1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 121 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 STATISTIC(NumTailCalls, "Number of tail calls"); 127 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 128 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 if (Subtarget.isISA3_0()) { 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 172 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 175 } else { 176 // No extending loads from f16 or HW conversions back and forth. 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 179 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 181 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 182 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 184 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 185 } 186 187 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 188 189 // PowerPC has pre-inc load and store's. 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 200 if (!Subtarget.hasSPE()) { 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 205 } 206 207 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 208 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 209 for (MVT VT : ScalarIntVTs) { 210 setOperationAction(ISD::ADDC, VT, Legal); 211 setOperationAction(ISD::ADDE, VT, Legal); 212 setOperationAction(ISD::SUBC, VT, Legal); 213 setOperationAction(ISD::SUBE, VT, Legal); 214 } 215 216 if (Subtarget.useCRBits()) { 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 218 219 if (isPPC64 || Subtarget.hasFPCVT()) { 220 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 221 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 222 isPPC64 ? MVT::i64 : MVT::i32); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 224 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 225 isPPC64 ? MVT::i64 : MVT::i32); 226 } else { 227 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 228 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 229 } 230 231 // PowerPC does not support direct load/store of condition registers. 232 setOperationAction(ISD::LOAD, MVT::i1, Custom); 233 setOperationAction(ISD::STORE, MVT::i1, Custom); 234 235 // FIXME: Remove this once the ANDI glue bug is fixed: 236 if (ANDIGlueBug) 237 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 238 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setTruncStoreAction(VT, MVT::i1, Expand); 243 } 244 245 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 246 } 247 248 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 249 // PPC (the libcall is not available). 250 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 251 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 252 253 // We do not currently implement these libm ops for PowerPC. 254 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 260 261 // PowerPC has no SREM/UREM instructions unless we are on P9 262 // On P9 we may use a hardware instruction to compute the remainder. 263 // The instructions are not legalized directly because in the cases where the 264 // result of both the remainder and the division is required it is more 265 // efficient to compute the remainder from the result of the division rather 266 // than use the remainder instruction. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Custom); 269 setOperationAction(ISD::UREM, MVT::i32, Custom); 270 setOperationAction(ISD::SREM, MVT::i64, Custom); 271 setOperationAction(ISD::UREM, MVT::i64, Custom); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // Handle constrained floating-point operations of scalar. 290 // TODO: Handle SPE specific operation. 291 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 295 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 296 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 297 298 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 301 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 302 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 303 if (Subtarget.hasVSX()) 304 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal); 305 306 if (Subtarget.hasFSQRT()) { 307 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 308 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 309 } 310 311 if (Subtarget.hasFPRND()) { 312 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 313 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 314 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 315 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 316 317 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 318 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 319 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 320 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 321 } 322 323 // We don't support sin/cos/sqrt/fmod/pow 324 setOperationAction(ISD::FSIN , MVT::f64, Expand); 325 setOperationAction(ISD::FCOS , MVT::f64, Expand); 326 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 327 setOperationAction(ISD::FREM , MVT::f64, Expand); 328 setOperationAction(ISD::FPOW , MVT::f64, Expand); 329 setOperationAction(ISD::FSIN , MVT::f32, Expand); 330 setOperationAction(ISD::FCOS , MVT::f32, Expand); 331 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 332 setOperationAction(ISD::FREM , MVT::f32, Expand); 333 setOperationAction(ISD::FPOW , MVT::f32, Expand); 334 if (Subtarget.hasSPE()) { 335 setOperationAction(ISD::FMA , MVT::f64, Expand); 336 setOperationAction(ISD::FMA , MVT::f32, Expand); 337 } else { 338 setOperationAction(ISD::FMA , MVT::f64, Legal); 339 setOperationAction(ISD::FMA , MVT::f32, Legal); 340 } 341 342 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 343 344 // If we're enabling GP optimizations, use hardware square root 345 if (!Subtarget.hasFSQRT() && 346 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 347 Subtarget.hasFRE())) 348 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 349 350 if (!Subtarget.hasFSQRT() && 351 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 352 Subtarget.hasFRES())) 353 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 354 355 if (Subtarget.hasFCPSGN()) { 356 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 357 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 358 } else { 359 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 360 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 361 } 362 363 if (Subtarget.hasFPRND()) { 364 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 365 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 366 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 367 setOperationAction(ISD::FROUND, MVT::f64, Legal); 368 369 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 370 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 371 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 372 setOperationAction(ISD::FROUND, MVT::f32, Legal); 373 } 374 375 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 376 // to speed up scalar BSWAP64. 377 // CTPOP or CTTZ were introduced in P8/P9 respectively 378 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 379 if (Subtarget.hasP9Vector()) 380 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 381 else 382 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 383 if (Subtarget.isISA3_0()) { 384 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 385 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 386 } else { 387 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 388 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 389 } 390 391 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 392 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 393 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 394 } else { 395 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 396 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 397 } 398 399 // PowerPC does not have ROTR 400 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 401 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 402 403 if (!Subtarget.useCRBits()) { 404 // PowerPC does not have Select 405 setOperationAction(ISD::SELECT, MVT::i32, Expand); 406 setOperationAction(ISD::SELECT, MVT::i64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f32, Expand); 408 setOperationAction(ISD::SELECT, MVT::f64, Expand); 409 } 410 411 // PowerPC wants to turn select_cc of FP into fsel when possible. 412 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 413 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 414 415 // PowerPC wants to optimize integer setcc a bit 416 if (!Subtarget.useCRBits()) 417 setOperationAction(ISD::SETCC, MVT::i32, Custom); 418 419 // PowerPC does not have BRCOND which requires SetCC 420 if (!Subtarget.useCRBits()) 421 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 422 423 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 424 425 if (Subtarget.hasSPE()) { 426 // SPE has built-in conversions 427 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 428 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 429 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 430 } else { 431 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 432 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 433 434 // PowerPC does not have [U|S]INT_TO_FP 435 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 436 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 437 } 438 439 if (Subtarget.hasDirectMove() && isPPC64) { 440 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 441 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 442 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 443 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 444 if (TM.Options.UnsafeFPMath) { 445 setOperationAction(ISD::LRINT, MVT::f64, Legal); 446 setOperationAction(ISD::LRINT, MVT::f32, Legal); 447 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 448 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 449 setOperationAction(ISD::LROUND, MVT::f64, Legal); 450 setOperationAction(ISD::LROUND, MVT::f32, Legal); 451 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 452 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 453 } 454 } else { 455 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 456 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 457 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 458 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 459 } 460 461 // We cannot sextinreg(i1). Expand to shifts. 462 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 463 464 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 465 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 466 // support continuation, user-level threading, and etc.. As a result, no 467 // other SjLj exception interfaces are implemented and please don't build 468 // your own exception handling based on them. 469 // LLVM/Clang supports zero-cost DWARF exception handling. 470 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 471 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 472 473 // We want to legalize GlobalAddress and ConstantPool nodes into the 474 // appropriate instructions to materialize the address. 475 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 476 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 477 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 478 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 479 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 480 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 481 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 482 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 483 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 484 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 485 486 // TRAP is legal. 487 setOperationAction(ISD::TRAP, MVT::Other, Legal); 488 489 // TRAMPOLINE is custom lowered. 490 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 491 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 492 493 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 494 setOperationAction(ISD::VASTART , MVT::Other, Custom); 495 496 if (Subtarget.is64BitELFABI()) { 497 // VAARG always uses double-word chunks, so promote anything smaller. 498 setOperationAction(ISD::VAARG, MVT::i1, Promote); 499 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 500 setOperationAction(ISD::VAARG, MVT::i8, Promote); 501 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 502 setOperationAction(ISD::VAARG, MVT::i16, Promote); 503 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 504 setOperationAction(ISD::VAARG, MVT::i32, Promote); 505 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 506 setOperationAction(ISD::VAARG, MVT::Other, Expand); 507 } else if (Subtarget.is32BitELFABI()) { 508 // VAARG is custom lowered with the 32-bit SVR4 ABI. 509 setOperationAction(ISD::VAARG, MVT::Other, Custom); 510 setOperationAction(ISD::VAARG, MVT::i64, Custom); 511 } else 512 setOperationAction(ISD::VAARG, MVT::Other, Expand); 513 514 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 515 if (Subtarget.is32BitELFABI()) 516 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 517 else 518 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 519 520 // Use the default implementation. 521 setOperationAction(ISD::VAEND , MVT::Other, Expand); 522 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 523 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 524 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 525 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 526 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 527 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 528 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 529 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 530 531 // We want to custom lower some of our intrinsics. 532 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 533 534 // To handle counter-based loop conditions. 535 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 536 537 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 538 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 539 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 540 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 541 542 // Comparisons that require checking two conditions. 543 if (Subtarget.hasSPE()) { 544 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 545 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 546 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 547 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 548 } 549 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 550 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 551 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 552 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 553 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 554 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 555 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 556 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 557 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 558 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 559 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 560 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 561 562 if (Subtarget.has64BitSupport()) { 563 // They also have instructions for converting between i64 and fp. 564 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 565 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 566 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 567 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 568 // This is just the low 32 bits of a (signed) fp->i64 conversion. 569 // We cannot do this with Promote because i64 is not a legal type. 570 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 571 572 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 573 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 574 } else { 575 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 576 if (Subtarget.hasSPE()) 577 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 578 else 579 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 580 } 581 582 // With the instructions enabled under FPCVT, we can do everything. 583 if (Subtarget.hasFPCVT()) { 584 if (Subtarget.has64BitSupport()) { 585 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 586 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 587 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 588 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 589 } 590 591 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 592 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 593 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 594 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 595 } 596 597 if (Subtarget.use64BitRegs()) { 598 // 64-bit PowerPC implementations can support i64 types directly 599 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 600 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 601 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 602 // 64-bit PowerPC wants to expand i128 shifts itself. 603 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 604 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 605 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 606 } else { 607 // 32-bit PowerPC wants to expand i64 shifts itself. 608 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 609 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 610 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 611 } 612 613 if (Subtarget.hasVSX()) { 614 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 615 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 616 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 617 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 618 } 619 620 if (Subtarget.hasAltivec()) { 621 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 622 setOperationAction(ISD::SADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::UADDSAT, VT, Legal); 625 setOperationAction(ISD::USUBSAT, VT, Legal); 626 } 627 // First set operation action for all vector types to expand. Then we 628 // will selectively turn on ones that can be effectively codegen'd. 629 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 630 // add/sub are legal for all supported vector VT's. 631 setOperationAction(ISD::ADD, VT, Legal); 632 setOperationAction(ISD::SUB, VT, Legal); 633 634 // For v2i64, these are only valid with P8Vector. This is corrected after 635 // the loop. 636 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 637 setOperationAction(ISD::SMAX, VT, Legal); 638 setOperationAction(ISD::SMIN, VT, Legal); 639 setOperationAction(ISD::UMAX, VT, Legal); 640 setOperationAction(ISD::UMIN, VT, Legal); 641 } 642 else { 643 setOperationAction(ISD::SMAX, VT, Expand); 644 setOperationAction(ISD::SMIN, VT, Expand); 645 setOperationAction(ISD::UMAX, VT, Expand); 646 setOperationAction(ISD::UMIN, VT, Expand); 647 } 648 649 if (Subtarget.hasVSX()) { 650 setOperationAction(ISD::FMAXNUM, VT, Legal); 651 setOperationAction(ISD::FMINNUM, VT, Legal); 652 } 653 654 // Vector instructions introduced in P8 655 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 656 setOperationAction(ISD::CTPOP, VT, Legal); 657 setOperationAction(ISD::CTLZ, VT, Legal); 658 } 659 else { 660 setOperationAction(ISD::CTPOP, VT, Expand); 661 setOperationAction(ISD::CTLZ, VT, Expand); 662 } 663 664 // Vector instructions introduced in P9 665 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 666 setOperationAction(ISD::CTTZ, VT, Legal); 667 else 668 setOperationAction(ISD::CTTZ, VT, Expand); 669 670 // We promote all shuffles to v16i8. 671 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 672 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 673 674 // We promote all non-typed operations to v4i32. 675 setOperationAction(ISD::AND , VT, Promote); 676 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 677 setOperationAction(ISD::OR , VT, Promote); 678 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 679 setOperationAction(ISD::XOR , VT, Promote); 680 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 681 setOperationAction(ISD::LOAD , VT, Promote); 682 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 683 setOperationAction(ISD::SELECT, VT, Promote); 684 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 685 setOperationAction(ISD::VSELECT, VT, Legal); 686 setOperationAction(ISD::SELECT_CC, VT, Promote); 687 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 688 setOperationAction(ISD::STORE, VT, Promote); 689 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 690 691 // No other operations are legal. 692 setOperationAction(ISD::MUL , VT, Expand); 693 setOperationAction(ISD::SDIV, VT, Expand); 694 setOperationAction(ISD::SREM, VT, Expand); 695 setOperationAction(ISD::UDIV, VT, Expand); 696 setOperationAction(ISD::UREM, VT, Expand); 697 setOperationAction(ISD::FDIV, VT, Expand); 698 setOperationAction(ISD::FREM, VT, Expand); 699 setOperationAction(ISD::FNEG, VT, Expand); 700 setOperationAction(ISD::FSQRT, VT, Expand); 701 setOperationAction(ISD::FLOG, VT, Expand); 702 setOperationAction(ISD::FLOG10, VT, Expand); 703 setOperationAction(ISD::FLOG2, VT, Expand); 704 setOperationAction(ISD::FEXP, VT, Expand); 705 setOperationAction(ISD::FEXP2, VT, Expand); 706 setOperationAction(ISD::FSIN, VT, Expand); 707 setOperationAction(ISD::FCOS, VT, Expand); 708 setOperationAction(ISD::FABS, VT, Expand); 709 setOperationAction(ISD::FFLOOR, VT, Expand); 710 setOperationAction(ISD::FCEIL, VT, Expand); 711 setOperationAction(ISD::FTRUNC, VT, Expand); 712 setOperationAction(ISD::FRINT, VT, Expand); 713 setOperationAction(ISD::FNEARBYINT, VT, Expand); 714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 715 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 716 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 717 setOperationAction(ISD::MULHU, VT, Expand); 718 setOperationAction(ISD::MULHS, VT, Expand); 719 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 720 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 721 setOperationAction(ISD::UDIVREM, VT, Expand); 722 setOperationAction(ISD::SDIVREM, VT, Expand); 723 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 724 setOperationAction(ISD::FPOW, VT, Expand); 725 setOperationAction(ISD::BSWAP, VT, Expand); 726 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 727 setOperationAction(ISD::ROTL, VT, Expand); 728 setOperationAction(ISD::ROTR, VT, Expand); 729 730 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 731 setTruncStoreAction(VT, InnerVT, Expand); 732 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 733 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 734 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 735 } 736 } 737 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 738 if (!Subtarget.hasP8Vector()) { 739 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 740 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 741 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 742 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 743 } 744 745 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 746 setOperationAction(ISD::ABS, VT, Custom); 747 748 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 749 // with merges, splats, etc. 750 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 751 752 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 753 // are cheap, so handle them before they get expanded to scalar. 754 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 755 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 756 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 757 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 758 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 759 760 setOperationAction(ISD::AND , MVT::v4i32, Legal); 761 setOperationAction(ISD::OR , MVT::v4i32, Legal); 762 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 763 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 764 setOperationAction(ISD::SELECT, MVT::v4i32, 765 Subtarget.useCRBits() ? Legal : Expand); 766 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 767 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 768 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 769 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 770 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 771 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 772 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 773 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 774 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 775 776 // Without hasP8Altivec set, v2i64 SMAX isn't available. 777 // But ABS custom lowering requires SMAX support. 778 if (!Subtarget.hasP8Altivec()) 779 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 780 781 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 782 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 783 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 784 if (Subtarget.hasAltivec()) 785 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 786 setOperationAction(ISD::ROTL, VT, Legal); 787 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 788 if (Subtarget.hasP8Altivec()) 789 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 790 791 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 792 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 793 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 794 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 795 796 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 797 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 798 799 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 800 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 801 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 802 } 803 804 if (Subtarget.hasP8Altivec()) 805 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 806 else 807 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 808 809 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 810 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 811 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 813 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 814 815 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 816 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 817 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 818 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 819 820 // Altivec does not contain unordered floating-point compare instructions 821 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 822 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 823 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 824 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 825 826 if (Subtarget.hasVSX()) { 827 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 828 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 829 if (Subtarget.hasP8Vector()) { 830 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 831 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 832 } 833 if (Subtarget.hasDirectMove() && isPPC64) { 834 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 835 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 836 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 837 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 838 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 839 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 840 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 841 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 842 } 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 844 845 // The nearbyint variants are not allowed to raise the inexact exception 846 // so we can only code-gen them with unsafe math. 847 if (TM.Options.UnsafeFPMath) { 848 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 849 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 850 } 851 852 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 853 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 854 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 855 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 856 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 857 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 858 setOperationAction(ISD::FROUND, MVT::f64, Legal); 859 setOperationAction(ISD::FRINT, MVT::f64, Legal); 860 861 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 862 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 863 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 864 setOperationAction(ISD::FROUND, MVT::f32, Legal); 865 setOperationAction(ISD::FRINT, MVT::f32, Legal); 866 867 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 868 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 869 870 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 871 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 872 873 // Share the Altivec comparison restrictions. 874 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 875 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 876 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 877 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 878 879 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 880 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 881 882 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 883 884 if (Subtarget.hasP8Vector()) 885 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 886 887 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 888 889 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 890 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 891 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 892 893 if (Subtarget.hasP8Altivec()) { 894 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 895 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 896 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 897 898 // 128 bit shifts can be accomplished via 3 instructions for SHL and 899 // SRL, but not for SRA because of the instructions available: 900 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 901 // doing 902 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 903 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 904 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 905 906 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 907 } 908 else { 909 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 910 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 911 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 912 913 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 914 915 // VSX v2i64 only supports non-arithmetic operations. 916 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 917 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 918 } 919 920 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 921 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 922 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 923 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 924 925 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 926 927 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 928 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 929 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 930 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 931 932 // Custom handling for partial vectors of integers converted to 933 // floating point. We already have optimal handling for v2i32 through 934 // the DAG combine, so those aren't necessary. 935 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 936 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 937 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 938 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 939 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 940 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 941 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 942 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 943 944 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 945 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 946 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 947 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 948 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 949 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 950 951 if (Subtarget.hasDirectMove()) 952 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 953 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 954 955 // Handle constrained floating-point operations of vector. 956 // The predictor is `hasVSX` because altivec instruction has 957 // no exception but VSX vector instruction has. 958 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 959 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 960 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 961 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 962 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 963 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 964 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 965 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 966 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 967 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 968 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 969 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 970 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 971 972 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 973 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 974 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 975 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 976 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 977 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 978 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 979 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 980 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 981 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 982 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 983 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 984 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 985 986 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 987 } 988 989 if (Subtarget.hasP8Altivec()) { 990 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 991 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 992 } 993 994 if (Subtarget.hasP9Vector()) { 995 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 996 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. 1001 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1002 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1003 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1004 1005 if (EnableQuadPrecision) { 1006 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1007 setOperationAction(ISD::FADD, MVT::f128, Legal); 1008 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1009 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1010 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1011 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1012 // No extending loads to f128 on PPC. 1013 for (MVT FPT : MVT::fp_valuetypes()) 1014 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1015 setOperationAction(ISD::FMA, MVT::f128, Legal); 1016 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1017 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1018 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1019 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1020 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1021 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1022 1023 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1024 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1025 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1026 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1027 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1028 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1029 1030 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1031 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1032 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1033 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1034 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1035 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1036 // No implementation for these ops for PowerPC. 1037 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1038 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1039 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1040 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1041 setOperationAction(ISD::FREM, MVT::f128, Expand); 1042 1043 // Handle constrained floating-point operations of fp128 1044 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1045 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1046 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1047 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1048 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1049 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1050 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1051 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1052 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1053 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1054 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1055 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1056 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1057 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1058 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1059 } 1060 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1061 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1062 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1063 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1064 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1065 } 1066 1067 if (Subtarget.hasP9Altivec()) { 1068 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1069 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1070 1071 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1072 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1073 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1074 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1075 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1076 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1077 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1078 } 1079 } 1080 1081 if (Subtarget.hasQPX()) { 1082 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1083 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1084 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1085 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1086 1087 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1088 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1089 1090 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1091 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1092 1093 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1094 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1095 1096 if (!Subtarget.useCRBits()) 1097 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1098 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1099 1100 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1101 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1102 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1103 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1104 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1105 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1106 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1107 1108 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1109 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1110 1111 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1112 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1113 1114 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1115 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1116 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1117 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1118 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1119 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1120 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1121 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1122 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1123 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1124 1125 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1126 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1127 1128 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1129 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1130 1131 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1132 1133 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1134 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1135 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1136 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1137 1138 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1139 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1140 1141 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1142 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1143 1144 if (!Subtarget.useCRBits()) 1145 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1146 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1147 1148 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1149 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1150 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1151 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1152 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1153 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1154 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1155 1156 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1157 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1158 1159 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1160 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1161 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1162 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1163 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1164 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1165 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1166 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1167 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1168 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1169 1170 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1171 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1172 1173 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1174 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1175 1176 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1177 1178 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1179 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1180 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1181 1182 if (!Subtarget.useCRBits()) 1183 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1184 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1185 1186 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1187 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1188 1189 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1190 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1191 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1192 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1193 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1194 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1195 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1196 1197 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1198 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1199 1200 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1201 1202 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1203 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1204 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1205 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1206 1207 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1208 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1209 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1210 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1211 1212 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1213 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1214 1215 // These need to set FE_INEXACT, and so cannot be vectorized here. 1216 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1217 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1218 1219 if (TM.Options.UnsafeFPMath) { 1220 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1221 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1222 1223 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1224 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1225 } else { 1226 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1227 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1228 1229 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1230 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1231 } 1232 1233 // TODO: Handle constrained floating-point operations of v4f64 1234 } 1235 1236 if (Subtarget.has64BitSupport()) 1237 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1238 1239 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1240 1241 if (!isPPC64) { 1242 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1243 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1244 } 1245 1246 setBooleanContents(ZeroOrOneBooleanContent); 1247 1248 if (Subtarget.hasAltivec()) { 1249 // Altivec instructions set fields to all zeros or all ones. 1250 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1251 } 1252 1253 if (!isPPC64) { 1254 // These libcalls are not available in 32-bit. 1255 setLibcallName(RTLIB::SHL_I128, nullptr); 1256 setLibcallName(RTLIB::SRL_I128, nullptr); 1257 setLibcallName(RTLIB::SRA_I128, nullptr); 1258 } 1259 1260 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1261 1262 // We have target-specific dag combine patterns for the following nodes: 1263 setTargetDAGCombine(ISD::ADD); 1264 setTargetDAGCombine(ISD::SHL); 1265 setTargetDAGCombine(ISD::SRA); 1266 setTargetDAGCombine(ISD::SRL); 1267 setTargetDAGCombine(ISD::MUL); 1268 setTargetDAGCombine(ISD::FMA); 1269 setTargetDAGCombine(ISD::SINT_TO_FP); 1270 setTargetDAGCombine(ISD::BUILD_VECTOR); 1271 if (Subtarget.hasFPCVT()) 1272 setTargetDAGCombine(ISD::UINT_TO_FP); 1273 setTargetDAGCombine(ISD::LOAD); 1274 setTargetDAGCombine(ISD::STORE); 1275 setTargetDAGCombine(ISD::BR_CC); 1276 if (Subtarget.useCRBits()) 1277 setTargetDAGCombine(ISD::BRCOND); 1278 setTargetDAGCombine(ISD::BSWAP); 1279 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1280 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1281 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1282 1283 setTargetDAGCombine(ISD::SIGN_EXTEND); 1284 setTargetDAGCombine(ISD::ZERO_EXTEND); 1285 setTargetDAGCombine(ISD::ANY_EXTEND); 1286 1287 setTargetDAGCombine(ISD::TRUNCATE); 1288 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1289 1290 1291 if (Subtarget.useCRBits()) { 1292 setTargetDAGCombine(ISD::TRUNCATE); 1293 setTargetDAGCombine(ISD::SETCC); 1294 setTargetDAGCombine(ISD::SELECT_CC); 1295 } 1296 1297 // Use reciprocal estimates. 1298 if (TM.Options.UnsafeFPMath) { 1299 setTargetDAGCombine(ISD::FDIV); 1300 setTargetDAGCombine(ISD::FSQRT); 1301 } 1302 1303 if (Subtarget.hasP9Altivec()) { 1304 setTargetDAGCombine(ISD::ABS); 1305 setTargetDAGCombine(ISD::VSELECT); 1306 } 1307 1308 if (EnableQuadPrecision) { 1309 setLibcallName(RTLIB::LOG_F128, "logf128"); 1310 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1311 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1312 setLibcallName(RTLIB::EXP_F128, "expf128"); 1313 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1314 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1315 setLibcallName(RTLIB::COS_F128, "cosf128"); 1316 setLibcallName(RTLIB::POW_F128, "powf128"); 1317 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1318 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1319 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1320 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1321 } 1322 1323 // With 32 condition bits, we don't need to sink (and duplicate) compares 1324 // aggressively in CodeGenPrep. 1325 if (Subtarget.useCRBits()) { 1326 setHasMultipleConditionRegisters(); 1327 setJumpIsExpensive(); 1328 } 1329 1330 setMinFunctionAlignment(Align(4)); 1331 1332 switch (Subtarget.getCPUDirective()) { 1333 default: break; 1334 case PPC::DIR_970: 1335 case PPC::DIR_A2: 1336 case PPC::DIR_E500: 1337 case PPC::DIR_E500mc: 1338 case PPC::DIR_E5500: 1339 case PPC::DIR_PWR4: 1340 case PPC::DIR_PWR5: 1341 case PPC::DIR_PWR5X: 1342 case PPC::DIR_PWR6: 1343 case PPC::DIR_PWR6X: 1344 case PPC::DIR_PWR7: 1345 case PPC::DIR_PWR8: 1346 case PPC::DIR_PWR9: 1347 case PPC::DIR_PWR10: 1348 case PPC::DIR_PWR_FUTURE: 1349 setPrefLoopAlignment(Align(16)); 1350 setPrefFunctionAlignment(Align(16)); 1351 break; 1352 } 1353 1354 if (Subtarget.enableMachineScheduler()) 1355 setSchedulingPreference(Sched::Source); 1356 else 1357 setSchedulingPreference(Sched::Hybrid); 1358 1359 computeRegisterProperties(STI.getRegisterInfo()); 1360 1361 // The Freescale cores do better with aggressive inlining of memcpy and 1362 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1363 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1364 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1365 MaxStoresPerMemset = 32; 1366 MaxStoresPerMemsetOptSize = 16; 1367 MaxStoresPerMemcpy = 32; 1368 MaxStoresPerMemcpyOptSize = 8; 1369 MaxStoresPerMemmove = 32; 1370 MaxStoresPerMemmoveOptSize = 8; 1371 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1372 // The A2 also benefits from (very) aggressive inlining of memcpy and 1373 // friends. The overhead of a the function call, even when warm, can be 1374 // over one hundred cycles. 1375 MaxStoresPerMemset = 128; 1376 MaxStoresPerMemcpy = 128; 1377 MaxStoresPerMemmove = 128; 1378 MaxLoadsPerMemcmp = 128; 1379 } else { 1380 MaxLoadsPerMemcmp = 8; 1381 MaxLoadsPerMemcmpOptSize = 4; 1382 } 1383 1384 // Let the subtarget (CPU) decide if a predictable select is more expensive 1385 // than the corresponding branch. This information is used in CGP to decide 1386 // when to convert selects into branches. 1387 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1388 } 1389 1390 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1391 /// the desired ByVal argument alignment. 1392 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1393 if (MaxAlign == MaxMaxAlign) 1394 return; 1395 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1396 if (MaxMaxAlign >= 32 && 1397 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1398 MaxAlign = Align(32); 1399 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1400 MaxAlign < 16) 1401 MaxAlign = Align(16); 1402 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1403 Align EltAlign; 1404 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1405 if (EltAlign > MaxAlign) 1406 MaxAlign = EltAlign; 1407 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1408 for (auto *EltTy : STy->elements()) { 1409 Align EltAlign; 1410 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1411 if (EltAlign > MaxAlign) 1412 MaxAlign = EltAlign; 1413 if (MaxAlign == MaxMaxAlign) 1414 break; 1415 } 1416 } 1417 } 1418 1419 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1420 /// function arguments in the caller parameter area. 1421 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1422 const DataLayout &DL) const { 1423 // 16byte and wider vectors are passed on 16byte boundary. 1424 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1425 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1426 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1427 getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16)); 1428 return Alignment.value(); 1429 } 1430 1431 bool PPCTargetLowering::useSoftFloat() const { 1432 return Subtarget.useSoftFloat(); 1433 } 1434 1435 bool PPCTargetLowering::hasSPE() const { 1436 return Subtarget.hasSPE(); 1437 } 1438 1439 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1440 return VT.isScalarInteger(); 1441 } 1442 1443 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1444 /// type is cheaper than a multiply followed by a shift. 1445 /// This is true for words and doublewords on 64-bit PowerPC. 1446 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1447 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1448 isOperationLegal(ISD::MULHU, Type))) 1449 return true; 1450 return TargetLowering::isMulhCheaperThanMulShift(Type); 1451 } 1452 1453 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1454 switch ((PPCISD::NodeType)Opcode) { 1455 case PPCISD::FIRST_NUMBER: break; 1456 case PPCISD::FSEL: return "PPCISD::FSEL"; 1457 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1458 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1459 case PPCISD::FCFID: return "PPCISD::FCFID"; 1460 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1461 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1462 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1463 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1464 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1465 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1466 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1467 case PPCISD::FP_TO_UINT_IN_VSR: 1468 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1469 case PPCISD::FP_TO_SINT_IN_VSR: 1470 return "PPCISD::FP_TO_SINT_IN_VSR"; 1471 case PPCISD::FRE: return "PPCISD::FRE"; 1472 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1473 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1474 case PPCISD::VPERM: return "PPCISD::VPERM"; 1475 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1476 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1477 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1478 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1479 case PPCISD::CMPB: return "PPCISD::CMPB"; 1480 case PPCISD::Hi: return "PPCISD::Hi"; 1481 case PPCISD::Lo: return "PPCISD::Lo"; 1482 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1483 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1484 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1485 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1486 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1487 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1488 case PPCISD::SRL: return "PPCISD::SRL"; 1489 case PPCISD::SRA: return "PPCISD::SRA"; 1490 case PPCISD::SHL: return "PPCISD::SHL"; 1491 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1492 case PPCISD::CALL: return "PPCISD::CALL"; 1493 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1494 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1495 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1496 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1497 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1498 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1499 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1500 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1501 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1502 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1503 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1504 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1505 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1506 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1507 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1508 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1509 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1510 case PPCISD::ANDI_rec_1_EQ_BIT: 1511 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1512 case PPCISD::ANDI_rec_1_GT_BIT: 1513 return "PPCISD::ANDI_rec_1_GT_BIT"; 1514 case PPCISD::VCMP: return "PPCISD::VCMP"; 1515 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1516 case PPCISD::LBRX: return "PPCISD::LBRX"; 1517 case PPCISD::STBRX: return "PPCISD::STBRX"; 1518 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1519 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1520 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1521 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1522 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1523 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1524 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1525 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1526 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1527 case PPCISD::ST_VSR_SCAL_INT: 1528 return "PPCISD::ST_VSR_SCAL_INT"; 1529 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1530 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1531 case PPCISD::BDZ: return "PPCISD::BDZ"; 1532 case PPCISD::MFFS: return "PPCISD::MFFS"; 1533 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1534 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1535 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1536 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1537 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1538 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1539 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1540 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1541 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1542 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1543 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1544 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1545 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1546 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1547 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1548 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1549 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1550 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1551 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1552 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1553 case PPCISD::SC: return "PPCISD::SC"; 1554 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1555 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1556 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1557 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1558 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1559 case PPCISD::VABSD: return "PPCISD::VABSD"; 1560 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1561 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1562 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1563 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1564 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1565 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1566 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1567 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1568 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1569 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1570 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1571 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1572 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1573 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1574 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1575 } 1576 return nullptr; 1577 } 1578 1579 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1580 EVT VT) const { 1581 if (!VT.isVector()) 1582 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1583 1584 if (Subtarget.hasQPX()) 1585 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1586 1587 return VT.changeVectorElementTypeToInteger(); 1588 } 1589 1590 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1591 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1592 return true; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Node matching predicates, for use by the tblgen matching code. 1597 //===----------------------------------------------------------------------===// 1598 1599 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1600 static bool isFloatingPointZero(SDValue Op) { 1601 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1602 return CFP->getValueAPF().isZero(); 1603 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1604 // Maybe this has already been legalized into the constant pool? 1605 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1606 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1607 return CFP->getValueAPF().isZero(); 1608 } 1609 return false; 1610 } 1611 1612 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1613 /// true if Op is undef or if it matches the specified value. 1614 static bool isConstantOrUndef(int Op, int Val) { 1615 return Op < 0 || Op == Val; 1616 } 1617 1618 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1619 /// VPKUHUM instruction. 1620 /// The ShuffleKind distinguishes between big-endian operations with 1621 /// two different inputs (0), either-endian operations with two identical 1622 /// inputs (1), and little-endian operations with two different inputs (2). 1623 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1624 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1625 SelectionDAG &DAG) { 1626 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1627 if (ShuffleKind == 0) { 1628 if (IsLE) 1629 return false; 1630 for (unsigned i = 0; i != 16; ++i) 1631 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1632 return false; 1633 } else if (ShuffleKind == 2) { 1634 if (!IsLE) 1635 return false; 1636 for (unsigned i = 0; i != 16; ++i) 1637 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1638 return false; 1639 } else if (ShuffleKind == 1) { 1640 unsigned j = IsLE ? 0 : 1; 1641 for (unsigned i = 0; i != 8; ++i) 1642 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1643 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1644 return false; 1645 } 1646 return true; 1647 } 1648 1649 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1650 /// VPKUWUM instruction. 1651 /// The ShuffleKind distinguishes between big-endian operations with 1652 /// two different inputs (0), either-endian operations with two identical 1653 /// inputs (1), and little-endian operations with two different inputs (2). 1654 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1655 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1656 SelectionDAG &DAG) { 1657 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1658 if (ShuffleKind == 0) { 1659 if (IsLE) 1660 return false; 1661 for (unsigned i = 0; i != 16; i += 2) 1662 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1663 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1664 return false; 1665 } else if (ShuffleKind == 2) { 1666 if (!IsLE) 1667 return false; 1668 for (unsigned i = 0; i != 16; i += 2) 1669 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1670 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1671 return false; 1672 } else if (ShuffleKind == 1) { 1673 unsigned j = IsLE ? 0 : 2; 1674 for (unsigned i = 0; i != 8; i += 2) 1675 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1676 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1677 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1678 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1679 return false; 1680 } 1681 return true; 1682 } 1683 1684 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1685 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1686 /// current subtarget. 1687 /// 1688 /// The ShuffleKind distinguishes between big-endian operations with 1689 /// two different inputs (0), either-endian operations with two identical 1690 /// inputs (1), and little-endian operations with two different inputs (2). 1691 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1692 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1693 SelectionDAG &DAG) { 1694 const PPCSubtarget& Subtarget = 1695 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1696 if (!Subtarget.hasP8Vector()) 1697 return false; 1698 1699 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1700 if (ShuffleKind == 0) { 1701 if (IsLE) 1702 return false; 1703 for (unsigned i = 0; i != 16; i += 4) 1704 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1705 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1706 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1707 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1708 return false; 1709 } else if (ShuffleKind == 2) { 1710 if (!IsLE) 1711 return false; 1712 for (unsigned i = 0; i != 16; i += 4) 1713 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1714 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1715 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1716 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1717 return false; 1718 } else if (ShuffleKind == 1) { 1719 unsigned j = IsLE ? 0 : 4; 1720 for (unsigned i = 0; i != 8; i += 4) 1721 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1722 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1723 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1724 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1725 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1726 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1727 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1728 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1729 return false; 1730 } 1731 return true; 1732 } 1733 1734 /// isVMerge - Common function, used to match vmrg* shuffles. 1735 /// 1736 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1737 unsigned LHSStart, unsigned RHSStart) { 1738 if (N->getValueType(0) != MVT::v16i8) 1739 return false; 1740 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1741 "Unsupported merge size!"); 1742 1743 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1744 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1745 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1746 LHSStart+j+i*UnitSize) || 1747 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1748 RHSStart+j+i*UnitSize)) 1749 return false; 1750 } 1751 return true; 1752 } 1753 1754 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1755 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1756 /// The ShuffleKind distinguishes between big-endian merges with two 1757 /// different inputs (0), either-endian merges with two identical inputs (1), 1758 /// and little-endian merges with two different inputs (2). For the latter, 1759 /// the input operands are swapped (see PPCInstrAltivec.td). 1760 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1761 unsigned ShuffleKind, SelectionDAG &DAG) { 1762 if (DAG.getDataLayout().isLittleEndian()) { 1763 if (ShuffleKind == 1) // unary 1764 return isVMerge(N, UnitSize, 0, 0); 1765 else if (ShuffleKind == 2) // swapped 1766 return isVMerge(N, UnitSize, 0, 16); 1767 else 1768 return false; 1769 } else { 1770 if (ShuffleKind == 1) // unary 1771 return isVMerge(N, UnitSize, 8, 8); 1772 else if (ShuffleKind == 0) // normal 1773 return isVMerge(N, UnitSize, 8, 24); 1774 else 1775 return false; 1776 } 1777 } 1778 1779 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1780 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1781 /// The ShuffleKind distinguishes between big-endian merges with two 1782 /// different inputs (0), either-endian merges with two identical inputs (1), 1783 /// and little-endian merges with two different inputs (2). For the latter, 1784 /// the input operands are swapped (see PPCInstrAltivec.td). 1785 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1786 unsigned ShuffleKind, SelectionDAG &DAG) { 1787 if (DAG.getDataLayout().isLittleEndian()) { 1788 if (ShuffleKind == 1) // unary 1789 return isVMerge(N, UnitSize, 8, 8); 1790 else if (ShuffleKind == 2) // swapped 1791 return isVMerge(N, UnitSize, 8, 24); 1792 else 1793 return false; 1794 } else { 1795 if (ShuffleKind == 1) // unary 1796 return isVMerge(N, UnitSize, 0, 0); 1797 else if (ShuffleKind == 0) // normal 1798 return isVMerge(N, UnitSize, 0, 16); 1799 else 1800 return false; 1801 } 1802 } 1803 1804 /** 1805 * Common function used to match vmrgew and vmrgow shuffles 1806 * 1807 * The indexOffset determines whether to look for even or odd words in 1808 * the shuffle mask. This is based on the of the endianness of the target 1809 * machine. 1810 * - Little Endian: 1811 * - Use offset of 0 to check for odd elements 1812 * - Use offset of 4 to check for even elements 1813 * - Big Endian: 1814 * - Use offset of 0 to check for even elements 1815 * - Use offset of 4 to check for odd elements 1816 * A detailed description of the vector element ordering for little endian and 1817 * big endian can be found at 1818 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1819 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1820 * compiler differences mean to you 1821 * 1822 * The mask to the shuffle vector instruction specifies the indices of the 1823 * elements from the two input vectors to place in the result. The elements are 1824 * numbered in array-access order, starting with the first vector. These vectors 1825 * are always of type v16i8, thus each vector will contain 16 elements of size 1826 * 8. More info on the shuffle vector can be found in the 1827 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1828 * Language Reference. 1829 * 1830 * The RHSStartValue indicates whether the same input vectors are used (unary) 1831 * or two different input vectors are used, based on the following: 1832 * - If the instruction uses the same vector for both inputs, the range of the 1833 * indices will be 0 to 15. In this case, the RHSStart value passed should 1834 * be 0. 1835 * - If the instruction has two different vectors then the range of the 1836 * indices will be 0 to 31. In this case, the RHSStart value passed should 1837 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1838 * to 31 specify elements in the second vector). 1839 * 1840 * \param[in] N The shuffle vector SD Node to analyze 1841 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1842 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1843 * vector to the shuffle_vector instruction 1844 * \return true iff this shuffle vector represents an even or odd word merge 1845 */ 1846 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1847 unsigned RHSStartValue) { 1848 if (N->getValueType(0) != MVT::v16i8) 1849 return false; 1850 1851 for (unsigned i = 0; i < 2; ++i) 1852 for (unsigned j = 0; j < 4; ++j) 1853 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1854 i*RHSStartValue+j+IndexOffset) || 1855 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1856 i*RHSStartValue+j+IndexOffset+8)) 1857 return false; 1858 return true; 1859 } 1860 1861 /** 1862 * Determine if the specified shuffle mask is suitable for the vmrgew or 1863 * vmrgow instructions. 1864 * 1865 * \param[in] N The shuffle vector SD Node to analyze 1866 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1867 * \param[in] ShuffleKind Identify the type of merge: 1868 * - 0 = big-endian merge with two different inputs; 1869 * - 1 = either-endian merge with two identical inputs; 1870 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1871 * little-endian merges). 1872 * \param[in] DAG The current SelectionDAG 1873 * \return true iff this shuffle mask 1874 */ 1875 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1876 unsigned ShuffleKind, SelectionDAG &DAG) { 1877 if (DAG.getDataLayout().isLittleEndian()) { 1878 unsigned indexOffset = CheckEven ? 4 : 0; 1879 if (ShuffleKind == 1) // Unary 1880 return isVMerge(N, indexOffset, 0); 1881 else if (ShuffleKind == 2) // swapped 1882 return isVMerge(N, indexOffset, 16); 1883 else 1884 return false; 1885 } 1886 else { 1887 unsigned indexOffset = CheckEven ? 0 : 4; 1888 if (ShuffleKind == 1) // Unary 1889 return isVMerge(N, indexOffset, 0); 1890 else if (ShuffleKind == 0) // Normal 1891 return isVMerge(N, indexOffset, 16); 1892 else 1893 return false; 1894 } 1895 return false; 1896 } 1897 1898 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1899 /// amount, otherwise return -1. 1900 /// The ShuffleKind distinguishes between big-endian operations with two 1901 /// different inputs (0), either-endian operations with two identical inputs 1902 /// (1), and little-endian operations with two different inputs (2). For the 1903 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1904 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1905 SelectionDAG &DAG) { 1906 if (N->getValueType(0) != MVT::v16i8) 1907 return -1; 1908 1909 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1910 1911 // Find the first non-undef value in the shuffle mask. 1912 unsigned i; 1913 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1914 /*search*/; 1915 1916 if (i == 16) return -1; // all undef. 1917 1918 // Otherwise, check to see if the rest of the elements are consecutively 1919 // numbered from this value. 1920 unsigned ShiftAmt = SVOp->getMaskElt(i); 1921 if (ShiftAmt < i) return -1; 1922 1923 ShiftAmt -= i; 1924 bool isLE = DAG.getDataLayout().isLittleEndian(); 1925 1926 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1927 // Check the rest of the elements to see if they are consecutive. 1928 for (++i; i != 16; ++i) 1929 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1930 return -1; 1931 } else if (ShuffleKind == 1) { 1932 // Check the rest of the elements to see if they are consecutive. 1933 for (++i; i != 16; ++i) 1934 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1935 return -1; 1936 } else 1937 return -1; 1938 1939 if (isLE) 1940 ShiftAmt = 16 - ShiftAmt; 1941 1942 return ShiftAmt; 1943 } 1944 1945 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1946 /// specifies a splat of a single element that is suitable for input to 1947 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1948 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1949 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1950 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1951 1952 // The consecutive indices need to specify an element, not part of two 1953 // different elements. So abandon ship early if this isn't the case. 1954 if (N->getMaskElt(0) % EltSize != 0) 1955 return false; 1956 1957 // This is a splat operation if each element of the permute is the same, and 1958 // if the value doesn't reference the second vector. 1959 unsigned ElementBase = N->getMaskElt(0); 1960 1961 // FIXME: Handle UNDEF elements too! 1962 if (ElementBase >= 16) 1963 return false; 1964 1965 // Check that the indices are consecutive, in the case of a multi-byte element 1966 // splatted with a v16i8 mask. 1967 for (unsigned i = 1; i != EltSize; ++i) 1968 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1969 return false; 1970 1971 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1972 if (N->getMaskElt(i) < 0) continue; 1973 for (unsigned j = 0; j != EltSize; ++j) 1974 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1975 return false; 1976 } 1977 return true; 1978 } 1979 1980 /// Check that the mask is shuffling N byte elements. Within each N byte 1981 /// element of the mask, the indices could be either in increasing or 1982 /// decreasing order as long as they are consecutive. 1983 /// \param[in] N the shuffle vector SD Node to analyze 1984 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1985 /// Word/DoubleWord/QuadWord). 1986 /// \param[in] StepLen the delta indices number among the N byte element, if 1987 /// the mask is in increasing/decreasing order then it is 1/-1. 1988 /// \return true iff the mask is shuffling N byte elements. 1989 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1990 int StepLen) { 1991 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1992 "Unexpected element width."); 1993 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1994 1995 unsigned NumOfElem = 16 / Width; 1996 unsigned MaskVal[16]; // Width is never greater than 16 1997 for (unsigned i = 0; i < NumOfElem; ++i) { 1998 MaskVal[0] = N->getMaskElt(i * Width); 1999 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2000 return false; 2001 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2002 return false; 2003 } 2004 2005 for (unsigned int j = 1; j < Width; ++j) { 2006 MaskVal[j] = N->getMaskElt(i * Width + j); 2007 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2008 return false; 2009 } 2010 } 2011 } 2012 2013 return true; 2014 } 2015 2016 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2017 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2018 if (!isNByteElemShuffleMask(N, 4, 1)) 2019 return false; 2020 2021 // Now we look at mask elements 0,4,8,12 2022 unsigned M0 = N->getMaskElt(0) / 4; 2023 unsigned M1 = N->getMaskElt(4) / 4; 2024 unsigned M2 = N->getMaskElt(8) / 4; 2025 unsigned M3 = N->getMaskElt(12) / 4; 2026 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2027 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2028 2029 // Below, let H and L be arbitrary elements of the shuffle mask 2030 // where H is in the range [4,7] and L is in the range [0,3]. 2031 // H, 1, 2, 3 or L, 5, 6, 7 2032 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2033 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2034 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2035 InsertAtByte = IsLE ? 12 : 0; 2036 Swap = M0 < 4; 2037 return true; 2038 } 2039 // 0, H, 2, 3 or 4, L, 6, 7 2040 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2041 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2042 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2043 InsertAtByte = IsLE ? 8 : 4; 2044 Swap = M1 < 4; 2045 return true; 2046 } 2047 // 0, 1, H, 3 or 4, 5, L, 7 2048 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2049 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2050 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2051 InsertAtByte = IsLE ? 4 : 8; 2052 Swap = M2 < 4; 2053 return true; 2054 } 2055 // 0, 1, 2, H or 4, 5, 6, L 2056 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2057 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2058 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2059 InsertAtByte = IsLE ? 0 : 12; 2060 Swap = M3 < 4; 2061 return true; 2062 } 2063 2064 // If both vector operands for the shuffle are the same vector, the mask will 2065 // contain only elements from the first one and the second one will be undef. 2066 if (N->getOperand(1).isUndef()) { 2067 ShiftElts = 0; 2068 Swap = true; 2069 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2070 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2071 InsertAtByte = IsLE ? 