32; 9575 break; 9576 case Intrinsic::ppc_vsx_lxvd2x: 9577 VT = MVT::v2f64; 9578 break; 9579 case Intrinsic::ppc_altivec_lvebx: 9580 VT = MVT::i8; 9581 break; 9582 case Intrinsic::ppc_altivec_lvehx: 9583 VT = MVT::i16; 9584 break; 9585 case Intrinsic::ppc_altivec_lvewx: 9586 VT = MVT::i32; 9587 break; 9588 } 9589 9590 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9591 } 9592 9593 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9594 EVT VT; 9595 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9596 default: return false; 9597 case Intrinsic::ppc_qpx_qvstfd: 9598 case Intrinsic::ppc_qpx_qvstfda: 9599 VT = MVT::v4f64; 9600 break; 9601 case Intrinsic::ppc_qpx_qvstfs: 9602 case Intrinsic::ppc_qpx_qvstfsa: 9603 VT = MVT::v4f32; 9604 break; 9605 case Intrinsic::ppc_qpx_qvstfcd: 9606 case Intrinsic::ppc_qpx_qvstfcda: 9607 VT = MVT::v2f64; 9608 break; 9609 case Intrinsic::ppc_qpx_qvstfcs: 9610 case Intrinsic::ppc_qpx_qvstfcsa: 9611 VT = MVT::v2f32; 9612 break; 9613 case Intrinsic::ppc_qpx_qvstfiw: 9614 case Intrinsic::ppc_qpx_qvstfiwa: 9615 case Intrinsic::ppc_altivec_stvx: 9616 case Intrinsic::ppc_altivec_stvxl: 9617 case Intrinsic::ppc_vsx_stxvw4x: 9618 VT = MVT::v4i32; 9619 break; 9620 case Intrinsic::ppc_vsx_stxvd2x: 9621 VT = MVT::v2f64; 9622 break; 9623 case Intrinsic::ppc_altivec_stvebx: 9624 VT = MVT::i8; 9625 break; 9626 case Intrinsic::ppc_altivec_stvehx: 9627 VT = MVT::i16; 9628 break; 9629 case Intrinsic::ppc_altivec_stvewx: 9630 VT = MVT::i32; 9631 break; 9632 } 9633 9634 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9635 } 9636 9637 return false; 9638 } 9639 9640 // Return true is there is a nearyby consecutive load to the one provided 9641 // (regardless of alignment). We search up and down the chain, looking though 9642 // token factors and other loads (but nothing else). As a result, a true result 9643 // indicates that it is safe to create a new consecutive load adjacent to the 9644 // load provided. 9645 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9646 SDValue Chain = LD->getChain(); 9647 EVT VT = LD->getMemoryVT(); 9648 9649 SmallSet<SDNode *, 16> LoadRoots; 9650 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9651 SmallSet<SDNode *, 16> Visited; 9652 9653 // First, search up the chain, branching to follow all token-factor operands. 9654 // If we find a consecutive load, then we're done, otherwise, record all 9655 // nodes just above the top-level loads and token factors. 9656 while (!Queue.empty()) { 9657 SDNode *ChainNext = Queue.pop_back_val(); 9658 if (!Visited.insert(ChainNext).second) 9659 continue; 9660 9661 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9662 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9663 return true; 9664 9665 if (!Visited.count(ChainLD->getChain().getNode())) 9666 Queue.push_back(ChainLD->getChain().getNode()); 9667 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9668 for (const SDUse &O : ChainNext->ops()) 9669 if (!Visited.count(O.getNode())) 9670 Queue.push_back(O.getNode()); 9671 } else 9672 LoadRoots.insert(ChainNext); 9673 } 9674 9675 // Second, search down the chain, starting from the top-level nodes recorded 9676 // in the first phase. These top-level nodes are the nodes just above all 9677 // loads and token factors. Starting with their uses, recursively look though 9678 // all loads (just the chain uses) and token factors to find a consecutive 9679 // load. 9680 Visited.clear(); 9681 Queue.clear(); 9682 9683 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9684 IE = LoadRoots.end(); I != IE; ++I) { 9685 Queue.push_back(*I); 9686 9687 while (!Queue.empty()) { 9688 SDNode *LoadRoot = Queue.pop_back_val(); 9689 if (!Visited.insert(LoadRoot).second) 9690 continue; 9691 9692 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9693 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9694 return true; 9695 9696 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9697 UE = LoadRoot->use_end(); UI != UE; ++UI) 9698 if (((isa<MemSDNode>(*UI) && 9699 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9700 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9701 Queue.push_back(*UI); 9702 } 9703 } 9704 9705 return false; 9706 } 9707 9708 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9709 DAGCombinerInfo &DCI) const { 9710 SelectionDAG &DAG = DCI.DAG; 9711 SDLoc dl(N); 9712 9713 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9714 // If we're tracking CR bits, we need to be careful that we don't have: 9715 // trunc(binary-ops(zext(x), zext(y))) 9716 // or 9717 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9718 // such that we're unnecessarily moving things into GPRs when it would be 9719 // better to keep them in CR bits. 9720 9721 // Note that trunc here can be an actual i1 trunc, or can be the effective 9722 // truncation that comes from a setcc or select_cc. 9723 if (N->getOpcode() == ISD::TRUNCATE && 9724 N->getValueType(0) != MVT::i1) 9725 return SDValue(); 9726 9727 if (N->getOperand(0).getValueType() != MVT::i32 && 9728 N->getOperand(0).getValueType() != MVT::i64) 9729 return SDValue(); 9730 9731 if (N->getOpcode() == ISD::SETCC || 9732 N->getOpcode() == ISD::SELECT_CC) { 9733 // If we're looking at a comparison, then we need to make sure that the 9734 // high bits (all except for the first) don't matter the result. 9735 ISD::CondCode CC = 9736 cast<CondCodeSDNode>(N->getOperand( 9737 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9738 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9739 9740 if (ISD::isSignedIntSetCC(CC)) { 9741 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9742 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9743 return SDValue(); 9744 } else if (ISD::isUnsignedIntSetCC(CC)) { 9745 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9746 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9747 !DAG.MaskedValueIsZero(N->getOperand(1), 9748 APInt::getHighBitsSet(OpBits, OpBits-1))) 9749 return SDValue(); 9750 } else { 9751 // This is neither a signed nor an unsigned comparison, just make sure 9752 // that the high bits are equal. 9753 APInt Op1Zero, Op1One; 9754 APInt Op2Zero, Op2One; 9755 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9756 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9757 9758 // We don't really care about what is known about the first bit (if 9759 // anything), so clear it in all masks prior to comparing them. 9760 Op1Zero.clearBit(0); Op1One.clearBit(0); 9761 Op2Zero.clearBit(0); Op2One.clearBit(0); 9762 9763 if (Op1Zero != Op2Zero || Op1One != Op2One) 9764 return SDValue(); 9765 } 9766 } 9767 9768 // We now know that the higher-order bits are irrelevant, we just need to 9769 // make sure that all of the intermediate operations are bit operations, and 9770 // all inputs are extensions. 9771 if (N->getOperand(0).getOpcode() != ISD::AND && 9772 N->getOperand(0).getOpcode() != ISD::OR && 9773 N->getOperand(0).getOpcode() != ISD::XOR && 9774 N->getOperand(0).getOpcode() != ISD::SELECT && 9775 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9776 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9777 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9778 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9779 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9780 return SDValue(); 9781 9782 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9783 N->getOperand(1).getOpcode() != ISD::AND && 9784 N->getOperand(1).getOpcode() != ISD::OR && 9785 N->getOperand(1).getOpcode() != ISD::XOR && 9786 N->getOperand(1).getOpcode() != ISD::SELECT && 9787 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9788 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9789 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9790 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9791 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9792 return SDValue(); 9793 9794 SmallVector<SDValue, 4> Inputs; 9795 SmallVector<SDValue, 8> BinOps, PromOps; 9796 SmallPtrSet<SDNode *, 16> Visited; 9797 9798 for (unsigned i = 0; i < 2; ++i) { 9799 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9800 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9801 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9802 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9803 isa<ConstantSDNode>(N->getOperand(i))) 9804 Inputs.push_back(N->getOperand(i)); 9805 else 9806 BinOps.push_back(N->getOperand(i)); 9807 9808 if (N->getOpcode() == ISD::TRUNCATE) 9809 break; 9810 } 9811 9812 // Visit all inputs, collect all binary operations (and, or, xor and 9813 // select) that are all fed by extensions. 9814 while (!BinOps.empty()) { 9815 SDValue BinOp = BinOps.back(); 9816 BinOps.pop_back(); 9817 9818 if (!Visited.insert(BinOp.getNode()).second) 9819 continue; 9820 9821 PromOps.push_back(BinOp); 9822 9823 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9824 // The condition of the select is not promoted. 9825 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9826 continue; 9827 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9828 continue; 9829 9830 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9831 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9832 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9833 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9834 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9835 Inputs.push_back(BinOp.getOperand(i)); 9836 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9837 BinOp.getOperand(i).getOpcode() == ISD::OR || 9838 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9839 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9840 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9841 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9842 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9843 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9844 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9845 BinOps.push_back(BinOp.getOperand(i)); 9846 } else { 9847 // We have an input that is not an extension or another binary 9848 // operation; we'll abort this transformation. 9849 return SDValue(); 9850 } 9851 } 9852 } 9853 9854 // Make sure that this is a self-contained cluster of operations (which 9855 // is not quite the same thing as saying that everything has only one 9856 // use). 9857 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9858 if (isa<ConstantSDNode>(Inputs[i])) 9859 continue; 9860 9861 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9862 UE = Inputs[i].getNode()->use_end(); 9863 UI != UE; ++UI) { 9864 SDNode *User = *UI; 9865 if (User != N && !Visited.count(User)) 9866 return SDValue(); 9867 9868 // Make sure that we're not going to promote the non-output-value 9869 // operand(s) or SELECT or SELECT_CC. 9870 // FIXME: Although we could sometimes handle this, and it does occur in 9871 // practice that one of the condition inputs to the select is also one of 9872 // the outputs, we currently can't deal with this. 9873 if (User->getOpcode() == ISD::SELECT) { 9874 if (User->getOperand(0) == Inputs[i]) 9875 return SDValue(); 9876 } else if (User->getOpcode() == ISD::SELECT_CC) { 9877 if (User->getOperand(0) == Inputs[i] || 9878 User->getOperand(1) == Inputs[i]) 9879 return SDValue(); 9880 } 9881 } 9882 } 9883 9884 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9885 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9886 UE = PromOps[i].getNode()->use_end(); 9887 UI != UE; ++UI) { 9888 SDNode *User = *UI; 9889 if (User != N && !Visited.count(User)) 9890 return SDValue(); 9891 9892 // Make sure that we're not going to promote the non-output-value 9893 // operand(s) or SELECT or SELECT_CC. 9894 // FIXME: Although we could sometimes handle this, and it does occur in 9895 // practice that one of the condition inputs to the select is also one of 9896 // the outputs, we currently can't deal with this. 9897 if (User->getOpcode() == ISD::SELECT) { 9898 if (User->getOperand(0) == PromOps[i]) 9899 return SDValue(); 9900 } else if (User->getOpcode() == ISD::SELECT_CC) { 9901 if (User->getOperand(0) == PromOps[i] || 9902 User->getOperand(1) == PromOps[i]) 9903 return SDValue(); 9904 } 9905 } 9906 } 9907 9908 // Replace all inputs with the extension operand. 