12 : 0; 2072 return true; 2073 } 2074 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2075 InsertAtByte = IsLE ? 8 : 4; 2076 return true; 2077 } 2078 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2079 InsertAtByte = IsLE ? 4 : 8; 2080 return true; 2081 } 2082 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2083 InsertAtByte = IsLE ? 0 : 12; 2084 return true; 2085 } 2086 } 2087 2088 return false; 2089 } 2090 2091 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2092 bool &Swap, bool IsLE) { 2093 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2094 // Ensure each byte index of the word is consecutive. 2095 if (!isNByteElemShuffleMask(N, 4, 1)) 2096 return false; 2097 2098 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2099 unsigned M0 = N->getMaskElt(0) / 4; 2100 unsigned M1 = N->getMaskElt(4) / 4; 2101 unsigned M2 = N->getMaskElt(8) / 4; 2102 unsigned M3 = N->getMaskElt(12) / 4; 2103 2104 // If both vector operands for the shuffle are the same vector, the mask will 2105 // contain only elements from the first one and the second one will be undef. 2106 if (N->getOperand(1).isUndef()) { 2107 assert(M0 < 4 && "Indexing into an undef vector?"); 2108 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2109 return false; 2110 2111 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2112 Swap = false; 2113 return true; 2114 } 2115 2116 // Ensure each word index of the ShuffleVector Mask is consecutive. 2117 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2118 return false; 2119 2120 if (IsLE) { 2121 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2122 // Input vectors don't need to be swapped if the leading element 2123 // of the result is one of the 3 left elements of the second vector 2124 // (or if there is no shift to be done at all). 2125 Swap = false; 2126 ShiftElts = (8 - M0) % 8; 2127 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2128 // Input vectors need to be swapped if the leading element 2129 // of the result is one of the 3 left elements of the first vector 2130 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2131 Swap = true; 2132 ShiftElts = (4 - M0) % 4; 2133 } 2134 2135 return true; 2136 } else { // BE 2137 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2138 // Input vectors don't need to be swapped if the leading element 2139 // of the result is one of the 4 elements of the first vector. 2140 Swap = false; 2141 ShiftElts = M0; 2142 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2143 // Input vectors need to be swapped if the leading element 2144 // of the result is one of the 4 elements of the right vector. 2145 Swap = true; 2146 ShiftElts = M0 - 4; 2147 } 2148 2149 return true; 2150 } 2151 } 2152 2153 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2154 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2155 2156 if (!isNByteElemShuffleMask(N, Width, -1)) 2157 return false; 2158 2159 for (int i = 0; i < 16; i += Width) 2160 if (N->getMaskElt(i) != i + Width - 1) 2161 return false; 2162 2163 return true; 2164 } 2165 2166 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2167 return isXXBRShuffleMaskHelper(N, 2); 2168 } 2169 2170 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2171 return isXXBRShuffleMaskHelper(N, 4); 2172 } 2173 2174 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2175 return isXXBRShuffleMaskHelper(N, 8); 2176 } 2177 2178 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2179 return isXXBRShuffleMaskHelper(N, 16); 2180 } 2181 2182 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2183 /// if the inputs to the instruction should be swapped and set \p DM to the 2184 /// value for the immediate. 2185 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2186 /// AND element 0 of the result comes from the first input (LE) or second input 2187 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2188 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2189 /// mask. 2190 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2191 bool &Swap, bool IsLE) { 2192 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2193 2194 // Ensure each byte index of the double word is consecutive. 2195 if (!isNByteElemShuffleMask(N, 8, 1)) 2196 return false; 2197 2198 unsigned M0 = N->getMaskElt(0) / 8; 2199 unsigned M1 = N->getMaskElt(8) / 8; 2200 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2201 2202 // If both vector operands for the shuffle are the same vector, the mask will 2203 // contain only elements from the first one and the second one will be undef. 2204 if (N->getOperand(1).isUndef()) { 2205 if ((M0 | M1) < 2) { 2206 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2207 Swap = false; 2208 return true; 2209 } else 2210 return false; 2211 } 2212 2213 if (IsLE) { 2214 if (M0 > 1 && M1 < 2) { 2215 Swap = false; 2216 } else if (M0 < 2 && M1 > 1) { 2217 M0 = (M0 + 2) % 4; 2218 M1 = (M1 + 2) % 4; 2219 Swap = true; 2220 } else 2221 return false; 2222 2223 // Note: if control flow comes here that means Swap is already set above 2224 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2225 return true; 2226 } else { // BE 2227 if (M0 < 2 && M1 > 1) { 2228 Swap = false; 2229 } else if (M0 > 1 && M1 < 2) { 2230 M0 = (M0 + 2) % 4; 2231 M1 = (M1 + 2) % 4; 2232 Swap = true; 2233 } else 2234 return false; 2235 2236 // Note: if control flow comes here that means Swap is already set above 2237 DM = (M0 << 1) + (M1 & 1); 2238 return true; 2239 } 2240 } 2241 2242 2243 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2244 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2245 /// elements are counted from the left of the vector register). 2246 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2247 SelectionDAG &DAG) { 2248 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2249 assert(isSplatShuffleMask(SVOp, EltSize)); 2250 if (DAG.getDataLayout().isLittleEndian()) 2251 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2252 else 2253 return SVOp->getMaskElt(0) / EltSize; 2254 } 2255 2256 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2257 /// by using a vspltis[bhw] instruction of the specified element size, return 2258 /// the constant being splatted. The ByteSize field indicates the number of 2259 /// bytes of each element [124] -> [bhw]. 2260 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2261 SDValue OpVal(nullptr, 0); 2262 2263 // If ByteSize of the splat is bigger than the element size of the 2264 // build_vector, then we have a case where we are checking for a splat where 2265 // multiple elements of the buildvector are folded together into a single 2266 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2267 unsigned EltSize = 16/N->getNumOperands(); 2268 if (EltSize < ByteSize) { 2269 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2270 SDValue UniquedVals[4]; 2271 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2272 2273 // See if all of the elements in the buildvector agree across. 2274 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2275 if (N->getOperand(i).isUndef()) continue; 2276 // If the element isn't a constant, bail fully out. 2277 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2278 2279 if (!UniquedVals[i&(Multiple-1)].getNode()) 2280 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2281 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2282 return SDValue(); // no match. 2283 } 2284 2285 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2286 // either constant or undef values that are identical for each chunk. See 2287 // if these chunks can form into a larger vspltis*. 2288 2289 // Check to see if all of the leading entries are either 0 or -1. If 2290 // neither, then this won't fit into the immediate field. 2291 bool LeadingZero = true; 2292 bool LeadingOnes = true; 2293 for (unsigned i = 0; i != Multiple-1; ++i) { 2294 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2295 2296 LeadingZero &= isNullConstant(UniquedVals[i]); 2297 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2298 } 2299 // Finally, check the least significant entry. 2300 if (LeadingZero) { 2301 if (!UniquedVals[Multiple-1].getNode()) 2302 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2303 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2304 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2305 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2306 } 2307 if (LeadingOnes) { 2308 if (!UniquedVals[Multiple-1].getNode()) 2309 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2310 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2311 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2312 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2313 } 2314 2315 return SDValue(); 2316 } 2317 2318 // Check to see if this buildvec has a single non-undef value in its elements. 2319 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2320 if (N->getOperand(i).isUndef()) continue; 2321 if (!OpVal.getNode()) 2322 OpVal = N->getOperand(i); 2323 else if (OpVal != N->getOperand(i)) 2324 return SDValue(); 2325 } 2326 2327 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2328 2329 unsigned ValSizeInBytes = EltSize; 2330 uint64_t Value = 0; 2331 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2332 Value = CN->getZExtValue(); 2333 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2334 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2335 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2336 } 2337 2338 // If the splat value is larger than the element value, then we can never do 2339 // this splat. The only case that we could fit the replicated bits into our 2340 // immediate field for would be zero, and we prefer to use vxor for it. 2341 if (ValSizeInBytes < ByteSize) return SDValue(); 2342 2343 // If the element value is larger than the splat value, check if it consists 2344 // of a repeated bit pattern of size ByteSize. 2345 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2346 return SDValue(); 2347 2348 // Properly sign extend the value. 2349 int MaskVal = SignExtend32(Value, ByteSize * 8); 2350 2351 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2352 if (MaskVal == 0) return SDValue(); 2353 2354 // Finally, if this value fits in a 5 bit sext field, return it 2355 if (SignExtend32<5>(MaskVal) == MaskVal) 2356 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2357 return SDValue(); 2358 } 2359 2360 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2361 /// amount, otherwise return -1. 2362 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2363 EVT VT = N->getValueType(0); 2364 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2365 return -1; 2366 2367 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2368 2369 // Find the first non-undef value in the shuffle mask. 2370 unsigned i; 2371 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2372 /*search*/; 2373 2374 if (i == 4) return -1; // all undef. 2375 2376 // Otherwise, check to see if the rest of the elements are consecutively 2377 // numbered from this value. 2378 unsigned ShiftAmt = SVOp->getMaskElt(i); 2379 if (ShiftAmt < i) return -1; 2380 ShiftAmt -= i; 2381 2382 // Check the rest of the elements to see if they are consecutive. 2383 for (++i; i != 4; ++i) 2384 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2385 return -1; 2386 2387 return ShiftAmt; 2388 } 2389 2390 //===----------------------------------------------------------------------===// 2391 // Addressing Mode Selection 2392 //===----------------------------------------------------------------------===// 2393 2394 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2395 /// or 64-bit immediate, and if the value can be accurately represented as a 2396 /// sign extension from a 16-bit value. If so, this returns true and the 2397 /// immediate. 2398 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2399 if (!isa<ConstantSDNode>(N)) 2400 return false; 2401 2402 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2403 if (N->getValueType(0) == MVT::i32) 2404 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2405 else 2406 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2407 } 2408 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2409 return isIntS16Immediate(Op.getNode(), Imm); 2410 } 2411 2412 2413 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2414 /// be represented as an indexed [r+r] operation. 2415 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2416 SDValue &Index, 2417 SelectionDAG &DAG) const { 2418 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2419 UI != E; ++UI) { 2420 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2421 if (Memop->getMemoryVT() == MVT::f64) { 2422 Base = N.getOperand(0); 2423 Index = N.getOperand(1); 2424 return true; 2425 } 2426 } 2427 } 2428 return false; 2429 } 2430 2431 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2432 /// can be represented as an indexed [r+r] operation. Returns false if it 2433 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2434 /// non-zero and N can be represented by a base register plus a signed 16-bit 2435 /// displacement, make a more precise judgement by checking (displacement % \p 2436 /// EncodingAlignment). 2437 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2438 SDValue &Index, SelectionDAG &DAG, 2439 unsigned EncodingAlignment) const { 2440 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2441 // a [pc+imm]. 2442 if (SelectAddressPCRel(N, Base)) 2443 return false; 2444 2445 int16_t imm = 0; 2446 if (N.getOpcode() == ISD::ADD) { 2447 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2448 // SPE load/store can only handle 8-bit offsets. 2449 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2450 return true; 2451 if (isIntS16Immediate(N.getOperand(1), imm) && 2452 (!EncodingAlignment || !(imm % EncodingAlignment))) 2453 return false; // r+i 2454 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2455 return false; // r+i 2456 2457 Base = N.getOperand(0); 2458 Index = N.getOperand(1); 2459 return true; 2460 } else if (N.getOpcode() == ISD::OR) { 2461 if (isIntS16Immediate(N.getOperand(1), imm) && 2462 (!EncodingAlignment || !(imm % EncodingAlignment))) 2463 return false; // r+i can fold it if we can. 2464 2465 // If this is an or of disjoint bitfields, we can codegen this as an add 2466 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2467 // disjoint. 2468 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2469 2470 if (LHSKnown.Zero.getBoolValue()) { 2471 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2472 // If all of the bits are known zero on the LHS or RHS, the add won't 2473 // carry. 2474 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2475 Base = N.getOperand(0); 2476 Index = N.getOperand(1); 2477 return true; 2478 } 2479 } 2480 } 2481 2482 return false; 2483 } 2484 2485 // If we happen to be doing an i64 load or store into a stack slot that has 2486 // less than a 4-byte alignment, then the frame-index elimination may need to 2487 // use an indexed load or store instruction (because the offset may not be a 2488 // multiple of 4). The extra register needed to hold the offset comes from the 2489 // register scavenger, and it is possible that the scavenger will need to use 2490 // an emergency spill slot. As a result, we need to make sure that a spill slot 2491 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2492 // stack slot. 2493 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2494 // FIXME: This does not handle the LWA case. 2495 if (VT != MVT::i64) 2496 return; 2497 2498 // NOTE: We'll exclude negative FIs here, which come from argument 2499 // lowering, because there are no known test cases triggering this problem 2500 // using packed structures (or similar). We can remove this exclusion if 2501 // we find such a test case. The reason why this is so test-case driven is 2502 // because this entire 'fixup' is only to prevent crashes (from the 2503 // register scavenger) on not-really-valid inputs. For example, if we have: 2504 // %a = alloca i1 2505 // %b = bitcast i1* %a to i64* 2506 // store i64* a, i64 b 2507 // then the store should really be marked as 'align 1', but is not. If it 2508 // were marked as 'align 1' then the indexed form would have been 2509 // instruction-selected initially, and the problem this 'fixup' is preventing 2510 // won't happen regardless. 2511 if (FrameIdx < 0) 2512 return; 2513 2514 MachineFunction &MF = DAG.getMachineFunction(); 2515 MachineFrameInfo &MFI = MF.getFrameInfo(); 2516 2517 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2518 return; 2519 2520 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2521 FuncInfo->setHasNonRISpills(); 2522 } 2523 2524 /// Returns true if the address N can be represented by a base register plus 2525 /// a signed 16-bit displacement [r+imm], and if it is not better 2526 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2527 /// displacements that are multiples of that value. 2528 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2529 SDValue &Base, 2530 SelectionDAG &DAG, 2531 unsigned EncodingAlignment) const { 2532 // FIXME dl should come from parent load or store, not from address 2533 SDLoc dl(N); 2534 2535 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2536 // a [pc+imm]. 2537 if (SelectAddressPCRel(N, Base)) 2538 return false; 2539 2540 // If this can be more profitably realized as r+r, fail. 2541 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2542 return false; 2543 2544 if (N.getOpcode() == ISD::ADD) { 2545 int16_t imm = 0; 2546 if (isIntS16Immediate(N.getOperand(1), imm) && 2547 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2548 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2549 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2550 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2551 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2552 } else { 2553 Base = N.getOperand(0); 2554 } 2555 return true; // [r+i] 2556 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2557 // Match LOAD (ADD (X, Lo(G))). 2558 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2559 && "Cannot handle constant offsets yet!"); 2560 Disp = N.getOperand(1).getOperand(0); // The global address. 2561 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2562 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2563 Disp.getOpcode() == ISD::TargetConstantPool || 2564 Disp.getOpcode() == ISD::TargetJumpTable); 2565 Base = N.getOperand(0); 2566 return true; // [&g+r] 2567 } 2568 } else if (N.getOpcode() == ISD::OR) { 2569 int16_t imm = 0; 2570 if (isIntS16Immediate(N.getOperand(1), imm) && 2571 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2572 // If this is an or of disjoint bitfields, we can codegen this as an add 2573 // (for better address arithmetic) if the LHS and RHS of the OR are 2574 // provably disjoint. 2575 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2576 2577 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2578 // If all of the bits are known zero on the LHS or RHS, the add won't 2579 // carry. 2580 if (FrameIndexSDNode *FI = 2581 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2582 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2583 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2584 } else { 2585 Base = N.getOperand(0); 2586 } 2587 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2588 return true; 2589 } 2590 } 2591 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2592 // Loading from a constant address. 2593 2594 // If this address fits entirely in a 16-bit sext immediate field, codegen 2595 // this as "d, 0" 2596 int16_t Imm; 2597 if (isIntS16Immediate(CN, Imm) && 2598 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2599 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2600 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2601 CN->getValueType(0)); 2602 return true; 2603 } 2604 2605 // Handle 32-bit sext immediates with LIS + addr mode. 2606 if ((CN->getValueType(0) == MVT::i32 || 2607 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2608 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2609 int Addr = (int)CN->getZExtValue(); 2610 2611 // Otherwise, break this down into an LIS + disp. 2612 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2613 2614 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2615 MVT::i32); 2616 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2617 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2618 return true; 2619 } 2620 } 2621 2622 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2623 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2624 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2625 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2626 } else 2627 Base = N; 2628 return true; // [r+0] 2629 } 2630 2631 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2632 /// represented as an indexed [r+r] operation. 2633 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2634 SDValue &Index, 2635 SelectionDAG &DAG) const { 2636 // Check to see if we can easily represent this as an [r+r] address. This 2637 // will fail if it thinks that the address is more profitably represented as 2638 // reg+imm, e.g. where imm = 0. 2639 if (SelectAddressRegReg(N, Base, Index, DAG)) 2640 return true; 2641 2642 // If the address is the result of an add, we will utilize the fact that the 2643 // address calculation includes an implicit add. However, we can reduce 2644 // register pressure if we do not materialize a constant just for use as the 2645 // index register. We only get rid of the add if it is not an add of a 2646 // value and a 16-bit signed constant and both have a single use. 2647 int16_t imm = 0; 2648 if (N.getOpcode() == ISD::ADD && 2649 (!isIntS16Immediate(N.getOperand(1), imm) || 2650 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2651 Base = N.getOperand(0); 2652 Index = N.getOperand(1); 2653 return true; 2654 } 2655 2656 // Otherwise, do it the hard way, using R0 as the base register. 2657 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2658 N.getValueType()); 2659 Index = N; 2660 return true; 2661 } 2662 2663 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2664 Ty *PCRelCand = dyn_cast<Ty>(N); 2665 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2666 } 2667 2668 /// Returns true if this address is a PC Relative address. 2669 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2670 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2671 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2672 // This is a materialize PC Relative node. Always select this as PC Relative. 2673 Base = N; 2674 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2675 return true; 2676 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2677 isValidPCRelNode<GlobalAddressSDNode>(N) || 2678 isValidPCRelNode<JumpTableSDNode>(N) || 2679 isValidPCRelNode<BlockAddressSDNode>(N)) 2680 return true; 2681 return false; 2682 } 2683 2684 /// Returns true if we should use a direct load into vector instruction 2685 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2686 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2687 2688 // If there are any other uses other than scalar to vector, then we should 2689 // keep it as a scalar load -> direct move pattern to prevent multiple 2690 // loads. 2691 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2692 if (!LD) 2693 return false; 2694 2695 EVT MemVT = LD->getMemoryVT(); 2696 if (!MemVT.isSimple()) 2697 return false; 2698 switch(MemVT.getSimpleVT().SimpleTy) { 2699 case MVT::i64: 2700 break; 2701 case MVT::i32: 2702 if (!ST.hasP8Vector()) 2703 return false; 2704 break; 2705 case MVT::i16: 2706 case MVT::i8: 2707 if (!ST.hasP9Vector()) 2708 return false; 2709 break; 2710 default: 2711 return false; 2712 } 2713 2714 SDValue LoadedVal(N, 0); 2715 if (!LoadedVal.hasOneUse()) 2716 return false; 2717 2718 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2719 UI != UE; ++UI) 2720 if (UI.getUse().get().getResNo() == 0 && 2721 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2722 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2723 return false; 2724 2725 return true; 2726 } 2727 2728 /// getPreIndexedAddressParts - returns true by value, base pointer and 2729 /// offset pointer and addressing mode by reference if the node's address 2730 /// can be legally represented as pre-indexed load / store address. 2731 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2732 SDValue &Offset, 2733 ISD::MemIndexedMode &AM, 2734 SelectionDAG &DAG) const { 2735 if (DisablePPCPreinc) return false; 2736 2737 bool isLoad = true; 2738 SDValue Ptr; 2739 EVT VT; 2740 unsigned Alignment; 2741 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2742 Ptr = LD->getBasePtr(); 2743 VT = LD->getMemoryVT(); 2744 Alignment = LD->getAlignment(); 2745 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2746 Ptr = ST->getBasePtr(); 2747 VT = ST->getMemoryVT(); 2748 Alignment = ST->getAlignment(); 2749 isLoad = false; 2750 } else 2751 return false; 2752 2753 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2754 // instructions because we can fold these into a more efficient instruction 2755 // instead, (such as LXSD). 2756 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2757 return false; 2758 } 2759 2760 // PowerPC doesn't have preinc load/store instructions for vectors (except 2761 // for QPX, which does have preinc r+r forms). 2762 if (VT.isVector()) { 2763 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2764 return false; 2765 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2766 AM = ISD::PRE_INC; 2767 return true; 2768 } 2769 } 2770 2771 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2772 // Common code will reject creating a pre-inc form if the base pointer 2773 // is a frame index, or if N is a store and the base pointer is either 2774 // the same as or a predecessor of the value being stored. Check for 2775 // those situations here, and try with swapped Base/Offset instead. 2776 bool Swap = false; 2777 2778 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2779 Swap = true; 2780 else if (!isLoad) { 2781 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2782 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2783 Swap = true; 2784 } 2785 2786 if (Swap) 2787 std::swap(Base, Offset); 2788 2789 AM = ISD::PRE_INC; 2790 return true; 2791 } 2792 2793 // LDU/STU can only handle immediates that are a multiple of 4. 2794 if (VT != MVT::i64) { 2795 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2796 return false; 2797 } else { 2798 // LDU/STU need an address with at least 4-byte alignment. 2799 if (Alignment < 4) 2800 return false; 2801 2802 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2803 return false; 2804 } 2805 2806 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2807 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2808 // sext i32 to i64 when addr mode is r+i. 2809 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2810 LD->getExtensionType() == ISD::SEXTLOAD && 2811 isa<ConstantSDNode>(Offset)) 2812 return false; 2813 } 2814 2815 AM = ISD::PRE_INC; 2816 return true; 2817 } 2818 2819 //===----------------------------------------------------------------------===// 2820 // LowerOperation implementation 2821 //===----------------------------------------------------------------------===// 2822 2823 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2824 /// and LoOpFlags to the target MO flags. 2825 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2826 unsigned &HiOpFlags, unsigned &LoOpFlags, 2827 const GlobalValue *GV = nullptr) { 2828 HiOpFlags = PPCII::MO_HA; 2829 LoOpFlags = PPCII::MO_LO; 2830 2831 // Don't use the pic base if not in PIC relocation model. 2832 if (IsPIC) { 2833 HiOpFlags |= PPCII::MO_PIC_FLAG; 2834 LoOpFlags |= PPCII::MO_PIC_FLAG; 2835 } 2836 } 2837 2838 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2839 SelectionDAG &DAG) { 2840 SDLoc DL(HiPart); 2841 EVT PtrVT = HiPart.getValueType(); 2842 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2843 2844 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2845 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2846 2847 // With PIC, the first instruction is actually "GR+hi(&G)". 2848 if (isPIC) 2849 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2850 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2851 2852 // Generate non-pic code that has direct accesses to the constant pool. 2853 // The address of the global is just (hi(&g)+lo(&g)). 2854 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2855 } 2856 2857 static void setUsesTOCBasePtr(MachineFunction &MF) { 2858 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2859 FuncInfo->setUsesTOCBasePtr(); 2860 } 2861 2862 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2863 setUsesTOCBasePtr(DAG.getMachineFunction()); 2864 } 2865 2866 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2867 SDValue GA) const { 2868 const bool Is64Bit = Subtarget.isPPC64(); 2869 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2870 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2871 : Subtarget.isAIXABI() 2872 ? DAG.getRegister(PPC::R2, VT) 2873 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2874 SDValue Ops[] = { GA, Reg }; 2875 return DAG.getMemIntrinsicNode( 2876 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2877 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2878 MachineMemOperand::MOLoad); 2879 } 2880 2881 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2882 SelectionDAG &DAG) const { 2883 EVT PtrVT = Op.getValueType(); 2884 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2885 const Constant *C = CP->getConstVal(); 2886 2887 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2888 // The actual address of the GlobalValue is stored in the TOC. 2889 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2890 if (Subtarget.isUsingPCRelativeCalls()) { 2891 SDLoc DL(CP); 2892 EVT Ty = getPointerTy(DAG.getDataLayout()); 2893 SDValue ConstPool = DAG.getTargetConstantPool( 2894 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2895 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2896 } 2897 setUsesTOCBasePtr(DAG); 2898 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2899 return getTOCEntry(DAG, SDLoc(CP), GA); 2900 } 2901 2902 unsigned MOHiFlag, MOLoFlag; 2903 bool IsPIC = isPositionIndependent(); 2904 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2905 2906 if (IsPIC && Subtarget.isSVR4ABI()) { 2907 SDValue GA = 2908 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2909 return getTOCEntry(DAG, SDLoc(CP), GA); 2910 } 2911 2912 SDValue CPIHi = 2913 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2914 SDValue CPILo = 2915 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2916 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2917 } 2918 2919 // For 64-bit PowerPC, prefer the more compact relative encodings. 2920 // This trades 32 bits per jump table entry for one or two instructions 2921 // on the jump site. 2922 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2923 if (isJumpTableRelative()) 2924 return MachineJumpTableInfo::EK_LabelDifference32; 2925 2926 return TargetLowering::getJumpTableEncoding(); 2927 } 2928 2929 bool PPCTargetLowering::isJumpTableRelative() const { 2930 if (UseAbsoluteJumpTables) 2931 return false; 2932 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2933 return true; 2934 return TargetLowering::isJumpTableRelative(); 2935 } 2936 2937 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2938 SelectionDAG &DAG) const { 2939 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2940 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2941 2942 switch (getTargetMachine().getCodeModel()) { 2943 case CodeModel::Small: 2944 case CodeModel::Medium: 2945 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2946 default: 2947 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2948 getPointerTy(DAG.getDataLayout())); 2949 } 2950 } 2951 2952 const MCExpr * 2953 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2954 unsigned JTI, 2955 MCContext &Ctx) const { 2956 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2957 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2958 2959 switch (getTargetMachine().getCodeModel()) { 2960 case CodeModel::Small: 2961 case CodeModel::Medium: 2962 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2963 default: 2964 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2965 } 2966 } 2967 2968 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2969 EVT PtrVT = Op.getValueType(); 2970 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2971 2972 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2973 if (Subtarget.isUsingPCRelativeCalls()) { 2974 SDLoc DL(JT); 2975 EVT Ty = getPointerTy(DAG.getDataLayout()); 2976 SDValue GA = 2977 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2978 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2979 return MatAddr; 2980 } 2981 2982 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2983 // The actual address of the GlobalValue is stored in the TOC. 2984 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2985 setUsesTOCBasePtr(DAG); 2986 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2987 return getTOCEntry(DAG, SDLoc(JT), GA); 2988 } 2989 2990 unsigned MOHiFlag, MOLoFlag; 2991 bool IsPIC = isPositionIndependent(); 2992 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2993 2994 if (IsPIC && Subtarget.isSVR4ABI()) { 2995 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2996 PPCII::MO_PIC_FLAG); 2997 return getTOCEntry(DAG, SDLoc(GA), GA); 2998 } 2999 3000 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3001 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3002 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3003 } 3004 3005 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3006 SelectionDAG &DAG) const { 3007 EVT PtrVT = Op.getValueType(); 3008 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3009 const BlockAddress *BA = BASDN->getBlockAddress(); 3010 3011 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3012 if (Subtarget.isUsingPCRelativeCalls()) { 3013 SDLoc DL(BASDN); 3014 EVT Ty = getPointerTy(DAG.getDataLayout()); 3015 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3016 PPCII::MO_PCREL_FLAG); 3017 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3018 return MatAddr; 3019 } 3020 3021 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3022 // The actual BlockAddress is stored in the TOC. 3023 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3024 setUsesTOCBasePtr(DAG); 3025 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3026 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3027 } 3028 3029 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3030 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3031 return getTOCEntry( 3032 DAG, SDLoc(BASDN), 3033 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3034 3035 unsigned MOHiFlag, MOLoFlag; 3036 bool IsPIC = isPositionIndependent(); 3037 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3038 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3039 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3040 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3041 } 3042 3043 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3044 SelectionDAG &DAG) const { 3045 // FIXME: TLS addresses currently use medium model code sequences, 3046 // which is the most useful form. Eventually support for small and 3047 // large models could be added if users need it, at the cost of 3048 // additional complexity. 3049 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3050 if (DAG.getTarget().useEmulatedTLS()) 3051 return LowerToTLSEmulatedModel(GA, DAG); 3052 3053 SDLoc dl(GA); 3054 const GlobalValue *GV = GA->getGlobal(); 3055 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3056 bool is64bit = Subtarget.isPPC64(); 3057 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3058 PICLevel::Level picLevel = M->getPICLevel(); 3059 3060 const TargetMachine &TM = getTargetMachine(); 3061 TLSModel::Model Model = TM.getTLSModel(GV); 3062 3063 if (Model == TLSModel::LocalExec) { 3064 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3065 PPCII::MO_TPREL_HA); 3066 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3067 PPCII::MO_TPREL_LO); 3068 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3069 : DAG.getRegister(PPC::R2, MVT::i32); 3070 3071 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3072 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3073 } 3074 3075 if (Model == TLSModel::InitialExec) { 3076 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3077 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3078 PPCII::MO_TLS); 3079 SDValue GOTPtr; 3080 if (is64bit) { 3081 setUsesTOCBasePtr(DAG); 3082 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3083 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3084 PtrVT, GOTReg, TGA); 3085 } else { 3086 if (!TM.isPositionIndependent()) 3087 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3088 else if (picLevel == PICLevel::SmallPIC) 3089 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3090 else 3091 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3092 } 3093 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3094 PtrVT, TGA, GOTPtr); 3095 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3096 } 3097 3098 if (Model == TLSModel::GeneralDynamic) { 3099 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3100 SDValue GOTPtr; 3101 if (is64bit) { 3102 setUsesTOCBasePtr(DAG); 3103 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3104 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3105 GOTReg, TGA); 3106 } else { 3107 if (picLevel == PICLevel::SmallPIC) 3108 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3109 else 3110 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3111 } 3112 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3113 GOTPtr, TGA, TGA); 3114 } 3115 3116 if (Model == TLSModel::LocalDynamic) { 3117 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3118 SDValue GOTPtr; 3119 if (is64bit) { 3120 setUsesTOCBasePtr(DAG); 3121 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3122 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3123 GOTReg, TGA); 3124 } else { 3125 if (picLevel == PICLevel::SmallPIC) 3126 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3127 else 3128 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3129 } 3130 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3131 PtrVT, GOTPtr, TGA, TGA); 3132 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3133 PtrVT, TLSAddr, TGA); 3134 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3135 } 3136 3137 llvm_unreachable("Unknown TLS model!"); 3138 } 3139 3140 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3141 SelectionDAG &DAG) const { 3142 EVT PtrVT = Op.getValueType(); 3143 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3144 SDLoc DL(GSDN); 3145 const GlobalValue *GV = GSDN->getGlobal(); 3146 3147 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3148 // The actual address of the GlobalValue is stored in the TOC. 3149 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3150 if (Subtarget.isUsingPCRelativeCalls()) { 3151 EVT Ty = getPointerTy(DAG.getDataLayout()); 3152 if (isAccessedAsGotIndirect(Op)) { 3153 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3154 PPCII::MO_PCREL_FLAG | 3155 PPCII::MO_GOT_FLAG); 3156 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3157 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3158 MachinePointerInfo()); 3159 return Load; 3160 } else { 3161 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3162 PPCII::MO_PCREL_FLAG); 3163 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3164 } 3165 } 3166 setUsesTOCBasePtr(DAG); 3167 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3168 return getTOCEntry(DAG, DL, GA); 3169 } 3170 3171 unsigned MOHiFlag, MOLoFlag; 3172 bool IsPIC = isPositionIndependent(); 3173 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3174 3175 if (IsPIC && Subtarget.isSVR4ABI()) { 3176 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3177 GSDN->getOffset(), 3178 PPCII::MO_PIC_FLAG); 3179 return getTOCEntry(DAG, DL, GA); 3180 } 3181 3182 SDValue GAHi = 3183 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3184 SDValue GALo = 3185 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3186 3187 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3188 } 3189 3190 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3191 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3192 SDLoc dl(Op); 3193 3194 if (Op.getValueType() == MVT::v2i64) { 3195 // When the operands themselves are v2i64 values, we need to do something 3196 // special because VSX has no underlying comparison operations for these. 3197 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3198 // Equality can be handled by casting to the legal type for Altivec 3199 // comparisons, everything else needs to be expanded. 3200 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3201 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3202 DAG.getSetCC(dl, MVT::v4i32, 3203 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3204 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3205 CC)); 3206 } 3207 3208 return SDValue(); 3209 } 3210 3211 // We handle most of these in the usual way. 3212 return Op; 3213 } 3214 3215 // If we're comparing for equality to zero, expose the fact that this is 3216 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3217 // fold the new nodes. 3218 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3219 return V; 3220 3221 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3222 // Leave comparisons against 0 and -1 alone for now, since they're usually 3223 // optimized. FIXME: revisit this when we can custom lower all setcc 3224 // optimizations. 3225 if (C->isAllOnesValue() || C->isNullValue()) 3226 return SDValue(); 3227 } 3228 3229 // If we have an integer seteq/setne, turn it into a compare against zero 3230 // by xor'ing the rhs with the lhs, which is faster than setting a 3231 // condition register, reading it back out, and masking the correct bit. The 3232 // normal approach here uses sub to do this instead of xor. Using xor exposes 3233 // the result to other bit-twiddling opportunities. 3234 EVT LHSVT = Op.getOperand(0).getValueType(); 3235 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3236 EVT VT = Op.getValueType(); 3237 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3238 Op.getOperand(1)); 3239 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3240 } 3241 return SDValue(); 3242 } 3243 3244 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3245 SDNode *Node = Op.getNode(); 3246 EVT VT = Node->getValueType(0); 3247 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3248 SDValue InChain = Node->getOperand(0); 3249 SDValue VAListPtr = Node->getOperand(1); 3250 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3251 SDLoc dl(Node); 3252 3253 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3254 3255 // gpr_index 3256 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3257 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3258 InChain = GprIndex.getValue(1); 3259 3260 if (VT == MVT::i64) { 3261 // Check if GprIndex is even 3262 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3263 DAG.getConstant(1, dl, MVT::i32)); 3264 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3265 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3266 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3267 DAG.getConstant(1, dl, MVT::i32)); 3268 // Align GprIndex to be even if it isn't 3269 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3270 GprIndex); 3271 } 3272 3273 // fpr index is 1 byte after gpr 3274 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3275 DAG.getConstant(1, dl, MVT::i32)); 3276 3277 // fpr 3278 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3279 FprPtr, MachinePointerInfo(SV), MVT::i8); 3280 InChain = FprIndex.getValue(1); 3281 3282 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3283 DAG.getConstant(8, dl, MVT::i32)); 3284 3285 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3286 DAG.getConstant(4, dl, MVT::i32)); 3287 3288 // areas 3289 SDValue OverflowArea = 3290 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3291 InChain = OverflowArea.getValue(1); 3292 3293 SDValue RegSaveArea = 3294 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3295 InChain = RegSaveArea.getValue(1); 3296 3297 // select overflow_area if index > 8 3298 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3299 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3300 3301 // adjustment constant gpr_index * 4/8 3302 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3303 VT.isInteger() ? GprIndex : FprIndex, 3304 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3305 MVT::i32)); 3306 3307 // OurReg = RegSaveArea + RegConstant 3308 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3309 RegConstant); 3310 3311 // Floating types are 32 bytes into RegSaveArea 3312 if (VT.isFloatingPoint()) 3313 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3314 DAG.getConstant(32, dl, MVT::i32)); 3315 3316 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3317 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3318 VT.isInteger() ? GprIndex : FprIndex, 3319 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3320 MVT::i32)); 3321 3322 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3323 VT.isInteger() ? VAListPtr : FprPtr, 3324 MachinePointerInfo(SV), MVT::i8); 3325 3326 // determine if we should load from reg_save_area or overflow_area 3327 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3328 3329 // increase overflow_area by 4/8 if gpr/fpr > 8 3330 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3331 DAG.getConstant(VT.isInteger() ? 4 : 8, 3332 dl, MVT::i32)); 3333 3334 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3335 OverflowAreaPlusN); 3336 3337 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3338 MachinePointerInfo(), MVT::i32); 3339 3340 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3341 } 3342 3343 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3344 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3345 3346 // We have to copy the entire va_list struct: 3347 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3348 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3349 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3350 false, true, false, MachinePointerInfo(), 3351 MachinePointerInfo()); 3352 } 3353 3354 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3355 SelectionDAG &DAG) const { 3356 if (Subtarget.isAIXABI()) 3357 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3358 3359 return Op.getOperand(0); 3360 } 3361 3362 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3363 SelectionDAG &DAG) const { 3364 if (Subtarget.isAIXABI()) 3365 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3366 3367 SDValue Chain = Op.getOperand(0); 3368 SDValue Trmp = Op.getOperand(1); // trampoline 3369 SDValue FPtr = Op.getOperand(2); // nested function 3370 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3371 SDLoc dl(Op); 3372 3373 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3374 bool isPPC64 = (PtrVT == MVT::i64); 3375 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3376 3377 TargetLowering::ArgListTy Args; 3378 TargetLowering::ArgListEntry Entry; 3379 3380 Entry.Ty = IntPtrTy; 3381 Entry.Node = Trmp; Args.push_back(Entry); 3382 3383 // TrampSize == (isPPC64 ? 48 : 40); 3384 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3385 isPPC64 ? MVT::i64 : MVT::i32); 3386 Args.push_back(Entry); 3387 3388 Entry.Node = FPtr; Args.push_back(Entry); 3389 Entry.Node = Nest; Args.push_back(Entry); 3390 3391 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3392 TargetLowering::CallLoweringInfo CLI(DAG); 3393 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3394 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3395 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3396 3397 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3398 return CallResult.second; 3399 } 3400 3401 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3402 MachineFunction &MF = DAG.getMachineFunction(); 3403 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3404 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3405 3406 SDLoc dl(Op); 3407 3408 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3409 // vastart just stores the address of the VarArgsFrameIndex slot into the 3410 // memory location argument. 3411 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3412 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3413 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3414 MachinePointerInfo(SV)); 3415 } 3416 3417 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3418 // We suppose the given va_list is already allocated. 3419 // 3420 // typedef struct { 3421 // char gpr; /* index into the array of 8 GPRs 3422 // * stored in the register save area 3423 // * gpr=0 corresponds to r3, 3424 // * gpr=1 to r4, etc. 3425 // */ 3426 // char fpr; /* index into the array of 8 FPRs 3427 // * stored in the register save area 3428 // * fpr=0 corresponds to f1, 3429 // * fpr=1 to f2, etc. 3430 // */ 3431 // char *overflow_arg_area; 3432 // /* location on stack that holds 3433 // * the next overflow argument 3434 // */ 3435 // char *reg_save_area; 3436 // /* where r3:r10 and f1:f8 (if saved) 3437 // * are stored 3438 // */ 3439 // } va_list[1]; 3440 3441 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3442 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3443 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3444 PtrVT); 3445 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3446 PtrVT); 3447 3448 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3449 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3450 3451 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3452 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3453 3454 uint64_t FPROffset = 1; 3455 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3456 3457 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3458 3459 // Store first byte : number of int regs 3460 SDValue firstStore = 3461 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3462 MachinePointerInfo(SV), MVT::i8); 3463 uint64_t nextOffset = FPROffset; 3464 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3465 ConstFPROffset); 3466 3467 // Store second byte : number of float regs 3468 SDValue secondStore = 3469 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3470 MachinePointerInfo(SV, nextOffset), MVT::i8); 3471 nextOffset += StackOffset; 3472 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3473 3474 // Store second word : arguments given on stack 3475 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3476 MachinePointerInfo(SV, nextOffset)); 3477 nextOffset += FrameOffset; 3478 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3479 3480 // Store third word : arguments given in registers 3481 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3482 MachinePointerInfo(SV, nextOffset)); 3483 } 3484 3485 /// FPR - The set of FP registers that should be allocated for arguments 3486 /// on Darwin and AIX. 3487 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3488 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3489 PPC::F11, PPC::F12, PPC::F13}; 3490 3491 /// QFPR - The set of QPX registers that should be allocated for arguments. 3492 static const MCPhysReg QFPR[] = { 3493 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3494 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3495 3496 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3497 /// the stack. 3498 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3499 unsigned PtrByteSize) { 3500 unsigned ArgSize = ArgVT.getStoreSize(); 3501 if (Flags.isByVal()) 3502 ArgSize = Flags.getByValSize(); 3503 3504 // Round up to multiples of the pointer size, except for array members, 3505 // which are always packed. 3506 if (!Flags.isInConsecutiveRegs()) 3507 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3508 3509 return ArgSize; 3510 } 3511 3512 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3513 /// on the stack. 3514 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3515 ISD::ArgFlagsTy Flags, 3516 unsigned PtrByteSize) { 3517 Align Alignment(PtrByteSize); 3518 3519 // Altivec parameters are padded to a 16 byte boundary. 3520 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3521 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3522 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3523 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3524 Alignment = Align(16); 3525 // QPX vector types stored in double-precision are padded to a 32 byte 3526 // boundary. 3527 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3528 Alignment = Align(32); 3529 3530 // ByVal parameters are aligned as requested. 3531 if (Flags.isByVal()) { 3532 auto BVAlign = Flags.getNonZeroByValAlign(); 3533 if (BVAlign > PtrByteSize) { 3534 if (BVAlign.value() % PtrByteSize != 0) 3535 llvm_unreachable( 3536 "ByVal alignment is not a multiple of the pointer size"); 3537 3538 Alignment = BVAlign; 3539 } 3540 } 3541 3542 // Array members are always packed to their original alignment. 3543 if (Flags.isInConsecutiveRegs()) { 3544 // If the array member was split into multiple registers, the first 3545 // needs to be aligned to the size of the full type. (Except for 3546 // ppcf128, which is only aligned as its f64 components.) 3547 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3548 Alignment = Align(OrigVT.getStoreSize()); 3549 else 3550 Alignment = Align(ArgVT.getStoreSize()); 3551 } 3552 3553 return Alignment; 3554 } 3555 3556 /// CalculateStackSlotUsed - Return whether this argument will use its 3557 /// stack slot (instead of being passed in registers). ArgOffset, 3558 /// AvailableFPRs, and AvailableVRs must hold the current argument 3559 /// position, and will be updated to account for this argument. 3560 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3561 ISD::ArgFlagsTy Flags, 3562 unsigned PtrByteSize, 3563 unsigned LinkageSize, 3564 unsigned ParamAreaSize, 3565 unsigned &ArgOffset, 3566 unsigned &AvailableFPRs, 3567 unsigned &AvailableVRs, bool HasQPX) { 3568 bool UseMemory = false; 3569 3570 // Respect alignment of argument on the stack. 3571 Align Alignment = 3572 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3573 ArgOffset = alignTo(ArgOffset, Alignment); 3574 // If there's no space left in the argument save area, we must 3575 // use memory (this check also catches zero-sized arguments). 3576 if (ArgOffset >= LinkageSize + ParamAreaSize) 3577 UseMemory = true; 3578 3579 // Allocate argument on the stack. 3580 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3581 if (Flags.isInConsecutiveRegsLast()) 3582 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3583 // If we overran the argument save area, we must use memory 3584 // (this check catches arguments passed partially in memory) 3585 if (ArgOffset > LinkageSize + ParamAreaSize) 3586 UseMemory = true; 3587 3588 // However, if the argument is actually passed in an FPR or a VR, 3589 // we don't use memory after all. 3590 if (!Flags.isByVal()) { 3591 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3592 // QPX registers overlap with the scalar FP registers. 3593 (HasQPX && (ArgVT == MVT::v4f32 || 3594 ArgVT == MVT::v4f64 || 3595 ArgVT == MVT::v4i1))) 3596 if (AvailableFPRs > 0) { 3597 --AvailableFPRs; 3598 return false; 3599 } 3600 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3601 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3602 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3603 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3604 if (AvailableVRs > 0) { 3605 --AvailableVRs; 3606 return false; 3607 } 3608 } 3609 3610 return UseMemory; 3611 } 3612 3613 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3614 /// ensure minimum alignment required for target. 3615 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3616 unsigned NumBytes) { 3617 return alignTo(NumBytes, Lowering->getStackAlign()); 3618 } 3619 3620 SDValue PPCTargetLowering::LowerFormalArguments( 3621 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3622 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3623 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3624 if (Subtarget.isAIXABI()) 3625 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3626 InVals); 3627 if (Subtarget.is64BitELFABI()) 3628 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3629 InVals); 3630 if (Subtarget.is32BitELFABI()) 3631 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3632 InVals); 3633 3634 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3635 InVals); 3636 } 3637 3638 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3639 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3640 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3641 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3642 3643 // 32-bit SVR4 ABI Stack Frame Layout: 3644 // +-----------------------------------+ 3645 // +--> | Back chain | 3646 // | +-----------------------------------+ 3647 // | | Floating-point register save area | 3648 // | +-----------------------------------+ 3649 // | | General register save area | 3650 // | +-----------------------------------+ 3651 // | | CR save word | 3652 // | +-----------------------------------+ 3653 // | | VRSAVE save word | 3654 // | +-----------------------------------+ 3655 // | | Alignment padding | 3656 // | +-----------------------------------+ 3657 // | | Vector register save area | 3658 // | +-----------------------------------+ 3659 // | | Local variable space | 3660 // | +-----------------------------------+ 3661 // | | Parameter list area | 3662 // | +-----------------------------------+ 3663 // | | LR save word | 3664 // | +-----------------------------------+ 3665 // SP--> +--- | Back chain | 3666 // +-----------------------------------+ 3667 // 3668 // Specifications: 3669 // System V Application Binary Interface PowerPC Processor Supplement 3670 // AltiVec Technology Programming Interface Manual 3671 3672 MachineFunction &MF = DAG.getMachineFunction(); 3673 MachineFrameInfo &MFI = MF.getFrameInfo(); 3674 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3675 3676 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3677 // Potential tail calls could cause overwriting of argument stack slots. 3678 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3679 (CallConv == CallingConv::Fast)); 3680 const Align PtrAlign(4); 3681 3682 // Assign locations to all of the incoming arguments. 3683 SmallVector<CCValAssign, 16> ArgLocs; 3684 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3685 *DAG.getContext()); 3686 3687 // Reserve space for the linkage area on the stack. 3688 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3689 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3690 if (useSoftFloat()) 3691 CCInfo.PreAnalyzeFormalArguments(Ins); 3692 3693 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3694 CCInfo.clearWasPPCF128(); 3695 3696 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3697 CCValAssign &VA = ArgLocs[i]; 3698 3699 // Arguments stored in registers. 3700 if (VA.isRegLoc()) { 3701 const TargetRegisterClass *RC; 3702 EVT ValVT = VA.getValVT(); 3703 3704 switch (ValVT.getSimpleVT().SimpleTy) { 3705 default: 3706 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3707 case MVT::i1: 3708 case MVT::i32: 3709 RC = &PPC::GPRCRegClass; 3710 break; 3711 case MVT::f32: 3712 if (Subtarget.hasP8Vector()) 3713 RC = &PPC::VSSRCRegClass; 3714 else if (Subtarget.hasSPE()) 3715 RC = &PPC::GPRCRegClass; 3716 else 3717 RC = &PPC::F4RCRegClass; 3718 break; 3719 case MVT::f64: 3720 if (Subtarget.hasVSX()) 3721 RC = &PPC::VSFRCRegClass; 3722 else if (Subtarget.hasSPE()) 3723 // SPE passes doubles in GPR pairs. 3724 RC = &PPC::GPRCRegClass; 3725 else 3726 RC = &PPC::F8RCRegClass; 3727 break; 3728 case MVT::v16i8: 3729 case MVT::v8i16: 3730 case MVT::v4i32: 3731 RC = &PPC::VRRCRegClass; 3732 break; 3733 case MVT::v4f32: 3734 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3735 break; 3736 case MVT::v2f64: 3737 case MVT::v2i64: 3738 RC = &PPC::VRRCRegClass; 3739 break; 3740 case MVT::v4f64: 3741 RC = &PPC::QFRCRegClass; 3742 break; 3743 case MVT::v4i1: 3744 RC = &PPC::QBRCRegClass; 3745 break; 3746 } 3747 3748 SDValue ArgValue; 3749 // Transform the arguments stored in physical registers into 3750 // virtual ones. 3751 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3752 assert(i + 1 < e && "No second half of double precision argument"); 3753 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3754 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3755 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3756 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3757 if (!Subtarget.isLittleEndian()) 3758 std::swap (ArgValueLo, ArgValueHi); 3759 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3760 ArgValueHi); 3761 } else { 3762 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3763 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3764 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3765 if (ValVT == MVT::i1) 3766 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3767 } 3768 3769 InVals.push_back(ArgValue); 3770 } else { 3771 // Argument stored in memory. 3772 assert(VA.isMemLoc()); 3773 3774 // Get the extended size of the argument type in stack 3775 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3776 // Get the actual size of the argument type 3777 unsigned ObjSize = VA.getValVT().getStoreSize(); 3778 unsigned ArgOffset = VA.getLocMemOffset(); 3779 // Stack objects in PPC32 are right justified. 3780 ArgOffset += ArgSize - ObjSize; 3781 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3782 3783 // Create load nodes to retrieve arguments from the stack. 3784 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3785 InVals.push_back( 3786 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3787 } 3788 } 3789 3790 // Assign locations to all of the incoming aggregate by value arguments. 3791 // Aggregates passed by value are stored in the local variable space of the 3792 // caller's stack frame, right above the parameter list area. 3793 SmallVector<CCValAssign, 16> ByValArgLocs; 3794 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3795 ByValArgLocs, *DAG.getContext()); 3796 3797 // Reserve stack space for the allocations in CCInfo. 3798 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3799 3800 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3801 3802 // Area that is at least reserved in the caller of this function. 3803 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3804 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3805 3806 // Set the size that is at least reserved in caller of this function. Tail 3807 // call optimized function's reserved stack space needs to be aligned so that 3808 // taking the difference between two stack areas will result in an aligned 3809 // stack. 3810 MinReservedArea = 3811 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3812 FuncInfo->setMinReservedArea(MinReservedArea); 3813 3814 SmallVector<SDValue, 8> MemOps; 3815 3816 // If the function takes variable number of arguments, make a frame index for 3817 // the start of the first vararg value... for expansion of llvm.va_start. 3818 if (isVarArg) { 3819 static const MCPhysReg GPArgRegs[] = { 3820 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3821 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3822 }; 3823 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3824 3825 static const MCPhysReg FPArgRegs[] = { 3826 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3827 PPC::F8 3828 }; 3829 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3830 3831 if (useSoftFloat() || hasSPE()) 3832 NumFPArgRegs = 0; 3833 3834 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3835 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3836 3837 // Make room for NumGPArgRegs and NumFPArgRegs. 3838 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3839 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3840 3841 FuncInfo->setVarArgsStackOffset( 3842 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3843 CCInfo.getNextStackOffset(), true)); 3844 3845 FuncInfo->setVarArgsFrameIndex( 3846 MFI.CreateStackObject(Depth, Align(8), false)); 3847 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3848 3849 // The fixed integer arguments of a variadic function are stored to the 3850 // VarArgsFrameIndex on the stack so that they may be loaded by 3851 // dereferencing the result of va_next. 3852 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3853 // Get an existing live-in vreg, or add a new one. 3854 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3855 if (!VReg) 3856 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3857 3858 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3859 SDValue Store = 3860 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3861 MemOps.push_back(Store); 3862 // Increment the address by four for the next argument to store 3863 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3864 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3865 } 3866 3867 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3868 // is set. 3869 // The double arguments are stored to the VarArgsFrameIndex 3870 // on the stack. 3871 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3872 // Get an existing live-in vreg, or add a new one. 3873 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3874 if (!VReg) 3875 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3876 3877 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3878 SDValue Store = 3879 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3880 MemOps.push_back(Store); 3881 // Increment the address by eight for the next argument to store 3882 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3883 PtrVT); 3884 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3885 } 3886 } 3887 3888 if (!MemOps.empty()) 3889 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3890 3891 return Chain; 3892 } 3893 3894 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3895 // value to MVT::i64 and then truncate to the correct register size. 3896 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3897 EVT ObjectVT, SelectionDAG &DAG, 3898 SDValue ArgVal, 3899 const SDLoc &dl) const { 3900 if (Flags.isSExt()) 3901 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3902 DAG.getValueType(ObjectVT)); 3903 else if (Flags.isZExt()) 3904 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3905 DAG.getValueType(ObjectVT)); 3906 3907 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3908 } 3909 3910 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3911 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3912 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3913 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3914 // TODO: add description of PPC stack frame format, or at least some docs. 3915 // 3916 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3917 bool isLittleEndian = Subtarget.isLittleEndian(); 3918 MachineFunction &MF = DAG.getMachineFunction(); 3919 MachineFrameInfo &MFI = MF.getFrameInfo(); 3920 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3921 3922 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3923 "fastcc not supported on varargs functions"); 3924 3925 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3926 // Potential tail calls could cause overwriting of argument stack slots. 3927 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3928 (CallConv == CallingConv::Fast)); 3929 unsigned PtrByteSize = 8; 3930 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3931 3932 static const MCPhysReg GPR[] = { 3933 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3934 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3935 }; 3936 static const MCPhysReg VR[] = { 3937 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3938 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3939 }; 3940 3941 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3942 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3943 const unsigned Num_VR_Regs = array_lengthof(VR); 3944 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3945 3946 // Do a first pass over the arguments to determine whether the ABI 3947 // guarantees that our caller has allocated the parameter save area 3948 // on its stack frame. In the ELFv1 ABI, this is always the case; 3949 // in the ELFv2 ABI, it is true if this is a vararg function or if 3950 // any parameter is located in a stack slot. 3951 3952 bool HasParameterArea = !isELFv2ABI || isVarArg; 3953 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3954 unsigned NumBytes = LinkageSize; 3955 unsigned AvailableFPRs = Num_FPR_Regs; 3956 unsigned AvailableVRs = Num_VR_Regs; 3957 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3958 if (Ins[i].Flags.isNest()) 3959 continue; 3960 3961 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3962 PtrByteSize, LinkageSize, ParamAreaSize, 3963 NumBytes, AvailableFPRs, AvailableVRs, 3964 Subtarget.hasQPX())) 3965 HasParameterArea = true; 3966 } 3967 3968 // Add DAG nodes to load the arguments or copy them out of registers. On 3969 // entry to a function on PPC, the arguments start after the linkage area, 3970 // although the first ones are often in registers. 3971 3972 unsigned ArgOffset = LinkageSize; 3973 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3974 unsigned &QFPR_idx = FPR_idx; 3975 SmallVector<SDValue, 8> MemOps; 3976 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3977 unsigned CurArgIdx = 0; 3978 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3979 SDValue ArgVal; 3980 bool needsLoad = false; 3981 EVT ObjectVT = Ins[ArgNo].VT; 3982 EVT OrigVT = Ins[ArgNo].ArgVT; 3983 unsigned ObjSize = ObjectVT.getStoreSize(); 3984 unsigned ArgSize = ObjSize; 3985 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3986 if (Ins[ArgNo].isOrigArg()) { 3987 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3988 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3989 } 3990 // We re-align the argument offset for each argument, except when using the 3991 // fast calling convention, when we need to make sure we do that only when 3992 // we'll actually use a stack slot. 3993 unsigned CurArgOffset; 3994 Align Alignment; 3995 auto ComputeArgOffset = [&]() { 3996 /* Respect alignment of argument on the stack. */ 3997 Alignment = 3998 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3999 ArgOffset = alignTo(ArgOffset, Alignment); 4000 CurArgOffset = ArgOffset; 4001 }; 4002 4003 if (CallConv != CallingConv::Fast) { 4004 ComputeArgOffset(); 4005 4006 /* Compute GPR index associated with argument offset. */ 4007 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4008 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4009 } 4010 4011 // FIXME the codegen can be much improved in some cases. 4012 // We do not have to keep everything in memory. 4013 if (Flags.isByVal()) { 4014 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4015 4016 if (CallConv == CallingConv::Fast) 4017 ComputeArgOffset(); 4018 4019 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4020 ObjSize = Flags.getByValSize(); 4021 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4022 // Empty aggregate parameters do not take up registers. Examples: 4023 // struct { } a; 4024 // union { } b; 4025 // int c[0]; 4026 // etc. However, we have to provide a place-holder in InVals, so 4027 // pretend we have an 8-byte item at the current address for that 4028 // purpose. 4029 if (!ObjSize) { 4030 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4031 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4032 InVals.push_back(FIN); 4033 continue; 4034 } 4035 4036 // Create a stack object covering all stack doublewords occupied 4037 // by the argument. If the argument is (fully or partially) on 4038 // the stack, or if the argument is fully in registers but the 4039 // caller has allocated the parameter save anyway, we can refer 4040 // directly to the caller's stack frame. Otherwise, create a 4041 // local copy in our own frame. 4042 int FI; 4043 if (HasParameterArea || 4044 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4045 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4046 else 4047 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4048 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4049 4050 // Handle aggregates smaller than 8 bytes. 4051 if (ObjSize < PtrByteSize) { 4052 // The value of the object is its address, which differs from the 4053 // address of the enclosing doubleword on big-endian systems. 4054 SDValue Arg = FIN; 4055 if (!isLittleEndian) { 4056 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4057 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4058 } 4059 InVals.push_back(Arg); 4060 4061 if (GPR_idx != Num_GPR_Regs) { 4062 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4063 FuncInfo->addLiveInAttr(VReg, Flags); 4064 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4065 SDValue Store; 4066 4067 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4068 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4069 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4070 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4071 MachinePointerInfo(&*FuncArg), ObjType); 4072 } else { 4073 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4074 // store the whole register as-is to the parameter save area 4075 // slot. 4076 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4077 MachinePointerInfo(&*FuncArg)); 4078 } 4079 4080 MemOps.push_back(Store); 4081 } 4082 // Whether we copied from a register or not, advance the offset 4083 // into the parameter save area by a full doubleword. 4084 ArgOffset += PtrByteSize; 4085 continue; 4086 } 4087 4088 // The value of the object is its address, which is the address of 4089 // its first stack doubleword. 4090 InVals.push_back(FIN); 4091 4092 // Store whatever pieces of the object are in registers to memory. 4093 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4094 if (GPR_idx == Num_GPR_Regs) 4095 break; 4096 4097 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4098 FuncInfo->addLiveInAttr(VReg, Flags); 4099 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4100 SDValue Addr = FIN; 4101 if (j) { 4102 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4103 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4104 } 4105 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4106 MachinePointerInfo(&*FuncArg, j)); 4107 MemOps.push_back(Store); 4108 ++GPR_idx; 4109 } 4110 ArgOffset += ArgSize; 4111 continue; 4112 } 4113 4114 switch (ObjectVT.getSimpleVT().SimpleTy) { 4115 default: llvm_unreachable("Unhandled argument type!"); 4116 case MVT::i1: 4117 case MVT::i32: 4118 case MVT::i64: 4119 if (Flags.isNest()) { 4120 // The 'nest' parameter, if any, is passed in R11. 4121 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4122 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4123 4124 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4125 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4126 4127 break; 4128 } 4129 4130 // These can be scalar arguments or elements of an integer array type 4131 // passed directly. Clang may use those instead of "byval" aggregate 4132 // types to avoid forcing arguments to memory unnecessarily. 4133 if (GPR_idx != Num_GPR_Regs) { 4134 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4135 FuncInfo->addLiveInAttr(VReg, Flags); 4136 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4137 4138 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4139 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4140 // value to MVT::i64 and then truncate to the correct register size. 4141 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4142 } else { 4143 if (CallConv == CallingConv::Fast) 4144 ComputeArgOffset(); 4145 4146 needsLoad = true; 4147 ArgSize = PtrByteSize; 4148 } 4149 if (CallConv != CallingConv::Fast || needsLoad) 4150 ArgOffset += 8; 4151 break; 4152 4153 case MVT::f32: 4154 case MVT::f64: 4155 // These can be scalar arguments or elements of a float array type 4156 // passed directly. The latter are used to implement ELFv2 homogenous 4157 // float aggregates. 4158 if (FPR_idx != Num_FPR_Regs) { 4159 unsigned VReg; 4160 4161 if (ObjectVT == MVT::f32) 4162 VReg = MF.addLiveIn(FPR[FPR_idx], 4163 Subtarget.hasP8Vector() 4164 ? &PPC::VSSRCRegClass 4165 : &PPC::F4RCRegClass); 4166 else 4167 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4168 ? &PPC::VSFRCRegClass 4169 : &PPC::F8RCRegClass); 4170 4171 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4172 ++FPR_idx; 4173 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4174 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4175 // once we support fp <-> gpr moves. 4176 4177 // This can only ever happen in the presence of f32 array types, 4178 // since otherwise we never run out of FPRs before running out 4179 // of GPRs. 4180 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4181 FuncInfo->addLiveInAttr(VReg, Flags); 4182 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4183 4184 if (ObjectVT == MVT::f32) { 4185 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4186 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4187 DAG.getConstant(32, dl, MVT::i32)); 4188 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4189 } 4190 4191 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4192 } else { 4193 if (CallConv == CallingConv::Fast) 4194 ComputeArgOffset(); 4195 4196 needsLoad = true; 4197 } 4198 4199 // When passing an array of floats, the array occupies consecutive 4200 // space in the argument area; only round up to the next doubleword 4201 // at the end of the array. Otherwise, each float takes 8 bytes. 4202 if (CallConv != CallingConv::Fast || needsLoad) { 4203 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4204 ArgOffset += ArgSize; 4205 if (Flags.isInConsecutiveRegsLast()) 4206 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4207 } 4208 break; 4209 case MVT::v4f32: 4210 case MVT::v4i32: 4211 case MVT::v8i16: 4212 case MVT::v16i8: 4213 case MVT::v2f64: 4214 case MVT::v2i64: 4215 case MVT::v1i128: 4216 case MVT::f128: 4217 if (!Subtarget.hasQPX()) { 4218 // These can be scalar arguments or elements of a vector array type 4219 // passed directly. The latter are used to implement ELFv2 homogenous 4220 // vector aggregates. 4221 if (VR_idx != Num_VR_Regs) { 4222 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4223 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4224 ++VR_idx; 4225 } else { 4226 if (CallConv == CallingConv::Fast) 4227 ComputeArgOffset(); 4228 needsLoad = true; 4229 } 4230 if (CallConv != CallingConv::Fast || needsLoad) 4231 ArgOffset += 16; 4232 break; 4233 } // not QPX 4234 4235 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4236 "Invalid QPX parameter type"); 4237 LLVM_FALLTHROUGH; 4238 4239 case MVT::v4f64: 4240 case MVT::v4i1: 4241 // QPX vectors are treated like their scalar floating-point subregisters 4242 // (except that they're larger). 4243 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4244 if (QFPR_idx != Num_QFPR_Regs) { 4245 const TargetRegisterClass *RC; 4246 switch (ObjectVT.getSimpleVT().SimpleTy) { 4247 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4248 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4249 default: RC = &PPC::QBRCRegClass; break; 4250 } 4251 4252 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4253 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4254 ++QFPR_idx; 4255 } else { 4256 if (CallConv == CallingConv::Fast) 4257 ComputeArgOffset(); 4258 needsLoad = true; 4259 } 4260 if (CallConv != CallingConv::Fast || needsLoad) 4261 ArgOffset += Sz; 4262 break; 4263 } 4264 4265 // We need to load the argument to a virtual register if we determined 4266 // above that we ran out of physical registers of the appropriate type. 4267 if (needsLoad) { 4268 if (ObjSize < ArgSize && !isLittleEndian) 4269 CurArgOffset += ArgSize - ObjSize; 4270 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4271 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4272 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4273 } 4274 4275 InVals.push_back(ArgVal); 4276 } 4277 4278 // Area that is at least reserved in the caller of this function. 4279 unsigned MinReservedArea; 4280 if (HasParameterArea) 4281 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4282 else 4283 MinReservedArea = LinkageSize; 4284 4285 // Set the size that is at least reserved in caller of this function. Tail 4286 // call optimized functions' reserved stack space needs to be aligned so that 4287 // taking the difference between two stack areas will result in an aligned 4288 // stack. 4289 MinReservedArea = 4290 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4291 FuncInfo->setMinReservedArea(MinReservedArea); 4292 4293 // If the function takes variable number of arguments, make a frame index for 4294 // the start of the first vararg value... for expansion of llvm.va_start. 4295 if (isVarArg) { 4296 int Depth = ArgOffset; 4297 4298 FuncInfo->setVarArgsFrameIndex( 4299 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4300 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4301 4302 // If this function is vararg, store any remaining integer argument regs 4303 // to their spots on the stack so that they may be loaded by dereferencing 4304 // the result of va_next. 4305 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4306 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4307 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4308 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4309 SDValue Store = 4310 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4311 MemOps.push_back(Store); 4312 // Increment the address by four for the next argument to store 4313 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4314 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4315 } 4316 } 4317 4318 if (!MemOps.empty()) 4319 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4320 4321 return Chain; 4322 } 4323 4324 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4325 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4326 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4327 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4328 // TODO: add description of PPC stack frame format, or at least some docs. 4329 // 4330 MachineFunction &MF = DAG.getMachineFunction(); 4331 MachineFrameInfo &MFI = MF.getFrameInfo(); 4332 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4333 4334 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4335 bool isPPC64 = PtrVT == MVT::i64; 4336 // Potential tail calls could cause overwriting of argument stack slots. 4337 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4338 (CallConv == CallingConv::Fast)); 4339 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4340 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4341 unsigned ArgOffset = LinkageSize; 4342 // Area that is at least reserved in caller of this function. 4343 unsigned MinReservedArea = ArgOffset; 4344 4345 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4346 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4347 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4348 }; 4349 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4350 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4351 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4352 }; 4353 static const MCPhysReg VR[] = { 4354 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4355 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4356 }; 4357 4358 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4359 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4360 const unsigned Num_VR_Regs = array_lengthof( VR); 4361 4362 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4363 4364 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4365 4366 // In 32-bit non-varargs functions, the stack space for vectors is after the 4367 // stack space for non-vectors. We do not use this space unless we have 4368 // too many vectors to fit in registers, something that only occurs in 4369 // constructed examples:), but we have to walk the arglist to figure 4370 // that out...for the pathological case, compute VecArgOffset as the 4371 // start of the vector parameter area. Computing VecArgOffset is the 4372 // entire point of the following loop. 4373 unsigned VecArgOffset = ArgOffset; 4374 if (!isVarArg && !isPPC64) { 4375 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4376 ++ArgNo) { 4377 EVT ObjectVT = Ins[ArgNo].VT; 4378 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4379 4380 if (Flags.isByVal()) { 4381 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4382 unsigned ObjSize = Flags.getByValSize(); 4383 unsigned ArgSize = 4384 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4385 VecArgOffset += ArgSize; 4386 continue; 4387 } 4388 4389 switch(ObjectVT.getSimpleVT().SimpleTy) { 4390 default: llvm_unreachable("Unhandled argument type!"); 4391 case MVT::i1: 4392 case MVT::i32: 4393 case MVT::f32: 4394 VecArgOffset += 4; 4395 break; 4396 case MVT::i64: // PPC64 4397 case MVT::f64: 4398 // FIXME: We are guaranteed to be !isPPC64 at this point. 4399 // Does MVT::i64 apply? 4400 VecArgOffset += 8; 4401 break; 4402 case MVT::v4f32: 4403 case MVT::v4i32: 4404 case MVT::v8i16: 4405 case MVT::v16i8: 4406 // Nothing to do, we're only looking at Nonvector args here. 4407 break; 4408 } 4409 } 4410 } 4411 // We've found where the vector parameter area in memory is. Skip the 4412 // first 12 parameters; these don't use that memory. 4413 VecArgOffset = ((VecArgOffset+15)/16)*16; 4414 VecArgOffset += 12*16; 4415 4416 // Add DAG nodes to load the arguments or copy them out of registers. On 4417 // entry to a function on PPC, the arguments start after the linkage area, 4418 // although the first ones are often in registers. 4419 4420 SmallVector<SDValue, 8> MemOps; 4421 unsigned nAltivecParamsAtEnd = 0; 4422 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4423 unsigned CurArgIdx = 0; 4424 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4425 SDValue ArgVal; 4426 bool needsLoad = false; 4427 EVT ObjectVT = Ins[ArgNo].VT; 4428 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4429 unsigned ArgSize = ObjSize; 4430 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4431 if (Ins[ArgNo].isOrigArg()) { 4432 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4433 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4434 } 4435 unsigned CurArgOffset = ArgOffset; 4436 4437 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4438 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4439 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4440 if (isVarArg || isPPC64) { 4441 MinReservedArea = ((MinReservedArea+15)/16)*16; 4442 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4443 Flags, 4444 PtrByteSize); 4445 } else nAltivecParamsAtEnd++; 4446 } else 4447 // Calculate min reserved area. 4448 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4449 Flags, 4450 PtrByteSize); 4451 4452 // FIXME the codegen can be much improved in some cases. 4453 // We do not have to keep everything in memory. 4454 if (Flags.isByVal()) { 4455 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4456 4457 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4458 ObjSize = Flags.getByValSize(); 4459 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4460 // Objects of size 1 and 2 are right justified, everything else is 4461 // left justified. This means the memory address is adjusted forwards. 4462 if (ObjSize==1 || ObjSize==2) { 4463 CurArgOffset = CurArgOffset + (4 - ObjSize); 4464 } 4465 // The value of the object is its address. 4466 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4467 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4468 InVals.push_back(FIN); 4469 if (ObjSize==1 || ObjSize==2) { 4470 if (GPR_idx != Num_GPR_Regs) { 4471 unsigned VReg; 4472 if (isPPC64) 4473 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4474 else 4475 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4476 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4477 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4478 SDValue Store = 4479 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4480 MachinePointerInfo(&*FuncArg), ObjType); 4481 MemOps.push_back(Store); 4482 ++GPR_idx; 4483 } 4484 4485 ArgOffset += PtrByteSize; 4486 4487 continue; 4488 } 4489 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4490 // Store whatever pieces of the object are in registers 4491 // to memory. ArgOffset will be the address of the beginning 4492 // of the object. 4493 if (GPR_idx != Num_GPR_Regs) { 4494 unsigned VReg; 4495 if (isPPC64) 4496 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4497 else 4498 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4499 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4500 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4501 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4502 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4503 MachinePointerInfo(&*FuncArg, j)); 4504 MemOps.push_back(Store); 4505 ++GPR_idx; 4506 ArgOffset += PtrByteSize; 4507 } else { 4508 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4509 break; 4510 } 4511 } 4512 continue; 4513 } 4514 4515 switch (ObjectVT.getSimpleVT().SimpleTy) { 4516 default: llvm_unreachable("Unhandled argument type!"); 4517 case MVT::i1: 4518 case MVT::i32: 4519 if (!isPPC64) { 4520 if (GPR_idx != Num_GPR_Regs) { 4521 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4522 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4523 4524 if (ObjectVT == MVT::i1) 4525 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4526 4527 ++GPR_idx; 4528 } else { 4529 needsLoad = true; 4530 ArgSize = PtrByteSize; 4531 } 4532 // All int arguments reserve stack space in the Darwin ABI. 4533 ArgOffset += PtrByteSize; 4534 break; 4535 } 4536 LLVM_FALLTHROUGH; 4537 case MVT::i64: // PPC64 4538 if (GPR_idx != Num_GPR_Regs) { 4539 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4540 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4541 4542 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4543 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4544 // value to MVT::i64 and then truncate to the correct register size. 4545 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4546 4547 ++GPR_idx; 4548 } else { 4549 needsLoad = true; 4550 ArgSize = PtrByteSize; 4551 } 4552 // All int arguments reserve stack space in the Darwin ABI. 4553 ArgOffset += 8; 4554 break; 4555 4556 case MVT::f32: 4557 case MVT::f64: 4558 // Every 4 bytes of argument space consumes one of the GPRs available for 4559 // argument passing. 4560 if (GPR_idx != Num_GPR_Regs) { 4561 ++GPR_idx; 4562 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4563 ++GPR_idx; 4564 } 4565 if (FPR_idx != Num_FPR_Regs) { 4566 unsigned VReg; 4567 4568 if (ObjectVT == MVT::f32) 4569 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4570 else 4571 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4572 4573 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4574 ++FPR_idx; 4575 } else { 4576 needsLoad = true; 4577 } 4578 4579 // All FP arguments reserve stack space in the Darwin ABI. 4580 ArgOffset += isPPC64 ? 8 : ObjSize; 4581 break; 4582 case MVT::v4f32: 4583 case MVT::v4i32: 4584 case MVT::v8i16: 4585 case MVT::v16i8: 4586 // Note that vector arguments in registers don't reserve stack space, 4587 // except in varargs functions. 4588 if (VR_idx != Num_VR_Regs) { 4589 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4590 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4591 if (isVarArg) { 4592 while ((ArgOffset % 16) != 0) { 4593 ArgOffset += PtrByteSize; 4594 if (GPR_idx != Num_GPR_Regs) 4595 GPR_idx++; 4596 } 4597 ArgOffset += 16; 4598 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4599 } 4600 ++VR_idx; 4601 } else { 4602 if (!isVarArg && !isPPC64) { 4603 // Vectors go after all the nonvectors. 4604 CurArgOffset = VecArgOffset; 4605 VecArgOffset += 16; 4606 } else { 4607 // Vectors are aligned. 4608 ArgOffset = ((ArgOffset+15)/16)*16; 4609 CurArgOffset = ArgOffset; 4610 ArgOffset += 16; 4611 } 4612 needsLoad = true; 4613 } 4614 break; 4615 } 4616 4617 // We need to load the argument to a virtual register if we determined above 4618 // that we ran out of physical registers of the appropriate type. 4619 if (needsLoad) { 4620 int FI = MFI.CreateFixedObject(ObjSize, 4621 CurArgOffset + (ArgSize - ObjSize), 4622 isImmutable); 4623 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4624 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4625 } 4626 4627 InVals.push_back(ArgVal); 4628 } 4629 4630 // Allow for Altivec parameters at the end, if needed. 4631 if (nAltivecParamsAtEnd) { 4632 MinReservedArea = ((MinReservedArea+15)/16)*16; 4633 MinReservedArea += 16*nAltivecParamsAtEnd; 4634 } 4635 4636 // Area that is at least reserved in the caller of this function. 4637 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4638 4639 // Set the size that is at least reserved in caller of this function. Tail 4640 // call optimized functions' reserved stack space needs to be aligned so that 4641 // taking the difference between two stack areas will result in an aligned 4642 // stack. 4643 MinReservedArea = 4644 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4645 FuncInfo->setMinReservedArea(MinReservedArea); 4646 4647 // If the function takes variable number of arguments, make a frame index for 4648 // the start of the first vararg value... for expansion of llvm.va_start. 4649 if (isVarArg) { 4650 int Depth = ArgOffset; 4651 4652 FuncInfo->setVarArgsFrameIndex( 4653 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4654 Depth, true)); 4655 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4656 4657 // If this function is vararg, store any remaining integer argument regs 4658 // to their spots on the stack so that they may be loaded by dereferencing 4659 // the result of va_next. 4660 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4661 unsigned VReg; 4662 4663 if (isPPC64) 4664 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4665 else 4666 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4667 4668 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4669 SDValue Store = 4670 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4671 MemOps.push_back(Store); 4672 // Increment the address by four for the next argument to store 4673 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4674 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4675 } 4676 } 4677 4678 if (!MemOps.empty()) 4679 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4680 4681 return Chain; 4682 } 4683 4684 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4685 /// adjusted to accommodate the arguments for the tailcall. 4686 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4687 unsigned ParamSize) { 4688 4689 if (!isTailCall) return 0; 4690 4691 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4692 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4693 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4694 // Remember only if the new adjustment is bigger. 4695 if (SPDiff < FI->getTailCallSPDelta()) 4696 FI->setTailCallSPDelta(SPDiff); 4697 4698 return SPDiff; 4699 } 4700 4701 static bool isFunctionGlobalAddress(SDValue Callee); 4702 4703 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4704 const TargetMachine &TM) { 4705 // It does not make sense to call callsShareTOCBase() with a caller that 4706 // is PC Relative since PC Relative callers do not have a TOC. 4707 #ifndef NDEBUG 4708 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4709 assert(!STICaller->isUsingPCRelativeCalls() && 4710 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4711 #endif 4712 4713 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4714 // don't have enough information to determine if the caller and callee share 4715 // the same TOC base, so we have to pessimistically assume they don't for 4716 // correctness. 4717 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4718 if (!G) 4719 return false; 4720 4721 const GlobalValue *GV = G->getGlobal(); 4722 4723 // If the callee is preemptable, then the static linker will use a plt-stub 4724 // which saves the toc to the stack, and needs a nop after the call 4725 // instruction to convert to a toc-restore. 4726 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4727 return false; 4728 4729 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4730 // We may need a TOC restore in the situation where the caller requires a 4731 // valid TOC but the callee is PC Relative and does not. 4732 const Function *F = dyn_cast<Function>(GV); 4733 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4734 4735 // If we have an Alias we can try to get the function from there. 4736 if (Alias) { 4737 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4738 F = dyn_cast<Function>(GlobalObj); 4739 } 4740 4741 // If we still have no valid function pointer we do not have enough 4742 // information to determine if the callee uses PC Relative calls so we must 4743 // assume that it does. 4744 if (!F) 4745 return false; 4746 4747 // If the callee uses PC Relative we cannot guarantee that the callee won't 4748 // clobber the TOC of the caller and so we must assume that the two 4749 // functions do not share a TOC base. 4750 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4751 if (STICallee->isUsingPCRelativeCalls()) 4752 return false; 4753 4754 // The medium and large code models are expected to provide a sufficiently 4755 // large TOC to provide all data addressing needs of a module with a 4756 // single TOC. 4757 if (CodeModel::Medium == TM.getCodeModel() || 4758 CodeModel::Large == TM.getCodeModel()) 4759 return true; 4760 4761 // Otherwise we need to ensure callee and caller are in the same section, 4762 // since the linker may allocate multiple TOCs, and we don't know which 4763 // sections will belong to the same TOC base. 4764 if (!GV->isStrongDefinitionForLinker()) 4765 return false; 4766 4767 // Any explicitly-specified sections and section prefixes must also match. 4768 // Also, if we're using -ffunction-sections, then each function is always in 4769 // a different section (the same is true for COMDAT functions). 4770 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4771 GV->getSection() != Caller->getSection()) 4772 return false; 4773 if (const auto *F = dyn_cast<Function>(GV)) { 4774 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4775 return false; 4776 } 4777 4778 return true; 4779 } 4780 4781 static bool 4782 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4783 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4784 assert(Subtarget.is64BitELFABI()); 4785 4786 const unsigned PtrByteSize = 8; 4787 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4788 4789 static const MCPhysReg GPR[] = { 4790 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4791 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4792 }; 4793 static const MCPhysReg VR[] = { 4794 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4795 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4796 }; 4797 4798 const unsigned NumGPRs = array_lengthof(GPR); 4799 const unsigned NumFPRs = 13; 4800 const unsigned NumVRs = array_lengthof(VR); 4801 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4802 4803 unsigned NumBytes = LinkageSize; 4804 unsigned AvailableFPRs = NumFPRs; 4805 unsigned AvailableVRs = NumVRs; 4806 4807 for (const ISD::OutputArg& Param : Outs) { 4808 if (Param.Flags.isNest()) continue; 4809 4810 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4811 PtrByteSize, LinkageSize, ParamAreaSize, 4812 NumBytes, AvailableFPRs, AvailableVRs, 4813 Subtarget.hasQPX())) 4814 return true; 4815 } 4816 return false; 4817 } 4818 4819 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4820 if (CB.arg_size() != CallerFn->arg_size()) 4821 return false; 4822 4823 auto CalleeArgIter = CB.arg_begin(); 4824 auto CalleeArgEnd = CB.arg_end(); 4825 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4826 4827 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4828 const Value* CalleeArg = *CalleeArgIter; 4829 const Value* CallerArg = &(*CallerArgIter); 4830 if (CalleeArg == CallerArg) 4831 continue; 4832 4833 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4834 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4835 // } 4836 // 1st argument of callee is undef and has the same type as caller. 4837 if (CalleeArg->getType() == CallerArg->getType() && 4838 isa<UndefValue>(CalleeArg)) 4839 continue; 4840 4841 return false; 4842 } 4843 4844 return true; 4845 } 4846 4847 // Returns true if TCO is possible between the callers and callees 4848 // calling conventions. 4849 static bool 4850 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4851 CallingConv::ID CalleeCC) { 4852 // Tail calls are possible with fastcc and ccc. 4853 auto isTailCallableCC = [] (CallingConv::ID CC){ 4854 return CC == CallingConv::C || CC == CallingConv::Fast; 4855 }; 4856 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4857 return false; 4858 4859 // We can safely tail call both fastcc and ccc callees from a c calling 4860 // convention caller. If the caller is fastcc, we may have less stack space 4861 // than a non-fastcc caller with the same signature so disable tail-calls in 4862 // that case. 4863 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4864 } 4865 4866 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4867 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4868 const SmallVectorImpl<ISD::OutputArg> &Outs, 4869 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4870 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4871 4872 if (DisableSCO && !TailCallOpt) return false; 4873 4874 // Variadic argument functions are not supported. 4875 if (isVarArg) return false; 4876 4877 auto &Caller = DAG.getMachineFunction().getFunction(); 4878 // Check that the calling conventions are compatible for tco. 4879 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4880 return false; 4881 4882 // Caller contains any byval parameter is not supported. 4883 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4884 return false; 4885 4886 // Callee contains any byval parameter is not supported, too. 4887 // Note: This is a quick work around, because in some cases, e.g. 4888 // caller's stack size > callee's stack size, we are still able to apply 4889 // sibling call optimization. For example, gcc is able to do SCO for caller1 4890 // in the following example, but not for caller2. 4891 // struct test { 4892 // long int a; 4893 // char ary[56]; 4894 // } gTest; 4895 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4896 // b->a = v.a; 4897 // return 0; 4898 // } 4899 // void caller1(struct test a, struct test c, struct test *b) { 4900 // callee(gTest, b); } 4901 // void caller2(struct test *b) { callee(gTest, b); } 4902 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4903 return false; 4904 4905 // If callee and caller use different calling conventions, we cannot pass 4906 // parameters on stack since offsets for the parameter area may be different. 4907 if (Caller.getCallingConv() != CalleeCC && 4908 needStackSlotPassParameters(Subtarget, Outs)) 4909 return false; 4910 4911 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4912 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4913 // callee potentially have different TOC bases then we cannot tail call since 4914 // we need to restore the TOC pointer after the call. 4915 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4916 // We cannot guarantee this for indirect calls or calls to external functions. 4917 // When PC-Relative addressing is used, the concept of the TOC is no longer 4918 // applicable so this check is not required. 4919 // Check first for indirect calls. 4920 if (!Subtarget.isUsingPCRelativeCalls() && 4921 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4922 return false; 4923 4924 // Check if we share the TOC base. 4925 if (!Subtarget.isUsingPCRelativeCalls() && 4926 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4927 return false; 4928 4929 // TCO allows altering callee ABI, so we don't have to check further. 4930 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4931 return true; 4932 4933 if (DisableSCO) return false; 4934 4935 // If callee use the same argument list that caller is using, then we can 4936 // apply SCO on this case. If it is not, then we need to check if callee needs 4937 // stack for passing arguments. 4938 // PC Relative tail calls may not have a CallBase. 4939 // If there is no CallBase we cannot verify if we have the same argument 4940 // list so assume that we don't have the same argument list. 4941 if (CB && !hasSameArgumentList(&Caller, *CB) && 4942 needStackSlotPassParameters(Subtarget, Outs)) 4943 return false; 4944 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4945 return false; 4946 4947 return true; 4948 } 4949 4950 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4951 /// for tail call optimization. Targets which want to do tail call 4952 /// optimization should implement this function. 4953 bool 4954 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4955 CallingConv::ID CalleeCC, 4956 bool isVarArg, 4957 const SmallVectorImpl<ISD::InputArg> &Ins, 4958 SelectionDAG& DAG) const { 4959 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4960 return false; 4961 4962 // Variable argument functions are not supported. 4963 if (isVarArg) 4964 return false; 4965 4966 MachineFunction &MF = DAG.getMachineFunction(); 4967 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4968 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4969 // Functions containing by val parameters are not supported. 4970 for (unsigned i = 0; i != Ins.size(); i++) { 4971 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4972 if (Flags.isByVal()) return false; 4973 } 4974 4975 // Non-PIC/GOT tail calls are supported. 4976 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4977 return true; 4978 4979 // At the moment we can only do local tail calls (in same module, hidden 4980 // or protected) if we are generating PIC. 4981 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4982 return G->getGlobal()->hasHiddenVisibility() 4983 || G->getGlobal()->hasProtectedVisibility(); 4984 } 4985 4986 return false; 4987 } 4988 4989 /// isCallCompatibleAddress - Return the immediate to use if the specified 4990 /// 32-bit value is representable in the immediate field of a BxA instruction. 4991 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4992 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4993 if (!C) return nullptr; 4994 4995 int Addr = C->getZExtValue(); 4996 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4997 SignExtend32<26>(Addr) != Addr) 4998 return nullptr; // Top 6 bits have to be sext of immediate. 4999 5000 return DAG 5001 .getConstant( 5002 (int)C->getZExtValue() >> 2, SDLoc(Op), 5003 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 5004 .getNode(); 5005 } 5006 5007 namespace { 5008 5009 struct TailCallArgumentInfo { 5010 SDValue Arg; 5011 SDValue FrameIdxOp; 5012 int FrameIdx = 0; 5013 5014 TailCallArgumentInfo() = default; 5015 }; 5016 5017 } // end anonymous namespace 5018 5019 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 5020 static void StoreTailCallArgumentsToStackSlot( 5021 SelectionDAG &DAG, SDValue Chain, 5022 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 5023 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 5024 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 5025 SDValue Arg = TailCallArgs[i].Arg; 5026 SDValue FIN = TailCallArgs[i].FrameIdxOp; 5027 int FI = TailCallArgs[i].FrameIdx; 5028 // Store relative to framepointer. 5029 MemOpChains.push_back(DAG.getStore( 5030 Chain, dl, Arg, FIN, 5031 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 5032 } 5033 } 5034 5035 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 5036 /// the appropriate stack slot for the tail call optimized function call. 5037 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 5038 SDValue OldRetAddr, SDValue OldFP, 5039 int SPDiff, const SDLoc &dl) { 5040 if (SPDiff) { 5041 // Calculate the new stack slot for the return address. 5042 MachineFunction &MF = DAG.getMachineFunction(); 5043 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 5044 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 5045 bool isPPC64 = Subtarget.isPPC64(); 5046 int SlotSize = isPPC64 ? 8 : 4; 5047 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 5048 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 5049 NewRetAddrLoc, true); 5050 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5051 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 5052 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 5053 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 5054 } 5055 return Chain; 5056 } 5057 5058 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5059 /// the position of the argument. 5060 static void 5061 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5062 SDValue Arg, int SPDiff, unsigned ArgOffset, 5063 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5064 int Offset = ArgOffset + SPDiff; 5065 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5066 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5067 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5068 SDValue FIN = DAG.getFrameIndex(FI, VT); 5069 TailCallArgumentInfo Info; 5070 Info.Arg = Arg; 5071 Info.FrameIdxOp = FIN; 5072 Info.FrameIdx = FI; 5073 TailCallArguments.push_back(Info); 5074 } 5075 5076 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5077 /// stack slot. Returns the chain as result and the loaded frame pointers in 5078 /// LROpOut/FPOpout. Used when tail calling. 5079 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5080 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5081 SDValue &FPOpOut, const SDLoc &dl) const { 5082 if (SPDiff) { 5083 // Load the LR and FP stack slot for later adjusting. 5084 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5085 LROpOut = getReturnAddrFrameIndex(DAG); 5086 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5087 Chain = SDValue(LROpOut.getNode(), 1); 5088 } 5089 return Chain; 5090 } 5091 5092 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5093 /// by "Src" to address "Dst" of size "Size". Alignment information is 5094 /// specified by the specific parameter attribute. The copy will be passed as 5095 /// a byval function parameter. 5096 /// Sometimes what we are copying is the end of a larger object, the part that 5097 /// does not fit in registers. 5098 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5099 SDValue Chain, ISD::ArgFlagsTy Flags, 5100 SelectionDAG &DAG, const SDLoc &dl) { 5101 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5102 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5103 Flags.getNonZeroByValAlign(), false, false, false, 5104 MachinePointerInfo(), MachinePointerInfo()); 5105 } 5106 5107 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5108 /// tail calls. 5109 static void LowerMemOpCallTo( 5110 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5111 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5112 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5113 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5114 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5115 if (!isTailCall) { 5116 if (isVector) { 5117 SDValue StackPtr; 5118 if (isPPC64) 5119 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5120 else 5121 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5122 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5123 DAG.getConstant(ArgOffset, dl, PtrVT)); 5124 } 5125 MemOpChains.push_back( 5126 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5127 // Calculate and remember argument location. 5128 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5129 TailCallArguments); 5130 } 5131 5132 static void 5133 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5134 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5135 SDValue FPOp, 5136 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5137 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5138 // might overwrite each other in case of tail call optimization. 5139 SmallVector<SDValue, 8> MemOpChains2; 5140 // Do not flag preceding copytoreg stuff together with the following stuff. 5141 InFlag = SDValue(); 5142 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5143 MemOpChains2, dl); 5144 if (!MemOpChains2.empty()) 5145 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5146 5147 // Store the return address to the appropriate stack slot. 5148 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5149 5150 // Emit callseq_end just before tailcall node. 5151 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5152 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5153 InFlag = Chain.getValue(1); 5154 } 5155 5156 // Is this global address that of a function that can be called by name? (as 5157 // opposed to something that must hold a descriptor for an indirect call). 5158 static bool isFunctionGlobalAddress(SDValue Callee) { 5159 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5160 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5161 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5162 return false; 5163 5164 return G->getGlobal()->getValueType()->isFunctionTy(); 5165 } 5166 5167 return false; 5168 } 5169 5170 SDValue PPCTargetLowering::LowerCallResult( 5171 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5172 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5173 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5174 SmallVector<CCValAssign, 16> RVLocs; 5175 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5176 *DAG.getContext()); 5177 5178 CCRetInfo.AnalyzeCallResult( 5179 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5180 ? RetCC_PPC_Cold 5181 : RetCC_PPC); 5182 5183 // Copy all of the result registers out of their specified physreg. 5184 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5185 CCValAssign &VA = RVLocs[i]; 5186 assert(VA.isRegLoc() && "Can only return in registers!"); 5187 5188 SDValue Val; 5189 5190 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5191 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5192 InFlag); 5193 Chain = Lo.getValue(1); 5194 InFlag = Lo.getValue(2); 5195 VA = RVLocs[++i]; // skip ahead to next loc 5196 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5197 InFlag); 5198 Chain = Hi.getValue(1); 5199 InFlag = Hi.getValue(2); 5200 if (!Subtarget.isLittleEndian()) 5201 std::swap (Lo, Hi); 5202 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5203 } else { 5204 Val = DAG.getCopyFromReg(Chain, dl, 5205 VA.getLocReg(), VA.getLocVT(), InFlag); 5206 Chain = Val.getValue(1); 5207 InFlag = Val.getValue(2); 5208 } 5209 5210 switch (VA.getLocInfo()) { 5211 default: llvm_unreachable("Unknown loc info!"); 5212 case CCValAssign::Full: break; 5213 case CCValAssign::AExt: 5214 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5215 break; 5216 case CCValAssign::ZExt: 5217 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5218 DAG.getValueType(VA.getValVT())); 5219 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5220 break; 5221 case CCValAssign::SExt: 5222 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5223 DAG.getValueType(VA.getValVT())); 5224 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5225 break; 5226 } 5227 5228 InVals.push_back(Val); 5229 } 5230 5231 return Chain; 5232 } 5233 5234 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5235 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5236 // PatchPoint calls are not indirect. 5237 if (isPatchPoint) 5238 return false; 5239 5240 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5241 return false; 5242 5243 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5244 // becuase the immediate function pointer points to a descriptor instead of 5245 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5246 // pointer immediate points to the global entry point, while the BLA would 5247 // need to jump to the local entry point (see rL211174). 5248 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5249 isBLACompatibleAddress(Callee, DAG)) 5250 return false; 5251 5252 return true; 5253 } 5254 5255 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5256 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5257 return Subtarget.isAIXABI() || 5258 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5259 } 5260 5261 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5262 const Function &Caller, 5263 const SDValue &Callee, 5264 const PPCSubtarget &Subtarget, 5265 const TargetMachine &TM) { 5266 if (CFlags.IsTailCall) 5267 return PPCISD::TC_RETURN; 5268 5269 // This is a call through a function pointer. 5270 if (CFlags.IsIndirect) { 5271 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5272 // indirect calls. The save of the caller's TOC pointer to the stack will be 5273 // inserted into the DAG as part of call lowering. The restore of the TOC 5274 // pointer is modeled by using a pseudo instruction for the call opcode that 5275 // represents the 2 instruction sequence of an indirect branch and link, 5276 // immediately followed by a load of the TOC pointer from the the stack save 5277 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5278 // as it is not saved or used. 5279 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5280 : PPCISD::BCTRL; 5281 } 5282 5283 if (Subtarget.isUsingPCRelativeCalls()) { 5284 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5285 return PPCISD::CALL_NOTOC; 5286 } 5287 5288 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5289 // immediately following the call instruction if the caller and callee may 5290 // have different TOC bases. At link time if the linker determines the calls 5291 // may not share a TOC base, the call is redirected to a trampoline inserted 5292 // by the linker. The trampoline will (among other things) save the callers 5293 // TOC pointer at an ABI designated offset in the linkage area and the linker 5294 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5295 // into gpr2. 5296 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5297 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5298 : PPCISD::CALL_NOP; 5299 5300 return PPCISD::CALL; 5301 } 5302 5303 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5304 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5305 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5306 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5307 return SDValue(Dest, 0); 5308 5309 // Returns true if the callee is local, and false otherwise. 5310 auto isLocalCallee = [&]() { 5311 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5312 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5313 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5314 5315 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5316 !dyn_cast_or_null<GlobalIFunc>(GV); 5317 }; 5318 5319 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5320 // a static relocation model causes some versions of GNU LD (2.17.50, at 5321 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5322 // built with secure-PLT. 5323 bool UsePlt = 5324 Subtarget.is32BitELFABI() && !isLocalCallee() && 5325 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5326 5327 // On AIX, direct function calls reference the symbol for the function's 5328 // entry point, which is named by prepending a "." before the function's 5329 // C-linkage name. 5330 const auto getAIXFuncEntryPointSymbolSDNode = 5331 [&](StringRef FuncName, bool IsDeclaration, 5332 const XCOFF::StorageClass &SC) { 5333 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5334 5335 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5336 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5337 5338 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5339 // On AIX, an undefined symbol needs to be associated with a 5340 // MCSectionXCOFF to get the correct storage mapping class. 5341 // In this case, XCOFF::XMC_PR. 5342 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5343 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5344 SectionKind::getMetadata()); 5345 S->setRepresentedCsect(Sec); 5346 } 5347 5348 MVT PtrVT = 5349 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5350 return DAG.getMCSymbol(S, PtrVT); 5351 }; 5352 5353 if (isFunctionGlobalAddress(Callee)) { 5354 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5355 const GlobalValue *GV = G->getGlobal(); 5356 5357 if (!Subtarget.isAIXABI()) 5358 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5359 UsePlt ? PPCII::MO_PLT : 0); 5360 5361 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5362 const GlobalObject *GO = cast<GlobalObject>(GV); 5363 const XCOFF::StorageClass SC = 5364 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5365 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5366 SC); 5367 } 5368 5369 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5370 const char *SymName = S->getSymbol(); 5371 if (!Subtarget.isAIXABI()) 5372 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5373 UsePlt ? PPCII::MO_PLT : 0); 5374 5375 // If there exists a user-declared function whose name is the same as the 5376 // ExternalSymbol's, then we pick up the user-declared version. 5377 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5378 if (const Function *F = 5379 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5380 const XCOFF::StorageClass SC = 5381 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5382 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5383 SC); 5384 } 5385 5386 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5387 } 5388 5389 // No transformation needed. 5390 assert(Callee.getNode() && "What no callee?"); 5391 return Callee; 5392 } 5393 5394 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5395 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5396 "Expected a CALLSEQ_STARTSDNode."); 5397 5398 // The last operand is the chain, except when the node has glue. If the node 5399 // has glue, then the last operand is the glue, and the chain is the second 5400 // last operand. 5401 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5402 if (LastValue.getValueType() != MVT::Glue) 5403 return LastValue; 5404 5405 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5406 } 5407 5408 // Creates the node that moves a functions address into the count register 5409 // to prepare for an indirect call instruction. 5410 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5411 SDValue &Glue, SDValue &Chain, 5412 const SDLoc &dl) { 5413 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5414 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5415 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5416 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5417 // The glue is the second value produced. 5418 Glue = Chain.getValue(1); 5419 } 5420 5421 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5422 SDValue &Glue, SDValue &Chain, 5423 SDValue CallSeqStart, 5424 const CallBase *CB, const SDLoc &dl, 5425 bool hasNest, 5426 const PPCSubtarget &Subtarget) { 5427 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5428 // entry point, but to the function descriptor (the function entry point 5429 // address is part of the function descriptor though). 5430 // The function descriptor is a three doubleword structure with the 5431 // following fields: function entry point, TOC base address and 5432 // environment pointer. 5433 // Thus for a call through a function pointer, the following actions need 5434 // to be performed: 5435 // 1. Save the TOC of the caller in the TOC save area of its stack 5436 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5437 // 2. Load the address of the function entry point from the function 5438 // descriptor. 5439 // 3. Load the TOC of the callee from the function descriptor into r2. 5440 // 4. Load the environment pointer from the function descriptor into 5441 // r11. 5442 // 5. Branch to the function entry point address. 5443 // 6. On return of the callee, the TOC of the caller needs to be 5444 // restored (this is done in FinishCall()). 5445 // 5446 // The loads are scheduled at the beginning of the call sequence, and the 5447 // register copies are flagged together to ensure that no other 5448 // operations can be scheduled in between. E.g. without flagging the 5449 // copies together, a TOC access in the caller could be scheduled between 5450 // the assignment of the callee TOC and the branch to the callee, which leads 5451 // to incorrect code. 5452 5453 // Start by loading the function address from the descriptor. 5454 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5455 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5456 ? (MachineMemOperand::MODereferenceable | 5457 MachineMemOperand::MOInvariant) 5458 : MachineMemOperand::MONone; 5459 5460 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5461 5462 // Registers used in building the DAG. 5463 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5464 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5465 5466 // Offsets of descriptor members. 5467 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5468 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5469 5470 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5471 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5472 5473 // One load for the functions entry point address. 5474 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5475 Alignment, MMOFlags); 5476 5477 // One for loading the TOC anchor for the module that contains the called 5478 // function. 5479 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5480 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5481 SDValue TOCPtr = 5482 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5483 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5484 5485 // One for loading the environment pointer. 5486 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5487 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5488 SDValue LoadEnvPtr = 5489 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5490 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5491 5492 5493 // Then copy the newly loaded TOC anchor to the TOC pointer. 5494 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5495 Chain = TOCVal.getValue(0); 5496 Glue = TOCVal.getValue(1); 5497 5498 // If the function call has an explicit 'nest' parameter, it takes the 5499 // place of the environment pointer. 5500 assert((!hasNest || !Subtarget.isAIXABI()) && 5501 "Nest parameter is not supported on AIX."); 5502 if (!hasNest) { 5503 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5504 Chain = EnvVal.getValue(0); 5505 Glue = EnvVal.getValue(1); 5506 } 5507 5508 // The rest of the indirect call sequence is the same as the non-descriptor 5509 // DAG. 5510 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5511 } 5512 5513 static void 5514 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5515 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5516 SelectionDAG &DAG, 5517 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5518 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5519 const PPCSubtarget &Subtarget) { 5520 const bool IsPPC64 = Subtarget.isPPC64(); 5521 // MVT for a general purpose register. 5522 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5523 5524 // First operand is always the chain. 5525 Ops.push_back(Chain); 5526 5527 // If it's a direct call pass the callee as the second operand. 5528 if (!CFlags.IsIndirect) 5529 Ops.push_back(Callee); 5530 else { 5531 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5532 5533 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5534 // on the stack (this would have been done in `LowerCall_64SVR4` or 5535 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5536 // represents both the indirect branch and a load that restores the TOC 5537 // pointer from the linkage area. The operand for the TOC restore is an add 5538 // of the TOC save offset to the stack pointer. This must be the second 5539 // operand: after the chain input but before any other variadic arguments. 5540 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5541 // saved or used. 5542 if (isTOCSaveRestoreRequired(Subtarget)) { 5543 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5544 5545 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5546 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5547 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5548 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5549 Ops.push_back(AddTOC); 5550 } 5551 5552 // Add the register used for the environment pointer. 5553 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5554 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5555 RegVT)); 5556 5557 5558 // Add CTR register as callee so a bctr can be emitted later. 5559 if (CFlags.IsTailCall) 5560 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5561 } 5562 5563 // If this is a tail call add stack pointer delta. 5564 if (CFlags.IsTailCall) 5565 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5566 5567 // Add argument registers to the end of the list so that they are known live 5568 // into the call. 5569 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5570 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5571 RegsToPass[i].second.getValueType())); 5572 5573 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5574 // no way to mark dependencies as implicit here. 5575 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5576 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5577 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5578 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5579 5580 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5581 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5582 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5583 5584 // Add a register mask operand representing the call-preserved registers. 5585 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5586 const uint32_t *Mask = 5587 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5588 assert(Mask && "Missing call preserved mask for calling convention"); 5589 Ops.push_back(DAG.getRegisterMask(Mask)); 5590 5591 // If the glue is valid, it is the last operand. 5592 if (Glue.getNode()) 5593 Ops.push_back(Glue); 5594 } 5595 5596 SDValue PPCTargetLowering::FinishCall( 5597 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5598 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5599 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5600 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5601 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5602 5603 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5604 Subtarget.isAIXABI()) 5605 setUsesTOCBasePtr(DAG); 5606 5607 unsigned CallOpc = 5608 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5609 Subtarget, DAG.getTarget()); 5610 5611 if (!CFlags.IsIndirect) 5612 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5613 else if (Subtarget.usesFunctionDescriptors()) 5614 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5615 dl, CFlags.HasNest, Subtarget); 5616 else 5617 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5618 5619 // Build the operand list for the call instruction. 5620 SmallVector<SDValue, 8> Ops; 5621 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5622 SPDiff, Subtarget); 5623 5624 // Emit tail call. 5625 if (CFlags.IsTailCall) { 5626 // Indirect tail call when using PC Relative calls do not have the same 5627 // constraints. 5628 assert(((Callee.getOpcode() == ISD::Register && 5629 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5630 Callee.getOpcode() == ISD::TargetExternalSymbol || 5631 Callee.getOpcode() == ISD::TargetGlobalAddress || 5632 isa<ConstantSDNode>(Callee) || 5633 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5634 "Expecting a global address, external symbol, absolute value, " 5635 "register or an indirect tail call when PC Relative calls are " 5636 "used."); 5637 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5638 assert(CallOpc == PPCISD::TC_RETURN && 5639 "Unexpected call opcode for a tail call."); 5640 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5641 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5642 } 5643 5644 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5645 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5646 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5647 Glue = Chain.getValue(1); 5648 5649 // When performing tail call optimization the callee pops its arguments off 5650 // the stack. Account for this here so these bytes can be pushed back on in 5651 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5652 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5653 getTargetMachine().Options.GuaranteedTailCallOpt) 5654 ? NumBytes 5655 : 0; 5656 5657 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5658 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5659 Glue, dl); 5660 Glue = Chain.getValue(1); 5661 5662 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5663 DAG, InVals); 5664 } 5665 5666 SDValue 5667 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5668 SmallVectorImpl<SDValue> &InVals) const { 5669 SelectionDAG &DAG = CLI.DAG; 5670 SDLoc &dl = CLI.DL; 5671 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5672 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5673 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5674 SDValue Chain = CLI.Chain; 5675 SDValue Callee = CLI.Callee; 5676 bool &isTailCall = CLI.IsTailCall; 5677 CallingConv::ID CallConv = CLI.CallConv; 5678 bool isVarArg = CLI.IsVarArg; 5679 bool isPatchPoint = CLI.IsPatchPoint; 5680 const CallBase *CB = CLI.CB; 5681 5682 if (isTailCall) { 5683 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5684 isTailCall = false; 5685 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5686 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5687 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5688 else 5689 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5690 Ins, DAG); 5691 if (isTailCall) { 5692 ++NumTailCalls; 5693 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5694 ++NumSiblingCalls; 5695 5696 // PC Relative calls no longer guarantee that the callee is a Global 5697 // Address Node. The callee could be an indirect tail call in which 5698 // case the SDValue for the callee could be a load (to load the address 5699 // of a function pointer) or it may be a register copy (to move the 5700 // address of the callee from a function parameter into a virtual 5701 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5702 assert((Subtarget.isUsingPCRelativeCalls() || 5703 isa<GlobalAddressSDNode>(Callee)) && 5704 "Callee should be an llvm::Function object."); 5705 5706 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5707 << "\nTCO callee: "); 5708 LLVM_DEBUG(Callee.dump()); 5709 } 5710 } 5711 5712 if (!isTailCall && CB && CB->isMustTailCall()) 5713 report_fatal_error("failed to perform tail call elimination on a call " 5714 "site marked musttail"); 5715 5716 // When long calls (i.e. indirect calls) are always used, calls are always 5717 // made via function pointer. If we have a function name, first translate it 5718 // into a pointer. 5719 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5720 !isTailCall) 5721 Callee = LowerGlobalAddress(Callee, DAG); 5722 5723 CallFlags CFlags( 5724 CallConv, isTailCall, isVarArg, isPatchPoint, 5725 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5726 // hasNest 5727 Subtarget.is64BitELFABI() && 5728 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5729 CLI.NoMerge); 5730 5731 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5732 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5733 InVals, CB); 5734 5735 if (Subtarget.isSVR4ABI()) 5736 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5737 InVals, CB); 5738 5739 if (Subtarget.isAIXABI()) 5740 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5741 InVals, CB); 5742 5743 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5744 InVals, CB); 5745 } 5746 5747 SDValue PPCTargetLowering::LowerCall_32SVR4( 5748 SDValue Chain, SDValue Callee, CallFlags CFlags, 5749 const SmallVectorImpl<ISD::OutputArg> &Outs, 5750 const SmallVectorImpl<SDValue> &OutVals, 5751 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5752 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5753 const CallBase *CB) const { 5754 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5755 // of the 32-bit SVR4 ABI stack frame layout. 5756 5757 const CallingConv::ID CallConv = CFlags.CallConv; 5758 const bool IsVarArg = CFlags.IsVarArg; 5759 const bool IsTailCall = CFlags.IsTailCall; 5760 5761 assert((CallConv == CallingConv::C || 5762 CallConv == CallingConv::Cold || 5763 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5764 5765 const Align PtrAlign(4); 5766 5767 MachineFunction &MF = DAG.getMachineFunction(); 5768 5769 // Mark this function as potentially containing a function that contains a 5770 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5771 // and restoring the callers stack pointer in this functions epilog. This is 5772 // done because by tail calling the called function might overwrite the value 5773 // in this function's (MF) stack pointer stack slot 0(SP). 5774 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5775 CallConv == CallingConv::Fast) 5776 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5777 5778 // Count how many bytes are to be pushed on the stack, including the linkage 5779 // area, parameter list area and the part of the local variable space which 5780 // contains copies of aggregates which are passed by value. 5781 5782 // Assign locations to all of the outgoing arguments. 5783 SmallVector<CCValAssign, 16> ArgLocs; 5784 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5785 5786 // Reserve space for the linkage area on the stack. 5787 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5788 PtrAlign); 5789 if (useSoftFloat()) 5790 CCInfo.PreAnalyzeCallOperands(Outs); 5791 5792 if (IsVarArg) { 5793 // Handle fixed and variable vector arguments differently. 5794 // Fixed vector arguments go into registers as long as registers are 5795 // available. Variable vector arguments always go into memory. 5796 unsigned NumArgs = Outs.size(); 5797 5798 for (unsigned i = 0; i != NumArgs; ++i) { 5799 MVT ArgVT = Outs[i].VT; 5800 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5801 bool Result; 5802 5803 if (Outs[i].IsFixed) { 5804 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5805 CCInfo); 5806 } else { 5807 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5808 ArgFlags, CCInfo); 5809 } 5810 5811 if (Result) { 5812 #ifndef NDEBUG 5813 errs() << "Call operand #" << i << " has unhandled type " 5814 << EVT(ArgVT).getEVTString() << "\n"; 5815 #endif 5816 llvm_unreachable(nullptr); 5817 } 5818 } 5819 } else { 5820 // All arguments are treated the same. 5821 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5822 } 5823 CCInfo.clearWasPPCF128(); 5824 5825 // Assign locations to all of the outgoing aggregate by value arguments. 5826 SmallVector<CCValAssign, 16> ByValArgLocs; 5827 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5828 5829 // Reserve stack space for the allocations in CCInfo. 5830 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5831 5832 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5833 5834 // Size of the linkage area, parameter list area and the part of the local 5835 // space variable where copies of aggregates which are passed by value are 5836 // stored. 5837 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5838 5839 // Calculate by how many bytes the stack has to be adjusted in case of tail 5840 // call optimization. 5841 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5842 5843 // Adjust the stack pointer for the new arguments... 5844 // These operations are automatically eliminated by the prolog/epilog pass 5845 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5846 SDValue CallSeqStart = Chain; 5847 5848 // Load the return address and frame pointer so it can be moved somewhere else 5849 // later. 5850 SDValue LROp, FPOp; 5851 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5852 5853 // Set up a copy of the stack pointer for use loading and storing any 5854 // arguments that may not fit in the registers available for argument 5855 // passing. 5856 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5857 5858 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5859 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5860 SmallVector<SDValue, 8> MemOpChains; 5861 5862 bool seenFloatArg = false; 5863 // Walk the register/memloc assignments, inserting copies/loads. 5864 // i - Tracks the index into the list of registers allocated for the call 5865 // RealArgIdx - Tracks the index into the list of actual function arguments 5866 // j - Tracks the index into the list of byval arguments 5867 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5868 i != e; 5869 ++i, ++RealArgIdx) { 5870 CCValAssign &VA = ArgLocs[i]; 5871 SDValue Arg = OutVals[RealArgIdx]; 5872 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5873 5874 if (Flags.isByVal()) { 5875 // Argument is an aggregate which is passed by value, thus we need to 5876 // create a copy of it in the local variable space of the current stack 5877 // frame (which is the stack frame of the caller) and pass the address of 5878 // this copy to the callee. 5879 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5880 CCValAssign &ByValVA = ByValArgLocs[j++]; 5881 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5882 5883 // Memory reserved in the local variable space of the callers stack frame. 5884 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5885 5886 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5887 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5888 StackPtr, PtrOff); 5889 5890 // Create a copy of the argument in the local area of the current 5891 // stack frame. 5892 SDValue MemcpyCall = 5893 CreateCopyOfByValArgument(Arg, PtrOff, 5894 CallSeqStart.getNode()->getOperand(0), 5895 Flags, DAG, dl); 5896 5897 // This must go outside the CALLSEQ_START..END. 5898 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5899 SDLoc(MemcpyCall)); 5900 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5901 NewCallSeqStart.getNode()); 5902 Chain = CallSeqStart = NewCallSeqStart; 5903 5904 // Pass the address of the aggregate copy on the stack either in a 5905 // physical register or in the parameter list area of the current stack 5906 // frame to the callee. 5907 Arg = PtrOff; 5908 } 5909 5910 // When useCRBits() is true, there can be i1 arguments. 5911 // It is because getRegisterType(MVT::i1) => MVT::i1, 5912 // and for other integer types getRegisterType() => MVT::i32. 5913 // Extend i1 and ensure callee will get i32. 5914 if (Arg.getValueType() == MVT::i1) 5915 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5916 dl, MVT::i32, Arg); 5917 5918 if (VA.isRegLoc()) { 5919 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5920 // Put argument in a physical register. 5921 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5922 bool IsLE = Subtarget.isLittleEndian(); 5923 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5924 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5925 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5926 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5927 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5928 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5929 SVal.getValue(0))); 5930 } else 5931 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5932 } else { 5933 // Put argument in the parameter list area of the current stack frame. 5934 assert(VA.isMemLoc()); 5935 unsigned LocMemOffset = VA.getLocMemOffset(); 5936 5937 if (!IsTailCall) { 5938 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5939 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5940 StackPtr, PtrOff); 5941 5942 MemOpChains.push_back( 5943 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5944 } else { 5945 // Calculate and remember argument location. 5946 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5947 TailCallArguments); 5948 } 5949 } 5950 } 5951 5952 if (!MemOpChains.empty()) 5953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5954 5955 // Build a sequence of copy-to-reg nodes chained together with token chain 5956 // and flag operands which copy the outgoing args into the appropriate regs. 5957 SDValue InFlag; 5958 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5959 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5960 RegsToPass[i].second, InFlag); 5961 InFlag = Chain.getValue(1); 5962 } 5963 5964 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5965 // registers. 5966 if (IsVarArg) { 5967 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5968 SDValue Ops[] = { Chain, InFlag }; 5969 5970 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5971 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5972 5973 InFlag = Chain.getValue(1); 5974 } 5975 5976 if (IsTailCall) 5977 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5978 TailCallArguments); 5979 5980 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5981 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5982 } 5983 5984 // Copy an argument into memory, being careful to do this outside the 5985 // call sequence for the call to which the argument belongs. 5986 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5987 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5988 SelectionDAG &DAG, const SDLoc &dl) const { 5989 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5990 CallSeqStart.getNode()->getOperand(0), 5991 Flags, DAG, dl); 5992 // The MEMCPY must go outside the CALLSEQ_START..END. 5993 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5994 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5995 SDLoc(MemcpyCall)); 5996 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5997 NewCallSeqStart.getNode()); 5998 return NewCallSeqStart; 5999 } 6000 6001 SDValue PPCTargetLowering::LowerCall_64SVR4( 6002 SDValue Chain, SDValue Callee, CallFlags CFlags, 6003 const SmallVectorImpl<ISD::OutputArg> &Outs, 6004 const SmallVectorImpl<SDValue> &OutVals, 6005 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6006 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6007 const CallBase *CB) const { 6008 bool isELFv2ABI = Subtarget.isELFv2ABI(); 6009 bool isLittleEndian = Subtarget.isLittleEndian(); 6010 unsigned NumOps = Outs.size(); 6011 bool IsSibCall = false; 6012 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 6013 6014 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6015 unsigned PtrByteSize = 8; 6016 6017 MachineFunction &MF = DAG.getMachineFunction(); 6018 6019 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 6020 IsSibCall = true; 6021 6022 // Mark this function as potentially containing a function that contains a 6023 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6024 // and restoring the callers stack pointer in this functions epilog. This is 6025 // done because by tail calling the called function might overwrite the value 6026 // in this function's (MF) stack pointer stack slot 0(SP). 6027 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6028 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6029 6030 assert(!(IsFastCall && CFlags.IsVarArg) && 6031 "fastcc not supported on varargs functions"); 6032 6033 // Count how many bytes are to be pushed on the stack, including the linkage 6034 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 6035 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 6036 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 6037 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6038 unsigned NumBytes = LinkageSize; 6039 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6040 unsigned &QFPR_idx = FPR_idx; 6041 6042 static const MCPhysReg GPR[] = { 6043 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6044 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6045 }; 6046 static const MCPhysReg VR[] = { 6047 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6048 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6049 }; 6050 6051 const unsigned NumGPRs = array_lengthof(GPR); 6052 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 6053 const unsigned NumVRs = array_lengthof(VR); 6054 const unsigned NumQFPRs = NumFPRs; 6055 6056 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6057 // can be passed to the callee in registers. 6058 // For the fast calling convention, there is another check below. 6059 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6060 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6061 if (!HasParameterArea) { 6062 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6063 unsigned AvailableFPRs = NumFPRs; 6064 unsigned AvailableVRs = NumVRs; 6065 unsigned NumBytesTmp = NumBytes; 6066 for (unsigned i = 0; i != NumOps; ++i) { 6067 if (Outs[i].Flags.isNest()) continue; 6068 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6069 PtrByteSize, LinkageSize, ParamAreaSize, 6070 NumBytesTmp, AvailableFPRs, AvailableVRs, 6071 Subtarget.hasQPX())) 6072 HasParameterArea = true; 6073 } 6074 } 6075 6076 // When using the fast calling convention, we don't provide backing for 6077 // arguments that will be in registers. 6078 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6079 6080 // Avoid allocating parameter area for fastcc functions if all the arguments 6081 // can be passed in the registers. 6082 if (IsFastCall) 6083 HasParameterArea = false; 6084 6085 // Add up all the space actually used. 6086 for (unsigned i = 0; i != NumOps; ++i) { 6087 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6088 EVT ArgVT = Outs[i].VT; 6089 EVT OrigVT = Outs[i].ArgVT; 6090 6091 if (Flags.isNest()) 6092 continue; 6093 6094 if (IsFastCall) { 6095 if (Flags.isByVal()) { 6096 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6097 if (NumGPRsUsed > NumGPRs) 6098 HasParameterArea = true; 6099 } else { 6100 switch (ArgVT.getSimpleVT().SimpleTy) { 6101 default: llvm_unreachable("Unexpected ValueType for argument!"); 6102 case MVT::i1: 6103 case MVT::i32: 6104 case MVT::i64: 6105 if (++NumGPRsUsed <= NumGPRs) 6106 continue; 6107 break; 6108 case MVT::v4i32: 6109 case MVT::v8i16: 6110 case MVT::v16i8: 6111 case MVT::v2f64: 6112 case MVT::v2i64: 6113 case MVT::v1i128: 6114 case MVT::f128: 6115 if (++NumVRsUsed <= NumVRs) 6116 continue; 6117 break; 6118 case MVT::v4f32: 6119 // When using QPX, this is handled like a FP register, otherwise, it 6120 // is an Altivec register. 6121 if (Subtarget.hasQPX()) { 6122 if (++NumFPRsUsed <= NumFPRs) 6123 continue; 6124 } else { 6125 if (++NumVRsUsed <= NumVRs) 6126 continue; 6127 } 6128 break; 6129 case MVT::f32: 6130 case MVT::f64: 6131 case MVT::v4f64: // QPX 6132 case MVT::v4i1: // QPX 6133 if (++NumFPRsUsed <= NumFPRs) 6134 continue; 6135 break; 6136 } 6137 HasParameterArea = true; 6138 } 6139 } 6140 6141 /* Respect alignment of argument on the stack. */ 6142 auto Alignement = 6143 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6144 NumBytes = alignTo(NumBytes, Alignement); 6145 6146 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6147 if (Flags.isInConsecutiveRegsLast()) 6148 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6149 } 6150 6151 unsigned NumBytesActuallyUsed = NumBytes; 6152 6153 // In the old ELFv1 ABI, 6154 // the prolog code of the callee may store up to 8 GPR argument registers to 6155 // the stack, allowing va_start to index over them in memory if its varargs. 6156 // Because we cannot tell if this is needed on the caller side, we have to 6157 // conservatively assume that it is needed. As such, make sure we have at 6158 // least enough stack space for the caller to store the 8 GPRs. 6159 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6160 // really requires memory operands, e.g. a vararg function. 6161 if (HasParameterArea) 6162 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6163 else 6164 NumBytes = LinkageSize; 6165 6166 // Tail call needs the stack to be aligned. 6167 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6168 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6169 6170 int SPDiff = 0; 6171 6172 // Calculate by how many bytes the stack has to be adjusted in case of tail 6173 // call optimization. 6174 if (!IsSibCall) 6175 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6176 6177 // To protect arguments on the stack from being clobbered in a tail call, 6178 // force all the loads to happen before doing any other lowering. 6179 if (CFlags.IsTailCall) 6180 Chain = DAG.getStackArgumentTokenFactor(Chain); 6181 6182 // Adjust the stack pointer for the new arguments... 6183 // These operations are automatically eliminated by the prolog/epilog pass 6184 if (!IsSibCall) 6185 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6186 SDValue CallSeqStart = Chain; 6187 6188 // Load the return address and frame pointer so it can be move somewhere else 6189 // later. 6190 SDValue LROp, FPOp; 6191 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6192 6193 // Set up a copy of the stack pointer for use loading and storing any 6194 // arguments that may not fit in the registers available for argument 6195 // passing. 6196 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6197 6198 // Figure out which arguments are going to go in registers, and which in 6199 // memory. Also, if this is a vararg function, floating point operations 6200 // must be stored to our stack, and loaded into integer regs as well, if 6201 // any integer regs are available for argument passing. 6202 unsigned ArgOffset = LinkageSize; 6203 6204 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6205 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6206 6207 SmallVector<SDValue, 8> MemOpChains; 6208 for (unsigned i = 0; i != NumOps; ++i) { 6209 SDValue Arg = OutVals[i]; 6210 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6211 EVT ArgVT = Outs[i].VT; 6212 EVT OrigVT = Outs[i].ArgVT; 6213 6214 // PtrOff will be used to store the current argument to the stack if a 6215 // register cannot be found for it. 6216 SDValue PtrOff; 6217 6218 // We re-align the argument offset for each argument, except when using the 6219 // fast calling convention, when we need to make sure we do that only when 6220 // we'll actually use a stack slot. 6221 auto ComputePtrOff = [&]() { 6222 /* Respect alignment of argument on the stack. */ 6223 auto Alignment = 6224 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6225 ArgOffset = alignTo(ArgOffset, Alignment); 6226 6227 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6228 6229 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6230 }; 6231 6232 if (!IsFastCall) { 6233 ComputePtrOff(); 6234 6235 /* Compute GPR index associated with argument offset. */ 6236 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6237 GPR_idx = std::min(GPR_idx, NumGPRs); 6238 } 6239 6240 // Promote integers to 64-bit values. 6241 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6242 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6243 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6244 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6245 } 6246 6247 // FIXME memcpy is used way more than necessary. Correctness first. 6248 // Note: "by value" is code for passing a structure by value, not 6249 // basic types. 6250 if (Flags.isByVal()) { 6251 // Note: Size includes alignment padding, so 6252 // struct x { short a; char b; } 6253 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6254 // These are the proper values we need for right-justifying the 6255 // aggregate in a parameter register. 6256 unsigned Size = Flags.getByValSize(); 6257 6258 // An empty aggregate parameter takes up no storage and no 6259 // registers. 6260 if (Size == 0) 6261 continue; 6262 6263 if (IsFastCall) 6264 ComputePtrOff(); 6265 6266 // All aggregates smaller than 8 bytes must be passed right-justified. 