9909 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9910 // Constants may have users outside the cluster of to-be-promoted nodes, 9911 // and so we need to replace those as we do the promotions. 9912 if (isa<ConstantSDNode>(Inputs[i])) 9913 continue; 9914 else 9915 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9916 } 9917 9918 std::list<HandleSDNode> PromOpHandles; 9919 for (auto &PromOp : PromOps) 9920 PromOpHandles.emplace_back(PromOp); 9921 9922 // Replace all operations (these are all the same, but have a different 9923 // (i1) return type). DAG.getNode will validate that the types of 9924 // a binary operator match, so go through the list in reverse so that 9925 // we've likely promoted both operands first. Any intermediate truncations or 9926 // extensions disappear. 9927 while (!PromOpHandles.empty()) { 9928 SDValue PromOp = PromOpHandles.back().getValue(); 9929 PromOpHandles.pop_back(); 9930 9931 if (PromOp.getOpcode() == ISD::TRUNCATE || 9932 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9933 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9934 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9935 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9936 PromOp.getOperand(0).getValueType() != MVT::i1) { 9937 // The operand is not yet ready (see comment below). 9938 PromOpHandles.emplace_front(PromOp); 9939 continue; 9940 } 9941 9942 SDValue RepValue = PromOp.getOperand(0); 9943 if (isa<ConstantSDNode>(RepValue)) 9944 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9945 9946 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9947 continue; 9948 } 9949 9950 unsigned C; 9951 switch (PromOp.getOpcode()) { 9952 default: C = 0; break; 9953 case ISD::SELECT: C = 1; break; 9954 case ISD::SELECT_CC: C = 2; break; 9955 } 9956 9957 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9958 PromOp.getOperand(C).getValueType() != MVT::i1) || 9959 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9960 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9961 // The to-be-promoted operands of this node have not yet been 9962 // promoted (this should be rare because we're going through the 9963 // list backward, but if one of the operands has several users in 9964 // this cluster of to-be-promoted nodes, it is possible). 9965 PromOpHandles.emplace_front(PromOp); 9966 continue; 9967 } 9968 9969 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9970 PromOp.getNode()->op_end()); 9971 9972 // If there are any constant inputs, make sure they're replaced now. 9973 for (unsigned i = 0; i < 2; ++i) 9974 if (isa<ConstantSDNode>(Ops[C+i])) 9975 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9976 9977 DAG.ReplaceAllUsesOfValueWith(PromOp, 9978 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9979 } 9980 9981 // Now we're left with the initial truncation itself. 9982 if (N->getOpcode() == ISD::TRUNCATE) 9983 return N->getOperand(0); 9984 9985 // Otherwise, this is a comparison. The operands to be compared have just 9986 // changed type (to i1), but everything else is the same. 9987 return SDValue(N, 0); 9988 } 9989 9990 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9991 DAGCombinerInfo &DCI) const { 9992 SelectionDAG &DAG = DCI.DAG; 9993 SDLoc dl(N); 9994 9995 // If we're tracking CR bits, we need to be careful that we don't have: 9996 // zext(binary-ops(trunc(x), trunc(y))) 9997 // or 9998 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9999 // such that we're unnecessarily moving things into CR bits that can more 10000 // efficiently stay in GPRs. Note that if we're not certain that the high 10001 // bits are set as required by the final extension, we still may need to do 10002 // some masking to get the proper behavior. 10003 10004 // This same functionality is important on PPC64 when dealing with 10005 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 10006 // the return values of functions. Because it is so similar, it is handled 10007 // here as well. 10008 10009 if (N->getValueType(0) != MVT::i32 && 10010 N->getValueType(0) != MVT::i64) 10011 return SDValue(); 10012 10013 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 10014 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 10015 return SDValue(); 10016 10017 if (N->getOperand(0).getOpcode() != ISD::AND && 10018 N->getOperand(0).getOpcode() != ISD::OR && 10019 N->getOperand(0).getOpcode() != ISD::XOR && 10020 N->getOperand(0).getOpcode() != ISD::SELECT && 10021 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 10022 return SDValue(); 10023 10024 SmallVector<SDValue, 4> Inputs; 10025 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 10026 SmallPtrSet<SDNode *, 16> Visited; 10027 10028 // Visit all inputs, collect all binary operations (and, or, xor and 10029 // select) that are all fed by truncations. 10030 while (!BinOps.empty()) { 10031 SDValue BinOp = BinOps.back(); 10032 BinOps.pop_back(); 10033 10034 if (!Visited.insert(BinOp.getNode()).second) 10035 continue; 10036 10037 PromOps.push_back(BinOp); 10038 10039 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 10040 // The condition of the select is not promoted. 10041 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 10042 continue; 10043 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 10044 continue; 10045 10046 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 10047 isa<ConstantSDNode>(BinOp.getOperand(i))) { 10048 Inputs.push_back(BinOp.getOperand(i)); 10049 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 10050 BinOp.getOperand(i).getOpcode() == ISD::OR || 10051 BinOp.getOperand(i).getOpcode() == ISD::XOR || 10052 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 10053 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 10054 BinOps.push_back(BinOp.getOperand(i)); 10055 } else { 10056 // We have an input that is not a truncation or another binary 10057 // operation; we'll abort this transformation. 10058 return SDValue(); 10059 } 10060 } 10061 } 10062 10063 // The operands of a select that must be truncated when the select is 10064 // promoted because the operand is actually part of the to-be-promoted set. 10065 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 10066 10067 // Make sure that this is a self-contained cluster of operations (which 10068 // is not quite the same thing as saying that everything has only one 10069 // use). 10070 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10071 if (isa<ConstantSDNode>(Inputs[i])) 10072 continue; 10073 10074 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10075 UE = Inputs[i].getNode()->use_end(); 10076 UI != UE; ++UI) { 10077 SDNode *User = *UI; 10078 if (User != N && !Visited.count(User)) 10079 return SDValue(); 10080 10081 // If we're going to promote the non-output-value operand(s) or SELECT or 10082 // SELECT_CC, record them for truncation. 10083 if (User->getOpcode() == ISD::SELECT) { 10084 if (User->getOperand(0) == Inputs[i]) 10085 SelectTruncOp[0].insert(std::make_pair(User, 10086 User->getOperand(0).getValueType())); 10087 } else if (User->getOpcode() == ISD::SELECT_CC) { 10088 if (User->getOperand(0) == Inputs[i]) 10089 SelectTruncOp[0].insert(std::make_pair(User, 10090 User->getOperand(0).getValueType())); 10091 if (User->getOperand(1) == Inputs[i]) 10092 SelectTruncOp[1].insert(std::make_pair(User, 10093 User->getOperand(1).getValueType())); 10094 } 10095 } 10096 } 10097 10098 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10099 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10100 UE = PromOps[i].getNode()->use_end(); 10101 UI != UE; ++UI) { 10102 SDNode *User = *UI; 10103 if (User != N && !Visited.count(User)) 10104 return SDValue(); 10105 10106 // If we're going to promote the non-output-value operand(s) or SELECT or 10107 // SELECT_CC, record them for truncation. 10108 if (User->getOpcode() == ISD::SELECT) { 10109 if (User->getOperand(0) == PromOps[i]) 10110 SelectTruncOp[0].insert(std::make_pair(User, 10111 User->getOperand(0).getValueType())); 10112 } else if (User->getOpcode() == ISD::SELECT_CC) { 10113 if (User->getOperand(0) == PromOps[i]) 10114 SelectTruncOp[0].insert(std::make_pair(User, 10115 User->getOperand(0).getValueType())); 10116 if (User->getOperand(1) == PromOps[i]) 10117 SelectTruncOp[1].insert(std::make_pair(User, 10118 User->getOperand(1).getValueType())); 10119 } 10120 } 10121 } 10122 10123 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10124 bool ReallyNeedsExt = false; 10125 if (N->getOpcode() != ISD::ANY_EXTEND) { 10126 // If all of the inputs are not already sign/zero extended, then 10127 // we'll still need to do that at the end. 10128 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10129 if (isa<ConstantSDNode>(Inputs[i])) 10130 continue; 10131 10132 unsigned OpBits = 10133 Inputs[i].getOperand(0).getValueSizeInBits(); 10134 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10135 10136 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10137 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10138 APInt::getHighBitsSet(OpBits, 10139 OpBits-PromBits))) || 10140 (N->getOpcode() == ISD::SIGN_EXTEND && 10141 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10142 (OpBits-(PromBits-1)))) { 10143 ReallyNeedsExt = true; 10144 break; 10145 } 10146 } 10147 } 10148 10149 // Replace all inputs, either with the truncation operand, or a 10150 // truncation or extension to the final output type. 10151 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10152 // Constant inputs need to be replaced with the to-be-promoted nodes that 10153 // use them because they might have users outside of the cluster of 10154 // promoted nodes. 10155 if (isa<ConstantSDNode>(Inputs[i])) 10156 continue; 10157 10158 SDValue InSrc = Inputs[i].getOperand(0); 10159 if (Inputs[i].getValueType() == N->getValueType(0)) 10160 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10161 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10162 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10163 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10164 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10165 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10166 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10167 else 10168 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10169 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10170 } 10171 10172 std::list<HandleSDNode> PromOpHandles; 10173 for (auto &PromOp : PromOps) 10174 PromOpHandles.emplace_back(PromOp); 10175 10176 // Replace all operations (these are all the same, but have a different 10177 // (promoted) return type). DAG.getNode will validate that the types of 10178 // a binary operator match, so go through the list in reverse so that 10179 // we've likely promoted both operands first. 10180 while (!PromOpHandles.empty()) { 10181 SDValue PromOp = PromOpHandles.back().getValue(); 10182 PromOpHandles.pop_back(); 10183 10184 unsigned C; 10185 switch (PromOp.getOpcode()) { 10186 default: C = 0; break; 10187 case ISD::SELECT: C = 1; break; 10188 case ISD::SELECT_CC: C = 2; break; 10189 } 10190 10191 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10192 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10193 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10194 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10195 // The to-be-promoted operands of this node have not yet been 10196 // promoted (this should be rare because we're going through the 10197 // list backward, but if one of the operands has several users in 10198 // this cluster of to-be-promoted nodes, it is possible). 10199 PromOpHandles.emplace_front(PromOp); 10200 continue; 10201 } 10202 10203 // For SELECT and SELECT_CC nodes, we do a similar check for any 10204 // to-be-promoted comparison inputs. 10205 if (PromOp.getOpcode() == ISD::SELECT || 10206 PromOp.getOpcode() == ISD::SELECT_CC) { 10207 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10208 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10209 (SelectTruncOp[1].count(PromOp.getNode()) && 10210 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10211 PromOpHandles.emplace_front(PromOp); 10212 continue; 10213 } 10214 } 10215 10216 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10217 PromOp.getNode()->op_end()); 10218 10219 // If this node has constant inputs, then they'll need to be promoted here. 10220 for (unsigned i = 0; i < 2; ++i) { 10221 if (!isa<ConstantSDNode>(Ops[C+i])) 10222 continue; 10223 if (Ops[C+i].getValueType() == N->getValueType(0)) 10224 continue; 10225 10226 if (N->getOpcode() == ISD::SIGN_EXTEND) 10227 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10228 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10229 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10230 else 10231 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10232 } 10233 10234 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10235 // truncate them again to the original value type. 10236 if (PromOp.getOpcode() == ISD::SELECT || 10237 PromOp.getOpcode() == ISD::SELECT_CC) { 10238 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10239 if (SI0 != SelectTruncOp[0].end()) 10240 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10241 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10242 if (SI1 != SelectTruncOp[1].end()) 10243 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10244 } 10245 10246 DAG.ReplaceAllUsesOfValueWith(PromOp, 10247 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10248 } 10249 10250 // Now we're left with the initial extension itself. 10251 if (!ReallyNeedsExt) 10252 return N->getOperand(0); 10253 10254 // To zero extend, just mask off everything except for the first bit (in the 10255 // i1 case). 10256 if (N->getOpcode() == ISD::ZERO_EXTEND) 10257 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10258 DAG.getConstant(APInt::getLowBitsSet( 10259 N->getValueSizeInBits(0), PromBits), 10260 dl, N->getValueType(0))); 10261 10262 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10263 "Invalid extension type"); 10264 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10265 SDValue ShiftCst = 10266 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10267 return DAG.getNode( 10268 ISD::SRA, dl, N->getValueType(0), 10269 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10270 ShiftCst); 10271 } 10272 10273 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10274 DAGCombinerInfo &DCI) const { 10275 assert((N->getOpcode() == ISD::SINT_TO_FP || 10276 N->getOpcode() == ISD::UINT_TO_FP) && 10277 "Need an int -> FP conversion node here"); 10278 10279 if (!Subtarget.has64BitSupport()) 10280 return SDValue(); 10281 10282 SelectionDAG &DAG = DCI.DAG; 10283 SDLoc dl(N); 10284 SDValue Op(N, 0); 10285 10286 // Don't handle ppc_fp128 here or i1 conversions. 10287 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10288 return SDValue(); 10289 if (Op.getOperand(0).getValueType() == MVT::i1) 10290 return SDValue(); 10291 10292 // For i32 intermediate values, unfortunately, the conversion functions 10293 // leave the upper 32 bits of the value are undefined. Within the set of 10294 // scalar instructions, we have no method for zero- or sign-extending the 10295 // value. Thus, we cannot handle i32 intermediate values here. 10296 if (Op.getOperand(0).getValueType() == MVT::i32) 10297 return SDValue(); 10298 10299 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10300 "UINT_TO_FP is supported only with FPCVT"); 10301 10302 // If we have FCFIDS, then use it when converting to single-precision. 10303 // Otherwise, convert to double-precision and then round. 10304 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10305 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10306 : PPCISD::FCFIDS) 10307 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10308 : PPCISD::FCFID); 10309 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10310 ? MVT::f32 10311 : MVT::f64; 10312 10313 // If we're converting from a float, to an int, and back to a float again, 10314 // then we don't need the store/load pair at all. 10315 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10316 Subtarget.hasFPCVT()) || 10317 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10318 SDValue Src = Op.getOperand(0).getOperand(0); 10319 if (Src.getValueType() == MVT::f32) { 10320 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10321 DCI.AddToWorklist(Src.getNode()); 10322 } else if (Src.getValueType() != MVT::f64) { 10323 // Make sure that we don't pick up a ppc_fp128 source value. 10324 return SDValue(); 10325 } 10326 10327 unsigned FCTOp = 10328 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10329 PPCISD::FCTIDUZ; 10330 10331 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10332 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10333 10334 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10335 FP = DAG.getNode(ISD::FP_ROUND, dl, 10336 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10337 DCI.AddToWorklist(FP.getNode()); 10338 } 10339 10340 return FP; 10341 } 10342 10343 return SDValue(); 10344 } 10345 10346 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10347 // builtins) into loads with swaps. 10348 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10349 DAGCombinerInfo &DCI) const { 10350 SelectionDAG &DAG = DCI.DAG; 10351 SDLoc dl(N); 10352 SDValue Chain; 10353 SDValue Base; 10354 MachineMemOperand *MMO; 10355 10356 switch (N->getOpcode()) { 10357 default: 10358 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10359 case ISD::LOAD: { 10360 LoadSDNode *LD = cast<LoadSDNode>(N); 10361 Chain = LD->getChain(); 10362 Base = LD->getBasePtr(); 10363 MMO = LD->getMemOperand(); 10364 // If the MMO suggests this isn't a load of a full vector, leave 10365 // things alone. For a built-in, we have to make the change for 10366 // correctness, so if there is a size problem that will be a bug. 10367 if (MMO->getSize() < 16) 10368 return SDValue(); 10369 break; 10370 } 10371 case ISD::INTRINSIC_W_CHAIN: { 10372 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10373 Chain = Intrin->getChain(); 10374 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10375 // us what we want. Get operand 2 instead. 10376 Base = Intrin->getOperand(2); 10377 MMO = Intrin->getMemOperand(); 10378 break; 10379 } 10380 } 10381 10382 MVT VecTy = N->getValueType(0).getSimpleVT(); 10383 SDValue LoadOps[] = { Chain, Base }; 10384 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10385 DAG.getVTList(MVT::v2f64, MVT::Other), 10386 LoadOps, MVT::v2f64, MMO); 10387 10388 DCI.AddToWorklist(Load.getNode()); 10389 Chain = Load.getValue(1); 10390 SDValue Swap = DAG.getNode( 10391 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10392 DCI.AddToWorklist(Swap.getNode()); 10393 10394 // Add a bitcast if the resulting load type doesn't match v2f64. 10395 if (VecTy != MVT::v2f64) { 10396 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10397 DCI.AddToWorklist(N.getNode()); 10398 // Package {bitcast value, swap's chain} to match Load's shape. 10399 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10400 N, Swap.getValue(1)); 10401 } 10402 10403 return Swap; 10404 } 10405 10406 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10407 // builtins) into stores with swaps. 10408 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10409 DAGCombinerInfo &DCI) const { 10410 SelectionDAG &DAG = DCI.DAG; 10411 SDLoc dl(N); 10412 SDValue Chain; 10413 SDValue Base; 10414 unsigned SrcOpnd; 10415 MachineMemOperand *MMO; 10416 10417 switch (N->getOpcode()) { 10418 default: 10419 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10420 case ISD::STORE: { 10421 StoreSDNode *ST = cast<StoreSDNode>(N); 10422 Chain = ST->getChain(); 10423 Base = ST->getBasePtr(); 10424 MMO = ST->getMemOperand(); 10425 SrcOpnd = 1; 10426 // If the MMO suggests this isn't a store of a full vector, leave 10427 // things alone. For a built-in, we have to make the change for 10428 // correctness, so if there is a size problem that will be a bug. 10429 if (MMO->getSize() < 16) 10430 return SDValue(); 10431 break; 10432 } 10433 case ISD::INTRINSIC_VOID: { 10434 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10435 Chain = Intrin->getChain(); 10436 // Intrin->getBasePtr() oddly does not get what we want. 10437 Base = Intrin->getOperand(3); 10438 MMO = Intrin->getMemOperand(); 10439 SrcOpnd = 2; 10440 break; 10441 } 10442 } 10443 10444 SDValue Src = N->getOperand(SrcOpnd); 10445 MVT VecTy = Src.getValueType().getSimpleVT(); 10446 10447 // All stores are done as v2f64 and possible bit cast. 10448 if (VecTy != MVT::v2f64) { 10449 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10450 DCI.AddToWorklist(Src.getNode()); 10451 } 10452 10453 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10454 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10455 DCI.AddToWorklist(Swap.getNode()); 10456 Chain = Swap.getValue(1); 10457 SDValue StoreOps[] = { Chain, Swap, Base }; 10458 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10459 DAG.getVTList(MVT::Other), 10460 StoreOps, VecTy, MMO); 10461 DCI.AddToWorklist(Store.getNode()); 10462 return Store; 10463 } 10464 10465 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10466 DAGCombinerInfo &DCI) const { 10467 SelectionDAG &DAG = DCI.DAG; 10468 SDLoc dl(N); 10469 switch (N->getOpcode()) { 10470 default: break; 10471 case PPCISD::SHL: 10472 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10473 return N->getOperand(0); 10474 break; 10475 case PPCISD::SRL: 10476 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10477 return N->getOperand(0); 10478 break; 10479 case PPCISD::SRA: 10480 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10481 if (C->isNullValue() || // 0 >>s V -> 0. 