6267 if (Size==1 || Size==2 || Size==4) { 6268 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6269 if (GPR_idx != NumGPRs) { 6270 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6271 MachinePointerInfo(), VT); 6272 MemOpChains.push_back(Load.getValue(1)); 6273 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6274 6275 ArgOffset += PtrByteSize; 6276 continue; 6277 } 6278 } 6279 6280 if (GPR_idx == NumGPRs && Size < 8) { 6281 SDValue AddPtr = PtrOff; 6282 if (!isLittleEndian) { 6283 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6284 PtrOff.getValueType()); 6285 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6286 } 6287 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6288 CallSeqStart, 6289 Flags, DAG, dl); 6290 ArgOffset += PtrByteSize; 6291 continue; 6292 } 6293 // Copy entire object into memory. There are cases where gcc-generated 6294 // code assumes it is there, even if it could be put entirely into 6295 // registers. (This is not what the doc says.) 6296 6297 // FIXME: The above statement is likely due to a misunderstanding of the 6298 // documents. All arguments must be copied into the parameter area BY 6299 // THE CALLEE in the event that the callee takes the address of any 6300 // formal argument. That has not yet been implemented. However, it is 6301 // reasonable to use the stack area as a staging area for the register 6302 // load. 6303 6304 // Skip this for small aggregates, as we will use the same slot for a 6305 // right-justified copy, below. 6306 if (Size >= 8) 6307 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6308 CallSeqStart, 6309 Flags, DAG, dl); 6310 6311 // When a register is available, pass a small aggregate right-justified. 6312 if (Size < 8 && GPR_idx != NumGPRs) { 6313 // The easiest way to get this right-justified in a register 6314 // is to copy the structure into the rightmost portion of a 6315 // local variable slot, then load the whole slot into the 6316 // register. 6317 // FIXME: The memcpy seems to produce pretty awful code for 6318 // small aggregates, particularly for packed ones. 6319 // FIXME: It would be preferable to use the slot in the 6320 // parameter save area instead of a new local variable. 6321 SDValue AddPtr = PtrOff; 6322 if (!isLittleEndian) { 6323 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6324 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6325 } 6326 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6327 CallSeqStart, 6328 Flags, DAG, dl); 6329 6330 // Load the slot into the register. 6331 SDValue Load = 6332 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6333 MemOpChains.push_back(Load.getValue(1)); 6334 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6335 6336 // Done with this argument. 6337 ArgOffset += PtrByteSize; 6338 continue; 6339 } 6340 6341 // For aggregates larger than PtrByteSize, copy the pieces of the 6342 // object that fit into registers from the parameter save area. 6343 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6344 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6345 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6346 if (GPR_idx != NumGPRs) { 6347 SDValue Load = 6348 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6349 MemOpChains.push_back(Load.getValue(1)); 6350 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6351 ArgOffset += PtrByteSize; 6352 } else { 6353 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6354 break; 6355 } 6356 } 6357 continue; 6358 } 6359 6360 switch (Arg.getSimpleValueType().SimpleTy) { 6361 default: llvm_unreachable("Unexpected ValueType for argument!"); 6362 case MVT::i1: 6363 case MVT::i32: 6364 case MVT::i64: 6365 if (Flags.isNest()) { 6366 // The 'nest' parameter, if any, is passed in R11. 6367 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6368 break; 6369 } 6370 6371 // These can be scalar arguments or elements of an integer array type 6372 // passed directly. Clang may use those instead of "byval" aggregate 6373 // types to avoid forcing arguments to memory unnecessarily. 6374 if (GPR_idx != NumGPRs) { 6375 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6376 } else { 6377 if (IsFastCall) 6378 ComputePtrOff(); 6379 6380 assert(HasParameterArea && 6381 "Parameter area must exist to pass an argument in memory."); 6382 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6383 true, CFlags.IsTailCall, false, MemOpChains, 6384 TailCallArguments, dl); 6385 if (IsFastCall) 6386 ArgOffset += PtrByteSize; 6387 } 6388 if (!IsFastCall) 6389 ArgOffset += PtrByteSize; 6390 break; 6391 case MVT::f32: 6392 case MVT::f64: { 6393 // These can be scalar arguments or elements of a float array type 6394 // passed directly. The latter are used to implement ELFv2 homogenous 6395 // float aggregates. 6396 6397 // Named arguments go into FPRs first, and once they overflow, the 6398 // remaining arguments go into GPRs and then the parameter save area. 6399 // Unnamed arguments for vararg functions always go to GPRs and 6400 // then the parameter save area. For now, put all arguments to vararg 6401 // routines always in both locations (FPR *and* GPR or stack slot). 6402 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6403 bool NeededLoad = false; 6404 6405 // First load the argument into the next available FPR. 6406 if (FPR_idx != NumFPRs) 6407 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6408 6409 // Next, load the argument into GPR or stack slot if needed. 6410 if (!NeedGPROrStack) 6411 ; 6412 else if (GPR_idx != NumGPRs && !IsFastCall) { 6413 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6414 // once we support fp <-> gpr moves. 6415 6416 // In the non-vararg case, this can only ever happen in the 6417 // presence of f32 array types, since otherwise we never run 6418 // out of FPRs before running out of GPRs. 6419 SDValue ArgVal; 6420 6421 // Double values are always passed in a single GPR. 6422 if (Arg.getValueType() != MVT::f32) { 6423 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6424 6425 // Non-array float values are extended and passed in a GPR. 6426 } else if (!Flags.isInConsecutiveRegs()) { 6427 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6428 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6429 6430 // If we have an array of floats, we collect every odd element 6431 // together with its predecessor into one GPR. 6432 } else if (ArgOffset % PtrByteSize != 0) { 6433 SDValue Lo, Hi; 6434 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6435 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6436 if (!isLittleEndian) 6437 std::swap(Lo, Hi); 6438 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6439 6440 // The final element, if even, goes into the first half of a GPR. 6441 } else if (Flags.isInConsecutiveRegsLast()) { 6442 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6443 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6444 if (!isLittleEndian) 6445 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6446 DAG.getConstant(32, dl, MVT::i32)); 6447 6448 // Non-final even elements are skipped; they will be handled 6449 // together the with subsequent argument on the next go-around. 6450 } else 6451 ArgVal = SDValue(); 6452 6453 if (ArgVal.getNode()) 6454 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6455 } else { 6456 if (IsFastCall) 6457 ComputePtrOff(); 6458 6459 // Single-precision floating-point values are mapped to the 6460 // second (rightmost) word of the stack doubleword. 6461 if (Arg.getValueType() == MVT::f32 && 6462 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6463 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6464 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6465 } 6466 6467 assert(HasParameterArea && 6468 "Parameter area must exist to pass an argument in memory."); 6469 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6470 true, CFlags.IsTailCall, false, MemOpChains, 6471 TailCallArguments, dl); 6472 6473 NeededLoad = true; 6474 } 6475 // When passing an array of floats, the array occupies consecutive 6476 // space in the argument area; only round up to the next doubleword 6477 // at the end of the array. Otherwise, each float takes 8 bytes. 6478 if (!IsFastCall || NeededLoad) { 6479 ArgOffset += (Arg.getValueType() == MVT::f32 && 6480 Flags.isInConsecutiveRegs()) ? 4 : 8; 6481 if (Flags.isInConsecutiveRegsLast()) 6482 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6483 } 6484 break; 6485 } 6486 case MVT::v4f32: 6487 case MVT::v4i32: 6488 case MVT::v8i16: 6489 case MVT::v16i8: 6490 case MVT::v2f64: 6491 case MVT::v2i64: 6492 case MVT::v1i128: 6493 case MVT::f128: 6494 if (!Subtarget.hasQPX()) { 6495 // These can be scalar arguments or elements of a vector array type 6496 // passed directly. The latter are used to implement ELFv2 homogenous 6497 // vector aggregates. 6498 6499 // For a varargs call, named arguments go into VRs or on the stack as 6500 // usual; unnamed arguments always go to the stack or the corresponding 6501 // GPRs when within range. For now, we always put the value in both 6502 // locations (or even all three). 6503 if (CFlags.IsVarArg) { 6504 assert(HasParameterArea && 6505 "Parameter area must exist if we have a varargs call."); 6506 // We could elide this store in the case where the object fits 6507 // entirely in R registers. Maybe later. 6508 SDValue Store = 6509 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6510 MemOpChains.push_back(Store); 6511 if (VR_idx != NumVRs) { 6512 SDValue Load = 6513 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6514 MemOpChains.push_back(Load.getValue(1)); 6515 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6516 } 6517 ArgOffset += 16; 6518 for (unsigned i=0; i<16; i+=PtrByteSize) { 6519 if (GPR_idx == NumGPRs) 6520 break; 6521 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6522 DAG.getConstant(i, dl, PtrVT)); 6523 SDValue Load = 6524 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6525 MemOpChains.push_back(Load.getValue(1)); 6526 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6527 } 6528 break; 6529 } 6530 6531 // Non-varargs Altivec params go into VRs or on the stack. 6532 if (VR_idx != NumVRs) { 6533 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6534 } else { 6535 if (IsFastCall) 6536 ComputePtrOff(); 6537 6538 assert(HasParameterArea && 6539 "Parameter area must exist to pass an argument in memory."); 6540 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6541 true, CFlags.IsTailCall, true, MemOpChains, 6542 TailCallArguments, dl); 6543 if (IsFastCall) 6544 ArgOffset += 16; 6545 } 6546 6547 if (!IsFastCall) 6548 ArgOffset += 16; 6549 break; 6550 } // not QPX 6551 6552 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6553 "Invalid QPX parameter type"); 6554 6555 LLVM_FALLTHROUGH; 6556 case MVT::v4f64: 6557 case MVT::v4i1: { 6558 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6559 if (CFlags.IsVarArg) { 6560 assert(HasParameterArea && 6561 "Parameter area must exist if we have a varargs call."); 6562 // We could elide this store in the case where the object fits 6563 // entirely in R registers. Maybe later. 6564 SDValue Store = 6565 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6566 MemOpChains.push_back(Store); 6567 if (QFPR_idx != NumQFPRs) { 6568 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6569 PtrOff, MachinePointerInfo()); 6570 MemOpChains.push_back(Load.getValue(1)); 6571 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6572 } 6573 ArgOffset += (IsF32 ? 16 : 32); 6574 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6575 if (GPR_idx == NumGPRs) 6576 break; 6577 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6578 DAG.getConstant(i, dl, PtrVT)); 6579 SDValue Load = 6580 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6581 MemOpChains.push_back(Load.getValue(1)); 6582 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6583 } 6584 break; 6585 } 6586 6587 // Non-varargs QPX params go into registers or on the stack. 6588 if (QFPR_idx != NumQFPRs) { 6589 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6590 } else { 6591 if (IsFastCall) 6592 ComputePtrOff(); 6593 6594 assert(HasParameterArea && 6595 "Parameter area must exist to pass an argument in memory."); 6596 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6597 true, CFlags.IsTailCall, true, MemOpChains, 6598 TailCallArguments, dl); 6599 if (IsFastCall) 6600 ArgOffset += (IsF32 ? 16 : 32); 6601 } 6602 6603 if (!IsFastCall) 6604 ArgOffset += (IsF32 ? 16 : 32); 6605 break; 6606 } 6607 } 6608 } 6609 6610 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6611 "mismatch in size of parameter area"); 6612 (void)NumBytesActuallyUsed; 6613 6614 if (!MemOpChains.empty()) 6615 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6616 6617 // Check if this is an indirect call (MTCTR/BCTRL). 6618 // See prepareDescriptorIndirectCall and buildCallOperands for more 6619 // information about calls through function pointers in the 64-bit SVR4 ABI. 6620 if (CFlags.IsIndirect) { 6621 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6622 // caller in the TOC save area. 6623 if (isTOCSaveRestoreRequired(Subtarget)) { 6624 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6625 // Load r2 into a virtual register and store it to the TOC save area. 6626 setUsesTOCBasePtr(DAG); 6627 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6628 // TOC save area offset. 6629 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6630 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6631 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6632 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6633 MachinePointerInfo::getStack( 6634 DAG.getMachineFunction(), TOCSaveOffset)); 6635 } 6636 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6637 // This does not mean the MTCTR instruction must use R12; it's easier 6638 // to model this as an extra parameter, so do that. 6639 if (isELFv2ABI && !CFlags.IsPatchPoint) 6640 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6641 } 6642 6643 // Build a sequence of copy-to-reg nodes chained together with token chain 6644 // and flag operands which copy the outgoing args into the appropriate regs. 6645 SDValue InFlag; 6646 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6647 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6648 RegsToPass[i].second, InFlag); 6649 InFlag = Chain.getValue(1); 6650 } 6651 6652 if (CFlags.IsTailCall && !IsSibCall) 6653 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6654 TailCallArguments); 6655 6656 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6657 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6658 } 6659 6660 SDValue PPCTargetLowering::LowerCall_Darwin( 6661 SDValue Chain, SDValue Callee, CallFlags CFlags, 6662 const SmallVectorImpl<ISD::OutputArg> &Outs, 6663 const SmallVectorImpl<SDValue> &OutVals, 6664 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6665 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6666 const CallBase *CB) const { 6667 unsigned NumOps = Outs.size(); 6668 6669 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6670 bool isPPC64 = PtrVT == MVT::i64; 6671 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6672 6673 MachineFunction &MF = DAG.getMachineFunction(); 6674 6675 // Mark this function as potentially containing a function that contains a 6676 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6677 // and restoring the callers stack pointer in this functions epilog. This is 6678 // done because by tail calling the called function might overwrite the value 6679 // in this function's (MF) stack pointer stack slot 0(SP). 6680 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6681 CFlags.CallConv == CallingConv::Fast) 6682 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6683 6684 // Count how many bytes are to be pushed on the stack, including the linkage 6685 // area, and parameter passing area. We start with 24/48 bytes, which is 6686 // prereserved space for [SP][CR][LR][3 x unused]. 6687 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6688 unsigned NumBytes = LinkageSize; 6689 6690 // Add up all the space actually used. 6691 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6692 // they all go in registers, but we must reserve stack space for them for 6693 // possible use by the caller. In varargs or 64-bit calls, parameters are 6694 // assigned stack space in order, with padding so Altivec parameters are 6695 // 16-byte aligned. 6696 unsigned nAltivecParamsAtEnd = 0; 6697 for (unsigned i = 0; i != NumOps; ++i) { 6698 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6699 EVT ArgVT = Outs[i].VT; 6700 // Varargs Altivec parameters are padded to a 16 byte boundary. 6701 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6702 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6703 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6704 if (!CFlags.IsVarArg && !isPPC64) { 6705 // Non-varargs Altivec parameters go after all the non-Altivec 6706 // parameters; handle those later so we know how much padding we need. 6707 nAltivecParamsAtEnd++; 6708 continue; 6709 } 6710 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6711 NumBytes = ((NumBytes+15)/16)*16; 6712 } 6713 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6714 } 6715 6716 // Allow for Altivec parameters at the end, if needed. 6717 if (nAltivecParamsAtEnd) { 6718 NumBytes = ((NumBytes+15)/16)*16; 6719 NumBytes += 16*nAltivecParamsAtEnd; 6720 } 6721 6722 // The prolog code of the callee may store up to 8 GPR argument registers to 6723 // the stack, allowing va_start to index over them in memory if its varargs. 6724 // Because we cannot tell if this is needed on the caller side, we have to 6725 // conservatively assume that it is needed. As such, make sure we have at 6726 // least enough stack space for the caller to store the 8 GPRs. 6727 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6728 6729 // Tail call needs the stack to be aligned. 6730 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6731 CFlags.CallConv == CallingConv::Fast) 6732 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6733 6734 // Calculate by how many bytes the stack has to be adjusted in case of tail 6735 // call optimization. 6736 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6737 6738 // To protect arguments on the stack from being clobbered in a tail call, 6739 // force all the loads to happen before doing any other lowering. 6740 if (CFlags.IsTailCall) 6741 Chain = DAG.getStackArgumentTokenFactor(Chain); 6742 6743 // Adjust the stack pointer for the new arguments... 6744 // These operations are automatically eliminated by the prolog/epilog pass 6745 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6746 SDValue CallSeqStart = Chain; 6747 6748 // Load the return address and frame pointer so it can be move somewhere else 6749 // later. 6750 SDValue LROp, FPOp; 6751 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6752 6753 // Set up a copy of the stack pointer for use loading and storing any 6754 // arguments that may not fit in the registers available for argument 6755 // passing. 6756 SDValue StackPtr; 6757 if (isPPC64) 6758 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6759 else 6760 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6761 6762 // Figure out which arguments are going to go in registers, and which in 6763 // memory. Also, if this is a vararg function, floating point operations 6764 // must be stored to our stack, and loaded into integer regs as well, if 6765 // any integer regs are available for argument passing. 6766 unsigned ArgOffset = LinkageSize; 6767 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6768 6769 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6770 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6771 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6772 }; 6773 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6774 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6775 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6776 }; 6777 static const MCPhysReg VR[] = { 6778 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6779 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6780 }; 6781 const unsigned NumGPRs = array_lengthof(GPR_32); 6782 const unsigned NumFPRs = 13; 6783 const unsigned NumVRs = array_lengthof(VR); 6784 6785 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6786 6787 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6788 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6789 6790 SmallVector<SDValue, 8> MemOpChains; 6791 for (unsigned i = 0; i != NumOps; ++i) { 6792 SDValue Arg = OutVals[i]; 6793 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6794 6795 // PtrOff will be used to store the current argument to the stack if a 6796 // register cannot be found for it. 6797 SDValue PtrOff; 6798 6799 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6800 6801 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6802 6803 // On PPC64, promote integers to 64-bit values. 6804 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6805 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6806 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6807 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6808 } 6809 6810 // FIXME memcpy is used way more than necessary. Correctness first. 6811 // Note: "by value" is code for passing a structure by value, not 6812 // basic types. 6813 if (Flags.isByVal()) { 6814 unsigned Size = Flags.getByValSize(); 6815 // Very small objects are passed right-justified. Everything else is 6816 // passed left-justified. 6817 if (Size==1 || Size==2) { 6818 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6819 if (GPR_idx != NumGPRs) { 6820 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6821 MachinePointerInfo(), VT); 6822 MemOpChains.push_back(Load.getValue(1)); 6823 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6824 6825 ArgOffset += PtrByteSize; 6826 } else { 6827 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6828 PtrOff.getValueType()); 6829 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6830 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6831 CallSeqStart, 6832 Flags, DAG, dl); 6833 ArgOffset += PtrByteSize; 6834 } 6835 continue; 6836 } 6837 // Copy entire object into memory. There are cases where gcc-generated 6838 // code assumes it is there, even if it could be put entirely into 6839 // registers. (This is not what the doc says.) 6840 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6841 CallSeqStart, 6842 Flags, DAG, dl); 6843 6844 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6845 // copy the pieces of the object that fit into registers from the 6846 // parameter save area. 6847 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6848 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6849 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6850 if (GPR_idx != NumGPRs) { 6851 SDValue Load = 6852 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6853 MemOpChains.push_back(Load.getValue(1)); 6854 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6855 ArgOffset += PtrByteSize; 6856 } else { 6857 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6858 break; 6859 } 6860 } 6861 continue; 6862 } 6863 6864 switch (Arg.getSimpleValueType().SimpleTy) { 6865 default: llvm_unreachable("Unexpected ValueType for argument!"); 6866 case MVT::i1: 6867 case MVT::i32: 6868 case MVT::i64: 6869 if (GPR_idx != NumGPRs) { 6870 if (Arg.getValueType() == MVT::i1) 6871 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6872 6873 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6874 } else { 6875 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6876 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6877 TailCallArguments, dl); 6878 } 6879 ArgOffset += PtrByteSize; 6880 break; 6881 case MVT::f32: 6882 case MVT::f64: 6883 if (FPR_idx != NumFPRs) { 6884 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6885 6886 if (CFlags.IsVarArg) { 6887 SDValue Store = 6888 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6889 MemOpChains.push_back(Store); 6890 6891 // Float varargs are always shadowed in available integer registers 6892 if (GPR_idx != NumGPRs) { 6893 SDValue Load = 6894 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6895 MemOpChains.push_back(Load.getValue(1)); 6896 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6897 } 6898 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6899 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6900 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6901 SDValue Load = 6902 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6903 MemOpChains.push_back(Load.getValue(1)); 6904 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6905 } 6906 } else { 6907 // If we have any FPRs remaining, we may also have GPRs remaining. 6908 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6909 // GPRs. 6910 if (GPR_idx != NumGPRs) 6911 ++GPR_idx; 6912 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6913 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6914 ++GPR_idx; 6915 } 6916 } else 6917 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6918 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6919 TailCallArguments, dl); 6920 if (isPPC64) 6921 ArgOffset += 8; 6922 else 6923 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6924 break; 6925 case MVT::v4f32: 6926 case MVT::v4i32: 6927 case MVT::v8i16: 6928 case MVT::v16i8: 6929 if (CFlags.IsVarArg) { 6930 // These go aligned on the stack, or in the corresponding R registers 6931 // when within range. The Darwin PPC ABI doc claims they also go in 6932 // V registers; in fact gcc does this only for arguments that are 6933 // prototyped, not for those that match the ... We do it for all 6934 // arguments, seems to work. 6935 while (ArgOffset % 16 !=0) { 6936 ArgOffset += PtrByteSize; 6937 if (GPR_idx != NumGPRs) 6938 GPR_idx++; 6939 } 6940 // We could elide this store in the case where the object fits 6941 // entirely in R registers. Maybe later. 6942 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6943 DAG.getConstant(ArgOffset, dl, PtrVT)); 6944 SDValue Store = 6945 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6946 MemOpChains.push_back(Store); 6947 if (VR_idx != NumVRs) { 6948 SDValue Load = 6949 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6950 MemOpChains.push_back(Load.getValue(1)); 6951 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6952 } 6953 ArgOffset += 16; 6954 for (unsigned i=0; i<16; i+=PtrByteSize) { 6955 if (GPR_idx == NumGPRs) 6956 break; 6957 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6958 DAG.getConstant(i, dl, PtrVT)); 6959 SDValue Load = 6960 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6961 MemOpChains.push_back(Load.getValue(1)); 6962 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6963 } 6964 break; 6965 } 6966 6967 // Non-varargs Altivec params generally go in registers, but have 6968 // stack space allocated at the end. 6969 if (VR_idx != NumVRs) { 6970 // Doesn't have GPR space allocated. 6971 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6972 } else if (nAltivecParamsAtEnd==0) { 6973 // We are emitting Altivec params in order. 6974 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6975 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6976 TailCallArguments, dl); 6977 ArgOffset += 16; 6978 } 6979 break; 6980 } 6981 } 6982 // If all Altivec parameters fit in registers, as they usually do, 6983 // they get stack space following the non-Altivec parameters. We 6984 // don't track this here because nobody below needs it. 6985 // If there are more Altivec parameters than fit in registers emit 6986 // the stores here. 6987 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6988 unsigned j = 0; 6989 // Offset is aligned; skip 1st 12 params which go in V registers. 6990 ArgOffset = ((ArgOffset+15)/16)*16; 6991 ArgOffset += 12*16; 6992 for (unsigned i = 0; i != NumOps; ++i) { 6993 SDValue Arg = OutVals[i]; 6994 EVT ArgType = Outs[i].VT; 6995 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6996 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6997 if (++j > NumVRs) { 6998 SDValue PtrOff; 6999 // We are emitting Altivec params in order. 7000 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 7001 isPPC64, CFlags.IsTailCall, true, MemOpChains, 7002 TailCallArguments, dl); 7003 ArgOffset += 16; 7004 } 7005 } 7006 } 7007 } 7008 7009 if (!MemOpChains.empty()) 7010 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7011 7012 // On Darwin, R12 must contain the address of an indirect callee. This does 7013 // not mean the MTCTR instruction must use R12; it's easier to model this as 7014 // an extra parameter, so do that. 7015 if (CFlags.IsIndirect) { 7016 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7017 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 7018 PPC::R12), Callee)); 7019 } 7020 7021 // Build a sequence of copy-to-reg nodes chained together with token chain 7022 // and flag operands which copy the outgoing args into the appropriate regs. 7023 SDValue InFlag; 7024 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 7025 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 7026 RegsToPass[i].second, InFlag); 7027 InFlag = Chain.getValue(1); 7028 } 7029 7030 if (CFlags.IsTailCall) 7031 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 7032 TailCallArguments); 7033 7034 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7035 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7036 } 7037 7038 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 7039 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 7040 CCState &State) { 7041 7042 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 7043 State.getMachineFunction().getSubtarget()); 7044 const bool IsPPC64 = Subtarget.isPPC64(); 7045 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 7046 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 7047 7048 assert((!ValVT.isInteger() || 7049 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 7050 "Integer argument exceeds register size: should have been legalized"); 7051 7052 if (ValVT == MVT::f128) 7053 report_fatal_error("f128 is unimplemented on AIX."); 7054 7055 if (ArgFlags.isNest()) 7056 report_fatal_error("Nest arguments are unimplemented."); 7057 7058 if (ValVT.isVector() || LocVT.isVector()) 7059 report_fatal_error("Vector arguments are unimplemented on AIX."); 7060 7061 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7062 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7063 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7064 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7065 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7066 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7067 7068 if (ArgFlags.isByVal()) { 7069 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7070 report_fatal_error("Pass-by-value arguments with alignment greater than " 7071 "register width are not supported."); 7072 7073 const unsigned ByValSize = ArgFlags.getByValSize(); 7074 7075 // An empty aggregate parameter takes up no storage and no registers, 7076 // but needs a MemLoc for a stack slot for the formal arguments side. 7077 if (ByValSize == 0) { 7078 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7079 State.getNextStackOffset(), RegVT, 7080 LocInfo)); 7081 return false; 7082 } 7083 7084 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7085 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7086 for (const unsigned E = Offset + StackSize; Offset < E; 7087 Offset += PtrAlign.value()) { 7088 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7089 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7090 else { 7091 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7092 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7093 LocInfo)); 7094 break; 7095 } 7096 } 7097 return false; 7098 } 7099 7100 // Arguments always reserve parameter save area. 7101 switch (ValVT.SimpleTy) { 7102 default: 7103 report_fatal_error("Unhandled value type for argument."); 7104 case MVT::i64: 7105 // i64 arguments should have been split to i32 for PPC32. 7106 assert(IsPPC64 && "PPC32 should have split i64 values."); 7107 LLVM_FALLTHROUGH; 7108 case MVT::i1: 7109 case MVT::i32: { 7110 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7111 // AIX integer arguments are always passed in register width. 7112 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7113 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7114 : CCValAssign::LocInfo::ZExt; 7115 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7116 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7117 else 7118 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7119 7120 return false; 7121 } 7122 case MVT::f32: 7123 case MVT::f64: { 7124 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7125 const unsigned StoreSize = LocVT.getStoreSize(); 7126 // Floats are always 4-byte aligned in the PSA on AIX. 7127 // This includes f64 in 64-bit mode for ABI compatibility. 7128 const unsigned Offset = 7129 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7130 unsigned FReg = State.AllocateReg(FPR); 7131 if (FReg) 7132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7133 7134 // Reserve and initialize GPRs or initialize the PSA as required. 7135 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7136 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7137 assert(FReg && "An FPR should be available when a GPR is reserved."); 7138 if (State.isVarArg()) { 7139 // Successfully reserved GPRs are only initialized for vararg calls. 7140 // Custom handling is required for: 7141 // f64 in PPC32 needs to be split into 2 GPRs. 7142 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7143 State.addLoc( 7144 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7145 } 7146 } else { 7147 // If there are insufficient GPRs, the PSA needs to be initialized. 7148 // Initialization occurs even if an FPR was initialized for 7149 // compatibility with the AIX XL compiler. The full memory for the 7150 // argument will be initialized even if a prior word is saved in GPR. 7151 // A custom memLoc is used when the argument also passes in FPR so 7152 // that the callee handling can skip over it easily. 7153 State.addLoc( 7154 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7155 LocInfo) 7156 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7157 break; 7158 } 7159 } 7160 7161 return false; 7162 } 7163 } 7164 return true; 7165 } 7166 7167 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7168 bool IsPPC64) { 7169 assert((IsPPC64 || SVT != MVT::i64) && 7170 "i64 should have been split for 32-bit codegen."); 7171 7172 switch (SVT) { 7173 default: 7174 report_fatal_error("Unexpected value type for formal argument"); 7175 case MVT::i1: 7176 case MVT::i32: 7177 case MVT::i64: 7178 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7179 case MVT::f32: 7180 return &PPC::F4RCRegClass; 7181 case MVT::f64: 7182 return &PPC::F8RCRegClass; 7183 } 7184 } 7185 7186 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7187 SelectionDAG &DAG, SDValue ArgValue, 7188 MVT LocVT, const SDLoc &dl) { 7189 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7190 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7191 7192 if (Flags.isSExt()) 7193 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7194 DAG.getValueType(ValVT)); 7195 else if (Flags.isZExt()) 7196 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7197 DAG.getValueType(ValVT)); 7198 7199 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7200 } 7201 7202 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7203 const unsigned LASize = FL->getLinkageSize(); 7204 7205 if (PPC::GPRCRegClass.contains(Reg)) { 7206 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7207 "Reg must be a valid argument register!"); 7208 return LASize + 4 * (Reg - PPC::R3); 7209 } 7210 7211 if (PPC::G8RCRegClass.contains(Reg)) { 7212 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7213 "Reg must be a valid argument register!"); 7214 return LASize + 8 * (Reg - PPC::X3); 7215 } 7216 7217 llvm_unreachable("Only general purpose registers expected."); 7218 } 7219 7220 // AIX ABI Stack Frame Layout: 7221 // 7222 // Low Memory +--------------------------------------------+ 7223 // SP +---> | Back chain | ---+ 7224 // | +--------------------------------------------+ | 7225 // | | Saved Condition Register | | 7226 // | +--------------------------------------------+ | 7227 // | | Saved Linkage Register | | 7228 // | +--------------------------------------------+ | Linkage Area 7229 // | | Reserved for compilers | | 7230 // | +--------------------------------------------+ | 7231 // | | Reserved for binders | | 7232 // | +--------------------------------------------+ | 7233 // | | Saved TOC pointer | ---+ 7234 // | +--------------------------------------------+ 7235 // | | Parameter save area | 7236 // | +--------------------------------------------+ 7237 // | | Alloca space | 7238 // | +--------------------------------------------+ 7239 // | | Local variable space | 7240 // | +--------------------------------------------+ 7241 // | | Float/int conversion temporary | 7242 // | +--------------------------------------------+ 7243 // | | Save area for AltiVec registers | 7244 // | +--------------------------------------------+ 7245 // | | AltiVec alignment padding | 7246 // | +--------------------------------------------+ 7247 // | | Save area for VRSAVE register | 7248 // | +--------------------------------------------+ 7249 // | | Save area for General Purpose registers | 7250 // | +--------------------------------------------+ 7251 // | | Save area for Floating Point registers | 7252 // | +--------------------------------------------+ 7253 // +---- | Back chain | 7254 // High Memory +--------------------------------------------+ 7255 // 7256 // Specifications: 7257 // AIX 7.2 Assembler Language Reference 7258 // Subroutine linkage convention 7259 7260 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7261 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7264 7265 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7266 CallConv == CallingConv::Fast) && 7267 "Unexpected calling convention!"); 7268 7269 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7270 report_fatal_error("Tail call support is unimplemented on AIX."); 7271 7272 if (useSoftFloat()) 7273 report_fatal_error("Soft float support is unimplemented on AIX."); 7274 7275 const PPCSubtarget &Subtarget = 7276 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7277 if (Subtarget.hasQPX()) 7278 report_fatal_error("QPX support is not supported on AIX."); 7279 7280 const bool IsPPC64 = Subtarget.isPPC64(); 7281 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7282 7283 // Assign locations to all of the incoming arguments. 7284 SmallVector<CCValAssign, 16> ArgLocs; 7285 MachineFunction &MF = DAG.getMachineFunction(); 7286 MachineFrameInfo &MFI = MF.getFrameInfo(); 7287 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7288 7289 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7290 // Reserve space for the linkage area on the stack. 7291 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7292 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7293 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7294 7295 SmallVector<SDValue, 8> MemOps; 7296 7297 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7298 CCValAssign &VA = ArgLocs[I++]; 7299 MVT LocVT = VA.getLocVT(); 7300 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7301 7302 // For compatibility with the AIX XL compiler, the float args in the 7303 // parameter save area are initialized even if the argument is available 7304 // in register. The caller is required to initialize both the register 7305 // and memory, however, the callee can choose to expect it in either. 7306 // The memloc is dismissed here because the argument is retrieved from 7307 // the register. 7308 if (VA.isMemLoc() && VA.needsCustom()) 7309 continue; 7310 7311 if (Flags.isByVal() && VA.isMemLoc()) { 7312 const unsigned Size = 7313 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7314 PtrByteSize); 7315 const int FI = MF.getFrameInfo().CreateFixedObject( 7316 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7317 /* IsAliased */ true); 7318 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7319 InVals.push_back(FIN); 7320 7321 continue; 7322 } 7323 7324 if (Flags.isByVal()) { 7325 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7326 7327 const MCPhysReg ArgReg = VA.getLocReg(); 7328 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7329 7330 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7331 report_fatal_error("Over aligned byvals not supported yet."); 7332 7333 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7334 const int FI = MF.getFrameInfo().CreateFixedObject( 7335 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7336 /* IsAliased */ true); 7337 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7338 InVals.push_back(FIN); 7339 7340 // Add live ins for all the RegLocs for the same ByVal. 7341 const TargetRegisterClass *RegClass = 7342 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7343 7344 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7345 unsigned Offset) { 7346 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7347 // Since the callers side has left justified the aggregate in the 7348 // register, we can simply store the entire register into the stack 7349 // slot. 7350 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7351 // The store to the fixedstack object is needed becuase accessing a 7352 // field of the ByVal will use a gep and load. Ideally we will optimize 7353 // to extracting the value from the register directly, and elide the 7354 // stores when the arguments address is not taken, but that will need to 7355 // be future work. 7356 SDValue Store = 7357 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7358 DAG.getObjectPtrOffset(dl, FIN, Offset), 7359 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7360 7361 MemOps.push_back(Store); 7362 }; 7363 7364 unsigned Offset = 0; 7365 HandleRegLoc(VA.getLocReg(), Offset); 7366 Offset += PtrByteSize; 7367 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7368 Offset += PtrByteSize) { 7369 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7370 "RegLocs should be for ByVal argument."); 7371 7372 const CCValAssign RL = ArgLocs[I++]; 7373 HandleRegLoc(RL.getLocReg(), Offset); 7374 } 7375 7376 if (Offset != StackSize) { 7377 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7378 "Expected MemLoc for remaining bytes."); 7379 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7380 // Consume the MemLoc.The InVal has already been emitted, so nothing 7381 // more needs to be done. 7382 ++I; 7383 } 7384 7385 continue; 7386 } 7387 7388 EVT ValVT = VA.getValVT(); 7389 if (VA.isRegLoc() && !VA.needsCustom()) { 7390 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7391 unsigned VReg = 7392 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7393 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7394 if (ValVT.isScalarInteger() && 7395 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7396 ArgValue = 7397 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7398 } 7399 InVals.push_back(ArgValue); 7400 continue; 7401 } 7402 if (VA.isMemLoc()) { 7403 const unsigned LocSize = LocVT.getStoreSize(); 7404 const unsigned ValSize = ValVT.getStoreSize(); 7405 assert((ValSize <= LocSize) && 7406 "Object size is larger than size of MemLoc"); 7407 int CurArgOffset = VA.getLocMemOffset(); 7408 // Objects are right-justified because AIX is big-endian. 7409 if (LocSize > ValSize) 7410 CurArgOffset += LocSize - ValSize; 7411 // Potential tail calls could cause overwriting of argument stack slots. 7412 const bool IsImmutable = 7413 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7414 (CallConv == CallingConv::Fast)); 7415 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7416 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7417 SDValue ArgValue = 7418 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7419 InVals.push_back(ArgValue); 7420 continue; 7421 } 7422 } 7423 7424 // On AIX a minimum of 8 words is saved to the parameter save area. 7425 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7426 // Area that is at least reserved in the caller of this function. 7427 unsigned CallerReservedArea = 7428 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7429 7430 // Set the size that is at least reserved in caller of this function. Tail 7431 // call optimized function's reserved stack space needs to be aligned so 7432 // that taking the difference between two stack areas will result in an 7433 // aligned stack. 7434 CallerReservedArea = 7435 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7436 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7437 FuncInfo->setMinReservedArea(CallerReservedArea); 7438 7439 if (isVarArg) { 7440 FuncInfo->setVarArgsFrameIndex( 7441 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7442 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7443 7444 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7445 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7446 7447 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7448 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7449 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7450 7451 // The fixed integer arguments of a variadic function are stored to the 7452 // VarArgsFrameIndex on the stack so that they may be loaded by 7453 // dereferencing the result of va_next. 7454 for (unsigned GPRIndex = 7455 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7456 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7457 7458 const unsigned VReg = 7459 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7460 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7461 7462 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7463 SDValue Store = 7464 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7465 MemOps.push_back(Store); 7466 // Increment the address for the next argument to store. 7467 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7468 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7469 } 7470 } 7471 7472 if (!MemOps.empty()) 7473 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7474 7475 return Chain; 7476 } 7477 7478 SDValue PPCTargetLowering::LowerCall_AIX( 7479 SDValue Chain, SDValue Callee, CallFlags CFlags, 7480 const SmallVectorImpl<ISD::OutputArg> &Outs, 7481 const SmallVectorImpl<SDValue> &OutVals, 7482 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7483 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7484 const CallBase *CB) const { 7485 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7486 // AIX ABI stack frame layout. 7487 7488 assert((CFlags.CallConv == CallingConv::C || 7489 CFlags.CallConv == CallingConv::Cold || 7490 CFlags.CallConv == CallingConv::Fast) && 7491 "Unexpected calling convention!"); 7492 7493 if (CFlags.IsPatchPoint) 7494 report_fatal_error("This call type is unimplemented on AIX."); 7495 7496 const PPCSubtarget& Subtarget = 7497 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7498 if (Subtarget.hasQPX()) 7499 report_fatal_error("QPX is not supported on AIX."); 7500 if (Subtarget.hasAltivec()) 7501 report_fatal_error("Altivec support is unimplemented on AIX."); 7502 7503 MachineFunction &MF = DAG.getMachineFunction(); 7504 SmallVector<CCValAssign, 16> ArgLocs; 7505 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7506 *DAG.getContext()); 7507 7508 // Reserve space for the linkage save area (LSA) on the stack. 7509 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7510 // [SP][CR][LR][2 x reserved][TOC]. 7511 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7512 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7513 const bool IsPPC64 = Subtarget.isPPC64(); 7514 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7515 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7516 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7517 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7518 7519 // The prolog code of the callee may store up to 8 GPR argument registers to 7520 // the stack, allowing va_start to index over them in memory if the callee 7521 // is variadic. 7522 // Because we cannot tell if this is needed on the caller side, we have to 7523 // conservatively assume that it is needed. As such, make sure we have at 7524 // least enough stack space for the caller to store the 8 GPRs. 7525 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7526 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7527 CCInfo.getNextStackOffset()); 7528 7529 // Adjust the stack pointer for the new arguments... 7530 // These operations are automatically eliminated by the prolog/epilog pass. 7531 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7532 SDValue CallSeqStart = Chain; 7533 7534 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7535 SmallVector<SDValue, 8> MemOpChains; 7536 7537 // Set up a copy of the stack pointer for loading and storing any 7538 // arguments that may not fit in the registers available for argument 7539 // passing. 7540 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7541 : DAG.getRegister(PPC::R1, MVT::i32); 7542 7543 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7544 const unsigned ValNo = ArgLocs[I].getValNo(); 7545 SDValue Arg = OutVals[ValNo]; 7546 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7547 7548 if (Flags.isByVal()) { 7549 const unsigned ByValSize = Flags.getByValSize(); 7550 7551 // Nothing to do for zero-sized ByVals on the caller side. 7552 if (!ByValSize) { 7553 ++I; 7554 continue; 7555 } 7556 7557 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7558 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7559 (LoadOffset != 0) 7560 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7561 : Arg, 7562 MachinePointerInfo(), VT); 7563 }; 7564 7565 unsigned LoadOffset = 0; 7566 7567 // Initialize registers, which are fully occupied by the by-val argument. 7568 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7569 SDValue Load = GetLoad(PtrVT, LoadOffset); 7570 MemOpChains.push_back(Load.getValue(1)); 7571 LoadOffset += PtrByteSize; 7572 const CCValAssign &ByValVA = ArgLocs[I++]; 7573 assert(ByValVA.getValNo() == ValNo && 7574 "Unexpected location for pass-by-value argument."); 7575 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7576 } 7577 7578 if (LoadOffset == ByValSize) 7579 continue; 7580 7581 // There must be one more loc to handle the remainder. 7582 assert(ArgLocs[I].getValNo() == ValNo && 7583 "Expected additional location for by-value argument."); 7584 7585 if (ArgLocs[I].isMemLoc()) { 7586 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7587 const CCValAssign &ByValVA = ArgLocs[I++]; 7588 ISD::ArgFlagsTy MemcpyFlags = Flags; 7589 // Only memcpy the bytes that don't pass in register. 7590 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7591 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7592 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7593 : Arg, 7594 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7595 CallSeqStart, MemcpyFlags, DAG, dl); 7596 continue; 7597 } 7598 7599 // Initialize the final register residue. 7600 // Any residue that occupies the final by-val arg register must be 7601 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7602 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7603 // 2 and 1 byte loads. 7604 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7605 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7606 "Unexpected register residue for by-value argument."); 7607 SDValue ResidueVal; 7608 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7609 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7610 const MVT VT = 7611 N == 1 ? MVT::i8 7612 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7613 SDValue Load = GetLoad(VT, LoadOffset); 7614 MemOpChains.push_back(Load.getValue(1)); 7615 LoadOffset += N; 7616 Bytes += N; 7617 7618 // By-val arguments are passed left-justfied in register. 7619 // Every load here needs to be shifted, otherwise a full register load 7620 // should have been used. 7621 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7622 "Unexpected load emitted during handling of pass-by-value " 7623 "argument."); 7624 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7625 EVT ShiftAmountTy = 7626 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7627 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7628 SDValue ShiftedLoad = 7629 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7630 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7631 ShiftedLoad) 7632 : ShiftedLoad; 7633 } 7634 7635 const CCValAssign &ByValVA = ArgLocs[I++]; 7636 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7637 continue; 7638 } 7639 7640 CCValAssign &VA = ArgLocs[I++]; 7641 const MVT LocVT = VA.getLocVT(); 7642 const MVT ValVT = VA.getValVT(); 7643 7644 switch (VA.getLocInfo()) { 7645 default: 7646 report_fatal_error("Unexpected argument extension type."); 7647 case CCValAssign::Full: 7648 break; 7649 case CCValAssign::ZExt: 7650 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7651 break; 7652 case CCValAssign::SExt: 7653 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7654 break; 7655 } 7656 7657 if (VA.isRegLoc() && !VA.needsCustom()) { 7658 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7659 continue; 7660 } 7661 7662 if (VA.isMemLoc()) { 7663 SDValue PtrOff = 7664 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7665 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7666 MemOpChains.push_back( 7667 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7668 7669 continue; 7670 } 7671 7672 // Custom handling is used for GPR initializations for vararg float 7673 // arguments. 7674 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7675 ValVT.isFloatingPoint() && LocVT.isInteger() && 7676 "Unexpected register handling for calling convention."); 7677 7678 SDValue ArgAsInt = 7679 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7680 7681 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7682 // f32 in 32-bit GPR 7683 // f64 in 64-bit GPR 7684 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7685 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7686 // f32 in 64-bit GPR. 7687 RegsToPass.push_back(std::make_pair( 7688 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7689 else { 7690 // f64 in two 32-bit GPRs 7691 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7692 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7693 "Unexpected custom register for argument!"); 7694 CCValAssign &GPR1 = VA; 7695 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7696 DAG.getConstant(32, dl, MVT::i8)); 7697 RegsToPass.push_back(std::make_pair( 7698 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7699 7700 if (I != E) { 7701 // If only 1 GPR was available, there will only be one custom GPR and 7702 // the argument will also pass in memory. 7703 CCValAssign &PeekArg = ArgLocs[I]; 7704 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7705 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7706 CCValAssign &GPR2 = ArgLocs[I++]; 7707 RegsToPass.push_back(std::make_pair( 7708 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7709 } 7710 } 7711 } 7712 } 7713 7714 if (!MemOpChains.empty()) 7715 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7716 7717 // For indirect calls, we need to save the TOC base to the stack for 7718 // restoration after the call. 7719 if (CFlags.IsIndirect) { 7720 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7721 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7722 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7723 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7724 const unsigned TOCSaveOffset = 7725 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7726 7727 setUsesTOCBasePtr(DAG); 7728 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7729 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7730 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7731 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7732 Chain = DAG.getStore( 7733 Val.getValue(1), dl, Val, AddPtr, 7734 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7735 } 7736 7737 // Build a sequence of copy-to-reg nodes chained together with token chain 7738 // and flag operands which copy the outgoing args into the appropriate regs. 7739 SDValue InFlag; 7740 for (auto Reg : RegsToPass) { 7741 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7742 InFlag = Chain.getValue(1); 7743 } 7744 7745 const int SPDiff = 0; 7746 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7747 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7748 } 7749 7750 bool 7751 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7752 MachineFunction &MF, bool isVarArg, 7753 const SmallVectorImpl<ISD::OutputArg> &Outs, 7754 LLVMContext &Context) const { 7755 SmallVector<CCValAssign, 16> RVLocs; 7756 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7757 return CCInfo.CheckReturn( 7758 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7759 ? RetCC_PPC_Cold 7760 : RetCC_PPC); 7761 } 7762 7763 SDValue 7764 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7765 bool isVarArg, 7766 const SmallVectorImpl<ISD::OutputArg> &Outs, 7767 const SmallVectorImpl<SDValue> &OutVals, 7768 const SDLoc &dl, SelectionDAG &DAG) const { 7769 SmallVector<CCValAssign, 16> RVLocs; 7770 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7771 *DAG.getContext()); 7772 CCInfo.AnalyzeReturn(Outs, 7773 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7774 ? RetCC_PPC_Cold 7775 : RetCC_PPC); 7776 7777 SDValue Flag; 7778 SmallVector<SDValue, 4> RetOps(1, Chain); 7779 7780 // Copy the result values into the output registers. 7781 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7782 CCValAssign &VA = RVLocs[i]; 7783 assert(VA.isRegLoc() && "Can only return in registers!"); 7784 7785 SDValue Arg = OutVals[RealResIdx]; 7786 7787 switch (VA.getLocInfo()) { 7788 default: llvm_unreachable("Unknown loc info!"); 7789 case CCValAssign::Full: break; 7790 case CCValAssign::AExt: 7791 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7792 break; 7793 case CCValAssign::ZExt: 7794 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7795 break; 7796 case CCValAssign::SExt: 7797 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7798 break; 7799 } 7800 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7801 bool isLittleEndian = Subtarget.isLittleEndian(); 7802 // Legalize ret f64 -> ret 2 x i32. 7803 SDValue SVal = 7804 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7805 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7806 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7807 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7808 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7809 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7810 Flag = Chain.getValue(1); 7811 VA = RVLocs[++i]; // skip ahead to next loc 7812 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7813 } else 7814 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7815 Flag = Chain.getValue(1); 7816 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7817 } 7818 7819 RetOps[0] = Chain; // Update chain. 7820 7821 // Add the flag if we have it. 7822 if (Flag.getNode()) 7823 RetOps.push_back(Flag); 7824 7825 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7826 } 7827 7828 SDValue 7829 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7830 SelectionDAG &DAG) const { 7831 SDLoc dl(Op); 7832 7833 // Get the correct type for integers. 7834 EVT IntVT = Op.getValueType(); 7835 7836 // Get the inputs. 7837 SDValue Chain = Op.getOperand(0); 7838 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7839 // Build a DYNAREAOFFSET node. 7840 SDValue Ops[2] = {Chain, FPSIdx}; 7841 SDVTList VTs = DAG.getVTList(IntVT); 7842 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7843 } 7844 7845 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7846 SelectionDAG &DAG) const { 7847 // When we pop the dynamic allocation we need to restore the SP link. 7848 SDLoc dl(Op); 7849 7850 // Get the correct type for pointers. 7851 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7852 7853 // Construct the stack pointer operand. 7854 bool isPPC64 = Subtarget.isPPC64(); 7855 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7856 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7857 7858 // Get the operands for the STACKRESTORE. 7859 SDValue Chain = Op.getOperand(0); 7860 SDValue SaveSP = Op.getOperand(1); 7861 7862 // Load the old link SP. 7863 SDValue LoadLinkSP = 7864 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7865 7866 // Restore the stack pointer. 7867 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7868 7869 // Store the old link SP. 7870 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7871 } 7872 7873 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7874 MachineFunction &MF = DAG.getMachineFunction(); 7875 bool isPPC64 = Subtarget.isPPC64(); 7876 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7877 7878 // Get current frame pointer save index. The users of this index will be 7879 // primarily DYNALLOC instructions. 7880 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7881 int RASI = FI->getReturnAddrSaveIndex(); 7882 7883 // If the frame pointer save index hasn't been defined yet. 7884 if (!RASI) { 7885 // Find out what the fix offset of the frame pointer save area. 7886 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7887 // Allocate the frame index for frame pointer save area. 7888 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7889 // Save the result. 7890 FI->setReturnAddrSaveIndex(RASI); 7891 } 7892 return DAG.getFrameIndex(RASI, PtrVT); 7893 } 7894 7895 SDValue 7896 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7897 MachineFunction &MF = DAG.getMachineFunction(); 7898 bool isPPC64 = Subtarget.isPPC64(); 7899 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7900 7901 // Get current frame pointer save index. The users of this index will be 7902 // primarily DYNALLOC instructions. 7903 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7904 int FPSI = FI->getFramePointerSaveIndex(); 7905 7906 // If the frame pointer save index hasn't been defined yet. 7907 if (!FPSI) { 7908 // Find out what the fix offset of the frame pointer save area. 7909 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7910 // Allocate the frame index for frame pointer save area. 7911 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7912 // Save the result. 7913 FI->setFramePointerSaveIndex(FPSI); 7914 } 7915 return DAG.getFrameIndex(FPSI, PtrVT); 7916 } 7917 7918 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7919 SelectionDAG &DAG) const { 7920 // Get the inputs. 7921 SDValue Chain = Op.getOperand(0); 7922 SDValue Size = Op.getOperand(1); 7923 SDLoc dl(Op); 7924 7925 // Get the correct type for pointers. 7926 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7927 // Negate the size. 7928 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7929 DAG.getConstant(0, dl, PtrVT), Size); 7930 // Construct a node for the frame pointer save index. 7931 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7932 // Build a DYNALLOC node. 7933 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7934 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7935 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7936 } 7937 7938 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7939 SelectionDAG &DAG) const { 7940 MachineFunction &MF = DAG.getMachineFunction(); 7941 7942 bool isPPC64 = Subtarget.isPPC64(); 7943 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7944 7945 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7946 return DAG.getFrameIndex(FI, PtrVT); 7947 } 7948 7949 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7950 SelectionDAG &DAG) const { 7951 SDLoc DL(Op); 7952 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7953 DAG.getVTList(MVT::i32, MVT::Other), 7954 Op.getOperand(0), Op.getOperand(1)); 7955 } 7956 7957 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7958 SelectionDAG &DAG) const { 7959 SDLoc DL(Op); 7960 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7961 Op.getOperand(0), Op.getOperand(1)); 7962 } 7963 7964 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7965 if (Op.getValueType().isVector()) 7966 return LowerVectorLoad(Op, DAG); 7967 7968 assert(Op.getValueType() == MVT::i1 && 7969 "Custom lowering only for i1 loads"); 7970 7971 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7972 7973 SDLoc dl(Op); 7974 LoadSDNode *LD = cast<LoadSDNode>(Op); 7975 7976 SDValue Chain = LD->getChain(); 7977 SDValue BasePtr = LD->getBasePtr(); 7978 MachineMemOperand *MMO = LD->getMemOperand(); 7979 7980 SDValue NewLD = 7981 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7982 BasePtr, MVT::i8, MMO); 7983 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7984 7985 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7986 return DAG.getMergeValues(Ops, dl); 7987 } 7988 7989 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7990 if (Op.getOperand(1).getValueType().isVector()) 7991 return LowerVectorStore(Op, DAG); 7992 7993 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7994 "Custom lowering only for i1 stores"); 7995 7996 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7997 7998 SDLoc dl(Op); 7999 StoreSDNode *ST = cast<StoreSDNode>(Op); 8000 8001 SDValue Chain = ST->getChain(); 8002 SDValue BasePtr = ST->getBasePtr(); 8003 SDValue Value = ST->getValue(); 8004 MachineMemOperand *MMO = ST->getMemOperand(); 8005 8006 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 8007 Value); 8008 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 8009 } 8010 8011 // FIXME: Remove this once the ANDI glue bug is fixed: 8012 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 8013 assert(Op.getValueType() == MVT::i1 && 8014 "Custom lowering only for i1 results"); 8015 8016 SDLoc DL(Op); 8017 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 8018 } 8019 8020 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 8021 SelectionDAG &DAG) const { 8022 8023 // Implements a vector truncate that fits in a vector register as a shuffle. 8024 // We want to legalize vector truncates down to where the source fits in 8025 // a vector register (and target is therefore smaller than vector register 8026 // size). At that point legalization will try to custom lower the sub-legal 8027 // result and get here - where we can contain the truncate as a single target 8028 // operation. 8029 8030 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 8031 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 8032 // 8033 // We will implement it for big-endian ordering as this (where x denotes 8034 // undefined): 8035 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 8036 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 8037 // 8038 // The same operation in little-endian ordering will be: 8039 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 8040 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 8041 8042 assert(Op.getValueType().isVector() && "Vector type expected."); 8043 8044 SDLoc DL(Op); 8045 SDValue N1 = Op.getOperand(0); 8046 unsigned SrcSize = N1.getValueType().getSizeInBits(); 8047 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 8048 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 8049 8050 EVT TrgVT = Op.getValueType(); 8051 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 8052 EVT EltVT = TrgVT.getVectorElementType(); 8053 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8054 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8055 8056 // First list the elements we want to keep. 8057 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 8058 SmallVector<int, 16> ShuffV; 8059 if (Subtarget.isLittleEndian()) 8060 for (unsigned i = 0; i < TrgNumElts; ++i) 8061 ShuffV.push_back(i * SizeMult); 8062 else 8063 for (unsigned i = 1; i <= TrgNumElts; ++i) 8064 ShuffV.push_back(i * SizeMult - 1); 8065 8066 // Populate the remaining elements with undefs. 8067 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 8068 // ShuffV.push_back(i + WideNumElts); 8069 ShuffV.push_back(WideNumElts + 1); 8070 8071 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 8072 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 8073 } 8074 8075 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 8076 /// possible. 8077 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 8078 // Not FP? Not a fsel. 8079 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 8080 !Op.getOperand(2).getValueType().isFloatingPoint()) 8081 return Op; 8082 8083 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 8084 8085 EVT ResVT = Op.getValueType(); 8086 EVT CmpVT = Op.getOperand(0).getValueType(); 8087 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8088 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 8089 SDLoc dl(Op); 8090 SDNodeFlags Flags = Op.getNode()->getFlags(); 8091 8092 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 8093 // presence of infinities. 8094 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 8095 switch (CC) { 8096 default: 8097 break; 8098 case ISD::SETOGT: 8099 case ISD::SETGT: 8100 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8101 case ISD::SETOLT: 8102 case ISD::SETLT: 8103 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8104 } 8105 } 8106 8107 // We might be able to do better than this under some circumstances, but in 8108 // general, fsel-based lowering of select is a finite-math-only optimization. 8109 // For more information, see section F.3 of the 2.06 ISA specification. 8110 // With ISA 3.0 8111 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8112 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8113 return Op; 8114 8115 // If the RHS of the comparison is a 0.0, we don't need to do the 8116 // subtraction at all. 8117 SDValue Sel1; 8118 if (isFloatingPointZero(RHS)) 8119 switch (CC) { 8120 default: break; // SETUO etc aren't handled by fsel. 8121 case ISD::SETNE: 8122 std::swap(TV, FV); 8123 LLVM_FALLTHROUGH; 8124 case ISD::SETEQ: 8125 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8126 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8127 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8128 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8129 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8130 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8131 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8132 case ISD::SETULT: 8133 case ISD::SETLT: 8134 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8135 LLVM_FALLTHROUGH; 8136 case ISD::SETOGE: 8137 case ISD::SETGE: 8138 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8139 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8140 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8141 case ISD::SETUGT: 8142 case ISD::SETGT: 8143 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8144 LLVM_FALLTHROUGH; 8145 case ISD::SETOLE: 8146 case ISD::SETLE: 8147 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8148 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8149 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8150 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8151 } 8152 8153 SDValue Cmp; 8154 switch (CC) { 8155 default: break; // SETUO etc aren't handled by fsel. 8156 case ISD::SETNE: 8157 std::swap(TV, FV); 8158 LLVM_FALLTHROUGH; 8159 case ISD::SETEQ: 8160 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8161 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8162 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8163 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8164 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8165 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8166 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8167 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8168 case ISD::SETULT: 8169 case ISD::SETLT: 8170 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8171 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8172 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8173 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8174 case ISD::SETOGE: 8175 case ISD::SETGE: 8176 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8177 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8178 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8179 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8180 case ISD::SETUGT: 8181 case ISD::SETGT: 8182 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8183 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8184 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8185 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8186 case ISD::SETOLE: 8187 case ISD::SETLE: 8188 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8189 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8190 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8191 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8192 } 8193 return Op; 8194 } 8195 8196 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8197 SelectionDAG &DAG, 8198 const SDLoc &dl) const { 8199 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8200 SDValue Src = Op.getOperand(0); 8201 if (Src.getValueType() == MVT::f32) 8202 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8203 8204 SDValue Tmp; 8205 switch (Op.getSimpleValueType().SimpleTy) { 8206 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8207 case MVT::i32: 8208 Tmp = DAG.getNode( 8209 Op.getOpcode() == ISD::FP_TO_SINT 8210 ? PPCISD::FCTIWZ 8211 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8212 dl, MVT::f64, Src); 8213 break; 8214 case MVT::i64: 8215 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8216 "i64 FP_TO_UINT is supported only with FPCVT"); 8217 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8218 PPCISD::FCTIDUZ, 8219 dl, MVT::f64, Src); 8220 break; 8221 } 8222 8223 // Convert the FP value to an int value through memory. 8224 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8225 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8226 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8227 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8228 MachinePointerInfo MPI = 8229 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8230 8231 // Emit a store to the stack slot. 8232 SDValue Chain; 8233 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8234 if (i32Stack) { 8235 MachineFunction &MF = DAG.getMachineFunction(); 8236 Alignment = Align(4); 8237 MachineMemOperand *MMO = 8238 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8239 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8240 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8241 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8242 } else 8243 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8244 8245 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8246 // add in a bias on big endian. 8247 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8248 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8249 DAG.getConstant(4, dl, FIPtr.getValueType())); 8250 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8251 } 8252 8253 RLI.Chain = Chain; 8254 RLI.Ptr = FIPtr; 8255 RLI.MPI = MPI; 8256 RLI.Alignment = Alignment; 8257 } 8258 8259 /// Custom lowers floating point to integer conversions to use 8260 /// the direct move instructions available in ISA 2.07 to avoid the 8261 /// need for load/store combinations. 8262 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8263 SelectionDAG &DAG, 8264 const SDLoc &dl) const { 8265 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8266 SDValue Src = Op.getOperand(0); 8267 8268 if (Src.getValueType() == MVT::f32) 8269 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8270 8271 SDValue Tmp; 8272 switch (Op.getSimpleValueType().SimpleTy) { 8273 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8274 case MVT::i32: 8275 Tmp = DAG.getNode( 8276 Op.getOpcode() == ISD::FP_TO_SINT 8277 ? PPCISD::FCTIWZ 8278 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8279 dl, MVT::f64, Src); 8280 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8281 break; 8282 case MVT::i64: 8283 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8284 "i64 FP_TO_UINT is supported only with FPCVT"); 8285 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8286 PPCISD::FCTIDUZ, 8287 dl, MVT::f64, Src); 8288 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8289 break; 8290 } 8291 return Tmp; 8292 } 8293 8294 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8295 const SDLoc &dl) const { 8296 8297 // FP to INT conversions are legal for f128. 8298 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8299 return Op; 8300 8301 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8302 // PPC (the libcall is not available). 8303 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8304 if (Op.getValueType() == MVT::i32) { 8305 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8306 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8307 MVT::f64, Op.getOperand(0), 8308 DAG.getIntPtrConstant(0, dl)); 8309 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8310 MVT::f64, Op.getOperand(0), 8311 DAG.getIntPtrConstant(1, dl)); 8312 8313 // Add the two halves of the long double in round-to-zero mode. 8314 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8315 8316 // Now use a smaller FP_TO_SINT. 8317 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8318 } 8319 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8320 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8321 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8322 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8323 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8324 // FIXME: generated code sucks. 8325 // TODO: Are there fast-math-flags to propagate to this FSUB? 8326 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8327 Op.getOperand(0), Tmp); 8328 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8329 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8330 DAG.getConstant(0x80000000, dl, MVT::i32)); 8331 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8332 Op.getOperand(0)); 8333 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8334 ISD::SETGE); 8335 } 8336 } 8337 8338 return SDValue(); 8339 } 8340 8341 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8342 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8343 8344 ReuseLoadInfo RLI; 8345 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8346 8347 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8348 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8349 } 8350 8351 // We're trying to insert a regular store, S, and then a load, L. If the 8352 // incoming value, O, is a load, we might just be able to have our load use the 8353 // address used by O. However, we don't know if anything else will store to 8354 // that address before we can load from it. To prevent this situation, we need 8355 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8356 // the same chain operand as O, we create a token factor from the chain results 8357 // of O and L, and we replace all uses of O's chain result with that token 8358 // factor (see spliceIntoChain below for this last part). 