10482 C->isAllOnesValue()) // -1 >>s V -> -1. 10483 return N->getOperand(0); 10484 } 10485 break; 10486 case ISD::SIGN_EXTEND: 10487 case ISD::ZERO_EXTEND: 10488 case ISD::ANY_EXTEND: 10489 return DAGCombineExtBoolTrunc(N, DCI); 10490 case ISD::TRUNCATE: 10491 case ISD::SETCC: 10492 case ISD::SELECT_CC: 10493 return DAGCombineTruncBoolExt(N, DCI); 10494 case ISD::SINT_TO_FP: 10495 case ISD::UINT_TO_FP: 10496 return combineFPToIntToFP(N, DCI); 10497 case ISD::STORE: { 10498 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10499 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10500 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10501 N->getOperand(1).getValueType() == MVT::i32 && 10502 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10503 SDValue Val = N->getOperand(1).getOperand(0); 10504 if (Val.getValueType() == MVT::f32) { 10505 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10506 DCI.AddToWorklist(Val.getNode()); 10507 } 10508 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10509 DCI.AddToWorklist(Val.getNode()); 10510 10511 SDValue Ops[] = { 10512 N->getOperand(0), Val, N->getOperand(2), 10513 DAG.getValueType(N->getOperand(1).getValueType()) 10514 }; 10515 10516 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10517 DAG.getVTList(MVT::Other), Ops, 10518 cast<StoreSDNode>(N)->getMemoryVT(), 10519 cast<StoreSDNode>(N)->getMemOperand()); 10520 DCI.AddToWorklist(Val.getNode()); 10521 return Val; 10522 } 10523 10524 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10525 if (cast<StoreSDNode>(N)->isUnindexed() && 10526 N->getOperand(1).getOpcode() == ISD::BSWAP && 10527 N->getOperand(1).getNode()->hasOneUse() && 10528 (N->getOperand(1).getValueType() == MVT::i32 || 10529 N->getOperand(1).getValueType() == MVT::i16 || 10530 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10531 N->getOperand(1).getValueType() == MVT::i64))) { 10532 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10533 // Do an any-extend to 32-bits if this is a half-word input. 10534 if (BSwapOp.getValueType() == MVT::i16) 10535 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10536 10537 SDValue Ops[] = { 10538 N->getOperand(0), BSwapOp, N->getOperand(2), 10539 DAG.getValueType(N->getOperand(1).getValueType()) 10540 }; 10541 return 10542 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10543 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10544 cast<StoreSDNode>(N)->getMemOperand()); 10545 } 10546 10547 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10548 EVT VT = N->getOperand(1).getValueType(); 10549 if (VT.isSimple()) { 10550 MVT StoreVT = VT.getSimpleVT(); 10551 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10552 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10553 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10554 return expandVSXStoreForLE(N, DCI); 10555 } 10556 break; 10557 } 10558 case ISD::LOAD: { 10559 LoadSDNode *LD = cast<LoadSDNode>(N); 10560 EVT VT = LD->getValueType(0); 10561 10562 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10563 if (VT.isSimple()) { 10564 MVT LoadVT = VT.getSimpleVT(); 10565 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10566 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10567 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10568 return expandVSXLoadForLE(N, DCI); 10569 } 10570 10571 // We sometimes end up with a 64-bit integer load, from which we extract 10572 // two single-precision floating-point numbers. This happens with 10573 // std::complex<float>, and other similar structures, because of the way we 10574 // canonicalize structure copies. However, if we lack direct moves, 10575 // then the final bitcasts from the extracted integer values to the 10576 // floating-point numbers turn into store/load pairs. Even with direct moves, 10577 // just loading the two floating-point numbers is likely better. 10578 auto ReplaceTwoFloatLoad = [&]() { 10579 if (VT != MVT::i64) 10580 return false; 10581 10582 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10583 LD->isVolatile()) 10584 return false; 10585 10586 // We're looking for a sequence like this: 10587 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10588 // t16: i64 = srl t13, Constant:i32<32> 10589 // t17: i32 = truncate t16 10590 // t18: f32 = bitcast t17 10591 // t19: i32 = truncate t13 10592 // t20: f32 = bitcast t19 10593 10594 if (!LD->hasNUsesOfValue(2, 0)) 10595 return false; 10596 10597 auto UI = LD->use_begin(); 10598 while (UI.getUse().getResNo() != 0) ++UI; 10599 SDNode *Trunc = *UI++; 10600 while (UI.getUse().getResNo() != 0) ++UI; 10601 SDNode *RightShift = *UI; 10602 if (Trunc->getOpcode() != ISD::TRUNCATE) 10603 std::swap(Trunc, RightShift); 10604 10605 if (Trunc->getOpcode() != ISD::TRUNCATE || 10606 Trunc->getValueType(0) != MVT::i32 || 10607 !Trunc->hasOneUse()) 10608 return false; 10609 if (RightShift->getOpcode() != ISD::SRL || 10610 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10611 RightShift->getConstantOperandVal(1) != 32 || 10612 !RightShift->hasOneUse()) 10613 return false; 10614 10615 SDNode *Trunc2 = *RightShift->use_begin(); 10616 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10617 Trunc2->getValueType(0) != MVT::i32 || 10618 !Trunc2->hasOneUse()) 10619 return false; 10620 10621 SDNode *Bitcast = *Trunc->use_begin(); 10622 SDNode *Bitcast2 = *Trunc2->use_begin(); 10623 10624 if (Bitcast->getOpcode() != ISD::BITCAST || 10625 Bitcast->getValueType(0) != MVT::f32) 10626 return false; 10627 if (Bitcast2->getOpcode() != ISD::BITCAST || 10628 Bitcast2->getValueType(0) != MVT::f32) 10629 return false; 10630 10631 if (Subtarget.isLittleEndian()) 10632 std::swap(Bitcast, Bitcast2); 10633 10634 // Bitcast has the second float (in memory-layout order) and Bitcast2 10635 // has the first one. 10636 10637 SDValue BasePtr = LD->getBasePtr(); 10638 if (LD->isIndexed()) { 10639 assert(LD->getAddressingMode() == ISD::PRE_INC && 10640 "Non-pre-inc AM on PPC?"); 10641 BasePtr = 10642 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10643 LD->getOffset()); 10644 } 10645 10646 SDValue FloatLoad = 10647 DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 10648 LD->getPointerInfo(), false, LD->isNonTemporal(), 10649 LD->isInvariant(), LD->getAlignment(), LD->getAAInfo()); 10650 SDValue AddPtr = 10651 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 10652 BasePtr, DAG.getIntPtrConstant(4, dl)); 10653 SDValue FloatLoad2 = 10654 DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 10655 LD->getPointerInfo().getWithOffset(4), false, 10656 LD->isNonTemporal(), LD->isInvariant(), 10657 MinAlign(LD->getAlignment(), 4), LD->getAAInfo()); 10658 10659 if (LD->isIndexed()) { 10660 // Note that DAGCombine should re-form any pre-increment load(s) from 10661 // what is produced here if that makes sense. 10662 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 10663 } 10664 10665 DCI.CombineTo(Bitcast2, FloatLoad); 10666 DCI.CombineTo(Bitcast, FloatLoad2); 10667 10668 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 10669 SDValue(FloatLoad2.getNode(), 1)); 10670 return true; 10671 }; 10672 10673 if (ReplaceTwoFloatLoad()) 10674 return SDValue(N, 0); 10675 10676 EVT MemVT = LD->getMemoryVT(); 10677 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10678 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10679 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10680 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10681 if (LD->isUnindexed() && VT.isVector() && 10682 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10683 // P8 and later hardware should just use LOAD. 10684 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10685 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10686 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10687 LD->getAlignment() >= ScalarABIAlignment)) && 10688 LD->getAlignment() < ABIAlignment) { 10689 // This is a type-legal unaligned Altivec or QPX load. 10690 SDValue Chain = LD->getChain(); 10691 SDValue Ptr = LD->getBasePtr(); 10692 bool isLittleEndian = Subtarget.isLittleEndian(); 10693 10694 // This implements the loading of unaligned vectors as described in 10695 // the venerable Apple Velocity Engine overview. Specifically: 10696 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10697 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10698 // 10699 // The general idea is to expand a sequence of one or more unaligned 10700 // loads into an alignment-based permutation-control instruction (lvsl 10701 // or lvsr), a series of regular vector loads (which always truncate 10702 // their input address to an aligned address), and a series of 10703 // permutations. The results of these permutations are the requested 10704 // loaded values. The trick is that the last "extra" load is not taken 10705 // from the address you might suspect (sizeof(vector) bytes after the 10706 // last requested load), but rather sizeof(vector) - 1 bytes after the 10707 // last requested vector. The point of this is to avoid a page fault if 10708 // the base address happened to be aligned. This works because if the 10709 // base address is aligned, then adding less than a full vector length 10710 // will cause the last vector in the sequence to be (re)loaded. 10711 // Otherwise, the next vector will be fetched as you might suspect was 10712 // necessary. 10713 10714 // We might be able to reuse the permutation generation from 10715 // a different base address offset from this one by an aligned amount. 10716 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10717 // optimization later. 10718 Intrinsic::ID Intr, IntrLD, IntrPerm; 10719 MVT PermCntlTy, PermTy, LDTy; 10720 if (Subtarget.hasAltivec()) { 10721 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10722 Intrinsic::ppc_altivec_lvsl; 10723 IntrLD = Intrinsic::ppc_altivec_lvx; 10724 IntrPerm = Intrinsic::ppc_altivec_vperm; 10725 PermCntlTy = MVT::v16i8; 10726 PermTy = MVT::v4i32; 10727 LDTy = MVT::v4i32; 10728 } else { 10729 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10730 Intrinsic::ppc_qpx_qvlpcls; 10731 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10732 Intrinsic::ppc_qpx_qvlfs; 10733 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10734 PermCntlTy = MVT::v4f64; 10735 PermTy = MVT::v4f64; 10736 LDTy = MemVT.getSimpleVT(); 10737 } 10738 10739 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10740 10741 // Create the new MMO for the new base load. It is like the original MMO, 10742 // but represents an area in memory almost twice the vector size centered 10743 // on the original address. If the address is unaligned, we might start 10744 // reading up to (sizeof(vector)-1) bytes below the address of the 10745 // original unaligned load. 10746 MachineFunction &MF = DAG.getMachineFunction(); 10747 MachineMemOperand *BaseMMO = 10748 MF.getMachineMemOperand(LD->getMemOperand(), 10749 -(long)MemVT.getStoreSize()+1, 10750 2*MemVT.getStoreSize()-1); 10751 10752 // Create the new base load. 10753 SDValue LDXIntID = 10754 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10755 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10756 SDValue BaseLoad = 10757 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10758 DAG.getVTList(PermTy, MVT::Other), 10759 BaseLoadOps, LDTy, BaseMMO); 10760 10761 // Note that the value of IncOffset (which is provided to the next 10762 // load's pointer info offset value, and thus used to calculate the 10763 // alignment), and the value of IncValue (which is actually used to 10764 // increment the pointer value) are different! This is because we 10765 // require the next load to appear to be aligned, even though it 10766 // is actually offset from the base pointer by a lesser amount. 10767 int IncOffset = VT.getSizeInBits() / 8; 10768 int IncValue = IncOffset; 10769 10770 // Walk (both up and down) the chain looking for another load at the real 10771 // (aligned) offset (the alignment of the other load does not matter in 10772 // this case). If found, then do not use the offset reduction trick, as 10773 // that will prevent the loads from being later combined (as they would 10774 // otherwise be duplicates). 10775 if (!findConsecutiveLoad(LD, DAG)) 10776 --IncValue; 10777 10778 SDValue Increment = 10779 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10780 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10781 10782 MachineMemOperand *ExtraMMO = 10783 MF.getMachineMemOperand(LD->getMemOperand(), 10784 1, 2*MemVT.getStoreSize()-1); 10785 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10786 SDValue ExtraLoad = 10787 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10788 DAG.getVTList(PermTy, MVT::Other), 10789 ExtraLoadOps, LDTy, ExtraMMO); 10790 10791 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10792 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10793 10794 // Because vperm has a big-endian bias, we must reverse the order 10795 // of the input vectors and complement the permute control vector 10796 // when generating little endian code. We have already handled the 10797 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10798 // and ExtraLoad here. 10799 SDValue Perm; 10800 if (isLittleEndian) 10801 Perm = BuildIntrinsicOp(IntrPerm, 10802 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10803 else 10804 Perm = BuildIntrinsicOp(IntrPerm, 10805 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10806 10807 if (VT != PermTy) 10808 Perm = Subtarget.hasAltivec() ? 10809 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10810 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10811 DAG.getTargetConstant(1, dl, MVT::i64)); 10812 // second argument is 1 because this rounding 10813 // is always exact. 10814 10815 // The output of the permutation is our loaded result, the TokenFactor is 10816 // our new chain. 10817 DCI.CombineTo(N, Perm, TF); 10818 return SDValue(N, 0); 10819 } 10820 } 10821 break; 10822 case ISD::INTRINSIC_WO_CHAIN: { 10823 bool isLittleEndian = Subtarget.isLittleEndian(); 10824 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10825 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10826 : Intrinsic::ppc_altivec_lvsl); 10827 if ((IID == Intr || 10828 IID == Intrinsic::ppc_qpx_qvlpcld || 10829 IID == Intrinsic::ppc_qpx_qvlpcls) && 10830 N->getOperand(1)->getOpcode() == ISD::ADD) { 10831 SDValue Add = N->getOperand(1); 10832 10833 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10834 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10835 10836 if (DAG.MaskedValueIsZero( 10837 Add->getOperand(1), 10838 APInt::getAllOnesValue(Bits /* alignment */) 10839 .zext( 10840 Add.getValueType().getScalarType().getSizeInBits()))) { 10841 SDNode *BasePtr = Add->getOperand(0).getNode(); 10842 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10843 UE = BasePtr->use_end(); 10844 UI != UE; ++UI) { 10845 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10846 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10847 // We've found another LVSL/LVSR, and this address is an aligned 10848 // multiple of that one. The results will be the same, so use the 10849 // one we've just found instead. 10850 10851 return SDValue(*UI, 0); 10852 } 10853 } 10854 } 10855 10856 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10857 SDNode *BasePtr = Add->getOperand(0).getNode(); 10858 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10859 UE = BasePtr->use_end(); UI != UE; ++UI) { 10860 if (UI->getOpcode() == ISD::ADD && 10861 isa<ConstantSDNode>(UI->getOperand(1)) && 10862 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10863 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10864 (1ULL << Bits) == 0) { 10865 SDNode *OtherAdd = *UI; 10866 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10867 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10868 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10869 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10870 return SDValue(*VI, 0); 10871 } 10872 } 10873 } 10874 } 10875 } 10876 } 10877 } 10878 10879 break; 10880 case ISD::INTRINSIC_W_CHAIN: { 10881 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10882 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10883 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10884 default: 10885 break; 10886 case Intrinsic::ppc_vsx_lxvw4x: 10887 case Intrinsic::ppc_vsx_lxvd2x: 10888 return expandVSXLoadForLE(N, DCI); 10889 } 10890 } 10891 break; 10892 } 10893 case ISD::INTRINSIC_VOID: { 10894 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10895 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10896 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10897 default: 10898 break; 10899 case Intrinsic::ppc_vsx_stxvw4x: 10900 case Intrinsic::ppc_vsx_stxvd2x: 10901 return expandVSXStoreForLE(N, DCI); 10902 } 10903 } 10904 break; 10905 } 10906 case ISD::BSWAP: 10907 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10908 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10909 N->getOperand(0).hasOneUse() && 10910 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10911 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10912 N->getValueType(0) == MVT::i64))) { 10913 SDValue Load = N->getOperand(0); 10914 LoadSDNode *LD = cast<LoadSDNode>(Load); 10915 // Create the byte-swapping load. 10916 SDValue Ops[] = { 10917 LD->getChain(), // Chain 10918 LD->getBasePtr(), // Ptr 10919 DAG.getValueType(N->getValueType(0)) // VT 10920 }; 10921 SDValue BSLoad = 10922 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10923 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10924 MVT::i64 : MVT::i32, MVT::Other), 10925 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10926 10927 // If this is an i16 load, insert the truncate. 10928 SDValue ResVal = BSLoad; 10929 if (N->getValueType(0) == MVT::i16) 10930 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10931 10932 // First, combine the bswap away. This makes the value produced by the 10933 // load dead. 10934 DCI.CombineTo(N, ResVal); 10935 10936 // Next, combine the load away, we give it a bogus result value but a real 10937 // chain result. The result value is dead because the bswap is dead. 10938 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10939 10940 // Return N so it doesn't get rechecked! 10941 return SDValue(N, 0); 10942 } 10943 10944 break; 10945 case PPCISD::VCMP: { 10946 // If a VCMPo node already exists with exactly the same operands as this 10947 // node, use its result instead of this node (VCMPo computes both a CR6 and 10948 // a normal output). 10949 // 10950 if (!N->getOperand(0).hasOneUse() && 10951 !N->getOperand(1).hasOneUse() && 10952 !N->getOperand(2).hasOneUse()) { 10953 10954 // Scan all of the users of the LHS, looking for VCMPo's that match. 10955 SDNode *VCMPoNode = nullptr; 10956 10957 SDNode *LHSN = N->getOperand(0).getNode(); 10958 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10959 UI != E; ++UI) 10960 if (UI->getOpcode() == PPCISD::VCMPo && 10961 UI->getOperand(1) == N->getOperand(1) && 10962 UI->getOperand(2) == N->getOperand(2) && 10963 UI->getOperand(0) == N->getOperand(0)) { 10964 VCMPoNode = *UI; 10965 break; 10966 } 10967 10968 // If there is no VCMPo node, or if the flag value has a single use, don't 10969 // transform this. 10970 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10971 break; 10972 10973 // Look at the (necessarily single) use of the flag value. If it has a 10974 // chain, this transformation is more complex. Note that multiple things 10975 // could use the value result, which we should ignore. 10976 SDNode *FlagUser = nullptr; 10977 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10978 FlagUser == nullptr; ++UI) { 10979 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10980 SDNode *User = *UI; 10981 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10982 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10983 FlagUser = User; 10984 break; 10985 } 10986 } 10987 } 10988 10989 // If the user is a MFOCRF instruction, we know this is safe. 10990 // Otherwise we give up for right now. 10991 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10992 return SDValue(VCMPoNode, 0); 10993 } 10994 break; 10995 } 10996 case ISD::BRCOND: { 10997 SDValue Cond = N->getOperand(1); 10998 SDValue Target = N->getOperand(2); 10999 11000 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11001 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 11002 Intrinsic::ppc_is_decremented_ctr_nonzero) { 11003 11004 // We now need to make the intrinsic dead (it cannot be instruction 11005 // selected). 11006 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 11007 assert(Cond.getNode()->hasOneUse() && 11008 "Counter decrement has more than one use"); 11009 11010 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 11011 N->getOperand(0), Target); 11012 } 11013 } 11014 break; 11015 case ISD::BR_CC: { 11016 // If this is a branch on an altivec predicate comparison, lower this so 11017 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 11018 // lowering is done pre-legalize, because the legalizer lowers the predicate 11019 // compare down to code that is difficult to reassemble. 11020 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 11021 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 11022 11023 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 11024 // value. If so, pass-through the AND to get to the intrinsic. 11025 if (LHS.getOpcode() == ISD::AND && 11026 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 11027 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 11028 Intrinsic::ppc_is_decremented_ctr_nonzero && 11029 isa<ConstantSDNode>(LHS.getOperand(1)) && 11030 !isNullConstant(LHS.getOperand(1))) 11031 LHS = LHS.getOperand(0); 11032 11033 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 11034 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 11035 Intrinsic::ppc_is_decremented_ctr_nonzero && 11036 isa<ConstantSDNode>(RHS)) { 11037 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 11038 "Counter decrement comparison is not EQ or NE"); 11039 11040 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11041 bool isBDNZ = (CC == ISD::SETEQ && Val) || 11042 (CC == ISD::SETNE && !Val); 11043 11044 // We now need to make the intrinsic dead (it cannot be instruction 11045 // selected). 