8359 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8360 ReuseLoadInfo &RLI, 8361 SelectionDAG &DAG, 8362 ISD::LoadExtType ET) const { 8363 SDLoc dl(Op); 8364 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8365 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8366 if (ET == ISD::NON_EXTLOAD && 8367 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8368 isOperationLegalOrCustom(Op.getOpcode(), 8369 Op.getOperand(0).getValueType())) { 8370 8371 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8372 return true; 8373 } 8374 8375 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8376 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8377 LD->isNonTemporal()) 8378 return false; 8379 if (LD->getMemoryVT() != MemVT) 8380 return false; 8381 8382 RLI.Ptr = LD->getBasePtr(); 8383 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8384 assert(LD->getAddressingMode() == ISD::PRE_INC && 8385 "Non-pre-inc AM on PPC?"); 8386 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8387 LD->getOffset()); 8388 } 8389 8390 RLI.Chain = LD->getChain(); 8391 RLI.MPI = LD->getPointerInfo(); 8392 RLI.IsDereferenceable = LD->isDereferenceable(); 8393 RLI.IsInvariant = LD->isInvariant(); 8394 RLI.Alignment = LD->getAlign(); 8395 RLI.AAInfo = LD->getAAInfo(); 8396 RLI.Ranges = LD->getRanges(); 8397 8398 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8399 return true; 8400 } 8401 8402 // Given the head of the old chain, ResChain, insert a token factor containing 8403 // it and NewResChain, and make users of ResChain now be users of that token 8404 // factor. 8405 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8406 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8407 SDValue NewResChain, 8408 SelectionDAG &DAG) const { 8409 if (!ResChain) 8410 return; 8411 8412 SDLoc dl(NewResChain); 8413 8414 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8415 NewResChain, DAG.getUNDEF(MVT::Other)); 8416 assert(TF.getNode() != NewResChain.getNode() && 8417 "A new TF really is required here"); 8418 8419 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8420 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8421 } 8422 8423 /// Analyze profitability of direct move 8424 /// prefer float load to int load plus direct move 8425 /// when there is no integer use of int load 8426 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8427 SDNode *Origin = Op.getOperand(0).getNode(); 8428 if (Origin->getOpcode() != ISD::LOAD) 8429 return true; 8430 8431 // If there is no LXSIBZX/LXSIHZX, like Power8, 8432 // prefer direct move if the memory size is 1 or 2 bytes. 8433 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8434 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8435 return true; 8436 8437 for (SDNode::use_iterator UI = Origin->use_begin(), 8438 UE = Origin->use_end(); 8439 UI != UE; ++UI) { 8440 8441 // Only look at the users of the loaded value. 8442 if (UI.getUse().get().getResNo() != 0) 8443 continue; 8444 8445 if (UI->getOpcode() != ISD::SINT_TO_FP && 8446 UI->getOpcode() != ISD::UINT_TO_FP) 8447 return true; 8448 } 8449 8450 return false; 8451 } 8452 8453 /// Custom lowers integer to floating point conversions to use 8454 /// the direct move instructions available in ISA 2.07 to avoid the 8455 /// need for load/store combinations. 8456 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8457 SelectionDAG &DAG, 8458 const SDLoc &dl) const { 8459 assert((Op.getValueType() == MVT::f32 || 8460 Op.getValueType() == MVT::f64) && 8461 "Invalid floating point type as target of conversion"); 8462 assert(Subtarget.hasFPCVT() && 8463 "Int to FP conversions with direct moves require FPCVT"); 8464 SDValue FP; 8465 SDValue Src = Op.getOperand(0); 8466 bool SinglePrec = Op.getValueType() == MVT::f32; 8467 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8468 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8469 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8470 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8471 8472 if (WordInt) { 8473 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8474 dl, MVT::f64, Src); 8475 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8476 } 8477 else { 8478 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8479 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8480 } 8481 8482 return FP; 8483 } 8484 8485 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8486 8487 EVT VecVT = Vec.getValueType(); 8488 assert(VecVT.isVector() && "Expected a vector type."); 8489 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8490 8491 EVT EltVT = VecVT.getVectorElementType(); 8492 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8493 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8494 8495 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8496 SmallVector<SDValue, 16> Ops(NumConcat); 8497 Ops[0] = Vec; 8498 SDValue UndefVec = DAG.getUNDEF(VecVT); 8499 for (unsigned i = 1; i < NumConcat; ++i) 8500 Ops[i] = UndefVec; 8501 8502 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8503 } 8504 8505 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8506 const SDLoc &dl) const { 8507 8508 unsigned Opc = Op.getOpcode(); 8509 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8510 "Unexpected conversion type"); 8511 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8512 "Supports conversions to v2f64/v4f32 only."); 8513 8514 bool SignedConv = Opc == ISD::SINT_TO_FP; 8515 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8516 8517 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8518 EVT WideVT = Wide.getValueType(); 8519 unsigned WideNumElts = WideVT.getVectorNumElements(); 8520 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8521 8522 SmallVector<int, 16> ShuffV; 8523 for (unsigned i = 0; i < WideNumElts; ++i) 8524 ShuffV.push_back(i + WideNumElts); 8525 8526 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8527 int SaveElts = FourEltRes ? 4 : 2; 8528 if (Subtarget.isLittleEndian()) 8529 for (int i = 0; i < SaveElts; i++) 8530 ShuffV[i * Stride] = i; 8531 else 8532 for (int i = 1; i <= SaveElts; i++) 8533 ShuffV[i * Stride - 1] = i - 1; 8534 8535 SDValue ShuffleSrc2 = 8536 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8537 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8538 8539 SDValue Extend; 8540 if (SignedConv) { 8541 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8542 EVT ExtVT = Op.getOperand(0).getValueType(); 8543 if (Subtarget.hasP9Altivec()) 8544 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8545 IntermediateVT.getVectorNumElements()); 8546 8547 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8548 DAG.getValueType(ExtVT)); 8549 } else 8550 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8551 8552 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8553 } 8554 8555 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8556 SelectionDAG &DAG) const { 8557 SDLoc dl(Op); 8558 8559 EVT InVT = Op.getOperand(0).getValueType(); 8560 EVT OutVT = Op.getValueType(); 8561 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8562 isOperationCustom(Op.getOpcode(), InVT)) 8563 return LowerINT_TO_FPVector(Op, DAG, dl); 8564 8565 // Conversions to f128 are legal. 8566 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8567 return Op; 8568 8569 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8570 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8571 return SDValue(); 8572 8573 SDValue Value = Op.getOperand(0); 8574 // The values are now known to be -1 (false) or 1 (true). To convert this 8575 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8576 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8577 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8578 8579 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8580 8581 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8582 8583 if (Op.getValueType() != MVT::v4f64) 8584 Value = DAG.getNode(ISD::FP_ROUND, dl, 8585 Op.getValueType(), Value, 8586 DAG.getIntPtrConstant(1, dl)); 8587 return Value; 8588 } 8589 8590 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8591 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8592 return SDValue(); 8593 8594 if (Op.getOperand(0).getValueType() == MVT::i1) 8595 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8596 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8597 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8598 8599 // If we have direct moves, we can do all the conversion, skip the store/load 8600 // however, without FPCVT we can't do most conversions. 8601 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8602 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8603 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8604 8605 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8606 "UINT_TO_FP is supported only with FPCVT"); 8607 8608 // If we have FCFIDS, then use it when converting to single-precision. 8609 // Otherwise, convert to double-precision and then round. 8610 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8611 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8612 : PPCISD::FCFIDS) 8613 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8614 : PPCISD::FCFID); 8615 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8616 ? MVT::f32 8617 : MVT::f64; 8618 8619 if (Op.getOperand(0).getValueType() == MVT::i64) { 8620 SDValue SINT = Op.getOperand(0); 8621 // When converting to single-precision, we actually need to convert 8622 // to double-precision first and then round to single-precision. 8623 // To avoid double-rounding effects during that operation, we have 8624 // to prepare the input operand. Bits that might be truncated when 8625 // converting to double-precision are replaced by a bit that won't 8626 // be lost at this stage, but is below the single-precision rounding 8627 // position. 8628 // 8629 // However, if -enable-unsafe-fp-math is in effect, accept double 8630 // rounding to avoid the extra overhead. 8631 if (Op.getValueType() == MVT::f32 && 8632 !Subtarget.hasFPCVT() && 8633 !DAG.getTarget().Options.UnsafeFPMath) { 8634 8635 // Twiddle input to make sure the low 11 bits are zero. (If this 8636 // is the case, we are guaranteed the value will fit into the 53 bit 8637 // mantissa of an IEEE double-precision value without rounding.) 8638 // If any of those low 11 bits were not zero originally, make sure 8639 // bit 12 (value 2048) is set instead, so that the final rounding 8640 // to single-precision gets the correct result. 8641 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8642 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8643 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8644 Round, DAG.getConstant(2047, dl, MVT::i64)); 8645 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8646 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8647 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8648 8649 // However, we cannot use that value unconditionally: if the magnitude 8650 // of the input value is small, the bit-twiddling we did above might 8651 // end up visibly changing the output. Fortunately, in that case, we 8652 // don't need to twiddle bits since the original input will convert 8653 // exactly to double-precision floating-point already. Therefore, 8654 // construct a conditional to use the original value if the top 11 8655 // bits are all sign-bit copies, and use the rounded value computed 8656 // above otherwise. 8657 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8658 SINT, DAG.getConstant(53, dl, MVT::i32)); 8659 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8660 Cond, DAG.getConstant(1, dl, MVT::i64)); 8661 Cond = DAG.getSetCC( 8662 dl, 8663 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8664 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8665 8666 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8667 } 8668 8669 ReuseLoadInfo RLI; 8670 SDValue Bits; 8671 8672 MachineFunction &MF = DAG.getMachineFunction(); 8673 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8674 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8675 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8676 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8677 } else if (Subtarget.hasLFIWAX() && 8678 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8679 MachineMemOperand *MMO = 8680 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8681 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8682 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8683 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8684 DAG.getVTList(MVT::f64, MVT::Other), 8685 Ops, MVT::i32, MMO); 8686 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8687 } else if (Subtarget.hasFPCVT() && 8688 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8689 MachineMemOperand *MMO = 8690 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8691 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8692 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8693 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8694 DAG.getVTList(MVT::f64, MVT::Other), 8695 Ops, MVT::i32, MMO); 8696 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8697 } else if (((Subtarget.hasLFIWAX() && 8698 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8699 (Subtarget.hasFPCVT() && 8700 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8701 SINT.getOperand(0).getValueType() == MVT::i32) { 8702 MachineFrameInfo &MFI = MF.getFrameInfo(); 8703 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8704 8705 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8706 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8707 8708 SDValue Store = 8709 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8710 MachinePointerInfo::getFixedStack( 8711 DAG.getMachineFunction(), FrameIdx)); 8712 8713 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8714 "Expected an i32 store"); 8715 8716 RLI.Ptr = FIdx; 8717 RLI.Chain = Store; 8718 RLI.MPI = 8719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8720 RLI.Alignment = Align(4); 8721 8722 MachineMemOperand *MMO = 8723 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8724 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8725 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8726 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8727 PPCISD::LFIWZX : PPCISD::LFIWAX, 8728 dl, DAG.getVTList(MVT::f64, MVT::Other), 8729 Ops, MVT::i32, MMO); 8730 } else 8731 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8732 8733 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8734 8735 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8736 FP = DAG.getNode(ISD::FP_ROUND, dl, 8737 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8738 return FP; 8739 } 8740 8741 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8742 "Unhandled INT_TO_FP type in custom expander!"); 8743 // Since we only generate this in 64-bit mode, we can take advantage of 8744 // 64-bit registers. In particular, sign extend the input value into the 8745 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8746 // then lfd it and fcfid it. 8747 MachineFunction &MF = DAG.getMachineFunction(); 8748 MachineFrameInfo &MFI = MF.getFrameInfo(); 8749 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8750 8751 SDValue Ld; 8752 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8753 ReuseLoadInfo RLI; 8754 bool ReusingLoad; 8755 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8756 DAG))) { 8757 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8758 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8759 8760 SDValue Store = 8761 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8762 MachinePointerInfo::getFixedStack( 8763 DAG.getMachineFunction(), FrameIdx)); 8764 8765 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8766 "Expected an i32 store"); 8767 8768 RLI.Ptr = FIdx; 8769 RLI.Chain = Store; 8770 RLI.MPI = 8771 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8772 RLI.Alignment = Align(4); 8773 } 8774 8775 MachineMemOperand *MMO = 8776 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8777 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8778 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8779 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8780 PPCISD::LFIWZX : PPCISD::LFIWAX, 8781 dl, DAG.getVTList(MVT::f64, MVT::Other), 8782 Ops, MVT::i32, MMO); 8783 if (ReusingLoad) 8784 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8785 } else { 8786 assert(Subtarget.isPPC64() && 8787 "i32->FP without LFIWAX supported only on PPC64"); 8788 8789 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8790 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8791 8792 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8793 Op.getOperand(0)); 8794 8795 // STD the extended value into the stack slot. 8796 SDValue Store = DAG.getStore( 8797 DAG.getEntryNode(), dl, Ext64, FIdx, 8798 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8799 8800 // Load the value as a double. 8801 Ld = DAG.getLoad( 8802 MVT::f64, dl, Store, FIdx, 8803 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8804 } 8805 8806 // FCFID it and return it. 8807 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8808 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8809 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8810 DAG.getIntPtrConstant(0, dl)); 8811 return FP; 8812 } 8813 8814 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8815 SelectionDAG &DAG) const { 8816 SDLoc dl(Op); 8817 /* 8818 The rounding mode is in bits 30:31 of FPSR, and has the following 8819 settings: 8820 00 Round to nearest 8821 01 Round to 0 8822 10 Round to +inf 8823 11 Round to -inf 8824 8825 FLT_ROUNDS, on the other hand, expects the following: 8826 -1 Undefined 8827 0 Round to 0 8828 1 Round to nearest 8829 2 Round to +inf 8830 3 Round to -inf 8831 8832 To perform the conversion, we do: 8833 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8834 */ 8835 8836 MachineFunction &MF = DAG.getMachineFunction(); 8837 EVT VT = Op.getValueType(); 8838 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8839 8840 // Save FP Control Word to register 8841 SDValue Chain = Op.getOperand(0); 8842 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8843 Chain = MFFS.getValue(1); 8844 8845 // Save FP register to stack slot 8846 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8847 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8848 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8849 8850 // Load FP Control Word from low 32 bits of stack slot. 8851 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8852 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8853 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8854 Chain = CWD.getValue(1); 8855 8856 // Transform as necessary 8857 SDValue CWD1 = 8858 DAG.getNode(ISD::AND, dl, MVT::i32, 8859 CWD, DAG.getConstant(3, dl, MVT::i32)); 8860 SDValue CWD2 = 8861 DAG.getNode(ISD::SRL, dl, MVT::i32, 8862 DAG.getNode(ISD::AND, dl, MVT::i32, 8863 DAG.getNode(ISD::XOR, dl, MVT::i32, 8864 CWD, DAG.getConstant(3, dl, MVT::i32)), 8865 DAG.getConstant(3, dl, MVT::i32)), 8866 DAG.getConstant(1, dl, MVT::i32)); 8867 8868 SDValue RetVal = 8869 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8870 8871 RetVal = 8872 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8873 dl, VT, RetVal); 8874 8875 return DAG.getMergeValues({RetVal, Chain}, dl); 8876 } 8877 8878 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8879 EVT VT = Op.getValueType(); 8880 unsigned BitWidth = VT.getSizeInBits(); 8881 SDLoc dl(Op); 8882 assert(Op.getNumOperands() == 3 && 8883 VT == Op.getOperand(1).getValueType() && 8884 "Unexpected SHL!"); 8885 8886 // Expand into a bunch of logical ops. Note that these ops 8887 // depend on the PPC behavior for oversized shift amounts. 8888 SDValue Lo = Op.getOperand(0); 8889 SDValue Hi = Op.getOperand(1); 8890 SDValue Amt = Op.getOperand(2); 8891 EVT AmtVT = Amt.getValueType(); 8892 8893 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8894 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8895 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8896 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8897 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8898 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8899 DAG.getConstant(-BitWidth, dl, AmtVT)); 8900 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8901 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8902 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8903 SDValue OutOps[] = { OutLo, OutHi }; 8904 return DAG.getMergeValues(OutOps, dl); 8905 } 8906 8907 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8908 EVT VT = Op.getValueType(); 8909 SDLoc dl(Op); 8910 unsigned BitWidth = VT.getSizeInBits(); 8911 assert(Op.getNumOperands() == 3 && 8912 VT == Op.getOperand(1).getValueType() && 8913 "Unexpected SRL!"); 8914 8915 // Expand into a bunch of logical ops. Note that these ops 8916 // depend on the PPC behavior for oversized shift amounts. 8917 SDValue Lo = Op.getOperand(0); 8918 SDValue Hi = Op.getOperand(1); 8919 SDValue Amt = Op.getOperand(2); 8920 EVT AmtVT = Amt.getValueType(); 8921 8922 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8923 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8924 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8925 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8926 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8927 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8928 DAG.getConstant(-BitWidth, dl, AmtVT)); 8929 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8930 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8931 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8932 SDValue OutOps[] = { OutLo, OutHi }; 8933 return DAG.getMergeValues(OutOps, dl); 8934 } 8935 8936 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8937 SDLoc dl(Op); 8938 EVT VT = Op.getValueType(); 8939 unsigned BitWidth = VT.getSizeInBits(); 8940 assert(Op.getNumOperands() == 3 && 8941 VT == Op.getOperand(1).getValueType() && 8942 "Unexpected SRA!"); 8943 8944 // Expand into a bunch of logical ops, followed by a select_cc. 8945 SDValue Lo = Op.getOperand(0); 8946 SDValue Hi = Op.getOperand(1); 8947 SDValue Amt = Op.getOperand(2); 8948 EVT AmtVT = Amt.getValueType(); 8949 8950 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8951 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8952 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8953 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8954 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8955 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8956 DAG.getConstant(-BitWidth, dl, AmtVT)); 8957 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8958 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8959 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8960 Tmp4, Tmp6, ISD::SETLE); 8961 SDValue OutOps[] = { OutLo, OutHi }; 8962 return DAG.getMergeValues(OutOps, dl); 8963 } 8964 8965 //===----------------------------------------------------------------------===// 8966 // Vector related lowering. 8967 // 8968 8969 /// BuildSplatI - Build a canonical splati of Val with an element size of 8970 /// SplatSize. Cast the result to VT. 8971 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8972 SelectionDAG &DAG, const SDLoc &dl) { 8973 static const MVT VTys[] = { // canonical VT to use for each size. 8974 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8975 }; 8976 8977 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8978 8979 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8980 if (Val == -1) 8981 SplatSize = 1; 8982 8983 EVT CanonicalVT = VTys[SplatSize-1]; 8984 8985 // Build a canonical splat for this value. 8986 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8987 } 8988 8989 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8990 /// specified intrinsic ID. 8991 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8992 const SDLoc &dl, EVT DestVT = MVT::Other) { 8993 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8994 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8995 DAG.getConstant(IID, dl, MVT::i32), Op); 8996 } 8997 8998 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8999 /// specified intrinsic ID. 9000 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 9001 SelectionDAG &DAG, const SDLoc &dl, 9002 EVT DestVT = MVT::Other) { 9003 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 9004 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9005 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 9006 } 9007 9008 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 9009 /// specified intrinsic ID. 9010 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 9011 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 9012 EVT DestVT = MVT::Other) { 9013 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 9014 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 9015 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 9016 } 9017 9018 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 9019 /// amount. The result has the specified value type. 9020 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 9021 SelectionDAG &DAG, const SDLoc &dl) { 9022 // Force LHS/RHS to be the right type. 9023 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 9024 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 9025 9026 int Ops[16]; 9027 for (unsigned i = 0; i != 16; ++i) 9028 Ops[i] = i + Amt; 9029 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 9030 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9031 } 9032 9033 /// Do we have an efficient pattern in a .td file for this node? 9034 /// 9035 /// \param V - pointer to the BuildVectorSDNode being matched 9036 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 9037 /// 9038 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 9039 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 9040 /// the opposite is true (expansion is beneficial) are: 9041 /// - The node builds a vector out of integers that are not 32 or 64-bits 9042 /// - The node builds a vector out of constants 9043 /// - The node is a "load-and-splat" 9044 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9045 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9046 bool HasDirectMove, 9047 bool HasP8Vector) { 9048 EVT VecVT = V->getValueType(0); 9049 bool RightType = VecVT == MVT::v2f64 || 9050 (HasP8Vector && VecVT == MVT::v4f32) || 9051 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9052 if (!RightType) 9053 return false; 9054 9055 bool IsSplat = true; 9056 bool IsLoad = false; 9057 SDValue Op0 = V->getOperand(0); 9058 9059 // This function is called in a block that confirms the node is not a constant 9060 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9061 // different constants. 9062 if (V->isConstant()) 9063 return false; 9064 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9065 if (V->getOperand(i).isUndef()) 9066 return false; 9067 // We want to expand nodes that represent load-and-splat even if the 9068 // loaded value is a floating point truncation or conversion to int. 9069 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9070 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9071 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9072 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9073 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9074 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9075 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9076 IsLoad = true; 9077 // If the operands are different or the input is not a load and has more 9078 // uses than just this BV node, then it isn't a splat. 9079 if (V->getOperand(i) != Op0 || 9080 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9081 IsSplat = false; 9082 } 9083 return !(IsSplat && IsLoad); 9084 } 9085 9086 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9087 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9088 9089 SDLoc dl(Op); 9090 SDValue Op0 = Op->getOperand(0); 9091 9092 if (!EnableQuadPrecision || 9093 (Op.getValueType() != MVT::f128 ) || 9094 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9095 (Op0.getOperand(0).getValueType() != MVT::i64) || 9096 (Op0.getOperand(1).getValueType() != MVT::i64)) 9097 return SDValue(); 9098 9099 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9100 Op0.getOperand(1)); 9101 } 9102 9103 static const SDValue *getNormalLoadInput(const SDValue &Op) { 9104 const SDValue *InputLoad = &Op; 9105 if (InputLoad->getOpcode() == ISD::BITCAST) 9106 InputLoad = &InputLoad->getOperand(0); 9107 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9108 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) 9109 InputLoad = &InputLoad->getOperand(0); 9110 if (InputLoad->getOpcode() != ISD::LOAD) 9111 return nullptr; 9112 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9113 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9114 } 9115 9116 // If this is a case we can't handle, return null and let the default 9117 // expansion code take care of it. If we CAN select this case, and if it 9118 // selects to a single instruction, return Op. Otherwise, if we can codegen 9119 // this case more efficiently than a constant pool load, lower it to the 9120 // sequence of ops that should be used. 9121 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9122 SelectionDAG &DAG) const { 9123 SDLoc dl(Op); 9124 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9125 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9126 9127 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9128 // We first build an i32 vector, load it into a QPX register, 9129 // then convert it to a floating-point vector and compare it 9130 // to a zero vector to get the boolean result. 9131 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9132 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 9133 MachinePointerInfo PtrInfo = 9134 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9135 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9136 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9137 9138 assert(BVN->getNumOperands() == 4 && 9139 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9140 9141 bool IsConst = true; 9142 for (unsigned i = 0; i < 4; ++i) { 9143 if (BVN->getOperand(i).isUndef()) continue; 9144 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9145 IsConst = false; 9146 break; 9147 } 9148 } 9149 9150 if (IsConst) { 9151 Constant *One = 9152 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9153 Constant *NegOne = 9154 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9155 9156 Constant *CV[4]; 9157 for (unsigned i = 0; i < 4; ++i) { 9158 if (BVN->getOperand(i).isUndef()) 9159 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9160 else if (isNullConstant(BVN->getOperand(i))) 9161 CV[i] = NegOne; 9162 else 9163 CV[i] = One; 9164 } 9165 9166 Constant *CP = ConstantVector::get(CV); 9167 SDValue CPIdx = 9168 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9169 9170 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9171 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9172 return DAG.getMemIntrinsicNode( 9173 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9174 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9175 } 9176 9177 SmallVector<SDValue, 4> Stores; 9178 for (unsigned i = 0; i < 4; ++i) { 9179 if (BVN->getOperand(i).isUndef()) continue; 9180 9181 unsigned Offset = 4*i; 9182 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9183 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9184 9185 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9186 if (StoreSize > 4) { 9187 Stores.push_back( 9188 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9189 PtrInfo.getWithOffset(Offset), MVT::i32)); 9190 } else { 9191 SDValue StoreValue = BVN->getOperand(i); 9192 if (StoreSize < 4) 9193 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9194 9195 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9196 PtrInfo.getWithOffset(Offset))); 9197 } 9198 } 9199 9200 SDValue StoreChain; 9201 if (!Stores.empty()) 9202 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9203 else 9204 StoreChain = DAG.getEntryNode(); 9205 9206 // Now load from v4i32 into the QPX register; this will extend it to 9207 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9208 // is typed as v4f64 because the QPX register integer states are not 9209 // explicitly represented. 9210 9211 SDValue Ops[] = {StoreChain, 9212 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9213 FIdx}; 9214 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9215 9216 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9217 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9218 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9219 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9220 LoadedVect); 9221 9222 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9223 9224 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9225 } 9226 9227 // All other QPX vectors are handled by generic code. 9228 if (Subtarget.hasQPX()) 9229 return SDValue(); 9230 9231 // Check if this is a splat of a constant value. 9232 APInt APSplatBits, APSplatUndef; 9233 unsigned SplatBitSize; 9234 bool HasAnyUndefs; 9235 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9236 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9237 SplatBitSize > 32) { 9238 9239 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9240 // Handle load-and-splat patterns as we have instructions that will do this 9241 // in one go. 9242 if (InputLoad && DAG.isSplatValue(Op, true)) { 9243 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9244 9245 // We have handling for 4 and 8 byte elements. 9246 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9247 9248 // Checking for a single use of this load, we have to check for vector 9249 // width (128 bits) / ElementSize uses (since each operand of the 9250 // BUILD_VECTOR is a separate use of the value. 9251 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9252 ((Subtarget.hasVSX() && ElementSize == 64) || 9253 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9254 SDValue Ops[] = { 9255 LD->getChain(), // Chain 9256 LD->getBasePtr(), // Ptr 9257 DAG.getValueType(Op.getValueType()) // VT 9258 }; 9259 return 9260 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9261 DAG.getVTList(Op.getValueType(), MVT::Other), 9262 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9263 } 9264 } 9265 9266 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9267 // lowered to VSX instructions under certain conditions. 9268 // Without VSX, there is no pattern more efficient than expanding the node. 9269 if (Subtarget.hasVSX() && 9270 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9271 Subtarget.hasP8Vector())) 9272 return Op; 9273 return SDValue(); 9274 } 9275 9276 unsigned SplatBits = APSplatBits.getZExtValue(); 9277 unsigned SplatUndef = APSplatUndef.getZExtValue(); 9278 unsigned SplatSize = SplatBitSize / 8; 9279 9280 // First, handle single instruction cases. 9281 9282 // All zeros? 9283 if (SplatBits == 0) { 9284 // Canonicalize all zero vectors to be v4i32. 9285 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9286 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9287 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9288 } 9289 return Op; 9290 } 9291 9292 // We have XXSPLTIB for constant splats one byte wide 9293 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 9294 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 9295 if (Subtarget.hasP9Vector() && SplatSize == 1) 9296 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 9297 9298 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9299 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9300 (32-SplatBitSize)); 9301 if (SextVal >= -16 && SextVal <= 15) 9302 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 9303 9304 // Two instruction sequences. 9305 9306 // If this value is in the range [-32,30] and is even, use: 9307 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9308 // If this value is in the range [17,31] and is odd, use: 9309 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9310 // If this value is in the range [-31,-17] and is odd, use: 9311 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9312 // Note the last two are three-instruction sequences. 9313 if (SextVal >= -32 && SextVal <= 31) { 9314 // To avoid having these optimizations undone by constant folding, 9315 // we convert to a pseudo that will be expanded later into one of 9316 // the above forms. 9317 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9318 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9319 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9320 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9321 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9322 if (VT == Op.getValueType()) 9323 return RetVal; 9324 else 9325 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9326 } 9327 9328 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9329 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9330 // for fneg/fabs. 9331 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9332 // Make -1 and vspltisw -1: 9333 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 9334 9335 // Make the VSLW intrinsic, computing 0x8000_0000. 9336 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9337 OnesV, DAG, dl); 9338 9339 // xor by OnesV to invert it. 9340 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9341 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9342 } 9343 9344 // Check to see if this is a wide variety of vsplti*, binop self cases. 9345 static const signed char SplatCsts[] = { 9346 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9347 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9348 }; 9349 9350 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9351 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9352 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9353 int i = SplatCsts[idx]; 9354 9355 // Figure out what shift amount will be used by altivec if shifted by i in 9356 // this splat size. 9357 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9358 9359 // vsplti + shl self. 9360 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9361 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9362 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9363 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9364 Intrinsic::ppc_altivec_vslw 9365 }; 9366 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9367 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9368 } 9369 9370 // vsplti + srl self. 9371 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9372 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9373 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9374 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9375 Intrinsic::ppc_altivec_vsrw 9376 }; 9377 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9378 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9379 } 9380 9381 // vsplti + sra self. 9382 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9383 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9384 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9385 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9386 Intrinsic::ppc_altivec_vsraw 9387 }; 9388 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9389 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9390 } 9391 9392 // vsplti + rol self. 9393 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9394 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9395 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9396 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9397 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9398 Intrinsic::ppc_altivec_vrlw 9399 }; 9400 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9401 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9402 } 9403 9404 // t = vsplti c, result = vsldoi t, t, 1 9405 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9406 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9407 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9408 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9409 } 9410 // t = vsplti c, result = vsldoi t, t, 2 9411 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9412 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9413 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9414 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9415 } 9416 // t = vsplti c, result = vsldoi t, t, 3 9417 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9418 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9419 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9420 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9421 } 9422 } 9423 9424 return SDValue(); 9425 } 9426 9427 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9428 /// the specified operations to build the shuffle. 9429 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9430 SDValue RHS, SelectionDAG &DAG, 9431 const SDLoc &dl) { 9432 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9433 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9434 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9435 9436 enum { 9437 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9438 OP_VMRGHW, 9439 OP_VMRGLW, 9440 OP_VSPLTISW0, 9441 OP_VSPLTISW1, 9442 OP_VSPLTISW2, 9443 OP_VSPLTISW3, 9444 OP_VSLDOI4, 9445 OP_VSLDOI8, 9446 OP_VSLDOI12 9447 }; 9448 9449 if (OpNum == OP_COPY) { 9450 if (LHSID == (1*9+2)*9+3) return LHS; 9451 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9452 return RHS; 9453 } 9454 9455 SDValue OpLHS, OpRHS; 9456 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9457 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9458 9459 int ShufIdxs[16]; 9460 switch (OpNum) { 9461 default: llvm_unreachable("Unknown i32 permute!"); 9462 case OP_VMRGHW: 9463 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9464 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9465 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9466 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9467 break; 9468 case OP_VMRGLW: 9469 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9470 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9471 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9472 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9473 break; 9474 case OP_VSPLTISW0: 9475 for (unsigned i = 0; i != 16; ++i) 9476 ShufIdxs[i] = (i&3)+0; 9477 break; 9478 case OP_VSPLTISW1: 9479 for (unsigned i = 0; i != 16; ++i) 9480 ShufIdxs[i] = (i&3)+4; 9481 break; 9482 case OP_VSPLTISW2: 9483 for (unsigned i = 0; i != 16; ++i) 9484 ShufIdxs[i] = (i&3)+8; 9485 break; 9486 case OP_VSPLTISW3: 9487 for (unsigned i = 0; i != 16; ++i) 9488 ShufIdxs[i] = (i&3)+12; 9489 break; 9490 case OP_VSLDOI4: 9491 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9492 case OP_VSLDOI8: 9493 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9494 case OP_VSLDOI12: 9495 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9496 } 9497 EVT VT = OpLHS.getValueType(); 9498 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9499 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9500 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9501 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9502 } 9503 9504 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9505 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9506 /// SDValue. 9507 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9508 SelectionDAG &DAG) const { 9509 const unsigned BytesInVector = 16; 9510 bool IsLE = Subtarget.isLittleEndian(); 9511 SDLoc dl(N); 9512 SDValue V1 = N->getOperand(0); 9513 SDValue V2 = N->getOperand(1); 9514 unsigned ShiftElts = 0, InsertAtByte = 0; 9515 bool Swap = false; 9516 9517 // Shifts required to get the byte we want at element 7. 9518 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9519 0, 15, 14, 13, 12, 11, 10, 9}; 9520 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9521 1, 2, 3, 4, 5, 6, 7, 8}; 9522 9523 ArrayRef<int> Mask = N->getMask(); 9524 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9525 9526 // For each mask element, find out if we're just inserting something 9527 // from V2 into V1 or vice versa. 9528 // Possible permutations inserting an element from V2 into V1: 9529 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9530 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9531 // ... 9532 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9533 // Inserting from V1 into V2 will be similar, except mask range will be 9534 // [16,31]. 9535 9536 bool FoundCandidate = false; 9537 // If both vector operands for the shuffle are the same vector, the mask 9538 // will contain only elements from the first one and the second one will be 9539 // undef. 9540 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9541 // Go through the mask of half-words to find an element that's being moved 9542 // from one vector to the other. 9543 for (unsigned i = 0; i < BytesInVector; ++i) { 9544 unsigned CurrentElement = Mask[i]; 9545 // If 2nd operand is undefined, we should only look for element 7 in the 9546 // Mask. 9547 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9548 continue; 9549 9550 bool OtherElementsInOrder = true; 9551 // Examine the other elements in the Mask to see if they're in original 9552 // order. 9553 for (unsigned j = 0; j < BytesInVector; ++j) { 9554 if (j == i) 9555 continue; 9556 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9557 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9558 // in which we always assume we're always picking from the 1st operand. 9559 int MaskOffset = 9560 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9561 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9562 OtherElementsInOrder = false; 9563 break; 9564 } 9565 } 9566 // If other elements are in original order, we record the number of shifts 9567 // we need to get the element we want into element 7. Also record which byte 9568 // in the vector we should insert into. 9569 if (OtherElementsInOrder) { 9570 // If 2nd operand is undefined, we assume no shifts and no swapping. 9571 if (V2.isUndef()) { 9572 ShiftElts = 0; 9573 Swap = false; 9574 } else { 9575 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9576 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9577 : BigEndianShifts[CurrentElement & 0xF]; 9578 Swap = CurrentElement < BytesInVector; 9579 } 9580 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9581 FoundCandidate = true; 9582 break; 9583 } 9584 } 9585 9586 if (!FoundCandidate) 9587 return SDValue(); 9588 9589 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9590 // optionally with VECSHL if shift is required. 9591 if (Swap) 9592 std::swap(V1, V2); 9593 if (V2.isUndef()) 9594 V2 = V1; 9595 if (ShiftElts) { 9596 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9597 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9598 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9599 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9600 } 9601 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9602 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9603 } 9604 9605 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9606 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9607 /// SDValue. 9608 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9609 SelectionDAG &DAG) const { 9610 const unsigned NumHalfWords = 8; 9611 const unsigned BytesInVector = NumHalfWords * 2; 9612 // Check that the shuffle is on half-words. 9613 if (!isNByteElemShuffleMask(N, 2, 1)) 9614 return SDValue(); 9615 9616 bool IsLE = Subtarget.isLittleEndian(); 9617 SDLoc dl(N); 9618 SDValue V1 = N->getOperand(0); 9619 SDValue V2 = N->getOperand(1); 9620 unsigned ShiftElts = 0, InsertAtByte = 0; 9621 bool Swap = false; 9622 9623 // Shifts required to get the half-word we want at element 3. 9624 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9625 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9626 9627 uint32_t Mask = 0; 9628 uint32_t OriginalOrderLow = 0x1234567; 9629 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9630 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9631 // 32-bit space, only need 4-bit nibbles per element. 9632 for (unsigned i = 0; i < NumHalfWords; ++i) { 9633 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9634 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9635 } 9636 9637 // For each mask element, find out if we're just inserting something 9638 // from V2 into V1 or vice versa. Possible permutations inserting an element 9639 // from V2 into V1: 9640 // X, 1, 2, 3, 4, 5, 6, 7 9641 // 0, X, 2, 3, 4, 5, 6, 7 9642 // 0, 1, X, 3, 4, 5, 6, 7 9643 // 0, 1, 2, X, 4, 5, 6, 7 9644 // 0, 1, 2, 3, X, 5, 6, 7 9645 // 0, 1, 2, 3, 4, X, 6, 7 9646 // 0, 1, 2, 3, 4, 5, X, 7 9647 // 0, 1, 2, 3, 4, 5, 6, X 9648 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9649 9650 bool FoundCandidate = false; 9651 // Go through the mask of half-words to find an element that's being moved 9652 // from one vector to the other. 9653 for (unsigned i = 0; i < NumHalfWords; ++i) { 9654 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9655 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9656 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9657 uint32_t TargetOrder = 0x0; 9658 9659 // If both vector operands for the shuffle are the same vector, the mask 9660 // will contain only elements from the first one and the second one will be 9661 // undef. 9662 if (V2.isUndef()) { 9663 ShiftElts = 0; 9664 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9665 TargetOrder = OriginalOrderLow; 9666 Swap = false; 9667 // Skip if not the correct element or mask of other elements don't equal 9668 // to our expected order. 9669 if (MaskOneElt == VINSERTHSrcElem && 9670 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9671 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9672 FoundCandidate = true; 9673 break; 9674 } 9675 } else { // If both operands are defined. 9676 // Target order is [8,15] if the current mask is between [0,7]. 9677 TargetOrder = 9678 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9679 // Skip if mask of other elements don't equal our expected order. 9680 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9681 // We only need the last 3 bits for the number of shifts. 9682 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9683 : BigEndianShifts[MaskOneElt & 0x7]; 9684 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9685 Swap = MaskOneElt < NumHalfWords; 9686 FoundCandidate = true; 9687 break; 9688 } 9689 } 9690 } 9691 9692 if (!FoundCandidate) 9693 return SDValue(); 9694 9695 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9696 // optionally with VECSHL if shift is required. 9697 if (Swap) 9698 std::swap(V1, V2); 9699 if (V2.isUndef()) 9700 V2 = V1; 9701 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9702 if (ShiftElts) { 9703 // Double ShiftElts because we're left shifting on v16i8 type. 9704 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9705 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9706 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9707 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9708 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9709 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9710 } 9711 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9712 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9713 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9714 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9715 } 9716 9717 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9718 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9719 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9720 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9721 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9722 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9723 assert(Op.getValueType() == MVT::v1i128 && 9724 "Only set v1i128 as custom, other type shouldn't reach here!"); 9725 SDLoc dl(Op); 9726 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9727 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9728 unsigned SHLAmt = N1.getConstantOperandVal(0); 9729 if (SHLAmt % 8 == 0) { 9730 SmallVector<int, 16> Mask(16, 0); 9731 std::iota(Mask.begin(), Mask.end(), 0); 9732 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9733 if (SDValue Shuffle = 9734 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9735 DAG.getUNDEF(MVT::v16i8), Mask)) 9736 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9737 } 9738 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9739 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9740 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9741 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9742 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9743 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9744 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9745 } 9746 9747 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9748 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9749 /// return the code it can be lowered into. Worst case, it can always be 9750 /// lowered into a vperm. 9751 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9752 SelectionDAG &DAG) const { 9753 SDLoc dl(Op); 9754 SDValue V1 = Op.getOperand(0); 9755 SDValue V2 = Op.getOperand(1); 9756 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9757 9758 // Any nodes that were combined in the target-independent combiner prior 9759 // to vector legalization will not be sent to the target combine. Try to 9760 // combine it here. 9761 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9762 DAG.ReplaceAllUsesOfValueWith(Op, NewShuffle); 9763 Op = NewShuffle; 9764 SVOp = cast<ShuffleVectorSDNode>(Op); 9765 } 9766 EVT VT = Op.getValueType(); 9767 bool isLittleEndian = Subtarget.isLittleEndian(); 9768 9769 unsigned ShiftElts, InsertAtByte; 9770 bool Swap = false; 9771 9772 // If this is a load-and-splat, we can do that with a single instruction 9773 // in some cases. However if the load has multiple uses, we don't want to 9774 // combine it because that will just produce multiple loads. 9775 const SDValue *InputLoad = getNormalLoadInput(V1); 9776 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9777 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9778 InputLoad->hasOneUse()) { 9779 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9780 int SplatIdx = 9781 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9782 9783 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9784 // For 4-byte load-and-splat, we need Power9. 9785 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9786 uint64_t Offset = 0; 9787 if (IsFourByte) 9788 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9789 else 9790 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9791 9792 // If we are loading a partial vector, it does not make sense to adjust 9793 // the base pointer. This happens with (splat (s_to_v_permuted (ld))). 9794 if (LD->getMemoryVT().getSizeInBits() == (IsFourByte ? 32 : 64)) 9795 Offset = 0; 9796 SDValue BasePtr = LD->getBasePtr(); 9797 if (Offset != 0) 9798 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9799 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9800 SDValue Ops[] = { 9801 LD->getChain(), // Chain 9802 BasePtr, // BasePtr 9803 DAG.getValueType(Op.getValueType()) // VT 9804 }; 9805 SDVTList VTL = 9806 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9807 SDValue LdSplt = 9808 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9809 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9810 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9811 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9812 return LdSplt; 9813 } 9814 } 9815 if (Subtarget.hasP9Vector() && 9816 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9817 isLittleEndian)) { 9818 if (Swap) 9819 std::swap(V1, V2); 9820 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9821 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9822 if (ShiftElts) { 9823 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9824 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9825 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9826 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9827 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9828 } 9829 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9830 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9831 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9832 } 9833 9834 if (Subtarget.hasP9Altivec()) { 9835 SDValue NewISDNode; 9836 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9837 return NewISDNode; 9838 9839 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9840 return NewISDNode; 9841 } 9842 9843 if (Subtarget.hasVSX() && 9844 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9845 if (Swap) 9846 std::swap(V1, V2); 9847 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9848 SDValue Conv2 = 9849 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9850 9851 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9852 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9853 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9854 } 9855 9856 if (Subtarget.hasVSX() && 9857 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9858 if (Swap) 9859 std::swap(V1, V2); 9860 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9861 SDValue Conv2 = 9862 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9863 9864 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9865 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9866 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9867 } 9868 9869 if (Subtarget.hasP9Vector()) { 9870 if (PPC::isXXBRHShuffleMask(SVOp)) { 9871 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9872 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9873 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9874 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9875 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9876 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9877 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9878 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9879 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9880 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9881 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9882 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9883 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9884 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9885 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9886 } 9887 } 9888 9889 if (Subtarget.hasVSX()) { 9890 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9891 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9892 9893 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9894 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9895 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9896 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9897 } 9898 9899 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9900 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9901 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9902 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9903 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9904 } 9905 } 9906 9907 if (Subtarget.hasQPX()) { 9908 if (VT.getVectorNumElements() != 4) 9909 return SDValue(); 9910 9911 if (V2.isUndef()) V2 = V1; 9912 9913 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9914 if (AlignIdx != -1) { 9915 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9916 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9917 } else if (SVOp->isSplat()) { 9918 int SplatIdx = SVOp->getSplatIndex(); 9919 if (SplatIdx >= 4) { 9920 std::swap(V1, V2); 9921 SplatIdx -= 4; 9922 } 9923 9924 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9925 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9926 } 9927 9928 // Lower this into a qvgpci/qvfperm pair. 9929 9930 // Compute the qvgpci literal 9931 unsigned idx = 0; 9932 for (unsigned i = 0; i < 4; ++i) { 9933 int m = SVOp->getMaskElt(i); 9934 unsigned mm = m >= 0 ? (unsigned) m : i; 9935 idx |= mm << (3-i)*3; 9936 } 9937 9938 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9939 DAG.getConstant(idx, dl, MVT::i32)); 9940 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9941 } 9942 9943 // Cases that are handled by instructions that take permute immediates 9944 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9945 // selected by the instruction selector. 9946 if (V2.isUndef()) { 9947 if (PPC::isSplatShuffleMask(SVOp, 1) || 9948 PPC::isSplatShuffleMask(SVOp, 2) || 9949 PPC::isSplatShuffleMask(SVOp, 4) || 9950 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9951 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9952 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9953 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9954 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9955 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9956 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9957 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9958 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9959 (Subtarget.hasP8Altivec() && ( 9960 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9961 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9962 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9963 return Op; 9964 } 9965 } 9966 9967 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9968 // and produce a fixed permutation. If any of these match, do not lower to 9969 // VPERM. 9970 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9971 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9972 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9973 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9974 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9975 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9976 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9977 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9978 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9979 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9980 (Subtarget.hasP8Altivec() && ( 9981 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9982 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9983 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9984 return Op; 9985 9986 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9987 // perfect shuffle table to emit an optimal matching sequence. 9988 ArrayRef<int> PermMask = SVOp->getMask(); 9989 9990 unsigned PFIndexes[4]; 9991 bool isFourElementShuffle = true; 9992 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9993 unsigned EltNo = 8; // Start out undef. 9994 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9995 if (PermMask[i*4+j] < 0) 9996 continue; // Undef, ignore it. 9997 9998 unsigned ByteSource = PermMask[i*4+j]; 9999 if ((ByteSource & 3) != j) { 10000 isFourElementShuffle = false; 10001 break; 10002 } 10003 10004 if (EltNo == 8) { 10005 EltNo = ByteSource/4; 10006 } else if (EltNo != ByteSource/4) { 10007 isFourElementShuffle = false; 10008 break; 10009 } 10010 } 10011 PFIndexes[i] = EltNo; 10012 } 10013 10014 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10015 // perfect shuffle vector to determine if it is cost effective to do this as 10016 // discrete instructions, or whether we should use a vperm. 10017 // For now, we skip this for little endian until such time as we have a 10018 // little-endian perfect shuffle table. 10019 if (isFourElementShuffle && !isLittleEndian) { 10020 // Compute the index in the perfect shuffle table. 10021 unsigned PFTableIndex = 10022 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 10023 10024 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10025 unsigned Cost = (PFEntry >> 30); 10026 10027 // Determining when to avoid vperm is tricky. Many things affect the cost 10028 // of vperm, particularly how many times the perm mask needs to be computed. 10029 // For example, if the perm mask can be hoisted out of a loop or is already 10030 // used (perhaps because there are multiple permutes with the same shuffle 10031 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 10032 // the loop requires an extra register. 10033 // 10034 // As a compromise, we only emit discrete instructions if the shuffle can be 10035 // generated in 3 or fewer operations. When we have loop information 10036 // available, if this block is within a loop, we should avoid using vperm 10037 // for 3-operation perms and use a constant pool load instead. 10038 if (Cost < 3) 10039 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10040 } 10041 10042 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10043 // vector that will get spilled to the constant pool. 10044 if (V2.isUndef()) V2 = V1; 10045 10046 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10047 // that it is in input element units, not in bytes. Convert now. 10048 10049 // For little endian, the order of the input vectors is reversed, and 10050 // the permutation mask is complemented with respect to 31. This is 10051 // necessary to produce proper semantics with the big-endian-biased vperm 10052 // instruction. 10053 EVT EltVT = V1.getValueType().getVectorElementType(); 10054 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10055 10056 SmallVector<SDValue, 16> ResultMask; 10057 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10058 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10059 10060 for (unsigned j = 0; j != BytesPerElement; ++j) 10061 if (isLittleEndian) 10062 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10063 dl, MVT::i32)); 10064 else 10065 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10066 MVT::i32)); 10067 } 10068 10069 ShufflesHandledWithVPERM++; 10070 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10071 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10072 LLVM_DEBUG(SVOp->dump()); 10073 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10074 LLVM_DEBUG(VPermMask.dump()); 10075 10076 if (isLittleEndian) 10077 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10078 V2, V1, VPermMask); 10079 else 10080 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10081 V1, V2, VPermMask); 10082 } 10083 10084 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10085 /// vector comparison. If it is, return true and fill in Opc/isDot with 10086 /// information about the intrinsic. 10087 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10088 bool &isDot, const PPCSubtarget &Subtarget) { 10089 unsigned IntrinsicID = 10090 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10091 CompareOpc = -1; 10092 isDot = false; 10093 switch (IntrinsicID) { 10094 default: 10095 return false; 10096 // Comparison predicates. 10097 case Intrinsic::ppc_altivec_vcmpbfp_p: 10098 CompareOpc = 966; 10099 isDot = true; 10100 break; 10101 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10102 CompareOpc = 198; 10103 isDot = true; 10104 break; 10105 case Intrinsic::ppc_altivec_vcmpequb_p: 10106 CompareOpc = 6; 10107 isDot = true; 10108 break; 10109 case Intrinsic::ppc_altivec_vcmpequh_p: 10110 CompareOpc = 70; 10111 isDot = true; 10112 break; 10113 case Intrinsic::ppc_altivec_vcmpequw_p: 10114 CompareOpc = 134; 10115 isDot = true; 10116 break; 10117 case Intrinsic::ppc_altivec_vcmpequd_p: 10118 if (Subtarget.hasP8Altivec()) { 10119 CompareOpc = 199; 10120 isDot = true; 10121 } else 10122 return false; 10123 break; 10124 case Intrinsic::ppc_altivec_vcmpneb_p: 10125 case Intrinsic::ppc_altivec_vcmpneh_p: 10126 case Intrinsic::ppc_altivec_vcmpnew_p: 10127 case Intrinsic::ppc_altivec_vcmpnezb_p: 10128 case Intrinsic::ppc_altivec_vcmpnezh_p: 10129 case Intrinsic::ppc_altivec_vcmpnezw_p: 10130 if (Subtarget.hasP9Altivec()) { 10131 switch (IntrinsicID) { 10132 default: 10133 llvm_unreachable("Unknown comparison intrinsic."); 10134 case Intrinsic::ppc_altivec_vcmpneb_p: 10135 CompareOpc = 7; 10136 break; 10137 case Intrinsic::ppc_altivec_vcmpneh_p: 10138 CompareOpc = 71; 10139 break; 10140 case Intrinsic::ppc_altivec_vcmpnew_p: 10141 CompareOpc = 135; 10142 break; 10143 case Intrinsic::ppc_altivec_vcmpnezb_p: 10144 CompareOpc = 263; 10145 break; 10146 case Intrinsic::ppc_altivec_vcmpnezh_p: 10147 CompareOpc = 327; 10148 break; 10149 case Intrinsic::ppc_altivec_vcmpnezw_p: 10150 CompareOpc = 391; 10151 break; 10152 } 10153 isDot = true; 10154 } else 10155 return false; 10156 break; 10157 case Intrinsic::ppc_altivec_vcmpgefp_p: 10158 CompareOpc = 454; 10159 isDot = true; 10160 break; 10161 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10162 CompareOpc = 710; 10163 isDot = true; 10164 break; 10165 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10166 CompareOpc = 774; 10167 isDot = true; 10168 break; 10169 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10170 CompareOpc = 838; 10171 isDot = true; 10172 break; 10173 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10174 CompareOpc = 902; 10175 isDot = true; 10176 break; 10177 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10178 if (Subtarget.hasP8Altivec()) { 10179 CompareOpc = 967; 10180 isDot = true; 10181 } else 10182 return false; 10183 break; 10184 case Intrinsic::ppc_altivec_vcmpgtub_p: 10185 CompareOpc = 518; 10186 isDot = true; 10187 break; 10188 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10189 CompareOpc = 582; 10190 isDot = true; 10191 break; 10192 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10193 CompareOpc = 646; 10194 isDot = true; 10195 break; 10196 case Intrinsic::ppc_altivec_vcmpgtud_p: 10197 if (Subtarget.hasP8Altivec()) { 10198 CompareOpc = 711; 10199 isDot = true; 10200 } else 10201 return false; 10202 break; 10203 10204 // VSX predicate comparisons use the same infrastructure 10205 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10206 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10207 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10208 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10209 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10210 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10211 if (Subtarget.hasVSX()) { 10212 switch (IntrinsicID) { 10213 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10214 CompareOpc = 99; 10215 break; 10216 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10217 CompareOpc = 115; 10218 break; 10219 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10220 CompareOpc = 107; 10221 break; 10222 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10223 CompareOpc = 67; 10224 break; 10225 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10226 CompareOpc = 83; 10227 break; 10228 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10229 CompareOpc = 75; 10230 break; 10231 } 10232 isDot = true; 10233 } else 10234 return false; 10235 break; 10236 10237 // Normal Comparisons. 10238 case Intrinsic::ppc_altivec_vcmpbfp: 10239 CompareOpc = 966; 10240 break; 10241 case Intrinsic::ppc_altivec_vcmpeqfp: 10242 CompareOpc = 198; 10243 break; 10244 case Intrinsic::ppc_altivec_vcmpequb: 10245 CompareOpc = 6; 10246 break; 10247 case Intrinsic::ppc_altivec_vcmpequh: 10248 CompareOpc = 70; 10249 break; 10250 case Intrinsic::ppc_altivec_vcmpequw: 10251 CompareOpc = 134; 10252 break; 10253 case Intrinsic::ppc_altivec_vcmpequd: 10254 if (Subtarget.hasP8Altivec()) 10255 CompareOpc = 199; 10256 else 10257 return false; 10258 break; 10259 case Intrinsic::ppc_altivec_vcmpneb: 10260 case Intrinsic::ppc_altivec_vcmpneh: 10261 case Intrinsic::ppc_altivec_vcmpnew: 10262 case Intrinsic::ppc_altivec_vcmpnezb: 10263 case Intrinsic::ppc_altivec_vcmpnezh: 10264 case Intrinsic::ppc_altivec_vcmpnezw: 10265 if (Subtarget.hasP9Altivec()) 10266 switch (IntrinsicID) { 10267 default: 10268 llvm_unreachable("Unknown comparison intrinsic."); 10269 case Intrinsic::ppc_altivec_vcmpneb: 10270 CompareOpc = 7; 10271 break; 10272 case Intrinsic::ppc_altivec_vcmpneh: 10273 CompareOpc = 71; 10274 break; 10275 case Intrinsic::ppc_altivec_vcmpnew: 10276 CompareOpc = 135; 10277 break; 10278 case Intrinsic::ppc_altivec_vcmpnezb: 10279 CompareOpc = 263; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpnezh: 10282 CompareOpc = 327; 10283 break; 10284 case Intrinsic::ppc_altivec_vcmpnezw: 10285 CompareOpc = 391; 10286 break; 10287 } 10288 else 10289 return false; 10290 break; 10291 case Intrinsic::ppc_altivec_vcmpgefp: 10292 CompareOpc = 454; 10293 break; 10294 case Intrinsic::ppc_altivec_vcmpgtfp: 10295 CompareOpc = 710; 10296 break; 10297 case Intrinsic::ppc_altivec_vcmpgtsb: 10298 CompareOpc = 774; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpgtsh: 10301 CompareOpc = 838; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgtsw: 10304 CompareOpc = 902; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpgtsd: 10307 if (Subtarget.hasP8Altivec()) 10308 CompareOpc = 967; 10309 else 10310 return false; 10311 break; 10312 case Intrinsic::ppc_altivec_vcmpgtub: 10313 CompareOpc = 518; 10314 break; 10315 case Intrinsic::ppc_altivec_vcmpgtuh: 10316 CompareOpc = 582; 10317 break; 10318 case Intrinsic::ppc_altivec_vcmpgtuw: 10319 CompareOpc = 646; 10320 break; 10321 case Intrinsic::ppc_altivec_vcmpgtud: 10322 if (Subtarget.hasP8Altivec()) 10323 CompareOpc = 711; 10324 else 10325 return false; 10326 break; 10327 } 10328 return true; 10329 } 10330 10331 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10332 /// lower, do it, otherwise return null. 10333 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10334 SelectionDAG &DAG) const { 10335 unsigned IntrinsicID = 10336 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10337 10338 SDLoc dl(Op); 10339 10340 if (IntrinsicID == Intrinsic::thread_pointer) { 10341 // Reads the thread pointer register, used for __builtin_thread_pointer. 10342 if (Subtarget.isPPC64()) 10343 return DAG.getRegister(PPC::X13, MVT::i64); 10344 return DAG.getRegister(PPC::R2, MVT::i32); 10345 } 10346 10347 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10348 // opcode number of the comparison. 10349 int CompareOpc; 10350 bool isDot; 10351 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10352 return SDValue(); // Don't custom lower most intrinsics. 10353 10354 // If this is a non-dot comparison, make the VCMP node and we are done. 10355 if (!isDot) { 10356 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10357 Op.getOperand(1), Op.getOperand(2), 10358 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10359 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10360 } 10361 10362 // Create the PPCISD altivec 'dot' comparison node. 10363 SDValue Ops[] = { 10364 Op.getOperand(2), // LHS 10365 Op.getOperand(3), // RHS 10366 DAG.getConstant(CompareOpc, dl, MVT::i32) 10367 }; 10368 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10369 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10370 10371 // Now that we have the comparison, emit a copy from the CR to a GPR. 10372 // This is flagged to the above dot comparison. 10373 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10374 DAG.getRegister(PPC::CR6, MVT::i32), 10375 CompNode.getValue(1)); 10376 10377 // Unpack the result based on how the target uses it. 10378 unsigned BitNo; // Bit # of CR6. 10379 bool InvertBit; // Invert result? 10380 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10381 default: // Can't happen, don't crash on invalid number though. 10382 case 0: // Return the value of the EQ bit of CR6. 10383 BitNo = 0; InvertBit = false; 10384 break; 10385 case 1: // Return the inverted value of the EQ bit of CR6. 10386 BitNo = 0; InvertBit = true; 10387 break; 10388 case 2: // Return the value of the LT bit of CR6. 10389 BitNo = 2; InvertBit = false; 10390 break; 10391 case 3: // Return the inverted value of the LT bit of CR6. 10392 BitNo = 2; InvertBit = true; 10393 break; 10394 } 10395 10396 // Shift the bit into the low position. 10397 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10398 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10399 // Isolate the bit. 10400 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10401 DAG.getConstant(1, dl, MVT::i32)); 10402 10403 // If we are supposed to, toggle the bit. 10404 if (InvertBit) 10405 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10406 DAG.getConstant(1, dl, MVT::i32)); 10407 return Flags; 10408 } 10409 10410 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10411 SelectionDAG &DAG) const { 10412 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10413 // the beginning of the argument list. 10414 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10415 SDLoc DL(Op); 10416 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10417 case Intrinsic::ppc_cfence: { 10418 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10419 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10420 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10421 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10422 Op.getOperand(ArgStart + 1)), 10423 Op.getOperand(0)), 10424 0); 10425 } 10426 default: 10427 break; 10428 } 10429 return SDValue(); 10430 } 10431 10432 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10433 // Check for a DIV with the same operands as this REM. 10434 for (auto UI : Op.getOperand(1)->uses()) { 10435 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10436 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10437 if (UI->getOperand(0) == Op.getOperand(0) && 10438 UI->getOperand(1) == Op.getOperand(1)) 10439 return SDValue(); 10440 } 10441 return Op; 10442 } 10443 10444 // Lower scalar BSWAP64 to xxbrd. 