11046 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 11047 assert(LHS.getNode()->hasOneUse() && 11048 "Counter decrement has more than one use"); 11049 11050 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 11051 N->getOperand(0), N->getOperand(4)); 11052 } 11053 11054 int CompareOpc; 11055 bool isDot; 11056 11057 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 11058 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 11059 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 11060 assert(isDot && "Can't compare against a vector result!"); 11061 11062 // If this is a comparison against something other than 0/1, then we know 11063 // that the condition is never/always true. 11064 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 11065 if (Val != 0 && Val != 1) { 11066 if (CC == ISD::SETEQ) // Cond never true, remove branch. 11067 return N->getOperand(0); 11068 // Always !=, turn it into an unconditional branch. 11069 return DAG.getNode(ISD::BR, dl, MVT::Other, 11070 N->getOperand(0), N->getOperand(4)); 11071 } 11072 11073 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11074 11075 // Create the PPCISD altivec 'dot' comparison node. 11076 SDValue Ops[] = { 11077 LHS.getOperand(2), // LHS of compare 11078 LHS.getOperand(3), // RHS of compare 11079 DAG.getConstant(CompareOpc, dl, MVT::i32) 11080 }; 11081 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11082 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11083 11084 // Unpack the result based on how the target uses it. 11085 PPC::Predicate CompOpc; 11086 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11087 default: // Can't happen, don't crash on invalid number though. 11088 case 0: // Branch on the value of the EQ bit of CR6. 11089 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11090 break; 11091 case 1: // Branch on the inverted value of the EQ bit of CR6. 11092 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11093 break; 11094 case 2: // Branch on the value of the LT bit of CR6. 11095 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11096 break; 11097 case 3: // Branch on the inverted value of the LT bit of CR6. 11098 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11099 break; 11100 } 11101 11102 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11103 DAG.getConstant(CompOpc, dl, MVT::i32), 11104 DAG.getRegister(PPC::CR6, MVT::i32), 11105 N->getOperand(4), CompNode.getValue(1)); 11106 } 11107 break; 11108 } 11109 } 11110 11111 return SDValue(); 11112 } 11113 11114 SDValue 11115 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11116 SelectionDAG &DAG, 11117 std::vector<SDNode *> *Created) const { 11118 // fold (sdiv X, pow2) 11119 EVT VT = N->getValueType(0); 11120 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11121 return SDValue(); 11122 if ((VT != MVT::i32 && VT != MVT::i64) || 11123 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11124 return SDValue(); 11125 11126 SDLoc DL(N); 11127 SDValue N0 = N->getOperand(0); 11128 11129 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11130 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11131 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11132 11133 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11134 if (Created) 11135 Created->push_back(Op.getNode()); 11136 11137 if (IsNegPow2) { 11138 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11139 if (Created) 11140 Created->push_back(Op.getNode()); 11141 } 11142 11143 return Op; 11144 } 11145 11146 //===----------------------------------------------------------------------===// 11147 // Inline Assembly Support 11148 //===----------------------------------------------------------------------===// 11149 11150 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11151 APInt &KnownZero, 11152 APInt &KnownOne, 11153 const SelectionDAG &DAG, 11154 unsigned Depth) const { 11155 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11156 switch (Op.getOpcode()) { 11157 default: break; 11158 case PPCISD::LBRX: { 11159 // lhbrx is known to have the top bits cleared out. 11160 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11161 KnownZero = 0xFFFF0000; 11162 break; 11163 } 11164 case ISD::INTRINSIC_WO_CHAIN: { 11165 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11166 default: break; 11167 case Intrinsic::ppc_altivec_vcmpbfp_p: 11168 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11169 case Intrinsic::ppc_altivec_vcmpequb_p: 11170 case Intrinsic::ppc_altivec_vcmpequh_p: 11171 case Intrinsic::ppc_altivec_vcmpequw_p: 11172 case Intrinsic::ppc_altivec_vcmpequd_p: 11173 case Intrinsic::ppc_altivec_vcmpgefp_p: 11174 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11175 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11176 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11177 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11178 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11179 case Intrinsic::ppc_altivec_vcmpgtub_p: 11180 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11181 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11182 case Intrinsic::ppc_altivec_vcmpgtud_p: 11183 KnownZero = ~1U; // All bits but the low one are known to be zero. 11184 break; 11185 } 11186 } 11187 } 11188 } 11189 11190 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11191 switch (Subtarget.getDarwinDirective()) { 11192 default: break; 11193 case PPC::DIR_970: 11194 case PPC::DIR_PWR4: 11195 case PPC::DIR_PWR5: 11196 case PPC::DIR_PWR5X: 11197 case PPC::DIR_PWR6: 11198 case PPC::DIR_PWR6X: 11199 case PPC::DIR_PWR7: 11200 case PPC::DIR_PWR8: 11201 case PPC::DIR_PWR9: { 11202 if (!ML) 11203 break; 11204 11205 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11206 11207 // For small loops (between 5 and 8 instructions), align to a 32-byte 11208 // boundary so that the entire loop fits in one instruction-cache line. 11209 uint64_t LoopSize = 0; 11210 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11211 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11212 LoopSize += TII->GetInstSizeInBytes(J); 11213 if (LoopSize > 32) 11214 break; 11215 } 11216 11217 if (LoopSize > 16 && LoopSize <= 32) 11218 return 5; 11219 11220 break; 11221 } 11222 } 11223 11224 return TargetLowering::getPrefLoopAlignment(ML); 11225 } 11226 11227 /// getConstraintType - Given a constraint, return the type of 11228 /// constraint it is for this target. 11229 PPCTargetLowering::ConstraintType 11230 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11231 if (Constraint.size() == 1) { 11232 switch (Constraint[0]) { 11233 default: break; 11234 case 'b': 11235 case 'r': 11236 case 'f': 11237 case 'd': 11238 case 'v': 11239 case 'y': 11240 return C_RegisterClass; 11241 case 'Z': 11242 // FIXME: While Z does indicate a memory constraint, it specifically 11243 // indicates an r+r address (used in conjunction with the 'y' modifier 11244 // in the replacement string). Currently, we're forcing the base 11245 // register to be r0 in the asm printer (which is interpreted as zero) 11246 // and forming the complete address in the second register. This is 11247 // suboptimal. 11248 return C_Memory; 11249 } 11250 } else if (Constraint == "wc") { // individual CR bits. 11251 return C_RegisterClass; 11252 } else if (Constraint == "wa" || Constraint == "wd" || 11253 Constraint == "wf" || Constraint == "ws") { 11254 return C_RegisterClass; // VSX registers. 11255 } 11256 return TargetLowering::getConstraintType(Constraint); 11257 } 11258 11259 /// Examine constraint type and operand type and determine a weight value. 11260 /// This object must already have been set up with the operand type 11261 /// and the current alternative constraint selected. 11262 TargetLowering::ConstraintWeight 11263 PPCTargetLowering::getSingleConstraintMatchWeight( 11264 AsmOperandInfo &info, const char *constraint) const { 11265 ConstraintWeight weight = CW_Invalid; 11266 Value *CallOperandVal = info.CallOperandVal; 11267 // If we don't have a value, we can't do a match, 11268 // but allow it at the lowest weight. 11269 if (!CallOperandVal) 11270 return CW_Default; 11271 Type *type = CallOperandVal->getType(); 11272 11273 // Look at the constraint type. 11274 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11275 return CW_Register; // an individual CR bit. 11276 else if ((StringRef(constraint) == "wa" || 11277 StringRef(constraint) == "wd" || 11278 StringRef(constraint) == "wf") && 11279 type->isVectorTy()) 11280 return CW_Register; 11281 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11282 return CW_Register; 11283 11284 switch (*constraint) { 11285 default: 11286 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11287 break; 11288 case 'b': 11289 if (type->isIntegerTy()) 11290 weight = CW_Register; 11291 break; 11292 case 'f': 11293 if (type->isFloatTy()) 11294 weight = CW_Register; 11295 break; 11296 case 'd': 11297 if (type->isDoubleTy()) 11298 weight = CW_Register; 11299 break; 11300 case 'v': 11301 if (type->isVectorTy()) 11302 weight = CW_Register; 11303 break; 11304 case 'y': 11305 weight = CW_Register; 11306 break; 11307 case 'Z': 11308 weight = CW_Memory; 11309 break; 11310 } 11311 return weight; 11312 } 11313 11314 std::pair<unsigned, const TargetRegisterClass *> 11315 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11316 StringRef Constraint, 11317 MVT VT) const { 11318 if (Constraint.size() == 1) { 11319 // GCC RS6000 Constraint Letters 11320 switch (Constraint[0]) { 11321 case 'b': // R1-R31 11322 if (VT == MVT::i64 && Subtarget.isPPC64()) 11323 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11324 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11325 case 'r': // R0-R31 11326 if (VT == MVT::i64 && Subtarget.isPPC64()) 11327 return std::make_pair(0U, &PPC::G8RCRegClass); 11328 return std::make_pair(0U, &PPC::GPRCRegClass); 11329 // 'd' and 'f' constraints are both defined to be "the floating point 11330 // registers", where one is for 32-bit and the other for 64-bit. We don't 11331 // really care overly much here so just give them all the same reg classes. 11332 case 'd': 11333 case 'f': 11334 if (VT == MVT::f32 || VT == MVT::i32) 11335 return std::make_pair(0U, &PPC::F4RCRegClass); 11336 if (VT == MVT::f64 || VT == MVT::i64) 11337 return std::make_pair(0U, &PPC::F8RCRegClass); 11338 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11339 return std::make_pair(0U, &PPC::QFRCRegClass); 11340 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11341 return std::make_pair(0U, &PPC::QSRCRegClass); 11342 break; 11343 case 'v': 11344 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11345 return std::make_pair(0U, &PPC::QFRCRegClass); 11346 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11347 return std::make_pair(0U, &PPC::QSRCRegClass); 11348 if (Subtarget.hasAltivec()) 11349 return std::make_pair(0U, &PPC::VRRCRegClass); 11350 case 'y': // crrc 11351 return std::make_pair(0U, &PPC::CRRCRegClass); 11352 } 11353 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11354 // An individual CR bit. 11355 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11356 } else if ((Constraint == "wa" || Constraint == "wd" || 11357 Constraint == "wf") && Subtarget.hasVSX()) { 11358 return std::make_pair(0U, &PPC::VSRCRegClass); 11359 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11360 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11361 return std::make_pair(0U, &PPC::VSSRCRegClass); 11362 else 11363 return std::make_pair(0U, &PPC::VSFRCRegClass); 11364 } 11365 11366 std::pair<unsigned, const TargetRegisterClass *> R = 11367 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11368 11369 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11370 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11371 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11372 // register. 