10445 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10446 SDLoc dl(Op); 10447 // MTVSRDD 10448 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10449 Op.getOperand(0)); 10450 // XXBRD 10451 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10452 // MFVSRD 10453 int VectorIndex = 0; 10454 if (Subtarget.isLittleEndian()) 10455 VectorIndex = 1; 10456 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10457 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10458 return Op; 10459 } 10460 10461 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10462 // compared to a value that is atomically loaded (atomic loads zero-extend). 10463 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10464 SelectionDAG &DAG) const { 10465 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10466 "Expecting an atomic compare-and-swap here."); 10467 SDLoc dl(Op); 10468 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10469 EVT MemVT = AtomicNode->getMemoryVT(); 10470 if (MemVT.getSizeInBits() >= 32) 10471 return Op; 10472 10473 SDValue CmpOp = Op.getOperand(2); 10474 // If this is already correctly zero-extended, leave it alone. 10475 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10476 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10477 return Op; 10478 10479 // Clear the high bits of the compare operand. 10480 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10481 SDValue NewCmpOp = 10482 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10483 DAG.getConstant(MaskVal, dl, MVT::i32)); 10484 10485 // Replace the existing compare operand with the properly zero-extended one. 10486 SmallVector<SDValue, 4> Ops; 10487 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10488 Ops.push_back(AtomicNode->getOperand(i)); 10489 Ops[2] = NewCmpOp; 10490 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10491 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10492 auto NodeTy = 10493 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10494 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10495 } 10496 10497 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10498 SelectionDAG &DAG) const { 10499 SDLoc dl(Op); 10500 // Create a stack slot that is 16-byte aligned. 10501 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10502 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10503 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10504 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10505 10506 // Store the input value into Value#0 of the stack slot. 10507 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10508 MachinePointerInfo()); 10509 // Load it out. 10510 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10511 } 10512 10513 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10514 SelectionDAG &DAG) const { 10515 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10516 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10517 10518 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10519 // We have legal lowering for constant indices but not for variable ones. 10520 if (!C) 10521 return SDValue(); 10522 10523 EVT VT = Op.getValueType(); 10524 SDLoc dl(Op); 10525 SDValue V1 = Op.getOperand(0); 10526 SDValue V2 = Op.getOperand(1); 10527 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10528 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10529 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10530 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10531 unsigned InsertAtElement = C->getZExtValue(); 10532 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10533 if (Subtarget.isLittleEndian()) { 10534 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10535 } 10536 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10537 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10538 } 10539 return Op; 10540 } 10541 10542 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10543 SelectionDAG &DAG) const { 10544 SDLoc dl(Op); 10545 SDNode *N = Op.getNode(); 10546 10547 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10548 "Unknown extract_vector_elt type"); 10549 10550 SDValue Value = N->getOperand(0); 10551 10552 // The first part of this is like the store lowering except that we don't 10553 // need to track the chain. 10554 10555 // The values are now known to be -1 (false) or 1 (true). To convert this 10556 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10557 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10558 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10559 10560 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10561 // understand how to form the extending load. 10562 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10563 10564 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10565 10566 // Now convert to an integer and store. 10567 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10568 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10569 Value); 10570 10571 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10572 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10573 MachinePointerInfo PtrInfo = 10574 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10575 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10576 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10577 10578 SDValue StoreChain = DAG.getEntryNode(); 10579 SDValue Ops[] = {StoreChain, 10580 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10581 Value, FIdx}; 10582 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10583 10584 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10585 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10586 10587 // Extract the value requested. 10588 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10589 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10590 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10591 10592 SDValue IntVal = 10593 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10594 10595 if (!Subtarget.useCRBits()) 10596 return IntVal; 10597 10598 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10599 } 10600 10601 /// Lowering for QPX v4i1 loads 10602 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10603 SelectionDAG &DAG) const { 10604 SDLoc dl(Op); 10605 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10606 SDValue LoadChain = LN->getChain(); 10607 SDValue BasePtr = LN->getBasePtr(); 10608 10609 if (Op.getValueType() == MVT::v4f64 || 10610 Op.getValueType() == MVT::v4f32) { 10611 EVT MemVT = LN->getMemoryVT(); 10612 unsigned Alignment = LN->getAlignment(); 10613 10614 // If this load is properly aligned, then it is legal. 10615 if (Alignment >= MemVT.getStoreSize()) 10616 return Op; 10617 10618 EVT ScalarVT = Op.getValueType().getScalarType(), 10619 ScalarMemVT = MemVT.getScalarType(); 10620 unsigned Stride = ScalarMemVT.getStoreSize(); 10621 10622 SDValue Vals[4], LoadChains[4]; 10623 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10624 SDValue Load; 10625 if (ScalarVT != ScalarMemVT) 10626 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10627 BasePtr, 10628 LN->getPointerInfo().getWithOffset(Idx * Stride), 10629 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10630 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10631 else 10632 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10633 LN->getPointerInfo().getWithOffset(Idx * Stride), 10634 MinAlign(Alignment, Idx * Stride), 10635 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10636 10637 if (Idx == 0 && LN->isIndexed()) { 10638 assert(LN->getAddressingMode() == ISD::PRE_INC && 10639 "Unknown addressing mode on vector load"); 10640 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10641 LN->getAddressingMode()); 10642 } 10643 10644 Vals[Idx] = Load; 10645 LoadChains[Idx] = Load.getValue(1); 10646 10647 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10648 DAG.getConstant(Stride, dl, 10649 BasePtr.getValueType())); 10650 } 10651 10652 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10653 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10654 10655 if (LN->isIndexed()) { 10656 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10657 return DAG.getMergeValues(RetOps, dl); 10658 } 10659 10660 SDValue RetOps[] = { Value, TF }; 10661 return DAG.getMergeValues(RetOps, dl); 10662 } 10663 10664 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10665 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10666 10667 // To lower v4i1 from a byte array, we load the byte elements of the 10668 // vector and then reuse the BUILD_VECTOR logic. 10669 10670 SDValue VectElmts[4], VectElmtChains[4]; 10671 for (unsigned i = 0; i < 4; ++i) { 10672 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10673 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10674 10675 VectElmts[i] = DAG.getExtLoad( 10676 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10677 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10678 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10679 VectElmtChains[i] = VectElmts[i].getValue(1); 10680 } 10681 10682 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10683 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10684 10685 SDValue RVals[] = { Value, LoadChain }; 10686 return DAG.getMergeValues(RVals, dl); 10687 } 10688 10689 /// Lowering for QPX v4i1 stores 10690 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10691 SelectionDAG &DAG) const { 10692 SDLoc dl(Op); 10693 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10694 SDValue StoreChain = SN->getChain(); 10695 SDValue BasePtr = SN->getBasePtr(); 10696 SDValue Value = SN->getValue(); 10697 10698 if (Value.getValueType() == MVT::v4f64 || 10699 Value.getValueType() == MVT::v4f32) { 10700 EVT MemVT = SN->getMemoryVT(); 10701 unsigned Alignment = SN->getAlignment(); 10702 10703 // If this store is properly aligned, then it is legal. 10704 if (Alignment >= MemVT.getStoreSize()) 10705 return Op; 10706 10707 EVT ScalarVT = Value.getValueType().getScalarType(), 10708 ScalarMemVT = MemVT.getScalarType(); 10709 unsigned Stride = ScalarMemVT.getStoreSize(); 10710 10711 SDValue Stores[4]; 10712 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10713 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10714 DAG.getVectorIdxConstant(Idx, dl)); 10715 SDValue Store; 10716 if (ScalarVT != ScalarMemVT) 10717 Store = 10718 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10719 SN->getPointerInfo().getWithOffset(Idx * Stride), 10720 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10721 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10722 else 10723 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10724 SN->getPointerInfo().getWithOffset(Idx * Stride), 10725 MinAlign(Alignment, Idx * Stride), 10726 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10727 10728 if (Idx == 0 && SN->isIndexed()) { 10729 assert(SN->getAddressingMode() == ISD::PRE_INC && 10730 "Unknown addressing mode on vector store"); 10731 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10732 SN->getAddressingMode()); 10733 } 10734 10735 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10736 DAG.getConstant(Stride, dl, 10737 BasePtr.getValueType())); 10738 Stores[Idx] = Store; 10739 } 10740 10741 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10742 10743 if (SN->isIndexed()) { 10744 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10745 return DAG.getMergeValues(RetOps, dl); 10746 } 10747 10748 return TF; 10749 } 10750 10751 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10752 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10753 10754 // The values are now known to be -1 (false) or 1 (true). To convert this 10755 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10756 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10757 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10758 10759 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10760 // understand how to form the extending load. 10761 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10762 10763 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10764 10765 // Now convert to an integer and store. 10766 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10767 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10768 Value); 10769 10770 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10771 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10772 MachinePointerInfo PtrInfo = 10773 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10774 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10775 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10776 10777 SDValue Ops[] = {StoreChain, 10778 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10779 Value, FIdx}; 10780 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10781 10782 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10783 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10784 10785 // Move data into the byte array. 10786 SDValue Loads[4], LoadChains[4]; 10787 for (unsigned i = 0; i < 4; ++i) { 10788 unsigned Offset = 4*i; 10789 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10790 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10791 10792 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10793 PtrInfo.getWithOffset(Offset)); 10794 LoadChains[i] = Loads[i].getValue(1); 10795 } 10796 10797 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10798 10799 SDValue Stores[4]; 10800 for (unsigned i = 0; i < 4; ++i) { 10801 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10802 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10803 10804 Stores[i] = DAG.getTruncStore( 10805 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10806 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10807 SN->getAAInfo()); 10808 } 10809 10810 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10811 10812 return StoreChain; 10813 } 10814 10815 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10816 SDLoc dl(Op); 10817 if (Op.getValueType() == MVT::v4i32) { 10818 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10819 10820 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10821 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10822 10823 SDValue RHSSwap = // = vrlw RHS, 16 10824 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10825 10826 // Shrinkify inputs to v8i16. 10827 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10828 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10829 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10830 10831 // Low parts multiplied together, generating 32-bit results (we ignore the 10832 // top parts). 10833 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10834 LHS, RHS, DAG, dl, MVT::v4i32); 10835 10836 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10837 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10838 // Shift the high parts up 16 bits. 10839 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10840 Neg16, DAG, dl); 10841 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10842 } else if (Op.getValueType() == MVT::v16i8) { 10843 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10844 bool isLittleEndian = Subtarget.isLittleEndian(); 10845 10846 // Multiply the even 8-bit parts, producing 16-bit sums. 10847 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10848 LHS, RHS, DAG, dl, MVT::v8i16); 10849 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10850 10851 // Multiply the odd 8-bit parts, producing 16-bit sums. 10852 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10853 LHS, RHS, DAG, dl, MVT::v8i16); 10854 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10855 10856 // Merge the results together. Because vmuleub and vmuloub are 10857 // instructions with a big-endian bias, we must reverse the 10858 // element numbering and reverse the meaning of "odd" and "even" 10859 // when generating little endian code. 10860 int Ops[16]; 10861 for (unsigned i = 0; i != 8; ++i) { 10862 if (isLittleEndian) { 10863 Ops[i*2 ] = 2*i; 10864 Ops[i*2+1] = 2*i+16; 10865 } else { 10866 Ops[i*2 ] = 2*i+1; 10867 Ops[i*2+1] = 2*i+1+16; 10868 } 10869 } 10870 if (isLittleEndian) 10871 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10872 else 10873 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10874 } else { 10875 llvm_unreachable("Unknown mul to lower!"); 10876 } 10877 } 10878 10879 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10880 10881 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10882 10883 EVT VT = Op.getValueType(); 10884 assert(VT.isVector() && 10885 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10886 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10887 VT == MVT::v16i8) && 10888 "Unexpected vector element type!"); 10889 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10890 "Current subtarget doesn't support smax v2i64!"); 10891 10892 // For vector abs, it can be lowered to: 10893 // abs x 10894 // ==> 10895 // y = -x 10896 // smax(x, y) 10897 10898 SDLoc dl(Op); 10899 SDValue X = Op.getOperand(0); 10900 SDValue Zero = DAG.getConstant(0, dl, VT); 10901 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10902 10903 // SMAX patch https://reviews.llvm.org/D47332 10904 // hasn't landed yet, so use intrinsic first here. 10905 // TODO: Should use SMAX directly once SMAX patch landed 10906 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10907 if (VT == MVT::v2i64) 10908 BifID = Intrinsic::ppc_altivec_vmaxsd; 10909 else if (VT == MVT::v8i16) 10910 BifID = Intrinsic::ppc_altivec_vmaxsh; 10911 else if (VT == MVT::v16i8) 10912 BifID = Intrinsic::ppc_altivec_vmaxsb; 10913 10914 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10915 } 10916 10917 // Custom lowering for fpext vf32 to v2f64 10918 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10919 10920 assert(Op.getOpcode() == ISD::FP_EXTEND && 10921 "Should only be called for ISD::FP_EXTEND"); 10922 10923 // FIXME: handle extends from half precision float vectors on P9. 10924 // We only want to custom lower an extend from v2f32 to v2f64. 10925 if (Op.getValueType() != MVT::v2f64 || 10926 Op.getOperand(0).getValueType() != MVT::v2f32) 10927 return SDValue(); 10928 10929 SDLoc dl(Op); 10930 SDValue Op0 = Op.getOperand(0); 10931 10932 switch (Op0.getOpcode()) { 10933 default: 10934 return SDValue(); 10935 case ISD::EXTRACT_SUBVECTOR: { 10936 assert(Op0.getNumOperands() == 2 && 10937 isa<ConstantSDNode>(Op0->getOperand(1)) && 10938 "Node should have 2 operands with second one being a constant!"); 10939 10940 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10941 return SDValue(); 10942 10943 // Custom lower is only done for high or low doubleword. 10944 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10945 if (Idx % 2 != 0) 10946 return SDValue(); 10947 10948 // Since input is v4f32, at this point Idx is either 0 or 2. 10949 // Shift to get the doubleword position we want. 10950 int DWord = Idx >> 1; 10951 10952 // High and low word positions are different on little endian. 10953 if (Subtarget.isLittleEndian()) 10954 DWord ^= 0x1; 10955 10956 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10957 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10958 } 10959 case ISD::FADD: 10960 case ISD::FMUL: 10961 case ISD::FSUB: { 10962 SDValue NewLoad[2]; 10963 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10964 // Ensure both input are loads. 10965 SDValue LdOp = Op0.getOperand(i); 10966 if (LdOp.getOpcode() != ISD::LOAD) 10967 return SDValue(); 10968 // Generate new load node. 10969 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10970 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10971 NewLoad[i] = DAG.getMemIntrinsicNode( 10972 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10973 LD->getMemoryVT(), LD->getMemOperand()); 10974 } 10975 SDValue NewOp = 10976 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10977 NewLoad[1], Op0.getNode()->getFlags()); 10978 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10979 DAG.getConstant(0, dl, MVT::i32)); 10980 } 10981 case ISD::LOAD: { 10982 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10983 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10984 SDValue NewLd = DAG.getMemIntrinsicNode( 10985 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10986 LD->getMemoryVT(), LD->getMemOperand()); 10987 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10988 DAG.getConstant(0, dl, MVT::i32)); 10989 } 10990 } 10991 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10992 } 10993 10994 /// LowerOperation - Provide custom lowering hooks for some operations. 10995 /// 10996 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10997 switch (Op.getOpcode()) { 10998 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10999 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11000 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11001 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11002 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11003 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11004 case ISD::SETCC: return LowerSETCC(Op, DAG); 11005 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11006 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11007 11008 // Variable argument lowering. 11009 case ISD::VASTART: return LowerVASTART(Op, DAG); 11010 case ISD::VAARG: return LowerVAARG(Op, DAG); 11011 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11012 11013 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11014 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11015 case ISD::GET_DYNAMIC_AREA_OFFSET: 11016 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11017 11018 // Exception handling lowering. 11019 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11020 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11021 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11022 11023 case ISD::LOAD: return LowerLOAD(Op, DAG); 11024 case ISD::STORE: return LowerSTORE(Op, DAG); 11025 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11026 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11027 case ISD::FP_TO_UINT: 11028 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11029 case ISD::UINT_TO_FP: 11030 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11031 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11032 11033 // Lower 64-bit shifts. 11034 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11035 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11036 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11037 11038 // Vector-related lowering. 11039 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11040 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11041 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11042 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11043 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 11044 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11045 case ISD::MUL: return LowerMUL(Op, DAG); 11046 case ISD::ABS: return LowerABS(Op, DAG); 11047 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11048 case ISD::ROTL: return LowerROTL(Op, DAG); 11049 11050 // For counter-based loop handling. 11051 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11052 11053 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11054 11055 // Frame & Return address. 11056 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11057 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11058 11059 case ISD::INTRINSIC_VOID: 11060 return LowerINTRINSIC_VOID(Op, DAG); 11061 case ISD::SREM: 11062 case ISD::UREM: 11063 return LowerREM(Op, DAG); 11064 case ISD::BSWAP: 11065 return LowerBSWAP(Op, DAG); 11066 case ISD::ATOMIC_CMP_SWAP: 11067 return LowerATOMIC_CMP_SWAP(Op, DAG); 11068 } 11069 } 11070 11071 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11072 SmallVectorImpl<SDValue>&Results, 11073 SelectionDAG &DAG) const { 11074 SDLoc dl(N); 11075 switch (N->getOpcode()) { 11076 default: 11077 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11078 case ISD::READCYCLECOUNTER: { 11079 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11080 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11081 11082 Results.push_back( 11083 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11084 Results.push_back(RTB.getValue(2)); 11085 break; 11086 } 11087 case ISD::INTRINSIC_W_CHAIN: { 11088 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11089 Intrinsic::loop_decrement) 11090 break; 11091 11092 assert(N->getValueType(0) == MVT::i1 && 11093 "Unexpected result type for CTR decrement intrinsic"); 11094 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11095 N->getValueType(0)); 11096 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11097 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11098 N->getOperand(1)); 11099 11100 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11101 Results.push_back(NewInt.getValue(1)); 11102 break; 11103 } 11104 case ISD::VAARG: { 11105 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11106 return; 11107 11108 EVT VT = N->getValueType(0); 11109 11110 if (VT == MVT::i64) { 11111 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11112 11113 Results.push_back(NewNode); 11114 Results.push_back(NewNode.getValue(1)); 11115 } 11116 return; 11117 } 11118 case ISD::FP_TO_SINT: 11119 case ISD::FP_TO_UINT: 11120 // LowerFP_TO_INT() can only handle f32 and f64. 11121 if (N->getOperand(0).getValueType() == MVT::ppcf128) 11122 return; 11123 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 11124 return; 11125 case ISD::TRUNCATE: { 11126 EVT TrgVT = N->getValueType(0); 11127 EVT OpVT = N->getOperand(0).getValueType(); 11128 if (TrgVT.isVector() && 11129 isOperationCustom(N->getOpcode(), TrgVT) && 11130 OpVT.getSizeInBits() <= 128 && 11131 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 11132 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 11133 return; 11134 } 11135 case ISD::BITCAST: 11136 // Don't handle bitcast here. 11137 return; 11138 case ISD::FP_EXTEND: 11139 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11140 if (Lowered) 11141 Results.push_back(Lowered); 11142 return; 11143 } 11144 } 11145 11146 //===----------------------------------------------------------------------===// 11147 // Other Lowering Code 11148 //===----------------------------------------------------------------------===// 11149 11150 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11151 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11152 Function *Func = Intrinsic::getDeclaration(M, Id); 11153 return Builder.CreateCall(Func, {}); 11154 } 11155 11156 // The mappings for emitLeading/TrailingFence is taken from 11157 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11158 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11159 Instruction *Inst, 11160 AtomicOrdering Ord) const { 11161 if (Ord == AtomicOrdering::SequentiallyConsistent) 11162 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11163 if (isReleaseOrStronger(Ord)) 11164 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11165 return nullptr; 11166 } 11167 11168 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11169 Instruction *Inst, 11170 AtomicOrdering Ord) const { 11171 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11172 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11173 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11174 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11175 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11176 return Builder.CreateCall( 11177 Intrinsic::getDeclaration( 11178 Builder.GetInsertBlock()->getParent()->getParent(), 11179 Intrinsic::ppc_cfence, {Inst->getType()}), 11180 {Inst}); 11181 // FIXME: Can use isync for rmw operation. 11182 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11183 } 11184 return nullptr; 11185 } 11186 11187 MachineBasicBlock * 11188 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11189 unsigned AtomicSize, 11190 unsigned BinOpcode, 11191 unsigned CmpOpcode, 11192 unsigned CmpPred) const { 11193 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11194 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11195 11196 auto LoadMnemonic = PPC::LDARX; 11197 auto StoreMnemonic = PPC::STDCX; 11198 switch (AtomicSize) { 11199 default: 11200 llvm_unreachable("Unexpected size of atomic entity"); 11201 case 1: 11202 LoadMnemonic = PPC::LBARX; 11203 StoreMnemonic = PPC::STBCX; 11204 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11205 break; 11206 case 2: 11207 LoadMnemonic = PPC::LHARX; 11208 StoreMnemonic = PPC::STHCX; 11209 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11210 break; 11211 case 4: 11212 LoadMnemonic = PPC::LWARX; 11213 StoreMnemonic = PPC::STWCX; 11214 break; 11215 case 8: 11216 LoadMnemonic = PPC::LDARX; 11217 StoreMnemonic = PPC::STDCX; 11218 break; 11219 } 11220 11221 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11222 MachineFunction *F = BB->getParent(); 11223 MachineFunction::iterator It = ++BB->getIterator(); 11224 11225 Register dest = MI.getOperand(0).getReg(); 11226 Register ptrA = MI.getOperand(1).getReg(); 11227 Register ptrB = MI.getOperand(2).getReg(); 11228 Register incr = MI.getOperand(3).getReg(); 11229 DebugLoc dl = MI.getDebugLoc(); 11230 11231 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11232 MachineBasicBlock *loop2MBB = 11233 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11234 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11235 F->insert(It, loopMBB); 11236 if (CmpOpcode) 11237 F->insert(It, loop2MBB); 11238 F->insert(It, exitMBB); 11239 exitMBB->splice(exitMBB->begin(), BB, 11240 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11241 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11242 11243 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11244 Register TmpReg = (!BinOpcode) ? incr : 11245 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11246 : &PPC::GPRCRegClass); 11247 11248 // thisMBB: 11249 // ... 11250 // fallthrough --> loopMBB 11251 BB->addSuccessor(loopMBB); 11252 11253 // loopMBB: 11254 // l[wd]arx dest, ptr 11255 // add r0, dest, incr 11256 // st[wd]cx. r0, ptr 11257 // bne- loopMBB 11258 // fallthrough --> exitMBB 11259 11260 // For max/min... 11261 // loopMBB: 11262 // l[wd]arx dest, ptr 11263 // cmpl?[wd] incr, dest 11264 // bgt exitMBB 11265 // loop2MBB: 11266 // st[wd]cx. dest, ptr 11267 // bne- loopMBB 11268 // fallthrough --> exitMBB 11269 11270 BB = loopMBB; 11271 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11272 .addReg(ptrA).addReg(ptrB); 11273 if (BinOpcode) 11274 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11275 if (CmpOpcode) { 11276 // Signed comparisons of byte or halfword values must be sign-extended. 11277 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11278 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11279 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11280 ExtReg).addReg(dest); 11281 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11282 .addReg(incr).addReg(ExtReg); 11283 } else 11284 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11285 .addReg(incr).addReg(dest); 11286 11287 BuildMI(BB, dl, TII->get(PPC::BCC)) 11288 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11289 BB->addSuccessor(loop2MBB); 11290 BB->addSuccessor(exitMBB); 11291 BB = loop2MBB; 11292 } 11293 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11294 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11295 BuildMI(BB, dl, TII->get(PPC::BCC)) 11296 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11297 BB->addSuccessor(loopMBB); 11298 BB->addSuccessor(exitMBB); 11299 11300 // exitMBB: 11301 // ... 11302 BB = exitMBB; 11303 return BB; 11304 } 11305 11306 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11307 MachineInstr &MI, MachineBasicBlock *BB, 11308 bool is8bit, // operation 11309 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11310 // If we support part-word atomic mnemonics, just use them 11311 if (Subtarget.hasPartwordAtomics()) 11312 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11313 CmpPred); 11314 11315 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11316 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11317 // In 64 bit mode we have to use 64 bits for addresses, even though the 11318 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11319 // registers without caring whether they're 32 or 64, but here we're 11320 // doing actual arithmetic on the addresses. 11321 bool is64bit = Subtarget.isPPC64(); 11322 bool isLittleEndian = Subtarget.isLittleEndian(); 11323 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11324 11325 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11326 MachineFunction *F = BB->getParent(); 11327 MachineFunction::iterator It = ++BB->getIterator(); 11328 11329 Register dest = MI.getOperand(0).getReg(); 11330 Register ptrA = MI.getOperand(1).getReg(); 11331 Register ptrB = MI.getOperand(2).getReg(); 11332 Register incr = MI.getOperand(3).getReg(); 11333 DebugLoc dl = MI.getDebugLoc(); 11334 11335 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11336 MachineBasicBlock *loop2MBB = 11337 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11338 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11339 F->insert(It, loopMBB); 11340 if (CmpOpcode) 11341 F->insert(It, loop2MBB); 11342 F->insert(It, exitMBB); 11343 exitMBB->splice(exitMBB->begin(), BB, 11344 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11345 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11346 11347 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11348 const TargetRegisterClass *RC = 11349 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11350 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11351 11352 Register PtrReg = RegInfo.createVirtualRegister(RC); 11353 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11354 Register ShiftReg = 11355 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11356 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11357 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11358 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11359 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11360 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11361 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11362 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11363 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11364 Register Ptr1Reg; 11365 Register TmpReg = 11366 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11367 11368 // thisMBB: 11369 // ... 11370 // fallthrough --> loopMBB 11371 BB->addSuccessor(loopMBB); 11372 11373 // The 4-byte load must be aligned, while a char or short may be 11374 // anywhere in the word. Hence all this nasty bookkeeping code. 11375 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11376 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11377 // xori shift, shift1, 24 [16] 11378 // rlwinm ptr, ptr1, 0, 0, 29 11379 // slw incr2, incr, shift 11380 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11381 // slw mask, mask2, shift 11382 // loopMBB: 11383 // lwarx tmpDest, ptr 11384 // add tmp, tmpDest, incr2 11385 // andc tmp2, tmpDest, mask 11386 // and tmp3, tmp, mask 11387 // or tmp4, tmp3, tmp2 11388 // stwcx. tmp4, ptr 11389 // bne- loopMBB 11390 // fallthrough --> exitMBB 11391 // srw dest, tmpDest, shift 11392 if (ptrA != ZeroReg) { 11393 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11394 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11395 .addReg(ptrA) 11396 .addReg(ptrB); 11397 } else { 11398 Ptr1Reg = ptrB; 11399 } 11400 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11401 // mode. 11402 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11403 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11404 .addImm(3) 11405 .addImm(27) 11406 .addImm(is8bit ? 28 : 27); 11407 if (!isLittleEndian) 11408 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11409 .addReg(Shift1Reg) 11410 .addImm(is8bit ? 24 : 16); 11411 if (is64bit) 11412 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11413 .addReg(Ptr1Reg) 11414 .addImm(0) 11415 .addImm(61); 11416 else 11417 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11418 .addReg(Ptr1Reg) 11419 .addImm(0) 11420 .addImm(0) 11421 .addImm(29); 11422 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11423 if (is8bit) 11424 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11425 else { 11426 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11427 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11428 .addReg(Mask3Reg) 11429 .addImm(65535); 11430 } 11431 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11432 .addReg(Mask2Reg) 11433 .addReg(ShiftReg); 11434 11435 BB = loopMBB; 11436 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11437 .addReg(ZeroReg) 11438 .addReg(PtrReg); 11439 if (BinOpcode) 11440 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11441 .addReg(Incr2Reg) 11442 .addReg(TmpDestReg); 11443 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11444 .addReg(TmpDestReg) 11445 .addReg(MaskReg); 11446 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11447 if (CmpOpcode) { 11448 // For unsigned comparisons, we can directly compare the shifted values. 11449 // For signed comparisons we shift and sign extend. 11450 Register SReg = RegInfo.createVirtualRegister(GPRC); 11451 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11452 .addReg(TmpDestReg) 11453 .addReg(MaskReg); 11454 unsigned ValueReg = SReg; 11455 unsigned CmpReg = Incr2Reg; 11456 if (CmpOpcode == PPC::CMPW) { 11457 ValueReg = RegInfo.createVirtualRegister(GPRC); 11458 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11459 .addReg(SReg) 11460 .addReg(ShiftReg); 11461 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11462 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11463 .addReg(ValueReg); 11464 ValueReg = ValueSReg; 11465 CmpReg = incr; 11466 } 11467 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11468 .addReg(CmpReg) 11469 .addReg(ValueReg); 11470 BuildMI(BB, dl, TII->get(PPC::BCC)) 11471 .addImm(CmpPred) 11472 .addReg(PPC::CR0) 11473 .addMBB(exitMBB); 11474 BB->addSuccessor(loop2MBB); 11475 BB->addSuccessor(exitMBB); 11476 BB = loop2MBB; 11477 } 11478 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11479 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11480 .addReg(Tmp4Reg) 11481 .addReg(ZeroReg) 11482 .addReg(PtrReg); 11483 BuildMI(BB, dl, TII->get(PPC::BCC)) 11484 .addImm(PPC::PRED_NE) 11485 .addReg(PPC::CR0) 11486 .addMBB(loopMBB); 11487 BB->addSuccessor(loopMBB); 11488 BB->addSuccessor(exitMBB); 11489 11490 // exitMBB: 11491 // ... 11492 BB = exitMBB; 11493 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11494 .addReg(TmpDestReg) 11495 .addReg(ShiftReg); 11496 return BB; 11497 } 11498 11499 llvm::MachineBasicBlock * 11500 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11501 MachineBasicBlock *MBB) const { 11502 DebugLoc DL = MI.getDebugLoc(); 11503 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11504 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11505 11506 MachineFunction *MF = MBB->getParent(); 11507 MachineRegisterInfo &MRI = MF->getRegInfo(); 11508 11509 const BasicBlock *BB = MBB->getBasicBlock(); 11510 MachineFunction::iterator I = ++MBB->getIterator(); 11511 11512 Register DstReg = MI.getOperand(0).getReg(); 11513 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11514 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11515 Register mainDstReg = MRI.createVirtualRegister(RC); 11516 Register restoreDstReg = MRI.createVirtualRegister(RC); 11517 11518 MVT PVT = getPointerTy(MF->getDataLayout()); 11519 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11520 "Invalid Pointer Size!"); 11521 // For v = setjmp(buf), we generate 11522 // 11523 // thisMBB: 11524 // SjLjSetup mainMBB 11525 // bl mainMBB 11526 // v_restore = 1 11527 // b sinkMBB 11528 // 11529 // mainMBB: 11530 // buf[LabelOffset] = LR 11531 // v_main = 0 11532 // 11533 // sinkMBB: 11534 // v = phi(main, restore) 11535 // 11536 11537 MachineBasicBlock *thisMBB = MBB; 11538 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11539 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11540 MF->insert(I, mainMBB); 11541 MF->insert(I, sinkMBB); 11542 11543 MachineInstrBuilder MIB; 11544 11545 // Transfer the remainder of BB and its successor edges to sinkMBB. 11546 sinkMBB->splice(sinkMBB->begin(), MBB, 11547 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11548 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11549 11550 // Note that the structure of the jmp_buf used here is not compatible 11551 // with that used by libc, and is not designed to be. Specifically, it 11552 // stores only those 'reserved' registers that LLVM does not otherwise 11553 // understand how to spill. Also, by convention, by the time this 11554 // intrinsic is called, Clang has already stored the frame address in the 11555 // first slot of the buffer and stack address in the third. Following the 11556 // X86 target code, we'll store the jump address in the second slot. We also 11557 // need to save the TOC pointer (R2) to handle jumps between shared 11558 // libraries, and that will be stored in the fourth slot. The thread 11559 // identifier (R13) is not affected. 11560 11561 // thisMBB: 11562 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11563 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11564 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11565 11566 // Prepare IP either in reg. 11567 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11568 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11569 Register BufReg = MI.getOperand(1).getReg(); 11570 11571 if (Subtarget.is64BitELFABI()) { 11572 setUsesTOCBasePtr(*MBB->getParent()); 11573 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11574 .addReg(PPC::X2) 11575 .addImm(TOCOffset) 11576 .addReg(BufReg) 11577 .cloneMemRefs(MI); 11578 } 11579 11580 // Naked functions never have a base pointer, and so we use r1. For all 11581 // other functions, this decision must be delayed until during PEI. 11582 unsigned BaseReg; 11583 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11584 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11585 else 11586 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11587 11588 MIB = BuildMI(*thisMBB, MI, DL, 11589 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11590 .addReg(BaseReg) 11591 .addImm(BPOffset) 11592 .addReg(BufReg) 11593 .cloneMemRefs(MI); 11594 11595 // Setup 11596 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11597 MIB.addRegMask(TRI->getNoPreservedMask()); 11598 11599 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11600 11601 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11602 .addMBB(mainMBB); 11603 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11604 11605 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11606 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11607 11608 // mainMBB: 11609 // mainDstReg = 0 11610 MIB = 11611 BuildMI(mainMBB, DL, 11612 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11613 11614 // Store IP 11615 if (Subtarget.isPPC64()) { 11616 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11617 .addReg(LabelReg) 11618 .addImm(LabelOffset) 11619 .addReg(BufReg); 11620 } else { 11621 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11622 .addReg(LabelReg) 11623 .addImm(LabelOffset) 11624 .addReg(BufReg); 11625 } 11626 MIB.cloneMemRefs(MI); 11627 11628 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11629 mainMBB->addSuccessor(sinkMBB); 11630 11631 // sinkMBB: 11632 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11633 TII->get(PPC::PHI), DstReg) 11634 .addReg(mainDstReg).addMBB(mainMBB) 11635 .addReg(restoreDstReg).addMBB(thisMBB); 11636 11637 MI.eraseFromParent(); 11638 return sinkMBB; 11639 } 11640 11641 MachineBasicBlock * 11642 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11643 MachineBasicBlock *MBB) const { 11644 DebugLoc DL = MI.getDebugLoc(); 11645 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11646 11647 MachineFunction *MF = MBB->getParent(); 11648 MachineRegisterInfo &MRI = MF->getRegInfo(); 11649 11650 MVT PVT = getPointerTy(MF->getDataLayout()); 11651 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11652 "Invalid Pointer Size!"); 11653 11654 const TargetRegisterClass *RC = 11655 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11656 Register Tmp = MRI.createVirtualRegister(RC); 11657 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11658 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11659 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11660 unsigned BP = 11661 (PVT == MVT::i64) 11662 ? PPC::X30 11663 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11664 : PPC::R30); 11665 11666 MachineInstrBuilder MIB; 11667 11668 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11669 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11670 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11671 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11672 11673 Register BufReg = MI.getOperand(0).getReg(); 11674 11675 // Reload FP (the jumped-to function may not have had a 11676 // frame pointer, and if so, then its r31 will be restored 11677 // as necessary). 11678 if (PVT == MVT::i64) { 11679 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11680 .addImm(0) 11681 .addReg(BufReg); 11682 } else { 11683 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11684 .addImm(0) 11685 .addReg(BufReg); 11686 } 11687 MIB.cloneMemRefs(MI); 11688 11689 // Reload IP 11690 if (PVT == MVT::i64) { 11691 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11692 .addImm(LabelOffset) 11693 .addReg(BufReg); 11694 } else { 11695 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11696 .addImm(LabelOffset) 11697 .addReg(BufReg); 11698 } 11699 MIB.cloneMemRefs(MI); 11700 11701 // Reload SP 11702 if (PVT == MVT::i64) { 11703 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11704 .addImm(SPOffset) 11705 .addReg(BufReg); 11706 } else { 11707 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11708 .addImm(SPOffset) 11709 .addReg(BufReg); 11710 } 11711 MIB.cloneMemRefs(MI); 11712 11713 // Reload BP 11714 if (PVT == MVT::i64) { 11715 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11716 .addImm(BPOffset) 11717 .addReg(BufReg); 11718 } else { 11719 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11720 .addImm(BPOffset) 11721 .addReg(BufReg); 11722 } 11723 MIB.cloneMemRefs(MI); 11724 11725 // Reload TOC 11726 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11727 setUsesTOCBasePtr(*MBB->getParent()); 11728 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11729 .addImm(TOCOffset) 11730 .addReg(BufReg) 11731 .cloneMemRefs(MI); 11732 } 11733 11734 // Jump 11735 BuildMI(*MBB, MI, DL, 11736 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11737 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11738 11739 MI.eraseFromParent(); 11740 return MBB; 11741 } 11742 11743 MachineBasicBlock * 11744 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11745 MachineBasicBlock *BB) const { 11746 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11747 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11748 if (Subtarget.is64BitELFABI() && 11749 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11750 !Subtarget.isUsingPCRelativeCalls()) { 11751 // Call lowering should have added an r2 operand to indicate a dependence 11752 // on the TOC base pointer value. It can't however, because there is no 11753 // way to mark the dependence as implicit there, and so the stackmap code 11754 // will confuse it with a regular operand. Instead, add the dependence 11755 // here. 11756 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11757 } 11758 11759 return emitPatchPoint(MI, BB); 11760 } 11761 11762 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11763 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11764 return emitEHSjLjSetJmp(MI, BB); 11765 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11766 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11767 return emitEHSjLjLongJmp(MI, BB); 11768 } 11769 11770 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11771 11772 // To "insert" these instructions we actually have to insert their 11773 // control-flow patterns. 11774 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11775 MachineFunction::iterator It = ++BB->getIterator(); 11776 11777 MachineFunction *F = BB->getParent(); 11778 11779 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11780 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11781 MI.getOpcode() == PPC::SELECT_I8) { 11782 SmallVector<MachineOperand, 2> Cond; 11783 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11784 MI.getOpcode() == PPC::SELECT_CC_I8) 11785 Cond.push_back(MI.getOperand(4)); 11786 else 11787 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11788 Cond.push_back(MI.getOperand(1)); 11789 11790 DebugLoc dl = MI.getDebugLoc(); 11791 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11792 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11793 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11794 MI.getOpcode() == PPC::SELECT_CC_F8 || 11795 MI.getOpcode() == PPC::SELECT_CC_F16 || 11796 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11797 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11798 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11799 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11800 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11801 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11802 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11803 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11804 MI.getOpcode() == PPC::SELECT_CC_SPE || 11805 MI.getOpcode() == PPC::SELECT_F4 || 11806 MI.getOpcode() == PPC::SELECT_F8 || 11807 MI.getOpcode() == PPC::SELECT_F16 || 11808 MI.getOpcode() == PPC::SELECT_QFRC || 11809 MI.getOpcode() == PPC::SELECT_QSRC || 11810 MI.getOpcode() == PPC::SELECT_QBRC || 11811 MI.getOpcode() == PPC::SELECT_SPE || 11812 MI.getOpcode() == PPC::SELECT_SPE4 || 11813 MI.getOpcode() == PPC::SELECT_VRRC || 11814 MI.getOpcode() == PPC::SELECT_VSFRC || 11815 MI.getOpcode() == PPC::SELECT_VSSRC || 11816 MI.getOpcode() == PPC::SELECT_VSRC) { 11817 // The incoming instruction knows the destination vreg to set, the 11818 // condition code register to branch on, the true/false values to 11819 // select between, and a branch opcode to use. 11820 11821 // thisMBB: 11822 // ... 11823 // TrueVal = ... 11824 // cmpTY ccX, r1, r2 11825 // bCC copy1MBB 11826 // fallthrough --> copy0MBB 11827 MachineBasicBlock *thisMBB = BB; 11828 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11829 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11830 DebugLoc dl = MI.getDebugLoc(); 11831 F->insert(It, copy0MBB); 11832 F->insert(It, sinkMBB); 11833 11834 // Transfer the remainder of BB and its successor edges to sinkMBB. 11835 sinkMBB->splice(sinkMBB->begin(), BB, 11836 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11837 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11838 11839 // Next, add the true and fallthrough blocks as its successors. 11840 BB->addSuccessor(copy0MBB); 11841 BB->addSuccessor(sinkMBB); 11842 11843 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11844 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11845 MI.getOpcode() == PPC::SELECT_F16 || 11846 MI.getOpcode() == PPC::SELECT_SPE4 || 11847 MI.getOpcode() == PPC::SELECT_SPE || 11848 MI.getOpcode() == PPC::SELECT_QFRC || 11849 MI.getOpcode() == PPC::SELECT_QSRC || 11850 MI.getOpcode() == PPC::SELECT_QBRC || 11851 MI.getOpcode() == PPC::SELECT_VRRC || 11852 MI.getOpcode() == PPC::SELECT_VSFRC || 11853 MI.getOpcode() == PPC::SELECT_VSSRC || 11854 MI.getOpcode() == PPC::SELECT_VSRC) { 11855 BuildMI(BB, dl, TII->get(PPC::BC)) 11856 .addReg(MI.getOperand(1).getReg()) 11857 .addMBB(sinkMBB); 11858 } else { 11859 unsigned SelectPred = MI.getOperand(4).getImm(); 11860 BuildMI(BB, dl, TII->get(PPC::BCC)) 11861 .addImm(SelectPred) 11862 .addReg(MI.getOperand(1).getReg()) 11863 .addMBB(sinkMBB); 11864 } 11865 11866 // copy0MBB: 11867 // %FalseValue = ... 11868 // # fallthrough to sinkMBB 11869 BB = copy0MBB; 11870 11871 // Update machine-CFG edges 11872 BB->addSuccessor(sinkMBB); 11873 11874 // sinkMBB: 11875 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11876 // ... 11877 BB = sinkMBB; 11878 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11879 .addReg(MI.getOperand(3).getReg()) 11880 .addMBB(copy0MBB) 11881 .addReg(MI.getOperand(2).getReg()) 11882 .addMBB(thisMBB); 11883 } else if (MI.getOpcode() == PPC::ReadTB) { 11884 // To read the 64-bit time-base register on a 32-bit target, we read the 11885 // two halves. Should the counter have wrapped while it was being read, we 11886 // need to try again. 11887 // ... 11888 // readLoop: 11889 // mfspr Rx,TBU # load from TBU 11890 // mfspr Ry,TB # load from TB 11891 // mfspr Rz,TBU # load from TBU 11892 // cmpw crX,Rx,Rz # check if 'old'='new' 11893 // bne readLoop # branch if they're not equal 11894 // ... 11895 11896 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11897 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11898 DebugLoc dl = MI.getDebugLoc(); 11899 F->insert(It, readMBB); 11900 F->insert(It, sinkMBB); 11901 11902 // Transfer the remainder of BB and its successor edges to sinkMBB. 11903 sinkMBB->splice(sinkMBB->begin(), BB, 11904 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11905 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11906 11907 BB->addSuccessor(readMBB); 11908 BB = readMBB; 11909 11910 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11911 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11912 Register LoReg = MI.getOperand(0).getReg(); 11913 Register HiReg = MI.getOperand(1).getReg(); 11914 11915 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11916 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11917 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11918 11919 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11920 11921 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11922 .addReg(HiReg) 11923 .addReg(ReadAgainReg); 11924 BuildMI(BB, dl, TII->get(PPC::BCC)) 11925 .addImm(PPC::PRED_NE) 11926 .addReg(CmpReg) 11927 .addMBB(readMBB); 11928 11929 BB->addSuccessor(readMBB); 11930 BB->addSuccessor(sinkMBB); 11931 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11932 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11933 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11934 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11935 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11936 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11937 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11938 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11939 11940 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11941 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11942 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11943 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11944 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11945 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11946 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11947 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11948 11949 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11950 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11951 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11952 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11953 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11954 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11955 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11956 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11957 11958 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11959 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11960 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11961 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11962 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11963 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11964 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11965 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11966 11967 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11968 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11969 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11970 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11971 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11972 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11973 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11974 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11975 11976 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11977 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11978 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11979 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11980 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11981 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11982 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11983 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11984 11985 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11986 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11987 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11988 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11989 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11990 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11991 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11992 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11993 11994 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11995 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11996 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11997 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11998 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11999 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12000 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12001 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12002 12003 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12004 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12005 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12006 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12007 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12008 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12009 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12010 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12011 12012 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12013 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12014 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12015 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12016 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12017 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12018 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12019 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12020 12021 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12022 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12023 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12024 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12025 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12026 BB = EmitAtomicBinary(MI, BB, 4, 0); 12027 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12028 BB = EmitAtomicBinary(MI, BB, 8, 0); 12029 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12030 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12031 (Subtarget.hasPartwordAtomics() && 12032 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12033 (Subtarget.hasPartwordAtomics() && 12034 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12035 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12036 12037 auto LoadMnemonic = PPC::LDARX; 12038 auto StoreMnemonic = PPC::STDCX; 12039 switch (MI.getOpcode()) { 12040 default: 12041 llvm_unreachable("Compare and swap of unknown size"); 12042 case PPC::ATOMIC_CMP_SWAP_I8: 12043 LoadMnemonic = PPC::LBARX; 12044 StoreMnemonic = PPC::STBCX; 12045 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12046 break; 12047 case PPC::ATOMIC_CMP_SWAP_I16: 12048 LoadMnemonic = PPC::LHARX; 12049 StoreMnemonic = PPC::STHCX; 12050 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12051 break; 12052 case PPC::ATOMIC_CMP_SWAP_I32: 12053 LoadMnemonic = PPC::LWARX; 12054 StoreMnemonic = PPC::STWCX; 12055 break; 12056 case PPC::ATOMIC_CMP_SWAP_I64: 12057 LoadMnemonic = PPC::LDARX; 12058 StoreMnemonic = PPC::STDCX; 12059 break; 12060 } 12061 Register dest = MI.getOperand(0).getReg(); 12062 Register ptrA = MI.getOperand(1).getReg(); 12063 Register ptrB = MI.getOperand(2).getReg(); 12064 Register oldval = MI.getOperand(3).getReg(); 12065 Register newval = MI.getOperand(4).getReg(); 12066 DebugLoc dl = MI.getDebugLoc(); 12067 12068 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12069 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12070 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12071 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12072 F->insert(It, loop1MBB); 12073 F->insert(It, loop2MBB); 12074 F->insert(It, midMBB); 12075 F->insert(It, exitMBB); 12076 exitMBB->splice(exitMBB->begin(), BB, 12077 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12078 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12079 12080 // thisMBB: 12081 // ... 12082 // fallthrough --> loopMBB 12083 BB->addSuccessor(loop1MBB); 12084 12085 // loop1MBB: 12086 // l[bhwd]arx dest, ptr 12087 // cmp[wd] dest, oldval 12088 // bne- midMBB 12089 // loop2MBB: 12090 // st[bhwd]cx. newval, ptr 12091 // bne- loopMBB 12092 // b exitBB 12093 // midMBB: 12094 // st[bhwd]cx. dest, ptr 12095 // exitBB: 12096 BB = loop1MBB; 12097 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12098 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12099 .addReg(oldval) 12100 .addReg(dest); 12101 BuildMI(BB, dl, TII->get(PPC::BCC)) 12102 .addImm(PPC::PRED_NE) 12103 .addReg(PPC::CR0) 12104 .addMBB(midMBB); 12105 BB->addSuccessor(loop2MBB); 12106 BB->addSuccessor(midMBB); 12107 12108 BB = loop2MBB; 12109 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12110 .addReg(newval) 12111 .addReg(ptrA) 12112 .addReg(ptrB); 12113 BuildMI(BB, dl, TII->get(PPC::BCC)) 12114 .addImm(PPC::PRED_NE) 12115 .addReg(PPC::CR0) 12116 .addMBB(loop1MBB); 12117 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12118 BB->addSuccessor(loop1MBB); 12119 BB->addSuccessor(exitMBB); 12120 12121 BB = midMBB; 12122 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12123 .addReg(dest) 12124 .addReg(ptrA) 12125 .addReg(ptrB); 12126 BB->addSuccessor(exitMBB); 12127 12128 // exitMBB: 12129 // ... 12130 BB = exitMBB; 12131 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12132 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12133 // We must use 64-bit registers for addresses when targeting 64-bit, 12134 // since we're actually doing arithmetic on them. Other registers 12135 // can be 32-bit. 12136 bool is64bit = Subtarget.isPPC64(); 12137 bool isLittleEndian = Subtarget.isLittleEndian(); 12138 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12139 12140 Register dest = MI.getOperand(0).getReg(); 12141 Register ptrA = MI.getOperand(1).getReg(); 12142 Register ptrB = MI.getOperand(2).getReg(); 12143 Register oldval = MI.getOperand(3).getReg(); 12144 Register newval = MI.getOperand(4).getReg(); 12145 DebugLoc dl = MI.getDebugLoc(); 12146 12147 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12148 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12149 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12150 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12151 F->insert(It, loop1MBB); 12152 F->insert(It, loop2MBB); 12153 F->insert(It, midMBB); 12154 F->insert(It, exitMBB); 12155 exitMBB->splice(exitMBB->begin(), BB, 12156 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12157 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12158 12159 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12160 const TargetRegisterClass *RC = 12161 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12162 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12163 12164 Register PtrReg = RegInfo.createVirtualRegister(RC); 12165 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12166 Register ShiftReg = 12167 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12168 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12169 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12170 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12171 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12172 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12173 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12174 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12175 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12176 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12177 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12178 Register Ptr1Reg; 12179 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12180 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12181 // thisMBB: 12182 // ... 12183 // fallthrough --> loopMBB 12184 BB->addSuccessor(loop1MBB); 12185 12186 // The 4-byte load must be aligned, while a char or short may be 12187 // anywhere in the word. Hence all this nasty bookkeeping code. 12188 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12189 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12190 // xori shift, shift1, 24 [16] 12191 // rlwinm ptr, ptr1, 0, 0, 29 12192 // slw newval2, newval, shift 12193 // slw oldval2, oldval,shift 12194 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12195 // slw mask, mask2, shift 12196 // and newval3, newval2, mask 12197 // and oldval3, oldval2, mask 12198 // loop1MBB: 12199 // lwarx tmpDest, ptr 12200 // and tmp, tmpDest, mask 12201 // cmpw tmp, oldval3 12202 // bne- midMBB 12203 // loop2MBB: 12204 // andc tmp2, tmpDest, mask 12205 // or tmp4, tmp2, newval3 12206 // stwcx. tmp4, ptr 12207 // bne- loop1MBB 12208 // b exitBB 12209 // midMBB: 12210 // stwcx. tmpDest, ptr 12211 // exitBB: 12212 // srw dest, tmpDest, shift 12213 if (ptrA != ZeroReg) { 12214 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12215 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12216 .addReg(ptrA) 12217 .addReg(ptrB); 12218 } else { 12219 Ptr1Reg = ptrB; 12220 } 12221 12222 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12223 // mode. 12224 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12225 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12226 .addImm(3) 12227 .addImm(27) 12228 .addImm(is8bit ? 28 : 27); 12229 if (!isLittleEndian) 12230 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12231 .addReg(Shift1Reg) 12232 .addImm(is8bit ? 24 : 16); 12233 if (is64bit) 12234 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12235 .addReg(Ptr1Reg) 12236 .addImm(0) 12237 .addImm(61); 12238 else 12239 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12240 .addReg(Ptr1Reg) 12241 .addImm(0) 12242 .addImm(0) 12243 .addImm(29); 12244 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12245 .addReg(newval) 12246 .addReg(ShiftReg); 12247 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12248 .addReg(oldval) 12249 .addReg(ShiftReg); 12250 if (is8bit) 12251 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12252 else { 12253 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12254 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12255 .addReg(Mask3Reg) 12256 .addImm(65535); 12257 } 12258 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12259 .addReg(Mask2Reg) 12260 .addReg(ShiftReg); 12261 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12262 .addReg(NewVal2Reg) 12263 .addReg(MaskReg); 12264 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12265 .addReg(OldVal2Reg) 12266 .addReg(MaskReg); 12267 12268 BB = loop1MBB; 12269 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12270 .addReg(ZeroReg) 12271 .addReg(PtrReg); 12272 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12273 .addReg(TmpDestReg) 12274 .addReg(MaskReg); 12275 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12276 .addReg(TmpReg) 12277 .addReg(OldVal3Reg); 12278 BuildMI(BB, dl, TII->get(PPC::BCC)) 12279 .addImm(PPC::PRED_NE) 12280 .addReg(PPC::CR0) 12281 .addMBB(midMBB); 12282 BB->addSuccessor(loop2MBB); 12283 BB->addSuccessor(midMBB); 12284 12285 BB = loop2MBB; 12286 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12287 .addReg(TmpDestReg) 12288 .addReg(MaskReg); 12289 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12290 .addReg(Tmp2Reg) 12291 .addReg(NewVal3Reg); 12292 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12293 .addReg(Tmp4Reg) 12294 .addReg(ZeroReg) 12295 .addReg(PtrReg); 12296 BuildMI(BB, dl, TII->get(PPC::BCC)) 12297 .addImm(PPC::PRED_NE) 12298 .addReg(PPC::CR0) 12299 .addMBB(loop1MBB); 12300 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12301 BB->addSuccessor(loop1MBB); 12302 BB->addSuccessor(exitMBB); 12303 12304 BB = midMBB; 12305 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12306 .addReg(TmpDestReg) 12307 .addReg(ZeroReg) 12308 .addReg(PtrReg); 12309 BB->addSuccessor(exitMBB); 12310 12311 // exitMBB: 12312 // ... 12313 BB = exitMBB; 12314 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12315 .addReg(TmpReg) 12316 .addReg(ShiftReg); 12317 } else if (MI.getOpcode() == PPC::FADDrtz) { 12318 // This pseudo performs an FADD with rounding mode temporarily forced 12319 // to round-to-zero. We emit this via custom inserter since the FPSCR 12320 // is not modeled at the SelectionDAG level. 12321 Register Dest = MI.getOperand(0).getReg(); 12322 Register Src1 = MI.getOperand(1).getReg(); 12323 Register Src2 = MI.getOperand(2).getReg(); 12324 DebugLoc dl = MI.getDebugLoc(); 12325 12326 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12327 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12328 12329 // Save FPSCR value. 12330 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12331 12332 // Set rounding mode to round-to-zero. 12333 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12334 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12335 12336 // Perform addition. 12337 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12338 12339 // Restore FPSCR value. 12340 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12341 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12342 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12343 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12344 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12345 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12346 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12347 ? PPC::ANDI8_rec 12348 : PPC::ANDI_rec; 12349 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12350 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12351 12352 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12353 Register Dest = RegInfo.createVirtualRegister( 12354 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12355 12356 DebugLoc Dl = MI.getDebugLoc(); 12357 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12358 .addReg(MI.getOperand(1).getReg()) 12359 .addImm(1); 12360 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12361 MI.getOperand(0).getReg()) 12362 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12363 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12364 DebugLoc Dl = MI.getDebugLoc(); 12365 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12366 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12367 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12368 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12369 MI.getOperand(0).getReg()) 12370 .addReg(CRReg); 12371 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12372 DebugLoc Dl = MI.getDebugLoc(); 12373 unsigned Imm = MI.getOperand(1).getImm(); 12374 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12375 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12376 MI.getOperand(0).getReg()) 12377 .addReg(PPC::CR0EQ); 12378 } else if (MI.getOpcode() == PPC::SETRNDi) { 12379 DebugLoc dl = MI.getDebugLoc(); 12380 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12381 12382 // Save FPSCR value. 12383 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12384 12385 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12386 // the following settings: 12387 // 00 Round to nearest 12388 // 01 Round to 0 12389 // 10 Round to +inf 12390 // 11 Round to -inf 12391 12392 // When the operand is immediate, using the two least significant bits of 12393 // the immediate to set the bits 62:63 of FPSCR. 12394 unsigned Mode = MI.getOperand(1).getImm(); 12395 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12396 .addImm(31); 12397 12398 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12399 .addImm(30); 12400 } else if (MI.getOpcode() == PPC::SETRND) { 12401 DebugLoc dl = MI.getDebugLoc(); 12402 12403 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12404 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12405 // If the target doesn't have DirectMove, we should use stack to do the 12406 // conversion, because the target doesn't have the instructions like mtvsrd 12407 // or mfvsrd to do this conversion directly. 12408 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12409 if (Subtarget.hasDirectMove()) { 12410 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12411 .addReg(SrcReg); 12412 } else { 12413 // Use stack to do the register copy. 12414 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12415 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12416 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12417 if (RC == &PPC::F8RCRegClass) { 12418 // Copy register from F8RCRegClass to G8RCRegclass. 12419 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12420 "Unsupported RegClass."); 12421 12422 StoreOp = PPC::STFD; 12423 LoadOp = PPC::LD; 12424 } else { 12425 // Copy register from G8RCRegClass to F8RCRegclass. 12426 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12427 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12428 "Unsupported RegClass."); 12429 } 12430 12431 MachineFrameInfo &MFI = F->getFrameInfo(); 12432 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12433 12434 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12435 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12436 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12437 MFI.getObjectAlign(FrameIdx)); 12438 12439 // Store the SrcReg into the stack. 12440 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12441 .addReg(SrcReg) 12442 .addImm(0) 12443 .addFrameIndex(FrameIdx) 12444 .addMemOperand(MMOStore); 12445 12446 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12447 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12448 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12449 MFI.getObjectAlign(FrameIdx)); 12450 12451 // Load from the stack where SrcReg is stored, and save to DestReg, 12452 // so we have done the RegClass conversion from RegClass::SrcReg to 12453 // RegClass::DestReg. 12454 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12455 .addImm(0) 12456 .addFrameIndex(FrameIdx) 12457 .addMemOperand(MMOLoad); 12458 } 12459 }; 12460 12461 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12462 12463 // Save FPSCR value. 12464 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12465 12466 // When the operand is gprc register, use two least significant bits of the 12467 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12468 // 12469 // copy OldFPSCRTmpReg, OldFPSCRReg 12470 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12471 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12472 // copy NewFPSCRReg, NewFPSCRTmpReg 12473 // mtfsf 255, NewFPSCRReg 12474 MachineOperand SrcOp = MI.getOperand(1); 12475 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12476 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12477 12478 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12479 12480 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12481 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12482 12483 // The first operand of INSERT_SUBREG should be a register which has 12484 // subregisters, we only care about its RegClass, so we should use an 12485 // IMPLICIT_DEF register. 12486 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12487 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12488 .addReg(ImDefReg) 12489 .add(SrcOp) 12490 .addImm(1); 12491 12492 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12493 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12494 .addReg(OldFPSCRTmpReg) 12495 .addReg(ExtSrcReg) 12496 .addImm(0) 12497 .addImm(62); 12498 12499 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12500 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12501 12502 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12503 // bits of FPSCR. 