11373 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11374 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11375 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11376 PPC::GPRCRegClass.contains(R.first)) 11377 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11378 PPC::sub_32, &PPC::G8RCRegClass), 11379 &PPC::G8RCRegClass); 11380 11381 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11382 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11383 R.first = PPC::CR0; 11384 R.second = &PPC::CRRCRegClass; 11385 } 11386 11387 return R; 11388 } 11389 11390 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11391 /// vector. If it is invalid, don't add anything to Ops. 11392 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11393 std::string &Constraint, 11394 std::vector<SDValue>&Ops, 11395 SelectionDAG &DAG) const { 11396 SDValue Result; 11397 11398 // Only support length 1 constraints. 11399 if (Constraint.length() > 1) return; 11400 11401 char Letter = Constraint[0]; 11402 switch (Letter) { 11403 default: break; 11404 case 'I': 11405 case 'J': 11406 case 'K': 11407 case 'L': 11408 case 'M': 11409 case 'N': 11410 case 'O': 11411 case 'P': { 11412 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11413 if (!CST) return; // Must be an immediate to match. 11414 SDLoc dl(Op); 11415 int64_t Value = CST->getSExtValue(); 11416 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11417 // numbers are printed as such. 11418 switch (Letter) { 11419 default: llvm_unreachable("Unknown constraint letter!"); 11420 case 'I': // "I" is a signed 16-bit constant. 11421 if (isInt<16>(Value)) 11422 Result = DAG.getTargetConstant(Value, dl, TCVT); 11423 break; 11424 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11425 if (isShiftedUInt<16, 16>(Value)) 11426 Result = DAG.getTargetConstant(Value, dl, TCVT); 11427 break; 11428 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11429 if (isShiftedInt<16, 16>(Value)) 11430 Result = DAG.getTargetConstant(Value, dl, TCVT); 11431 break; 11432 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11433 if (isUInt<16>(Value)) 11434 Result = DAG.getTargetConstant(Value, dl, TCVT); 11435 break; 11436 case 'M': // "M" is a constant that is greater than 31. 11437 if (Value > 31) 11438 Result = DAG.getTargetConstant(Value, dl, TCVT); 11439 break; 11440 case 'N': // "N" is a positive constant that is an exact power of two. 11441 if (Value > 0 && isPowerOf2_64(Value)) 11442 Result = DAG.getTargetConstant(Value, dl, TCVT); 11443 break; 11444 case 'O': // "O" is the constant zero. 11445 if (Value == 0) 11446 Result = DAG.getTargetConstant(Value, dl, TCVT); 11447 break; 11448 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11449 if (isInt<16>(-Value)) 11450 Result = DAG.getTargetConstant(Value, dl, TCVT); 11451 break; 11452 } 11453 break; 11454 } 11455 } 11456 11457 if (Result.getNode()) { 11458 Ops.push_back(Result); 11459 return; 11460 } 11461 11462 // Handle standard constraint letters. 11463 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11464 } 11465 11466 // isLegalAddressingMode - Return true if the addressing mode represented 11467 // by AM is legal for this target, for a load/store of the specified type. 11468 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11469 const AddrMode &AM, Type *Ty, 11470 unsigned AS) const { 11471 // PPC does not allow r+i addressing modes for vectors! 11472 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11473 return false; 11474 11475 // PPC allows a sign-extended 16-bit immediate field. 11476 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11477 return false; 11478 11479 // No global is ever allowed as a base. 11480 if (AM.BaseGV) 11481 return false; 11482 11483 // PPC only support r+r, 11484 switch (AM.Scale) { 11485 case 0: // "r+i" or just "i", depending on HasBaseReg. 11486 break; 11487 case 1: 11488 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11489 return false; 11490 // Otherwise we have r+r or r+i. 11491 break; 11492 case 2: 11493 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11494 return false; 11495 // Allow 2*r as r+r. 11496 break; 11497 default: 11498 // No other scales are supported. 11499 return false; 11500 } 11501 11502 return true; 11503 } 11504 11505 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11506 SelectionDAG &DAG) const { 11507 MachineFunction &MF = DAG.getMachineFunction(); 11508 MachineFrameInfo *MFI = MF.getFrameInfo(); 11509 MFI->setReturnAddressIsTaken(true); 11510 11511 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11512 return SDValue(); 11513 11514 SDLoc dl(Op); 11515 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11516 11517 // Make sure the function does not optimize away the store of the RA to 11518 // the stack. 11519 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11520 FuncInfo->setLRStoreRequired(); 11521 bool isPPC64 = Subtarget.isPPC64(); 11522 auto PtrVT = getPointerTy(MF.getDataLayout()); 11523 11524 if (Depth > 0) { 11525 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11526 SDValue Offset = 11527 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11528 isPPC64 ? MVT::i64 : MVT::i32); 11529 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11530 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11531 MachinePointerInfo(), false, false, false, 0); 11532 } 11533 11534 // Just load the return address off the stack. 11535 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11536 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11537 MachinePointerInfo(), false, false, false, 0); 11538 } 11539 11540 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11541 SelectionDAG &DAG) const { 11542 SDLoc dl(Op); 11543 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11544 11545 MachineFunction &MF = DAG.getMachineFunction(); 11546 MachineFrameInfo *MFI = MF.getFrameInfo(); 11547 MFI->setFrameAddressIsTaken(true); 11548 11549 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11550 bool isPPC64 = PtrVT == MVT::i64; 11551 11552 // Naked functions never have a frame pointer, and so we use r1. For all 11553 // other functions, this decision must be delayed until during PEI. 11554 unsigned FrameReg; 11555 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11556 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11557 else 11558 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11559 11560 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11561 PtrVT); 11562 while (Depth--) 11563 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11564 FrameAddr, MachinePointerInfo(), false, false, 11565 false, 0); 11566 return FrameAddr; 11567 } 11568 11569 // FIXME? Maybe this could be a TableGen attribute on some registers and 11570 // this table could be generated automatically from RegInfo. 11571 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11572 SelectionDAG &DAG) const { 11573 bool isPPC64 = Subtarget.isPPC64(); 11574 bool isDarwinABI = Subtarget.isDarwinABI(); 11575 11576 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11577 (!isPPC64 && VT != MVT::i32)) 11578 report_fatal_error("Invalid register global variable type"); 11579 11580 bool is64Bit = isPPC64 && VT == MVT::i64; 11581 unsigned Reg = StringSwitch<unsigned>(RegName) 11582 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11583 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11584 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11585 (is64Bit ? PPC::X13 : PPC::R13)) 11586 .Default(0); 11587 11588 if (Reg) 11589 return Reg; 11590 report_fatal_error("Invalid register name global variable"); 11591 } 11592 11593 bool 11594 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11595 // The PowerPC target isn't yet aware of offsets. 11596 return false; 11597 } 11598 11599 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11600 const CallInst &I, 11601 unsigned Intrinsic) const { 11602 11603 switch (Intrinsic) { 11604 case Intrinsic::ppc_qpx_qvlfd: 11605 case Intrinsic::ppc_qpx_qvlfs: 11606 case Intrinsic::ppc_qpx_qvlfcd: 11607 case Intrinsic::ppc_qpx_qvlfcs: 11608 case Intrinsic::ppc_qpx_qvlfiwa: 11609 case Intrinsic::ppc_qpx_qvlfiwz: 11610 case Intrinsic::ppc_altivec_lvx: 11611 case Intrinsic::ppc_altivec_lvxl: 11612 case Intrinsic::ppc_altivec_lvebx: 11613 case Intrinsic::ppc_altivec_lvehx: 11614 case Intrinsic::ppc_altivec_lvewx: 11615 case Intrinsic::ppc_vsx_lxvd2x: 11616 case Intrinsic::ppc_vsx_lxvw4x: { 11617 EVT VT; 11618 switch (Intrinsic) { 11619 case Intrinsic::ppc_altivec_lvebx: 11620 VT = MVT::i8; 11621 break; 11622 case Intrinsic::ppc_altivec_lvehx: 11623 VT = MVT::i16; 11624 break; 11625 case Intrinsic::ppc_altivec_lvewx: 11626 VT = MVT::i32; 11627 break; 11628 case Intrinsic::ppc_vsx_lxvd2x: 11629 VT = MVT::v2f64; 11630 break; 11631 case Intrinsic::ppc_qpx_qvlfd: 11632 VT = MVT::v4f64; 11633 break; 11634 case Intrinsic::ppc_qpx_qvlfs: 11635 VT = MVT::v4f32; 11636 break; 11637 case Intrinsic::ppc_qpx_qvlfcd: 11638 VT = MVT::v2f64; 11639 break; 11640 case Intrinsic::ppc_qpx_qvlfcs: 11641 VT = MVT::v2f32; 11642 break; 11643 default: 11644 VT = MVT::v4i32; 11645 break; 11646 } 11647 11648 Info.opc = ISD::INTRINSIC_W_CHAIN; 11649 Info.memVT = VT; 11650 Info.ptrVal = I.getArgOperand(0); 11651 Info.offset = -VT.getStoreSize()+1; 11652 Info.size = 2*VT.getStoreSize()-1; 11653 Info.align = 1; 11654 Info.vol = false; 11655 Info.readMem = true; 11656 Info.writeMem = false; 11657 return true; 11658 } 11659 case Intrinsic::ppc_qpx_qvlfda: 11660 case Intrinsic::ppc_qpx_qvlfsa: 11661 case Intrinsic::ppc_qpx_qvlfcda: 11662 case Intrinsic::ppc_qpx_qvlfcsa: 11663 case Intrinsic::ppc_qpx_qvlfiwaa: 11664 case Intrinsic::ppc_qpx_qvlfiwza: { 11665 EVT VT; 11666 switch (Intrinsic) { 11667 case Intrinsic::ppc_qpx_qvlfda: 11668 VT = MVT::v4f64; 11669 break; 11670 case Intrinsic::ppc_qpx_qvlfsa: 11671 VT = MVT::v4f32; 11672 break; 11673 case Intrinsic::ppc_qpx_qvlfcda: 11674 VT = MVT::v2f64; 11675 break; 11676 case Intrinsic::ppc_qpx_qvlfcsa: 11677 VT = MVT::v2f32; 11678 break; 11679 default: 11680 VT = MVT::v4i32; 11681 break; 11682 } 11683 11684 Info.opc = ISD::INTRINSIC_W_CHAIN; 11685 Info.memVT = VT; 11686 Info.ptrVal = I.getArgOperand(0); 11687 Info.offset = 0; 11688 Info.size = VT.getStoreSize(); 11689 Info.align = 1; 11690 Info.vol = false; 11691 Info.readMem = true; 11692 Info.writeMem = false; 11693 return true; 11694 } 11695 case Intrinsic::ppc_qpx_qvstfd: 11696 case Intrinsic::ppc_qpx_qvstfs: 11697 case Intrinsic::ppc_qpx_qvstfcd: 11698 case Intrinsic::ppc_qpx_qvstfcs: 11699 case Intrinsic::ppc_qpx_qvstfiw: 11700 case Intrinsic::ppc_altivec_stvx: 11701 case Intrinsic::ppc_altivec_stvxl: 11702 case Intrinsic::ppc_altivec_stvebx: 11703 case Intrinsic::ppc_altivec_stvehx: 11704 case Intrinsic::ppc_altivec_stvewx: 11705 case Intrinsic::ppc_vsx_stxvd2x: 11706 case Intrinsic::ppc_vsx_stxvw4x: { 11707 EVT VT; 11708 switch (Intrinsic) { 11709 case Intrinsic::ppc_altivec_stvebx: 11710 VT = MVT::i8; 11711 break; 11712 case Intrinsic::ppc_altivec_stvehx: 11713 VT = MVT::i16; 11714 break; 11715 case Intrinsic::ppc_altivec_stvewx: 