12504 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12505 .addImm(255) 12506 .addReg(NewFPSCRReg) 12507 .addImm(0) 12508 .addImm(0); 12509 } else { 12510 llvm_unreachable("Unexpected instr type to insert"); 12511 } 12512 12513 MI.eraseFromParent(); // The pseudo instruction is gone now. 12514 return BB; 12515 } 12516 12517 //===----------------------------------------------------------------------===// 12518 // Target Optimization Hooks 12519 //===----------------------------------------------------------------------===// 12520 12521 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12522 // For the estimates, convergence is quadratic, so we essentially double the 12523 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12524 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12525 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12526 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12527 if (VT.getScalarType() == MVT::f64) 12528 RefinementSteps++; 12529 return RefinementSteps; 12530 } 12531 12532 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12533 int Enabled, int &RefinementSteps, 12534 bool &UseOneConstNR, 12535 bool Reciprocal) const { 12536 EVT VT = Operand.getValueType(); 12537 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12538 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12539 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12540 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12541 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12542 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12543 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12544 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12545 12546 // The Newton-Raphson computation with a single constant does not provide 12547 // enough accuracy on some CPUs. 12548 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12549 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12550 } 12551 return SDValue(); 12552 } 12553 12554 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12555 int Enabled, 12556 int &RefinementSteps) const { 12557 EVT VT = Operand.getValueType(); 12558 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12559 (VT == MVT::f64 && Subtarget.hasFRE()) || 12560 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12561 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12562 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12563 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12564 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12565 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12566 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12567 } 12568 return SDValue(); 12569 } 12570 12571 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12572 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12573 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12574 // enabled for division), this functionality is redundant with the default 12575 // combiner logic (once the division -> reciprocal/multiply transformation 12576 // has taken place). As a result, this matters more for older cores than for 12577 // newer ones. 12578 12579 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12580 // reciprocal if there are two or more FDIVs (for embedded cores with only 12581 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12582 switch (Subtarget.getCPUDirective()) { 12583 default: 12584 return 3; 12585 case PPC::DIR_440: 12586 case PPC::DIR_A2: 12587 case PPC::DIR_E500: 12588 case PPC::DIR_E500mc: 12589 case PPC::DIR_E5500: 12590 return 2; 12591 } 12592 } 12593 12594 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12595 // collapsed, and so we need to look through chains of them. 12596 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12597 int64_t& Offset, SelectionDAG &DAG) { 12598 if (DAG.isBaseWithConstantOffset(Loc)) { 12599 Base = Loc.getOperand(0); 12600 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12601 12602 // The base might itself be a base plus an offset, and if so, accumulate 12603 // that as well. 12604 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12605 } 12606 } 12607 12608 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12609 unsigned Bytes, int Dist, 12610 SelectionDAG &DAG) { 12611 if (VT.getSizeInBits() / 8 != Bytes) 12612 return false; 12613 12614 SDValue BaseLoc = Base->getBasePtr(); 12615 if (Loc.getOpcode() == ISD::FrameIndex) { 12616 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12617 return false; 12618 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12619 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12620 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12621 int FS = MFI.getObjectSize(FI); 12622 int BFS = MFI.getObjectSize(BFI); 12623 if (FS != BFS || FS != (int)Bytes) return false; 12624 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12625 } 12626 12627 SDValue Base1 = Loc, Base2 = BaseLoc; 12628 int64_t Offset1 = 0, Offset2 = 0; 12629 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12630 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12631 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12632 return true; 12633 12634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12635 const GlobalValue *GV1 = nullptr; 12636 const GlobalValue *GV2 = nullptr; 12637 Offset1 = 0; 12638 Offset2 = 0; 12639 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12640 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12641 if (isGA1 && isGA2 && GV1 == GV2) 12642 return Offset1 == (Offset2 + Dist*Bytes); 12643 return false; 12644 } 12645 12646 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12647 // not enforce equality of the chain operands. 12648 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12649 unsigned Bytes, int Dist, 12650 SelectionDAG &DAG) { 12651 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12652 EVT VT = LS->getMemoryVT(); 12653 SDValue Loc = LS->getBasePtr(); 12654 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12655 } 12656 12657 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12658 EVT VT; 12659 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12660 default: return false; 12661 case Intrinsic::ppc_qpx_qvlfd: 12662 case Intrinsic::ppc_qpx_qvlfda: 12663 VT = MVT::v4f64; 12664 break; 12665 case Intrinsic::ppc_qpx_qvlfs: 12666 case Intrinsic::ppc_qpx_qvlfsa: 12667 VT = MVT::v4f32; 12668 break; 12669 case Intrinsic::ppc_qpx_qvlfcd: 12670 case Intrinsic::ppc_qpx_qvlfcda: 12671 VT = MVT::v2f64; 12672 break; 12673 case Intrinsic::ppc_qpx_qvlfcs: 12674 case Intrinsic::ppc_qpx_qvlfcsa: 12675 VT = MVT::v2f32; 12676 break; 12677 case Intrinsic::ppc_qpx_qvlfiwa: 12678 case Intrinsic::ppc_qpx_qvlfiwz: 12679 case Intrinsic::ppc_altivec_lvx: 12680 case Intrinsic::ppc_altivec_lvxl: 12681 case Intrinsic::ppc_vsx_lxvw4x: 12682 case Intrinsic::ppc_vsx_lxvw4x_be: 12683 VT = MVT::v4i32; 12684 break; 12685 case Intrinsic::ppc_vsx_lxvd2x: 12686 case Intrinsic::ppc_vsx_lxvd2x_be: 12687 VT = MVT::v2f64; 12688 break; 12689 case Intrinsic::ppc_altivec_lvebx: 12690 VT = MVT::i8; 12691 break; 12692 case Intrinsic::ppc_altivec_lvehx: 12693 VT = MVT::i16; 12694 break; 12695 case Intrinsic::ppc_altivec_lvewx: 12696 VT = MVT::i32; 12697 break; 12698 } 12699 12700 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12701 } 12702 12703 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12704 EVT VT; 12705 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12706 default: return false; 12707 case Intrinsic::ppc_qpx_qvstfd: 12708 case Intrinsic::ppc_qpx_qvstfda: 12709 VT = MVT::v4f64; 12710 break; 12711 case Intrinsic::ppc_qpx_qvstfs: 12712 case Intrinsic::ppc_qpx_qvstfsa: 12713 VT = MVT::v4f32; 12714 break; 12715 case Intrinsic::ppc_qpx_qvstfcd: 12716 case Intrinsic::ppc_qpx_qvstfcda: 12717 VT = MVT::v2f64; 12718 break; 12719 case Intrinsic::ppc_qpx_qvstfcs: 12720 case Intrinsic::ppc_qpx_qvstfcsa: 12721 VT = MVT::v2f32; 12722 break; 12723 case Intrinsic::ppc_qpx_qvstfiw: 12724 case Intrinsic::ppc_qpx_qvstfiwa: 12725 case Intrinsic::ppc_altivec_stvx: 12726 case Intrinsic::ppc_altivec_stvxl: 12727 case Intrinsic::ppc_vsx_stxvw4x: 12728 VT = MVT::v4i32; 12729 break; 12730 case Intrinsic::ppc_vsx_stxvd2x: 12731 VT = MVT::v2f64; 12732 break; 12733 case Intrinsic::ppc_vsx_stxvw4x_be: 12734 VT = MVT::v4i32; 12735 break; 12736 case Intrinsic::ppc_vsx_stxvd2x_be: 12737 VT = MVT::v2f64; 12738 break; 12739 case Intrinsic::ppc_altivec_stvebx: 12740 VT = MVT::i8; 12741 break; 12742 case Intrinsic::ppc_altivec_stvehx: 12743 VT = MVT::i16; 12744 break; 12745 case Intrinsic::ppc_altivec_stvewx: 12746 VT = MVT::i32; 12747 break; 12748 } 12749 12750 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12751 } 12752 12753 return false; 12754 } 12755 12756 // Return true is there is a nearyby consecutive load to the one provided 12757 // (regardless of alignment). We search up and down the chain, looking though 12758 // token factors and other loads (but nothing else). As a result, a true result 12759 // indicates that it is safe to create a new consecutive load adjacent to the 12760 // load provided. 12761 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12762 SDValue Chain = LD->getChain(); 12763 EVT VT = LD->getMemoryVT(); 12764 12765 SmallSet<SDNode *, 16> LoadRoots; 12766 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12767 SmallSet<SDNode *, 16> Visited; 12768 12769 // First, search up the chain, branching to follow all token-factor operands. 12770 // If we find a consecutive load, then we're done, otherwise, record all 12771 // nodes just above the top-level loads and token factors. 12772 while (!Queue.empty()) { 12773 SDNode *ChainNext = Queue.pop_back_val(); 12774 if (!Visited.insert(ChainNext).second) 12775 continue; 12776 12777 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12778 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12779 return true; 12780 12781 if (!Visited.count(ChainLD->getChain().getNode())) 12782 Queue.push_back(ChainLD->getChain().getNode()); 12783 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12784 for (const SDUse &O : ChainNext->ops()) 12785 if (!Visited.count(O.getNode())) 12786 Queue.push_back(O.getNode()); 12787 } else 12788 LoadRoots.insert(ChainNext); 12789 } 12790 12791 // Second, search down the chain, starting from the top-level nodes recorded 12792 // in the first phase. These top-level nodes are the nodes just above all 12793 // loads and token factors. Starting with their uses, recursively look though 12794 // all loads (just the chain uses) and token factors to find a consecutive 12795 // load. 12796 Visited.clear(); 12797 Queue.clear(); 12798 12799 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12800 IE = LoadRoots.end(); I != IE; ++I) { 12801 Queue.push_back(*I); 12802 12803 while (!Queue.empty()) { 12804 SDNode *LoadRoot = Queue.pop_back_val(); 12805 if (!Visited.insert(LoadRoot).second) 12806 continue; 12807 12808 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12809 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12810 return true; 12811 12812 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12813 UE = LoadRoot->use_end(); UI != UE; ++UI) 12814 if (((isa<MemSDNode>(*UI) && 12815 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12816 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12817 Queue.push_back(*UI); 12818 } 12819 } 12820 12821 return false; 12822 } 12823 12824 /// This function is called when we have proved that a SETCC node can be replaced 12825 /// by subtraction (and other supporting instructions) so that the result of 12826 /// comparison is kept in a GPR instead of CR. This function is purely for 12827 /// codegen purposes and has some flags to guide the codegen process. 12828 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12829 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12830 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12831 12832 // Zero extend the operands to the largest legal integer. Originally, they 12833 // must be of a strictly smaller size. 12834 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12835 DAG.getConstant(Size, DL, MVT::i32)); 12836 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12837 DAG.getConstant(Size, DL, MVT::i32)); 12838 12839 // Swap if needed. Depends on the condition code. 12840 if (Swap) 12841 std::swap(Op0, Op1); 12842 12843 // Subtract extended integers. 12844 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12845 12846 // Move the sign bit to the least significant position and zero out the rest. 12847 // Now the least significant bit carries the result of original comparison. 12848 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12849 DAG.getConstant(Size - 1, DL, MVT::i32)); 12850 auto Final = Shifted; 12851 12852 // Complement the result if needed. Based on the condition code. 12853 if (Complement) 12854 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12855 DAG.getConstant(1, DL, MVT::i64)); 12856 12857 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12858 } 12859 12860 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12861 DAGCombinerInfo &DCI) const { 12862 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12863 12864 SelectionDAG &DAG = DCI.DAG; 12865 SDLoc DL(N); 12866 12867 // Size of integers being compared has a critical role in the following 12868 // analysis, so we prefer to do this when all types are legal. 12869 if (!DCI.isAfterLegalizeDAG()) 12870 return SDValue(); 12871 12872 // If all users of SETCC extend its value to a legal integer type 12873 // then we replace SETCC with a subtraction 12874 for (SDNode::use_iterator UI = N->use_begin(), 12875 UE = N->use_end(); UI != UE; ++UI) { 12876 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12877 return SDValue(); 12878 } 12879 12880 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12881 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12882 12883 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12884 12885 if (OpSize < Size) { 12886 switch (CC) { 12887 default: break; 12888 case ISD::SETULT: 12889 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12890 case ISD::SETULE: 12891 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12892 case ISD::SETUGT: 12893 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12894 case ISD::SETUGE: 12895 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12896 } 12897 } 12898 12899 return SDValue(); 12900 } 12901 12902 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12903 DAGCombinerInfo &DCI) const { 12904 SelectionDAG &DAG = DCI.DAG; 12905 SDLoc dl(N); 12906 12907 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12908 // If we're tracking CR bits, we need to be careful that we don't have: 12909 // trunc(binary-ops(zext(x), zext(y))) 12910 // or 12911 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12912 // such that we're unnecessarily moving things into GPRs when it would be 12913 // better to keep them in CR bits. 12914 12915 // Note that trunc here can be an actual i1 trunc, or can be the effective 12916 // truncation that comes from a setcc or select_cc. 12917 if (N->getOpcode() == ISD::TRUNCATE && 12918 N->getValueType(0) != MVT::i1) 12919 return SDValue(); 12920 12921 if (N->getOperand(0).getValueType() != MVT::i32 && 12922 N->getOperand(0).getValueType() != MVT::i64) 12923 return SDValue(); 12924 12925 if (N->getOpcode() == ISD::SETCC || 12926 N->getOpcode() == ISD::SELECT_CC) { 12927 // If we're looking at a comparison, then we need to make sure that the 12928 // high bits (all except for the first) don't matter the result. 12929 ISD::CondCode CC = 12930 cast<CondCodeSDNode>(N->getOperand( 12931 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12932 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12933 12934 if (ISD::isSignedIntSetCC(CC)) { 12935 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12936 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12937 return SDValue(); 12938 } else if (ISD::isUnsignedIntSetCC(CC)) { 12939 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12940 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12941 !DAG.MaskedValueIsZero(N->getOperand(1), 12942 APInt::getHighBitsSet(OpBits, OpBits-1))) 12943 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12944 : SDValue()); 12945 } else { 12946 // This is neither a signed nor an unsigned comparison, just make sure 12947 // that the high bits are equal. 12948 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12949 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12950 12951 // We don't really care about what is known about the first bit (if 12952 // anything), so clear it in all masks prior to comparing them. 12953 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12954 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12955 12956 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12957 return SDValue(); 12958 } 12959 } 12960 12961 // We now know that the higher-order bits are irrelevant, we just need to 12962 // make sure that all of the intermediate operations are bit operations, and 12963 // all inputs are extensions. 12964 if (N->getOperand(0).getOpcode() != ISD::AND && 12965 N->getOperand(0).getOpcode() != ISD::OR && 12966 N->getOperand(0).getOpcode() != ISD::XOR && 12967 N->getOperand(0).getOpcode() != ISD::SELECT && 12968 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12969 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12970 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12971 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12972 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12973 return SDValue(); 12974 12975 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12976 N->getOperand(1).getOpcode() != ISD::AND && 12977 N->getOperand(1).getOpcode() != ISD::OR && 12978 N->getOperand(1).getOpcode() != ISD::XOR && 12979 N->getOperand(1).getOpcode() != ISD::SELECT && 12980 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12981 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12982 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12983 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12984 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12985 return SDValue(); 12986 12987 SmallVector<SDValue, 4> Inputs; 12988 SmallVector<SDValue, 8> BinOps, PromOps; 12989 SmallPtrSet<SDNode *, 16> Visited; 12990 12991 for (unsigned i = 0; i < 2; ++i) { 12992 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12993 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12994 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12995 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12996 isa<ConstantSDNode>(N->getOperand(i))) 12997 Inputs.push_back(N->getOperand(i)); 12998 else 12999 BinOps.push_back(N->getOperand(i)); 13000 13001 if (N->getOpcode() == ISD::TRUNCATE) 13002 break; 13003 } 13004 13005 // Visit all inputs, collect all binary operations (and, or, xor and 13006 // select) that are all fed by extensions. 13007 while (!BinOps.empty()) { 13008 SDValue BinOp = BinOps.back(); 13009 BinOps.pop_back(); 13010 13011 if (!Visited.insert(BinOp.getNode()).second) 13012 continue; 13013 13014 PromOps.push_back(BinOp); 13015 13016 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13017 // The condition of the select is not promoted. 13018 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13019 continue; 13020 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13021 continue; 13022 13023 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13024 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13025 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13026 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13027 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13028 Inputs.push_back(BinOp.getOperand(i)); 13029 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13030 BinOp.getOperand(i).getOpcode() == ISD::OR || 13031 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13032 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13033 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13034 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13035 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13036 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13037 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13038 BinOps.push_back(BinOp.getOperand(i)); 13039 } else { 13040 // We have an input that is not an extension or another binary 13041 // operation; we'll abort this transformation. 13042 return SDValue(); 13043 } 13044 } 13045 } 13046 13047 // Make sure that this is a self-contained cluster of operations (which 13048 // is not quite the same thing as saying that everything has only one 13049 // use). 13050 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13051 if (isa<ConstantSDNode>(Inputs[i])) 13052 continue; 13053 13054 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13055 UE = Inputs[i].getNode()->use_end(); 13056 UI != UE; ++UI) { 13057 SDNode *User = *UI; 13058 if (User != N && !Visited.count(User)) 13059 return SDValue(); 13060 13061 // Make sure that we're not going to promote the non-output-value 13062 // operand(s) or SELECT or SELECT_CC. 13063 // FIXME: Although we could sometimes handle this, and it does occur in 13064 // practice that one of the condition inputs to the select is also one of 13065 // the outputs, we currently can't deal with this. 13066 if (User->getOpcode() == ISD::SELECT) { 13067 if (User->getOperand(0) == Inputs[i]) 13068 return SDValue(); 13069 } else if (User->getOpcode() == ISD::SELECT_CC) { 13070 if (User->getOperand(0) == Inputs[i] || 13071 User->getOperand(1) == Inputs[i]) 13072 return SDValue(); 13073 } 13074 } 13075 } 13076 13077 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13078 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13079 UE = PromOps[i].getNode()->use_end(); 13080 UI != UE; ++UI) { 13081 SDNode *User = *UI; 13082 if (User != N && !Visited.count(User)) 13083 return SDValue(); 13084 13085 // Make sure that we're not going to promote the non-output-value 13086 // operand(s) or SELECT or SELECT_CC. 13087 // FIXME: Although we could sometimes handle this, and it does occur in 13088 // practice that one of the condition inputs to the select is also one of 13089 // the outputs, we currently can't deal with this. 13090 if (User->getOpcode() == ISD::SELECT) { 13091 if (User->getOperand(0) == PromOps[i]) 13092 return SDValue(); 13093 } else if (User->getOpcode() == ISD::SELECT_CC) { 13094 if (User->getOperand(0) == PromOps[i] || 13095 User->getOperand(1) == PromOps[i]) 13096 return SDValue(); 13097 } 13098 } 13099 } 13100 13101 // Replace all inputs with the extension operand. 13102 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13103 // Constants may have users outside the cluster of to-be-promoted nodes, 13104 // and so we need to replace those as we do the promotions. 13105 if (isa<ConstantSDNode>(Inputs[i])) 13106 continue; 13107 else 13108 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13109 } 13110 13111 std::list<HandleSDNode> PromOpHandles; 13112 for (auto &PromOp : PromOps) 13113 PromOpHandles.emplace_back(PromOp); 13114 13115 // Replace all operations (these are all the same, but have a different 13116 // (i1) return type). DAG.getNode will validate that the types of 13117 // a binary operator match, so go through the list in reverse so that 13118 // we've likely promoted both operands first. Any intermediate truncations or 13119 // extensions disappear. 13120 while (!PromOpHandles.empty()) { 13121 SDValue PromOp = PromOpHandles.back().getValue(); 13122 PromOpHandles.pop_back(); 13123 13124 if (PromOp.getOpcode() == ISD::TRUNCATE || 13125 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13126 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13127 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13128 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13129 PromOp.getOperand(0).getValueType() != MVT::i1) { 13130 // The operand is not yet ready (see comment below). 13131 PromOpHandles.emplace_front(PromOp); 13132 continue; 13133 } 13134 13135 SDValue RepValue = PromOp.getOperand(0); 13136 if (isa<ConstantSDNode>(RepValue)) 13137 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13138 13139 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13140 continue; 13141 } 13142 13143 unsigned C; 13144 switch (PromOp.getOpcode()) { 13145 default: C = 0; break; 13146 case ISD::SELECT: C = 1; break; 13147 case ISD::SELECT_CC: C = 2; break; 13148 } 13149 13150 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13151 PromOp.getOperand(C).getValueType() != MVT::i1) || 13152 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13153 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13154 // The to-be-promoted operands of this node have not yet been 13155 // promoted (this should be rare because we're going through the 13156 // list backward, but if one of the operands has several users in 13157 // this cluster of to-be-promoted nodes, it is possible). 13158 PromOpHandles.emplace_front(PromOp); 13159 continue; 13160 } 13161 13162 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13163 PromOp.getNode()->op_end()); 13164 13165 // If there are any constant inputs, make sure they're replaced now. 13166 for (unsigned i = 0; i < 2; ++i) 13167 if (isa<ConstantSDNode>(Ops[C+i])) 13168 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13169 13170 DAG.ReplaceAllUsesOfValueWith(PromOp, 13171 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13172 } 13173 13174 // Now we're left with the initial truncation itself. 13175 if (N->getOpcode() == ISD::TRUNCATE) 13176 return N->getOperand(0); 13177 13178 // Otherwise, this is a comparison. The operands to be compared have just 13179 // changed type (to i1), but everything else is the same. 13180 return SDValue(N, 0); 13181 } 13182 13183 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13184 DAGCombinerInfo &DCI) const { 13185 SelectionDAG &DAG = DCI.DAG; 13186 SDLoc dl(N); 13187 13188 // If we're tracking CR bits, we need to be careful that we don't have: 13189 // zext(binary-ops(trunc(x), trunc(y))) 13190 // or 13191 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13192 // such that we're unnecessarily moving things into CR bits that can more 13193 // efficiently stay in GPRs. Note that if we're not certain that the high 13194 // bits are set as required by the final extension, we still may need to do 13195 // some masking to get the proper behavior. 13196 13197 // This same functionality is important on PPC64 when dealing with 13198 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13199 // the return values of functions. Because it is so similar, it is handled 13200 // here as well. 13201 13202 if (N->getValueType(0) != MVT::i32 && 13203 N->getValueType(0) != MVT::i64) 13204 return SDValue(); 13205 13206 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13207 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13208 return SDValue(); 13209 13210 if (N->getOperand(0).getOpcode() != ISD::AND && 13211 N->getOperand(0).getOpcode() != ISD::OR && 13212 N->getOperand(0).getOpcode() != ISD::XOR && 13213 N->getOperand(0).getOpcode() != ISD::SELECT && 13214 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13215 return SDValue(); 13216 13217 SmallVector<SDValue, 4> Inputs; 13218 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13219 SmallPtrSet<SDNode *, 16> Visited; 13220 13221 // Visit all inputs, collect all binary operations (and, or, xor and 13222 // select) that are all fed by truncations. 13223 while (!BinOps.empty()) { 13224 SDValue BinOp = BinOps.back(); 13225 BinOps.pop_back(); 13226 13227 if (!Visited.insert(BinOp.getNode()).second) 13228 continue; 13229 13230 PromOps.push_back(BinOp); 13231 13232 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13233 // The condition of the select is not promoted. 13234 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13235 continue; 13236 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13237 continue; 13238 13239 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13240 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13241 Inputs.push_back(BinOp.getOperand(i)); 13242 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13243 BinOp.getOperand(i).getOpcode() == ISD::OR || 13244 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13245 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13246 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13247 BinOps.push_back(BinOp.getOperand(i)); 13248 } else { 13249 // We have an input that is not a truncation or another binary 13250 // operation; we'll abort this transformation. 13251 return SDValue(); 13252 } 13253 } 13254 } 13255 13256 // The operands of a select that must be truncated when the select is 13257 // promoted because the operand is actually part of the to-be-promoted set. 13258 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13259 13260 // Make sure that this is a self-contained cluster of operations (which 13261 // is not quite the same thing as saying that everything has only one 13262 // use). 13263 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13264 if (isa<ConstantSDNode>(Inputs[i])) 13265 continue; 13266 13267 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13268 UE = Inputs[i].getNode()->use_end(); 13269 UI != UE; ++UI) { 13270 SDNode *User = *UI; 13271 if (User != N && !Visited.count(User)) 13272 return SDValue(); 13273 13274 // If we're going to promote the non-output-value operand(s) or SELECT or 13275 // SELECT_CC, record them for truncation. 13276 if (User->getOpcode() == ISD::SELECT) { 13277 if (User->getOperand(0) == Inputs[i]) 13278 SelectTruncOp[0].insert(std::make_pair(User, 13279 User->getOperand(0).getValueType())); 13280 } else if (User->getOpcode() == ISD::SELECT_CC) { 13281 if (User->getOperand(0) == Inputs[i]) 13282 SelectTruncOp[0].insert(std::make_pair(User, 13283 User->getOperand(0).getValueType())); 13284 if (User->getOperand(1) == Inputs[i]) 13285 SelectTruncOp[1].insert(std::make_pair(User, 13286 User->getOperand(1).getValueType())); 13287 } 13288 } 13289 } 13290 13291 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13292 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13293 UE = PromOps[i].getNode()->use_end(); 13294 UI != UE; ++UI) { 13295 SDNode *User = *UI; 13296 if (User != N && !Visited.count(User)) 13297 return SDValue(); 13298 13299 // If we're going to promote the non-output-value operand(s) or SELECT or 13300 // SELECT_CC, record them for truncation. 13301 if (User->getOpcode() == ISD::SELECT) { 13302 if (User->getOperand(0) == PromOps[i]) 13303 SelectTruncOp[0].insert(std::make_pair(User, 13304 User->getOperand(0).getValueType())); 13305 } else if (User->getOpcode() == ISD::SELECT_CC) { 13306 if (User->getOperand(0) == PromOps[i]) 13307 SelectTruncOp[0].insert(std::make_pair(User, 13308 User->getOperand(0).getValueType())); 13309 if (User->getOperand(1) == PromOps[i]) 13310 SelectTruncOp[1].insert(std::make_pair(User, 13311 User->getOperand(1).getValueType())); 13312 } 13313 } 13314 } 13315 13316 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13317 bool ReallyNeedsExt = false; 13318 if (N->getOpcode() != ISD::ANY_EXTEND) { 13319 // If all of the inputs are not already sign/zero extended, then 13320 // we'll still need to do that at the end. 13321 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13322 if (isa<ConstantSDNode>(Inputs[i])) 13323 continue; 13324 13325 unsigned OpBits = 13326 Inputs[i].getOperand(0).getValueSizeInBits(); 13327 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13328 13329 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13330 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13331 APInt::getHighBitsSet(OpBits, 13332 OpBits-PromBits))) || 13333 (N->getOpcode() == ISD::SIGN_EXTEND && 13334 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13335 (OpBits-(PromBits-1)))) { 13336 ReallyNeedsExt = true; 13337 break; 13338 } 13339 } 13340 } 13341 13342 // Replace all inputs, either with the truncation operand, or a 13343 // truncation or extension to the final output type. 13344 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13345 // Constant inputs need to be replaced with the to-be-promoted nodes that 13346 // use them because they might have users outside of the cluster of 13347 // promoted nodes. 13348 if (isa<ConstantSDNode>(Inputs[i])) 13349 continue; 13350 13351 SDValue InSrc = Inputs[i].getOperand(0); 13352 if (Inputs[i].getValueType() == N->getValueType(0)) 13353 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13354 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13355 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13356 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13357 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13358 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13359 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13360 else 13361 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13362 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13363 } 13364 13365 std::list<HandleSDNode> PromOpHandles; 13366 for (auto &PromOp : PromOps) 13367 PromOpHandles.emplace_back(PromOp); 13368 13369 // Replace all operations (these are all the same, but have a different 13370 // (promoted) return type). DAG.getNode will validate that the types of 13371 // a binary operator match, so go through the list in reverse so that 13372 // we've likely promoted both operands first. 13373 while (!PromOpHandles.empty()) { 13374 SDValue PromOp = PromOpHandles.back().getValue(); 13375 PromOpHandles.pop_back(); 13376 13377 unsigned C; 13378 switch (PromOp.getOpcode()) { 13379 default: C = 0; break; 13380 case ISD::SELECT: C = 1; break; 13381 case ISD::SELECT_CC: C = 2; break; 13382 } 13383 13384 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13385 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13386 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13387 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13388 // The to-be-promoted operands of this node have not yet been 13389 // promoted (this should be rare because we're going through the 13390 // list backward, but if one of the operands has several users in 13391 // this cluster of to-be-promoted nodes, it is possible). 13392 PromOpHandles.emplace_front(PromOp); 13393 continue; 13394 } 13395 13396 // For SELECT and SELECT_CC nodes, we do a similar check for any 13397 // to-be-promoted comparison inputs. 13398 if (PromOp.getOpcode() == ISD::SELECT || 13399 PromOp.getOpcode() == ISD::SELECT_CC) { 13400 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13401 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13402 (SelectTruncOp[1].count(PromOp.getNode()) && 13403 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13404 PromOpHandles.emplace_front(PromOp); 13405 continue; 13406 } 13407 } 13408 13409 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13410 PromOp.getNode()->op_end()); 13411 13412 // If this node has constant inputs, then they'll need to be promoted here. 13413 for (unsigned i = 0; i < 2; ++i) { 13414 if (!isa<ConstantSDNode>(Ops[C+i])) 13415 continue; 13416 if (Ops[C+i].getValueType() == N->getValueType(0)) 13417 continue; 13418 13419 if (N->getOpcode() == ISD::SIGN_EXTEND) 13420 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13421 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13422 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13423 else 13424 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13425 } 13426 13427 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13428 // truncate them again to the original value type. 13429 if (PromOp.getOpcode() == ISD::SELECT || 13430 PromOp.getOpcode() == ISD::SELECT_CC) { 13431 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13432 if (SI0 != SelectTruncOp[0].end()) 13433 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13434 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13435 if (SI1 != SelectTruncOp[1].end()) 13436 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13437 } 13438 13439 DAG.ReplaceAllUsesOfValueWith(PromOp, 13440 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13441 } 13442 13443 // Now we're left with the initial extension itself. 13444 if (!ReallyNeedsExt) 13445 return N->getOperand(0); 13446 13447 // To zero extend, just mask off everything except for the first bit (in the 13448 // i1 case). 13449 if (N->getOpcode() == ISD::ZERO_EXTEND) 13450 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13451 DAG.getConstant(APInt::getLowBitsSet( 13452 N->getValueSizeInBits(0), PromBits), 13453 dl, N->getValueType(0))); 13454 13455 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13456 "Invalid extension type"); 13457 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13458 SDValue ShiftCst = 13459 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13460 return DAG.getNode( 13461 ISD::SRA, dl, N->getValueType(0), 13462 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13463 ShiftCst); 13464 } 13465 13466 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13467 DAGCombinerInfo &DCI) const { 13468 assert(N->getOpcode() == ISD::SETCC && 13469 "Should be called with a SETCC node"); 13470 13471 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13472 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13473 SDValue LHS = N->getOperand(0); 13474 SDValue RHS = N->getOperand(1); 13475 13476 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13477 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13478 LHS.hasOneUse()) 13479 std::swap(LHS, RHS); 13480 13481 // x == 0-y --> x+y == 0 13482 // x != 0-y --> x+y != 0 13483 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13484 RHS.hasOneUse()) { 13485 SDLoc DL(N); 13486 SelectionDAG &DAG = DCI.DAG; 13487 EVT VT = N->getValueType(0); 13488 EVT OpVT = LHS.getValueType(); 13489 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13490 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13491 } 13492 } 13493 13494 return DAGCombineTruncBoolExt(N, DCI); 13495 } 13496 13497 // Is this an extending load from an f32 to an f64? 13498 static bool isFPExtLoad(SDValue Op) { 13499 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13500 return LD->getExtensionType() == ISD::EXTLOAD && 13501 Op.getValueType() == MVT::f64; 13502 return false; 13503 } 13504 13505 /// Reduces the number of fp-to-int conversion when building a vector. 13506 /// 13507 /// If this vector is built out of floating to integer conversions, 13508 /// transform it to a vector built out of floating point values followed by a 13509 /// single floating to integer conversion of the vector. 13510 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13511 /// becomes (fptosi (build_vector ($A, $B, ...))) 13512 SDValue PPCTargetLowering:: 13513 combineElementTruncationToVectorTruncation(SDNode *N, 13514 DAGCombinerInfo &DCI) const { 13515 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13516 "Should be called with a BUILD_VECTOR node"); 13517 13518 SelectionDAG &DAG = DCI.DAG; 13519 SDLoc dl(N); 13520 13521 SDValue FirstInput = N->getOperand(0); 13522 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13523 "The input operand must be an fp-to-int conversion."); 13524 13525 // This combine happens after legalization so the fp_to_[su]i nodes are 13526 // already converted to PPCSISD nodes. 13527 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13528 if (FirstConversion == PPCISD::FCTIDZ || 13529 FirstConversion == PPCISD::FCTIDUZ || 13530 FirstConversion == PPCISD::FCTIWZ || 13531 FirstConversion == PPCISD::FCTIWUZ) { 13532 bool IsSplat = true; 13533 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13534 FirstConversion == PPCISD::FCTIWUZ; 13535 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13536 SmallVector<SDValue, 4> Ops; 13537 EVT TargetVT = N->getValueType(0); 13538 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13539 SDValue NextOp = N->getOperand(i); 13540 if (NextOp.getOpcode() != PPCISD::MFVSR) 13541 return SDValue(); 13542 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13543 if (NextConversion != FirstConversion) 13544 return SDValue(); 13545 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13546 // This is not valid if the input was originally double precision. It is 13547 // also not profitable to do unless this is an extending load in which 13548 // case doing this combine will allow us to combine consecutive loads. 13549 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13550 return SDValue(); 13551 if (N->getOperand(i) != FirstInput) 13552 IsSplat = false; 13553 } 13554 13555 // If this is a splat, we leave it as-is since there will be only a single 13556 // fp-to-int conversion followed by a splat of the integer. This is better 13557 // for 32-bit and smaller ints and neutral for 64-bit ints. 13558 if (IsSplat) 13559 return SDValue(); 13560 13561 // Now that we know we have the right type of node, get its operands 13562 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13563 SDValue In = N->getOperand(i).getOperand(0); 13564 if (Is32Bit) { 13565 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13566 // here, we know that all inputs are extending loads so this is safe). 13567 if (In.isUndef()) 13568 Ops.push_back(DAG.getUNDEF(SrcVT)); 13569 else { 13570 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13571 MVT::f32, In.getOperand(0), 13572 DAG.getIntPtrConstant(1, dl)); 13573 Ops.push_back(Trunc); 13574 } 13575 } else 13576 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13577 } 13578 13579 unsigned Opcode; 13580 if (FirstConversion == PPCISD::FCTIDZ || 13581 FirstConversion == PPCISD::FCTIWZ) 13582 Opcode = ISD::FP_TO_SINT; 13583 else 13584 Opcode = ISD::FP_TO_UINT; 13585 13586 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13587 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13588 return DAG.getNode(Opcode, dl, TargetVT, BV); 13589 } 13590 return SDValue(); 13591 } 13592 13593 /// Reduce the number of loads when building a vector. 13594 /// 13595 /// Building a vector out of multiple loads can be converted to a load 13596 /// of the vector type if the loads are consecutive. If the loads are 13597 /// consecutive but in descending order, a shuffle is added at the end 13598 /// to reorder the vector. 13599 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13600 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13601 "Should be called with a BUILD_VECTOR node"); 13602 13603 SDLoc dl(N); 13604 13605 // Return early for non byte-sized type, as they can't be consecutive. 13606 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13607 return SDValue(); 13608 13609 bool InputsAreConsecutiveLoads = true; 13610 bool InputsAreReverseConsecutive = true; 13611 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13612 SDValue FirstInput = N->getOperand(0); 13613 bool IsRoundOfExtLoad = false; 13614 13615 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13616 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13617 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13618 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13619 } 13620 // Not a build vector of (possibly fp_rounded) loads. 13621 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13622 N->getNumOperands() == 1) 13623 return SDValue(); 13624 13625 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13626 // If any inputs are fp_round(extload), they all must be. 13627 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13628 return SDValue(); 13629 13630 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13631 N->getOperand(i); 13632 if (NextInput.getOpcode() != ISD::LOAD) 13633 return SDValue(); 13634 13635 SDValue PreviousInput = 13636 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13637 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13638 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13639 13640 // If any inputs are fp_round(extload), they all must be. 13641 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13642 return SDValue(); 13643 13644 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13645 InputsAreConsecutiveLoads = false; 13646 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13647 InputsAreReverseConsecutive = false; 13648 13649 // Exit early if the loads are neither consecutive nor reverse consecutive. 13650 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13651 return SDValue(); 13652 } 13653 13654 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13655 "The loads cannot be both consecutive and reverse consecutive."); 13656 13657 SDValue FirstLoadOp = 13658 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13659 SDValue LastLoadOp = 13660 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13661 N->getOperand(N->getNumOperands()-1); 13662 13663 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13664 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13665 if (InputsAreConsecutiveLoads) { 13666 assert(LD1 && "Input needs to be a LoadSDNode."); 13667 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13668 LD1->getBasePtr(), LD1->getPointerInfo(), 13669 LD1->getAlignment()); 13670 } 13671 if (InputsAreReverseConsecutive) { 13672 assert(LDL && "Input needs to be a LoadSDNode."); 13673 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13674 LDL->getBasePtr(), LDL->getPointerInfo(), 13675 LDL->getAlignment()); 13676 SmallVector<int, 16> Ops; 13677 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13678 Ops.push_back(i); 13679 13680 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13681 DAG.getUNDEF(N->getValueType(0)), Ops); 13682 } 13683 return SDValue(); 13684 } 13685 13686 // This function adds the required vector_shuffle needed to get 13687 // the elements of the vector extract in the correct position 13688 // as specified by the CorrectElems encoding. 13689 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13690 SDValue Input, uint64_t Elems, 13691 uint64_t CorrectElems) { 13692 SDLoc dl(N); 13693 13694 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13695 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13696 13697 // Knowing the element indices being extracted from the original 13698 // vector and the order in which they're being inserted, just put 13699 // them at element indices required for the instruction. 13700 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13701 if (DAG.getDataLayout().isLittleEndian()) 13702 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13703 else 13704 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13705 CorrectElems = CorrectElems >> 8; 13706 Elems = Elems >> 8; 13707 } 13708 13709 SDValue Shuffle = 13710 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13711 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13712 13713 EVT VT = N->getValueType(0); 13714 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13715 13716 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13717 Input.getValueType().getVectorElementType(), 13718 VT.getVectorNumElements()); 13719 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13720 DAG.getValueType(ExtVT)); 13721 } 13722 13723 // Look for build vector patterns where input operands come from sign 13724 // extended vector_extract elements of specific indices. If the correct indices 13725 // aren't used, add a vector shuffle to fix up the indices and create 13726 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13727 // during instruction selection. 13728 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13729 // This array encodes the indices that the vector sign extend instructions 13730 // extract from when extending from one type to another for both BE and LE. 13731 // The right nibble of each byte corresponds to the LE incides. 13732 // and the left nibble of each byte corresponds to the BE incides. 13733 // For example: 0x3074B8FC byte->word 13734 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13735 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13736 // For example: 0x000070F8 byte->double word 13737 // For LE: the allowed indices are: 0x0,0x8 13738 // For BE: the allowed indices are: 0x7,0xF 13739 uint64_t TargetElems[] = { 13740 0x3074B8FC, // b->w 13741 0x000070F8, // b->d 13742 0x10325476, // h->w 13743 0x00003074, // h->d 13744 0x00001032, // w->d 13745 }; 13746 13747 uint64_t Elems = 0; 13748 int Index; 13749 SDValue Input; 13750 13751 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13752 if (!Op) 13753 return false; 13754 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13755 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13756 return false; 13757 13758 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13759 // of the right width. 13760 SDValue Extract = Op.getOperand(0); 13761 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13762 Extract = Extract.getOperand(0); 13763 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13764 return false; 13765 13766 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13767 if (!ExtOp) 13768 return false; 13769 13770 Index = ExtOp->getZExtValue(); 13771 if (Input && Input != Extract.getOperand(0)) 13772 return false; 13773 13774 if (!Input) 13775 Input = Extract.getOperand(0); 13776 13777 Elems = Elems << 8; 13778 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13779 Elems |= Index; 13780 13781 return true; 13782 }; 13783 13784 // If the build vector operands aren't sign extended vector extracts, 13785 // of the same input vector, then return. 13786 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13787 if (!isSExtOfVecExtract(N->getOperand(i))) { 13788 return SDValue(); 13789 } 13790 } 13791 13792 // If the vector extract indicies are not correct, add the appropriate 13793 // vector_shuffle. 13794 int TgtElemArrayIdx; 13795 int InputSize = Input.getValueType().getScalarSizeInBits(); 13796 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13797 if (InputSize + OutputSize == 40) 13798 TgtElemArrayIdx = 0; 13799 else if (InputSize + OutputSize == 72) 13800 TgtElemArrayIdx = 1; 13801 else if (InputSize + OutputSize == 48) 13802 TgtElemArrayIdx = 2; 13803 else if (InputSize + OutputSize == 80) 13804 TgtElemArrayIdx = 3; 13805 else if (InputSize + OutputSize == 96) 13806 TgtElemArrayIdx = 4; 13807 else 13808 return SDValue(); 13809 13810 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13811 CorrectElems = DAG.getDataLayout().isLittleEndian() 13812 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13813 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13814 if (Elems != CorrectElems) { 13815 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13816 } 13817 13818 // Regular lowering will catch cases where a shuffle is not needed. 13819 return SDValue(); 13820 } 13821 13822 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13823 DAGCombinerInfo &DCI) const { 13824 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13825 "Should be called with a BUILD_VECTOR node"); 13826 13827 SelectionDAG &DAG = DCI.DAG; 13828 SDLoc dl(N); 13829 13830 if (!Subtarget.hasVSX()) 13831 return SDValue(); 13832 13833 // The target independent DAG combiner will leave a build_vector of 13834 // float-to-int conversions intact. We can generate MUCH better code for 13835 // a float-to-int conversion of a vector of floats. 13836 SDValue FirstInput = N->getOperand(0); 13837 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13838 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13839 if (Reduced) 13840 return Reduced; 13841 } 13842 13843 // If we're building a vector out of consecutive loads, just load that 13844 // vector type. 13845 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13846 if (Reduced) 13847 return Reduced; 13848 13849 // If we're building a vector out of extended elements from another vector 13850 // we have P9 vector integer extend instructions. The code assumes legal 13851 // input types (i.e. it can't handle things like v4i16) so do not run before 13852 // legalization. 13853 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13854 Reduced = combineBVOfVecSExt(N, DAG); 13855 if (Reduced) 13856 return Reduced; 13857 } 13858 13859 13860 if (N->getValueType(0) != MVT::v2f64) 13861 return SDValue(); 13862 13863 // Looking for: 13864 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13865 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13866 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13867 return SDValue(); 13868 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13869 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13870 return SDValue(); 13871 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13872 return SDValue(); 13873 13874 SDValue Ext1 = FirstInput.getOperand(0); 13875 SDValue Ext2 = N->getOperand(1).getOperand(0); 13876 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13877 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13878 return SDValue(); 13879 13880 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13881 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13882 if (!Ext1Op || !Ext2Op) 13883 return SDValue(); 13884 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13885 Ext1.getOperand(0) != Ext2.getOperand(0)) 13886 return SDValue(); 13887 13888 int FirstElem = Ext1Op->getZExtValue(); 13889 int SecondElem = Ext2Op->getZExtValue(); 13890 int SubvecIdx; 13891 if (FirstElem == 0 && SecondElem == 1) 13892 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13893 else if (FirstElem == 2 && SecondElem == 3) 13894 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13895 else 13896 return SDValue(); 13897 13898 SDValue SrcVec = Ext1.getOperand(0); 13899 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13900 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13901 return DAG.getNode(NodeType, dl, MVT::v2f64, 13902 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13903 } 13904 13905 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13906 DAGCombinerInfo &DCI) const { 13907 assert((N->getOpcode() == ISD::SINT_TO_FP || 13908 N->getOpcode() == ISD::UINT_TO_FP) && 13909 "Need an int -> FP conversion node here"); 13910 13911 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13912 return SDValue(); 13913 13914 SelectionDAG &DAG = DCI.DAG; 13915 SDLoc dl(N); 13916 SDValue Op(N, 0); 13917 13918 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13919 // from the hardware. 13920 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13921 return SDValue(); 13922 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13923 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13924 return SDValue(); 13925 13926 SDValue FirstOperand(Op.getOperand(0)); 13927 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13928 (FirstOperand.getValueType() == MVT::i8 || 13929 FirstOperand.getValueType() == MVT::i16); 13930 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13931 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13932 bool DstDouble = Op.getValueType() == MVT::f64; 13933 unsigned ConvOp = Signed ? 13934 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13935 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13936 SDValue WidthConst = 13937 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13938 dl, false); 13939 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13940 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13941 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13942 DAG.getVTList(MVT::f64, MVT::Other), 13943 Ops, MVT::i8, LDN->getMemOperand()); 13944 13945 // For signed conversion, we need to sign-extend the value in the VSR 13946 if (Signed) { 13947 SDValue ExtOps[] = { Ld, WidthConst }; 13948 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13949 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13950 } else 13951 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13952 } 13953 13954 13955 // For i32 intermediate values, unfortunately, the conversion functions 13956 // leave the upper 32 bits of the value are undefined. Within the set of 13957 // scalar instructions, we have no method for zero- or sign-extending the 13958 // value. Thus, we cannot handle i32 intermediate values here. 13959 if (Op.getOperand(0).getValueType() == MVT::i32) 13960 return SDValue(); 13961 13962 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13963 "UINT_TO_FP is supported only with FPCVT"); 13964 13965 // If we have FCFIDS, then use it when converting to single-precision. 13966 // Otherwise, convert to double-precision and then round. 13967 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13968 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13969 : PPCISD::FCFIDS) 13970 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13971 : PPCISD::FCFID); 13972 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13973 ? MVT::f32 13974 : MVT::f64; 13975 13976 // If we're converting from a float, to an int, and back to a float again, 13977 // then we don't need the store/load pair at all. 13978 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13979 Subtarget.hasFPCVT()) || 13980 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13981 SDValue Src = Op.getOperand(0).getOperand(0); 13982 if (Src.getValueType() == MVT::f32) { 13983 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13984 DCI.AddToWorklist(Src.getNode()); 13985 } else if (Src.getValueType() != MVT::f64) { 13986 // Make sure that we don't pick up a ppc_fp128 source value. 13987 return SDValue(); 13988 } 13989 13990 unsigned FCTOp = 13991 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13992 PPCISD::FCTIDUZ; 13993 13994 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13995 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13996 13997 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13998 FP = DAG.getNode(ISD::FP_ROUND, dl, 13999 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14000 DCI.AddToWorklist(FP.getNode()); 14001 } 14002 14003 return FP; 14004 } 14005 14006 return SDValue(); 14007 } 14008 14009 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14010 // builtins) into loads with swaps. 14011 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14012 DAGCombinerInfo &DCI) const { 14013 SelectionDAG &DAG = DCI.DAG; 14014 SDLoc dl(N); 14015 SDValue Chain; 14016 SDValue Base; 14017 MachineMemOperand *MMO; 14018 14019 switch (N->getOpcode()) { 14020 default: 14021 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14022 case ISD::LOAD: { 14023 LoadSDNode *LD = cast<LoadSDNode>(N); 14024 Chain = LD->getChain(); 14025 Base = LD->getBasePtr(); 14026 MMO = LD->getMemOperand(); 14027 // If the MMO suggests this isn't a load of a full vector, leave 14028 // things alone. For a built-in, we have to make the change for 14029 // correctness, so if there is a size problem that will be a bug. 14030 if (MMO->getSize() < 16) 14031 return SDValue(); 14032 break; 14033 } 14034 case ISD::INTRINSIC_W_CHAIN: { 14035 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14036 Chain = Intrin->getChain(); 14037 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14038 // us what we want. Get operand 2 instead. 14039 Base = Intrin->getOperand(2); 14040 MMO = Intrin->getMemOperand(); 14041 break; 14042 } 14043 } 14044 14045 MVT VecTy = N->getValueType(0).getSimpleVT(); 14046 14047 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14048 // aligned and the type is a vector with elements up to 4 bytes 14049 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14050 VecTy.getScalarSizeInBits() <= 32) { 14051 return SDValue(); 14052 } 14053 14054 SDValue LoadOps[] = { Chain, Base }; 14055 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14056 DAG.getVTList(MVT::v2f64, MVT::Other), 14057 LoadOps, MVT::v2f64, MMO); 14058 14059 DCI.AddToWorklist(Load.getNode()); 14060 Chain = Load.getValue(1); 14061 SDValue Swap = DAG.getNode( 14062 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14063 DCI.AddToWorklist(Swap.getNode()); 14064 14065 // Add a bitcast if the resulting load type doesn't match v2f64. 14066 if (VecTy != MVT::v2f64) { 14067 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14068 DCI.AddToWorklist(N.getNode()); 14069 // Package {bitcast value, swap's chain} to match Load's shape. 14070 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14071 N, Swap.getValue(1)); 14072 } 14073 14074 return Swap; 14075 } 14076 14077 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14078 // builtins) into stores with swaps. 14079 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14080 DAGCombinerInfo &DCI) const { 14081 SelectionDAG &DAG = DCI.DAG; 14082 SDLoc dl(N); 14083 SDValue Chain; 14084 SDValue Base; 14085 unsigned SrcOpnd; 14086 MachineMemOperand *MMO; 14087 14088 switch (N->getOpcode()) { 14089 default: 14090 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14091 case ISD::STORE: { 14092 StoreSDNode *ST = cast<StoreSDNode>(N); 14093 Chain = ST->getChain(); 14094 Base = ST->getBasePtr(); 14095 MMO = ST->getMemOperand(); 14096 SrcOpnd = 1; 14097 // If the MMO suggests this isn't a store of a full vector, leave 14098 // things alone. For a built-in, we have to make the change for 14099 // correctness, so if there is a size problem that will be a bug. 14100 if (MMO->getSize() < 16) 14101 return SDValue(); 14102 break; 14103 } 14104 case ISD::INTRINSIC_VOID: { 14105 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14106 Chain = Intrin->getChain(); 14107 // Intrin->getBasePtr() oddly does not get what we want. 14108 Base = Intrin->getOperand(3); 14109 MMO = Intrin->getMemOperand(); 14110 SrcOpnd = 2; 14111 break; 14112 } 14113 } 14114 14115 SDValue Src = N->getOperand(SrcOpnd); 14116 MVT VecTy = Src.getValueType().getSimpleVT(); 14117 14118 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14119 // aligned and the type is a vector with elements up to 4 bytes 14120 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14121 VecTy.getScalarSizeInBits() <= 32) { 14122 return SDValue(); 14123 } 14124 14125 // All stores are done as v2f64 and possible bit cast. 14126 if (VecTy != MVT::v2f64) { 14127 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14128 DCI.AddToWorklist(Src.getNode()); 14129 } 14130 14131 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14132 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14133 DCI.AddToWorklist(Swap.getNode()); 14134 Chain = Swap.getValue(1); 14135 SDValue StoreOps[] = { Chain, Swap, Base }; 14136 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14137 DAG.getVTList(MVT::Other), 14138 StoreOps, VecTy, MMO); 14139 DCI.AddToWorklist(Store.getNode()); 14140 return Store; 14141 } 14142 14143 // Handle DAG combine for STORE (FP_TO_INT F). 14144 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14145 DAGCombinerInfo &DCI) const { 14146 14147 SelectionDAG &DAG = DCI.DAG; 14148 SDLoc dl(N); 14149 unsigned Opcode = N->getOperand(1).getOpcode(); 14150 14151 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14152 && "Not a FP_TO_INT Instruction!"); 14153 14154 SDValue Val = N->getOperand(1).getOperand(0); 14155 EVT Op1VT = N->getOperand(1).getValueType(); 14156 EVT ResVT = Val.getValueType(); 14157 14158 // Floating point types smaller than 32 bits are not legal on Power. 14159 if (ResVT.getScalarSizeInBits() < 32) 14160 return SDValue(); 14161 14162 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14163 bool ValidTypeForStoreFltAsInt = 14164 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14165 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14166 14167 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14168 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14169 return SDValue(); 14170 14171 // Extend f32 values to f64 14172 if (ResVT.getScalarSizeInBits() == 32) { 14173 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14174 DCI.AddToWorklist(Val.getNode()); 14175 } 14176 14177 // Set signed or unsigned conversion opcode. 14178 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14179 PPCISD::FP_TO_SINT_IN_VSR : 14180 PPCISD::FP_TO_UINT_IN_VSR; 14181 14182 Val = DAG.getNode(ConvOpcode, 14183 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14184 DCI.AddToWorklist(Val.getNode()); 14185 14186 // Set number of bytes being converted. 14187 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14188 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14189 DAG.getIntPtrConstant(ByteSize, dl, false), 14190 DAG.getValueType(Op1VT) }; 14191 14192 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14193 DAG.getVTList(MVT::Other), Ops, 14194 cast<StoreSDNode>(N)->getMemoryVT(), 14195 cast<StoreSDNode>(N)->getMemOperand()); 14196 14197 DCI.AddToWorklist(Val.getNode()); 14198 return Val; 14199 } 14200 14201 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14202 // Check that the source of the element keeps flipping 14203 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14204 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14205 for (int i = 1, e = Mask.size(); i < e; i++) { 14206 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14207 return false; 14208 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14209 return false; 14210 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14211 } 14212 return true; 14213 } 14214 14215 static bool isSplatBV(SDValue Op) { 14216 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14217 return false; 14218 SDValue FirstOp; 14219 14220 // Find first non-undef input. 14221 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14222 FirstOp = Op.getOperand(i); 14223 if (!FirstOp.isUndef()) 14224 break; 14225 } 14226 14227 // All inputs are undef or the same as the first non-undef input. 14228 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14229 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14230 return false; 14231 return true; 14232 } 14233 14234 static SDValue isScalarToVec(SDValue Op) { 14235 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14236 return Op; 14237 if (Op.getOpcode() != ISD::BITCAST) 14238 return SDValue(); 14239 Op = Op.getOperand(0); 14240 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14241 return Op; 14242 return SDValue(); 14243 } 14244 14245 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14246 int LHSMaxIdx, int RHSMinIdx, 14247 int RHSMaxIdx, int HalfVec) { 14248 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14249 int Idx = ShuffV[i]; 14250 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14251 ShuffV[i] += HalfVec; 14252 } 14253 return; 14254 } 14255 14256 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14257 // the original is: 14258 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14259 // In such a case, just change the shuffle mask to extract the element 14260 // from the permuted index. 14261 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 14262 SDLoc dl(OrigSToV); 14263 EVT VT = OrigSToV.getValueType(); 14264 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14265 "Expecting a SCALAR_TO_VECTOR here"); 14266 SDValue Input = OrigSToV.getOperand(0); 14267 14268 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14269 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14270 SDValue OrigVector = Input.getOperand(0); 14271 14272 // Can't handle non-const element indices or different vector types 14273 // for the input to the extract and the output of the scalar_to_vector. 14274 if (Idx && VT == OrigVector.getValueType()) { 14275 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 14276 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 14277 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14278 } 14279 } 14280 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14281 OrigSToV.getOperand(0)); 14282 } 14283 14284 // On little endian subtargets, combine shuffles such as: 14285 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14286 // into: 14287 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14288 // because the latter can be matched to a single instruction merge. 14289 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14290 // to put the value into element zero. Adjust the shuffle mask so that the 14291 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14292 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14293 SelectionDAG &DAG) const { 14294 SDValue LHS = SVN->getOperand(0); 14295 SDValue RHS = SVN->getOperand(1); 14296 auto Mask = SVN->getMask(); 14297 int NumElts = LHS.getValueType().getVectorNumElements(); 14298 SDValue Res(SVN, 0); 14299 SDLoc dl(SVN); 14300 14301 // None of these combines are useful on big endian systems since the ISA 14302 // already has a big endian bias. 14303 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14304 return Res; 14305 14306 // If this is not a shuffle of a shuffle and the first element comes from 14307 // the second vector, canonicalize to the commuted form. This will make it 14308 // more likely to match one of the single instruction patterns. 14309 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14310 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14311 std::swap(LHS, RHS); 14312 Res = DAG.getCommutedVectorShuffle(*SVN); 14313 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14314 } 14315 14316 // Adjust the shuffle mask if either input vector comes from a 14317 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14318 // form (to prevent the need for a swap). 14319 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14320 SDValue SToVLHS = isScalarToVec(LHS); 14321 SDValue SToVRHS = isScalarToVec(RHS); 14322 if (SToVLHS || SToVRHS) { 14323 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14324 : SToVRHS.getValueType().getVectorNumElements(); 14325 int NumEltsOut = ShuffV.size(); 14326 14327 // Initially assume that neither input is permuted. These will be adjusted 14328 // accordingly if either input is. 14329 int LHSMaxIdx = -1; 14330 int RHSMinIdx = -1; 14331 int RHSMaxIdx = -1; 14332 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14333 14334 // Get the permuted scalar to vector nodes for the source(s) that come from 14335 // ISD::SCALAR_TO_VECTOR. 14336 if (SToVLHS) { 14337 // Set up the values for the shuffle vector fixup. 14338 LHSMaxIdx = NumEltsOut / NumEltsIn; 14339 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14340 if (SToVLHS.getValueType() != LHS.getValueType()) 14341 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14342 LHS = SToVLHS; 14343 } 14344 if (SToVRHS) { 14345 RHSMinIdx = NumEltsOut; 14346 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14347 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14348 if (SToVRHS.getValueType() != RHS.getValueType()) 14349 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14350 RHS = SToVRHS; 14351 } 14352 14353 // Fix up the shuffle mask to reflect where the desired element actually is. 14354 // The minimum and maximum indices that correspond to element zero for both 14355 // the LHS and RHS are computed and will control which shuffle mask entries 14356 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14357 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14358 // HalfVec to refer to the corresponding element in the permuted vector. 14359 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14360 HalfVec); 14361 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14362 14363 // We may have simplified away the shuffle. We won't be able to do anything 14364 // further with it here. 14365 if (!isa<ShuffleVectorSDNode>(Res)) 14366 return Res; 14367 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14368 } 14369 14370 // The common case after we commuted the shuffle is that the RHS is a splat 14371 // and we have elements coming in from the splat at indices that are not 14372 // conducive to using a merge. 14373 // Example: 14374 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14375 if (!isSplatBV(RHS)) 14376 return Res; 14377 14378 // We are looking for a mask such that all even elements are from 14379 // one vector and all odd elements from the other. 14380 if (!isAlternatingShuffMask(Mask, NumElts)) 14381 return Res; 14382 14383 // Adjust the mask so we are pulling in the same index from the splat 14384 // as the index from the interesting vector in consecutive elements. 14385 // Example (even elements from first vector): 14386 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14387 if (Mask[0] < NumElts) 14388 for (int i = 1, e = Mask.size(); i < e; i += 2) 14389 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14390 // Example (odd elements from first vector): 14391 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14392 else 14393 for (int i = 0, e = Mask.size(); i < e; i += 2) 14394 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14395 14396 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14397 return Res; 14398 } 14399 14400 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14401 LSBaseSDNode *LSBase, 14402 DAGCombinerInfo &DCI) const { 14403 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14404 "Not a reverse memop pattern!"); 14405 14406 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14407 auto Mask = SVN->getMask(); 14408 int i = 0; 14409 auto I = Mask.rbegin(); 14410 auto E = Mask.rend(); 14411 14412 for (; I != E; ++I) { 14413 if (*I != i) 14414 return false; 14415 i++; 14416 } 14417 return true; 14418 }; 14419 14420 SelectionDAG &DAG = DCI.DAG; 14421 EVT VT = SVN->getValueType(0); 14422 14423 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14424 return SDValue(); 14425 14426 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14427 // See comment in PPCVSXSwapRemoval.cpp. 14428 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14429 if (!Subtarget.hasP9Vector()) 14430 return SDValue(); 14431 14432 if(!IsElementReverse(SVN)) 14433 return SDValue(); 14434 14435 if (LSBase->getOpcode() == ISD::LOAD) { 14436 SDLoc dl(SVN); 14437 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14438 return DAG.getMemIntrinsicNode( 14439 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14440 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14441 } 14442 14443 if (LSBase->getOpcode() == ISD::STORE) { 14444 SDLoc dl(LSBase); 14445 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14446 LSBase->getBasePtr()}; 14447 return DAG.getMemIntrinsicNode( 14448 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14449 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14450 } 14451 14452 llvm_unreachable("Expected a load or store node here"); 14453 } 14454 14455 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14456 DAGCombinerInfo &DCI) const { 14457 SelectionDAG &DAG = DCI.DAG; 14458 SDLoc dl(N); 14459 switch (N->getOpcode()) { 14460 default: break; 14461 case ISD::ADD: 14462 return combineADD(N, DCI); 14463 case ISD::SHL: 14464 return combineSHL(N, DCI); 14465 case ISD::SRA: 14466 return combineSRA(N, DCI); 14467 case ISD::SRL: 14468 return combineSRL(N, DCI); 14469 case ISD::MUL: 14470 return combineMUL(N, DCI); 14471 case ISD::FMA: 14472 case PPCISD::FNMSUB: 14473 return combineFMALike(N, DCI); 14474 case PPCISD::SHL: 14475 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14476 return N->getOperand(0); 14477 break; 14478 case PPCISD::SRL: 14479 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14480 return N->getOperand(0); 14481 break; 14482 case PPCISD::SRA: 14483 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14484 if (C->isNullValue() || // 0 >>s V -> 0. 14485 C->isAllOnesValue()) // -1 >>s V -> -1. 14486 return N->getOperand(0); 14487 } 14488 break; 14489 case ISD::SIGN_EXTEND: 14490 case ISD::ZERO_EXTEND: 14491 case ISD::ANY_EXTEND: 14492 return DAGCombineExtBoolTrunc(N, DCI); 14493 case ISD::TRUNCATE: 14494 return combineTRUNCATE(N, DCI); 14495 case ISD::SETCC: 14496 if (SDValue CSCC = combineSetCC(N, DCI)) 14497 return CSCC; 14498 LLVM_FALLTHROUGH; 14499 case ISD::SELECT_CC: 14500 return DAGCombineTruncBoolExt(N, DCI); 14501 case ISD::SINT_TO_FP: 14502 case ISD::UINT_TO_FP: 14503 return combineFPToIntToFP(N, DCI); 14504 case ISD::VECTOR_SHUFFLE: 14505 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14506 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14507 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14508 } 14509 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14510 case ISD::STORE: { 14511 14512 EVT Op1VT = N->getOperand(1).getValueType(); 14513 unsigned Opcode = N->getOperand(1).getOpcode(); 14514 14515 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14516 SDValue Val= combineStoreFPToInt(N, DCI); 14517 if (Val) 14518 return Val; 14519 } 14520 14521 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14522 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14523 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14524 if (Val) 14525 return Val; 14526 } 14527 14528 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14529 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14530 N->getOperand(1).getNode()->hasOneUse() && 14531 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14532 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14533 14534 // STBRX can only handle simple types and it makes no sense to store less 14535 // two bytes in byte-reversed order. 14536 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14537 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14538 break; 14539 14540 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14541 // Do an any-extend to 32-bits if this is a half-word input. 14542 if (BSwapOp.getValueType() == MVT::i16) 14543 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14544 14545 // If the type of BSWAP operand is wider than stored memory width 14546 // it need to be shifted to the right side before STBRX. 14547 if (Op1VT.bitsGT(mVT)) { 14548 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14549 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14550 DAG.getConstant(Shift, dl, MVT::i32)); 14551 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14552 if (Op1VT == MVT::i64) 14553 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14554 } 14555 14556 SDValue Ops[] = { 14557 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14558 }; 14559 return 14560 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14561 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14562 cast<StoreSDNode>(N)->getMemOperand()); 14563 } 14564 14565 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14566 // So it can increase the chance of CSE constant construction. 14567 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14568 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14569 // Need to sign-extended to 64-bits to handle negative values. 14570 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14571 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14572 MemVT.getSizeInBits()); 14573 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14574 14575 // DAG.getTruncStore() can't be used here because it doesn't accept 14576 // the general (base + offset) addressing mode. 14577 // So we use UpdateNodeOperands and setTruncatingStore instead. 14578 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14579 N->getOperand(3)); 14580 cast<StoreSDNode>(N)->setTruncatingStore(true); 14581 return SDValue(N, 0); 14582 } 14583 14584 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14585 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14586 if (Op1VT.isSimple()) { 14587 MVT StoreVT = Op1VT.getSimpleVT(); 14588 if (Subtarget.needsSwapsForVSXMemOps() && 14589 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14590 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14591 return expandVSXStoreForLE(N, DCI); 14592 } 14593 break; 14594 } 14595 case ISD::LOAD: { 14596 LoadSDNode *LD = cast<LoadSDNode>(N); 14597 EVT VT = LD->getValueType(0); 14598 14599 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14600 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14601 if (VT.isSimple()) { 14602 MVT LoadVT = VT.getSimpleVT(); 14603 if (Subtarget.needsSwapsForVSXMemOps() && 14604 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14605 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14606 return expandVSXLoadForLE(N, DCI); 14607 } 14608 14609 // We sometimes end up with a 64-bit integer load, from which we extract 14610 // two single-precision floating-point numbers. This happens with 14611 // std::complex<float>, and other similar structures, because of the way we 14612 // canonicalize structure copies. However, if we lack direct moves, 14613 // then the final bitcasts from the extracted integer values to the 14614 // floating-point numbers turn into store/load pairs. Even with direct moves, 14615 // just loading the two floating-point numbers is likely better. 14616 auto ReplaceTwoFloatLoad = [&]() { 14617 if (VT != MVT::i64) 14618 return false; 14619 14620 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14621 LD->isVolatile()) 14622 return false; 14623 14624 // We're looking for a sequence like this: 14625 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14626 // t16: i64 = srl t13, Constant:i32<32> 14627 // t17: i32 = truncate t16 14628 // t18: f32 = bitcast t17 14629 // t19: i32 = truncate t13 14630 // t20: f32 = bitcast t19 14631 14632 if (!LD->hasNUsesOfValue(2, 0)) 14633 return false; 14634 14635 auto UI = LD->use_begin(); 14636 while (UI.getUse().getResNo() != 0) ++UI; 14637 SDNode *Trunc = *UI++; 14638 while (UI.getUse().getResNo() != 0) ++UI; 14639 SDNode *RightShift = *UI; 14640 if (Trunc->getOpcode() != ISD::TRUNCATE) 14641 std::swap(Trunc, RightShift); 14642 14643 if (Trunc->getOpcode() != ISD::TRUNCATE || 14644 Trunc->getValueType(0) != MVT::i32 || 14645 !Trunc->hasOneUse()) 14646 return false; 14647 if (RightShift->getOpcode() != ISD::SRL || 14648 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14649 RightShift->getConstantOperandVal(1) != 32 || 14650 !RightShift->hasOneUse()) 14651 return false; 14652 14653 SDNode *Trunc2 = *RightShift->use_begin(); 14654 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14655 Trunc2->getValueType(0) != MVT::i32 || 14656 !Trunc2->hasOneUse()) 14657 return false; 14658 14659 SDNode *Bitcast = *Trunc->use_begin(); 14660 SDNode *Bitcast2 = *Trunc2->use_begin(); 14661 14662 if (Bitcast->getOpcode() != ISD::BITCAST || 14663 Bitcast->getValueType(0) != MVT::f32) 14664 return false; 14665 if (Bitcast2->getOpcode() != ISD::BITCAST || 14666 Bitcast2->getValueType(0) != MVT::f32) 14667 return false; 14668 14669 if (Subtarget.isLittleEndian()) 14670 std::swap(Bitcast, Bitcast2); 14671 14672 // Bitcast has the second float (in memory-layout order) and Bitcast2 14673 // has the first one. 14674 14675 SDValue BasePtr = LD->getBasePtr(); 14676 if (LD->isIndexed()) { 14677 assert(LD->getAddressingMode() == ISD::PRE_INC && 14678 "Non-pre-inc AM on PPC?"); 14679 BasePtr = 14680 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14681 LD->getOffset()); 14682 } 14683 14684 auto MMOFlags = 14685 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14686 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14687 LD->getPointerInfo(), LD->getAlignment(), 14688 MMOFlags, LD->getAAInfo()); 14689 SDValue AddPtr = 14690 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14691 BasePtr, DAG.getIntPtrConstant(4, dl)); 14692 SDValue FloatLoad2 = DAG.getLoad( 14693 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14694 LD->getPointerInfo().getWithOffset(4), 14695 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14696 14697 if (LD->isIndexed()) { 14698 // Note that DAGCombine should re-form any pre-increment load(s) from 14699 // what is produced here if that makes sense. 14700 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14701 } 14702 14703 DCI.CombineTo(Bitcast2, FloatLoad); 14704 DCI.CombineTo(Bitcast, FloatLoad2); 14705 14706 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14707 SDValue(FloatLoad2.getNode(), 1)); 14708 return true; 14709 }; 14710 14711 if (ReplaceTwoFloatLoad()) 14712 return SDValue(N, 0); 14713 14714 EVT MemVT = LD->getMemoryVT(); 14715 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14716 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14717 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14718 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14719 if (LD->isUnindexed() && VT.isVector() && 14720 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14721 // P8 and later hardware should just use LOAD. 14722 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14723 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14724 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14725 LD->getAlignment() >= ScalarABIAlignment)) && 14726 LD->getAlignment() < ABIAlignment) { 14727 // This is a type-legal unaligned Altivec or QPX load. 14728 SDValue Chain = LD->getChain(); 14729 SDValue Ptr = LD->getBasePtr(); 14730 bool isLittleEndian = Subtarget.isLittleEndian(); 14731 14732 // This implements the loading of unaligned vectors as described in 14733 // the venerable Apple Velocity Engine overview. Specifically: 14734 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14735 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14736 // 14737 // The general idea is to expand a sequence of one or more unaligned 14738 // loads into an alignment-based permutation-control instruction (lvsl 14739 // or lvsr), a series of regular vector loads (which always truncate 14740 // their input address to an aligned address), and a series of 14741 // permutations. The results of these permutations are the requested 14742 // loaded values. The trick is that the last "extra" load is not taken 14743 // from the address you might suspect (sizeof(vector) bytes after the 14744 // last requested load), but rather sizeof(vector) - 1 bytes after the 14745 // last requested vector. The point of this is to avoid a page fault if 14746 // the base address happened to be aligned. This works because if the 14747 // base address is aligned, then adding less than a full vector length 14748 // will cause the last vector in the sequence to be (re)loaded. 14749 // Otherwise, the next vector will be fetched as you might suspect was 14750 // necessary. 14751 14752 // We might be able to reuse the permutation generation from 14753 // a different base address offset from this one by an aligned amount. 14754 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14755 // optimization later. 14756 Intrinsic::ID Intr, IntrLD, IntrPerm; 14757 MVT PermCntlTy, PermTy, LDTy; 14758 if (Subtarget.hasAltivec()) { 14759 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14760 Intrinsic::ppc_altivec_lvsl; 14761 IntrLD = Intrinsic::ppc_altivec_lvx; 14762 IntrPerm = Intrinsic::ppc_altivec_vperm; 14763 PermCntlTy = MVT::v16i8; 14764 PermTy = MVT::v4i32; 14765 LDTy = MVT::v4i32; 14766 } else { 14767 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14768 Intrinsic::ppc_qpx_qvlpcls; 14769 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14770 Intrinsic::ppc_qpx_qvlfs; 14771 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14772 PermCntlTy = MVT::v4f64; 14773 PermTy = MVT::v4f64; 14774 LDTy = MemVT.getSimpleVT(); 14775 } 14776 14777 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14778 14779 // Create the new MMO for the new base load. It is like the original MMO, 14780 // but represents an area in memory almost twice the vector size centered 14781 // on the original address. If the address is unaligned, we might start 14782 // reading up to (sizeof(vector)-1) bytes below the address of the 14783 // original unaligned load. 14784 MachineFunction &MF = DAG.getMachineFunction(); 14785 MachineMemOperand *BaseMMO = 14786 MF.getMachineMemOperand(LD->getMemOperand(), 14787 -(long)MemVT.getStoreSize()+1, 14788 2*MemVT.getStoreSize()-1); 14789 14790 // Create the new base load. 14791 SDValue LDXIntID = 14792 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14793 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14794 SDValue BaseLoad = 14795 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14796 DAG.getVTList(PermTy, MVT::Other), 14797 BaseLoadOps, LDTy, BaseMMO); 14798 14799 // Note that the value of IncOffset (which is provided to the next 14800 // load's pointer info offset value, and thus used to calculate the 14801 // alignment), and the value of IncValue (which is actually used to 14802 // increment the pointer value) are different! This is because we 14803 // require the next load to appear to be aligned, even though it 14804 // is actually offset from the base pointer by a lesser amount. 14805 int IncOffset = VT.getSizeInBits() / 8; 14806 int IncValue = IncOffset; 14807 14808 // Walk (both up and down) the chain looking for another load at the real 14809 // (aligned) offset (the alignment of the other load does not matter in 14810 // this case). If found, then do not use the offset reduction trick, as 14811 // that will prevent the loads from being later combined (as they would 14812 // otherwise be duplicates). 14813 if (!findConsecutiveLoad(LD, DAG)) 14814 --IncValue; 14815 14816 SDValue Increment = 14817 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14818 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14819 14820 MachineMemOperand *ExtraMMO = 14821 MF.getMachineMemOperand(LD->getMemOperand(), 14822 1, 2*MemVT.getStoreSize()-1); 14823 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14824 SDValue ExtraLoad = 14825 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14826 DAG.getVTList(PermTy, MVT::Other), 14827 ExtraLoadOps, LDTy, ExtraMMO); 14828 14829 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14830 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14831 14832 // Because vperm has a big-endian bias, we must reverse the order 14833 // of the input vectors and complement the permute control vector 14834 // when generating little endian code. We have already handled the 14835 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14836 // and ExtraLoad here. 14837 SDValue Perm; 14838 if (isLittleEndian) 14839 Perm = BuildIntrinsicOp(IntrPerm, 14840 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14841 else 14842 Perm = BuildIntrinsicOp(IntrPerm, 14843 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14844 14845 if (VT != PermTy) 14846 Perm = Subtarget.hasAltivec() ? 14847 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14848 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14849 DAG.getTargetConstant(1, dl, MVT::i64)); 14850 // second argument is 1 because this rounding 14851 // is always exact. 14852 14853 // The output of the permutation is our loaded result, the TokenFactor is 14854 // our new chain. 14855 DCI.CombineTo(N, Perm, TF); 14856 return SDValue(N, 0); 14857 } 14858 } 14859 break; 14860 case ISD::INTRINSIC_WO_CHAIN: { 14861 bool isLittleEndian = Subtarget.isLittleEndian(); 14862 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14863 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14864 : Intrinsic::ppc_altivec_lvsl); 14865 if ((IID == Intr || 14866 IID == Intrinsic::ppc_qpx_qvlpcld || 14867 IID == Intrinsic::ppc_qpx_qvlpcls) && 14868 N->getOperand(1)->getOpcode() == ISD::ADD) { 14869 SDValue Add = N->getOperand(1); 14870 14871 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14872 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14873 14874 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14875 APInt::getAllOnesValue(Bits /* alignment */) 14876 .zext(Add.getScalarValueSizeInBits()))) { 14877 SDNode *BasePtr = Add->getOperand(0).getNode(); 14878 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14879 UE = BasePtr->use_end(); 14880 UI != UE; ++UI) { 14881 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14882 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14883 // We've found another LVSL/LVSR, and this address is an aligned 14884 // multiple of that one. The results will be the same, so use the 14885 // one we've just found instead. 14886 14887 return SDValue(*UI, 0); 14888 } 14889 } 14890 } 14891 14892 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14893 SDNode *BasePtr = Add->getOperand(0).getNode(); 14894 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14895 UE = BasePtr->use_end(); UI != UE; ++UI) { 14896 if (UI->getOpcode() == ISD::ADD && 14897 isa<ConstantSDNode>(UI->getOperand(1)) && 14898 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14899 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14900 (1ULL << Bits) == 0) { 14901 SDNode *OtherAdd = *UI; 14902 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14903 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14904 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14905 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14906 return SDValue(*VI, 0); 14907 } 14908 } 14909 } 14910 } 14911 } 14912 } 14913 14914 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14915 // Expose the vabsduw/h/b opportunity for down stream 14916 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14917 (IID == Intrinsic::ppc_altivec_vmaxsw || 14918 IID == Intrinsic::ppc_altivec_vmaxsh || 14919 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14920 SDValue V1 = N->getOperand(1); 14921 SDValue V2 = N->getOperand(2); 14922 if ((V1.getSimpleValueType() == MVT::v4i32 || 14923 V1.getSimpleValueType() == MVT::v8i16 || 14924 V1.getSimpleValueType() == MVT::v16i8) && 14925 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14926 // (0-a, a) 14927 if (V1.getOpcode() == ISD::SUB && 14928 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14929 V1.getOperand(1) == V2) { 14930 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14931 } 14932 // (a, 0-a) 14933 if (V2.getOpcode() == ISD::SUB && 14934 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14935 V2.getOperand(1) == V1) { 14936 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14937 } 14938 // (x-y, y-x) 14939 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14940 V1.getOperand(0) == V2.getOperand(1) && 14941 V1.getOperand(1) == V2.getOperand(0)) { 14942 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14943 } 14944 } 14945 } 14946 } 14947 14948 break; 14949 case ISD::INTRINSIC_W_CHAIN: 14950 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14951 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14952 if (Subtarget.needsSwapsForVSXMemOps()) { 14953 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14954 default: 14955 break; 14956 case Intrinsic::ppc_vsx_lxvw4x: 14957 case Intrinsic::ppc_vsx_lxvd2x: 14958 return expandVSXLoadForLE(N, DCI); 14959 } 14960 } 14961 break; 14962 case ISD::INTRINSIC_VOID: 14963 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14964 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14965 if (Subtarget.needsSwapsForVSXMemOps()) { 14966 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14967 default: 14968 break; 14969 case Intrinsic::ppc_vsx_stxvw4x: 14970 case Intrinsic::ppc_vsx_stxvd2x: 14971 return expandVSXStoreForLE(N, DCI); 14972 } 14973 } 14974 break; 14975 case ISD::BSWAP: 14976 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14977 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14978 N->getOperand(0).hasOneUse() && 14979 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14980 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14981 N->getValueType(0) == MVT::i64))) { 14982 SDValue Load = N->getOperand(0); 14983 LoadSDNode *LD = cast<LoadSDNode>(Load); 14984 // Create the byte-swapping load. 14985 SDValue Ops[] = { 14986 LD->getChain(), // Chain 14987 LD->getBasePtr(), // Ptr 14988 DAG.getValueType(N->getValueType(0)) // VT 14989 }; 14990 SDValue BSLoad = 14991 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14992 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14993 MVT::i64 : MVT::i32, MVT::Other), 14994 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14995 14996 // If this is an i16 load, insert the truncate. 14997 SDValue ResVal = BSLoad; 14998 if (N->getValueType(0) == MVT::i16) 14999 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15000 15001 // First, combine the bswap away. This makes the value produced by the 15002 // load dead. 15003 DCI.CombineTo(N, ResVal); 15004 15005 // Next, combine the load away, we give it a bogus result value but a real 15006 // chain result. The result value is dead because the bswap is dead. 15007 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15008 15009 // Return N so it doesn't get rechecked! 15010 return SDValue(N, 0); 15011 } 15012 break; 15013 case PPCISD::VCMP: 15014 // If a VCMPo node already exists with exactly the same operands as this 15015 // node, use its result instead of this node (VCMPo computes both a CR6 and 15016 // a normal output). 15017 // 15018 if (!N->getOperand(0).hasOneUse() && 15019 !N->getOperand(1).hasOneUse() && 15020 !N->getOperand(2).hasOneUse()) { 15021 15022 // Scan all of the users of the LHS, looking for VCMPo's that match. 15023 SDNode *VCMPoNode = nullptr; 15024 15025 SDNode *LHSN = N->getOperand(0).getNode(); 15026 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15027 UI != E; ++UI) 15028 if (UI->getOpcode() == PPCISD::VCMPo && 15029 UI->getOperand(1) == N->getOperand(1) && 15030 UI->getOperand(2) == N->getOperand(2) && 15031 UI->getOperand(0) == N->getOperand(0)) { 15032 VCMPoNode = *UI; 15033 break; 15034 } 15035 15036 // If there is no VCMPo node, or if the flag value has a single use, don't 15037 // transform this. 15038 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 15039 break; 15040 15041 // Look at the (necessarily single) use of the flag value. If it has a 15042 // chain, this transformation is more complex. Note that multiple things 15043 // could use the value result, which we should ignore. 15044 SDNode *FlagUser = nullptr; 15045 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 15046 FlagUser == nullptr; ++UI) { 15047 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 15048 SDNode *User = *UI; 15049 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15050 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 15051 FlagUser = User; 15052 break; 15053 } 15054 } 15055 } 15056 15057 // If the user is a MFOCRF instruction, we know this is safe. 15058 // Otherwise we give up for right now. 15059 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15060 return SDValue(VCMPoNode, 0); 15061 } 15062 break; 15063 case ISD::BRCOND: { 15064 SDValue Cond = N->getOperand(1); 15065 SDValue Target = N->getOperand(2); 15066 15067 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15068 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15069 Intrinsic::loop_decrement) { 15070 15071 // We now need to make the intrinsic dead (it cannot be instruction 15072 // selected). 15073 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15074 assert(Cond.getNode()->hasOneUse() && 15075 "Counter decrement has more than one use"); 15076 15077 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15078 N->getOperand(0), Target); 15079 } 15080 } 15081 break; 15082 case ISD::BR_CC: { 15083 // If this is a branch on an altivec predicate comparison, lower this so 15084 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15085 // lowering is done pre-legalize, because the legalizer lowers the predicate 15086 // compare down to code that is difficult to reassemble. 15087 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15088 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15089 15090 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15091 // value. If so, pass-through the AND to get to the intrinsic. 15092 if (LHS.getOpcode() == ISD::AND && 15093 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15094 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15095 Intrinsic::loop_decrement && 15096 isa<ConstantSDNode>(LHS.getOperand(1)) && 15097 !isNullConstant(LHS.getOperand(1))) 15098 LHS = LHS.getOperand(0); 15099 15100 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15101 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15102 Intrinsic::loop_decrement && 15103 isa<ConstantSDNode>(RHS)) { 15104 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15105 "Counter decrement comparison is not EQ or NE"); 15106 15107 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15108 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15109 (CC == ISD::SETNE && !Val); 15110 15111 // We now need to make the intrinsic dead (it cannot be instruction 15112 // selected). 15113 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15114 assert(LHS.getNode()->hasOneUse() && 15115 "Counter decrement has more than one use"); 15116 15117 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15118 N->getOperand(0), N->getOperand(4)); 15119 } 15120 15121 int CompareOpc; 15122 bool isDot; 15123 15124 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15125 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15126 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15127 assert(isDot && "Can't compare against a vector result!"); 15128 15129 // If this is a comparison against something other than 0/1, then we know 15130 // that the condition is never/always true. 15131 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15132 if (Val != 0 && Val != 1) { 15133 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15134 return N->getOperand(0); 15135 // Always !=, turn it into an unconditional branch. 15136 return DAG.getNode(ISD::BR, dl, MVT::Other, 15137 N->getOperand(0), N->getOperand(4)); 15138 } 15139 15140 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15141 15142 // Create the PPCISD altivec 'dot' comparison node. 15143 SDValue Ops[] = { 15144 LHS.getOperand(2), // LHS of compare 15145 LHS.getOperand(3), // RHS of compare 15146 DAG.getConstant(CompareOpc, dl, MVT::i32) 15147 }; 15148 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15149 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 15150 15151 // Unpack the result based on how the target uses it. 15152 PPC::Predicate CompOpc; 15153 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15154 default: // Can't happen, don't crash on invalid number though. 15155 case 0: // Branch on the value of the EQ bit of CR6. 15156 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15157 break; 15158 case 1: // Branch on the inverted value of the EQ bit of CR6. 15159 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15160 break; 15161 case 2: // Branch on the value of the LT bit of CR6. 15162 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15163 break; 15164 case 3: // Branch on the inverted value of the LT bit of CR6. 15165 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15166 break; 15167 } 15168 15169 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15170 DAG.getConstant(CompOpc, dl, MVT::i32), 15171 DAG.getRegister(PPC::CR6, MVT::i32), 15172 N->getOperand(4), CompNode.getValue(1)); 15173 } 15174 break; 15175 } 15176 case ISD::BUILD_VECTOR: 15177 return DAGCombineBuildVector(N, DCI); 15178 case ISD::ABS: 15179 return combineABS(N, DCI); 15180 case ISD::VSELECT: 15181 return combineVSelect(N, DCI); 15182 } 15183 15184 return SDValue(); 15185 } 15186 15187 SDValue 15188 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15189 SelectionDAG &DAG, 15190 SmallVectorImpl<SDNode *> &Created) const { 15191 // fold (sdiv X, pow2) 15192 EVT VT = N->getValueType(0); 15193 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15194 return SDValue(); 15195 if ((VT != MVT::i32 && VT != MVT::i64) || 15196 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15197 return SDValue(); 15198 15199 SDLoc DL(N); 15200 SDValue N0 = N->getOperand(0); 15201 15202 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15203 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15204 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15205 15206 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15207 Created.push_back(Op.getNode()); 15208 15209 if (IsNegPow2) { 15210 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15211 Created.push_back(Op.getNode()); 15212 } 15213 15214 return Op; 15215 } 15216 15217 //===----------------------------------------------------------------------===// 15218 // Inline Assembly Support 15219 //===----------------------------------------------------------------------===// 15220 15221 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15222 KnownBits &Known, 15223 const APInt &DemandedElts, 15224 const SelectionDAG &DAG, 15225 unsigned Depth) const { 15226 Known.resetAll(); 15227 switch (Op.getOpcode()) { 15228 default: break; 15229 case PPCISD::LBRX: { 15230 // lhbrx is known to have the top bits cleared out. 15231 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15232 Known.Zero = 0xFFFF0000; 15233 break; 15234 } 15235 case ISD::INTRINSIC_WO_CHAIN: { 15236 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15237 default: break; 15238 case Intrinsic::ppc_altivec_vcmpbfp_p: 15239 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15240 case Intrinsic::ppc_altivec_vcmpequb_p: 15241 case Intrinsic::ppc_altivec_vcmpequh_p: 15242 case Intrinsic::ppc_altivec_vcmpequw_p: 15243 case Intrinsic::ppc_altivec_vcmpequd_p: 15244 case Intrinsic::ppc_altivec_vcmpgefp_p: 15245 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15246 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15247 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15248 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15249 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15250 case Intrinsic::ppc_altivec_vcmpgtub_p: 15251 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15252 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15253 case Intrinsic::ppc_altivec_vcmpgtud_p: 15254 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15255 break; 15256 } 15257 } 15258 } 15259 } 15260 15261 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15262 switch (Subtarget.getCPUDirective()) { 15263 default: break; 15264 case PPC::DIR_970: 15265 case PPC::DIR_PWR4: 15266 case PPC::DIR_PWR5: 15267 case PPC::DIR_PWR5X: 15268 case PPC::DIR_PWR6: 15269 case PPC::DIR_PWR6X: 15270 case PPC::DIR_PWR7: 15271 case PPC::DIR_PWR8: 15272 case PPC::DIR_PWR9: 15273 case PPC::DIR_PWR10: 15274 case PPC::DIR_PWR_FUTURE: { 15275 if (!ML) 15276 break; 15277 15278 if (!DisableInnermostLoopAlign32) { 15279 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15280 // so that we can decrease cache misses and branch-prediction misses. 15281 // Actual alignment of the loop will depend on the hotness check and other 15282 // logic in alignBlocks. 15283 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15284 return Align(32); 15285 } 15286 15287 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15288 15289 // For small loops (between 5 and 8 instructions), align to a 32-byte 15290 // boundary so that the entire loop fits in one instruction-cache line. 15291 uint64_t LoopSize = 0; 15292 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15293 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15294 LoopSize += TII->getInstSizeInBytes(*J); 15295 if (LoopSize > 32) 15296 break; 15297 } 15298 15299 if (LoopSize > 16 && LoopSize <= 32) 15300 return Align(32); 15301 15302 break; 15303 } 15304 } 15305 15306 return TargetLowering::getPrefLoopAlignment(ML); 15307 } 15308 15309 /// getConstraintType - Given a constraint, return the type of 15310 /// constraint it is for this target. 15311 PPCTargetLowering::ConstraintType 15312 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15313 if (Constraint.size() == 1) { 15314 switch (Constraint[0]) { 15315 default: break; 15316 case 'b': 15317 case 'r': 15318 case 'f': 15319 case 'd': 15320 case 'v': 15321 case 'y': 15322 return C_RegisterClass; 15323 case 'Z': 15324 // FIXME: While Z does indicate a memory constraint, it specifically 15325 // indicates an r+r address (used in conjunction with the 'y' modifier 15326 // in the replacement string). Currently, we're forcing the base 15327 // register to be r0 in the asm printer (which is interpreted as zero) 15328 // and forming the complete address in the second register. This is 15329 // suboptimal. 15330 return C_Memory; 15331 } 15332 } else if (Constraint == "wc") { // individual CR bits. 15333 return C_RegisterClass; 15334 } else if (Constraint == "wa" || Constraint == "wd" || 15335 Constraint == "wf" || Constraint == "ws" || 15336 Constraint == "wi" || Constraint == "ww") { 15337 return C_RegisterClass; // VSX registers. 15338 } 15339 return TargetLowering::getConstraintType(Constraint); 15340 } 15341 15342 /// Examine constraint type and operand type and determine a weight value. 15343 /// This object must already have been set up with the operand type 15344 /// and the current alternative constraint selected. 15345 TargetLowering::ConstraintWeight 15346 PPCTargetLowering::getSingleConstraintMatchWeight( 15347 AsmOperandInfo &info, const char *constraint) const { 15348 ConstraintWeight weight = CW_Invalid; 15349 Value *CallOperandVal = info.CallOperandVal; 15350 // If we don't have a value, we can't do a match, 15351 // but allow it at the lowest weight. 15352 if (!CallOperandVal) 15353 return CW_Default; 15354 Type *type = CallOperandVal->getType(); 15355 15356 // Look at the constraint type. 15357 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15358 return CW_Register; // an individual CR bit. 15359 else if ((StringRef(constraint) == "wa" || 15360 StringRef(constraint) == "wd" || 15361 StringRef(constraint) == "wf") && 15362 type->isVectorTy()) 15363 return CW_Register; 15364 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15365 return CW_Register; // just hold 64-bit integers data. 15366 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15367 return CW_Register; 15368 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15369 return CW_Register; 15370 15371 switch (*constraint) { 15372 default: 15373 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15374 break; 15375 case 'b': 15376 if (type->isIntegerTy()) 15377 weight = CW_Register; 15378 break; 15379 case 'f': 15380 if (type->isFloatTy()) 15381 weight = CW_Register; 15382 break; 15383 case 'd': 15384 if (type->isDoubleTy()) 15385 weight = CW_Register; 15386 break; 15387 case 'v': 15388 if (type->isVectorTy()) 15389 weight = CW_Register; 15390 break; 15391 case 'y': 15392 weight = CW_Register; 15393 break; 15394 case 'Z': 15395 weight = CW_Memory; 15396 break; 15397 } 15398 return weight; 15399 } 15400 15401 std::pair<unsigned, const TargetRegisterClass *> 15402 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15403 StringRef Constraint, 15404 MVT VT) const { 15405 if (Constraint.size() == 1) { 15406 // GCC RS6000 Constraint Letters 15407 switch (Constraint[0]) { 15408 case 'b': // R1-R31 15409 if (VT == MVT::i64 && Subtarget.isPPC64()) 15410 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15411 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15412 case 'r': // R0-R31 15413 if (VT == MVT::i64 && Subtarget.isPPC64()) 15414 return std::make_pair(0U, &PPC::G8RCRegClass); 15415 return std::make_pair(0U, &PPC::GPRCRegClass); 15416 // 'd' and 'f' constraints are both defined to be "the floating point 15417 // registers", where one is for 32-bit and the other for 64-bit. We don't 15418 // really care overly much here so just give them all the same reg classes. 15419 case 'd': 15420 case 'f': 15421 if (Subtarget.hasSPE()) { 15422 if (VT == MVT::f32 || VT == MVT::i32) 15423 return std::make_pair(0U, &PPC::GPRCRegClass); 15424 if (VT == MVT::f64 || VT == MVT::i64) 15425 return std::make_pair(0U, &PPC::SPERCRegClass); 15426 } else { 15427 if (VT == MVT::f32 || VT == MVT::i32) 15428 return std::make_pair(0U, &PPC::F4RCRegClass); 15429 if (VT == MVT::f64 || VT == MVT::i64) 15430 return std::make_pair(0U, &PPC::F8RCRegClass); 15431 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15432 return std::make_pair(0U, &PPC::QFRCRegClass); 15433 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15434 return std::make_pair(0U, &PPC::QSRCRegClass); 15435 } 15436 break; 15437 case 'v': 15438 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15439 return std::make_pair(0U, &PPC::QFRCRegClass); 15440 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15441 return std::make_pair(0U, &PPC::QSRCRegClass); 15442 if (Subtarget.hasAltivec()) 15443 return std::make_pair(0U, &PPC::VRRCRegClass); 15444 break; 15445 case 'y': // crrc 15446 return std::make_pair(0U, &PPC::CRRCRegClass); 15447 } 15448 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15449 // An individual CR bit. 15450 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15451 } else if ((Constraint == "wa" || Constraint == "wd" || 15452 Constraint == "wf" || Constraint == "wi") && 15453 Subtarget.hasVSX()) { 15454 return std::make_pair(0U, &PPC::VSRCRegClass); 15455 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15456 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15457 return std::make_pair(0U, &PPC::VSSRCRegClass); 15458 else 15459 return std::make_pair(0U, &PPC::VSFRCRegClass); 15460 } 15461 15462 // If we name a VSX register, we can't defer to the base class because it 15463 // will not recognize the correct register (their names will be VSL{0-31} 15464 // and V{0-31} so they won't match). So we match them here. 15465 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15466 int VSNum = atoi(Constraint.data() + 3); 15467 assert(VSNum >= 0 && VSNum <= 63 && 15468 "Attempted to access a vsr out of range"); 15469 if (VSNum < 32) 15470 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15471 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15472 } 15473 std::pair<unsigned, const TargetRegisterClass *> R = 15474 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15475 15476 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15477 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15478 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15479 // register. 15480 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15481 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15482 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15483 PPC::GPRCRegClass.contains(R.first)) 15484 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15485 PPC::sub_32, &PPC::G8RCRegClass), 15486 &PPC::G8RCRegClass); 15487 15488 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15489 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15490 R.first = PPC::CR0; 15491 R.second = &PPC::CRRCRegClass; 15492 } 15493 15494 return R; 15495 } 15496 15497 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15498 /// vector. If it is invalid, don't add anything to Ops. 15499 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15500 std::string &Constraint, 15501 std::vector<SDValue>&Ops, 15502 SelectionDAG &DAG) const { 15503 SDValue Result; 15504 15505 // Only support length 1 constraints. 15506 if (Constraint.length() > 1) return; 15507 15508 char Letter = Constraint[0]; 15509 switch (Letter) { 15510 default: break; 15511 case 'I': 15512 case 'J': 15513 case 'K': 15514 case 'L': 15515 case 'M': 15516 case 'N': 15517 case 'O': 15518 case 'P': { 15519 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15520 if (!CST) return; // Must be an immediate to match. 15521 SDLoc dl(Op); 15522 int64_t Value = CST->getSExtValue(); 15523 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15524 // numbers are printed as such. 15525 switch (Letter) { 15526 default: llvm_unreachable("Unknown constraint letter!"); 15527 case 'I': // "I" is a signed 16-bit constant. 15528 if (isInt<16>(Value)) 15529 Result = DAG.getTargetConstant(Value, dl, TCVT); 15530 break; 15531 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15532 if (isShiftedUInt<16, 16>(Value)) 15533 Result = DAG.getTargetConstant(Value, dl, TCVT); 15534 break; 15535 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15536 if (isShiftedInt<16, 16>(Value)) 15537 Result = DAG.getTargetConstant(Value, dl, TCVT); 15538 break; 15539 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15540 if (isUInt<16>(Value)) 15541 Result = DAG.getTargetConstant(Value, dl, TCVT); 15542 break; 15543 case 'M': // "M" is a constant that is greater than 31. 15544 if (Value > 31) 15545 Result = DAG.getTargetConstant(Value, dl, TCVT); 15546 break; 15547 case 'N': // "N" is a positive constant that is an exact power of two. 15548 if (Value > 0 && isPowerOf2_64(Value)) 15549 Result = DAG.getTargetConstant(Value, dl, TCVT); 15550 break; 15551 case 'O': // "O" is the constant zero. 15552 if (Value == 0) 15553 Result = DAG.getTargetConstant(Value, dl, TCVT); 15554 break; 15555 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15556 if (isInt<16>(-Value)) 15557 Result = DAG.getTargetConstant(Value, dl, TCVT); 15558 break; 15559 } 15560 break; 15561 } 15562 } 15563 15564 if (Result.getNode()) { 15565 Ops.push_back(Result); 15566 return; 15567 } 15568 15569 // Handle standard constraint letters. 15570 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15571 } 15572 15573 // isLegalAddressingMode - Return true if the addressing mode represented 15574 // by AM is legal for this target, for a load/store of the specified type. 15575 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15576 const AddrMode &AM, Type *Ty, 15577 unsigned AS, Instruction *I) const { 15578 // PPC does not allow r+i addressing modes for vectors! 15579 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15580 return false; 15581 15582 // PPC allows a sign-extended 16-bit immediate field. 15583 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15584 return false; 15585 15586 // No global is ever allowed as a base. 15587 if (AM.BaseGV) 15588 return false; 15589 15590 // PPC only support r+r, 15591 switch (AM.Scale) { 15592 case 0: // "r+i" or just "i", depending on HasBaseReg. 15593 break; 15594 case 1: 15595 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15596 return false; 15597 // Otherwise we have r+r or r+i. 15598 break; 15599 case 2: 15600 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15601 return false; 15602 // Allow 2*r as r+r. 15603 break; 15604 default: 15605 // No other scales are supported. 15606 return false; 15607 } 15608 15609 return true; 15610 } 15611 15612 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15613 SelectionDAG &DAG) const { 15614 MachineFunction &MF = DAG.getMachineFunction(); 15615 MachineFrameInfo &MFI = MF.getFrameInfo(); 15616 MFI.setReturnAddressIsTaken(true); 15617 15618 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15619 return SDValue(); 15620 15621 SDLoc dl(Op); 15622 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15623 15624 // Make sure the function does not optimize away the store of the RA to 15625 // the stack. 15626 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15627 FuncInfo->setLRStoreRequired(); 15628 bool isPPC64 = Subtarget.isPPC64(); 15629 auto PtrVT = getPointerTy(MF.getDataLayout()); 15630 15631 if (Depth > 0) { 15632 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15633 SDValue Offset = 15634 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15635 isPPC64 ? MVT::i64 : MVT::i32); 15636 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15637 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15638 MachinePointerInfo()); 15639 } 15640 15641 // Just load the return address off the stack. 15642 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15643 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15644 MachinePointerInfo()); 15645 } 15646 15647 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15648 SelectionDAG &DAG) const { 15649 SDLoc dl(Op); 15650 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15651 15652 MachineFunction &MF = DAG.getMachineFunction(); 15653 MachineFrameInfo &MFI = MF.getFrameInfo(); 15654 MFI.setFrameAddressIsTaken(true); 15655 15656 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15657 bool isPPC64 = PtrVT == MVT::i64; 15658 15659 // Naked functions never have a frame pointer, and so we use r1. For all 15660 // other functions, this decision must be delayed until during PEI. 15661 unsigned FrameReg; 15662 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15663 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15664 else 15665 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15666 15667 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15668 PtrVT); 15669 while (Depth--) 15670 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15671 FrameAddr, MachinePointerInfo()); 15672 return FrameAddr; 15673 } 15674 15675 // FIXME? Maybe this could be a TableGen attribute on some registers and 15676 // this table could be generated automatically from RegInfo. 15677 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15678 const MachineFunction &MF) const { 15679 bool isPPC64 = Subtarget.isPPC64(); 15680 15681 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15682 if (!is64Bit && VT != LLT::scalar(32)) 15683 report_fatal_error("Invalid register global variable type"); 15684 15685 Register Reg = StringSwitch<Register>(RegName) 15686 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15687 .Case("r2", isPPC64 ? Register() : PPC::R2) 15688 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15689 .Default(Register()); 15690 15691 if (Reg) 15692 return Reg; 15693 report_fatal_error("Invalid register name global variable"); 15694 } 15695 15696 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15697 // 32-bit SVR4 ABI access everything as got-indirect. 15698 if (Subtarget.is32BitELFABI()) 15699 return true; 15700 15701 // AIX accesses everything indirectly through the TOC, which is similar to 15702 // the GOT. 15703 if (Subtarget.isAIXABI()) 15704 return true; 15705 15706 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15707 // If it is small or large code model, module locals are accessed 15708 // indirectly by loading their address from .toc/.got. 15709 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15710 return true; 15711 15712 // JumpTable and BlockAddress are accessed as got-indirect. 15713 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15714 return true; 15715 15716 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15717 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15718 15719 return false; 15720 } 15721 15722 bool 15723 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15724 // The PowerPC target isn't yet aware of offsets. 15725 return false; 15726 } 15727 15728 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15729 const CallInst &I, 15730 MachineFunction &MF, 15731 unsigned Intrinsic) const { 15732 switch (Intrinsic) { 15733 case Intrinsic::ppc_qpx_qvlfd: 15734 case Intrinsic::ppc_qpx_qvlfs: 15735 case Intrinsic::ppc_qpx_qvlfcd: 15736 case Intrinsic::ppc_qpx_qvlfcs: 15737 case Intrinsic::ppc_qpx_qvlfiwa: 15738 case Intrinsic::ppc_qpx_qvlfiwz: 15739 case Intrinsic::ppc_altivec_lvx: 15740 case Intrinsic::ppc_altivec_lvxl: 15741 case Intrinsic::ppc_altivec_lvebx: 15742 case Intrinsic::ppc_altivec_lvehx: 15743 case Intrinsic::ppc_altivec_lvewx: 15744 case Intrinsic::ppc_vsx_lxvd2x: 15745 case Intrinsic::ppc_vsx_lxvw4x: { 15746 EVT VT; 15747 switch (Intrinsic) { 15748 case Intrinsic::ppc_altivec_lvebx: 15749 VT = MVT::i8; 15750 break; 15751 case Intrinsic::ppc_altivec_lvehx: 15752 VT = MVT::i16; 15753 break; 15754 case Intrinsic::ppc_altivec_lvewx: 15755 VT = MVT::i32; 15756 break; 15757 case Intrinsic::ppc_vsx_lxvd2x: 15758 VT = MVT::v2f64; 15759 break; 15760 case Intrinsic::ppc_qpx_qvlfd: 15761 VT = MVT::v4f64; 15762 break; 15763 case Intrinsic::ppc_qpx_qvlfs: 15764 VT = MVT::v4f32; 15765 break; 15766 case Intrinsic::ppc_qpx_qvlfcd: 15767 VT = MVT::v2f64; 15768 break; 15769 case Intrinsic::ppc_qpx_qvlfcs: 15770 VT = MVT::v2f32; 15771 break; 15772 default: 15773 VT = MVT::v4i32; 15774 break; 15775 } 15776 15777 Info.opc = ISD::INTRINSIC_W_CHAIN; 15778 Info.memVT = VT; 15779 Info.ptrVal = I.getArgOperand(0); 15780 Info.offset = -VT.getStoreSize()+1; 15781 Info.size = 2*VT.getStoreSize()-1; 15782 Info.align = Align(1); 15783 Info.flags = MachineMemOperand::MOLoad; 15784 return true; 15785 } 15786 case Intrinsic::ppc_qpx_qvlfda: 15787 case Intrinsic::ppc_qpx_qvlfsa: 15788 case Intrinsic::ppc_qpx_qvlfcda: 15789 case Intrinsic::ppc_qpx_qvlfcsa: 15790 case Intrinsic::ppc_qpx_qvlfiwaa: 15791 case Intrinsic::ppc_qpx_qvlfiwza: { 15792 EVT VT; 15793 switch (Intrinsic) { 15794 case Intrinsic::ppc_qpx_qvlfda: 15795 VT = MVT::v4f64; 15796 break; 15797 case Intrinsic::ppc_qpx_qvlfsa: 15798 VT = MVT::v4f32; 15799 break; 15800 case Intrinsic::ppc_qpx_qvlfcda: 15801 VT = MVT::v2f64; 15802 break; 15803 case Intrinsic::ppc_qpx_qvlfcsa: 15804 VT = MVT::v2f32; 15805 break; 15806 default: 15807 VT = MVT::v4i32; 15808 break; 15809 } 15810 15811 Info.opc = ISD::INTRINSIC_W_CHAIN; 15812 Info.memVT = VT; 15813 Info.ptrVal = I.getArgOperand(0); 15814 Info.offset = 0; 15815 Info.size = VT.getStoreSize(); 15816 Info.align = Align(1); 15817 Info.flags = MachineMemOperand::MOLoad; 15818 return true; 15819 } 15820 case Intrinsic::ppc_qpx_qvstfd: 15821 case Intrinsic::ppc_qpx_qvstfs: 15822 case Intrinsic::ppc_qpx_qvstfcd: 15823 case Intrinsic::ppc_qpx_qvstfcs: 15824 case Intrinsic::ppc_qpx_qvstfiw: 15825 case Intrinsic::ppc_altivec_stvx: 15826 case Intrinsic::ppc_altivec_stvxl: 15827 case Intrinsic::ppc_altivec_stvebx: 15828 case Intrinsic::ppc_altivec_stvehx: 15829 case Intrinsic::ppc_altivec_stvewx: 15830 case Intrinsic::ppc_vsx_stxvd2x: 15831 case Intrinsic::ppc_vsx_stxvw4x: { 15832 EVT VT; 15833 switch (Intrinsic) { 15834 case Intrinsic::ppc_altivec_stvebx: 15835 VT = MVT::i8; 15836 break; 15837 case Intrinsic::ppc_altivec_stvehx: 15838 VT = MVT::i16; 15839 break; 15840 case Intrinsic::ppc_altivec_stvewx: 15841 VT = MVT::i32; 15842 break; 15843 case Intrinsic::ppc_vsx_stxvd2x: 15844 VT = MVT::v2f64; 15845 break; 15846 case Intrinsic::ppc_qpx_qvstfd: 15847 VT = MVT::v4f64; 15848 break; 15849 case Intrinsic::ppc_qpx_qvstfs: 15850 VT = MVT::v4f32; 15851 break; 15852 case Intrinsic::ppc_qpx_qvstfcd: 15853 VT = MVT::v2f64; 15854 break; 15855 case Intrinsic::ppc_qpx_qvstfcs: 15856 VT = MVT::v2f32; 15857 break; 15858 default: 15859 VT = MVT::v4i32; 15860 break; 15861 } 15862 15863 Info.opc = ISD::INTRINSIC_VOID; 15864 Info.memVT = VT; 15865 Info.ptrVal = I.getArgOperand(1); 15866 Info.offset = -VT.getStoreSize()+1; 15867 Info.size = 2*VT.getStoreSize()-1; 15868 Info.align = Align(1); 15869 Info.flags = MachineMemOperand::MOStore; 15870 return true; 15871 } 15872 case Intrinsic::ppc_qpx_qvstfda: 15873 case Intrinsic::ppc_qpx_qvstfsa: 15874 case Intrinsic::ppc_qpx_qvstfcda: 15875 case Intrinsic::ppc_qpx_qvstfcsa: 15876 case Intrinsic::ppc_qpx_qvstfiwa: { 15877 EVT VT; 15878 switch (Intrinsic) { 15879 case Intrinsic::ppc_qpx_qvstfda: 15880 VT = MVT::v4f64; 15881 break; 15882 case Intrinsic::ppc_qpx_qvstfsa: 15883 VT = MVT::v4f32; 15884 break; 15885 case Intrinsic::ppc_qpx_qvstfcda: 15886 VT = MVT::v2f64; 15887 break; 15888 case Intrinsic::ppc_qpx_qvstfcsa: 15889 VT = MVT::v2f32; 15890 break; 15891 default: 15892 VT = MVT::v4i32; 15893 break; 15894 } 15895 15896 Info.opc = ISD::INTRINSIC_VOID; 15897 Info.memVT = VT; 15898 Info.ptrVal = I.getArgOperand(1); 15899 Info.offset = 0; 15900 Info.size = VT.getStoreSize(); 15901 Info.align = Align(1); 15902 Info.flags = MachineMemOperand::MOStore; 15903 return true; 15904 } 15905 default: 15906 break; 15907 } 15908 15909 return false; 15910 } 15911 15912 /// It returns EVT::Other if the type should be determined using generic 15913 /// target-independent logic. 15914 EVT PPCTargetLowering::getOptimalMemOpType( 15915 const MemOp &Op, const AttributeList &FuncAttributes) const { 15916 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15917 // When expanding a memset, require at least two QPX instructions to cover 15918 // the cost of loading the value to be stored from the constant pool. 15919 if (Subtarget.hasQPX() && Op.size() >= 32 && 15920 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15921 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15922 return MVT::v4f64; 15923 } 15924 15925 // We should use Altivec/VSX loads and stores when available. For unaligned 15926 // addresses, unaligned VSX loads are only fast starting with the P8. 15927 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15928 (Op.isAligned(Align(16)) || 15929 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15930 return MVT::v4i32; 15931 } 15932 15933 if (Subtarget.isPPC64()) { 15934 return MVT::i64; 15935 } 15936 15937 return MVT::i32; 15938 } 15939 15940 /// Returns true if it is beneficial to convert a load of a constant 15941 /// to just the constant itself. 15942 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15943 Type *Ty) const { 15944 assert(Ty->isIntegerTy()); 15945 15946 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15947 return !(BitSize == 0 || BitSize > 64); 15948 } 15949 15950 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15951 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15952 return false; 15953 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15954 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15955 return NumBits1 == 64 && NumBits2 == 32; 15956 } 15957 15958 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15959 if (!VT1.isInteger() || !VT2.isInteger()) 15960 return false; 15961 unsigned NumBits1 = VT1.getSizeInBits(); 15962 unsigned NumBits2 = VT2.getSizeInBits(); 15963 return NumBits1 == 64 && NumBits2 == 32; 15964 } 15965 15966 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15967 // Generally speaking, zexts are not free, but they are free when they can be 15968 // folded with other operations. 15969 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15970 EVT MemVT = LD->getMemoryVT(); 15971 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15972 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15973 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15974 LD->getExtensionType() == ISD::ZEXTLOAD)) 15975 return true; 15976 } 15977 15978 // FIXME: Add other cases... 15979 // - 32-bit shifts with a zext to i64 15980 // - zext after ctlz, bswap, etc. 15981 // - zext after and by a constant mask 15982 15983 return TargetLowering::isZExtFree(Val, VT2); 15984 } 15985 15986 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15987 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15988 "invalid fpext types"); 15989 // Extending to float128 is not free. 15990 if (DestVT == MVT::f128) 15991 return false; 15992 return true; 15993 } 15994 15995 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15996 return isInt<16>(Imm) || isUInt<16>(Imm); 15997 } 15998 15999 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16000 return isInt<16>(Imm) || isUInt<16>(Imm); 16001 } 16002 16003 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 16004 unsigned, 16005 unsigned, 16006 MachineMemOperand::Flags, 16007 bool *Fast) const { 16008 if (DisablePPCUnaligned) 16009 return false; 16010 16011 // PowerPC supports unaligned memory access for simple non-vector types. 16012 // Although accessing unaligned addresses is not as efficient as accessing 16013 // aligned addresses, it is generally more efficient than manual expansion, 16014 // and generally only traps for software emulation when crossing page 16015 // boundaries. 16016 16017 if (!VT.isSimple()) 16018 return false; 16019 16020 if (VT.isFloatingPoint() && !VT.isVector() && 16021 !Subtarget.allowsUnalignedFPAccess()) 16022 return false; 16023 16024 if (VT.getSimpleVT().isVector()) { 16025 if (Subtarget.hasVSX()) { 16026 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16027 VT != MVT::v4f32 && VT != MVT::v4i32) 16028 return false; 16029 } else { 16030 return false; 16031 } 16032 } 16033 16034 if (VT == MVT::ppcf128) 16035 return false; 16036 16037 if (Fast) 16038 *Fast = true; 16039 16040 return true; 16041 } 16042 16043 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16044 EVT VT) const { 16045 return isFMAFasterThanFMulAndFAdd( 16046 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16047 } 16048 16049 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16050 Type *Ty) const { 16051 switch (Ty->getScalarType()->getTypeID()) { 16052 case Type::FloatTyID: 16053 case Type::DoubleTyID: 16054 return true; 16055 case Type::FP128TyID: 16056 return EnableQuadPrecision && Subtarget.hasP9Vector(); 16057 default: 16058 return false; 16059 } 16060 } 16061 16062 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 16063 // FIXME: add more patterns which are profitable to hoist. 16064 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16065 if (I->getOpcode() != Instruction::FMul) 16066 return true; 16067 16068 if (!I->hasOneUse()) 16069 return true; 16070 16071 Instruction *User = I->user_back(); 16072 assert(User && "A single use instruction with no uses."); 16073 16074 if (User->getOpcode() != Instruction::FSub && 16075 User->getOpcode() != Instruction::FAdd) 16076 return true; 16077 16078 const TargetOptions &Options = getTargetMachine().Options; 16079 const Function *F = I->getFunction(); 16080 const DataLayout &DL = F->getParent()->getDataLayout(); 16081 Type *Ty = User->getOperand(0)->getType(); 16082 16083 return !( 16084 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16085 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16086 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16087 } 16088 16089 const MCPhysReg * 16090 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16091 // LR is a callee-save register, but we must treat it as clobbered by any call 16092 // site. Hence we include LR in the scratch registers, which are in turn added 16093 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16094 // to CTR, which is used by any indirect call. 16095 static const MCPhysReg ScratchRegs[] = { 16096 PPC::X12, PPC::LR8, PPC::CTR8, 0 16097 }; 16098 16099 return ScratchRegs; 16100 } 16101 16102 Register PPCTargetLowering::getExceptionPointerRegister( 16103 const Constant *PersonalityFn) const { 16104 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16105 } 16106 16107 Register PPCTargetLowering::getExceptionSelectorRegister( 16108 const Constant *PersonalityFn) const { 16109 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16110 } 16111 16112 bool 16113 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16114 EVT VT , unsigned DefinedValues) const { 16115 if (VT == MVT::v2i64) 16116 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16117 16118 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 16119 return true; 16120 16121 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16122 } 16123 16124 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16125 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16126 return TargetLowering::getSchedulingPreference(N); 16127 16128 return Sched::ILP; 16129 } 16130 16131 // Create a fast isel object. 16132 FastISel * 16133 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16134 const TargetLibraryInfo *LibInfo) const { 16135 return PPC::createFastISel(FuncInfo, LibInfo); 16136 } 16137 16138 // 'Inverted' means the FMA opcode after negating one multiplicand. 16139 // For example, (fma -a b c) = (fnmsub a b c) 16140 static unsigned invertFMAOpcode(unsigned Opc) { 16141 switch (Opc) { 16142 default: 16143 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16144 case ISD::FMA: 16145 return PPCISD::FNMSUB; 16146 case PPCISD::FNMSUB: 16147 return ISD::FMA; 16148 } 16149 } 16150 16151 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16152 bool LegalOps, bool OptForSize, 16153 NegatibleCost &Cost, 16154 unsigned Depth) const { 16155 if (Depth > SelectionDAG::MaxRecursionDepth) 16156 return SDValue(); 16157 16158 unsigned Opc = Op.getOpcode(); 16159 EVT VT = Op.getValueType(); 16160 SDNodeFlags Flags = Op.getNode()->getFlags(); 16161 16162 switch (Opc) { 16163 case PPCISD::FNMSUB: 16164 // TODO: QPX subtarget is deprecated. No transformation here. 16165 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 16166 break; 16167 16168 const TargetOptions &Options = getTargetMachine().Options; 16169 SDValue N0 = Op.getOperand(0); 16170 SDValue N1 = Op.getOperand(1); 16171 SDValue N2 = Op.getOperand(2); 16172 SDLoc Loc(Op); 16173 16174 NegatibleCost N2Cost = NegatibleCost::Expensive; 16175 SDValue NegN2 = 16176 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16177 16178 if (!NegN2) 16179 return SDValue(); 16180 16181 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16182 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16183 // These transformations may change sign of zeroes. For example, 16184 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16185 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16186 // Try and choose the cheaper one to negate. 16187 NegatibleCost N0Cost = NegatibleCost::Expensive; 16188 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16189 N0Cost, Depth + 1); 16190 16191 NegatibleCost N1Cost = NegatibleCost::Expensive; 16192 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16193 N1Cost, Depth + 1); 16194 16195 if (NegN0 && N0Cost <= N1Cost) { 16196 Cost = std::min(N0Cost, N2Cost); 16197 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16198 } else if (NegN1) { 16199 Cost = std::min(N1Cost, N2Cost); 16200 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16201 } 16202 } 16203 16204 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16205 if (isOperationLegal(ISD::FMA, VT)) { 16206 Cost = N2Cost; 16207 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16208 } 16209 16210 break; 16211 } 16212 16213 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16214 Cost, Depth); 16215 } 16216 16217 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16218 bool PPCTargetLowering::useLoadStackGuardNode() const { 16219 if (!Subtarget.isTargetLinux()) 16220 return TargetLowering::useLoadStackGuardNode(); 16221 return true; 16222 } 16223 16224 // Override to disable global variable loading on Linux. 16225 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16226 if (!Subtarget.isTargetLinux()) 16227 return TargetLowering::insertSSPDeclarations(M); 16228 } 16229 16230 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16231 bool ForCodeSize) const { 16232 if (!VT.isSimple() || !Subtarget.hasVSX()) 16233 return false; 16234 16235 switch(VT.getSimpleVT().SimpleTy) { 16236 default: 16237 // For FP types that are currently not supported by PPC backend, return 16238 // false. Examples: f16, f80. 16239 return false; 16240 case MVT::f32: 16241 case MVT::f64: 16242 case MVT::ppcf128: 16243 return Imm.isPosZero(); 16244 } 16245 } 16246 16247 // For vector shift operation op, fold 16248 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16249 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16250 SelectionDAG &DAG) { 16251 SDValue N0 = N->getOperand(0); 16252 SDValue N1 = N->getOperand(1); 16253 EVT VT = N0.getValueType(); 16254 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16255 unsigned Opcode = N->getOpcode(); 16256 unsigned TargetOpcode; 16257 16258 switch (Opcode) { 16259 default: 16260 llvm_unreachable("Unexpected shift operation"); 16261 case ISD::SHL: 16262 TargetOpcode = PPCISD::SHL; 16263 break; 16264 case ISD::SRL: 16265 TargetOpcode = PPCISD::SRL; 16266 break; 16267 case ISD::SRA: 16268 TargetOpcode = PPCISD::SRA; 16269 break; 16270 } 16271 16272 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16273 N1->getOpcode() == ISD::AND) 16274 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16275 if (Mask->getZExtValue() == OpSizeInBits - 1) 16276 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16277 16278 return SDValue(); 16279 } 16280 16281 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16282 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16283 return Value; 16284 16285 SDValue N0 = N->getOperand(0); 16286 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16287 if (!Subtarget.isISA3_0() || 16288 N0.getOpcode() != ISD::SIGN_EXTEND || 16289 N0.getOperand(0).getValueType() != MVT::i32 || 16290 CN1 == nullptr || N->getValueType(0) != MVT::i64) 16291 return SDValue(); 16292 16293 // We can't save an operation here if the value is already extended, and 16294 // the existing shift is easier to combine. 16295 SDValue ExtsSrc = N0.getOperand(0); 16296 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16297 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16298 return SDValue(); 16299 16300 SDLoc DL(N0); 16301 SDValue ShiftBy = SDValue(CN1, 0); 16302 // We want the shift amount to be i32 on the extswli, but the shift could 16303 // have an i64. 16304 if (ShiftBy.getValueType() == MVT::i64) 16305 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16306 16307 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16308 ShiftBy); 16309 } 16310 16311 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16312 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16313 return Value; 16314 16315 return SDValue(); 16316 } 16317 16318 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16319 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16320 return Value; 16321 16322 return SDValue(); 16323 } 16324 16325 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16326 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16327 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16328 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16329 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16330 const PPCSubtarget &Subtarget) { 16331 if (!Subtarget.isPPC64()) 16332 return SDValue(); 16333 16334 SDValue LHS = N->getOperand(0); 16335 SDValue RHS = N->getOperand(1); 16336 16337 auto isZextOfCompareWithConstant = [](SDValue Op) { 16338 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16339 Op.getValueType() != MVT::i64) 16340 return false; 16341 16342 SDValue Cmp = Op.getOperand(0); 16343 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16344 Cmp.getOperand(0).getValueType() != MVT::i64) 16345 return false; 16346 16347 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16348 int64_t NegConstant = 0 - Constant->getSExtValue(); 16349 // Due to the limitations of the addi instruction, 16350 // -C is required to be [-32768, 32767]. 16351 return isInt<16>(NegConstant); 16352 } 16353 16354 return false; 16355 }; 16356 16357 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16358 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16359 16360 // If there is a pattern, canonicalize a zext operand to the RHS. 16361 if (LHSHasPattern && !RHSHasPattern) 16362 std::swap(LHS, RHS); 16363 else if (!LHSHasPattern && !RHSHasPattern) 16364 return SDValue(); 16365 16366 SDLoc DL(N); 16367 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16368 SDValue Cmp = RHS.getOperand(0); 16369 SDValue Z = Cmp.getOperand(0); 16370 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16371 16372 assert(Constant && "Constant Should not be a null pointer."); 16373 int64_t NegConstant = 0 - Constant->getSExtValue(); 16374 16375 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16376 default: break; 16377 case ISD::SETNE: { 16378 // when C == 0 16379 // --> addze X, (addic Z, -1).carry 16380 // / 16381 // add X, (zext(setne Z, C))-- 16382 // \ when -32768 <= -C <= 32767 && C != 0 16383 // --> addze X, (addic (addi Z, -C), -1).carry 16384 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16385 DAG.getConstant(NegConstant, DL, MVT::i64)); 16386 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16387 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16388 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16389 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16390 SDValue(Addc.getNode(), 1)); 16391 } 16392 case ISD::SETEQ: { 16393 // when C == 0 16394 // --> addze X, (subfic Z, 0).carry 16395 // / 16396 // add X, (zext(sete Z, C))-- 16397 // \ when -32768 <= -C <= 32767 && C != 0 16398 // --> addze X, (subfic (addi Z, -C), 0).carry 16399 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16400 DAG.getConstant(NegConstant, DL, MVT::i64)); 16401 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16402 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16403 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16404 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16405 SDValue(Subc.getNode(), 1)); 16406 } 16407 } 16408 16409 return SDValue(); 16410 } 16411 16412 // Transform 16413 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16414 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16415 // In this case both C1 and C2 must be known constants. 16416 // C1+C2 must fit into a 34 bit signed integer. 16417 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16418 const PPCSubtarget &Subtarget) { 16419 if (!Subtarget.isUsingPCRelativeCalls()) 16420 return SDValue(); 16421 16422 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16423 // If we find that node try to cast the Global Address and the Constant. 16424 SDValue LHS = N->getOperand(0); 16425 SDValue RHS = N->getOperand(1); 16426 16427 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16428 std::swap(LHS, RHS); 16429 16430 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16431 return SDValue(); 16432 16433 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16434 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16435 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16436 16437 // Check that both casts succeeded. 16438 if (!GSDN || !ConstNode) 16439 return SDValue(); 16440 16441 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16442 SDLoc DL(GSDN); 16443 16444 // The signed int offset needs to fit in 34 bits. 16445 if (!isInt<34>(NewOffset)) 16446 return SDValue(); 16447 16448 // The new global address is a copy of the old global address except 16449 // that it has the updated Offset. 16450 SDValue GA = 16451 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16452 NewOffset, GSDN->getTargetFlags()); 16453 SDValue MatPCRel = 16454 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16455 return MatPCRel; 16456 } 16457 16458 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16459 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16460 return Value; 16461 16462 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16463 return Value; 16464 16465 return SDValue(); 16466 } 16467 16468 // Detect TRUNCATE operations on bitcasts of float128 values. 16469 // What we are looking for here is the situtation where we extract a subset 16470 // of bits from a 128 bit float. 16471 // This can be of two forms: 16472 // 1) BITCAST of f128 feeding TRUNCATE 16473 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16474 // The reason this is required is because we do not have a legal i128 type 16475 // and so we want to prevent having to store the f128 and then reload part 16476 // of it. 16477 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16478 DAGCombinerInfo &DCI) const { 16479 // If we are using CRBits then try that first. 16480 if (Subtarget.useCRBits()) { 16481 // Check if CRBits did anything and return that if it did. 16482 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16483 return CRTruncValue; 16484 } 16485 16486 SDLoc dl(N); 16487 SDValue Op0 = N->getOperand(0); 16488 16489 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16490 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16491 EVT VT = N->getValueType(0); 16492 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16493 return SDValue(); 16494 SDValue Sub = Op0.getOperand(0); 16495 if (Sub.getOpcode() == ISD::SUB) { 16496 SDValue SubOp0 = Sub.getOperand(0); 16497 SDValue SubOp1 = Sub.getOperand(1); 16498 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16499 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16500 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16501 SubOp1.getOperand(0), 16502 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16503 } 16504 } 16505 } 16506 16507 // Looking for a truncate of i128 to i64. 16508 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16509 return SDValue(); 16510 16511 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16512 16513 // SRL feeding TRUNCATE. 16514 if (Op0.getOpcode() == ISD::SRL) { 16515 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16516 // The right shift has to be by 64 bits. 16517 if (!ConstNode || ConstNode->getZExtValue() != 64) 16518 return SDValue(); 16519 16520 // Switch the element number to extract. 16521 EltToExtract = EltToExtract ? 0 : 1; 16522 // Update Op0 past the SRL. 16523 Op0 = Op0.getOperand(0); 16524 } 16525 16526 // BITCAST feeding a TRUNCATE possibly via SRL. 16527 if (Op0.getOpcode() == ISD::BITCAST && 16528 Op0.getValueType() == MVT::i128 && 16529 Op0.getOperand(0).getValueType() == MVT::f128) { 16530 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16531 return DCI.DAG.getNode( 16532 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16533 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16534 } 16535 return SDValue(); 16536 } 16537 16538 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16539 SelectionDAG &DAG = DCI.DAG; 16540 16541 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16542 if (!ConstOpOrElement) 16543 return SDValue(); 16544 16545 // An imul is usually smaller than the alternative sequence for legal type. 16546 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16547 isOperationLegal(ISD::MUL, N->getValueType(0))) 16548 return SDValue(); 16549 16550 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16551 switch (this->Subtarget.getCPUDirective()) { 16552 default: 16553 // TODO: enhance the condition for subtarget before pwr8 16554 return false; 16555 case PPC::DIR_PWR8: 16556 // type mul add shl 16557 // scalar 4 1 1 16558 // vector 7 2 2 16559 return true; 16560 case PPC::DIR_PWR9: 16561 case PPC::DIR_PWR10: 16562 case PPC::DIR_PWR_FUTURE: 16563 // type mul add shl 16564 // scalar 5 2 2 16565 // vector 7 2 2 16566 16567 // The cycle RATIO of related operations are showed as a table above. 16568 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16569 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16570 // are 4, it is always profitable; but for 3 instrs patterns 16571 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16572 // So we should only do it for vector type. 16573 return IsAddOne && IsNeg ? VT.isVector() : true; 16574 } 16575 }; 16576 16577 EVT VT = N->getValueType(0); 16578 SDLoc DL(N); 16579 16580 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16581 bool IsNeg = MulAmt.isNegative(); 16582 APInt MulAmtAbs = MulAmt.abs(); 16583 16584 if ((MulAmtAbs - 1).isPowerOf2()) { 16585 // (mul x, 2^N + 1) => (add (shl x, N), x) 16586 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16587 16588 if (!IsProfitable(IsNeg, true, VT)) 16589 return SDValue(); 16590 16591 SDValue Op0 = N->getOperand(0); 16592 SDValue Op1 = 16593 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16594 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16595 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16596 16597 if (!IsNeg) 16598 return Res; 16599 16600 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16601 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16602 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16603 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16604 16605 if (!IsProfitable(IsNeg, false, VT)) 16606 return SDValue(); 16607 16608 SDValue Op0 = N->getOperand(0); 16609 SDValue Op1 = 16610 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16611 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16612 16613 if (!IsNeg) 16614 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16615 else 16616 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16617 16618 } else { 16619 return SDValue(); 16620 } 16621 } 16622 16623 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16624 // in combiner since we need to check SD flags and other subtarget features. 16625 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16626 DAGCombinerInfo &DCI) const { 16627 SDValue N0 = N->getOperand(0); 16628 SDValue N1 = N->getOperand(1); 16629 SDValue N2 = N->getOperand(2); 16630 SDNodeFlags Flags = N->getFlags(); 16631 EVT VT = N->getValueType(0); 16632 SelectionDAG &DAG = DCI.DAG; 16633 const TargetOptions &Options = getTargetMachine().Options; 16634 unsigned Opc = N->getOpcode(); 16635 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16636 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16637 SDLoc Loc(N); 16638 16639 // TODO: QPX subtarget is deprecated. No transformation here. 16640 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT)) 16641 return SDValue(); 16642 16643 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16644 // since (fnmsub a b c)=-0 while c-ab=+0. 16645 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16646 return SDValue(); 16647 16648 // (fma (fneg a) b c) => (fnmsub a b c) 16649 // (fnmsub (fneg a) b c) => (fma a b c) 16650 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16651 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16652 16653 // (fma a (fneg b) c) => (fnmsub a b c) 16654 // (fnmsub a (fneg b) c) => (fma a b c) 16655 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16656 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16657 16658 return SDValue(); 16659 } 16660 16661 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16662 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16663 if (!Subtarget.is64BitELFABI()) 16664 return false; 16665 16666 // If not a tail call then no need to proceed. 16667 if (!CI->isTailCall()) 16668 return false; 16669 16670 // If sibling calls have been disabled and tail-calls aren't guaranteed 16671 // there is no reason to duplicate. 16672 auto &TM = getTargetMachine(); 16673 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16674 return false; 16675 16676 // Can't tail call a function called indirectly, or if it has variadic args. 16677 const Function *Callee = CI->getCalledFunction(); 16678 if (!Callee || Callee->isVarArg()) 16679 return false; 16680 16681 // Make sure the callee and caller calling conventions are eligible for tco. 16682 const Function *Caller = CI->getParent()->getParent(); 16683 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16684 CI->getCallingConv())) 16685 return false; 16686 16687 // If the function is local then we have a good chance at tail-calling it 16688 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16689 } 16690 16691 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16692 if (!Subtarget.hasVSX()) 16693 return false; 16694 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16695 return true; 16696 return VT == MVT::f32 || VT == MVT::f64 || 16697 VT == MVT::v4f32 || VT == MVT::v2f64; 16698 } 16699 16700 bool PPCTargetLowering:: 16701 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16702 const Value *Mask = AndI.getOperand(1); 16703 // If the mask is suitable for andi. or andis. we should sink the and. 16704 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16705 // Can't handle constants wider than 64-bits. 16706 if (CI->getBitWidth() > 64) 16707 return false; 16708 int64_t ConstVal = CI->getZExtValue(); 16709 return isUInt<16>(ConstVal) || 16710 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16711 } 16712 16713 // For non-constant masks, we can always use the record-form and. 16714 return true; 16715 } 16716 16717 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16718 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16719 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16720 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16721 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16722 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16723 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16724 assert(Subtarget.hasP9Altivec() && 16725 "Only combine this when P9 altivec supported!"); 16726 EVT VT = N->getValueType(0); 16727 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16728 return SDValue(); 16729 16730 SelectionDAG &DAG = DCI.DAG; 16731 SDLoc dl(N); 16732 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16733 // Even for signed integers, if it's known to be positive (as signed 16734 // integer) due to zero-extended inputs. 16735 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16736 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16737 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16738 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16739 (SubOpcd1 == ISD::ZERO_EXTEND || 16740 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16741 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16742 N->getOperand(0)->getOperand(0), 16743 N->getOperand(0)->getOperand(1), 16744 DAG.getTargetConstant(0, dl, MVT::i32)); 16745 } 16746 16747 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16748 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16749 N->getOperand(0).hasOneUse()) { 16750 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16751 N->getOperand(0)->getOperand(0), 16752 N->getOperand(0)->getOperand(1), 16753 DAG.getTargetConstant(1, dl, MVT::i32)); 16754 } 16755 } 16756 16757 return SDValue(); 16758 } 16759 16760 // For type v4i32/v8ii16/v16i8, transform 16761 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16762 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16763 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16764 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16765 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16766 DAGCombinerInfo &DCI) const { 16767 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16768 assert(Subtarget.hasP9Altivec() && 16769 "Only combine this when P9 altivec supported!"); 16770 16771 SelectionDAG &DAG = DCI.DAG; 16772 SDLoc dl(N); 16773 SDValue Cond = N->getOperand(0); 16774 SDValue TrueOpnd = N->getOperand(1); 16775 SDValue FalseOpnd = N->getOperand(2); 16776 EVT VT = N->getOperand(1).getValueType(); 16777 16778 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16779 FalseOpnd.getOpcode() != ISD::SUB) 16780 return SDValue(); 16781 16782 // ABSD only available for type v4i32/v8i16/v16i8 16783 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16784 return SDValue(); 16785 16786 // At least to save one more dependent computation 16787 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16788 return SDValue(); 16789 16790 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16791 16792 // Can only handle unsigned comparison here 16793 switch (CC) { 16794 default: 16795 return SDValue(); 16796 case ISD::SETUGT: 16797 case ISD::SETUGE: 16798 break; 16799 case ISD::SETULT: 16800 case ISD::SETULE: 16801 std::swap(TrueOpnd, FalseOpnd); 16802 break; 16803 } 16804 16805 SDValue CmpOpnd1 = Cond.getOperand(0); 16806 SDValue CmpOpnd2 = Cond.getOperand(1); 16807 16808 // SETCC CmpOpnd1 CmpOpnd2 cond 16809 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16810 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16811 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16812 TrueOpnd.getOperand(1) == CmpOpnd2 && 16813 FalseOpnd.getOperand(0) == CmpOpnd2 && 16814 FalseOpnd.getOperand(1) == CmpOpnd1) { 16815 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16816 CmpOpnd1, CmpOpnd2, 16817 DAG.getTargetConstant(0, dl, MVT::i32)); 16818 } 16819 16820 return SDValue(); 16821 } 16822