11716 VT = MVT::i32; 11717 break; 11718 case Intrinsic::ppc_vsx_stxvd2x: 11719 VT = MVT::v2f64; 11720 break; 11721 case Intrinsic::ppc_qpx_qvstfd: 11722 VT = MVT::v4f64; 11723 break; 11724 case Intrinsic::ppc_qpx_qvstfs: 11725 VT = MVT::v4f32; 11726 break; 11727 case Intrinsic::ppc_qpx_qvstfcd: 11728 VT = MVT::v2f64; 11729 break; 11730 case Intrinsic::ppc_qpx_qvstfcs: 11731 VT = MVT::v2f32; 11732 break; 11733 default: 11734 VT = MVT::v4i32; 11735 break; 11736 } 11737 11738 Info.opc = ISD::INTRINSIC_VOID; 11739 Info.memVT = VT; 11740 Info.ptrVal = I.getArgOperand(1); 11741 Info.offset = -VT.getStoreSize()+1; 11742 Info.size = 2*VT.getStoreSize()-1; 11743 Info.align = 1; 11744 Info.vol = false; 11745 Info.readMem = false; 11746 Info.writeMem = true; 11747 return true; 11748 } 11749 case Intrinsic::ppc_qpx_qvstfda: 11750 case Intrinsic::ppc_qpx_qvstfsa: 11751 case Intrinsic::ppc_qpx_qvstfcda: 11752 case Intrinsic::ppc_qpx_qvstfcsa: 11753 case Intrinsic::ppc_qpx_qvstfiwa: { 11754 EVT VT; 11755 switch (Intrinsic) { 11756 case Intrinsic::ppc_qpx_qvstfda: 11757 VT = MVT::v4f64; 11758 break; 11759 case Intrinsic::ppc_qpx_qvstfsa: 11760 VT = MVT::v4f32; 11761 break; 11762 case Intrinsic::ppc_qpx_qvstfcda: 11763 VT = MVT::v2f64; 11764 break; 11765 case Intrinsic::ppc_qpx_qvstfcsa: 11766 VT = MVT::v2f32; 11767 break; 11768 default: 11769 VT = MVT::v4i32; 11770 break; 11771 } 11772 11773 Info.opc = ISD::INTRINSIC_VOID; 11774 Info.memVT = VT; 11775 Info.ptrVal = I.getArgOperand(1); 11776 Info.offset = 0; 11777 Info.size = VT.getStoreSize(); 11778 Info.align = 1; 11779 Info.vol = false; 11780 Info.readMem = false; 11781 Info.writeMem = true; 11782 return true; 11783 } 11784 default: 11785 break; 11786 } 11787 11788 return false; 11789 } 11790 11791 /// getOptimalMemOpType - Returns the target specific optimal type for load 11792 /// and store operations as a result of memset, memcpy, and memmove 11793 /// lowering. If DstAlign is zero that means it's safe to destination 11794 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11795 /// means there isn't a need to check it against alignment requirement, 11796 /// probably because the source does not need to be loaded. If 'IsMemset' is 11797 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11798 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11799 /// source is constant so it does not need to be loaded. 11800 /// It returns EVT::Other if the type should be determined using generic 11801 /// target-independent logic. 11802 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11803 unsigned DstAlign, unsigned SrcAlign, 11804 bool IsMemset, bool ZeroMemset, 11805 bool MemcpyStrSrc, 11806 MachineFunction &MF) const { 11807 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11808 const Function *F = MF.getFunction(); 11809 // When expanding a memset, require at least two QPX instructions to cover 11810 // the cost of loading the value to be stored from the constant pool. 11811 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11812 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11813 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11814 return MVT::v4f64; 11815 } 11816 11817 // We should use Altivec/VSX loads and stores when available. For unaligned 11818 // addresses, unaligned VSX loads are only fast starting with the P8. 11819 if (Subtarget.hasAltivec() && Size >= 16 && 11820 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11821 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11822 return MVT::v4i32; 11823 } 11824 11825 if (Subtarget.isPPC64()) { 11826 return MVT::i64; 11827 } 11828 11829 return MVT::i32; 11830 } 11831 11832 /// \brief Returns true if it is beneficial to convert a load of a constant 11833 /// to just the constant itself. 11834 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11835 Type *Ty) const { 11836 assert(Ty->isIntegerTy()); 11837 11838 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11839 return !(BitSize == 0 || BitSize > 64); 11840 } 11841 11842 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11843 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11844 return false; 11845 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11846 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11847 return NumBits1 == 64 && NumBits2 == 32; 11848 } 11849 11850 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11851 if (!VT1.isInteger() || !VT2.isInteger()) 11852 return false; 11853 unsigned NumBits1 = VT1.getSizeInBits(); 11854 unsigned NumBits2 = VT2.getSizeInBits(); 11855 return NumBits1 == 64 && NumBits2 == 32; 11856 } 11857 11858 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11859 // Generally speaking, zexts are not free, but they are free when they can be 11860 // folded with other operations. 11861 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11862 EVT MemVT = LD->getMemoryVT(); 11863 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11864 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11865 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11866 LD->getExtensionType() == ISD::ZEXTLOAD)) 11867 return true; 11868 } 11869 11870 // FIXME: Add other cases... 11871 // - 32-bit shifts with a zext to i64 11872 // - zext after ctlz, bswap, etc. 11873 // - zext after and by a constant mask 11874 11875 return TargetLowering::isZExtFree(Val, VT2); 11876 } 11877 11878 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11879 assert(VT.isFloatingPoint()); 11880 return true; 11881 } 11882 11883 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11884 return isInt<16>(Imm) || isUInt<16>(Imm); 11885 } 11886 11887 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11888 return isInt<16>(Imm) || isUInt<16>(Imm); 11889 } 11890 11891 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11892 unsigned, 11893 unsigned, 11894 bool *Fast) const { 11895 if (DisablePPCUnaligned) 11896 return false; 11897 11898 // PowerPC supports unaligned memory access for simple non-vector types. 11899 // Although accessing unaligned addresses is not as efficient as accessing 11900 // aligned addresses, it is generally more efficient than manual expansion, 11901 // and generally only traps for software emulation when crossing page 11902 // boundaries. 11903 11904 if (!VT.isSimple()) 11905 return false; 11906 11907 if (VT.getSimpleVT().isVector()) { 11908 if (Subtarget.hasVSX()) { 11909 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11910 VT != MVT::v4f32 && VT != MVT::v4i32) 11911 return false; 11912 } else { 11913 return false; 11914 } 11915 } 11916 11917 if (VT == MVT::ppcf128) 11918 return false; 11919 11920 if (Fast) 11921 *Fast = true; 11922 11923 return true; 11924 } 11925 11926 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11927 VT = VT.getScalarType(); 11928 11929 if (!VT.isSimple()) 11930 return false; 11931 11932 switch (VT.getSimpleVT().SimpleTy) { 11933 case MVT::f32: 11934 case MVT::f64: 11935 return true; 11936 default: 11937 break; 11938 } 11939 11940 return false; 11941 } 11942 11943 const MCPhysReg * 11944 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11945 // LR is a callee-save register, but we must treat it as clobbered by any call 11946 // site. Hence we include LR in the scratch registers, which are in turn added 11947 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11948 // to CTR, which is used by any indirect call. 11949 static const MCPhysReg ScratchRegs[] = { 11950 PPC::X12, PPC::LR8, PPC::CTR8, 0 11951 }; 11952 11953 return ScratchRegs; 11954 } 11955 11956 unsigned PPCTargetLowering::getExceptionPointerRegister( 11957 const Constant *PersonalityFn) const { 11958 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11959 } 11960 11961 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11962 const Constant *PersonalityFn) const { 11963 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11964 } 11965 11966 bool 11967 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11968 EVT VT , unsigned DefinedValues) const { 11969 if (VT == MVT::v2i64) 11970 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11971 11972 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 11973 return true; 11974 11975 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11976 } 11977 11978 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11979 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11980 return TargetLowering::getSchedulingPreference(N); 11981 11982 return Sched::ILP; 11983 } 11984 11985 // Create a fast isel object. 11986 FastISel * 11987 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11988 const TargetLibraryInfo *LibInfo) const { 11989 return PPC::createFastISel(FuncInfo, LibInfo); 11990 } 11991 11992 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 11993 if (Subtarget.isDarwinABI()) return; 11994 if (!Subtarget.isPPC64()) return; 11995 11996 // Update IsSplitCSR in PPCFunctionInfo 11997 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 11998 PFI->setIsSplitCSR(true); 11999 } 12000 12001 void PPCTargetLowering::insertCopiesSplitCSR( 12002 MachineBasicBlock *Entry, 12003 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 12004 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 12005 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 12006 if (!IStart) 12007 return; 12008 12009 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12010 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 12011 MachineBasicBlock::iterator MBBI = Entry->begin(); 12012 for (const MCPhysReg *I = IStart; *I; ++I) { 12013 const TargetRegisterClass *RC = nullptr; 12014 if (PPC::G8RCRegClass.contains(*I)) 12015 RC = &PPC::G8RCRegClass; 12016 else if (PPC::F8RCRegClass.contains(*I)) 12017 RC = &PPC::F8RCRegClass; 12018 else if (PPC::CRRCRegClass.contains(*I)) 12019 RC = &PPC::CRRCRegClass; 12020 else if (PPC::VRRCRegClass.contains(*I)) 12021 RC = &PPC::VRRCRegClass; 12022 else 12023 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 12024 12025 unsigned NewVR = MRI->createVirtualRegister(RC); 12026 // Create copy from CSR to a virtual register. 12027 // FIXME: this currently does not emit CFI pseudo-instructions, it works 12028 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 12029 // nounwind. If we want to generalize this later, we may need to emit 12030 // CFI pseudo-instructions. 12031 assert(Entry->getParent()->getFunction()->hasFnAttribute( 12032 Attribute::NoUnwind) && 12033 "Function should be nounwind in insertCopiesSplitCSR!"); 12034 Entry->addLiveIn(*I); 12035 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 12036 .addReg(*I); 12037 12038 // Insert the copy-back instructions right before the terminator 12039 for (auto *Exit : Exits) 12040 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 12041 TII->get(TargetOpcode::COPY), *I) 12042 .addReg(NewVR); 12043 } 12044 } 12045 12046 // Override to enable LOAD_STACK_GUARD lowering on Linux. 12047 bool PPCTargetLowering::useLoadStackGuardNode() const { 12048 if (!Subtarget.isTargetLinux()) 12049 return TargetLowering::useLoadStackGuardNode(); 12050 return true; 12051 } 12052 12053 // Override to disable global variable loading on Linux. 12054 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 12055 if (!Subtarget.isTargetLinux()) 12056 return TargetLowering::insertSSPDeclarations(M); 12057 } 12058